WorldWideScience

Sample records for vibrational bands observed

  1. Five intermolecular vibrations of the CO2 dimer observed via infrared combination bands

    Science.gov (United States)

    Norooz Oliaee, J.; Dehghany, M.; Rezaei, Mojtaba; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2016-11-01

    The weakly bound van der Waals dimer (CO2)2 has long been of considerable theoretical and experimental interest. Here, we study its low frequency intermolecular vibrations by means of combination bands in the region of the CO2 monomer ν3 fundamental (≈2350 cm-1), which are observed using a tunable infrared laser to probe a pulsed supersonic slit jet expansion. With the help of a recent high level ab initio calculation by Wang, Carrington, and Dawes, four intermolecular frequencies are assigned: the in-plane disrotatory bend (22.26 cm-1); the out-of-plane torsion (23.24 cm-1); twice the disrotatory bend (31.51 cm-1); and the in-plane conrotatory bend (92.25 cm-1). The disrotatory bend and torsion, separated by only 0.98 cm-1, are strongly mixed by Coriolis interactions. The disrotatory bend overtone is well behaved, but the conrotatory bend is highly perturbed and could not be well fitted. The latter perturbations could be due to tunneling effects, which have not previously been observed experimentally for CO2 dimer. A fifth combination band, located 1.3 cm-1 below the conrotatory bend, remains unassigned.

  2. Observation of Ortho-Para Dependence of Pressure Broadening Coefficient in Acetylene νb{1}+νb{3} Vibration Band Using Dual-Comb Spectroscopy

    Science.gov (United States)

    Iwakuni, Kana; Okubo, Sho; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki; Yamada, Koichi MT

    2016-06-01

    We observe that the pressure-broadening coefficients depend on the ortho-para levels. The spectrum is taken with a dual-comb spectrometer which has the resolution of 48 MHz and the frequency accuracy of 8 digit when the signal-to-noise ratio is more than 20. In this study, about 4.4-Tz wide spectra of the P(31) to R(31) transitions in the νb{1}+νb{3} vibration band of 12C_2H_2 are observed at the pressure of 25, 60, 396, 1047, 1962 and 2654 Pa. Each rotation-vibration absorption line is fitted to Voight function and we determined pressure-broadening coefficients for each rotation-vibration transition. The Figure shows pressure broadening coefficient as a function of m. Here m is J"+1 for R and -J" for P-branch. The graph shows obvious dependence on ortho and para. We fit it to Pade function considering the population ratio of three-to-one for the ortho and para levels. This would lead to detailed understanding of the pressure boarding mechanism. S. Okubo et al., Applied Physics Express 8, 082402 (2015)

  3. Identical gamma-vibrational bands in {sup 165}Ho

    Energy Technology Data Exchange (ETDEWEB)

    Radford, D.C.; Galindo-Uribarri, A.; Janzen, V.P. [Chalk River Labs., Ontario (Canada)] [and others

    1996-12-31

    The structure of {sup 165}Ho at moderate spins has been investigated by means of Coulomb excitation. Two {gamma}-vibrational bands (K{sup {pi}} = 11/2{sup {minus}} and K{sup {pi}} = 3/2{sup {minus}}) are observed, with very nearly identical in-band {gamma}-ray energies. Gamma-ray branching ratios are analyzed to extract information on Coriolis mixing, and the role of the K quantum number in identical bands is discussed.

  4. The ν_3 Fundamental Vibrational Band of Scccs Revisited

    Science.gov (United States)

    Salomon, Thomas; Dudek, John B.; Thorwirth, Sven

    2017-06-01

    The ν_3 fundamental vibrational band of carbon subsulfide, SCCCS, first studied by Holland and collaborators has been reinvestigated using a combination of laser ablation production, free-jet expansion and quantum cascade laser spectroscopy. In addition to the fundamental band (located at 2100 cm^{-1}) and associated hot bands originating from the lowest bending mode ν_7, the hot bands from the two energetically higher-lying bending modes ν_5 and ν_6 have been observed for the first time as has the S^{13}CCCS isotopic species. F. Holland, M. Winnewisser, C. Jarman, H. W. Kroto, and K. M. T. Yamada 1988, J. Mol. Spectrosc. 130, 344 F. Holland and M. Winnewisser 1991, J. Mol. Spectrosc. 147, 496

  5. One- and two-phonon γ -vibrational bands in neutron-rich 107Mo

    Science.gov (United States)

    Marcellino, J.; Wang, E. H.; Zachary, C. J.; Hamilton, J. H.; Ramayya, A. V.; Bhat, G. H.; Sheikh, J. A.; Dai, A. C.; Liang, W. Y.; Xu, F. R.; Hwang, J. K.; Brewer, N. T.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.

