WorldWideScience

Sample records for vibrational energy distribution

  1. Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations

    Science.gov (United States)

    Jamróz, Michał H.

    2013-10-01

    The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.

  2. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  3. Energy distribution in selected fragment vibrations in dissociation processes in polyatomic molecules

    International Nuclear Information System (INIS)

    Band, Y.B.; Freed, K.F.

    1977-01-01

    The full quantum theory of dissociation processes in polyatomic molecules is converted to a form enabling the isolation of a selected fragment vibration. This form enables the easy evaluation of the probability distribution for energy partitioning between this vibration and all other degrees of freedom that results from the sudden Franck--Condon rearrangement process. The resultant Franck--Condon factors involve the square of the one-dimensional overlap integral between effective oscillator wavefunctions and the wavefunctions for the selected fragment vibration, a form that resembles the simple golden rule model for polyatomic dissociation and reaction processes. The full quantum theory can, therefore, be viewed as providing both a rigorous justification for certain generic aspects of the simple golden rule model as well as providing a number of important generalizations thereof. Some of these involve dealing with initial bound state vibrational excitation, explicit molecule, fragment and energy dependence of the effective oscillator, and the incorporation of all isotopic dependence. In certain limiting situations the full quantum theory yields simple, readily usable analytic expressions for the frequency and equilibrium position of the effective oscillator. Specific applications are presented for the direct photodissociation of HCN, DCN, and CO 2 where comparisons between the full theory and the simple golden rule are presented. We also discuss the generalizations of the previous theory to enable the incorporation of effects of distortion in the normal modes as a function of the reaction coordinate on the repulsive potential energy surface

  4. Electron energy distribution functions and thermalization times in methane and in argon--methane mixtures: An effect of vibrational excitation processes

    International Nuclear Information System (INIS)

    Krajcar-Bronic, I.; Kimura, M.

    1995-01-01

    Electron thermalization in methane and argon--methane mixtures is studied by using the Boltzmann equation. The presence of low-lying vibrational excited states in methane significantly changes electron energy distribution functions and relaxation times. We found that (i) the mean electron energy just below the first vibrational excited state is reached faster by 1000 times when the vibrational states are taken into account, and (ii) electron energy distribution functions have distinct peaks at energy intervals equal to the vibrational threshold energies. Both these effects are due to large vibrational stopping cross section. The thermalization time in mixtures of argon--methane (without vibrational states) smoothly changes as the mixture composition varies, and no significant difference in the electron energy distribution function is observed. When the vibrational excited states are taken into account, thermalization is almost completely defined by CH 4 , even at very low fractional concentrations of CH 4 . The sensitivity of the electron energy distribution functions on the momentum transfer cross sections used in calculation on the thermalization is discussed. copyright 1995 American Institute of Physics

  5. Vibrational Spectra And Potential Energy Distributions of Normal Modes of N,N'-Etilenbis(P-Toluen sulfonamide)

    International Nuclear Information System (INIS)

    Alyar, S.

    2008-01-01

    N-substituted sulfonamides are well known for their diuretic, antidiabetic, antibacterial and antifungal, anticancer e.g., and are widely used in the therapy of patients. These important bioactive properties are strongly affected by the special features of -CH 2 -SO 2 -NR-linker and intramolecular motion Thus, the studies of energetic and spatial properties on N-substituted sulfonamides are of great importance to improve our understanding of their biological activities and enhance abilities to predict new drugs. Density Functional Theory B3LYP /6-31G(d,p) level has been applied to obtain the vibrational force field for the most stable conformation of N,N'-etilenbis(p-toluensulfonamit)(ptsen)having sulfonamide moiety. The results of these calculation have been compared with spectroscopic data to verify accuracy of calculation and applicability of the DFT approach to ptsen. Additionally, complete normal coordinate analyses with quantum mechanical scaling (SQM) were performed to derive the potential energy distributions (PE)

  6. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  7. Predicting Statistical Distributions of Footbridge Vibrations

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2009-01-01

    The paper considers vibration response of footbridges to pedestrian loading. Employing Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is calculated modelling walking parameters such as step frequency and stride length as random variables...

  8. Issues in vibration energy harvesting

    Science.gov (United States)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-05-01

    In this study, fundamental issues related to bandwidth and nonlinear resonance in vibrational energy harvesting devices are investigated. The results show that using bandwidth as a criterion to measure device performance can be misleading. For a linear device, an enlarged bandwidth is achieved at the cost of sacrificing device performance near resonance, and thus widening the bandwidth may offer benefits only when the natural frequency of the linear device cannot match the dominant excitation frequency. For a nonlinear device, since the principle of superposition does not apply, the ''broadband" performance improvements achieved for single-frequency excitations may not be achievable for multi-frequency excitations. It is also shown that a large-amplitude response based on the traditional ''nonlinear resonance" does not always result in the optimal performance for a nonlinear device because of the negative work done by the excitation, which indicates energy is returned back to the excitation. Such undesired negative work is eliminated at global resonance, a generalized resonant condition for both linear and nonlinear systems. While the linear resonance is a special case of global resonance for a single-frequency excitation, the maximum potential of nonlinear energy harvesting can be reached for multi-frequency excitations by using global resonance to simultaneously harvest energy distributed over multiple frequencies.

  9. Adaptive learning algorithms for vibration energy harvesting

    International Nuclear Information System (INIS)

    Ward, John K; Behrens, Sam

    2008-01-01

    By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27–34%

  10. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...... is achieved by placing the cantilever in a magnetic field induced by either one or two magnets located oppositely of the cantilever. The attraction force created by the magnetic field and iron foils introduces a mechanical force in opposite direction of the cantilevers restoring force causing a spring...

  11. Deviations from the Boltzmann distribution in vibrationally excited gas flows

    International Nuclear Information System (INIS)

    Offenhaeuser, F.; Frohn, A.

    1986-01-01

    A new model for the exchange of vibrational energy in one-dimensional flows of CO 2 -H 2 O-N 2 -O 2 -He gas mixtures is presented. In contrast to previous models, the assumption of local Boltzmann distributions for the vibrational degrees of freedom is not required. This generalization was achieved by the assumption that the molecules are harmonic oscillators with one or more degrees of freedom represented by finite numbers of energy levels. The population densities of these energy levels are coupled by a set of rate equations. It is shown that in some cases of molecular gas flow the Boltzmann distribution for the vibrational degrees of freedom may be disturbed. 12 references

  12. Energy scavenging from environmental vibration.

    Energy Technology Data Exchange (ETDEWEB)

    Galchev, Tzeno (University of Michigan); Apblett, Christopher Alan; Najafi, Khalil (University of Michigan)

    2009-10-01

    The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The

  13. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  14. Electromagnetic Vibration Energy Harvesting for Railway Applications

    Directory of Open Access Journals (Sweden)

    Bradai S.

    2018-01-01

    Full Text Available Safe localization of trains via GPS and wireless sensors is essential for railway traffic supervision. Especially for freight trains and because normally no power source is available on the wagons, special solutions for energy supply have to be developed based on energy harvesting techniques. Since vibration is available in this case, it provides an interesting source of energy. Nevertheless, in order to have an efficient design of the harvesting system, the existing vibration needs to be investigated. In this paper, we focus on the characterization of vibration parameters in railway application. We propose an electromagnetic vibration converter especially developed to this application. Vibration profiles from a train traveling between two German cities were measured using a data acquisition system installed on the train’s wagon. Results show that the measured profiles present multiple frequency signals in the range of 10 to 50 Hz and an acceleration of up to 2 g. A prototype for a vibration converter is designed taking into account the real vibration parameters, robustness and integrability requirements. It is based on a moving coil attached to a mechanical spring. For the experimental emulation of the train vibrations, a shaker is used as an external artificial vibration source controlled by a laser sensor in feedback. A maximum voltage of 1.7 V peak to peak which corresponds to a maximum of 10 mW output power where the applied excitation frequency is close to the resonant frequency of the converter which corresponds to 27 Hz.

  15. A Miniature Coupled Bistable Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Zhu, D; Arthur, D C; Beeby, S P

    2014-01-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator

  16. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  17. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  18. Piezoelectric energy harvesting from broadband random vibrations

    International Nuclear Information System (INIS)

    Adhikari, S; Friswell, M I; Inman, D J

    2009-01-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples

  19. Piezoelectric energy harvesting from broadband random vibrations

    Science.gov (United States)

    Adhikari, S.; Friswell, M. I.; Inman, D. J.

    2009-11-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

  20. Influence of Electron Molecule Resonant Vibrational Collisions over the Symmetric Mode and Direct Excitation-Dissociation Cross Sections of CO2 on the Electron Energy Distribution Function and Dissociation Mechanisms in Cold Pure CO2 Plasmas.

    Science.gov (United States)

    Pietanza, L D; Colonna, G; Laporta, V; Celiberto, R; D'Ammando, G; Laricchiuta, A; Capitelli, M

    2016-05-05

    A new set of electron-vibrational (e-V) processes linking the first 10 vibrational levels of the symmetric mode of CO2 is derived by using a decoupled vibrational model and inserted in the Boltzmann equation for the electron energy distribution function (eedf). The new eedf and dissociation rates are in satisfactory agreement with the corresponding ones obtained by using the e-V cross sections reported in the database of Hake and Phelps (H-P). Large differences are, on the contrary, found when the experimental dissociation cross sections of Cosby and Helm are inserted in the Boltzman equation. Comparison of the corresponding rates with those obtained by using the low-energy threshold energy, reported in the H-P database, shows differences up to orders of magnitude, which decrease with the increasing of the reduced electric field. In all cases, we show the importance of superelastic vibrational collisions in affecting eedf and dissociation rates either in the direct electron impact mechanism or in the pure vibrational mechanism.

  1. Frequency adjustable MEMS vibration energy harvester

    Science.gov (United States)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  2. Frequency adjustable MEMS vibration energy harvester

    International Nuclear Information System (INIS)

    Podder, P; Constantinou, P; Roy, S; Amann, A

    2016-01-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators. (paper)

  3. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Directory of Open Access Journals (Sweden)

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  4. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  5. Magnetically levitated autoparametric broadband vibration energy harvesting

    International Nuclear Information System (INIS)

    Kurmann, L.; Jia, Y.; Manoli, Y.; Woias, P.

    2016-01-01

    Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation. (paper)

  6. Mechanical vibration to electrical energy converter

    Science.gov (United States)

    Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  7. Distributed bearing fault diagnosis based on vibration analysis

    Science.gov (United States)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  8. Adjustable Nonlinear Springs to Improve Efficiency of Vibration Energy Harvesters

    OpenAIRE

    Boisseau, S.; Despesse, G.; Seddik, B. Ahmed

    2012-01-01

    Vibration Energy Harvesting is an emerging technology aimed at turning mechanical energy from vibrations into electricity to power microsystems of the future. Most of present vibration energy harvesters are based on a mass spring structure introducing a resonance phenomenon that allows to increase the output power compared to non-resonant systems, but limits the working frequency bandwidth. Therefore, they are not able to harvest energy when ambient vibrations' frequencies shift. To follow sh...

  9. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  10. Vibration energy harvesting using the Halbach array

    International Nuclear Information System (INIS)

    Zhu, Dibin; Beeby, Steve; Tudor, John; Harris, Nick

    2012-01-01

    This paper studies the feasibility of vibration energy harvesting using a Halbach array. A Halbach array is a specific arrangement of permanent magnets that concentrates the magnetic field on one side of the array while cancelling the field to almost zero on the other side. This arrangement can improve electromagnetic coupling in a limited space. The Halbach array offers an advantage over conventional layouts of magnets in terms of its concentrated magnetic field and low-profile structure, which helps improve the output power of electromagnetic energy harvesters while minimizing their size. Another benefit of the Halbach array is that due to the existence of an almost-zero magnetic field zone, electronic components can be placed close to the energy harvester without any chance of interference, which can potentially reduce the overall size of a self-powered device. The first reported example of a low-profile, planar electromagnetic vibration energy harvester utilizing a Halbach array was built and tested. Results were compared to ones for energy harvesters with conventional magnet layouts. By comparison, it is concluded that although energy harvesters with a Halbach array can have higher magnetic field density, a higher output power requires careful design in order to achieve the maximum magnetic flux gradient. (paper)

  11. Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink

    Science.gov (United States)

    Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.

    2018-05-01

    A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.

  12. Resonant vibrational energy transfer in ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Li, F.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  13. Improving Vibration Energy Harvesting Using Dynamic Magnifier

    Directory of Open Access Journals (Sweden)

    Almuatasim Alomari

    2016-01-01

    Full Text Available This paper reports on the design and evaluation of vibration-based piezoelectric energy-harvesting devices based on a polyvinylidene fluoride unimorph cantilever beam attached to the front of a dynamic magnifier. Experimental studies of the electromechanical frequency response functions are studied for the first three resonance frequencies. An analytical analysis is undertaken by applying the chain matrix in order to predict output voltage and output power with respect to the vibration frequency. The proposed harvester was modeled using MATLAB software and COMSOL multi- physics to study the mode shapes and electrical output parameters. The voltage and power output of the energy harvester with a dynamic magnifier was 2.62 V and 13.68 mW, respectively at the resonance frequency of the second mode. The modeling approach provides a basis to design energy harvesters exploiting dynamic magnification for improved performance and bandwidth. The potential application of such energy harvesting devices in the transport sector include autonomous structural health monitoring systems that often include embedded sensors, data acquisition, wireless communication, and energy harvesting systems.

  14. Report of workshop on vibration related to fluid in atomic energy field. 4

    International Nuclear Information System (INIS)

    1993-01-01

    This is the fourth workshop on the vibration related to fluid in atomic energy field of Yayoi research group. This time, two topics were taken up. One is edgetone phenomena and the liquid surface vibration phenomena due to flow. Another is the introduction of the experience in light water reactors. The workshop was held on August 30 and 31, 1993 at Nuclear Engineering Research Laboratory, University of Tokyo. At the workshop, lectures were given on the mechanism of occurrence of edgetone, the theoretical analysis of edgetone and edgenoise, the self-excited vibration of free liquid surface due to vertical plane jet and vertical cylindrical jet, the research on flow instability phenomena in parallel loop system, the irregular vibration behavior of U-shaped tubes excited by flow, the research on the vibration of cyclindrical weir due to fluid discharge, the examples of the vibration related to fluid in LWRs, the estimation of fatigue phenomena in bearing rings, the vibration of rotary vanes and verifying test, the analysis of flow in isolated phase bus plate vane and the measurement of velocity distribution, flow in piping and the behavior of valve vibration, the condition for the occurrence of flow vibration in the main steam separation valve of BWR, the vibration of piping due to orifice, the analysis of flow in two-dimensional vibrating cascade, and the subjects of fluid vibration assessment in atomic energy. (K.I.)

  15. Methods of performing downhole operations using orbital vibrator energy sources

    Science.gov (United States)

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  16. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  17. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  18. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  19. Data of piezoelectric vibration energy harvesting of a bridge undergoing vibration testing and train passage

    Directory of Open Access Journals (Sweden)

    Paul Cahill

    2018-04-01

    Full Text Available The data presented in this article is in relation to the research article “Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage” Cahill et al. (2018 [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.

  20. Failure modes and natural control time for distributed vibrating systems

    International Nuclear Information System (INIS)

    Reid, R.M.

    1994-01-01

    The eigenstructure of the Gram matrix of frequency exponentials is used to study linear vibrating systems of hyperbolic type with distributed control. Using control norm as a practical measure of controllability and the vibrating string as a prototype, it is demonstrated that hyperbolic systems have a natural control time, even when only finitely many modes are excited. For shorter control times there are identifiable control failure modes which can be steered to zero only with very high cost in control norm. Both natural control time and the associated failure modes are constructed for linear fluids, strings, and beams, making note of the essential algorithms and Mathematica code, and displaying results graphically

  1. Characterization of Direct Piezoelectric Properties for Vibration Energy Harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Takeshi; Miyabuchi, Hiroki; Ashida, Atsushi; Fujimura, Norifumi [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 (Japan); Murakami, Syuichi, E-mail: tyoshi@pe.osakafu-u.ac.jp [Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka, 594-1157 (Japan)

    2011-10-29

    Direct piezoelectric effect of Pb(Zr,Ti)O{sub 3} (PZT) thin films was investigated to discuss the application of ferroelectric films to vibration energy harvesting. From the model of the piezoelectric vibration energy harvester, it was found that the figure of merit (FOM) is proportional of the square of the effective transverse piezoelectric coefficient e{sub 31,f}. The e{sub 31,f} coefficient of PZT films were measured by substrate bending method. Furthermore, it was found that the e{sub 31,f} coefficient increases with increasing strain, which is favourable for the vibration energy harvesting.

  2. Energy evaluation of protection effectiveness of anti-vibration gloves.

    Science.gov (United States)

    Hermann, Tomasz; Dobry, Marian Witalis

    2017-09-01

    This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.

  3. Energy-dependent collisional deactivation of vibrationally excited azulene

    International Nuclear Information System (INIS)

    Shi, J.; Barker, J.R.

    1988-01-01

    Collisional energy transfer parameters for highly vibrationally excited azulene have been deduced from new infrared fluorescence (IRF) emission lifetime data with an improved calibration relating IRF intensity to vibrational energy [J. Shi, D. Bernfeld, and J. R. Barker, J. Chem. Phys. 88, XXXX (1988), preceding paper]. In addition, data from previous experiments [M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983)] have been reanalyzed based on the improved calibration. Inversion of the IRF decay curves produced plots of energy decay, which were analyzed to determine , the average energy transferred per collision. Master equation simulations reproduced both the original IRF decays and the deduced energy decays. A third (simple) method of determination agrees well with the other two. The results show to be nearly directly proportional to the vibrational energy of the excited azulene from ∼8000 to 33 000 cm -1 . At high energies, there are indications that the energy dependence may be slightly reduced

  4. Vibration energy absorption in the whole-body system of a tractor operator.

    Science.gov (United States)

    Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek

    2014-01-01

    Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1).

  5. Vibration energy absorption in the whole-body system of a tractor operator

    Directory of Open Access Journals (Sweden)

    Jan Szczepaniak

    2014-06-01

    Full Text Available Many people are exposed to whole-body vibration (WBV in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA. The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 – 4.16 ms[sup] -1 [/sup].

  6. DEM - distribution energy management

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A; Kekkonen, V; Koreneff, G [VTT Energy, Espoo (Finland); and others

    1998-08-01

    The electricity market was de-regulated in Finland at the end of 1995 and the customers can now freely choose their power suppliers. The national grid and local distribution network operators are now separated from the energy business. The network operators transmit the electric power to the customers on equal terms regardless from whom the power is purchased. The Finnish national grid is owned by one company Finnish Power Grid PLC (Fingrid). The major shareholders of Fingrid are the state of Finland, two major power companies and institutional investors. In addition there are about 100 local distribution utilities operating the local 110 kV, 20 kV and 0.4 kV networks. The distribution utilities are mostly owned by the municipalities and towns. In each network one energy supplier is always responsible for the hourly energy balance in the network (a `host`) and it also has the obligation to provide public energy prices accessible to any customer in the network`s area. The Finnish regulating authorities nominate such a supplier who has a dominant market share in the network`s area as the supplier responsible for the network`s energy balance. A regulating authority, called the Electricity Market Centre, ensures that the market is operating properly. The transmission prices and public energy prices are under the Electricity Market Centre`s control. For domestic and other small customers the cost of hourly metering (ca. 1000 US$) would be prohibitive and therefore the use of conventional energy metering and load models is under consideration by the authorities. Small customer trade with the load models (instead of the hourly energy recording) is scheduled to start in the first half of 1998. In this presentation, the problems of energy management from the standpoint of the energy trading and distributing companies in the new situation are first discussed. The topics covered are: the hourly load data management, the forecasting and estimation of hourly energy demands

  7. Vibrational Energy Relaxation in Water-Acetonitrile Mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  8. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang

    2016-12-01

    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  9. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.

    2015-01-01

    We report infrared spectra of nitromethane anion, CH 3 NO 2 − , in the region 700–2150 cm −1 , obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states

  10. Vibrational energy relaxation: proposed pathway of fast local chromatin denaturation

    International Nuclear Information System (INIS)

    Harder, D.; Greinert, R.

    2002-01-01

    The molecular mechanism responsible for the a component of exchange-type chromosome aberrations, of chromosome fragmentation and of reproductive cell death is one of the unsolved issues of radiation biology. Under review is whether vibrational energy relaxation in the constitutive biopolymers of chromatin, induced by inelastic energy deposition events and mediated via highly excited vibrational states, may provide a pathway of fast local chromatin denaturation, thereby producing the severe DNA lesion able to interact chemically with other, non-damaged chromatin. (author)

  11. Vibration Suppression of Electronic Box by a Dual Function Piezoelectric Energy Harvester-Tuned Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Sajid Rafique

    2014-04-01

    Full Text Available Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber. It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of 'electromechanical' TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel "electromechanical" TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry

  12. Vibration suppression of electronic box by a dual function piezoelectric energy harvester-tuned vibration absorber

    International Nuclear Information System (INIS)

    Rafique, S.; Shah, S.

    2014-01-01

    Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber). It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of electromechanical TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel electromechanical TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry. (author)

  13. Direct observation of vibrational energy dispersal via methyl torsions.

    Science.gov (United States)

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G

    2018-02-28

    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  14. Piezoelectric energy harvesting from flow-induced vibration

    International Nuclear Information System (INIS)

    Wang, D-A; Ko, H-H

    2010-01-01

    A new piezoelectric energy harvester for harnessing energy from flow-induced vibration is developed. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric film. A finite element model is developed in order to estimate the generated voltage of the piezoelectric laminate subjected to a distributed load. Prototypes of the energy harvester are fabricated and tested. Experimental results show that an open circuit output voltage of 2.2 V pp and an instantaneous output power of 0.2 µW are generated when the excitation pressure oscillates with an amplitude of 1.196 kPa and a frequency of about 26 Hz. The solution of the generated voltage based on the finite element model agrees well with the experiments. Based on the finite element model, the effects of the piezoelectric film dimensions, the fluid pressure applied to the harvester and types of piezoelectric layer on the output voltage of the harvester can be investigated.

  15. Distributed energy store railgun

    International Nuclear Information System (INIS)

    Marshall, R.A.

    1991-01-01

    This paper reports that when the limiting case of a distributed energy store railgun is analyzed, i.e., the case where the space between adjacent energy stores become indefinitely small, three important results are obtained. First, the shape of the current pulse delivered by each store is sinusoidal and an exponential tail. Second, the rail-to-rail voltage behind the rear-most active store approaches zero. Third, it is not possible to choose parameters in such a way that capacitor crowbars can be eliminated

  16. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  17. Experimental Study on Piezoelectric Energy Harvesting from Vortex-Induced Vibrations and Wake-Induced Vibrations

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2016-01-01

    Full Text Available A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV and wake-induced vibrations (WIV by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.

  18. A vibration energy harvesting device with bidirectional resonance frequency tunability

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T

    2008-01-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined

  19. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  20. Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)

    2013-08-15

    This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.

  1. An inverse method for identification of a distributed random excitation acting on a vibrating structure flow-induced vibration application

    International Nuclear Information System (INIS)

    Perotin, L.; Granger, S.

    1997-01-01

    In order to improve the prediction of wear problems due to flow-induced vibration in PWR components, an inverse method for identifying a distributed random excitation acting on a dynamical system has been developed at EDF. This method, whose applications go far beyond the flow-induced vibration field, has been implemented into the MEIDEE software. This method is presented. (author)

  2. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  3. Relaxation of the vibrational distribution function in N2 time varying discharges

    International Nuclear Information System (INIS)

    Capitelli, M.; Gorse, C.; Ricard, A.

    1981-01-01

    Relaxation of the electron and vibrational distribution functions have been calculated in function of residence time in nitrogen electrical discharges and post-discharges. In the discharge the vibrational temperature get bigger with the residence time for t -2 s. In the post-discharge the vibrational distribution is evolving in such a manner that the high levels are overpopulated as the low vibrational level population is dropping

  4. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage

    Science.gov (United States)

    Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram

    2018-06-01

    The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.

  5. Interference between vibration-to-translation and vibration-to-vibration energy transfer modes in diatomic molecules at high collision energies

    International Nuclear Information System (INIS)

    Shin, H.K.

    1983-01-01

    An explicit time dependent approach for simultaneous VT and VV energy transfer in diatom--diatom collisions is explored using the exponential form of ladder operators in the solution of the Schroedinger equation of motion. The collision of two hydrogen molecules is chosen to illustrate the extent of interference between VT and VV modes among various vibrational states. While vibrational energy transfer processes of nominally VT type can be treated with pure VT mode at low collision energies, the intermode coupling is found to be very important at collision energies of several hω. The occurrence of the coupling appears to be nearly universal in vibrational transitions at such energies. Exceptions to the coupling have been discussed

  6. Passive and Active Vibration Control of Renewable Energy Structures

    DEFF Research Database (Denmark)

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed...

  7. Isotope separation process by transfer of vibrational energy

    International Nuclear Information System (INIS)

    Angelie, C.; Cauchetier, M.; Paris, J.

    1983-01-01

    This process consists in exciting A molecules by absorption of a pulsed light beam, then in exciting until their dissociation X molecules, present in several isotopic forms, by a vibrational transfer between the A molecules and the X molecules, the A molecules having a dissociation energy greater than that of the X molecules, the duration and energy of the light pulses being such that the absorption time by the A molecules is less than the excitation time of the X molecules and the temperature conditions such that the thermal width of the vibration rays is at the most near the isotopic difference between the resonance rays of the two isotopic varieties [fr

  8. Combined Euler column vibration isolation and energy harvesting

    Science.gov (United States)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  9. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  10. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    Science.gov (United States)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  11. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  12. A low noise discrete velocity method for the Boltzmann equation with quantized rotational and vibrational energy

    Science.gov (United States)

    Clarke, Peter; Varghese, Philip; Goldstein, David

    2018-01-01

    A discrete velocity method is developed for gas mixtures of diatomic molecules with both rotational and vibrational energy states. A full quantized model is described, and rotation-translation and vibration-translation energy exchanges are simulated using a Larsen-Borgnakke exchange model. Elastic and inelastic molecular interactions are modeled during every simulated collision to help produce smooth internal energy distributions. The method is verified by comparing simulations of homogeneous relaxation by our discrete velocity method to numerical solutions of the Jeans and Landau-Teller equations, and to direct simulation Monte Carlo. We compute the structure of a 1D shock using this method, and determine how the rotational energy distribution varies with spatial location in the shock and with position in velocity space.

  13. Energy harvesting from vibration using a piezoelectric membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ericka, M.; Vasic, D.; Costa, F.; Tliba, S. [Ecole Normale Superieure de Cachan, Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE, UMR 8029), 94 - Cachan (France); Poulin, G. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, Laboratoire d' Automatique de Grenoble, 38 (France)

    2005-09-01

    In this paper we investigate the capability of harvesting the electric energy from mechanical vibrations in a dynamic environment through a piezoelectric membrane transducer. This transducer consists of 2 layers lead zirconate titanate (PZT)/brass, the brass layer is embedded over the whole circumference by epoxy adhesive. A very small vibration gives a consequent deformation of the membrane which generates electric energy. Due to the impedance matrices connecting the efforts and flows of the membrane, we have established the dynamic electric equivalent circuit of the transducer. In a first study and in order to validate theoretical results, we performed experiments with a vibrating machine moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 1.8 mW was generated at the resonance frequency (2.58 kHz) across a 56 k{omega} optimal resistor and for a 2 g acceleration. (authors)

  14. A low frequency vibration energy harvester using magnetoelectric laminate composite

    International Nuclear Information System (INIS)

    Ju, Suna; Chae, Song Hee; Choi, Yunhee; Lee, Seungjun; Ji, Chang-Hyeon; Lee, Hyang Woon

    2013-01-01

    In this paper, we present a vibration energy harvester using magnetoelectric laminate composite and a springless spherical permanent magnet as a proof mass. The harvester utilizes a freely movable spherical permanent magnet to transform external vibration into a time varying magnetic field applied to the magnetoelectric transducer. The laminate composite consists of a Ni–Mn–Ga-based MSMA (magnetic shape memory alloy) element and a PZT (lead zirconate titanate) plate. A proof-of-concept harvester has been fabricated and characterized at various input accelerations and frequencies. A maximum open circuit voltage of 1.18 V has been obtained in response to a 3g vibration at 17 Hz with the fabricated device. Moreover, a maximum output voltage of 10.24 V and output power of 4.1 μW have been achieved on a 950 Ω load, when the fabricated energy harvester was mounted on a smartphone and shaken by hand. (paper)

  15. Assessment of regional ventilation distribution: comparison of vibration response imaging (VRI) with electrical impedance tomography (EIT).

    Science.gov (United States)

    Shi, Chang; Boehme, Stefan; Bentley, Alexander H; Hartmann, Erik K; Klein, Klaus U; Bodenstein, Marc; Baumgardner, James E; David, Matthias; Ullrich, Roman; Markstaller, Klaus

    2014-01-01

    Vibration response imaging (VRI) is a bedside technology to monitor ventilation by detecting lung sound vibrations. It is currently unknown whether VRI is able to accurately monitor the local distribution of ventilation within the lungs. We therefore compared VRI to electrical impedance tomography (EIT), an established technique used for the assessment of regional ventilation. Simultaneous EIT and VRI measurements were performed in the healthy and injured lungs (ALI; induced by saline lavage) at different PEEP levels (0, 5, 10, 15 mbar) in nine piglets. Vibration energy amplitude (VEA) by VRI, and amplitudes of relative impedance changes (rel.ΔZ) by EIT, were evaluated in seven regions of interest (ROIs). To assess the distribution of tidal volume (VT) by VRI and EIT, absolute values were normalized to the VT obtained by simultaneous spirometry measurements. Redistribution of ventilation by ALI and PEEP was detected by VRI and EIT. The linear correlation between pooled VT by VEA and rel.ΔZ was R(2) = 0.96. Bland-Altman analysis showed a bias of -1.07±24.71 ml and limits of agreement of -49.05 to +47.36 ml. Within the different ROIs, correlations of VT-distribution by EIT and VRI ranged between R(2) values of 0.29 and 0.96. ALI and PEEP did not alter the agreement of VT between VRI and EIT. Measurements of regional ventilation distribution by VRI are comparable to those obtained by EIT.

  16. Direct observation of vibrational energy flow in cytochrome c.

    Science.gov (United States)

    Fujii, Naoki; Mizuno, Misao; Mizutani, Yasuhisa

    2011-11-10

    Vibrational energy flow in ferric cytochrome c has been examined by picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) measurements. By taking advantage of the extremely short nonradiative excited state lifetime of heme in the protein (energy of 20000-25000 cm(-1) was optically deposited selectively at the heme site. Subsequent energy relaxation in the protein moiety was investigated by monitoring the anti-Stokes UVRR intensities of the Trp59 residue, which is a single tryptophan residue involved in the protein that is located close to the heme group. It was found from temporal changes of the anti-Stokes UVRR intensities that the energy flow from the heme to Trp59 and the energy release from Trp59 took place with the time constants of 1-3 and ~8 ps, respectively. These data are consistent with the time constants for the vibrational relaxation of the heme and heating of water reported for hemeproteins. The kinetics of the energy flow were not affected by the amount of excess energy deposited at the heme group. These results demonstrate that the present technique is a powerful tool for studying the vibrational energy flow in proteins.