    2017-09-01

    Neutron-rich 107Mo has been reinvestigated by analyzing the large statistics γ -γ -γ and γ -γ -γ -γ coincidence data from the spontaneous fission of 252Cf at the Gammasphere detector array. Two new bands have been identified. The potential-energy surface calculations of this nucleus have been performed. The calculations show evidence for the 5 /2+[413 ] configuration of the ground-state band and 7 /2-[523 ] configuration for the 348-keV excited band, as assigned in previous work. The two bands newly established are proposed to be one- and two-phonon γ -vibrational bands built on the 7 /2-[523 ] Nilsson orbital, respectively, in the current paper. Triaxial projected shell-model (TPSM) calculations have been performed to explain the level structure and are found in fair agreement with experimental data. In particular, the TPSM study confirms the γ - and γ γ -vibrational structure for the two observed excited band structures. Systematics of the one- and two-phonon γ -vibrational bands in the A ˜100 Mo series is also discussed.

  6. Fatigue failure of materials under narrow band random vibrations. I.

    Science.gov (United States)

    Huang, T. C.; Hubbard, R. B.; Lanz, R. W.

    1971-01-01

    A novel approach for the study of fatigue failure of materials under the multifactor influence of narrow band random vibrations is developed. The approach involves the conduction of an experiment in conjunction with various statistical techniques. Three factors including two statistical properties of the excitation or response are considered and varied simultaneously. A minimum of 6 tests for 3 variables is possible for a fractional f actorial design. The four coefficients of the predicting equation can be independently estimated. A look at 3 predicting equations shows the predominant effect of the root mean square stress of the first order equation.

  7. Band instability in near-critical fluids subjected to vibration under weightlessness

    Science.gov (United States)

    Lyubimova, T.; Ivantsov, A.; Garrabos, Y.; Lecoutre, C.; Gandikota, G.; Beysens, D.

    2017-01-01

    Periodical patterns (bands) developing at the interface of two immiscible fluids under vibration parallel to interface are observed under zero-gravity conditions. Fluids are slightly below their liquid-vapor critical point where they behave in a scaled, universal manner. In addition, liquid and vapor densities are close and surface tension is very low. Linear stability analyses and direct numerical simulation show that this instability, although comparable to the frozen wave instability observed in a gravity field, is nonetheless noticeably different when gravity becomes zero. In particular, the neutral curve minimum corresponds to the long-wave perturbations with k =0 and zero dimensionless vibrational parameter, corresponding to no instability threshold. The pattern wavelength thus corresponds to the wavelength of the perturbations with maximal growth rate. This wavelength differs substantially from the neutral perturbations wavelength at the same vibrational parameter value. The role of viscosity is highlighted in the pattern formation, with a critical wavelength dependence on vibration parameters that strongly depends on viscosity. These results compare well with experimental observations performed in the liquid-vapor phases near the critical point of C O2 (in weightlessness) and H2 (under magnetic levitation).

  8. Improved Band-to-Band Registration Characterization for VIIRS Reflective Solar Bands Based on Lunar Observations

    Directory of Open Access Journals (Sweden)

    Zhipeng Wang

    2015-12-01

    Full Text Available Spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS instrument aboard the Suomi National Polar-orbiting Partnership (S-NPP satellite are spatially co-registered. The accuracy of the band-to-band registration (BBR is one of the key spatial parameters that must be characterized. Unlike its predecessor, the Moderate Resolution Imaging Spectroradiometer (MODIS, VIIRS has no on-board calibrator specifically designed to perform on-orbit BBR characterization. To circumvent this problem, a BBR characterization method for VIIRS reflective solar bands (RSB based on regularly-acquired lunar images has been developed. While its results can satisfactorily demonstrate that the long-term stability of the BBR is well within ±0.1 moderate resolution band pixels, undesired seasonal oscillations have been observed in the trending. The oscillations are most obvious between the visible/near-infrared bands and short-/middle wave infrared bands. This paper investigates the oscillations and identifies their cause as the band/spectral dependence of the centroid position and the seasonal rotation of the lunar images over calibration events. Accordingly, an improved algorithm is proposed to quantify the rotation and compensate for its impact. After the correction, the seasonal oscillation in the resulting BBR is reduced from up to 0.05 moderate resolution band pixels to around 0.01 moderate resolution band pixels. After removing this spurious seasonal oscillation, the BBR, as well as its long-term drift are well determined.

  9. Systematics of the K 2·gamma vibrational bands and odd–even ...

    Indian Academy of Sciences (India)

    The structure of the K π. 2· gamma vibrational bands and the quasi-gamma bands of even-Z–even-N nuclei is investigated on a global scale, vis-a-vis the variation of band head, the moment of inertia of the band and the odd–even spin staggering. The variation with N and Z and with spin J of the odd–even spin energy ...

  10. Systematics of the K suppi = 2+ gamma vibrational bands and odd-even staggering

    CERN Document Server

    Gupta, J B

    2003-01-01

    The structure of the K suppi = 2+ gamma vibrational bands and the quasi-gamma bands of even-Z-even-N nuclei is investigated on a global scale, vis-a-vis the variation of band head, the moment of inertia of the band and the odd-even spin staggering. The variation with N and Z and with spin J of the odd-even spin energy staggering index is studied and a unified view of the same is presented. (author)

  11. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    Science.gov (United States)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  12. Fatigue failure of materials under broad band random vibrations

    Science.gov (United States)

    Huang, T. C.; Lanz, R. W.

    1971-01-01

    The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.

  13. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2003-01-01

    The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous dampin...

  14. Vibration-rotation bands of CH in the solar infrared spectrum and the solar carbon abundance

    NARCIS (Netherlands)

    Grevesse, N.; Lambert, D.L.; Sauval, A.J.; Dishoeck, van E.F.; Farmer, C.B.; Norton, R.H.

    1991-01-01

    High resolution solar spectra obtained from the ATMOS Fourier Transform Spectrometer (Spacelab 3 flight on April 29-May 6, 1985) have made it possible to identify and measure a large number of lines of the vibration-rotation fundamental bands of the X2 Pi state of CH. From about 100 lines of the

  15. Vibrational spectroscopy of triacetone triperoxide (TATP): Anharmonic fundamentals, overtones and combination bands

    Science.gov (United States)

    Brauer, Brina; Dubnikova, Faina; Zeiri, Yehuda; Kosloff, Ronnie; Gerber, R. Benny

    2008-12-01

    The vibrational spectrum of triacetone triperoxide (TATP) is studied by the correlation-corrected vibrational self-consistent field (CC-VSCF) method which incorporates anharmonic effects. Fundamental, overtone, and combination band frequencies are obtained by using a potential based on the PM3 method and yielding the same harmonic frequencies as DFT/cc-pVDZ calculations. Fundamentals and overtones are also studied with anharmonic single-mode (without coupling) DFT/cc-pVDZ calculations. Average deviations from experiment are similar for all methods: 2.1-2.5%. Groups of degenerate vibrations form regions of numerous combination bands with low intensity: the 5600-5800 cm -1 region contains ca. 70 overtones and combinations of CH stretches. Anharmonic interactions are analyzed.