  17. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  18. Vibrational zero point energy for H-doped silicon

    Science.gov (United States)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  19. Nearest neighbor spacing distributions of low-lying levels of vibrational nuclei

    International Nuclear Information System (INIS)

    Abul-Magd, A.Y.; Simbel, M.H.

    1996-01-01

    Energy-level statistics are considered for nuclei whose Hamiltonian is divided into intrinsic and collective-vibrational terms. The levels are described as a random superposition of independent sequences, each corresponding to a given number of phonons. The intrinsic motion is assumed chaotic. The level spacing distribution is found to be intermediate between the Wigner and Poisson distributions and similar in form to the spacing distribution of a system with classical phase space divided into separate regular and chaotic domains. We have obtained approximate expressions for the nearest neighbor spacing and cumulative spacing distribution valid when the level density is described by a constant-temperature formula and not involving additional free parameters. These expressions have been able to achieve good agreement with the experimental spacing distributions. copyright 1996 The American Physical Society

  20. Collisional flow of vibrational energy into surrounding vibrational fields within S1 benzene

    International Nuclear Information System (INIS)

    Tang, K.Y.; Parmenter, C.S.

    1983-01-01

    Vapor phase fluorescence spectra are used to determine the absolute rate constants for the collisional transfer of vibrational energy from initial single vibronic levels of S 1 benzene into the surrounding S 1 vibronic field. 11 initial levels are probed with vibrational energies ranging to 2368 cm -1 where the level density is about 10 per cm -1 . CO, isopentane, and S 0 benzene are the collision partners. Benzene rate constants are three to four times gas kinetic for all levels, and electronic energy switching between the initial S 1 molecule and the S 0 collision partner probably makes important contributions. Isopentane efficiencies range from one to two times gas kinetic. Most of the transfer from low S 1 levels occurs with excitation of vibrational energy within isopentane. These V--V contributions decline to only about 10% for the high transfer. CO-induced transfer is by V-T,R processes for all levels. The CO efficiency rises from about 0.1 for low regions to about unity for levels above 1500 cm -1 . The CO efficiencies retain significant sensitivity to initial level identity even in the higher regions. Propensity rules derived from collisional mode-to-mode transfer among lower levels of S 1 benzene are used to calculate the relative CO efficiencies. The calculated efficiencies agree well enough with the data to suggest that it may be meaningful to model vibrational equilibration with the use of propensity rules. The rules suggest that only a small number of levels among the thousands surrounding a high initial level contribute significantly to the total relaxation cross section and that this number is rather independent of the level density

  1. MEMS-Based Waste Vibrational Energy Harvesters

    Science.gov (United States)

    2013-06-01

    MEMS energy- harvesting device. Although PZT is used more prevalently due to its higher piezoelectric coefficient and dielectric constant, AlN has...7 1. Lead Zirconium Titanate ( PZT ) .........................................................7 2. Aluminum...Laboratory PiezoMUMPS Piezoelectric Multi-User MEMS Processes PZT Lead Zirconate Titanate SEM Scanning Electron Microscopy SiO2 Silicon

  2. Distributed Wind Energy in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, John [Boise State Univ., ID (United States); Johnson, Kathryn [Colorado School of Mines, Golden, CO (United States); Haynes, Todd [Boise State Univ., ID (United States); Seifert, Gary [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-01-31

    This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho.

  3. Simultaneous Vibration Suppression and Energy Harvesting

    Science.gov (United States)

    2013-08-15

    of the coupling coefficient in the feed back control law resulting from the PZT nonlinearity. A minimum energy control law was developed...these control laws we also discovered that the high voltages commanded by our control laws result in the piezoelectric coupling coefficient being...non constant. Thus we also had to implement an adaptive control law (exponential actually) to account for the change in coupling coefficient as the

  4. Development of Non-Conservative Joints in Beam Networks for Vibration Energy Flow Analysis

    Directory of Open Access Journals (Sweden)

    Jee-Hun Song

    2007-01-01

    Full Text Available Our work aims to find a general solution for the vibrational energy flow through a plane network of beams on the basis of an energy flow analysis. A joint between two semi-infinite beams are modeled by three sets of springs and dashpots. Thus, the results can incorporate the case of complaint and non-conservative in all the three degrees of freedom. In the cases of finite coupled structures connected at a certain angle, the derived non-conservative joints and developed wave energy equation were applied. The joint properties, the frequency, the coupling angle, and the internal loss factor were changed to evaluate the proposed methods for predicting medium-to-high frequency vibrational energy and intensity distributions.

  5. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  6. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  7. Vibration analysis of continuous maglev guideways with a moving distributed load model

    International Nuclear Information System (INIS)

    Teng, N G; Qiao, B P

    2008-01-01

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed

  8. Energy expenditure and substrate utilization during whole body vibration

    Directory of Open Access Journals (Sweden)

    Ravena Santos Raulino

    2015-04-01

    Full Text Available INTRODUCTION AND OBJECTIVE: the aim of this study was to investigate whether the addition of vibration during interval training would raise oxygen consumption VO2 to the extent necessary for weight management and to evaluate the influence of the intensity of the vibratory stimulus for prescribing the exercise program in question. METHODS: VO2, measured breath by breath, was evaluated at rest and during the four experimental conditions to determine energy expenditure, metabolic equivalent MET, respiratory exchange ratio RER, % Kcal from fat, and rate of fat oxidation. Eight young sedentary females age 22±1 years, height 163.88± 7.62 cm, body mass 58.35±10.96 kg, and VO2 max 32.75±3.55 mLO2.Kg-1.min-1 performed interval training duration = 13.3 min to the upper and lower limbs both with vibration 35 Hz and 2 mm, 40 Hz and 2 mm, 45 Hz and 2 mm and without vibration. The experimental conditions were randomized and balanced at an interval of 48 hours. RESULTS: the addition of vibration to exercise at 45 Hz and 2 mm resulted in an additional increase of 17.77±12.38% of VO2 compared with exercise without vibration. However, this increase did not change the fat oxidation rate p=0.42 because intensity of exercise 29.1±3.3 %VO2max, 2.7 MET was classified as mild to young subjects. CONCLUSION: despite the influence of vibration on VO2 during exercise, the increase was insufficient to reduce body weight and did not reach the minimum recommendation of exercise prescription for weight management for the studied population.

  9. Accurate ab initio vibrational energies of methyl chloride

    International Nuclear Information System (INIS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-01-01

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH 3 35 Cl and CH 3 37 Cl. The respective PESs, CBS-35  HL , and CBS-37  HL , are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3 Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35  HL and CBS-37  HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm −1 , respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH 3 Cl without empirical refinement of the respective PESs

  10. Accurate ab initio vibrational energies of methyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Alec, E-mail: owens@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  11. Electromagnetic energy harvesting from vibrations of multiple frequencies

    International Nuclear Information System (INIS)

    Yang Bin; Lee Chengkuo; Xie Jin; Han He, Johnny; Kotlanka, Rama Krishna; Feng Hanhua; Xiang Wenfeng; Low, Siew Ping

    2009-01-01

    A novel multi-frequency energy harvester has been designed and fabricated, which consists of three permanent magnets, three sets of two-layer copper coils and a supported beam of acrylic, while these coils are made of thin fire resistant 4 (FR4) substrates using a standard printed circuit board. The energy under the first, second and third resonant modes can be harvested, corresponding to the resonant frequencies of 369 Hz, 938 Hz and 1184 Hz, respectively. The maximum output voltage and power of the first and second vibration modes are 1.38 mV, 0.6 µW and 3.2 mV, 3.2 µW for a 14 µm exciting vibration amplitude and a 0.4 mm gap between the magnet and coils, respectively. The feasibility study results are in good agreement with the theoretical calculations and show promising application potentials

  12. A MEMS Energy Harvesting Device for Vibration with Low Acceleration

    DEFF Research Database (Denmark)

    Triches, Marco; Wang, Fei; Crovetto, Andrea

    2012-01-01

    We propose a polymer electret based energy harvesting device in order to extract energy from vibration sources with low acceleration. With MEMS technology, a silicon structure is fabricated which can resonate in 2D directions. Thanks to the excellent mechanical properties of the silicon material......, the proof mass could be successfully driven by an external vibrations with acceleration as low as 0.014g (∼0.14 m/s2). A root mean square (RMS) power output of 1.17μW under 0.014g RMS acceleration at 75Hz is measured when an optimal load of 20.3 MΩ is applied. The frequency response of the device is also...

  13. Architecture-independent power bound for vibration energy harvesters

    International Nuclear Information System (INIS)

    Halvorsen, E; Le, C P; Mitcheson, P D; Yeatman, E M

    2013-01-01

    The maximum output power of energy harvesters driven by harmonic vibrations is well known for a range of specific harvester architectures. An architecture-independent bound based on the mechanical input-power also exists and gives a strict limit on achievable power with one mechanical degree of freedom, but is a least upper bound only for lossless devices. We report a new theoretical bound on the output power of vibration energy harvesters that includes parasitic, linear mechanical damping while still being architecture independent. This bound greatly improves the previous bound at moderate force amplitudes and is compared to the performance of established harvester architectures which are shown to agree with it in limiting cases. The bound is a hard limit on achievable power with one mechanical degree of freedom and can not be circumvented by transducer or power-electronic-interface design

  14. A review of vibration-based MEMS piezoelectric energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Saadon, Salem; Sidek, Othman [Collaborative Microelectronic Design Excellence Center (CEDEC), School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2011-01-15

    The simplicity associated with the piezoelectric micro-generators makes it very attractive for MEMS applications, especially for remote systems. In this paper we reviewed the work carried out by researchers during the last three years. The improvements in experimental results obtained in the vibration-based MEMS piezoelectric energy harvesters show very good scope for MEMS piezoelectric harvesters in the field of power MEMS in the near future. (author)

  15. Distributed renewable energy

    African Journals Online (AJOL)

    and is borne by households, businesses and the government. ... maintenance, fuelling and purchase of new generators for the .... sales--a testament to the innovation and drive energy .... creation and overall economic growth, the focus must ...

  16. Energy distribution in semiconductors

    International Nuclear Information System (INIS)

    Ance, C.

    1979-01-01

    For various semiconductors the dispersive energy Esub(d) defined in the Wemple-Didomenico model is connected with the covalent and ionic energies Esub(h) and C. A continuous curve of ionicity against the ratio of the two energies Esub(A) and Esub(B), connected to Esub(h) and C is reported. Afromowitz's model is applied to the ternary compounds Gasub(1-x)Alsub(x)Sb using optical decomposition. From these results the average energy gap Esub(g) is given by Esub(g) = D 0 M 0 sup((IB))/(epsilon 1 (0)-1) where M 0 sup((IB)) is the interband transition contribution to the optical moment M 0 . (author)

  17. Fundamental kinetics and innovative applications of nonequilibrium atomic vibration in thermal energy transport and conversion

    Science.gov (United States)

    Shin, Seungha

    All energy conversion inefficiencies begin with emission of resonant atomic motions, e.g., vibrations, and are declared as waste heat once these motions thermalize to equilibrium. The nonequilibrium energy occupancy of the vibrational modes can be targeted as a harvestable, low entropy energy source for direct conversion to electric energy. Since the lifetime of these resonant vibrations is short, special nanostructures are required with the appropriate tuning of the kinetics. These in turn require multiscale, multiphysics treatments. Atomic vibration is described with quasiparticle phonon in solid, and the optical phonon emission is dominant relaxation channel in semiconductors. These optical modes become over-occupied when their emission rate becomes larger than their decay rate, thus hindering energy relaxation and transport in devices. Effective removal of these phonons by drifting electrons is investigated by manipulating the electron distribution to have higher population in the low-energy states, thus allowing favorable phonon absorption. This is done through introduction, design and analysis of a heterobarrier conducting current, where the band gap is controlled by alloying, thus creating a spatial variation which is abrupt followed by a linear gradient (to ensure directed current). Self-consistent ensemble Monte Carlo simulations based on interaction kinetics between electron and phonon show that up to 19% of the phonon energy is converted to electric potential with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, and this system is also verified through statistical entropy analysis. This direct energy conversion improves the device performance with lower operation temperature and enhances overall energy conversion efficiency. Through this study, the paradigm for harvesting the resonant atomic vibration is proposed, reversing the general role of phonon as only causing electric potential drop. Fundamentals

  18. Data-Driven Iterative Vibration Signal Enhancement Strategy Using Alpha Stable Distribution

    Directory of Open Access Journals (Sweden)

    Grzegorz Żak

    2017-01-01

    Full Text Available The authors propose a novel procedure for enhancement of the signal to noise ratio in vibration data acquired from machines working in mining industry environment. Proposed method allows performing data-driven reduction of the deterministic, high energy, and low frequency components. Furthermore, it provides a way to enhance signal of interest. Procedure incorporates application of the time-frequency decomposition, α-stable distribution based signal modeling, and stability parameter in the time domain as a stoppage criterion for iterative part of the procedure. An advantage of the proposed algorithm is data-driven, automative detection of the informative frequency band as well as band with high energy due to the properties of the used distribution. Furthermore, there is no need to have knowledge regarding kinematics, speed, and so on. The proposed algorithm is applied towards real data acquired from the belt conveyor pulley drive’s gearbox.

  19. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  20. Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting

    Science.gov (United States)

    Hadas, Z.; Smilek, J.; Rubes, O.

    2017-05-01

    The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.

  1. Vibrational energy transfer in hydrogen liquid and its isotopes

    International Nuclear Information System (INIS)

    Gale, G.M.; Delalande, C.

    1978-01-01

    The transfer of vibrational energy (V-V) from H 2 to isotopic impurities (HD or D 2 ) has been studied in the liquid state, between 15 and 30 K. The subsequent ralaxation (V-T) of the excited impurity by the H 2 liquid host has also been measured and contrasted with the vibrational relaxation behaviour of pure H 2 and D 2 liquids. The isothermal density dependence of both V-V and V-T transfer has been investigated in the fluid state at 30 K. High density relaxation rates are also compared to the data in the pure gases and to other available gas phase results. Measurements in the solid, near the triple-point temperature, are equally reported for each process studied. (Auth.)

  2. Skyrmion vibrational energies together with a generalized mass term

    International Nuclear Information System (INIS)

    Davies, Merlin C.; Marleau, Luc

    2009-01-01

    We study various properties of a one-parameter mass term for the Skyrme model, originating from the works of Kopeliovich, Piette and Zakrzewski [V. B. Kopeliovich, B. Piette, and W. J. Zakrzewski, Phys. Rev. D 73, 014006 (2006).], through the use of axially symmetric solutions obtained numerically by simulated-annealing. These solutions allow us to observe asymptotic behaviors of the B=2 binding energies that differ to those previously obtained [B. Piette and W. J. Zakrzewski, Phys. Rev. D 77, 074009 (2008).]. We also decipher the characteristics of three distinct vibrational modes that appear as eigenstates of the vibrational Hamiltonian. This analysis further examine the assertion that the one-parameter mass term offers a better account of baryonic matter than the traditional mass term.

  3. Comparison of vibrational conductivity and radiative energy transfer methods

    Science.gov (United States)

    Le Bot, A.

    2005-05-01

    This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.

  4. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  5. Vibrational excitation of D2 by low energy electrons

    International Nuclear Information System (INIS)

    Buckman, S.J.; Phelps, A.V.

    1985-01-01

    Excitation coefficients for the production of vibrationally exicted D 2 by low energy electrons have been determined from measurements of the intensity of infrared emission from mixtures of D 2 and small concentrations of CO 2 or CO. The measurements were made using the electron drift tube technique and covered electric field to gas density ratios (E/n) from (5 to 80) x 10 -21 V m 2 , corresponding to mean electron energies between 0.45 and 4.5 eV. The CO 2 and CO concentrations were chosen to allow efficient excitation transfer from the D 2 to the carbon containing molecule, but to minimize direct excitation of the CO 2 or CO. The measured infrared intensities were normalized to predicted values for N 2 --CO 2 and N 2 --CO mixtures at E/n where the efficiency of vibrational excitation is known to be very close to 100%. The experimental excitation coefficients are in satisfactory agreement with predictions based on electron--D 2 cross sections at mean electron energies below 1 eV, but are about 50% too high at mean energies above about 2 eV. Application of the technique to H 2 did not yield useful vibrational excitation coefficients. The effective coefficients in H 2 --CO 2 mixtures were a factor of about 3 times the predicted values. For our H 2 --CO mixtures the excitation of CO via excitation transfer from H 2 is small compared to direct electron excitation of CO molecules. Published experiments and theories on electron--H 2 and electron--D 2 collisions are reviewed to obtain the cross sections used in the predictions

  6. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Abdul Hafiz Alameh

    2018-05-01

    Full Text Available Piezoelectric energy harvesters have proven to have the potential to be a power source in a wide range of applications. As the harvester dimensions scale down, the resonance frequencies of these devices increase drastically. Proof masses are essential in micro-scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power. In this work, the effects of proof mass geometry on piezoelectric energy harvesters are studied. Different geometrical dimension ratios have significant impact on the resonance frequency, e.g., beam to mass lengths, and beam to mass widths. A piezoelectric energy harvester has been fabricated and tested operating at a frequency of about 4 kHz within the audible range. The responses of various prototypes were studied, and an optimized T-shaped piezoelectric vibration energy harvester design is presented for improved performance.

  7. Harvesting Energy from Vibrations of the Underlying Structure

    DEFF Research Database (Denmark)

    Han, Bo; Vssilaras, S; Papadias, C.B.

    2013-01-01

    to the long-term structural health of a building or bridge, but at the same time they can be exploited as a power source to power the wireless sensors that are monitoring this structural health. This paper presents a new energy harvesting method based on a vibration driven electromagnetic harvester. By using......The use of wireless sensors for structural health monitoring offers several advantages such as small size, easy installation and minimal intervention on existing structures. However the most significant concern about such wireless sensors is the lifetime of the system, which depends heavily...... on the type of power supply. No matter how energy efficient the operation of a battery operated sensor is, the energy of the battery will be exhausted at some point. In order to achieve a virtually unlimited lifetime, the sensor node should be able to recharge its battery in an easy way. Energy harvesting...

  8. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting

    International Nuclear Information System (INIS)

    Liu, W Q; Badel, A; Formosa, F; Wu, Y P; Agbossou, A

    2013-01-01

    Bistable vibration energy harvesters are attracting more and more interest because of their capability to scavenge energy over a large frequency band. The bistable effect is usually based on magnetic interaction or buckled beams. This paper presents a novel architecture based on amplified piezoelectric structures. This buckled spring–mass architecture allows the energy of the dynamic mass to be converted into electrical energy in the piezoelectric materials as efficiently as possible. Modeling and design are performed and a normalized expression of the harvester behavior is given. Chirp and band-limited noise excitations are used to evaluate the proposed harvester’s performances. Simulation and experimental results are in good agreement. A method of using a spectrum plot for investigating the interwell motion is presented. The effect of the electric load impedance matching strategy is also studied. Results and comparisons with the literature show that the proposed device combines a large bandwidth and a high power density. (paper)

  9. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Ali E. Kubba

    2013-12-01

    Full Text Available Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA was used as an initial tool to compare the three geometries’ stiffness (K, output open-circuit voltage (Vave, and average normal strain in the piezoelectric transducer (εave that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3, has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle.

  10. A Vibration Control Method for the Flexible Arm Based on Energy Migration

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2015-01-01

    Full Text Available A vibration control method based on energy migration is proposed to decrease vibration response of the flexible arm undergoing rigid motion. A type of vibration absorber is suggested and gives rise to the inertial coupling between the modes of the flexible arm and the absorber. By analyzing 1 : 2 internal resonance, it is proved that the internal resonance can be successfully created and the exchange of vibration energy is existent. Due to the inertial coupling, the damping enhancement effect is revealed. Via the inertial coupling, vibration energy of the flexible arm can be dissipated by not only the damping of the vibration absorber but also its own enhanced damping, thereby effectively decreasing vibration. Through numerical simulations and analyses, it is proven that this method is feasible in controlling nonlinear vibration of the flexible arm undergoing rigid motion.

  11. Vibration suppression of composite laminated beams using distributed piezoelectric patches

    International Nuclear Information System (INIS)

    Foda, M A; Almajed, A A; ElMadany, M M

    2010-01-01

    The focus of this paper is to develop an analytical and straightforward approach to suppress the steady state transverse vibration of a symmetric cross-ply laminated composite beam that is excited by an external harmonic force. This is achieved by bonding patches of piezoelectric material at selected locations along the beam. The governing equations for the system are formulated and the dynamic Green's functions are used to obtain an exact solution for the problem. A scheme is proposed for determining the values of the driving voltages, the dimensions of the PZT patches and their locations along the beam, in order to confine the vibration in a certain chosen region where the vibration is not harmful and leave the other chosen region stationary or vibrating with very small amplitudes. Beams with different boundary conditions are considered. Numerical case studies are presented to verify the utility of the proposed scheme

  12. Epistemic uncertainty propagation in energy flows between structural vibrating systems

    Science.gov (United States)

    Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong

    2016-03-01

    A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.

  13. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...

  14. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    International Nuclear Information System (INIS)

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-01-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2ν 1 to 5ν 1 ) and free-jet action spectra of the second through the fourth overtones (3ν 1 to 5ν 1 ) of the N - H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N - H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with ab initio calculations of East, Johnson, and Allen [J. Chem. Phys. 98, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N - H stretching zero-order states are ones with a quantum of N - H stretching excitation (ν 1 ) replaced by different combinations of N - C - O asymmetric or symmetric stretching excitation (ν 2 or ν 3 ) and trans-bending excitation (ν 4 ). The two strongest couplings of the nν 1 state are to the states (n-1)ν 1 +ν 2 +ν 4 and (n-1)ν 1 +ν 3 +2ν 4 , and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N - H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. copyright 1999 American Institute of Physics

  15. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  16. Performance studies of the vibration wire monitor on the test stand with low energy electron beam

    International Nuclear Information System (INIS)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    2015-01-01

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic. (author)

  17. A new potential energy surface for vibration-vibration coupling in HF-HF collisions. Formulation and quantal scattering calculations

    Science.gov (United States)

    Schwenke, David W.; Truhlar, Donald G.

    1988-04-01

    We present new ab initio calculations of the HF-HF interaction potential for the case where both molecules are simultaneously displaced from their equilibrium internuclear distance. These and previous ab initio calculations are then fit to a new analytic representation which is designed to be efficient to evaluate and to provide an especially faithful account of the forces along the vibrational coordinates. We use the new potential for two sets of quantal scattering calculations for collisions in three dimensions with total angular momentum zero. First we test that the angular harmonic representation of the anisotropy is adequate by comparing quantal rigid rotator calculations to those carried out for potentials involving higher angular harmonics and for which the expansion in angular harmonics is systematically increased to convergence. Then we carry out large-scale quantal calculations of vibration-vibration energy transfer including the coupling of both sets of vibrational and rotational coordinates. These calculations indicate that significant rotational energy transfer accompanies the vibration-to-vibration energy transfer process.

  18. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress

    OpenAIRE

    Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.

    2013-01-01

    A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...

  19. Vibration analysis of continuous maglev guideways with a moving distributed load model

    Energy Technology Data Exchange (ETDEWEB)

    Teng, N G; Qiao, B P [Department of Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2008-02-15

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed.

  20. Reactive Power from Distributed Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-12-15

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  1. Reactive Power from Distributed Energy

    International Nuclear Information System (INIS)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-01-01

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  2. Institutional distributed energy interconnection barriers

    International Nuclear Information System (INIS)

    Castelaz, S.A.

    2002-01-01

    This PowerPoint presentation provided an introduction to Encorp Inc., a leading provider of network technology and infrastructure management solutions for the distributed energy market. Encorp develops and markets software and hardware technology solutions for communications, control and networking of distributed energy. It is developing and implementing real-time, distributed energy-focused solutions for a wide variety of applications through new products and services which are technology neutral, and easily networked. Encorp controls more than 500 MW of distributed power with a total of 127 customers. This paper reviewed 3 barriers (regulatory, contractual/tariffs, and business practices) based on US experience. The challenge remaining is to determine if microgrids can be used effectively, and to determine the limitations of bi-directional power flows. The key issues regarding how end-users can share the costs and maximize on the benefits of distributed energy resources include: standby service charges, departing load charges, regulatory uncertainty, rate class degradation, lack of incentives for utility cost reduction, and lack of ability to create experimental tariffs. tabs., figs

  3. Harvesting vibrational energy due to intermodal systems via nano coated piezo electric devices.

    Science.gov (United States)

    2015-12-01

    Vibrational energy resulting from intermodal transport systems can be recovered through the use of energy harvesting system consisting of PZT piezo electric material as the primary energy harvesting component. The ability of traditional PZT piezo ele...

  4. Current Density Distribution on the Perimeter of Waveguide Exciter Cylindrical Vibrator Conductor

    OpenAIRE

    Zakharia, Yosyp

    2010-01-01

    On ground of electrodynamic analysis the surface current distribution nonuniformity on the perimeter of waveguide-exciter cylindrical conductor is found. Considerable influence of current distribution nonuniformity on exciter input reactance is established. It is also showed, that the current distribution on the vibrator perimeter, for conductor radius no greater then 0,07 of waveguide cross section breadth, approximately uniform is.

  5. Distribution System Pricing with Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hledik, Ryan [The Brattle Group, Cambridge, MA (United States); Lazar, Jim [The Regulatory Assistance Project, Montpelier, VT (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-16

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoids unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.

  6. Distributed coordination of energy storage with distributed generators

    NARCIS (Netherlands)

    Yang, Tao; Wu, Di; Stoorvogel, Antonie Arij; Stoustrup, Jakob

    2016-01-01

    With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal DER coordination problem considering

  7. On the exponential energy gap law in He--I2 vibrational relaxation

    International Nuclear Information System (INIS)

    Maricq, M.M.

    1990-01-01

    A comparison between coupled states, infinite order sudden, and classical path calculations is used to elucidate the origin of an exponential energy gap law recently observed for vibrational relaxation from highly excited states in the B 0 + u state of I 2 due to collisions with He. All three methods provide relaxation cross sections in good agreement with experiment. Anharmonic effects play an important role, with accurate results obtained with a Morse, but not harmonic, oscillator description of the I * 2 molecule. The nearly exact agreement between rotationally summed coupled states cross sections and the IOSA is consistent with the view that the I * 2 molecule does not rotate significantly during a collision. A closed form solution of the forced harmonic oscillator, valid for highly excited states, predicts a J 2 |Δv| distribution of vibrationally relaxed states at a given collision angle and impact parameter. The vibrationally close coupled-infinite order sudden (VCC-IOSA) results bear this out and show that the observed exponential scaling law arises from a superposition of such distributions over θ and b

  8. Interconnection of Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  9. A method for regulating strong nonlinear vibration energy of the flexible arm

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2015-07-01

    Full Text Available For an oscillating system, large amplitude indicates strong vibration energy. In this article, modal interaction is used as a useful means to regulate strong nonlinear vibration energy of the flexible arm undergoing rigid motion. A method is put forward to migrate and dissipate vibration energy based on modal interaction. By means of multiple-scale perturbation analysis, it is proven that internal resonance can be successfully established between modes of the flexible arm and the vibration absorber. Through examples and analyses, it is verified that this control method is effective in regulating strong vibration energy and can be used to suppress strong nonlinear vibration of the flexible arm undergoing rigid motion.

  10. Homotopy analysis approach for nonlinear piezoelectric vibration energy harvesting

    Directory of Open Access Journals (Sweden)

    Shahlaei-Far Shahram

    2016-01-01

    Full Text Available Piezoelectric energy harvesting from a vertical geometrically nonlinear cantilever beam with a tip mass subject to transverse harmonic base excitations is analyzed. One piezoelectric patch is placed on the slender beam to convert the tension and compression into electrical voltage. Applying the homotopy analysis method to the coupled electromechanical governing equations, we derive analytical solutions for the horizontal displacement of the tip mass and consequently the output voltage from the piezoelectric patch. Analytical approximation for the frequency response and phase of the geometrically forced nonlinear vibration system are also obtained. The research aims at a rigorous analytical perspective on a nonlinear problem which has previously been solely investigated by numerical and experimental methods.

  11. A theoretical analysis on vibrational-energy transfers in gases

    International Nuclear Information System (INIS)

    Mastrocinque, G.

    1981-01-01

    In order to investigate the relationships between three-dimensional and colinear molecular-collision models with particular emphasis on the role of repulsive and attractive forces in vibrational-energy transfers in gases, a theoretical analysis is developed in this paper. A few known results - mainly the Cottrell and Ream equation, the Takayanagi and the Shin expressions of the transfer probability - relevant to repulsive-force-dominated processes are obtained and/or discussed in the proposed frame. Light is also given on long-range, attractive-forces-dominated processes. The main result of this investigation is that, when a suitable hypothesis is done on the transfer probability, centrifugal effects on the intermolecular trajectories due to standard potentials are negligible in the low-temperature range. A quasi-colinear collision model, which is found to be correlated to the Cottrell and Ream expression for the transfer probability, is regained from a three-dimensional geometry in these conditions. (author)

  12. New DRIE-Patterned Electrets for Vibration Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Chaillout J.-J.

    2012-10-01

    Full Text Available This paper is about a new manufacturing process aimed at developing stable SiO2/Si3N4 patterned electrets using a Deep Reactive Ion Etching (DRIE step for an application in electret-based Vibration Energy Harvesters (e-VEH. This process consists in forming continuous layers of SiO2/Si3N4 electrets in order to limit surface conduction phenomena and is a new way to see the problem of electret patterning. Experimental results prove that patterned electrets charged by a positive corona discharge show excellent stability with high surface charge densities that may reach 5mC/m2 on 1.1μm-thick layers, even with fine patterning and harsh temperature conditions (up to 250°C. This paves the way to new e-VEH designs and manufacturing processes.

  13. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    Energy Technology Data Exchange (ETDEWEB)

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing

  14. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  15. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2015-07-01

    Full Text Available Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP, followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ⋅ g33 for a more typical d33 value of 400 pC/N is about 11.2 GPa−1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  16. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoqing [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany); Wu, Liming [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Sessler, Gerhard M., E-mail: g.sessler@nt.tu-darmstadt.de [Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany)

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  17. Energy Distribution and Economic Growth

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Strulik, Holger

    2011-01-01

    This research examines the physical constraints on the growth process. In order to run, maintain and build capital energy is required to be distributed to geographically dispersed sites where investments are deemed profitable. We capture this aspect of physical reality by a network theory....../2 and 3/4, depending on the efficiency of the network. Together with an energy conservation equation, capturing instantaneous aggregate demand for electricity, we are able to provide a metabolic-energetic founded law of motion for capital per capita that is mathematically isomorphic to the one emanating...... of electricity distribution. The model leads to a supply relation according to which feasible electricity consumption per capita rises with the size of the economy, as measured by capital per capita. Specifically, the relation is a simple power law with an exponent assigned to capital that is bounded between 1...

  18. Enhanced distributed energy resource system

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  19. Energy conservation in electric distribution

    International Nuclear Information System (INIS)

    Lee, Chong-Jin.

    1994-01-01

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal's knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution

  20. Vibration piezoelectric energy harvester with multi-beam

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yan, E-mail: yanc@dlut.edu.cn; Zhang, Qunying, E-mail: zhangqunying89@126.com; Yao, Minglei, E-mail: yaomingleiok@126.com [Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Dong, Weijie, E-mail: dongwj@dlut.edu.cn [School of Electronic and Information Engineering, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Gao, Shiqiao, E-mail: gaoshq@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing Province (China)

    2015-04-15

    This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .

  1. Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator

    KAUST Repository

    Chen, Jun

    2017-10-10

    Vibration energy harvesting and sensing is a traditional and growing research field in which various working mechanisms and designs have been developed for an improved performance. Relying on a coupling effect of contact electrification and electrostatic induction, in the past 5 years, triboelectric nanogenerator (TENG) has been applied as a fundamentally new technology to revive the field of vibration energy harvesting and self-powered sensing, especially for low-frequency vibrations such as human motion, automobile, machine, and bridge vibrations. The demonstrated instantaneous energy conversion efficiency of ∼70% and a total efficiency up to 85% distinguished TENG from traditional techniques. In this article, both TENG-enabled vibration energy harvesting and self-powered active sensing are comprehensively reviewed. Moving toward future development, problems pressing for solutions and onward research directions are also posed to deliver a coherent picture.

  2. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    Directory of Open Access Journals (Sweden)

    Jackson W. Cryns

    2013-01-01

    Full Text Available Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random, and sine on random (SOR input vibration scenarios; the implications of source vibration characteristics on harvester design are discussed. The rise in popularity of harvesting energy from ambient vibrations has made compact, energy dense piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. Variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. The results agree with numerical and theoretical predictions in the previous literature for optimal power harvesting in sinusoidal and flat broadband vibration scenarios. Going beyond idealized steady-state sinusoidal and flat random vibration input, experimental SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibration sources significantly alter power generation and processing requirements by varying harvested power, shifting optimal conditioning impedance, inducing voltage fluctuations, and ultimately rendering idealized sinusoidal and random analyses incorrect.

  3. Impact Vibration Attenuation for a Flexible Robotic Manipulator through Transfer and Dissipation of Energy

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2013-01-01

    Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.

  4. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    Science.gov (United States)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  5. Design and fabrication of an energy-harvesting device using vibration absorber

    Science.gov (United States)

    Heidari, Hamidreza; Afifi, Arash

    2017-05-01

    Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.

  6. Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph

    Science.gov (United States)

    Cao, Yongqing

    With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For

  7. A theoretical study on the mechanism of electronic to vibrational energy transfer in Hg/3P/ + CO

    Science.gov (United States)

    Kato, S.; Jaffe, R. L.; Komornicki, A.; Morokuma, K.

    1983-01-01

    The mechanism of electronic-to-vibrational (E-V) energy transfer in Hg(3P) + CO collisions has been studied theoretically. The configuration interaction (CI) method was employed to calculate potential energy surfaces of the collision system. A simplified theoretical model, based on the reaction coordinate concept and the calculated potential energy characteristics, was used to discuss the mechanism of the singlet-triplet transition and the energy disposal in the collision. The results obtained were that: (a) the quenching process processed via a collision complex mechanism; and that (b) the triplet-singlet transition occurs near the collinear geometry. A model classical trajectory calculation gives a product CO vibrational distribution in good agreement with the experimental result.

  8. Impact of undamped and damped intramolecular vibrations on the efficiency of photosynthetic exciton energy transfer

    Science.gov (United States)

    Juhász, Imre Benedek; Csurgay, Árpád I.

    2018-04-01

    In recent years, the role of molecular vibrations in exciton energy transfer taking place during the first stage of photosynthesis attracted increasing interest. Here, we present a model formulated as a Lindblad-type master equation that enables us to investigate the impact of undamped and especially damped intramolecular vibrational modes on the exciton energy transfer, particularly its efficiency. Our simulations confirm the already reported effects that the presence of an intramolecular vibrational mode can compensate the energy detuning of electronic states, thus promoting the energy transfer; and, moreover, that the damping of such a vibrational mode (in other words, vibrational relaxation) can further enhance the efficiency of the process by generating directionality in the energy flow. As a novel result, we show that this enhancement surpasses the one caused by pure dephasing, and we present its dependence on various system parameters (time constants of the environment-induced relaxation and excitation processes, detuning of the electronic energy levels, frequency of the intramolecular vibrational modes, Huang-Rhys factors, temperature) in dimer model systems. We demonstrate that vibrational-relaxation-enhanced exciton energy transfer (VREEET) is robust against the change of these characteristics of the system and occurs in wide ranges of the investigated parameters. With simulations performed on a heptamer model inspired by the Fenna-Matthews-Olson (FMO) complex, we show that this mechanism can be even more significant in larger systems at T = 300 K. Our results suggests that VREEET might be prevalent in light-harvesting complexes.

  9. Control of 2D Flexible Structures by Confinement of Vibrations and Regulation of Their Energy Flow

    Directory of Open Access Journals (Sweden)

    Fakhreddine Landolsi

    2009-01-01

    Full Text Available In this paper, we investigate the control of 2D flexible structures by vibration confinement and the regulation of their energy flow along prespecified spatial paths. A discretized-model-based feedback strategy, aiming at confining and suppressing simultaneously the vibration, is proposed. It is assumed that the structure consists of parts that are sensitive to vibrations. The control design introduces a new pseudo-modal matrix derived from the computed eigenvectors of the discretized model. Simulations are presented to show the efficacy of the proposed control law. A parametric study is carried out to examine the effects of the different control parameters on the simultaneous confinement and suppression of vibrations. In addition, we conducted a set of simulations to investigate the flow control of vibrational energy during the confinement-suppression process. We found that the energy flow can be regulated via a set of control parameters for different confinement configurations.

  10. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    Science.gov (United States)

    Miller, Lindsay Margaret

    Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one

  11. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    Science.gov (United States)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  12. Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions

    International Nuclear Information System (INIS)

    Turner, T.P.

    1984-07-01

    This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H 2 + + He and HD + + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H 2 + or HD + is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C 2 H 2 + + H 2 → C 2 H 3 + + H

  13. Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester

    Directory of Open Access Journals (Sweden)

    Jae Eun Kim

    2013-07-01

    Full Text Available We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.

  14. Diagnostics of sources of disturbances and distribution of vibrations over the width of a tape in tape-feed mechanisms

    Science.gov (United States)

    Kenstavichyus, A. B. B.

    1973-01-01

    Disturbances created by certain assemblies and components of tape-feed mechanisms (TFM) and acting on a moving magnetic tape are studied. The method, based on elements of digital logic, is established by stress-strain diagrams of the longitudinal deformations and vibrations across the width of a magnetic tape. Experimental studies were carried out for determination of the functional relationships of longitudinal deformations in a section of magnetic tape to the magnitude of roller play, tension vibrations rate of movement, and elasticity of magnetic tapes. A block diagram of the measurements is shown. Appropriate digital computer algorithms and programs were proposed for statistical analysis of the data obtained. Estimates of the mathematical expectation, dispersion, intercorrelation function, energy spectral density, and distribution pattern of the random process values were calculated.

  15. Vibration energy harvesting system for railroad safety based on running vehicles

    International Nuclear Information System (INIS)

    Tianchen, Yuan; Jian, Yang; Ruigang, Song; Xiaowei, Liu

    2014-01-01

    This research is focused on energy harvesting from track vibration in order to provide power for the wireless sensors which monitor railroad health. Considering that track vibration has vibration energy, a new method is proposed in the paper to harvest energy based on the piezoelectric effect. The piezoelectric generator called drum transducer is the key part for track vibration energy harvesting. The model of drum transducer is established and the simulation results show that it can generate 100 mW in real track situation. In addition, an experiment rig is developed and its vibration model is also established. The simulation and experiment results show that peak open-circuit voltage of piezoelectric generator is about 50–70 V at the full load of the train. The whole track vibration energy harvesting system is analytically modeled, numerically simulated, and experimentally realized to demonstrate the feasibility and the reliability of the theoretical model. This paper is the theoretical basis of harvesting, recovering and recycling of the track vibration energy for track safety. (paper)

  16. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    International Nuclear Information System (INIS)

    Chen Zhongsheng; Yang Yongmin; Lu Zhimiao; Luo Yanting

    2013-01-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  17. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2013-02-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  18. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  19. Analysis of vibroprotection characteristics of pneumatic relaxation seat suspension with capability of vibration energy recuperation

    Directory of Open Access Journals (Sweden)

    Lyashenko Mikhail

    2017-01-01

    Full Text Available This paper proposes mechanism and control algorithm for pneumatic relaxation system of suspension with vibration energy recuperation applied to standard vehicle operator seat (“Sibeko” company. Mathematical model of the seat pneumatic relaxation suspension with two additional air volumes was created. Pneumatic motor – recuperator activated by means of air flow from the one additional volume to another is installed in air piping between additional volumes. Computational research was made in Matlab/Simulink. Amplitude-frequency characteristics of transmission coefficient for standard and proposed suspensions were plotted for preliminary evaluation of vibration protection properties of seat suspension. Performed comparative analysis of amplitude-frequency characteristics shows that noticeable improvement of vibration protection properties of pneumatic relaxation suspension system with vibration energy recuperation in comparison with standard system both in region of resonance disturbances and in above-resonance region. Main ways for further improvement of vibration protection properties of proposed system were marked out.

  20. The development of two Broadband Vibration Energy Harvesters (BVEH) with adaptive conversion electronics

    Science.gov (United States)

    Clingman, Dan J.; Thiesen, Jack

    2017-04-01

    Historically, piezoelectric vibration energy harvesters have been limited to operation at a single, structurally resonant frequency. A piezoceramic energy harvester, such as a bimorph beam, operating at structural resonance exchanges energy between dynamic and strain regimes. This energy exchange increases the coupling between piezoceramic deformation and electrical charge generation. Two BVEH mechanisms are presented that exploit strain energy management to reduce inertial forces needed to deform the piezoceramic, thus increasing the coupling between structural and electrical energy conversion over a broadband vibration spectrum. Broadband vibration excitation produces a non-sinusoidal electrical wave form from the BVEH device. An adaptive energy conversion circuit was developed that exploits a buck converter to capture the complex waveform energy in a form easily used by standard electrical components.

  1. Energy Efficiency in Grocery Distribution in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Evaluation of the development of the energy efficiency of grocery distribution from 1960 to the present in Denmark, covering both the distribution to the shops and the shopping transport (distribution from shops to individual homes)......Evaluation of the development of the energy efficiency of grocery distribution from 1960 to the present in Denmark, covering both the distribution to the shops and the shopping transport (distribution from shops to individual homes)...

  2. Measurements of vibrational excitation of N2, CO, and NO by low energy proton impact

    International Nuclear Information System (INIS)

    Krutein, J.; Linder, F.

    1979-01-01

    Differential scattering experiments are reported for proton impact on N 2 , CO, and NO in the energy range E/sub lab/=30--80 eV. The measurements include the range of very small scattering angles around 0 0 as well as the rainbow region. The vibrationally resolved energy-loss spectra show a relatively low vibrational inelasticity for all three systems. Differential cross sections, transition probabilities, and the mean vibrational energy transfer are presented. Rotational excitation is indicated by the broadening of the energy-loss peaks which is most significant for H + --NO. The small-angle scattering data for vibrational excitation in CO show good agreement with the impact parameter theory using the known long-range interactions for this system

  3. Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator

    KAUST Repository

    Chen, Jun; Wang, Zhong Lin

    2017-01-01

    Vibration energy harvesting and sensing is a traditional and growing research field in which various working mechanisms and designs have been developed for an improved performance. Relying on a coupling effect of contact electrification

  4. Role of energy exchange in vibrational dephasing processes in liquids and solids

    International Nuclear Information System (INIS)

    Marks, S.

    1981-08-01

    Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d 14 -durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h 14 -durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening

  5. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    Science.gov (United States)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  6. Evaluation of two typical distributed energy systems

    Science.gov (United States)

    Han, Miaomiao; Tan, Xiu

    2018-03-01

    According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.

  7. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    OpenAIRE

    Perfetto, Sara; Rohlfing, Jens; Infante, Francesco; Mayer, Dirk; Herold, Sven

    2016-01-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are...

  8. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  9. Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers

    Science.gov (United States)

    Dlott, Dana

    2008-03-01

    Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.

  10. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Jonas, David M.

    2018-02-01

    Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a

  11. Report of workshop on vibration related to fluid in atomic energy field. 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Because of the nonlinearity of the equation that governs flow, sometimes vibration occurs in an unexpected system, and it causes trouble. This 7th workshop on vibration related to fluid in atomic energy field was held at Nuclear Engineering Research Laboratory of University of Tokyo on August 25 and 26, 1997. Two themes were ``Vibration of liquid surface by flow`` and ``Numerical analysis of coupled vibration of fluid-structures``. The former is related to the problem in the development of a demonstration FBR, and the latter is related to the numerical analysis technology such as the handling of boundary conditions and the method of taking position, moving velocity and acceleration into account. This workshop aims at thoroughly discussing a small number of themes, and deepening the understanding. In this report, the summaries of 17 papers are collected, of which the titles are as follows. Liquid surface self-exciting vibration by flow, vibration of upper plenum liquid surface of fast reactor, stability analysis of multiple liquid surfaces, flow instability phenomena of multi-loop system, sloshing in a vessel in which fluid flows, the mechanism of occurrence of self-exciting sloshing in a vessel elucidated by numerical analysis, numerical analysis of manometer vibration excited by flow, numerical analysis of flutter phenomena of aircraft, numerical analysis of aerodynamic elastic problem, mechanism of in-line excitation, numerical analysis of hydrodynamic elastic vibration of tube nest and so on. (K.I.)

  12. A velocity-amplified electromagnetic energy harvester for small amplitude vibration

    Science.gov (United States)

    Klein, J.; Zuo, L.

    2017-09-01

    Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.

  13. The influence of molecular rotation on vibration--translation energy transfer

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1977-01-01

    The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ω/sub e//B/sub e/, and second by the proximity of their initial state to a near-resonant vibration--rotation transition with a small change in angular momentum. While the dynamics of molecules with ω/sub e//B/sub e/ ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ω/sub e//B/sub e/ ratios appear to be well approximated by a collinear collision model

  14. An Enhanced Piezoelectric Vibration Energy Harvesting System with Macro Fiber Composite

    Directory of Open Access Journals (Sweden)

    Shuwen Zhang

    2015-01-01

    Full Text Available Self-power supply is a promising project in various applied conditions. Among this research area, piezoelectric material-based energy harvesting (EH method has been researched in recent years due to its advantages. With the limitation of energy form acceptance range of EH circuit system, a sum of energy is not accessible to be obtained. To enlarge the EH quantity from the vibration, an enhanced piezoelectric vibration EH structure with piezoelectric film is developed in this work. Piezoelectric-based energy harvesting mechanism is primarily proposed in this work. The special-designed electric circuit for EH from macro fiber composite (MFC is proposed and then analyzed. When the structure vibrates in its modes of frequencies, the experiments are developed to measure the EH effect. The energy harvested from the vibrating structure is analyzed and the enhanced effect is presented. The results indicate that, with the enhanced EH structure in this work, vibration energy from structure is obtained in a larger range, and the general EH quantity is enlarged.

  15. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Vytautas Ostasevicius

    2015-05-01

    Full Text Available This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  16. Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths

    OpenAIRE

    Gao, Xiaotong; Shih, Wei-Heng; Shih, Wan Y.

    2010-01-01

    We have examined a piezoelectric unimorph cantilever (PUC) with unequal piezoelectric and nonpiezoelectric lengths for vibration energy harvesting theoretically by extending the analysis of a PUC with equal piezoelectric and nonpiezoelectric lengths. The theoretical approach was validated by experiments. A case study showed that for a fixed vibration frequency, the maximum open-circuit induced voltage which was important for charge storage for later use occurred with a PUC that had a nonpiezo...

  17. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  18. Energy Management of Smart Distribution Systems

    Science.gov (United States)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  19. CO product energy distribution in the photodissociation of methylketene and acrolein at 193 nm

    Science.gov (United States)

    Fujimoto, G. T.; Umstead, M. E.; Lin, M. C.

    1985-04-01

    CO product vibrational energy distributions in the photodissociation of the two C3H4O isomers, methylketene (CH3CHCO) and acrolein (CH2CHCHO), at 193 nm have been measured by CO laser resonance absorption. The CO from methylketene was found to be vibrationally excited up to v=7, and from acrolein v=6, with average vibrational energies of 3.4±0.3 and 2.7±0.7 kcal/mol, respectively. The similarities observed in the appearance times and in the vibrational energy content of the CO formed in the two systems support our previous conclusion that in the case of acrolein isomerization to methylketene takes place prior to the dissociation process: CH2CHCHO+hν→CH3CHCO*†→CH3CH+CO†. The CO vibrational energy distributions observed in both systems agree closely with the statistical distribution predicted assuming that ethylidene rather than ethylene is formed in the photodissociation reaction.

  20. Distributed Energy Resource (DER) Cybersecurity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Danish [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnson, Jay [Sandia National Laboratories

    2017-11-08

    This presentation covers the work that Sandia National Laboratories and National Renewable Energy Laboratory are doing for distributed energy resource cybersecurity standards, prepared for NREL's Annual Cybersecurity & Resilience Workshop on October 9-10, 2017.

  1. Spontaneous Mechanical Buckling in Two-Dimensional Materials: A Power Source for Ambient Vibration Energy Harvesters

    Science.gov (United States)

    Thibado, Paul; Kumar, Pradeep; Singh, Surendra

    Internet-of-Things (IoT) is projected to become a multi-trillion-dollar market, but most applications cannot afford replacing batteries on such a large scale, driving the need for battery alternatives. We recently discovered that freestanding graphene membranes are in perpetual motion when held at room temperature. Surprisingly, the random up-down motion of the membrane does not follow classical Brownian motion, but instead is super-diffusive at short times and sub-diffusive at long times. Furthermore, the velocity probability distribution function is non-Gaussian and follows the heavy-tailed Cauchy-Lorentz distribution, consistent with Lévy flights. Molecular dynamics simulations reveal that mechanical buckling is spontaneously occurring, and that this is the mechanism responsible for the anomalous movement. Bucking in this system occurs when the local material suddenly flips from concave to convex. The higher kinetic energy associated with this motion is derived from the surrounding thermal waste heat, and it may be converted into an electrical current and used as the active component of small power generators known as ambient vibration energy harvesters. thibado@uark.edu.

  2. Energy harvesting by means of flow-induced vibrations on aerospace vehicles

    Science.gov (United States)

    Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu

    2016-10-01

    This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting

  3. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  4. Distributed optimal coordination for distributed energy resources in power systems

    DEFF Research Database (Denmark)

    Wu, Di; Yang, Tao; Stoorvogel, A.

    2017-01-01

    Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper......, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms...

  5. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Fisher, Frank T

    2011-01-01

    Future deployment of wireless sensor networks will ultimately require a self-sustainable local power source for each sensor, and vibration energy harvesting is a promising approach for such applications. A requirement for efficient vibration energy harvesting is to match the device and source frequencies. While techniques to tune the resonance frequency of an energy harvesting device have recently been described, in many applications optimization of such systems will require the energy harvesting device to be able to autonomously tune its resonance frequency. In this work a vibration energy harvesting device with autonomous resonance frequency tunability utilizing a magnetic stiffness technique is presented. Here a piezoelectric cantilever beam array is employed with magnets attached to the free ends of cantilever beams to enable magnetic force resonance frequency tuning. The device is successfully tuned from − 27% to + 22% of its untuned resonance frequency while outputting a peak power of approximately 1 mW. Since the magnetic force tuning technique is semi-active, energy is only consumed during the tuning process. The developed prototype consumed maximum energies of 3.3 and 3.9 J to tune to the farthest source frequencies with respect to the untuned resonance frequency of the device. The time necessary for this prototype device to harvest the energy expended during its most energy-intensive (largest resonant frequency adjustment) tuning operation is 88 min in a low amplitude 0.1g vibration environment, which could be further optimized using higher efficiency piezoelectric materials and system components

  6. Differential cross sections for electron-impact vibrational-excitation of tetrahydrofuran at intermediate impact energies

    Energy Technology Data Exchange (ETDEWEB)

    Do, T. P. T. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); School of Education, Can Tho University, Campus II, 3/2 Street, Xuan Khanh, Ninh Kieu, Can Tho City (Viet Nam); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Konovalov, D. A.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville (Australia); Brunger, M. J., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jones, D. B., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)

    2015-03-28

    We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.

  7. The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion

    International Nuclear Information System (INIS)

    Fan Kang-Qi; Ming Zheng-Feng; Xu Chun-Hui; Chao Feng-Bo

    2013-01-01

    As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption. The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Vacuum-packaged piezoelectric vibration energy harvesters: Damping contributions and autonomy for a wireless sensor system

    NARCIS (Netherlands)

    Elfrink, R.; Renaud, M.; Kamel, T.M.; Nooijer, C. de; Jambunathan, M.; Goedbloed, M.; Hohlfeld, D.; Matova, S.; Pop, V.; Caballero, L.; Schaijk, R. van

    2010-01-01

    This paper describes the characterization of thin-film MEMS vibration energy harvesters based on aluminum nitride as piezoelectric material. A record output power of 85 μW is measured. The parasitic-damping and the energy-harvesting performances of unpackaged and packaged devices are investigated.

  9. Energy-autonomous wireless vibration sensor for condition-based maintenance of machinery

    NARCIS (Netherlands)

    Wang, Z.; Bouwens, F.; Vullers, R.; Petré, F.; Devos, S.

    2011-01-01

    This paper addresses the development of an energy-autonomous wireless vibration sensor for condition-based monitoring of machinery. Such technology plays an increasingly important role in modern manufacturing industry. In this work, energy harvesting is realized by resorting to a custom designed

  10. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material...

  11. Modelling distributed energy resources in energy service networks

    CERN Document Server

    Acha, Salvador

    2013-01-01

    Focuses on modelling two key infrastructures (natural gas and electrical) in urban energy systems with embedded technologies (cogeneration and electric vehicles) to optimise the operation of natural gas and electrical infrastructures under the presence of distributed energy resources

  12. Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment

    Directory of Open Access Journals (Sweden)

    Ioannis KOSMADAKIS

    2015-04-01

    Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.

  13. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity

    Science.gov (United States)

    Ahmed, Riaz; Mir, Fariha; Banerjee, Sourav

    2017-08-01

    The principal objective of this article is to categorically review and compare the state of the art vibration based energy harvesting approaches. To evaluate the contemporary methodologies with respect to their physics, average power output and operational frequencies, systematically divided and easy readable tables are presented followed by the description of the energy harvesting methods. Energy harvesting is the process of obtaining electrical energy from the surrounding vibratory mechanical systems through an energy conversion method using smart structures, like, piezoelectric, electrostatic materials. Recent advancements in low power electronic gadgets, micro electro mechanical systems, and wireless sensors have significantly increased local power demand. In order to circumvent the energy demand; to allow limitless power supply, and to avoid chemical waste from conventional batteries, low power local energy harvesters are proposed for harvesting energy from different ambient energy sources. Piezoelectric materials have received tremendous interest in energy harvesting technology due to its unique ability to capitalize the ambient vibrations to generate electric potential. Their crystalline configuration allows the material to convert mechanical strain energy into electrical potential, and vice versa. This article discusses the various approaches in vibration based energy scavenging where piezoelectric materials are employed as the energy conversion medium.

  14. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-05-01

    Full Text Available To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  15. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  16. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  17. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  18. A low-frequency vibration energy harvester based on diamagnetic levitation

    Science.gov (United States)

    Kono, Yuta; Masuda, Arata; Yuan, Fuh-Gwo

    2017-04-01

    This article presents 3-degree-of-freedom theoretical modeling and analysis of a low-frequency vibration energy harvester based on diamagnetic levitation. In recent years, although much attention has been placed on vibration energy harvesting technologies, few harvesters still can operate efficiently at extremely low frequencies in spite of large potential demand in the field of structural health monitoring and wearable applications. As one of the earliest works, Liu, Yuan and Palagummi proposed vertical and horizontal diamagnetic levitation systems as vibration energy harvesters with low resonant frequencies. This study aims to pursue further improvement along this direction, in terms of expanding maximum amplitude and enhancing the flexibility of the operation direction for broader application fields by introducing a new topology of the levitation system.

  19. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation

    International Nuclear Information System (INIS)

    Gu, Lei; Livermore, Carol

    2011-01-01

    This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 µW cm −3 . The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone

  20. Enhanced Broadband Vibration Energy Harvesting Using a Multimodal Nonlinear Magnetoelectric Converter

    Science.gov (United States)

    Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping

    2016-07-01

    In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).

  1. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  2. Free Vibrations of a Cantilevered SWCNT with Distributed Mass in the Presence of Nonlocal Effect

    Directory of Open Access Journals (Sweden)

    M. A. De Rosa

    2015-01-01

    Full Text Available The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.

  3. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    Science.gov (United States)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  4. Piezoelectric Vibration Energy Harvesting Device Combined with Damper

    Directory of Open Access Journals (Sweden)

    Hung-I Lu

    2014-05-01

    Full Text Available Piezoelectricity is a type of material that enables mechanical energy and electrical energy to be interchangeable, which can be divided into positive piezoelectric effect and inverse piezoelectric effect. The positive piezoelectric effect is that the electric dipole moment of material generates changes when the piezoelectric material is subjected to pressure, resulting in electrical energy. Conversely, the inverse piezoelectric effect is the process of electrical energy converted into mechanical energy.

  5. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  6. Analysis of bifurcation behavior of a piecewise linear vibrator with electromagnetic coupling for energy harvesting applications

    KAUST Repository

    El Aroudi, Abdelali

    2014-05-01

    Recently, nonlinearities have been shown to play an important role in increasing the extracted energy of vibration-based energy harvesting systems. In this paper, we study the dynamical behavior of a piecewise linear (PWL) spring-mass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. Different configurations of the PWL model and their corresponding state-space regions are derived. Then, from this PWL model, extensive numerical simulations are carried out by computing time-domain waveforms, state-space trajectories and frequency responses under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Filippov method, Poincaré map modeling and finite difference method (FDM). The Floquet multipliers are calculated using these three approaches and a good concordance is obtained among them. The performance of the system in terms of the harvested energy is studied by considering both purely harmonic excitation and a noisy vibrational source. A frequency-domain analysis shows that the harvested energy could be larger at low frequencies as compared to an equivalent linear system, in particular, for relatively low excitation intensities. This could be an advantage for potential use of this system in low frequency ambient vibrational-based energy harvesting applications. © 2014 World Scientific Publishing Company.

  7. Piezoelectric Wind Energy Harvesting from Self-Excited Vibration of Square Cylinder

    Directory of Open Access Journals (Sweden)

    Junlei Wang

    2016-01-01

    Full Text Available Self-excited vibration of a square cylinder has been considered as an effective way in harvesting piezoelectric wind energy. In present work, both of the vortex-induced vibration and unstable galloping phenomenon process are investigated in a reduced velocity (Ur=U/ωn·D range of 4≤Ur≤20 with load resistance ranging in 100 Ω≤R≤1 MΩ. The vortex-induced vibration covers presynchronization, synchronization, and postsynchronization branches. An aeroelectromechanical model is given to describe the coupling of the dynamic equation of the fluid-structure interaction and the equation of Gauss law. The effects of load resistance are investigated in both the open-circuit and close-circuit system by a linear analysis, which covers the parameters of the transverse displacement, aerodynamic force, output voltage, and harvested power utilized to measure the efficiency of the system. The highest level of the transverse displacement and the maximum value of harvested power of synchronization branch during the vortex-induced vibration and galloping are obtained. The results show that the large-amplitude galloping at high wind speeds can generate energy. Additionally, energy can be harvested by utilization of the lock-in phenomenon of vortex-induced vibration under low wind speed.

  8. Nightglow vibrational distributions in the A3Σu+ and A'3Δu states of O2 derived from astronomical sky spectra

    Directory of Open Access Journals (Sweden)

    T. G. Slanger

    2004-09-01

    Full Text Available Astronomical sky spectra from the Keck I telescope on Mauna Kea have been used to obtain vibrational distributions in the O2A3Σu+ and O2(A'3Δu states from rotationally-resolved Herzberg I and Chamberlain band emissions in the terrestrial nightglow. The A3Σu+ distribution is similar to that presented in earlier publications, with the exception that there is significant population in the previously undiscerned v=0 level. The vibrational distributions of the A'3Δu and A3Σu+ states are essentially the same when comparison is made in terms of the level energies. The intensity of Chamberlain band emission at the peak of the distribution is about one-fourth that of the Herzberg I emission, as previously shown, and may be related primarily to radiative efficiency. The peaks in both population distributions are about 0.25eV below the O(3P+O(3P dissociation limit. We compare these Herzberg state distributions with that of the O2(b1Σg+ state, concurring with others that the intense nightglow emission associated with b1Σg+(v=0 is a reflection of direct transfer from the Herzberg states. This process takes place following O2 collisions, with simultaneous production of very high a1Δg and b1Σg+ vibrational levels.

  9. Vibrational energy transfer kinetics in molecular disequilibrium. Final technical report

    International Nuclear Information System (INIS)

    Rich, J.W.

    1982-09-01

    The present Calspan experiments have shown direct evidence of preferential vibrational pumping of two heavy isotopes of CO: 13 C 16 O and 12 C 18 O. The nature of the enhancement is generally consistent with the predictions of theoretical modeling. These are the first direct experimental demonstrations of this isotope selection method. The potential advantages of such a means of isotope separation are inherent in the V-V pumping process itself. Summarizing these: (1) Selectivity actually increases at higher reactant pressures, since the selection mechanism is collisional. Accordingly, rather high throughputs are possible, unlike other techniques in which molecular collisions actually decrease selectivity. (2) A variety of excitation methods can potentially be used - electric discharge, optical excitation by coherent or incoherent sources, or chemical excitation; laser excitation is not critical to the process. (3) The method can be applied to many isotopes of the lighter atoms. It is not inherently species-specific

  10. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    Science.gov (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  11. Steam distribution and energy delivery optimization using wireless sensors

    Science.gov (United States)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  12. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    Energy Technology Data Exchange (ETDEWEB)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  13. Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator

    Science.gov (United States)

    Gorman, Dylan J.; Hemmerling, Boerge; Megidish, Eli; Moeller, Soenke A.; Schindler, Philipp; Sarovar, Mohan; Haeffner, Hartmut

    2018-01-01

    Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.