  16. Rotational and vibrational bands in {sup 108}Pd

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara-Nunez, J.A.; Oliveira, J.R.B.; Cybulska, E.W.; Medina, N.H.; Rao, M.N.; Ribas, R.V.; Rizzutto, M.A.; Seale, W.A.; Falla-Sotelo, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2004-09-15

    The {sup 108}Pd nucleus has been studied with the {sup 100}Mo({sup 11}B, p2n{gamma}) reaction at 43 MeV incident energy. {gamma}-{gamma}-t, {gamma}-{gamma}-charged particle coincidences and directional correlation ratios were measured using the {gamma} spectrometer formed by four Compton suppressed HPGe detectors and a 4{pi} charged-particle ancillary detector system. The structure of the bands was interpreted within the framework of the cranked shell model and total Routhian calculations. (author)

  17. Analysis of longitudinal vibration band gaps in periodic carbon nanotube intramolecular junctions using finite element method

    Directory of Open Access Journals (Sweden)

    Jiaqian Li

    2015-12-01

    Full Text Available The longitudinal vibration band gaps in periodic (n, 0–(2n, 0 single-walled carbon nanotube(SWCNT intramolecular junctions(IMJs are investigated based on the finite element calculation. The frequency ranges of band gaps in frequency response functions(FRF simulated by finite element method (FEM show good agreement with those in band structure obtained by simple spring-mass model. Moreover, a comprehensive parametric study is also conducted to highlight the influences of the geometrical parameters such as the size of unit cell, component ratios of the IMJs and diameters of the CNT segments as well as geometric imperfections on the first band gap. The results show that the frequency ranges and the bandwidth of the gap strongly depend on the geometrical parameters. Furthermore, the influences of geometrical parameters on gaps are nuanced in IMJs with different topological defects. The existence of vibration band gaps in periodic IMJs lends a new insight into the development of CNT-based nano-devices in application of vibration isolation.

  18. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-09-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  19. Experimental investigation of the 0{sub 2}{sup +} band in {sup 154}Sm as a β-vibrational band

    Energy Technology Data Exchange (ETDEWEB)

    Smallcombe, J., E-mail: james.smallcombe@outlook.com [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Davies, P.J.; Barton, C.J.; Jenkins, D.G. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Andersson, L.L.; Butler, P.A.; Cox, D.M.; Herzberg, R.-D.; Mistry, A.; Parr, E. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 9ZE (United Kingdom); Grahn, T.; Greenlees, P.T. [Department of Physics, University of Jyväskylä, FI-40014 (Finland); Hauschild, K. [Department of Physics, University of Jyväskylä, FI-40014 (Finland); CSNSM-IN2P3-CNRS, Université Paris-Sud, 91406 Orsay (France); Herzan, A.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M. [Department of Physics, University of Jyväskylä, FI-40014 (Finland); and others

    2014-05-01

    A study of {sup 154}Sm through γ-ray and internal conversion electron coincidence measurements was performed using the Silicon And GErmanium spectrometer (SAGE). An upper limit for the ρ{sup 2}(E0;2{sub 2}{sup +}→2{sub 1}{sup +}) and measurement of the ρ{sup 2}(E0;4{sub 2}{sup +}→4{sub 1}{sup +}) monopole transitions strengths were determined. The extracted transition strength for each is significantly lower than that predicted by either the Bohr and Mottelson β-vibration description or the interacting boson model. Hence, the long standing interpretation of these states as a collective band built on the 0{sub 2}{sup +} state, which is conventionally assigned as a Bohr and Mottelson β vibration is questionable.

  20. Radio Band Observations of Blazar Variability

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Outbursts in total flux density and linear polarization in the optical-to-radio bands are attributed to shocks propagating within the jet spine, in part, based on limited modelling invoking transverse shocks; new radiative transfer simulations allowing for shocks at arbitrary angle to the flow direction confirm this ...

  1. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  2. Inverse problem of the vibrational band gap of periodically supported beam

    Science.gov (United States)

    Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei

    2017-04-01

    The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.

  3. Force illusions and drifts observed during muscle vibration.

    Science.gov (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  4. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    Science.gov (United States)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  5. Vibrational echo spectral observables and frequency fluctuations of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. Vibrational echo spectral observables and frequency fluctuations of hydration shell water around a fluoride ion from first principles simulations. DEEPAK OJHA AMALENDU CHANDRA. REGULAR ARTICLE Volume 129 Issue 7 July 2017 pp 1069-1080 ...