  14. A Method to Assess Transverse Vibration Energy of Ship Propeller Shaft for Diagnostic Purposes

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2017-12-01

    Full Text Available The article discusses a key problem of ship propulsion system vibration diagnostics, which concerns assessing this part of mechanical energy transmitted from the main engine to the ship propeller which is dissipated due to propeller shaft vibration. A simplified calculation model is proposed which allows the total energy of the generated torsional vibration to be assessed from the shaft deflection amplitude measured at the mind-span point between the supports. To verify the developed model, pilot tests were performed on the laboratory rotational mechanical system test rig. In those tests, cyclic bending moment was applied to a unified (cylindrical material sample, which modelled, at an appropriate scale, structural and functional properties of a real propeller shaft.

  15. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    Science.gov (United States)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  16. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    International Nuclear Information System (INIS)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life

  17. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.

    Science.gov (United States)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  18. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  19. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  20. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nian; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping [Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-01-15

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  1. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 ..mu..s, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N/sub 2/ and O/sub 2/ matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data.

  2. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    International Nuclear Information System (INIS)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 μs, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N 2 and O 2 matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data

  3. A hydrostatic leak test for water pipeline by using distributed optical fiber vibration sensing system

    Science.gov (United States)

    Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang

    2015-07-01

    A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.

  4. Distributed energy store railguns experiment and analysis

    International Nuclear Information System (INIS)

    Holland, L.D.

    1984-01-01

    Electromagnetic acceleration of projectiles holds the potential for achieving higher velocities than yet achieved by any other means. A railgun is the simplest form of electromagnetic macroparticle accelerator and can generate the highest sustained accelerating force. The practical length of conventional railguns is limited by the impedance of the rails because current must be carried along the entire length of the rails. A railgun and power supply system called the distributed energy store railgun was proposed as a solution to this limitation. The distributed energy store railgun used multiple current sources connected to the rails of a railgun at points distributed along the bore. These current sources (energy stores) are turned on in sequence as the projectile moves down the bore so that current is fed to the railgun from behind the armature. In this system the length of the rails that carry the full armature current is less than the total length of the railgun. If a sufficient number of energy stores is used, this removes the limitation on the length of a railgun. An additional feature of distributed energy store type railguns is that they can be designed to maintain a constant pressure on the projectile being accelerated. A distributed energy store railgun was constructed and successfully operated. In addition to this first demonstration of the distributed energy store railgun principle, a theoretical model of the system was also constructed

  5. Methods for Distributed Optimal Energy Management

    DEFF Research Database (Denmark)

    Brehm, Robert

    The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast to convent......The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast...... to conventional centralised optimal energy flow management systems, here-in, focus is set on how optimal energy management can be achieved in a decentralised distributed architecture such as a multi-agent system. Distributed optimisation methods are introduced, targeting optimisation of energy flow in virtual......-consumption of renewable energy resources in low voltage grids. It can be shown that this method prevents mutual discharging of batteries and prevents peak loads, a supervisory control instance can dictate the level of autarchy from the utility grid. Further it is shown that the problem of optimal energy flow management...

  6. Chaotic Dynamics-Based Analysis of Broadband Piezoelectric Vibration Energy Harvesting Enhanced by Using Nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhongsheng Chen

    2016-01-01

    Full Text Available Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.

  7. Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction

    Science.gov (United States)

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-01

    Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  8. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Wenyang Zhang

    2018-04-01

    Full Text Available This paper proposes an electric power self-supply module for the wireless sensor network (WSN sensor node. The module includes an electromagnetic vibration energy harvester based on micro-electro-mechanical system (MEMS technology and a processing circuit. The vibration energy harvester presented in this paper is fabricated by an integrated microfabrication process and consists of four similar and relatively independent beam vibration elements. The main functions of the processing circuit are to convert the output of the harvester from unstable alternating current (AC to stable direct current (DC, charge the super capacitor, and ensure the stable output of the super capacitor. The preliminary test results of the harvester chip show that the chip can output discontinuous pulse voltage, and the range of the voltage value is from tens to hundreds of millivolts in the vibration frequency range of 10–90 Hz. The maximum value that can be reached is 563 mV (at the vibration frequency of 18 Hz. The results of the test show that the harvester can output a relatively high voltage, which can meet the general electric power demand of a WSN sensor node.

  9. Vibrational energy transfer in gas phase water and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, F.E. Jr.

    1979-09-01

    The V ..-->.. T, R relaxation rate for NH/sub 3/ (..nu../sub 2/) was studied from 198/sup 0/K to 398/sup 0/K by the method of laser-excited vibrational fluorescence. The self-deactivation rate constant decreases from 2.4 ..mu..sec torr/sup -1/ at 198/sup 0/K to 0.65 ..mu..sec/sup -1/ torr/sup -1/ at 398/sup 0/K. The rate constants for deactivation by He, Ar, N/sub 2/, and O/sub 2/ are much smaller and show a weak temperature dependence in the opposite direction. The vibrational relaxation rates of the coupled ..nu../sub 1/, ..nu../sub 3/ stretching level manifold and of the 2..nu../sub 2/ bending level in H/sub 2//sup 18/O was studied from 250/sup 0/K to 400/sup 0/K using th same method as for NH/sub 3/. The ..nu../sub 1/, ..nu../sub 3/ self-deactivation rate goes from 1.4 ..mu..sec/sup -1/ torr/sup -1/ at 250/sup 0/K to 0.48 ..mu..sec-/sup 1/ torr-/sup 1/ at 400/sup 0/K. For 2..nu../sub 2/ it goes from 4.5 ..mu..sec-/sup 1/ torr to 1.9 ..mu..sec/sup -1/ torr/sup -1/. The temperature dependence of the deactivation of both levels by He and Ar is much weaker and the rates are several hundred times slower. Deactivation of ..nu../sub 1/, ..nu../sub 3/ by N/sub 2/, O/sub 2/, and CO/sub 2/ is measured only at 293/sup 0/K. N/sub 2/ and O/sub 2/ deactivate ..nu../sub 1/, ..nu../sub 3/ about 5 and CO/sub 2/ about 50 times faster than He or Ar.

  10. Energy distributions of symbiotic novae

    International Nuclear Information System (INIS)

    Bryan, G.L.; Kwok, S.

    1991-01-01

    The IRAS low-resolution spectra of three recent symbiotic novae are fitted with a dust continuum radiative transfer model. It is found that the dust shells are detached from the photosphere and that the sizes of the inner radii are correlated with times since outburst. An analysis of the IUE spectra of HM Sge at different epochs suggests that the strength of the 2200 A feature is decreasing with times and the grains responsible for the feature are probably formed in the white dwarf ejecta. A complete accounting of the entire energy budget from radio to X-ray shows that most of the energy is emitted by the cool component in the infrared, and a significant fraction of the flux of the hot component is escaping in the far-ultraviolet. The density-bounded nature of the circumstellar gas nebulae could be the result of a bipolar geometry of the nebulae. Unlike classical novae, the optical outburst of symbiotic novae is due to the ionization of the preexisting envelope of the cool component and is not the result of a sudden ejection by the hot component. 55 refs

  11. Performance analysis of smart laminated composite plate integrated with distributed AFC material undergoing geometrically nonlinear transient vibrations

    Science.gov (United States)

    Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh

    2018-02-01

    The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.

  12. A reduced energy supply strategy in active vibration control

    Science.gov (United States)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  13. A reduced energy supply strategy in active vibration control

    International Nuclear Information System (INIS)

    Ichchou, M N; Loukil, T; Bareille, O; Chamberland, G; Qiu, J

    2011-01-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings

  14. Multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Giovannini, A.; Lupia, S.; Ugoccioni, R.

    1992-01-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.)

  15. Multiplicity distributions in high energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, A.; Lupia, S.; Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. Turin (Italy) INFN, Turin (Italy))

    1992-03-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.).

  16. Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions

    International Nuclear Information System (INIS)

    Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.

    1981-07-01

    The endothermic reactions Br + CH 3 I → CH 3 + IBr (ΔH 0 0 = 13 kcal/mole) and Br + CF 3 I → CF 3 + IBr (ΔH 0 0 = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF 3 I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF 3 I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF 3 I

  17. «Green» Energy Harvesting by Means of Piezoflexogeneration from Vibration or Similar Processes

    Directory of Open Access Journals (Sweden)

    Timofey G. Lupeiko

    2013-01-01

    Full Text Available The piezoelectric systems of electric energy harvesting with an adaptive low-frequency resonance are developed. These systems allowed to obtain electricity from low-frequency vibration. The availability of their application for adaptation to other periodic processes including pedestrians and vehicles movement is shown.

  18. Vibration based structural health monitoring in fibre reinforced composites employing the modal strain energy method

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.

    2009-01-01

    The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.

  19. Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.

    1981-07-01

    The endothermic reactions Br + CH/sub 3/I ..-->.. CH/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 13 kcal/mole) and Br + CF/sub 3/I ..-->.. CF/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF/sub 3/I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF/sub 3/I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF/sub 3/I.

  20. Vibrational-state-selected ion--molecule reaction cross sections at thermal energies

    NARCIS (Netherlands)

    Pijkeren, D. van; Boltjes, E.; Eck, J. van; Niehaus, A.

    1984-01-01

    A method designed to measure relative ion—molecule reaction rates at thermal collision energies for selected reactant ion vibrational states is described. Relative reaction rates are determined for the three endothermic reactions: H2+ (υ)(He,H)HeH+, H2+ (υ)(Ne,H)NeH+, D2+(υ)(Ne, D)NeD+, and for the

  1. Analysis of Wind Energy Potential and Vibrations Caused by Wind Turbine on Its Basement

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Z.; Hanslian, David; Stolárik, M.; Pinka, M.

    2014-01-01

    Roč. 19, č. 3 (2014), s. 151-159 ISSN 1335-1788 Institutional support: RVO:68378289 Keywords : wind turbine * wind energy potential * wind map * wind map * experimental measurement * vibration velocity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.329, year: 2014 http://actamont.tuke.sk/pdf/2014/n3/6kalab.pdf

  2. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jing, E-mail: jingqiu@cqu.edu.cn; Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin [Sensors and Instruments Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  3. Protection of Distribution Systems with Distributed Energy Resources

    DEFF Research Database (Denmark)

    Bak-Jensen, Birgitte; Browne, Matthew; Calone, Roberto

    of 17 months of work of the Joint Working Group B5/C6.26/CIRED “Protection of Distribution Systems with Distributed Energy Resources”. The working group used the CIGRE report TB421 “The impact of Renewable Energy Sources and Distributed Generation on Substation Protection and Automation”, published...... by WG B5.34 as the entry document for the work on this report. In doing so, the group aligned the content and the scope of this report, the network structures considered, possible islanding, standardized communication and adaptive protection, interface protection, connection schemes and protection...... are listed (chapter 3). The first main part of the report starts with a summary of the backgrounds on DER and current practices in protection at the distribution level (chapter 4). This chapter contains an analysis of CIGRE TB421, protection relevant characteristics of DER, a review of current practices...

  4. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  5. Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Patrick; Oschetzki, Dominik; Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, Robert [Clemens-Schöpf Institut für Organische Chemie and Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt (Germany)

    2014-05-14

    A transformation of potential energy surfaces (PES) being represented by multi-mode expansions is introduced, which allows for the calculation of anharmonic vibrational spectra of any isotopologue from a single PES. This simplifies the analysis of infrared spectra due to significant CPU-time savings. An investigation of remaining deviations due to truncations and the so-called multi-level approximation is provided. The importance of vibrational-rotational couplings for small molecules is discussed in detail. In addition, an analysis is proposed, which provides information about the quality of the transformation prior to its execution. Benchmark calculations are provided for a set of small molecules.

  6. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  7. Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system

    International Nuclear Information System (INIS)

    Elfrink, R; Renaud, M; Kamel, T M; De Nooijer, C; Jambunathan, M; Goedbloed, M; Hohlfeld, D; Matova, S; Pop, V; Caballero, L; Van Schaijk, R

    2010-01-01

    This paper describes the characterization of thin-film MEMS vibration energy harvesters based on aluminum nitride as piezoelectric material. A record output power of 85 µW is measured. The parasitic-damping and the energy-harvesting performances of unpackaged and packaged devices are investigated. Vacuum and atmospheric pressure levels are considered for the packaged devices. When dealing with packaged devices, it is found that vacuum packaging is essential for maximizing the output power. Therefore, a wafer-scale vacuum package process is developed. The energy harvesters are used to power a small prototype (1 cm 3 volume) of a wireless autonomous sensor system. The average power consumption of the whole system is less than 10 µW, and it is continuously provided by the vibration energy harvester

  8. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  9. Influence of collision energy and vibrational excitation on the ...

    Indian Academy of Sciences (India)

    tions of potential energy surface (PES) for BrH2 system are more ... rier heights for both the exchange and abstraction are smaller than ... The complete picture on the dynamics of ..... Kurosaki Y and Takayanagi T private communication. 20.

  10. Capacity of Distribution Feeders for Hosting Distributed Energy Resources

    DEFF Research Database (Denmark)

    Papathanassiou, S.; Hatziargyriou, N.; Anagnostopoulos, P.

    The last two decades have seen an unprecedented development of distributed energy resources (DER) all over the world. Several countries have adopted a variety of support schemes (feed-in tariffs, green certificates, direct subsidies, tax exemptions etc.) so as to promote distributed generation (DG...... standards of the networks. To address this need in a timely and effective manner, simplified methodologies and practical rules of thumbs are often applied to assess the DER hosting capacity of existing distribution networks, avoiding thus detailed and time consuming analytical studies. The scope...

  11. Wavelet analysis to decompose a vibration simulation signal to improve pre-distribution testing of packaging

    Science.gov (United States)

    Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.

    2016-08-01

    In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.

  12. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-08-31

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  13. Modeling and experimental verification of proof mass effects on vibration energy harvester performance

    International Nuclear Information System (INIS)

    Kim, Miso; Hoegen, Mathias; Dugundji, John; Wardle, Brian L

    2010-01-01

    An electromechanically coupled model for a cantilevered piezoelectric energy harvester with a proof mass is presented. Proof masses are essential in microscale devices to move device resonances towards optimal frequency points for harvesting. Such devices with proof masses have not been rigorously modeled previously; instead, lumped mass or concentrated point masses at arbitrary points on the beam have been used. Thus, this work focuses on the exact vibration analysis of cantilevered energy harvester devices including a tip proof mass. The model is based not only on a detailed modal analysis, but also on a thorough investigation of damping ratios that can significantly affect device performance. A model with multiple degrees of freedom is developed and then reduced to a single-mode model, yielding convenient closed-form normalized predictions of device performance. In order to verify the analytical model, experimental tests are undertaken on a macroscale, symmetric, bimorph, piezoelectric energy harvester with proof masses of different geometries. The model accurately captures all aspects of the measured response, including the location of peak-power operating points at resonance and anti-resonance, and trends such as the dependence of the maximal power harvested on the frequency. It is observed that even a small change in proof mass geometry results in a substantial change of device performance due not only to the frequency shift, but also to the effect on the strain distribution along the device length. Future work will include the optimal design of devices for various applications, and quantification of the importance of nonlinearities (structural and piezoelectric coupling) for device performance

  14. Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting

    Science.gov (United States)

    Pei, Yalu; Liu, Yilun; Zuo, Lei

    2018-06-01

    This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.

  15. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leow, Woei Ling [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Yan [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  16. Observation of an energy threshold for large ΔE collisional relaxation of highly vibrationally excited pyrazine (Evib=31 000-41 000 cm-1) by CO2

    Science.gov (United States)

    Elioff, Michael S.; Wall, Mark C.; Lemoff, Andrew S.; Mullin, Amy S.

    1999-03-01

    Energy dependent studies of the collisional relaxation of highly vibrationally excited pyrazine through collisions with CO2 were performed for initial pyrazine energies Evib=31 000-35 000 cm-1. These studies are presented along with earlier results for pyrazine with Evib=36 000-41 000 cm-1. High-resolution transient IR laser absorption of individual CO2 (0000) rotational states (J=56-80) was used to investigate the magnitude and partitioning of energy gain into CO2 rotation and translation, which comprises the high energy tail of the energy transfer distribution function. Highly vibrationally excited pyrazine was prepared by absorption of pulsed UV light at seven wavelengths in the range λ=281-324 nm, followed by radiationless decay to pyrazine's ground electronic state. Nascent CO2 (0000) rotational populations were measured for each UV excitation wavelength and distributions of nascent recoil velocities for individual rotational states of CO2 (0000) were obtained from Doppler-broadened transient linewidth measurements. Measurements of energy transfer rate constants at each UV wavelength yield energy-dependent probabilities for collisions involving large ΔE values. These results reveal that the magnitude of large ΔE collisional energy gain in CO2 (0000) is fairly insensitive to the amount of vibrational energy in pyrazine for Evib=31 000-35 000 cm-1. A comparison with earlier studies on pyrazine with Evib=36 000-41 000 cm-1 indicates that the V→RT energy transfer increases both in magnitude and probability for Evib>36 000 cm-1. Implications of incomplete intramolecular vibrational relaxation, electronic state coupling, and isomerization barriers are discussed in light of these results.

  17. On the nature of intramolecular vibrational energy transfer in dense molecular environments

    Energy Technology Data Exchange (ETDEWEB)

    Benten, Rebekka S. von [Institut fuer Physikalische Chemie der Universitaet Goettingen, Tammannstrasse 6, D-37077 Goettingen (Germany); Abel, Bernd, E-mail: Bernd.Abel@uni-lepzig.de [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Universitaet Leipzig, Linne-Strasse 2, D-04103 Leipzig (Germany)

    2010-12-09

    Graphical abstract: Mechanisms of IVR in multi-tiers of intramolecular energy levels in different molecular environments are investigated. - Abstract: Transient femtosecond-IR-pump-UV-absorption probe-spectroscopy has been employed to shed light on the nature of intramolecular vibrational energy transfer (IVR) in dense molecular environments ranging from the diluted gas phase to the liquid. A general feature in our experiments and those of others is that IVR proceeds via multiple timescales if overtones or combination vibrations of high frequency modes are excited. It has been found that collisions enhance IVR if its (slower) timescales can compete with collisions. This enhancement is, however, much more weaker and rather inefficient as opposed to the effect of collisions on intermolecular energy transfer which is well known. In a series of experiments we found that IVR depends not significantly on the average energy transferred in a collision but rather on the number of collisions. The collisions are much less efficient in affecting IVR than VET. We conclude that collision induced broadening of vibrational energy levels reduces the energy gaps and enhances existing couplings between tiers. The present results are an important step forward to rationalize and understand apparently different and not consistent results from different groups on different molecular systems between gas and liquid phases.

  18. Distributed Wireless Power Transfer With Energy Feedback

    Science.gov (United States)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  19. Detection of directional energy damping in vibrating systems

    Indian Academy of Sciences (India)

    Fq. 1. Introduction. Frequency distribution in the propagating media has been analysed extensively ... time period of oscillation a digital stop-clock was used. As the rubber .... This allows us to get a measure of the degree of modulation in the.

  20. Tailored ion energy distributions on plasma electrodes

    International Nuclear Information System (INIS)

    Economou, Demetre J.

    2013-01-01

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas

  1. Distributed Energy Planning for Climate Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Stout, Sherry R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Day, Megan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    At various levels of government across the United States and globally climate resilient solutions are being adopted and implemented. Solutions vary based on predicted hazards, community context, priorities, complexity, and available resources. Lessons are being learned through the implementation process, which can be replicated regardless of level or type of government entity carrying out the resiliency planning. Through a number of analyses and technical support across the world, NREL has learned key lessons related to resilience planning associated with power generation and water distribution. Distributed energy generation is a large factor in building resilience with clean energy technologies and solutions. The technical and policy solutions associated with distributed energy implementation for resilience fall into a few major categories, including spatial diversification, microgrids, water-energy nexus, policy, and redundancy.

  2. Making the most of distributed energy

    International Nuclear Information System (INIS)

    Malkamaeki, M.

    2004-01-01

    Distributed energy production is on the threshold of a new area, and offers a growing number of options for meeting energy needs that cannot be met effectively by larger, base load-type infrastructure. Distributed energy generation can offer a more cost- effective approach, depending on things such as location, load requirements, and fuel availability. It can also make it possible to generate energy at times when grid power is not available or is likely to be overloaded, and in locations not covered by an existing grid net-work. Perhaps most interesting from a technological point of view is the fact that distributed power opens up the opportunity to use fuels that have not been utilised up until now, for a variety of reasons

  3. Design and development of broadband piezoelectric vibration energy harvester based on compliant orthoplanar spring

    Science.gov (United States)

    Dhote, Sharvari

    With advancement in technology, power requirements are reduced drastically for sensor nodes. The piezoelectric vibration energy harvesters generate sufficient power to low-powered sensor nodes. The main requirement of energy harvester is to provide a broad bandwidth. A conventional linear harvester does not satisfy this requirement. Therefore, the research focus is shifted to exploiting nonlinearity to widen the bandwidth of the harvester. Although nonlinear techniques are promising for broadening a bandwidth, reverse sweep shows reduced response as compared to the forward sweep. To overcome this issue, this thesis presents the design and development of a broadband piezoelectric vibration energy harvester based on a nonlinear multi-frequency compliant orthoplanar spring. This thesis is divided into three parts. The first part presents the design and experimental study of a tri-leg compliant orthoplanar spring for a broadband energy harvesting. The harvester performance is enhanced through the use of lightweight masses, which bring nonlinear vibration modes closer. The performance of the harvester is analyzed through development of a mathematical model based on the Duffing oscillator. The experimental and numerical results are in good agreement. The parametric study shows that an optimum performance is achieved by further reducing a gap in between the vibration modes using different weight masses. In the second part of the research, multiple (bi, quad and pent) leg compliant orthoplanar springs are designed to understand their role in expanding the bandwidth and reducing gap between vibration modes. The designed harvesters are compared by calculating the figure of merits. The quad-leg design provides a better performance in terms of power density and bandwidth among all the designs. The reverse sweep response is comparable to the forward sweep in terms of bandwidth. In the final part, a magnetic force is applied to the tri-leg harvester, which enhanced the voltage

  4. Solar-pumped electronic-to-vibrational energy transfer lasers

    Science.gov (United States)

    Harries, W. L.; Wilson, J. W.

    1981-01-01

    The possibility of using solar-pumped lasers as solar energy converters is examined. The absorbing media considered are halogens or halogen compounds, which are dissociated to yield excited atoms, which then hand over energy to a molecular lasing medium. Estimates of the temperature effects for a Br2-CO2-He system with He as the cooling gas are given. High temperatures can cause the lower energy levels of the CO2 laser transition to be filled. The inverted populations are calculated and lasing should be possible. However, the efficiency is less than 0.001. Examination of other halogen-molecular lasant combinations (where the rate coefficients are known) indicate efficiencies in all cases of less than 0.005.

  5. Vibration energy harvesting in railway tunnels with a wireless sensor node application

    Energy Technology Data Exchange (ETDEWEB)

    Wischke, Martin

    2012-07-01

    Vibration harvesting is a promising concept to prolong the lifetime of batterypowered stand-alone systems, or even to enable their energy-autonomy. This thesis focuses on ambient vibrations converted by electromechanical transducers into electricity. The final goal is energy scavenging from train-induced vibrations in railway tunnels. This is achieved via the development of a suitable harvester for this environment and the practical demonstration of a vibrationpowered wireless sensor node (WSN). At the beginning of this thesis, extensive vibration measurements were performed in several traffic tunnels. The obtained unique data set formed the basis for the design and test of several harvesters. The railway sleeper was chosen as usable harvester location. A shock-resistant double-side suspended piezoelectric cantilever was developed. Several cantilevers with different eigenfrequencies are combined in an array, creating a robust harvester with a broad bandwidth. A field test of 7 days in the Loetschbergbasis-tunnel verified that, on average the sufficient energy for powering a virtual wireless sensor node was scavenged. For application in a real WSN, the harvester array was scaled up to 10 cantilevers. The power management for the sensor node was developed concurrently. The central component is a power switch that monitors the energy level in the system's storage capacitor and only triggers the wireless interface when sufficient energy is available. Combined with a train detection circuit, the presented energy-autonomous WSN reliably reports every passing vehicle. In addition to the development of an energy-autonomous fully integrated WSN, this work investigates nonlinear properties of PZT ceramics. Consideration of the elastostriction and the electrostriction enables a more precises prediction of the tip displacement of a piezoelectric cantilever actuator. Further, the elastostriction is exploited to modify the resonance frequency of a bimorph cantilever. Basing

  6. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

    Science.gov (United States)

    Wong, Chin Hong; Dahari, Zuraini

    2017-03-01

    The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

  7. Roles of the Excitation in Harvesting Energy from Vibrations.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency.

  8. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Limitations of the static Woods–Saxon potential and the applicability of the energy dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface excitations of the fusing nuclei are found to be ...

  9. Inelastic surface vibrations versus energy-dependent nucleus ...

    Indian Academy of Sciences (India)

    Abstract. Limitations of the static Woods–Saxon potential and the applicability of the energy- dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional. Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface exci- tations of the fusing nuclei are found to ...

  10. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    International Nuclear Information System (INIS)

    Ju, S; Chae, S H; Choi, Y; Jun, S; Park, S M; Lee, S; Ji, C-H; Lee, H W

    2013-01-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken

  11. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    Science.gov (United States)

    Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.

  12. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  13. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    Science.gov (United States)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  14. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  15. Quantum localization and protein-assisted vibrational energy flow in cofactors

    International Nuclear Information System (INIS)

    Leitner, David M

    2010-01-01

    Quantum effects influence vibrational dynamics and energy flow in biomolecules, which play a central role in biomolecule function, including control of reaction kinetics. Lifetimes of many vibrational modes of proteins and their temperature dependence, as determined by quantum golden-rule-based calculations, exhibit trends consistent with experimental observation and distinct from estimates based on classical modeling. Particularly notable are quantum coherence effects that give rise to localization of vibrational states of sizable organic molecules in the gas phase. Even when such a molecule, for instance a cofactor, is embedded in a protein, remnants of quantum localization survive that influence vibrational energy flow and its dependence on temperature. We discuss these effects on the mode-damping rates of a cofactor embedded in a protein, using the green fluorescent protein chromophore as a specific example. We find that for cofactors of this size embedded in their protein and solvent environment at room temperature a golden-rule calculation often overestimates the mode-damping rate.

  16. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    Science.gov (United States)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  17. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  18. Aftershock Energy Distribution by Statistical Mechanics Approach

    Science.gov (United States)

    Daminelli, R.; Marcellini, A.

    2015-12-01

    The aim of our work is to research the most probable distribution of the energy of aftershocks. We started by applying one of the fundamental principles of statistical mechanics that, in case of aftershock sequences, it could be expressed as: the greater the number of different ways in which the energy of aftershocks can be arranged among the energy cells in phase space the more probable the distribution. We assume that each cell in phase space has the same possibility to be occupied, and that more than one cell in the phase space can have the same energy. Seeing that seismic energy is proportional to products of different parameters, a number of different combinations of parameters can produce different energies (e.g., different combination of stress drop and fault area can release the same seismic energy). Let us assume that there are gi cells in the aftershock phase space characterised by the same energy released ɛi. Therefore we can assume that the Maxwell-Boltzmann statistics can be applied to aftershock sequences with the proviso that the judgment on the validity of this hypothesis is the agreement with the data. The aftershock energy distribution can therefore be written as follow: n(ɛ)=Ag(ɛ)exp(-βɛ)where n(ɛ) is the number of aftershocks with energy, ɛ, A and β are constants. Considering the above hypothesis, we can assume g(ɛ) is proportional to ɛ. We selected and analysed different aftershock sequences (data extracted from Earthquake Catalogs of SCEC, of INGV-CNT and other institutions) with a minimum magnitude retained ML=2 (in some cases ML=2.6) and a time window of 35 days. The results of our model are in agreement with the data, except in the very low energy band, where our model resulted in a moderate overestimation.

  19. Small Distributed Renewable Energy Generation for Low Voltage Distribution Networks

    Directory of Open Access Journals (Sweden)

    Chindris M.

    2016-08-01

    Full Text Available Driven by the existing energy policies, the use of renewable energy has increased considerably all over the world in order to respond to the increasing energy consumption and to reduce the environmental impact of the electricity generation. Although most policy makers and companies are focusing on large applications, the use of cheap small generation units, based on local renewable resources, has become increasingly attractive for the general public, small farms and remote communities. The paper presents several results of a research project aiming to identify the power quality issues and the impact of RES based distributed generation (DG or other non-linear loads on low voltage (LV distribution networks in Romania; the final goal is to develop a Universal Power Quality Conditioner (UPQC able to diminish the existing disturbances. Basically, the work analyses the existing DG technologies and identifies possible solutions for their integration in Romania; taking into account the existent state of the art, the attention was paid on small systems, using wind and solar energy, and on possibility to integrate them into suburban and rural LV distribution networks. The presence of DG units at distribution voltage level means the transition from traditional passive to active distribution networks. In general, the relatively low penetration levels of DG does not produce problems; however, the nowadays massive increase of local power generation have led to new integration challenges in order to ensure the reliability and quality of the power supply. Power quality issues are identified and their assessment is the key element in the design of measures aiming to diminish all existing disturbances.

  20. Distributed energy store railguns experiment and analysis

    Science.gov (United States)

    Holland, L. D.

    1984-02-01

    Electromagnetic acceleration of projectiles holds the potential for achieving higher velocities than yet achieved by any other means. A railgun is the simplest form of electromagnetic macroparticle accelerator and can generate the highest sustained accelerating force. The practical length of conventional railguns is limited by the impedance of the rails because current must be carried along the entire length of the rails. A railgun and power supply system called the distributed energy store railgun was proposed as a solution to this limitation. A distributed energy storage railgun was constructed and successfully operated. In addition to this demonstration of the distributed energy store railgun principle, a theoretical model of the system was also constructed. A simple simulation of the railgun system based on this model, but ignoring frictional drag, was compared with the experimental results. During the process of comparing results from the simulation and the experiment, the effect of significant frictional drag of the projectile on the sidewalls of the bore was observed.

  1. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting

    International Nuclear Information System (INIS)

    Moure, A.; Izquierdo Rodríguez, M.A.; Rueda, S. Hernández; Gonzalo, A.; Rubio-Marcos, F.; Cuadros, D. Urquiza; Pérez-Lepe, A.; Fernández, J.F.

    2016-01-01

    Graphical abstract: A system based on piezoelectric cymbals embedded in asphalt for the first time is used as harvester for wasted vibrational energy produced by traffic. Energy density in the range of other alternative sources is achieved, with an estimated projected cost that shows the feasibility of this harvesting energy system. - Highlights: • Piezoelectric cymbals have been directly integrated in asphalt for the first time. • Harvesting from wasted vibrational energy caused by vehicles is demonstrated to be feasible by this integration. • Energy density and cost are estimated to be competitive with other sources as photovoltaic. • A 10% of the energy generated in the Region of Madrid can be obtained by covering only the 0.6% of its roads. - Abstract: Piezoelectric cymbals with 29-mm diameter and different configurations are fabricated and tested to determine the best conditions to optimize the conversion of mechanical to electric energy. Then, the ones with the best results are integrated directly in asphalt to evaluate their performance as vibration energy harvesters in roads, in a test bench designed to characterize these parameters. The main cymbal parameters and their integration in the asphalt are determined. For the first time, the electrical energy that can be obtained with the embedment of cymbals in asphalt is evaluated. Each single piezoceramic cymbal recovers up to 16 μW for the pass of one heavy vehicle wheel. An extrapolation of the energy transformed by the integrated cymbals in roads with high vehicle densities, such as in a peri-urban motorway, is approached. Energy densities in the range of 40–50 MW h/m"2 can be obtained at 100 m of road (use of 30,000 cymbals), which could account for more than 65 MW h in a year. All this with a relatively low cost for an emerging technology (less than 2 €/kW h). The conversion of wasted and unused vibrational energy in roads by piezoelectric cymbals is thus proved as a real possibility of

  2. A novel design of a map-tuning piezoelectric vibration energy harvester

    International Nuclear Information System (INIS)

    Huang, Shyh-Chin; Lin, Kao-An

    2012-01-01

    In this paper, a new design of a self-tuning bimorph PZT beam for maximum vibration energy harvesting is introduced. As is well known, a PZT beam harvester captures the most energy as it resonates with the ambient vibration. The ambient excitation frequency varies in nature so that proper tracking of the ambient frequency and adjusting the harvester’s resonance frequency accordingly would assure the most energy retrieved. The harvester introduced in the paper is composed of an elastic beam partially covered with two-sided PZT patches, the same as most others, but the method of tuning its resonance frequency is novel. A movable intermediate rigid support is attached to the beam and by adjusting the support’s position according to the sensed ambient frequency, the beam’s resonance frequency will coincide with the ambient frequency such that the harvested vibration energy is maximized. The theoretical analysis employs Hamilton’s principle, the assumed-mode method, and the receptance method. Numerical results are obtained and compared with the experimental ones. They show excellent agreement in a frequency versus support’s position chart. The most significant feature is that there can be up to ±35% of resonance frequency tunability. This achievement provides substantial advantages in power-harvesting applications. An experiment for base excitation to simulate the ambient vibration is setup as well and the results show that as little as 5% excitation frequency variation would cause more than 70% output voltage drop if there were no tuning ability. The novel design could significantly enhance the harvested energy in a short duration of time. (paper)

  3. Smart Distribution Boxes, Complete Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    Platise, Uros

    2010-09-15

    Present households demand side management implementations are turning conventional appliances into smart ones to support auto demand (AutoDR) response function. Present concept features a direct link between the power meters and appliances. In this paper new concept and example of implementation of a so-called Smart Distribution Box (SmartDB) is represented for complete energy and power management. SmartDBs, as an intermediate layer, are extending smart grid power meter functionality to support AutoDR with fast and guaranteed response times, distributed power sources, and besides provide full control over energy management and extra safety functions to the consumers.

  4. Development of a High-performance Fluorpolymer Electret Mixed with Nano-particles and Its Application to Vibration Energy Harvesting

    International Nuclear Information System (INIS)

    Suzuki, M; Takahashi, T; Aoyagi, S

    2014-01-01

    We have been developing small power generation device of capacitance-type to be converted to electrical energy vibration energy using an electret. In this Study, dielectric nanoparticles were mixed with an electret made of fluorocarbon polymer. As a result, implanted charge density of the electret was successfully enhanced thanks to the mixing of particles. A small sized vibration energy harvester (VEH) was fabricated using the fluorocarbon mixed with dielectric nano-particles. As a result of applying vibration (20 Hz, 0.65 G) to the fabricated VEH, The maximum generated power of approximately 50 μW was obtained

  5. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    International Nuclear Information System (INIS)

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen

    2014-01-01

    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed

  6. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity

    Science.gov (United States)

    Aldegunde, J.; Jambrina, P. G.; García, E.; Herrero, V. J.; Sáez-Rábanos, V.; Aoiz, F. J.

    2013-11-01

    The advent of very precise measurements of rate coefficients in reactions of muonium (Mu), the lightest hydrogen isotope, with H2 in its ground and first vibrational state and of kinetic isotope effects with respect to heavier isotopes has triggered a renewed interests in the field of muonic chemistry. The aim of the present article is to review the most recent results about the dynamics and mechanism of the reaction Mu+H2 to shed light on the importance of quantum effects such as tunnelling, the preservation of the zero point energy, and the vibrational adiabaticity. In addition to accurate quantum mechanical (QM) calculations, quasiclassical trajectories (QCT) have been run in order to check the reliability of this method for this isotopic variant. It has been found that the reaction with H2(v=0) is dominated by the high zero point energy (ZPE) of the products and that tunnelling is largely irrelevant. Accordingly, both QCT calculations that preserve the products' ZPE as well as those based on the Ring Polymer Molecular Dynamics methodology can reproduce the QM rate coefficients. However, when the hydrogen molecule is vibrationally excited, QCT calculations fail completely in the prediction of the huge vibrational enhancement of the reactivity. This failure is attributed to tunnelling, which plays a decisive role breaking the vibrational adiabaticity when v=1. By means of the analysis of the results, it can be concluded that the tunnelling takes place through the ν1=1 collinear barrier. Somehow, the tunnelling that is missing in the Mu+H2(v=0) reaction is found in Mu+H2(v=1).

  7. Improved mechanical reliability of MEMS electret based vibration energy harvesters for automotive applications

    International Nuclear Information System (INIS)

    Renaud, M; Goedbloed, M; De Nooijer, C; Van Schaijk, R; Fujita, T

    2014-01-01

    Current commercial wireless tire pressure monitoring systems (TPMS) require a battery as electrical power source. The battery limits the lifetime of the TPMS. This limit can be circumvented by replacing the battery by a vibration energy harvester. Autonomous wireless TPMS powered by MEMS electret based vibration energy harvester have been demonstrated. A remaining technical challenge to attain the grade of commercial product with these autonomous TPMS is the mechanical reliability of the MEMS harvester. It should survive the harsh conditions imposed by the tire environment, particularly in terms of mechanical shocks. As shown in this article, our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, several types of shock absorbing structures are investigated. With the best proposed solution, the shock resilience of the harvesters is brought above 2500 g

  8. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments

    Science.gov (United States)

    Zou, Hong-Xiang; Zhang, Wen-Ming; Li, Wen-Bo; Wei, Ke-Xiang; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2018-03-01

    The combination of nonlinear bistable and flextensional mechanisms has the advantages of wide operating frequency and high equivalent piezoelectric constant. In this paper, three magnetically coupled flextensional vibration energy harvesters (MF-VEHs) are designed from three magnetically coupled vibration systems which utilize a magnetic repulsion, two symmetrical magnetic attractions and multi-magnetic repulsions, respectively. The coupled dynamic models are developed to describe the electromechanical transitions. Simulations under harmonic excitation and random excitation are carried out to investigate the performance of the MF-VEHs with different parameters. Experimental validations of the MF-VEHs are performed under different excitation levels. The experimental results verify that the developed mathematical models can be used to accurately characterize the MF-VEHs for various magnetic coupling modes. A comparison of three MF-VEHs is provided and the results illustrate that a reasonable arrangement of multiple magnets can reduce the threshold excitation intensity and increase the harvested energy.

  9. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    Science.gov (United States)

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  10. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  11. The benefits of noise and nonlinearity: Extracting energy from random vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Gammaitoni, Luca, E-mail: luca.gammaitoni@pg.infn.it [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy); Neri, Igor; Vocca, Helios [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy)

    2010-10-05

    Nonlinear behavior is the ordinary feature of the vast majority of dynamical systems and noise is commonly present in any finite temperature physical and chemical system. In this article we briefly review the potentially beneficial outcome of the interplay of noise and nonlinearity by addressing the novel field of vibration energy harvesting. The role of nonlinearity in a piezoelectric harvester oscillator dynamics is modeled with nonlinear stochastic differential equation.

  12. The Multiscale Interaction of Vibrational Energy Transfer and Turbulent Combustion in Supersonic Flows

    Science.gov (United States)

    2017-04-04

    comply with a collection of information   if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...µm in order to facilitate the flow diagnostics. The center jet flow issues through a CNC- machined stainless nozzle, which can be replaced to provide...the mixing in the shear layer, which will be used to compare with the relaxation time of the vibrational energy, was defined as the eddy turnover time

  13. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams

    Science.gov (United States)

    Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.

    2015-04-01

    In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized

  14. Electron energy-distribution functions in gases

    International Nuclear Information System (INIS)

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected

  15. Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system

    Science.gov (United States)

    Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei

    2018-04-01

    Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.

  16. Experimental and Theoretical Study on Influence of Different Charging Structures on Blasting Vibration Energy

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2015-01-01

    Full Text Available As an important parameter in blasting design, charging structure directly influences blasting effect. Due to complex conditions of this blasting and excavating engineering in Jiangsu, China, the authors carried out comparative researches with coupling structure, air-decoupling structure, and water-decoupling structure. After collecting, comparing, and analyzing produced signals on blasting vibration, the authors summarized that when proportional distances are the same, water-decoupling structure can reduce instantaneous energy of blasting vibration more effectively with more average rock fragmentation and less harm of dust. From the perspective of impedance matching, the present paper analyzed influence of charging structure on blasting vibration energy, demonstrating that impedance matching relationship between explosive and rock changes because of different charging structures. Through deducing relationship equation that meets the impedance matching of explosive and rock under different charging structures, the research concludes that when blasting rocks with high impedance, explosive with high impedance can better transmits blasting energy. Besides, when employing decoupling charging, there exists a reasonable decoupling coefficient helping realize impedance matching of explosive and rock.

  17. Parametric Study and Optimization of a Piezoelectric Energy Harvester from Flow Induced Vibration

    Science.gov (United States)

    Ashok, P.; Jawahar Chandra, C.; Neeraj, P.; Santhosh, B.

    2018-02-01

    Self-powered systems have become the need of the hour and several devices and techniques were proposed in favour of this crisis. Among the various sources, vibrations, being the most practical scenario, is chosen in the present study to investigate for the possibility of harvesting energy. Various methods were devised to trap the energy generated by vibrating bodies, which would otherwise be wasted. One such concept is termed as flow-induced vibration which involves the flow of a fluid across a bluff body that oscillates due to a phenomenon known as vortex shedding. These oscillations can be converted into electrical energy by the use of piezoelectric patches. A two degree of freedom system containing a cylinder as the primary mass and a cantilever beam as the secondary mass attached with a piezoelectric circuit, was considered to model the problem. Three wake oscillator models were studied in order to determine the one which can generate results with high accuracy. It was found that Facchinetti model produced better results than the other two and hence a parametric study was performed to determine the favourable range of the controllable variables of the system. A fitness function was formulated and optimization of the selected parameters was done using genetic algorithm. The parametric optimization led to a considerable improvement in the harvested voltage from the system owing to the high displacement of secondary mass.

  18. Fabrication and characterization of non-resonant magneto-mechanical low-frequency vibration energy harvester

    Science.gov (United States)

    Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh

    2018-03-01

    This article presents a non-resonant magneto-mechanical vibration energy harvester. When externally excited, the energy harvester converts vibrations into electric charge using a guided levitated magnet oscillating inside a multi-turn coil that is fixed around the exterior of the energy harvester. The levitated magnet is guided using four oblique mechanical springs. A prototype of the energy harvester is fabricated using additive manufacturing. Both experiment and model are used to characterize the static and dynamic behavior of the energy harvester. Measured restoring forces show that the fabricated energy harvester retains a mono-stable potential energy well with desired stiffness nonlinearities. Results show that magnetic spring results in hardening effect which increases the resonant frequency of the energy harvester. Additionally, oblique mechanical springs introduce geometric, negative, nonlinear stiffness which improves the harvester's response towards lower frequency spectrum. The unique design can produce a tunable energy harvester with multi-well potential energy characteristics. A finite element model is developed to estimate the average radial flux density experienced by the multi-turn coil. Also, a lumped parameter model of the energy harvester is developed and validated against measured data. Both upward and downward frequency sweeps are performed to determine the frequency response of the harvester. Results show that at higher excitation levels hardening effects become more apparent, and the system dynamic response turns into non-resonant. Frequency response curves exhibit frequency jump phenomena as a result of coexistence of multiple energy states at the frequency branch. The fabricated energy harvester is hand-held and measures approximately 100.5 [cm3] total volume. For a base excitation of 1.0 g [m/s2], the prototype generates a peak voltage and normalized power density of approximately 3.5 [V] and 0.133 [mW/cm3 g2], respectively, at 15.5 [Hz].

  19. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    International Nuclear Information System (INIS)

    Perfetto, S; Rohlfing, J; Infante, F; Mayer, D; Herold, S

    2016-01-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency. (paper)

  20. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    Science.gov (United States)

    Perfetto, S.; Rohlfing, J.; Infante, F.; Mayer, D.; Herold, S.

    2016-09-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency.

  1. Wideband Electrostatic Vibration Energy Harvester (e-VEH) Having a Low Start-Up Voltage Employing a High-Voltage Integrated Interface

    International Nuclear Information System (INIS)

    Dudka, A; Galayko, D; Basset, P; Cottone, F; Blokhina, E

    2013-01-01

    This paper reports on an electrostatic Vibration Energy Harvester (e-VEH) system, for which the energy conversion process is initiated with a low bias voltage and is compatible with wideband stochastic external vibrations. The system employs the auto-synchronous conditioning circuit topology with the use of a novel dedicated integrated low-power high-voltage switch that is needed to connect the charge pump and flyback – two main parts of the used conditioning circuit. The proposed switch is designed and implemented in AMS035HV CMOS technology. Thanks to the proposed switch device, which is driven with a low-voltage ground-referenced logic, the e-VEH system may operate within a large voltage range, from a pre-charge low voltage up to several tens volts. With such a high-voltage e-VEH operation, it is possible to obtain a strong mechanical coupling and a high rate of vibration energy conversion. The used transducer/resonator device is fabricated with a batch-processed MEMS technology. When excited with stochastic vibrations having an acceleration level of 0.8 g rms distributed in the band 110–170 Hz, up to 0.75 μW of net electrical power has been harvested with our system. This work presents an important milestone in the challenge of designing a fully integrated smart conditioning interface for the capacitive e-VEHs

  2. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  3. Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers

    Science.gov (United States)

    Ansari, M. H.; Karami, M. Amin

    2016-03-01

    This paper studies energy harvesting from heartbeat vibrations for powering leadless pacemakers. Unlike traditional pacemakers, leadless pacemakers are implanted inside the heart and the pacemaker is in direct contact with the myocardium. A leadless pacemaker is in the shape of a cylinder. Thus, in order to utilize the available 3-dimensional space for the energy harvester, we choose a fan-folded 3D energy harvester. The proposed device consists of several piezoelectric beams stacked on top of each other. The volume of the energy harvester is 1 cm3 and its dimensions are 2 cm × 0.5 cm × 1 cm. Although high natural frequency is generally a major concern with micro-scale energy harvesters, by utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, we reduced the natural frequency to the desired range. This fan-folded design makes it possible to generate more than 10 μ W of power per cubic centimeter. The proposed device is compatible with Magnetic Resonance Imaging. Although the proposed device is a linear energy harvester, it is relatively insensitive to the heart rate. The natural frequencies and the mode shapes of the device are calculated analytically. The accuracy of the analytical model is verified by experimental investigations. We use a closed loop shaker system to precisely replicate heartbeat vibrations in vitro.

  4. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    Directory of Open Access Journals (Sweden)

    Elie-Jacques Fares

    Full Text Available There is increasing recognition about the importance of enhancing energy expenditure (EE for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS. Whole-body vibration (WBV increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF and EE, nor if WBV influences respiratory quotient (RQ, and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz.EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz. Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest, separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest at 40 Hz, separated by 5 min seated rest.Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001. However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration.No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS.

  5. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

    DEFF Research Database (Denmark)

    Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng

    2016-01-01

    and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity......This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision...

  6. Design of a hybrid power system based on solar cell and vibration energy harvester

    Science.gov (United States)

    Zhang, Bin; Li, Mingxue; Zhong, Shaoxuan; He, Zhichao; Zhang, Yufeng

    2018-03-01

    Power source has become a serious restriction of wireless sensor network. High efficiency, self-energized and long-life renewable source is the optimum solution for unmanned sensor network applications. However, single renewable power source can be easily affected by ambient environment, which influences stability of the system. In this work, a hybrid power system consists of a solar panel, a vibration energy harvester and a lithium battery is demonstrated. The system is able to harvest multiple types of ambient energy, which extends its applicability and feasibility. Experiments have been conducted to verify performance of the system.

  7. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric...... elements. We show experimental results from two types PZT/PZT harvesting devices, one where the Pb(ZrxTi1−x)O3 (PZT) thick films are high pressure treated during the fabrication and the other where the treatment is omitted. We find that with the high pressure treatment prior to PZT sintering, the films...

  8. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  9. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    Science.gov (United States)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.

    2015-12-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  10. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Montanini, Roberto, E-mail: rmontanini@unime.it; Quattrocchi, Antonino, E-mail: aquattrocchi@unime.it [University of Messina, Dept. of Engineering, Contrada di Dio, Messina (Italy)

    2016-06-28

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d{sub 31} mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  11. Vibration mitigation of a bridge cable using a nonlinear energy sink: design and experiment

    Directory of Open Access Journals (Sweden)

    Weiss Mathieu

    2015-01-01

    Full Text Available This work deals with the design and experiment of a cubic nonlinear energy sink (NES for horizontal vibration mitigation of a bridge cable. Modal analysis of horizontal linear modes of the cable is experimentally performed using accelerometers and displacement sensors. A theoretical simplified 2-dof model of the coupled cable-NES system is used to analytically design the NES by mean of multi-time scale systems behaviours and detection its invariant manifold, equilibrium and singular points which stand for periodic and strongly modulated regimes, respectively. Numerical integration is used to confirm the efficiency of the designed NES for the system under step release excitation. Then, the prototype system is built using geometrical cubic nonlinearity as the potential of the NES. Efficiency of the prototype system for mitigation of horizontal vibrations of the cable under for step release and forced excitations is experimentally demonstrated.

  12. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580 São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others

    2015-12-14

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  13. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    International Nuclear Information System (INIS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.

    2015-01-01

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule

  14. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-02-01

    Full Text Available This paper presents a micro-electro-mechanical system (MEMS piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,TiO3 (PZT cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3 and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm−3∙g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  15. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    Science.gov (United States)

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-02-19

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  16. Energy Policy Case Study - California: Renewables and Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Homer, Juliet S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bender, Sadie R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    The purpose of this document is to present a case study of energy policies in California related to power system transformation and renewable and distributed energy resources (DERs). Distributed energy resources represent a broad range of technologies that can significantly impact how much, and when, electricity is demanded from the grid. Key policies and proceedings related to power system transformation and DERs are grouped into the following categories: 1.Policies that support achieving environmental and climate goals 2.Policies that promote deployment of DERs 3.Policies that support reliability and integration of DERs 4.Policies that promote market animation and support customer choice. Major challenges going forward are forecasting and modeling DERs, regulatory and utility business model issues, reliability, valuation and pricing, and data management and sharing.

  17. Dynamics of Transition Regime in Bi-stable Vibration Energy Harvesters

    KAUST Repository

    Ibrahim, Alwathiqbellah

    2017-04-20

    Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve these goals, we derived a magneto-elastic beam operated at the transition between mono- and bi-stable regions. By improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved model, we present a fundamental understanding of interesting combined softening and hardening responses that happen at the transition between the two regimes. The transition regime is proposed as the optimal region for energy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experimental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent high power density around 16 Hz [1].

  18. Dynamics of Transition Regime in Bi-stable Vibration Energy Harvesters

    KAUST Repository

    Ibrahim, Alwathiqbellah; Towfighian, Shahrzad; Younis, Mohammad I.

    2017-01-01

    Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve these goals, we derived a magneto-elastic beam operated at the transition between mono- and bi-stable regions. By improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved model, we present a fundamental understanding of interesting combined softening and hardening responses that happen at the transition between the two regimes. The transition regime is proposed as the optimal region for energy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experimental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent high power density around 16 Hz [1].

  19. On the Multiplicity Distributions at LHC Energies

    International Nuclear Information System (INIS)

    Fialkowski, K.; Wit, R.

    2011-01-01

    The ALICE and CMS data on the multiplicity distributions are compared with the lower energy data and with the results from the 8.142 version of the PYTHIA MC event generator with two tunings. The ALICE data for moments are used to calculate the factorial cumulants. It is suggested that the data on moments or cumulants are well suited to specify the optimal tuning of the model parameters. (authors)

  20. Uncertainty analysis for secondary energy distributions

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.

    1978-01-01

    In many transport calculations the integral design parameter of interest (response) is determined mainly by secondary particles such as gamma rays from (n,γ) reactions or secondary neutrons from inelastic scattering events or (n,2n) reactions. Standard sensitivity analysis usually allows to calculate the sensitivities to the production cross sections of such secondaries, but an extended formalism is needed to also obtain the sensitivities to the energy distribution of the generated secondary particles. For a 30-group standard cross-section set 84% of all non-zero table positions pertain to the description of secondary energy distributions (SED's) and only 16% to the actual reaction cross sections. Therefore, any sensitivity/uncertainty analysis which does not consider the effects of SED's is incomplete and neglects most of the input data. This paper describes the methods of how sensitivity profiles for SED's are obtained and used to estimate the uncertainty of an integral response due to uncertainties in these SED's. The detailed theory is documented elsewhere and implemented in the LASL sensitivity code SENSIT. SED sensitivity profiles have proven particularly valuable in cross-section uncertainty analyses for fusion reactors. Even when the production cross sections for secondary neutrons were assumed to be without error, the uncertainties in the energy distribution of these secondaries produced appreciable uncertainties in the calculated tritium breeding rate. However, complete error files for SED's are presently nonexistent. Therefore, methods will be described that allow rough error estimates due to estimated SED uncertainties based on integral SED sensitivities

  1. Energy distribution in dissociations of polyatomic molecules

    International Nuclear Information System (INIS)

    Koernig, S.A.

    1989-01-01

    In this thesis studies are reported of fragmentation processes in polyatomic molecules. In order to find out which dessocaciation reactions take place, how they are brought about by the internal energy of the reactant, and to investigate the structure of the dissociating 'transition state', the fragment mass and the corresponding kinetic energy release (KER) are determined by differential translational spectroscopy using a position and time sensitive two-particle coincidence detector. The results are interpreted using the statistical theory of unimolecular dissociation. It turns out that the standard assumptions of the theory, especially in calculating KER-distributions, are not realistic in all molecules considered. Dissociation is induced by the neutralization with alkali metal vapour. In ch. 2 the experimental method and the analysis of the data (dissociation pathways, branching ratios and ε-d-distributions) are introduced and exemplified by measurements of cyclohexane, which represents the upper limit in precursor and fragment mass accessible in the apparatus. In ch. 3 a study is reported of the molecules methylchloride (CH 3 Cl) and the acetylradical (CH 3 CO). In spite of their similar geometric structures, completely different dissociation mechanisms have been found. Methylchloride dissociates via a repulsive state; acetyl radicals show energy scrambling. The energy distribution from dissociating acetyl exemplifies dynamical effects in the dissociation. In ch. 4 an investigation of a number of prototype hydrocarbons is presented. The dissociation pathways of several small linear alkanes indicate that neutralization takes place to unknown repulsive potentials, of which the position and steepness are determined from the kinetic energy release. (author). 118 refs.; 40 figs.; 5 tabs

  2. An inverse method for the identification of a distributed random excitation acting on a vibrating structure. Theory

    International Nuclear Information System (INIS)

    Granger, S.; Perotin, L.

    1997-01-01

    Maintaining the PWR components under reliable operating conditions requires a complex design to prevent various damaging processes, including fatigue and wear problems due to flow-induced vibration. In many practical situations, it is difficult, if not impossible, to perform direct measurements or calculations of the external forces acting on vibrating structures. Instead, vibrational responses can often be conveniently measured. This paper presents an inverse method for estimating a distributed random excitation from the measurement of the structural response at a number of discrete points. This paper is devoted to the presentation of the theoretical development. The force identification method is based on a modal model for the structure and a spatial orthonormal decomposition of the excitation field. The estimation of the Fourier coefficients of this orthonormal expansion is presented. As this problem turns out to be ill-posed, a regularization process is introduced. The minimization problem associated to this process is then formulated and its solutions is developed. (author)

  3. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding.

    Science.gov (United States)

    Paknejad, Masih; Abdullah, Amir; Azarhoushang, Bahman

    2017-11-01

    Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (a e ), feed speed (v w ), and cutting speed (v s ) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of v s =15m/s, v w =500mm/min, a e =0.4mm in the presence of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.

    Science.gov (United States)

    Hu, Junhui; Jong, Januar; Zhao, Chunsheng

    2010-01-01

    To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.

  5. Topology optimization and fabrication of low frequency vibration energy harvesting microdevices

    International Nuclear Information System (INIS)

    Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei

    2015-01-01

    Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response

  6. Vibrational energy flow in the villin headpiece subdomain: Master equation simulations

    International Nuclear Information System (INIS)

    Leitner, David M.; Buchenberg, Sebastian; Brettel, Paul; Stock, Gerhard

    2015-01-01

    We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water

  7. Vibrational energy flow in the villin headpiece subdomain: Master equation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, David M., E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States); Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Buchenberg, Sebastian; Brettel, Paul [Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany); Stock, Gerhard, E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany)

    2015-02-21

    We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.

  8. Vibration Energy Harvesting on Vehicle Suspension Using Rotary and Linear Electromagnetic Generator

    Directory of Open Access Journals (Sweden)

    Arif Indro Sultoni

    2013-04-01

    Full Text Available In this paper, we discuss comparation of vehicle vibration energy harvesting between rotary and linear electromagnetic generator. We construct the two model of energy harvester mechanism and then analyze both of energy absorbtion and vehicle comfortability. Furthermore, we analyze both of energy absorbtion and vehicle comfortability. Vehicle is modeled as quarter car. Rotarty generator harvests 2.5 x 10-4 Watt. The other hand, linear generator has viscous characteristic and capable to generates 90 Watts with 12 Volt power supply for 0.03 m amplitude of bumpy road input. Linear generator reduces oscillation with 1.2 sec settling time. It is more comfort than the angular which has 3 sec in settling time. With unnevenees road input, mean power of this generator is 64 Watt.

  9. Community energy storage and distribution SCADA improvements

    International Nuclear Information System (INIS)

    Riggins, M.

    2010-01-01

    The mission of American Electric Power (AEP) is to sustain the real time balance of energy supply and demand. Approximately 2.5 percent of energy generated in the United States (USA) is stored as pumped hydro, compressed air, or in batteries and other devices. This power point presentation discussed the use of SCADA for improving community energy storage (CES) and distribution systems. CES is a distributed fleet of small energy units connected to the transformers in order to serve houses or small commercial loads. CES is operated as a fleet offering multi-megawatt (MW) multi-hour storage. The benefits of CES include backup power, flicker mitigation, and renewable integration. Benefits to the electricity grid include power factor correct, ancillary services, and load leveling at the substation level. SCADA is being used to determine when emergency load reductions are required or when emergency inspections on fans, oil pumps or other devices are needed. An outline of AEP's monitoring system installation plan was also included. tabs., figs.

  10. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  11. A wideband, frequency up-converting bounded vibration energy harvester for a low-frequency environment

    International Nuclear Information System (INIS)

    Ashraf, K; Md Khir, M H; Baharudin, Z; Dennis, J O

    2013-01-01

    This paper presents a bounded vibration energy harvester to effectively harvest energy from a wide band of low-frequency environmental vibrations ranging from 10 to 18 Hz. Rigid mechanical stoppers are used to confine the seismic mass movement within the elastic limits of the spring. Experimental results show the effectiveness of the proposed technique in increasing the efficiency of the energy harvester. When excited at a frequency of 10 Hz with a peak acceleration of 1 g, the harvester responds at a higher frequency of 20 Hz and gives a peak power of 2.68 mW and a peak to peak voltage of 2.62 V across a load of 220 Ω. The average power density of 65.74 μW cm −3 obtained at 10 Hz 1 g excitation monotonically increases with frequency up to 341.86 μW cm −3 at 18 Hz. An analytical model describing the nonlinear dynamics of the proposed harvester is also presented. A simple technique to estimate the energy losses during impact and thereof a method to incorporate these losses in the model are suggested. The presented model not only predicts the experimental voltage waveform and frequency response of the device with good similarity but also predicts the RMS voltage from the harvester for the whole range of operating frequencies with an RMS error of 5.2%. (paper)

  12. Self-powered autonomous wireless sensor node using vibration energy harvesting

    International Nuclear Information System (INIS)

    Torah, R; Glynne-Jones, P; Tudor, M; Beeby, S; O'Donnell, T; Roy, S

    2008-01-01

    This paper reports the development and implementation of an energy aware autonomous wireless condition monitoring sensor system (ACMS) powered by ambient vibrations. An electromagnetic (EM) generator has been designed to harvest sufficient energy to power a radio-frequency (RF) linked accelerometer-based sensor system. The ACMS is energy aware and will adjust the measurement/transmit duty cycle according to the available energy; this is typically every 3 s at 0.6 m s −2 rms acceleration and can be as low as 0.2 m s −2 rms with a duty cycle around 12 min. The EM generator has a volume of only 150 mm 3 producing an average power of 58 µW at 0.6 m s −2 rms acceleration at a frequency of 52 Hz. In addition, a voltage multiplier circuit is shown to increase the electrical damping compared to a purely resistive load; this allows for an average power of 120 µW to be generated at 1.7 m s −2 rms acceleration. The ACMS has been successfully demonstrated on an industrial air compressor and an office air conditioning unit, continuously monitoring vibration levels and thereby simulating a typical condition monitoring application

  13. Experimental energy-dependent nuclear spin distributions

    International Nuclear Information System (INIS)

    Egidy, T. von; Bucurescu, D.

    2009-01-01

    A new method is proposed to determine the energy-dependent spin distribution in experimental nuclear-level schemes. This method compares various experimental and calculated moments in the energy-spin plane to obtain the spin-cutoff parameter σ as a function of mass A and excitation energy using a total of 7202 levels with spin assignment in 227 nuclei between F and Cf. A simple formula, σ 2 =0.391 A 0.675 (E-0.5Pa ' ) 0.312 , is proposed up to about 10 MeV that is in very good agreement with experimental σ values and is applied to improve the systematics of level-density parameters.