  6. a Hamiltonian to Obtain a Global Frequency Analysis of all the Vibrational Bands of Ethane

    Science.gov (United States)

    Moazzen-Ahmadi, Nasser; Norooz Oliaee, Jalal

    2016-06-01

    The interest in laboratory spectroscopy of ethane stems from the desire to understand the methane cycle in the atmospheres of planets and their moons and from the importance of ethane as a trace species in the terrestrial atmosphere. Solar decomposition of methane in the upper part of these atmospheres followed by a series of reactions leads to a variety of hydrocarbon compounds among which ethane is often the second most abundant species. Because of its high abundance, ethane spectra have been measured by Voyager and Cassini in the regions around 30, 12, 7, and 3 μm. Therefore, a complete knowledge of line parameters of ethane is crucial for spectroscopic remote sensing of planetary atmospheres. Experimental characterization of torsion-vibration states of ethane lying below 1400 cm-1 have been made previously, but extension of the Hamiltonian model for treatment of the strongly perturbed νb{8} fundamental and the complex band system of ethane in the 3 micron region requires careful examination of the operators for many new torsionally mediated vibration-rotation interactions. Following the procedures outlined by Hougen, we have re-examined the transformation properties of the total angular momentum, the translational and vibrational coordinates and momenta of ethane, and for vibration-torsion-rotation interaction terms constructed by taking products of these basic operators. It is found that for certain choices of phase, the doubly degenerate vibrational coordinates with and symmetry can be made to transform under the group elements in such a way as to yield real matrix elements for the torsion-vibration-rotation couplings whereas other choices of phase may require complex algebra. In this talk, I will discuss the construction of a very general torsion-vibration-rotation Hamiltonian for ethane, as well as the prospect for using such a Hamiltonian to obtain a global frequency analysis (based in large part on an extension of earlier programs and ethane fits^a from

  7. Direct measurement of additional Ar-H2O vibration-rotation-tunneling bands in the millimeter-submillimeter range

    Science.gov (United States)

    Zou, Luyao; Widicus Weaver, Susanna L.

    2016-06-01

    Three new weak bands of the Ar-H2O vibration-rotation-tunneling spectrum have been measured in the millimeter wavelength range. These bands were predicted from combination differences based on previously measured bands in the submillimeter region. Two previously reported submillimeter bands were also remeasured with higher frequency resolution. These new measurements allow us to obtain accurate information on the Coriolis interaction between the 101 and 110 states. Here we report these results and the associated improved molecular constants.

  8. OH populations and temperatures from simultaneous spectroscopic observations of 25 bands

    Directory of Open Access Journals (Sweden)

    S. Noll

    2015-04-01

    Full Text Available OH rotational temperatures are widely used to derive mesopause temperatures and their variations. Since most data sets are only based on a fixed set of lines of a single band, it is important to know possible systematic uncertainties related to the choice of lines. Therefore, a comprehensive study of as many OH bands as possible is desirable. For this purpose, astronomical echelle spectrographs at large telescopes are the most suitable instruments. They offer a wide wavelength coverage, relatively high spectral resolution, and high sensitivity. Moreover, since each ground-based astronomical observation has an imprint of the Earth's atmosphere, the data archives of large astronomical facilities are a treasure for atmospheric studies. For our project, we used archival data of the medium-resolution X-shooter echelle spectrograph operated by the European Southern Observatory at Cerro Paranal in Chile. The instrument can simultaneously observe all OH bands that are accessible from ground. We reduced and analysed a set of 343 high-quality spectra taken between 2009 and 2013 to measure OH line intensities and to derive rotational and vibrational temperatures of 25 bands between 0.58 and 2.24 μm. We studied the influence of the selected line set, OH band, upper vibrational level v′, and the molecular data on the derived level populations and temperatures. The rotational temperature results indicate differences by several degrees depending on the selection. The temperatures for bands of even and odd v′ show deviations which increase with v′. A study of the temporal variations revealed that the nocturnal variability pattern changes for v′ from 2 to 9. In particular, the spread of temperatures tends to increase during the night, and the time of the minimum temperature depends on v′. The vibrational temperatures depend on the range of v′ used for their determination, since the higher vibrational levels from 7 to 9 seem to be overpopulated

  9. Effects of band-limited noise on human observer performance

    NARCIS (Netherlands)

    Salem, S.; Jacobs, E.; Moore, R.; Hogervorst, M.A.; Bijl, P.