  14. Advanced Distribution Network Modelling with Distributed Energy Resources

    Science.gov (United States)

    O'Connell, Alison

    The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a

  15. Electromagnetic Linear Vibration Energy Harvester Using Sliding Permanent Magnet Array and Ferrofluid as a Lubricant

    Directory of Open Access Journals (Sweden)

    Song Hee Chae

    2017-09-01

    Full Text Available We present an electromagnetic linear vibration energy harvester with an array of rectangular permanent magnets as a springless proof mass. Instead of supporting the magnet assembly with spring element, ferrofluid has been used as a lubricating material. When external vibration is applied laterally to the harvester, magnet assembly slides back and forth on the channel with reduced friction and wear due to ferrofluid, which significantly improves the long-term reliability of the device. Electric power is generated across an array of copper windings formed at the bottom of the aluminum housing. A proof-of-concept harvester has been fabricated and tested with a vibration exciter at various input frequencies and accelerations. For the device where 5 μL of ferrofluid was used for lubrication, maximum output power of 493 μW has been generated, which was 4.37% higher than that without ferrofluid. Long-term reliability improvement due to ferrofluid lubrication has also been verified. For the device with ferrofluid, 1.02% decrease of output power has been observed, in contrast to 59.73% decrease of output power without ferrofluid after 93,600 cycles.

  16. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest

    Science.gov (United States)

    McCaffery, Anthony J.

    2018-03-01

    This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.

  17. White Noise Responsiveness of an AlN Piezoelectric MEMS Cantilever Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Jia, Y; Seshia, A A

    2014-01-01

    This paper reports the design, analysis and experimental characterisation of a piezoelectric MEMS cantilever vibration energy harvester, the enhancement of its power output by adding various values of end mass, as well as assessing the responsiveness towards white noise. Devices are fabricated using a 0.5 μm AlN on 10 μm doped Si process. Cantilevers with 5 mm length and 2 mm width were tested at either unloaded condition (MC0: f n 577 Hz) or subjected to estimated end masses of 2 mg (MC2: f n 129 Hz) and 5 mg (MC5: f n 80 Hz). While MC0 was able to tolerate a higher drive acceleration prior to saturation (7 g with 0.7 μW), MC5 exhibited higher peak power attainable at a lower input vibration (2.56 μW at 3 ms −2 ). MC5 was also subjected to band-limited (10 Hz to 2 kHz) white noise vibration, where the power response was only a fraction of its resonant counterpart for the same input: peak instantaneous power >1 μW was only attainable beyond 2 g of white noise, whereas single frequency resonant response only required 2.5 ms −2 . Both the first resonant response and the band-limited white noise response were also compared to a numerical model, showing close agreements

  18. Vibration control of an energy regenerative seat suspension with variable external resistance

    Science.gov (United States)

    Ning, Donghong; Sun, Shuaishuai; Du, Haiping; Li, Weihua; Zhang, Nong

    2018-06-01

    In this paper, an energy regenerative seat suspension with a variable external resistance is proposed and built, and a semi-active controller for its vibration control is also designed and validated. The energy regenerative seat suspension is built with a three-phase generator and a gear reducer, which are installed in the scissors structure centre of the seat suspension, and the vibration energy is directly harvested from the rotary movement of suspension's scissors structure. The electromagnetic torque of the semi-active seat suspension actuator is controlled by an external variable resistor. An integrated model including the seat suspension's kinematics and the generator is built and proven to match the test result very well. A simplified experimental phenomenon model is also built based on the test results for the controller design. A state feedback H∞ controller is proposed for the regenerative seat suspension's semi-active vibration control. The proposed regenerative seat suspension and its controller are validated with both simulations and experiments. A well-tuned passive seat suspension is applied to evaluate the regenerative seat's performance. Based on ISO 2631-1, the frequency-weighted root mean square (FW-RMS) acceleration of the proposed seat suspension has a 22.84% reduction when compared with the passive one, which indicates the improvement of ride comfort. At the same time, the generated RMS power is 1.21 W. The proposed regenerative seat suspension can greatly improve the driver's ride comfort and has the potential to be developed to a self-powered semi-active system.

  19. Investigations on the Effects of Vortex-Induced Vibration with Different Distributions of Lorentz Forces

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-01-01

    Full Text Available The control of vortex-induced vibration (VIV in shear flow with different distributions of Lorentz force is numerically investigated based on the stream function–vorticity equations in the exponential-polar coordinates exerted on moving cylinder for Re = 150. The cylinder motion equation coupled with the fluid, including the mathematical expressions of the lift force coefficient C l , is derived. The initial and boundary conditions as well as the hydrodynamic forces on the surface of cylinder are also formulated. The Lorentz force applied to suppress the VIV has no relationship with the flow field, and involves two categories, i.e., the field Lorentz force and the wall Lorentz force. With the application of symmetrical Lorentz forces, the symmetric field Lorentz force can amplify the drag, suppress the flow separation, decrease the lift fluctuation, and then suppress the VIV while the wall Lorentz force decreases the drag only. With the application of asymmetrical Lorentz forces, besides the above-mentioned effects, the field Lorentz force can increase additional lift induced by shear flow, whereas the wall Lorentz force can counteract the additional lift, which is dominated on the total effect.

  20. Autonomy-oriented mechanisms for efficient energy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiming; Shi, Benyun

    2010-09-15

    Due to the uneven geographical availability of energy resources, it is essential for the energy suppliers and consumers in different countries/regions to most efficiently, economically, as well as reliably distribute energy resources. In this paper, starting from a specific energy distribution problem, we present a decentralized behavior-based paradigm that draws on the methodology of autonomy-oriented computing. The goal is twofold: (i) to characterize the underlying mechanism of the energy distribution systems, (ii) to provide scalable solutions for efficient energy distribution. We conjecture that efficient energy trading markets can emerge from appropriate behavior-based mechanisms, which can autonomously improve energy distribution efficiency.

  1. Energy management in a microgrid with distributed energy resources

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Gari, Nicolae; Hmurcik, Lawrence V.

    2014-01-01

    Highlights: • A performance metric is proposed with the consideration of price, environment effect, and service quality. • Models of a microgrid and a microgrid network are designed with distribute energy resources and storage. • Different cases in MG operation are discussed. - Abstract: A smart grid power system with renewable energy resources and distributed energy storage shows significant improvement in the power system’s emission reduction, reliability, efficiency, and security. A microgrid is a smart grid in a small scale which can be stand-alone or grid-tied. Multi microgrids form a network with energy management and operational planning through two-way power flow and communication. To comprehensively evaluate the performance of a microgrid, a performance metric is proposed with consideration of the electricity price, emission, and service quality, each of them is given a weighting factor. Thus, the performance metric is flexible according to the consumers’ preference. With the weighting factors set in this paper, this performance metric is further applied on microgrids operated as stand-alone, grid-tied, and networked. Each microgrid consists of a solar panel, a hydrogen fuel cell stack, an electrolyzer, a hydrogen storage tank, and a load. For a stand-alone system, the load prediction lowers down the daily electricity consumption about 5.7%, the quantity of H 2 stored fluctuates in a wide range, and overall performance indexes increase with the solar panel size. In a grid-tied MG, the load prediction has a significant effect on the daily consumed electricity which drops 25% in 4 days, some day-time loads are shifted to the night time, and the capacity of hydrogen tank is lower than that in a stand-alone MG. In a network with multiple MGs, the control of the power distribution strongly affects the MG’s performance. However, the overall performance index instead of any specific index increases with the MG’s power generated from renewable energy

  2. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.

    2018-01-01

    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the

  3. A quality control method by ultrasonic vibration energy and diagnosis system at trimming process

    International Nuclear Information System (INIS)

    Suh, Chang Min; Song, Gil Ho; Pyoun, Young Shik

    2007-01-01

    In this paper, the characteristics in mechanical properties of ultrasonic cold forging treatment (UCFT) used for the trimming knife and the effects of ultrasonic vibration energy (UVE) into the trimming process on the state of the strip cutting face were studied. And a diagnosis system to quality control for trimming knife and strip cutting face was developed and installed in plant. By the plant application of UCFT, service life of knife was more increased over 100% than that of conventional knife and using the developed diagnosis system, the knife breakage and saw ear have been perfectly detected and quality control of trimming face is effectively obtained

  4. Mode shape combination in a two-dimensional vibration energy harvester through mass loading structural modification

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan; Kumar, Prashant [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar; Abdelmoula, Hichem [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Adler, Jan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Institute of Dynamics and Vibration Research (IDS), Leibniz Universität, Hannover 30167 (Germany); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-07-18

    Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.

  5. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    the environment, energy and the use of resources will be an important foundation for bringing about changes in the future. The environmental effects caused by the Energy System are local as well as global. Regarding the global challenges, it is important to find solutions and incentives that are financially, politically and administratively sound, that will work across borders and give a fair distribution of burdens between rich and poor countries, at the same time giving poor countries good opportunities for development. The Proceedings from the seminar should be a useful contribution to the debate on the Energy System for both specialists and the general public. It will also be a useful background document for setting priorities for energy policies and energy research in the future. Furthermore, it should provide a useful summary of the current scientific debate for both the laymen and specialized experts in the field of energy research. This will also provide guidance for the task of setting national research priorities in the future. The seminar describes status and future prospects within different resource-, technology- and application areas globally as well as from a Norwegian perspective. International trends in the energy markets are described, and an ambitious Swiss plan to halve the consumption of fossil fuels in the future will be presented.

  6. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    will be an important foundation for bringing about changes in the future. The environmental effects caused by the Energy System are local as well as global. Regarding the global challenges, it is important to find solutions and incentives that are financially, politically and administratively sound, that will work across borders and give a fair distribution of burdens between rich and poor countries, at the same time giving poor countries good opportunities for development. The Proceedings from the seminar should be a useful contribution to the debate on the Energy System for both specialists and the general public. It will also be a useful background document for setting priorities for energy policies and energy research in the future. Furthermore, it should provide a useful summary of the current scientific debate for both the laymen and specialized experts in the field of energy research. This will also provide guidance for the task of setting national research priorities in the future. The seminar describes status and future prospects within different resource-, technology- and application areas globally as well as from a Norwegian perspective. International trends in the energy markets are described, and an ambitious Swiss plan to halve the consumption of fossil fuels in the future will be presented.

  7. Vibration and Energy Dissipation of Nanocomposite Laminates for Below Ballistic Impact Loading

    Directory of Open Access Journals (Sweden)

    G. Balaganesan

    Full Text Available Abstract Composite laminates are made of glass woven roving mats of 610gsm, epoxy resin and nano clay which are subjected to projectile impact. Nano clay dispersion is varied from 1% to 5%. Impact tests are conducted in a gas gun setup with a spherical nose cylindrical projectile of diameter 9.5 mm of mass 7.6 g. The energy absorbed by the laminates when subjected to impact loading is studied, the velocity range is below ballistic limit. The effect of nano clay on energy absorption in vibration, delamination and matrix crack is studied for different weight % of nano clay and for different thickness values of the laminates. The natural frequencies and damping factors are obtained for the laminates during impact and the effect of nano clay is studied. The results show considerable improvement in energy absorption due to the presence of nano clay

  8. On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Luciana L. Silva

    2015-01-01

    Full Text Available Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedom mechanical system is coupled to an electrical circuit by a piezoelectric element and different coupling models are investigated. Experimental tests available in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the system dynamics.

  9. Design and Experimental Characterization of a Vibration Energy Harvesting Device for Rotational Systems

    Directory of Open Access Journals (Sweden)

    Lutao Yan

    2013-01-01

    Full Text Available This paper presents a new vibration based electromagnetic power generator to transfer energy from stationary to rotating equipment, which can be a new attempt to substitute slip ring in rotational systems. The natural frequencies and modes are simulated in order to have a maximum and steady power output from the device. Parameters such as piezoelectric disk location and relative motion direction of the magnet are theoretically and experimentally analyzed. The results show that the position that is close to the fixed end of the cantilever and the relative motion along the long side gives higher power output. Moreover, the capability of the energy harvester to extract power from lower energy environment is experimentally validated. The voltage and power output are measured at different excitation frequencies.

  10. Graph theory applied to noise and vibration control in statistical energy analysis models.

    Science.gov (United States)

    Guasch, Oriol; Cortés, Lluís

    2009-06-01

    A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.

  11. Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol

    International Nuclear Information System (INIS)

    Duque, H. V.; Chiari, L.; Jones, D. B.; Pettifer, Z.; Silva, G. B. da; Limão-Vieira, P.; Blanco, F.; García, G.; White, R. D.; Lopes, M. C. A.; Brunger, M. J.

    2014-01-01

    Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results

  12. Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Chiari, L.; Jones, D. B.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); White, R. D. [School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia)

    2014-06-07

    Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results.

  13. The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever

    Science.gov (United States)

    Palosaari, Jaakko; Leinonen, Mikko; Juuti, Jari; Jantunen, Heli

    2018-06-01

    In this research four piezoelectric bimorph type cantilevers for energy harvesting were manufactured, measured and analyzed to study the effects of substrate layer thickness on energy harvesting efficiency and durability under different accelerations. The cantilevers had the same dimensions of the piezoelectric ceramic components, but had different thicknesses of the steel substrate (no steel, 30 μm, 50 μm and 75 μm). The cantilevers were tuned to the same resonance frequency with different sizes of tip mass (2.13 g, 3.84 g, 4.17 g and 5.08 g). The energy harvester voltage outputs were then measured across an electrical load near to the resonance frequency (∼40 Hz) with sinusoidal vibrations under different accelerations. The stress exhibited by the four cantilevers was compared and analyzed and their durability was tested with accelerations up to 2.5 g-forces.

  14. A review of the recent research on vibration energy harvesting via bistable systems

    International Nuclear Information System (INIS)

    Harne, R L; Wang, K W

    2013-01-01

    The investigation of the conversion of vibrational energy into electrical power has become a major field of research. In recent years, bistable energy harvesting devices have attracted significant attention due to some of their unique features. Through a snap-through action, bistable systems transition from one stable state to the other, which could cause large amplitude motion and dramatically increase power generation. Due to their nonlinear characteristics, such devices may be effective across a broad-frequency bandwidth. Consequently, a rapid engagement of research has been undertaken to understand bistable electromechanical dynamics and to utilize the insight for the development of improved designs. This paper reviews, consolidates, and reports on the major efforts and findings documented in the literature. A common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistable energy harvesters are described, and some remaining challenges and proposed solutions are summarized. (topical review)

  15. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations

    International Nuclear Information System (INIS)

    Dai, H. L.; Abdelkefi, A.; Yang, Y.; Wang, L.

    2016-01-01

    The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s)

  16. Trading strategies for distribution company with stochastic distributed energy resources

    International Nuclear Information System (INIS)

    Zhang, Chunyu; Wang, Qi; Wang, Jianhui; Korpås, Magnus; Pinson, Pierre; Østergaard, Jacob; Khodayar, Mohammad E.

    2016-01-01

    Highlights: • A market framework is presented for a proactive DISCO (PDISCO). • Two-stage wholesale markets and stochastic distributed energy resources are involved. • A one-leader multi-follower bilevel model is proposed. • Continuous strategic offers and bids are achieved. - Abstract: This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO’s profit across these markets. The PDISCO’s strategic offers/bids interactively influence the outcomes of each market. Since the LL problems are linear and convex, while the UL problem is non-linear and non-convex, an equivalent primal–dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC). The effectiveness of the proposed model is verified by case studies.

  17. Maximizing direct current power delivery from bistable vibration energy harvesting beams subjected to realistic base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2017-04-01

    Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.

  18. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    Science.gov (United States)

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  19. Smart Operations in Distributed Energy Resources System

    Science.gov (United States)

    Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou

    Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  20. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  1. Implementation of a robust hybrid rotary-translational vibration energy harvester for autonomous self-powered acceleration measurement

    Science.gov (United States)

    Payne, Owen R.; Vandewater, Luke A.; Ung, Chandarin; Moss, Scott D.

    2015-04-01

    In this paper, a self-powered wireless sensor node utilising ambient vibrations for power is described. The device consists of a vibration energy harvester, power management system, microcontroller, accelerometer, RF transmitter/receiver and external LED indicators. The vibration energy harvester is adapted from a previously reported hybrid rotary-translational device and uses a pair of copper coil transducers to convert the mechanical energy of a magnetic sphere into usable electricity. The device requires less than 0.8 mW of power to operate continuously in its present setup (with LED indicators off) while measuring acceleration at a sample rate of 200 Hz, with the power source providing 39.7 mW of power from 500 mg excitations at 5.5 Hz. When usable input energy is removed, the device will continue to transmit data for more than 5 minutes.

  2. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    International Nuclear Information System (INIS)

    Fry-Petit, A. M.; Sheckelton, J. P.; McQueen, T. M.; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.

    2015-01-01

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn 2 Mo 3 O 8 , this approach allows direct assignment of the constrained rotational mode of Mo 3 O 13 clusters and internal modes of MoO 6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems

  3. Vibration Control of Structures using Vibro-Impact Nonlinear Energy Sinks

    Directory of Open Access Journals (Sweden)

    M. Ahmadi

    2016-09-01

    Full Text Available Using Vibro-Impact Nonlinear Energy Sinks (VI NESs is one of the novel strategies to control structural vibrations and mitigate their seismic response. In this system, a mass is tuned on the structure floor, so that it has a specific distance from an inelastic constraint connected to the floor mass. In case of structure stimulation, the displaced VI NES mass collides with the  inelastic constraint and upon impacts, energy is dissipated. In the present work, VI NES is studied when its parameters, including clearance and stiffness ratio, are simultaneously optimized. Harmony search as a recent meta-heuristic algorithm is efficiently specialized and utilized for the aforementioned continuous optimization problem. The optimized attached VI NES is thus shown to be capable of interacting with the primary structure over a wide range of frequencies. The resulting controlled response is then investigated, in a variety of low and medium rise steel moment frames, via nonlinear dynamic time history analyses. Capability of the VI NES to dissipate siesmic input energy of earthquakes and their capabilitiy in reducing response of srtructures effectively, through vibro-impacts between the energy sink’s mass and the floor mass, is discussed by extracting several performance indices and the corresponding Fourier spectra. Results of the numerical simulations done on some structural model examples reveal that the optimized VI NES has caused successive redistribution of energy from low-frequency high-amplitude vibration modes to high-frequency low-amplitude modes, bringing about the desired attenuation of the structural responses.

  4. Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester

    Science.gov (United States)

    Yang, Zhengbao; Zu, Jean

    2015-04-01

    Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.

  5. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    Directory of Open Access Journals (Sweden)

    Shahin Abdollahy

    2014-01-01

    Full Text Available A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building. Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.

  6. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    Science.gov (United States)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  7. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    International Nuclear Information System (INIS)

    Renaud, M; Goedbloed, M; De Nooijer, C; Van Schaijk, R; Fujita, T

    2015-01-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture. (paper)

  8. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    Science.gov (United States)

    Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2015-10-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.

  9. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    Science.gov (United States)

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  10. Advanced Energy Storage Management in Distribution Network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [ORNL; Ceylan, Oguzhan [ORNL; Xiao, Bailu [ORNL; Starke, Michael R [ORNL; Ollis, T Ben [ORNL; King, Daniel J [ORNL; Irminger, Philip [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.

  11. Energy Efficiency of Distributed Environmental Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23

    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant

  12. An analytical approach for predicting the energy capture and conversion by impulsively-excited bistable vibration energy harvesters

    Science.gov (United States)

    Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.

    2016-07-01

    Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.

  13. Modeling and analysis of Galfenol cantilever vibration energy harvester with nonlinear magnetic force

    Science.gov (United States)

    Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng

    2018-05-01

    Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.

  14. Interaction of low energy electrons with surface lattice vibrations. Final report

    International Nuclear Information System (INIS)

    Tong, S.Y.

    1984-01-01

    In carrying out the DOE contract, we have succeeded in constructing a new microscopic theory, with multiple scattering, for the inelastic scattering of electrons by surface vibrations. We have applied the theory to detailed studies of angle and energy variations of the inelastic cross-section for two important systems in surface physics: carbon monoxide molecules adsorbed on the (100) surface of a nickel crystal, and hydrogen atoms adsorbed on a reconstructed tungsten (100) surface. These calculations have outlined general trends that we expect to apply to a wide variety of systems. Also, we have discovered a series of new selection rules that apply to off-specular scattering. Particularly interesting are pseudo-selection rules which are not group theoretical in origin, but approximate statements that hold well when the electron scattering amplitude exhibits a slow energy variation. We have found and defined conditions for which these selection rules would hold and break down

  15. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Directory of Open Access Journals (Sweden)

    Pengwei Li

    2015-04-01

    Full Text Available As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  16. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Ying [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China); Liu, Wei [Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China)

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  17. Development of a Vibration-Based Electromagnetic Energy Harvester by a Conductive Direct-Write Process

    Directory of Open Access Journals (Sweden)

    Yao-Yun Feng

    2017-03-01

    Full Text Available A conductive direct-write process of multilayered coils for micro electromagnetic generators is proposed. This novel approach of using silver ink to form the conductive structures largely reduces the fabrication complexity, and it provides a faster alternative to the conventional semiconductor methods. Multi-layered coils with insulation were accurately layered on a micromachined cantilevered diaphragm by a dispenser. Coils several layers thick could be used to increase the power output and double coils were separated by a layer of insulation. Six prototypes, all capable of efficient conversion of vibrational energy into electrical energy, were fabricated. The experimental results, which include measurements of the electromotive force and power output, are presented. Prototypes with two coils and thicker conducting layers had less resistance and the power output was much more than that of a single-coil unit. This generator can produce 82 nW of power at a resonance frequency of 275 Hz under 5 g excitation.

  18. Electrostatic vibration energy harvester with 2.4-GHz Cockcroft-Walton rectenna start-up

    Science.gov (United States)

    Takhedmit, Hakim; Saddi, Zied; Karami, Armine; Basset, Philippe; Cirio, Laurent

    2017-02-01

    In this paper, we propose the design, fabrication and experiments of a macro-scale electrostatic vibration energy harvester (e-VEH), pre-charged wirelessly for the first time with a 2.4-GHz Cockcroft-Walton rectenna. The rectenna is designed and optimized to operate at low power densities and provide high voltage levels: 0.5 V at 0.76 μW/cm2 and 1 V at 1.53 μW/cm2. The e-VEH uses a Bennet doubler as a conditioning circuit. Experiments show a 23-V voltage across the transducer terminal, when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum available power of 0.4 μW are achieved. xml:lang="fr"

  19. Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.

    2016-11-01

    This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.

  20. Design Optimization of a Magnetically Levitated Electromagnetic Vibration Energy Harvester for Body Motion

    Science.gov (United States)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2016-11-01

    This paper presents a magnetically levitated electromagnetic vibration energy harvester based on magnet arrays. It has a nonlinear response that extends the operating bandwidth and enhances the power output of the harvesting device. The harvester is designed to be embedded in a hip prosthesis and harvest energy from low frequency movements (< 5 Hz) associated with human motion. The design optimization is performed using Comsol simulation considering the constraints on size of the harvester and low operating frequency. The output voltage across the optimal load 3.5kΩ generated from hip movement is 0.137 Volts during walking and 0.38 Volts during running. The power output harvested from hip movement during walking and running is 5.35 μW and 41.36 μW respectively..

  1. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    Science.gov (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  2. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  3. Leveraging Renewable Energies in Distributed Private Clouds

    Directory of Open Access Journals (Sweden)

    Pape Christian

    2016-01-01

    Full Text Available The vast and unstoppable rise of virtualization technologies and the related hardware abstraction in the last years established the foundation for new cloud-based infrastructures and new scalable and elastic services. This new paradigm has already found its way in modern data centers and their infrastructures. A positive side effect of these technologies is the transparency of the execution of workloads in a location-independent and hardware-independent manner. For instance, due to higher utilization of underlying hardware thanks to the consolidation of virtual resources or by moving virtual resources to sites with lower energy prices or more available renewable energy resources, data centers can counteract their economic and ecological downsides resulting from their steadily increasing energy demand. This paper introduces a vector-based algorithm for the placement of virtual machines in distributed private cloud environments. After outlining the basic operation of our approach, we provide a formal definition as well as an outlook for further research.

  4. TLP Structural Health Monitoring Based on Vibration Signal of Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Vahid Jahangiri

    Full Text Available Abstract Structural Health Monitoring (SHM of Tension Leg Platform (TLP is very crucial for preventing catastrophic and sudden collapse of the structures. One of the methods of monitoring these structures is implementing SHM sensors. Supplying energy for these sensors for a long period is a challenging problem. So, one of the new methods of supplying energy for SHM, is usage of mechanical energy. In this method, the piezoelectric material is employed to convert the mechanical energy which is resulted from vibration of structure, to electrical energy. The advantage of this method is based on not implementing the battery charging system. Therefore, in this paper, after modeling TLP structure, energy supplying of these sensors with piezoelectric converters is studied. Furthermore, fault diagnosis of these structures in the presence of different uncertainties is proposed by the features of voltage signal, produced from piezoelectric patches and fuzzy classification method. Results show that this method can diagnose faults of the structure with an acceptable success rate.

  5. Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance

    Directory of Open Access Journals (Sweden)

    Wei Ken Chin

    2017-09-01

    Full Text Available Inspired by vortex induced vibration energy harvesting development as a new source of renewable energy, a T-shaped design vibration energy harvester is introduced with the aim of enhancing its performance through vortex induced vibration at near resonance conditions. The T-shaped structural model designed consists of a fixed boundary aluminum bluff splitter body coupled with a cantilever piezoelectric vibration energy harvesters (PVEH plate model which is a piezoelectric bimorph plate made of a brass plate sandwiched between 2 lead zirconate titanate (PZT plates. A 3-dimensional Fluid-Structure Interaction simulation analysis is carried out with Reynolds Stress Turbulence Model under wind speed of 7, 10, 12, 14, 16, 18, 19, 20, 22.5, and 25 m/s. The results showed that with 19 m/s wind speed, the model generates 75.758 Hz of vortex frequency near to the structural model’s natural frequency of 76.9 Hz. Resonance lock-in therefore occurred, generating a maximum displacement amplitude of 2.09 mm or a 49.76% increment relatively in vibrational amplitude. Under the effect of resonance at the PVEH plate’s fundamental natural frequency, it is able to generate the largest normalized power of 13.44 mW/cm3g2.

  6. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

    International Nuclear Information System (INIS)

    Adamovich, Igor V.

    2014-01-01

    A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes

  7. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    Science.gov (United States)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  8. Energy conversion by ‘T-shaped’ cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources

    International Nuclear Information System (INIS)

    Siddique, Abu Raihan Mohammad; Mahmud, Shohel; Van Heyst, Bill

    2017-01-01

    Highlights: • A T-shaped cantilever type electromagnetic vibration based MPG has been described. • The designed EVMPG is useful for low frequency based vibration sources. • Both experimental tests and theoretical analysis have been performed. • The final compact prototype was tested at different conditions of human movements. • The prototype can generate 35.2 mV and 0.22 mW at 7 Hz with 5.6 Ω. - Abstract: The design, development, and analyses of low-frequency vibration based T-shaped cantilever type electromagnetic micro power generators (EVMPGs) are presented in this paper. Four different configurations (Configurations A to D) of EVMPGs were designed and fabricated and subsequently characterized using detailed experimental and limited analytical techniques. Configuration A and B consisted of a single and a double cylindrical moving magnets (NdFeB), respectively, while Configuration C consisted of four rectangular moving magnets with respect to a fixed copper coil. In contrast, Configuration D used a moving coil between four rectangular magnets with a back-iron bar. The open circuit RMS voltage output was observed to be a maximum from Configuration D (98.2 mV at 6.29 Hz) with a base vibration acceleration of 0.8 m s"−"2. Therefore, Configuration D was selected for further experimental investigations, which included changing the back-iron bar thickness, changing the base acceleration level, and changing the air gap separation between the magnets in order to optimize this configuration. The maximum load RMS voltage and power outputs of Configuration D were 105.4 mV and 1.35 mW at 6.29 Hz for load resistance 8.2 Ω and a base acceleration of 0.8 m s"−"2 with a 4.2 mm back-iron bar when the air gap between the magnets was 20 mm. Finally, a small portable EVMPG prototype was developed based on the Configuration D and was tested at different human movement conditions (i.e., walking, quick walking, and running). The developed EVMPG prototype was capable of

  9. System Integration of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Nyeng, Preben

    units, including the ICT solutions that can facilitate the integration. Specifically, the international standard "IEC 61850-7-420 Communications systems for Distributed Energy Resources" is considered as a possible brick in the solution. This standard has undergone continuous development....... It is therefore investigated in this project how ancillary services can be provided by alternatives to central power stations, and to what extent these can be integrated in the system by means of market-based methods. Particular emphasis is put on automatic solutions, which is particularly relevant for small......, and this project has actively contributed to its further development and improvements. Different types of integration methods are investigated in the project. Some are based on local measurement and control, e.g. by measuring the grid frequency, whereas others are based on direct remote control or market...

  10. Smart Control of Energy Distribution Grids over Heterogeneous Communication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Iov, Florin; Hägerling, Christian

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of todays distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the qu......The expected growth in distributed generation will significantly affect the operation and control of todays distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...

  11. Simulation Studies on Energy Harvesting Characterisitcs and Storage Analysis Through Microcantilever Vibration

    Science.gov (United States)

    Solleti, Ravi Teja; Harikrishna, Kyatham; Velmurugan, V.

    Vibrations can be a good source of energy and can be harvested and utilized by simple design and fabrication using the MEMS technology. Energy harvesting provides unending sources of energy for low-power electronics devices where the use of batteries is not feasible. Piezoelectric energy harvesters are widely considered because of their compact design, compatibility to MEMS devices and ability to respond to a wide range of frequencies freely available in the environment. In this project, a rectangular model for cantilever-based piezoelectric energy harvester is proposed with different designs like two layer, two layer with proof mass, four layer and four layer with proof mass designed with dimensions as 50μm×50μm×1μm for each layer using COMSOL Multiphysics 5.0. Simulation results were obtained using silicon as substrate, aluminium as electrodes and PZT-5H and ZnO as piezoelectric materials and the respective stress and voltages were obtained by applying a force acting on foot, train, roller coaster and a general value of 10N/m2 on top of the cantilever. The effects of varying geometrical dimensions of the device were also investigated.

  12. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    Science.gov (United States)

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  13. Coulomb displacement energies and neutron density distributions

    International Nuclear Information System (INIS)

    Shlomo, S.

    1979-01-01

    We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)

  14. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Peter A., E-mail: crozier@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States); Aoki, Toshihiro [LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704 (United States); Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States)

    2016-10-15

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. - Highlights: • High spatial resolution spectroscopic detection of water related species in nanoparticles. • Detection of OH stretch modes with vibrational EELS. • Differentiation between hydrate and hydroxide species on or on nanoparticles. • Detection of hydrate on a single 60 nm oxide nanoparticle of MgO. • Use of aloof beam EELS to minimize radiation damage.

  15. Reliability of vibration energy harvesters of metal-based PZT thin films

    Science.gov (United States)

    Tsujiura, Y.; Suwa, E.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    This paper describes the reliability of piezoelectric vibration energy harvesters (PVEHs) of Pb(Zr,Ti)O3 (PZT) thin films on metal foil cantilevers. The PZT thin films were directly deposited onto the Pt-coated stainless-steel (SS430) cantilevers by rf-magnetron sputtering, and we observed their aging behavior of power generation characteristics under the resonance vibration condition for three days. During the aging measurement, there was neither fatigue failure nor degradation of dielectric properties in our PVEHs (length: 13 mm, width: 5.0 mm, thickness: 104 μm) even under a large excitation acceleration of 25 m/s2. However, we observed clear degradation of the generated electric voltage depending on excitation acceleration. The decay rate of the output voltage was 5% from the start of the measurement at 25 m/s2. The transverse piezoelectric coefficient (e31,f) also degraded with almost the same decay rate as that of the output voltage; this indicates that the degradation of output voltage was mainly caused by that of piezoelectric properties. From the decay curves, the output powers are estimated to degrade 7% at 15 m/s2 and 36% at 25 m/s2 if we continue to excite the PVEHs for 30 years.

  16. Reliability of vibration energy harvesters of metal-based PZT thin films

    International Nuclear Information System (INIS)

    Tsujiura, Y; Suwa, E; Kurokawa, F; Hida, H; Kanno, I

    2014-01-01

    This paper describes the reliability of piezoelectric vibration energy harvesters (PVEHs) of Pb(Zr,Ti)O 3 (PZT) thin films on metal foil cantilevers. The PZT thin films were directly deposited onto the Pt-coated stainless-steel (SS430) cantilevers by rf-magnetron sputtering, and we observed their aging behavior of power generation characteristics under the resonance vibration condition for three days. During the aging measurement, there was neither fatigue failure nor degradation of dielectric properties in our PVEHs (length: 13 mm, width: 5.0 mm, thickness: 104 μm) even under a large excitation acceleration of 25 m/s 2 . However, we observed clear degradation of the generated electric voltage depending on excitation acceleration. The decay rate of the output voltage was 5% from the start of the measurement at 25 m/s 2 . The transverse piezoelectric coefficient (e 31,f ) also degraded with almost the same decay rate as that of the output voltage; this indicates that the degradation of output voltage was mainly caused by that of piezoelectric properties. From the decay curves, the output powers are estimated to degrade 7% at 15 m/s 2 and 36% at 25 m/s 2 if we continue to excite the PVEHs for 30 years

  17. Uncertainties in scaling factors for ab initio vibrational zero-point energies

    Science.gov (United States)

    Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger

    2009-03-01

    Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.

  18. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  19. Vibrational kinetics in CO electric discharge lasers - Modeling and experiments

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    A model of CO laser vibrational kinetics is developed, and predicted vibrational distributions are compared with measurements. The experimental distributions were obtained at various flow locations in a transverse CW discharge in supersonic (M = 3) flow. Good qualitative agreement is obtained in the comparisons, including the prediction of a total inversion at low discharge current densities. The major area of discrepancy is an observed loss in vibrational energy downstream of the discharge which is not predicted by the model. This discrepancy may be due to three-dimensional effects in the experiment which are not included in the model. Possible kinetic effects which may contribute to vibrational energy loss are also examined.

  20. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

    In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

  1. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling

    Science.gov (United States)

    Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing

    2018-05-01

    The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.

  2. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  3. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions

    Directory of Open Access Journals (Sweden)

    Chiao-Fang Hung

    2017-02-01

    Full Text Available In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss, the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g and z-axis vibration (sine-wave, 142 Hz, 3.8 g, the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.

  4. Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses

    Science.gov (United States)

    Coral, W.; Rossi, C.; Curet, O. M.

    2015-12-01

    This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.

  5. Vibration of machine

    International Nuclear Information System (INIS)

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  6. Influence of Bipolar Pulse Poling Technique for Piezoelectric Vibration Energy Harvesters using Pb(Zr,Ti)O3 Films on 200 mm SOI Wafers

    International Nuclear Information System (INIS)

    Moriwaki, N; Fujimoto, K; Suzuki, K; Kobayashi, T; Itoh, T; Maeda, R; Suzuki, Y; Makimoto, N

    2013-01-01

    Piezoelectric vibration energy harvester arrays using Pb(Zr,Ti)O 3 thin films on 200 mm SOI wafers were fabricated. In-plane distribution of influence of bipolar pulse poling technique on direct current (DC) power output from the harvesters was investigated. The results indicate that combination poling treatment of DC and bipolar pulse poling increases a piezoelectric property and reduces a dielectric constant. It means that this poling technique improves the figure of merit of sensors and harvesters. Maximum DC power from a harvester treated by DC poling after bipolar pulse poling is about five times larger than a one treated by DC poling only

  7. Design and Numerical Simulations of a Flow Induced Vibration Energy Converter for Underwater Mooring Platforms

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2017-09-01

    Full Text Available Limited battery energy restricts the duration of the underwater operation of underwater mooring platforms (UMPs. In this paper, a flow-induced vibration energy converter (FIVEC is designed to produce power for the UMPs and extend their operational time. The FIVEC is equipped with a thin plate to capture the kinetic energy in the vortices shed from the surface of the UMP. A magnetic coupling (MC is applied for the non-contacting transmission of the plate torque to the generators so that the friction loss can be minimized. In order to quantify and evaluate the performance of the FIVEC, two-dimensional computational fluid dynamics (CFD simulations are performed. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations and the shear stress transport (SST k-ω turbulent model is utilized. The CFD method is firstly validated using existing experimental data. Then the influences of plate length and system damping on the performance of the FIVEC are evaluated. The results show that the device has a maximum averaged power coefficient of 0.0520 (13.86 W in the considered situations. The results also demonstrate the feasibility of this energy converter plan.

  8. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    Science.gov (United States)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm-3 and 378.79 μW cm-3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  9. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations

    Science.gov (United States)

    Zhang, L. B.; Abdelkefi, A.; Dai, H. L.; Naseer, R.; Wang, L.

    2017-11-01

    In this paper, an operable strategy to enhance the output power of piezoelectric energy harvesting from vortex-induced vibration (VIV) using nonlinear magnetic forces is proposed for the first time. Two introduced small magnets with a repulsive force are, respectively, attached on a lower support and the bottom of a circular cylinder which is subjected to a uniform wind speed. Experiments show that the natural frequency of the VIV-based energy harvester is significantly changed by varying the relative position of the two magnets and hence the synchronization region is shifted. It is observed that the proposed energy harvester displays a softening behavior due to the impact of nonlinear magnetic forces, which greatly increases the performance of the VIV-based energy harvesting system, showing a wider synchronization region and a higher level of the harvested power by 138% and 29%, respectively, compared to the classical configuration. This proposed design can provide the groundwork to promote the output power of conventional VIV-based piezoelectric generators, further enabling to realize self-powered systems.

  10. A Smart Load Interface and Voltage Regulator for Electrostatic Vibration Energy Harvester

    Science.gov (United States)

    Bedier, Mohammed; Basset, Philippe; Galayko, Dimitri

    2016-11-01

    This paper presents a new implementation in ams 0.35μm HV technology of a complete energy management system for an electrostatic vibrational energy harvester (e-VEH). It is based on the Bennet's doubler architecture and includes a load voltage regulator (LVR) and a smart Load Interface (LI) that are self-controlled with internal voltages for maximum power point tracking (MMPT). The CMOS implementation makes use of an energy harvester that is capable of producing up to 1.8μW at harmonic excitation, given its internal voltage is kept within its optimum. An intermediate LI stage and its controller makes use of a high side switch with zero static power level shifter, and a low power hysteresis comparator. A full circuit level simulation with a VHDL-AMS model of the e-VEH presented was successfully achieved, indicating that the proposed load interface controller consumes less than 100nW average power. Moreover, a LVR regulates the buffer and discharge the harvested energy into a generic resistive load maintaining the voltage within a nominal value of 2 Volts.

  11. Ferroelectric Dipole Electrets Prepared from Soft and Hard PZT Ceramics in Electrostatic Vibration Energy Harvesters

    International Nuclear Information System (INIS)

    Asanuma, H; Oguchi, H; Hara, M; Kuwano, H

    2013-01-01

    Aiming at longer stability of surface potential, we propose a ferroelectric dipole electret (FDE) prepared from hard ferroelectric material. We compared output power of electrostatic vibration energy harvester and surface potential stability between FDEs prepared from soft and hard PZT ceramics, as well as a CYTOP polymer electret. The hard FDE showed a seven-fold increase in output power over the soft FDE and nine-fold increase over the CYTOP polymer electret. The hard FDE also showed longer stability of surface potential than that of the soft FDE, whereas the stability of the hard FDE was not yet comparable to that of CYTOP polymer electret. A FDE prepared from harder PZT ceramic (with higher coercive electric field and Curie temperature) may provide more stability in surface potential

  12. Vibration Energy Harvester with Bi-stable Curved Beam Spring Offset by Gravitational Acceleration

    International Nuclear Information System (INIS)

    Yamamoto, Koki; Fujita, Takayuki; Kanda, Kensuke; Maenaka, Kazusuke; Badel, Adrien; Formosa, Fabien

    2015-01-01

    We developed MEMS bi-stable spring for vibration energy harvester (VEH), which consists of intrinsically curved shape spring and gravitational acceleration. By applying the gravitational acceleration, the curved beam is offset to the gravity direction. It will make more symmetrical bi-stable motion and the symmetry is improved from 3.3 to 65.4%. We proposed that the combination between curved beam and gravity acceleration for decreasing snap- through acceleration. From the analytical result, we investigate the combination can effective to use for decreasing of snap-through force. We also fabricated the prototype device by using MEMS fabrication process. The frequency response for horizontal direction and the acceleration response for vertical direction are measured. The acceleration response shows that the gravitational acceleration improves the symmetry of snap-through force. (paper)

  13. Electrostatic Vibration Energy Harvester Pre-charged Wirelessly at 2.45 GHz

    Science.gov (United States)

    Saddi, Z.; Takhedmit, H.; Karami, A.; Basset, P.; Cirio, L.

    2016-11-01

    This paper reports the design, fabrication and experiments of an electrostatic vibration harvester (e-VEH), pre-charged wirelessly for the first time by using an electromagnetic waves harvester at 2.4 GHz. The rectenna uses the Cockcroft-Walton voltage doubler rectifier. It is designed and optimized to operate at low power densities and provides high voltage levels: 0.5 V at 0.5 μW/cm2 and 0.8 V at 1 μW/cm2 The e-VEH uses the Bennet doubler as conditioning circuit. Experiments show 23 V voltage across the transducer terminal when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum power of 0.4 μW are available for the load.

  14. Electrostatic Vibration Energy Harvester Pre-charged Wirelessly at 2.45 GHz

    International Nuclear Information System (INIS)

    Saddi, Z.; Takhedmit, H.; Basset, P.; Cirio, L.; Karami, A.

    2016-01-01

    This paper reports the design, fabrication and experiments of an electrostatic vibration harvester (e-VEH), pre-charged wirelessly for the first time by using an electromagnetic waves harvester at 2.4 GHz. The rectenna uses the Cockcroft-Walton voltage doubler rectifier. It is designed and optimized to operate at low power densities and provides high voltage levels: 0.5 V at 0.5 μW/cm 2 and 0.8 V at 1 μW/cm 2 The e-VEH uses the Bennet doubler as conditioning circuit. Experiments show 23 V voltage across the transducer terminal when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum power of 0.4 μW are available for the load. (paper)

  15. Optimal linear generator with Halbach array for harvesting of vibration energy during human walking

    Directory of Open Access Journals (Sweden)

    Joonsoo Jun

    2016-05-01

    Full Text Available In IT business, the capacity of the battery in smartphone was drastically improved to digest various functions such as communication, Internet, e-banking, and entertainment. Although the capacity of the battery is improved, it still needs to be upgraded due to customer’s demands. In this article, we optimize the design of the linear generator with the Halbach array to improve the efficiency of harvesting vibration energy during human walking for the battery capacitance. We propose the optimal design of the tubular permanent magnet with the linear generator that uses a Halbach array. The approximate model is established using generic algorithm. Furthermore, we performed electromagnetic finite element analysis to predict the induced voltage.

  16. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage...... yield of 98%. The robust fabrication process allowed a high pressure treatment of the screen printed PZT thick films prior to sintering. The high pressure treatment improved the PZT thick film performance and increased the harvester power output to 37.1 μW at 1 g root mean square acceleration. We also...... characterize the harvester performance when only one of the PZT layers is used while the other is left open or short circuit....

  17. Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration

    International Nuclear Information System (INIS)

    Zhou, Shengxi; Cao, Junyi; Wang, Wei; Liu, Shengsheng; Lin, Jing

    2015-01-01

    This paper presents a nonlinear doubly magnet-coupled energy harvesting system (DMEHS) which could exhibit co-bistable and monostable dynamic characteristics. Its various characteristic responses induced by the magnetic force can be conveniently obtained using the adjustable horizontal distance between two coupled harvesters in the DMEHS. In the case of appropriate relative positions, the DMEHS appears in a co-bistable structure which is different from the traditional bistable structure. Additionally, both the inclination angle of endmost magnets and the displacement perpendicular to the vibration direction are taken into account to calculate the nonlinear magnetic force in the nonlinear electromechanical equations. The numerical investigations show good agreement with experimental results with respect to the output voltage response. Each harvester without magnetic coupling is tested independently to compare with the DMEHS. Both numerical and experimental results also demonstrate the frequency bandwidth and performance enhancements by changing the horizontal distance between the two coupled harvesters. (paper)

  18. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity

    Science.gov (United States)

    Wang, Chen; Zhang, Qichang; Wang, Wei

    2017-07-01

    This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.

  19. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  20. A comparison study of steady-state vibrations with single fractional-order and distributed-order derivatives

    Directory of Open Access Journals (Sweden)

    Duan Jun-Sheng

    2017-12-01

    Full Text Available We conduct a detailed study and comparison for the one-degree-of-freedom steady-state vibrations under harmonic driving with a single fractional-order derivative and a distributed-order derivative. For each of the two vibration systems, we consider the stiffness contribution factor and damping contribution factor of the term of fractional derivatives, the amplitude and the phase difference for the response. The effects of driving frequency on these response quantities are discussed. Also the influences of the order α of the fractional derivative and the parameter γ parameterizing the weight function in the distributed-order derivative are analyzed. Two cases display similar response behaviors, but the stiffness contribution factor and damping contribution factor of the distributed-order derivative are almost monotonic change with the parameter γ, not exactly like the case of single fractional-order derivative for the order α. The case of the distributed-order derivative provides us more options for the weight function and parameters.

  1. Response analysis and energy transmissibility of a vibration isolation system with real-power nonlinearities under a NMPPF controller

    International Nuclear Information System (INIS)

    Huang, Dongmei; Xu, Wei; Shi, Lingling

    2016-01-01

    Highlights: • The nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. • The primary resonance, dynamical stability and energy transmissibility of the real-power vibration isolation system are studied. • The sensitivity of the controller parameters on the responses has been analyzed. • In order to suppress the amplitude peak, the feedback parameters have been determined by the frequency response. • The energy transmissibility is investigated. - Abstract: In this paper, the nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. Based on the method of multiple scales, the frequency response, the stability and the energy transmissibility of the real-power vibration isolation system are studied. It is found that the controlled isolation system exhibits a softening behavior for sub-linear restoring force, while it exhibits the two peak response characteristic rather than a hardening behavior for over-linear restoring force. Further, the sensitivity of the feedback parameters on the responses is discussed. The results, compared to the conventional PPF and IRC methods, show that the proposed method is significantly more effective in controlling the steady-state response, and slightly advantageous for the steady-state dynamics control. The effectiveness of this method is also verified by time domain analysis. Then, the suitable feedback and controller parameters are derived by simulation results in which the amplitude peak is suppressed and the resonance stability is maintained. Finally, the energy transmissibility of the vibration isolation system is investigated. The results show that the feedback gain can reduce the whole transmissibility level and greatly suppress vibration

  2. Effect on the Grain Size Distribution when Preparing Sand Using Poker Vibrators

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam

    2017-01-01

    At Aalborg University and other research institutions, model tests are performed on small -scale foundations. These foundations are often installed in sand which has to be prepared in a reproductive way. At Aalborg University the preparation is done by using poker vibrators. This paper investigat...

  3. Rare gas dependence of vibration--vibration energy transfer processes: A diagnostic technique. Applications to CH2D2 and CH3F

    International Nuclear Information System (INIS)

    Apkarian, V.A.; Weitz, E.

    1979-01-01

    The rare gas dependence of V--V rates can be used as a diagnostic technique to identify different mechanisms of vibrational energy transfer and determine the rate constants for individual kinetic steps. The method is especially useful for the identification and measurement of rates of resonant vibrational energy transfer processes. Analytical and numerical solutions of pertinent model equations are presented and their range of applicability is discussed. The technique is applied to CH 2 D 2 and CH 3 F. In CH 2 D 2 results of studies on ν 9 , [ν 1 , ν 6 ] and states in the 2000 cm -1 region are presented where the application of the technique has made it possible to identify the pathways leading to population of these states and to assign rate constants to some of the steps involved. In CH 3 F, by studying the Ar dependence of the V--V rates of the [ν 2 , ν 5 ] and [ν 1 , ν 4 ] states it has been possible to construct a complete map of energy transfer pathways which can explain all experimental observations for this system, to date. The general applicability of the technique and its potential application to other systems is also considered

  4. Investigation of the performances of PZT vs rare earth (BaLaTiO3) vibration based energy harvester

    Science.gov (United States)

    Pak, Nehemiah; Aris, Hasnizah; Nadia Taib, Bibi

    2017-11-01

    This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3) performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  5. Investigation of the performances of PZT vs rare earth (BaLaTiO3 vibration based energy harvester

    Directory of Open Access Journals (Sweden)

    Pak Nehemiah

    2017-01-01

    Full Text Available This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3 performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  6. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    Science.gov (United States)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  7. Quantitative Assessment of Distributed Energy Resource Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, S.W.

    2003-05-22

    Distributed energy resources (DER) offer many benefits, some of which are readily quantified. Other benefits, however, are less easily quantifiable because they may require site-specific information about the DER project or analysis of the electrical system to which the DER is connected. The purpose of this study is to provide analytical insight into several of the more difficult calculations, using the PJM power pool as an example. This power pool contains most of Pennsylvania, New Jersey, Maryland, and Delaware. The techniques used here could be applied elsewhere, and the insights from this work may encourage various stakeholders to more actively pursue DER markets or to reduce obstacles that prevent the full realization of its benefits. This report describes methodologies used to quantify each of the benefits listed in Table ES-1. These methodologies include bulk power pool analyses, regional and national marginal cost evaluations, as well as a more traditional cost-benefit approach for DER owners. The methodologies cannot however determine which stakeholder will receive the benefits; that must be determined by regulators and legislators, and can vary from one location to another.

  8. Vibrational and electronic excitation of hexatriacontane thin films by low energy electron impact

    International Nuclear Information System (INIS)

    Vilar, M.R.; Schott, M.; Pfluger, P.

    1990-01-01

    Thin polycrystalline films of hexatriacontane (HTC) were irradiated with low energy (E=0.5--15 eV) electrons, and off-specular backscattered electron spectra were measured. Below E∼7 eV, single and multiple vibrational excitations only are observed, which relax the electrons down to the bottom of the HTC conduction band. Due to the negative electron affinity of HTC, thermal electrons are emitted into vacuum. Structure in the backscattered electron current at kinetic energies about 1.5 and 4 eV are associated to conduction band density of states. Above E∼7 eV, the dominant losses correspond to electronic excitations, excitons, or above a threshold (energy of the electron inside the HTC film) at 9.2±0.1 eV, electron--hole pair generation. The latter process is very efficient and reaches a yield of the order of one ∼11 eV. Evidence for chemical reaction above E∼4 eV is observed

  9. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms

    Science.gov (United States)

    Yang, Yangyiwei; Li, Yuanbo; Guo, Yaqian; Xu, Bai-Xiang; Yang, Tongqing

    2018-03-01

    Vibration-based energy harvesting using piezoelectric circular diaphragms (PCDs) with a structure featuring the central mass (C-mass) configuration has drawn much attention in recent decades. In this work, we propose a new configuration with the annular proof mass (A-mass) where an improved energy harvesting is promised. The numerical analysis was employed using the circuit-coupled piezoelectric simulation, and the experimental validation was implemented using PCDs with the even-width annular electrodes. Samples with the different mass configurations as well as structural parameters ϖ 1 and ϖ 2, which indicate the ratio between the inner boundary radius and piezoelectric ceramic radius as well as the ratio between outer boundary radius and the substrate radius, respectively, were prepared and tested. The impedance-matched output power of full-electrode PCDs was also collected, and some distinct improvement was measured on samples with the certain structural parameters. The power increases from 14.1 mW to 19.0 mW after changing the configuration from C-mass to A-mass with the same parameters (ϖ 1, ϖ 2) = (0.16, 0.9), showing the considerable improvement in energy harvesting by using A-mass configuration.

  10. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes

    Directory of Open Access Journals (Sweden)

    Darius Zizys

    2015-12-01

    Full Text Available The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

  11. Simulation of the effects of translational and vibrational energy on H and D atom reactions with HCl and DCl

    International Nuclear Information System (INIS)

    Valencich, T.; Hsieh, J.; Kwan, J.; Stewart, T.; Lenhardt, T.

    1976-01-01

    Agreement with experimental rate measurements for vibrational and translational effects on reactivity are shown to place stringent requirements on empirical potential energy surfaces. Classical trajectory dynamics on various surfaces show that Cl exchange reactions between isotopes of hydrogen require a barrier to agree with laser induced fluorescence experiments as well as molecular beam and thermal data. (orig.) [de

  12. Evaluations of the electron energy distribution in multidipole plasmas

    International Nuclear Information System (INIS)

    Taylor, G.R.; Kessel, M.A.; Sealock, J.W.

    1980-01-01

    In a previous paper a preliminary evaluation of the electron energy distribution in multidipole plasmas was presented. A polynominal regression technique for evaluating the distribution function from Langmuir probe current-voltage characteristics was described. This paper presents an extension of that analysis and the evaluations of the electron energy distributions in multidipole argon and hydrogen plasmas

  13. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  14. Panchromatic spectral energy distributions of Herschel sources

    Science.gov (United States)

    Berta, S.; Lutz, D.; Santini, P.; Wuyts, S.; Rosario, D.; Brisbin, D.; Cooray, A.; Franceschini, A.; Gruppioni, C.; Hatziminaoglou, E.; Hwang, H. S.; Le Floc'h, E.; Magnelli, B.; Nordon, R.; Oliver, S.; Page, M. J.; Popesso, P.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Roseboom, I.; Scott, D.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.

    2013-03-01

    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8-500 μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6-9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of

  15. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    International Nuclear Information System (INIS)

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H 2 , rovibrational excitation of H 2 produced by the reaction H + HBr → H 2 + Br, and Br atom production by photolysis of HBr

  16. Distributed Energy Generation for Climate Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Stout, Sherry; Hotchkiss, Eliza

    2017-05-24

    Distributed generation can play a critical role in supporting climate adaptation goals. This infographic style poster will showcase the role of distributed generation in achieving a wide range of technical and policy goals and social services associated with climate adaptation.

  17. Electro-optic measurement of terahertz pulse energy distribution

    NARCIS (Netherlands)

    Sun, J.H.; Gallacher, J.G.; Brussaard, G.J.H.; Lemos, N.; Issac, R.; Huang, Z.X.; Dias, J.M.; Jaroszynski, D.A.

    2009-01-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz

  18. Microgrid Enabled Distributed Energy Solutions (MEDES) Fort Bliss Military Reservation

    Science.gov (United States)

    2014-02-01

    FINAL REPORT Microgrid Enabled Distributed Energy Solutions (MEDES) Fort Bliss Military Reservation ESTCP Project EW-201140 FEBRUARY...TITLE AND SUBTITLE Microgrid Enabled Distributed Energy Solutions (MEDES) 5a. CONTRACT NUMBER W912HQ-11-C-0082 Fort Bliss, Texas...Lockheed Martin’s Intelligent Microgrid Solution can provide more energy security while also lowering electric utility costs and greenhouse gas emissions

  19. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I-Energy levels and transition wavenumbers for H217O and H218O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Carleer, Michel R.; Csaszar, Attila G.; Gamache, Robert R.; Hodges, Joseph T.; Jenouvrier, Alain; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Toth, Robert A.; Vandaele, Ann Carine; Zobov, Nikolai F.; Daumont, Ludovic; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Mikhailenko, Semen N.

    2009-01-01

    This is the first part of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependence and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. The present article contains energy levels and data for line positions of the singly substituted isotopologues H 2 17 O and H 2 18 O. The procedure and code MARVEL, standing for measured active rotational-vibrational energy levels, is used extensively in all stages of determining the validated levels and lines and their self-consistent uncertainties. The spectral regions covered for both isotopologues H 2 17 O and H 2 18 O are 0-17125cm -1 . The energy levels are checked against ones determined from accurate variational calculations. The number of critically evaluated and recommended levels and lines are, respectively, 2687 and 8614 for H 2 17 O, and 4839 and 29 364 for H 2 18 O. The extensive lists of MARVEL lines and levels obtained are deposited in the Supplementary Material, as well as in a distributed information system applied to water, W-DIS, where they can easily be retrieved. A distinguishing feature of the present evaluation of water spectroscopic data is the systematic use of all available experimental data and validation by first-principles theoretical calculations.

  20. A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Wereley, Norman M.; Choi, Young-Tai; Wang, Dai-Hua

    2012-04-01

    For semi-active shock and vibration mitigation systems using magnetorheological energy absorbers (MREAs), the minimization of the field-off damper force of the MREA at high speed is of particular significance because the damper force due to the viscous damping at high speed becomes too excessive and thus the controllable dynamic force range that is defined by the ratio of the field-on damper force to the field-off damper force is significantly reduced. In this paper, a bi-annular-gap MREA with an inner-set permanent magnet is proposed to decrease the field-off damper force at high speed while keeping appropriate dynamic force range for improving shock and vibration mitigation performance. In the bi-annular-gap MREA, two concentric annular gaps are configured in parallel so as to decrease the baseline damper force and both magnetic activation methods using the electromagnetic coil winding and the permanent magnet are used to keep holding appropriate magnetic intensity in these two concentric annular gaps in the consideration of failure of the electric power supply. An initial field-on damper force is produced by the magnetic field bias generated from the inner-set permanent magnet. The initial damper force of the MREA can be increased (or decreased) through applying positive (or negative) current to the electromagnetic coil winding inside the bi-annular-gap MREA. After establishing the analytical damper force model of the bi-annular-gap MREA using a Bingham-plastic nonlinear fluid model, the principle and magnetic properties of the MREA are analytically validated and analyzed via electromagnetic finite element analysis (FEA). The performance of the bi-annular-gap MREA is also theoretically compared with that of a traditional single-annular- gap MREA with the constraints of an identical volume by the performance matrix, such as the damper force, dynamic force range, and Bingham number with respect to different excitation velocities.

  1. Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier

    Science.gov (United States)

    Wang, Guangqing; Liao, Wei-Hsin; Yang, Binqiang; Wang, Xuebao; Xu, Wentan; Li, Xiuling

    2018-05-01

    Bistable piezoelectric energy harvesters are being increasingly seen as an alternative to batteries in low-power devices. However, their energy harvesting characteristics are limited. To enhance these, we use a configuration including an elastic magnifier to amplify base excitation and provide sufficient kinetic energy to overcome potential well barriers, thus leading to large-amplitude bistable motion. We derive the distributed parameter mathematical model of this configuration by using Hamilton's principle. We then investigate the nonlinear dynamic behaviors and energetic characteristics and analyze the bifurcation for the equilibrium solution of the model. The simulations and experiments show high electromechanical responses and energy generation characteristics of the proposed system over a broad frequency band. The results suggest that, compared with a typical bistable piezoelectric energy harvester, the proposed energy harvester system with an elastic magnifier can provide higher output over a broader frequency band at lower excitation levels by adjusting the system's mass and stiffness ratios.

  2. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  3. A free vibration of beams carrying a concentrated mass under distributed axial forces

    International Nuclear Information System (INIS)

    Nagai, Ken-ichi; Nagaya, Kosuke; Takeda, Sadahiko; Arai, Noriyuki.

    1988-01-01

    The free bending vibrations of beams with a concentrated mass subjected to axial forces caused by axial acceleration are analyzed by the Galerkin method, introducing the mode shape functions which are the sum of the products of the finite power series and the trigonometrical function. This analytical method makes it easy to construct the equations of motion in each boundary condition only by exchanging the coefficients of the finite power series. Numerical calculations are carried out under four sets of boundary conditions combined with simply supported and clamped edges. The natural frequencies and the corresponding modes of vibration are determined under both various locations of the concentrated mass and axial forces. it is found that the transverse inertia force and the axial force, due to the concentrated mass, have significant effects on the change of the natural frequencies for beams. Furthermore the distinction of boundary conditions gives predominant influence to the variation of natural frequencies. (author)

  4. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    Science.gov (United States)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  5. Analysis of the spectrum distribution of oscillation amplitudes of the concrete mix at shock vibration molding

    Directory of Open Access Journals (Sweden)

    Sharapov Rashid

    2017-01-01

    Full Text Available In the production of concrete structures widespread shaking tables of various designs. The effectiveness of vibroforming concrete items largely depends on the choice of rational modes of vibroeffect to the compacting mixture. The article discusses the propagation of a wave packet in the concrete mixture under shock and vibration molding. Studies have shown that the spectrum of a wave packet contains a large number of harmonics. The main parameter influencing the amplitude-frequency spectrum is the stiffness of elastic gaskets between mold and forming machine vibrating table. By varying the stiffness of the elastic gaskets can widely change the spectrum of the oscillations propagating in the concrete mix. Thus, it is possible to adjust the intensity of the process of vibroforming.

  6. Distributed energy resources for a zero-energy neighbhourhood

    NARCIS (Netherlands)

    Morales Gonzalez, R.M.D.G.; Asare-Bediako, B.; Cobben, J.F.G.; Kling, W.L.; Scharrenberg, G.R.; Dijkstra, D.

    2012-01-01

    Zero energy buildings are on the increasing trend. They are perceived as appropriate technology to reducing CO2 emissions, improving energy efficiency and alleviating energy poverty. The main goal is that a grid-connected building produces enough energy on site to equal or exceed its annual energy

  7. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  8. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    Science.gov (United States)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  9. Determination analysis of energy conservation standards for distribution transformers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Das, S.

    1996-07-01

    This report contains information for US DOE to use in making a determination on proposing energy conservation standards for distribution transformers as required by the Energy Policy Act of 1992. Potential for saving energy with more efficient liquid-immersed and dry-type distribution transformers could be significant because these transformers account for an estimated 140 billion kWh of the annual energy lost in the delivery of electricity. Objective was to determine whether energy conservation standards for distribution transformers would have the potential for significant energy savings, be technically feasible, and be economically justified from a national perspective. It was found that energy conservation for distribution transformers would be technically and economically feasible. Based on the energy conservation options analyzed, 3.6-13.7 quads of energy could be saved from 2000 to 2030.

  10. Vibrational analysis of HOCl up to 98% of the dissociation energy with a Fermi resonance Hamiltonian

    International Nuclear Information System (INIS)

    Jost, R.; Joyeux, M.; Skokov, S.; Bowman, J.

    1999-01-01

    We have analyzed the vibrational energies and wave functions of HOCl obtained from previous ab initio calculations [J. Chem. Phys. 109, 2662 (1998); 109, 10273 (1998)]. Up to approximately 13 and h;000 cm -1 , the normal modes are nearly decoupled, so that the analysis is straightforward with a Dunham model. In contrast, above 13 and h;000 cm -1 the Dunham model is no longer valid for the levels with no quanta in the OH stretch (v 1 =0). In addition to v 1 , these levels can only be assigned a so-called polyad quantum number P=2v 2 +v 3 , where 2 and 3 denote, respectively, the bending and OCl stretching normal modes. In contrast, the levels with v 1 ≥2 remain assignable with three v i quantum numbers up to the dissociation (D 0 =19 and h;290 and h;cm -1 ). The interaction between the bending and the OCl stretch (ω 2 congruent 2ω 3 ) is well described with a simple, fitted Fermi resonance Hamiltonian. The energies and wave functions of this model Hamiltonian are compared with those obtained from ab initio calculations, which in turn enables the assignment of many additional ab initio vibrational levels. Globally, among the 809 bound levels calculated below dissociation, 790 have been assigned, the lowest unassigned level, No. 736, being located at 18 and h;885 cm -1 above the (0,0,0) ground level, that is, at about 98% of D 0 . In addition, 84 resonances located above D 0 have also been assigned. Our best Fermi resonance Hamiltonian has 29 parameters fitted with 725 ab initio levels, the rms deviation being of 5.3 cm -1 . This set of 725 fitted levels includes the full set of levels up to No. 702 at 18 and h;650 cm -1 . The ab initio levels, which are assigned but not included in the fit, are reasonably predicted by the model Hamiltonian, but with a typical error of the order of 20 cm -1 . The classical analysis of the periodic orbits of this Hamiltonian shows that two bifurcations occur at 13 and h;135 and 14 and h;059 cm -1 for levels with v 1 =0. Above each

  11. Fundamental study on the new method to estimate vibration level on a ship. Formulation of the damping matrix based on dissipation energy caused by fluid viscosity; Senpaku no shindo level suitei ni kansuru kisoteki kenkyu. Ryutai no nensei ni yoru san`itsu energy ni motozuku gensui matrix no teishikika

    Energy Technology Data Exchange (ETDEWEB)

    Funaki, T.; Hayashi, S. [Osaka University, Osaka (Japan). Faculty of engineering

    1996-12-31

    It is known in estimating vibration characteristics of a ship that fluid range affects largely a structure. In order to analyze the compound vibration therein, a method was proposed, which estimates vibration levels without using the finite element method. However, the problem of mode decay ratio has not been solved. Therefore, this paper first describes a method to introduce an equivalent linear decay matrix. The paper then mentions difference in the decay effects due to fluid viscosity in a shallow and deep water regions. Furthermore, vibration levels in the deep water region were estimated in a model experiment to verify the estimation result. Under a hypothesis that two-node vibration in a rotating ellipse has displacement distributions in the deep and shallow water regions equivalent, and when a case of vibration in a layer flow condition is calculated, dissipation energy in the shallow region is larger than that in the deep region by about 26%. About 5% of the total dissipation energy is consumed at bottom of the sea. According to a frequency response calculation, estimated values for the response levels still differ from experimental values, although the trend that the vibration levels change can be reproduced. 6 refs., 15 figs., 2 tabs.

  12. Fundamental study on the new method to estimate vibration level on a ship. Formulation of the damping matrix based on dissipation energy caused by fluid viscosity; Senpaku no shindo level suitei ni kansuru kisoteki kenkyu. Ryutai no nensei ni yoru san`itsu energy ni motozuku gensui matrix no teishikika

    Energy Technology Data Exchange (ETDEWEB)

    Funaki, T; Hayashi, S [Osaka University, Osaka (Japan). Faculty of engineering

    1997-12-31

    It is known in estimating vibration characteristics of a ship that fluid range affects largely a structure. In order to analyze the compound vibration therein, a method was proposed, which estimates vibration levels without using the finite element method. However, the problem of mode decay ratio has not been solved. Therefore, this paper first describes a method to introduce an equivalent linear decay matrix. The paper then mentions difference in the decay effects due to fluid viscosity in a shallow and deep water regions. Furthermore, vibration levels in the deep water region were estimated in a model experiment to verify the estimation result. Under a hypothesis that two-node vibration in a rotating ellipse has displacement distributions in the deep and shallow water regions equivalent, and when a case of vibration in a layer flow condition is calculated, dissipation energy in the shallow region is larger than that in the deep region by about 26%. About 5% of the total dissipation energy is consumed at bottom of the sea. According to a frequency response calculation, estimated values for the response levels still differ from experimental values, although the trend that the vibration levels change can be reproduced. 6 refs., 15 figs., 2 tabs.

  13. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    Science.gov (United States)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the

  14. Trading Strategies for Distribution Company with Stochastic Distributed Energy Resources

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Wang, Qi; Wang, Jianhui

    2016-01-01

    This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower...

  15. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  16. Distributed Power Systems for Sustainable Energy

    Science.gov (United States)

    2012-10-01

    sources of energy , the largest opportunities to reduce external grid utilization and also the environmental impact associated with the use of non...capital investment in state-of- the-art cogeneration technologies, renewable sources, energy storage, and interconnection hardware and software. It is...installations proved somewhat challenging. First, the performance of DOD energy managers was related to high- impact energy savings on the entire base. In

  17. Energy Systems Integration: Demonstrating Distributed Resource Communications

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  18. Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2017-06-01

    Full Text Available Considering coil inductance and the spatial distribution of the magnetic field, this paper developed an approximate distributed-parameter model of a hybrid energy harvester (HEH. The analytical solutions were compared with numerical solutions. The effects of load resistances, electromechanical coupling factors, mechanical damping ratio, coil parameters and size scale on performance were investigated. A meso-scale HEH prototype was fabricated, tested and compared with a stand-alone piezoelectric energy harvester (PEH and a stand-alone electromagnetic energy harvester (EMEH. The peak output power is 2.93% and 142.18% higher than that of the stand-alone PEH and EMEH, respectively. Moreover, its bandwidth is 108%- and 122.7%-times that of the stand-alone PEH and EMEH, respectively. The experimental results agreed well with the theoretical values. It is indicated that the linearized electromagnetic coupling coefficient is more suitable for low-level excitation acceleration. Hybrid energy harvesting contributes to widening the frequency bandwidth and improving energy conversion efficiency. However, only when the piezoelectric coupling effect is weak or medium can the HEH generate more power than the single-mechanism energy harvester. Hybrid energy harvesting can improve output power even at the microelectromechanical systems (MEMS scale. This study presents a more effective model for the performance evaluation and structure optimization of the HEH.

  19. Distributed energy resources in grid interactive AC microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Guerrero, Josep; Chen, Zhe

    2010-01-01

    Increased penetration of distributed energy resources (DER) and large-scale deployment of renewable energy sources are challenging the entire architecture of traditional power system. Microgrid, featuring higher flexibility and reliability, becomes an attractive candidate for the configuration...

  20. Energy and Environmental Effects of Grocery Distribution: Transportation Means Catalogue

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The report serves as a background report for the project "Energy and Environmental Effects of Grocery Distribution". It contains a systematic overview of physical characteristics of the typical technologies, including energy and environmental effects....

  1. Vibrational cooling of spin-stretched dimer states by He buffer gas: quantum calculations for Li2(a 3Sigma(u)+) at ultralow energies.

    Science.gov (United States)

    Bovino, S; Bodo, E; Yurtsever, E; Gianturco, F A

    2008-06-14

    The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.

  2. Triangle bracing system to reduce the vibration level of cooling tower – case study in PT Star Energy Geothermal (Wayang Windu) Ltd – Indonesia

    OpenAIRE

    Effendi Tri Bahtiar; Naresworo Nugroho; Dede Hermawan; Wilis Wirawan; Khuschandra

    2018-01-01

    Periodical control and measurement revealed that vibration level of motor and gearbox which was supported by Cooling Tower Unit 1 at PT Star Energy Geothermal (Wayang Windu) Ltd was significantly increasing since 2013. The vibration was not caused by machinery component failure, but induced by resonance of process flow. Decreasing stiffness of cooling tower structure was suspected causing the increasing vibration level. The physical, chemical, and mechanical properties of wood was deteriorate...

  3. Vib--rotational energy distributions and relaxation processes in pulsed HF chemical lasers

    International Nuclear Information System (INIS)

    Ben-Shaul, A.; Kompa, K.L.; Schmailzl, U.

    1976-01-01

    The rate equations governing the temporal evolution of photon densities and level populations in pulsed F+H 2 →HF+H chemical lasers are solved for different initial conditions. The rate equations are solved simultaneously for all relevant vibrational--rotational levels and vibrational--rotational P-branch transitions. Rotational equilibrium is not assumed. Approximate expressions for the detailed state-to-state rate constants corresponding to the various energy transfer processes (V--V, V--R,T, R--R,T) coupling the vib--rotational levels are formulated on the basis of experimental data, approximate theories, and qualitative considerations. The main findings are as follows: At low pressures, R--T transfer cannot compete with the stimulated emission, and the laser output largely reflects the nonequilibrium energy distribution in the pumping reaction. The various transitions reach threshold and decay almost independently and simultaneous lasing on several lines takes place. When a buffer gas is added in excess to the reacting mixture, the enhanced rotational relaxation leads to nearly single-line operation and to the J shift in lasing. Laser efficiency is higher at high inert gas pressures owing to a better extraction of the internal energy from partially inverted populations. V--V exchange enhances lasing from upper vibrational levels but reduces the total pulse intensity. V--R,T processes reduce the efficiency but do not substantially modify the spectral output distribution. The photon yield ranges between 0.4 and 1.4 photons/HF molecule depending on the initial conditions. Comparison with experimental data, when available, is fair

  4. Power distribution in the face of the new energy paradigm

    International Nuclear Information System (INIS)

    Desama, Claude

    2012-01-01

    After the challenge of the liberalization of the domestic market of the energy which put an end to the vertically integrated structures, the managers of the distribution networks must now face the energy transition i.e. to substitution from a supply from electricity centralized by intermittent productions related to renewable energies. The article approaches the possible solutions to face this new energy paradigm

  5. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion

    International Nuclear Information System (INIS)

    Zou, Hong-Xiang; Zhang, Wen-ming; Li, Wen-Bo; Wei, Ke-Xiang; Gao, Qiu-Hua; Peng, Zhi-Ke; Meng, Guang

    2017-01-01

    Highlights: • A magnetically coupled two-degree-of-freedom harvester for rotation is proposed. • The electromechanical coupling model is developed and validated experimentally. • The harvester can generate high voltage at low rotating speeds. • The harvester can harvest vibration energy in multiple frequency bands. - Abstract: Energy can be harvested from rotational motion for powering wireless autonomous electronic devices. The paper presents a magnetically coupled two-degree-of-freedom vibration energy harvester for rotary motion applications. The design consists of two inverted piezoelectric cantilever beams whose free ends point to the rotating shaft. The centrifugal force of the inverted cantilever beam is beneficial to producing large amplitude in a low speed range. The electromechanical coupling dynamical model is developed by the energy method from Hamilton’s principle and validated experimentally. The experimental results indicate that the presented harvester is suitable for low speed rotation and can harvest vibration energy in multiple frequency bands. The first and second resonant behaviors of voltage can be obtained at 420 r/min and 550 r/min, and the average output powers are 564 μW and 535.3 μW, respectively.

  6. IUPAC critical evaluation of the rotational–vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor

    2013-01-01

    This is the third of a series of articles reporting critically evaluated rotational–vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational–vibrational transitions of the most abundant isotopologue of water, H 2 16 O. The latest version of the MARVEL (Measured Active Rotational–Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H 2 16 O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H 2 16 O containstwo components, an ortho (o) and a para (p) one. For o-H 2 16 O and p-H 2 16 O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H 2 16 O and p-H 2 16 O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a

  7. Distribution of decentralized renewable energy resources

    International Nuclear Information System (INIS)

    Bal, J.L.; Benque, J.P.

    1996-01-01

    The existence of a great number of inhabitants without electricity, living in areas of low population density, with modest energy requirements and low income provides a major potential market for decentralized renewable energy sources. Ademe and EDF in 1993 made two agreements concerning the development of Renewable Energy Sources. The first aims at promoting their decentralized use in France in pertinent cases. The second agreement concerns other countries and has two ambitions: facilitate short-term developments and produce in the longer term a standardised proposal for decentralized energy production using Renewable Energy Sources to a considerable extent. These ideas are explained, and the principles behind the implementation of both Ademe-EDF agreements as well as their future prospects are described. (R.P.)

  8. Integration of new distributed energy sources

    International Nuclear Information System (INIS)

    Pleym, Anngjerd; Bakken, Bjoern H.; Hetland, Jens

    2001-01-01

    In years with average runoff, Norway will be a net importer of electric power. The use of electric energy is not declining and so the gap between supply and demand is increasing. A large-scale increase of the production of new hydroelectric power is unlikely for political reasons. Gas power by today's technology is controversial and basing the national energy supply on import is undesirable. It is possible to concentrate on decentralized electricity production in small units. On the supply side, increased taxation can be used to reduce consumption; but this may hit unfairly. Direct regulation to limit consumption is undesirable in a free market. One solution on the consumer side may be a more flexible energy use by way of new technology, incorporating thermal energy. Research and development in a united energy sector is needed to realize the potential of small combined heating and power units connected to the existing system. Some efforts have already been made

  9. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    International Nuclear Information System (INIS)

    Uluşan, H; Gharehbaghi, K; Külah, H; Zorlu, Ö; Muhtaroğlu, A

    2015-01-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage. (paper)

  10. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    Science.gov (United States)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  11. Trading strategies for distribution company with stochastic distributed energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyu; Wang, Qi; Wang, Jianhui; Korpås, Magnus; Pinson, Pierre; Østergaard, Jacob; Khodayar, Mohammad E.

    2016-09-01

    This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO’s profit across these markets. The PDISCO’s strategic offers/bids interactively influence the outcomes of each market. Since the LL problems are linear and convex, while the UL problem is non-linear and non-convex, an equivalent primal–dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC). The effectiveness of the proposed model is verified by case studies.

  12. Trading Strategies for Distribution Company with Stochastic Distributed Energy Resources

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Wang, Qi; Wang, Jianhui

    2016-01-01

    This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower......-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO's prot across these markets. The PDISCO's strategic oers....../bids interactively in uence the outcomes of each market. Since the LL problems are linear and convex, while the UL problem is non-linear and non-convex, an equivalent primal-dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC...

  13. Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications

    Science.gov (United States)

    Chandrasekharan, Nataraj

    Innovation in integrated circuit technology along with improved manufacturing processes has resulted in considerable reduction in power consumption of electromechanical devices. Majority of these devices are currently powered by batteries. However, the issues posed by batteries, including the need for frequent battery recharge/replacement has resulted in a compelling need for alternate energy to achieve self-sufficient device operation or to supplement battery power. Vibration based energy harvesting methods through piezoelectric transduction provides with a promising potential towards replacing or supplementing battery power source. However, current piezoelectric energy harvesters generate low specific power (power-to-weight ratio) when compared to batteries that the harvesters seek to replace or supplement. In this study, the potential of integrating lightweight cellular honeycomb structures with existing piezoelectric device configurations (bimorph) to achieve higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of a conventional piezoelectric bimorph with honeycomb structures of the same material results in a significant increase in power-to-weight ratio of the piezoelectric harvester. In order to maximize the electrical response of vibration based power harvesters, the natural frequency of these harvesters is designed to match the input driving frequency. The commonly used technique of adding a tip mass is employed to lower the natural frequency (to match driving frequency) of both, solid and honeycomb substrate bimorphs. At higher excitation frequency, the natural frequency of the traditional solid substrate bimorph can only be altered (to match driving frequency) through a change in global geometric design parameters, typically achieved by increasing the thickness of the harvester. As a result, the size of the harvester is increased and can be disadvantageous

  14. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    Science.gov (United States)

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  15. Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation

    Directory of Open Access Journals (Sweden)

    Moiseev V.A.

    2015-01-01

    Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.

  16. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  17. State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)

    2015-07-15

    In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.

  18. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  19. Energy Harvesting for Self-Powered, Ultra-Low Power Microsystems With a Focus on Vibration-Based Electromechanical Conversion

    Science.gov (United States)

    2009-09-01

    capacitor responsible for charge. Figure 25. Half Bridge Power Harvester with Leakage Resistance [From 70] The resistor accounts for the voltage...REV PAP, 1996. [63] M. Umeda, K. Nakamura, and S. Ueha, “Energy storage characteristics of a piezo - generator using impact induced vibration...Japanese journal of applied physics, vol. 36, pp. 3146–3151, 1997. [64] M. Kimura, “ Piezo -electricity generation device,” U.S. Patent 812070, September

  20. Intramolecular Vibrational Energy Transfer and Bond-Selected Photochemistry in Liquids

    National Research Council Canada - National Science Library

    Crim, F

    2001-01-01

    .... In the gas phase experiments, one pulse excited the first overtone of the O-H stretching vibration in nitric acid and the second pulse probed the excited molecule by excitation to a dissociative...

  1. Energy Dissipation from Vibrating Floor Slabs due to Human-Structure Interaction

    Directory of Open Access Journals (Sweden)

    James M.W. Brownjohn

    2001-01-01

    Full Text Available Lightweight pre-cast flooring systems using post-tensioning to increase strength but not stiffness are increasingly popular, and vibration serviceability problems tend to govern design of such floors where human occupants are increasingly concerned with vibrations. At the same time as inducing response, stationary human observers can also participate in the response as mitigating influence and it is clear that a human behaves as a highly effective damper, even when seated.

  2. Vibration energy absorption in the whole-body system of a tractor operator

    OpenAIRE

    Jan Szczepaniak; Wojciech Tanaś; Jacek Kromulski

    2014-01-01

    Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primari...

  3. Proposals of electronic-vibrational energy relaxation studies by using laser pulses synchronized with IR-SR pulses

    International Nuclear Information System (INIS)

    Nakagawa, Hideyuki

    2000-01-01

    Synchrotron radiation is expected to be the sharp infrared light source for the advanced experiments on IR and FIR spectroscopy in wide research fields. Especially, synchronized use of SR with VIS and/or UV laser light is to be a promising technique for the research on the dynamical properties of the photo-excited states in condensed materials. Some proposals are attempted for high resolution IR spectroscopy to elucidate fine interaction of molecular ions in crystalline solids with their environmental field and for time-resolved IR spectroscopic studies on the electronic and vibrational energy relaxation by using laser pulses synchronized with IR-SR pulses. Several experimental results are presented in relevance to the subjects; on high-resolution FTIR spectra of cyanide ions and metal cyanide complexes in cadmium halide crystals, on the energy up-conversion process among the vibrational levels of cyanide ions in alkali halide crystals, and on the electronic-to-vibrational energy conversion process in metal cyanide complexes. (author)

  4. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In fo...

  5. Flow with vibrational energy exchange, application to CO2 electric laser

    International Nuclear Information System (INIS)

    Dahan, Claude.

    1974-01-01

    The performances of a continuous wave (CO 2 , N 2 , He) laser ionized by an electron beam are calculated. Several types of phenomena are considered: energy exchange processes between molecules of laser medium, electron molecular excitation processes, aerodynamic phenomena: the energy exchanges accompanying the laser effect generate important quantities of heat, which have to be evacuated by the flow. After a survey of the fundamental assumptions on molecular phenomena, a computer code was developed for following, along the flow, the evolution of the thermodynamic parameters (pressure, temperature), of the laser gain, and of the electrical properties (electron density and temperature). To provide a finer description of the last ones, a model giving the energy distribution of the electrons in the laser medium was established [fr

  6. Report of workshop on vibration related to fluid in atomic energy field. 6

    International Nuclear Information System (INIS)

    1996-01-01

    The accident of the fast breeder prototype reactor, 'Monju' on sodium leakage in its second cooling system occurred on December 8, 1995 was broadcast widely through mass-communication such as newspaper, television and others. Because of suspicion of whether concealment of videotape taken the accident state was intended to not, a method of information opening was an argument point. In spite of this, technical details of the accident was not transferred to researchers of each specified field by formal state still yet. Informations expected by the specialists of flow relating vibration are, for example, objective data such as accurate shape, eigenfrequency, attenuation, and others of the thermometer well, flow conditions and so forth, by knowing which they could judge reason of occurring the accident. It seems to be meaningful to conduct the information exchange on even a scale of the 'Yayoi Research Group'. Therefore, the Research Group was received all of objective facts on eddy excitation vibration of Monju's secondary system thermometer well accurately from its interested persons, reviewed on the eddy excitation vibration at this accident once more, and argued with a method of future research. In this book, the following 14 reports are described; 1) Outline of the Monju secondary system sodium leakage accident, 2) Karman vortex, 3) Flow at circumference of vibrates, 4) Flowing power analysis of the thermometer, 5) Flowing power vibration water flow test of the thermometer well, 6) Water flow test on the flow excitation vibration of the Monju's thermometer well, and others. (G.K.)

  7. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects

    Science.gov (United States)

    Lu, Haohui; Chai, Tan; Cooley, Christopher G.

    2018-03-01

    This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.

  8. The distribution and tapping tidal energy

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2004-09-01

    Full Text Available Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site-specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced.     The new approach is to place turbines - devices similar to windmills - in the pathway of tidal currents. Theoretically, the amount of power available by such turbines for electricity generation is proportional to the water density and velocity cubed of the tidal flow. The naturally dissipated tidal power due to bottom friction forces is also proportional to the cube of the velocity. Because of this similarity, the exploitation of tidal energy can be directed to reinvesting the naturally dissipated power into tidal power for the generation of electricity. This approach to tidal power exploitation is better tuned

  9. Energy barrier distributions of maghemite nanoparticles

    International Nuclear Information System (INIS)

    Romanus, E; Koettig, T; Gloeckl, G; Prass, S; Schmidl, F; Heinrich, J; Gopinadhan, M; Berkov, D V; Helm, C A; Weitschies, W; Weber, P; Seidel, P

    2007-01-01

    A recently introduced method for the characterization of magnetic nanoparticles (MNPs) based on the analysis of the temperature-dependent Neel relaxation signal (TMRX) has been applied to characterize maghemite particles with different particle size distributions. The samples were made using an improved magnetic fractionation method for a ferrofluid with a broad particle size distribution. The temperature range of the measurement set-up has been extended from 315 K down to 4 K to detect even the smallest particles in the fractions. A mean magnetically relevant particle size has been derived from TMRX and low temperature coercivity measurements and has been compared to the physical size determined by atomic force microscopy (AFM) investigations

  10. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  11. 77 FR 10997 - Energy Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction

    Science.gov (United States)

    2012-02-24

    ... Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction AGENCY: Office of... standards for distribution transformers. It was recently discovered that values in certain tables of the...,'' including distribution transformers. The Energy Policy Act of 1992 (EPACT 1992), Public Law 102-486, amended...

  12. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    This chapter introduces Energy System Analysis methodologies and tools, which can be used for identifying the best application of different Fuel Cell (FC) technologies to different regional or national energy systems. The main point is that the benefits of using FC technologies indeed depend...... on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... technologies are very often connected to the use of hydrogen, which has to be provided e.g. from electrolysers. Decentralised and distributed generation has the possibility of improving the overall energy efficiency and flexibility of energy systems. Therefore, energy system analysis tools and methodologies...

  13. Estimation of photon energy distribution in gamma calibration field

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shimizu, Shigeru; Yamaguchi, Yasuhiro

    1997-03-01

    Photon survey instruments used for radiation protection are usually calibrated at gamma radiation fields, which are traceable to the national standard with regard to exposure. Whereas scattered radiations as well as primary gamma-rays exit in the calibration field, no consideration for the effect of the scattered radiations on energy distribution is given in routine calibration works. The scattered radiations can change photon energy spectra in the field, and this can result in misinterpretations of energy-dependent instrument responses. Construction materials in the field affect the energy distribution and magnitude of the scattered radiations. The geometric relationship between a gamma source and an instrument can determine the energy distribution at the calibration point. Therefore, it is essential for the assurance of quality calibration to estimate the energy spectra at the gamma calibration fields. Then, photon energy distributions at some fields in the Facility of Radiation Standard of the Japan Atomic Energy Research Institute (JAERI) were estimated by measurements using a NaI(Tl) detector and Monte Carlo calculations. It was found that the use of collimator gives a different feature in photon energy distribution. The origin of scattered radiations and the ratio of the scattered radiations to the primary gamma-rays were obtained. The results can help to improve the calibration of photon survey instruments in the JAERI. (author)

  14. Combined experimental and numerical investigation of energy harness utilizing vortex induced vibration over half cylinder using piezoelectric beams

    Science.gov (United States)

    Ahmed, Md. Tusher; Hossain, Md. Tanver; Rahman, Md. Ashiqur

    2017-06-01

    Energy harvesting technology has the ability to create self-powered electronic systems that do not rely on battery power for their operation. Wind energy can be converted into electricity via a piezoelectric transducer during the air flow over a cylinder. The vortex-induced vibration over the cylinder causes the piezoelectric beam to vibrate. Thus useful electric energy at the range 0.2-0.3V is found which can be useful for self-powering small electronic devices. In the present study, prototypes of micro-energy harvester with a shape of 65 mm × 37 mm × 0.4 mm are developed and tested for airflow over D-shaped bluff body for diameters of 15, 20 and 28mm in an experimental setup consisting of a long wind tunnel of 57cm × 57cm with variable speeds of the motor for different flow velocities and the experimental setup is connected at the downstream where flow velocity is the maximum. Experimental results show that the velocity and induced voltage follows a regular linear pattern. A maximum electrical potential of 140 mV for velocity of 1.1 ms-1 at a bluff body diameter of 15 mm is observed in the energy harvester that can be applied in many practical cases for self-powering electronic devices. The simulation of this energy harvesting phenomena is then simulated using COMSOLE multi-physics. Diameter of the bluff bodies as well as flow velocity and size of cantilever beam are varied and the experimental findings are found to be in good agreement with the simulated ones. The simulations along with the experimental data show the possibility of generating electricity from vortex induced vibration and can be applied in many practical cases for self-powering electronic devices.

  15. Distributed continuous energy scheduling for dynamic virtual power plants

    International Nuclear Information System (INIS)

    Niesse, Astrid

    2015-01-01

    This thesis presents DynaSCOPE as distributed control method for continuous energy scheduling for dynamic virtual power plants (DVPP). DVPPs aggregate the flexibility of distributed energy units to address current energy markets. As an extension of the Virtual Power Plant concept they show high dynamics in aggregation and operation of energy units. Whereas operation schedules are set up for all energy units in a day-ahead planning procedure, incidents may render these schedules infeasible during execution, like deviation from prognoses or outages. Thus, a continuous scheduling process is needed to ensure product fulfillment. With DynaSCOPE, software agents representing single energy units solve this problem in a completely distributed heuristic approach. Using a stepped concept, several damping mechanisms are applied to allow minimum disturbance while continuously trying to fulfill the product as contracted at the market.

  16. Momentum distribution, vibrational dynamics, and the potential of mean force in ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph A.; Car, Roberto; Parrinello, Michele

    2011-06-01

    By analyzing the momentum distribution obtained from path integral and phonon calculations we find that the protons in hexagonal ice experience an anisotropic quasiharmonic effective potential with three distinct principal frequencies that reflect molecular orientation. Due to the importance of anisotropy, anharmonic features of the environment cannot be extracted from existing experimental distributions that involve the spherical average. The full directional distribution is required, and we give a theoretical prediction for this quantity that could be verified in future experiments. Within the quasiharmonic context, anharmonicity in the ground-state dynamics of the proton is substantial and has quantal origin, a finding that impacts the interpretation of several spectroscopies.

  17. Classification of Knee Joint Vibration Signals Using Bivariate Feature Distribution Estimation and Maximal Posterior Probability Decision Criterion

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2013-04-01

    Full Text Available Analysis of knee joint vibration or vibroarthrographic (VAG signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee joint VAG signals helps characterize the pathological condition of degenerative articular cartilages in the knee. This paper used the kernel-based probability density estimation method to model the distributions of the VAG signals recorded from healthy subjects and patients with knee joint disorders. The estimated densities of the VAG signals showed explicit distributions of the normal and abnormal signal groups, along with the corresponding contours in the bivariate feature space. The signal classifications were performed by using the Fisher’s linear discriminant analysis, support vector machine with polynomial kernels, and the maximal posterior probability decision criterion. The maximal posterior probability decision criterion was able to provide the total classification accuracy of 86.67% and the area (Az of 0.9096 under the receiver operating characteristics curve, which were superior to the results obtained by either the Fisher’s linear discriminant analysis (accuracy: 81.33%, Az: 0.8564 or the support vector machine with polynomial kernels (accuracy: 81.33%, Az: 0.8533. Such results demonstrated the merits of the bivariate feature distribution estimation and the superiority of the maximal posterior probability decision criterion for analysis of knee joint VAG signals.

  18. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2015-01-01

    We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An application is illustrated by calculating the infrared vibrational dipole transition spectrum of CH based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra

  19. Reliability planning in distributed electric energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, E.

    1978-10-01

    The goal of this paper is to develop tools for technology evaluation that address questions involving the economics of large-scale systems. The kind of cost discussed usually involves some dynamic aspect of the energy system. In particular, such properties as flexibility, stability, and resilience are features of entire systems. Special attention must be paid to the question of reliability, i.e., availability on demand. The storage problem and the planning for reliability in utility systems are the subjects of this paper. The introductory chapter addresses preliminary definitions--reliability planning, uncertainty, resilience, and other sensitivities. The study focuses on the contrast between conventional power generation technologies with controllable output and intermittent resources such as wind and solar electric conversion devices. The system studied is a stylized representation of California conditions. Significant differences were found in reliability planning requirements (and therefore costs) for systems dominated by central station plants as opposed to those dominated by intermittent resource technologies. It is argued that existing hydroelectric facilities need re-optimization. These plants provide the only currently existing bulk power storage in electric energy systems. 38 references. (MCW)

  20. Evaluating Maximum Wind Energy Exploitation in Active Distribution Networks

    DEFF Research Database (Denmark)

    Siano, Pierluigi; Chen, Peiyuan; Chen, Zhe

    2010-01-01

    The increased spreading of distributed and renewable generation requires moving towards active management of distribution networks. In this paper, in order to evaluate maximum wind energy exploitation in active distribution networks, a method based on a multi-period optimal power flow (OPF......) analysis is proposed. Active network management schemes such as coordinated voltage control, energy curtailment and power factor control are integrated in the method in order to investigate their impacts on the maximization of wind energy exploitation. Some case studies, using real data from a Danish...... distribution system, confirmed the effectiveness of the proposed method in evaluating the optimal applications of active management schemes to increase wind energy harvesting without costly network reinforcement for the connection of wind generation....