    2008-01-01

    Perception tests establish the effects of spatially band-limited noise and blur on human observer performance. Previously, Bijl showed that the contrast threshold of a target image with spatially band-limited noise is a function of noise spatial frequency. He used the method of adjustment to find

  10. Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method

    Directory of Open Access Journals (Sweden)

    GAO Honglin

    2017-08-01

    Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.

  11. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    Science.gov (United States)

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-01-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205

  12. Multi-band Observations of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. This talk focuses on the various aspects we learnt from multi- band observations of GRBs both, before and during the afterglow era. A statistical analysis to estimate the probable redshifts of host galaxies using the luminosity function of GRBs compatible with both the afterglow redshift data as well as the overall ...

  13. CO2 Dimer: Four Intermolecular Modes Observed via Infrared Combination Bands

    Science.gov (United States)

    Norooz Oliaee, Jalal; Dehghany, Mehdi; Rezaei, Mojtaba; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2016-06-01

    Study of the carbon dioxide dimer has a long history, but there is only one previous observation of an intermolecular vibration [1]. Here we analyze four new combination bands of (CO2)2 in the CO2 νb{3} region (˜2350 wn), observed using tunable infrared lasers and a pulsed slit-jet supersonic expansion. The previous combination band at 2382.2 wn was simple to assign [1]. A much more complicated band (˜2370 wn) turns out to involve two upper states, one at 2369.0 wn (Bu symmetry), and the other at 2370.0 wn (Au). The spectrum can be nicely fit by including the Coriolis interactions between these states. Another complicated band around 2443 wn also involves two nearby upper states which are highly perturbed in so-far unexplained ways (possibly related to tunneling shifts). With the help of new ab initio calculations [2], we assign the results as follows. The 2369.0 wn band is the combination of the forbidden Ag intramolecular fundamental (probably [1] at about 2346.76 wn) and the intermolecular geared bend (Bu). The 2370.0 wn band is the combination of the same Ag fundamental and the intermolecular torsion (Au). This gives about 22.3 and 23.2 wn for the geared bend and torsion. The previous 2382.2 wn band [1] is the allowed Bu fundamental (2350.771 wn) plus two quanta of the geared bend (Bu), giving 31.509 wn for this overtone. The highly perturbed 2442.7 wn band is the Bu fundamental plus the antigeared bend (Ag), giving about 91.9 wn for the antigeared bend. Finally, the perturbed 2442.1 wn band is due to an unknown combination of modes which gains intensity from the antigeared bend by a Fermi-type interaction. Calculated values [2] are: 20.64 (geared bend), 24.44 (torsion), 32.34 (geared bend overtone), and 92.30 wn (antigeared bend), in good agreement with experiment. \\vskip 0.2 truecm [1] M. Dehghany, A.R.W. McKellar, Mahin Afshari, and N. Moazzen-Ahmadi, Mol. Phys. 108, 2195 (2010). [2] X.-G. Wang, T. Carrington, Jr., and R. Dawes, private communication.

  14. Observation and Analysis of N[subscript 2]O Rotation-Vibration Spectra: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Bryant, Mark S.; Reeve, Scott W.; Burns, William A.

    2008-01-01

    The linear molecule N[subscript 2]O is presented as an alternative gas-phase species for the ubiquitous undergraduate physical chemistry rotation-vibration spectroscopy experiment. Utilizing a 0.5 cm[superscript -1] resolution teaching grade FTIR spectrometer, 15 vibrational bands, corresponding to 1229 rotation-vibration transitions, have been…

  15. Observation of a universal donor-dependent vibrational mode in graphene.

    Science.gov (United States)

    Fedorov, A V; Verbitskiy, N I; Haberer, D; Struzzi, C; Petaccia, L; Usachov, D; Vilkov, O Y; Vyalikh, D V; Fink, J; Knupfer, M; Büchner, B; Grüneis, A

    2014-01-01

    Electron-phonon coupling and the emergence of superconductivity in intercalated graphite have been studied extensively. Yet, phonon-mediated superconductivity has never been observed in the 2D equivalent of these materials, doped monolayer graphene. Here we perform angle-resolved photoemission spectroscopy to try to find an electron donor for graphene that is capable of inducing strong electron-phonon coupling and superconductivity. We examine the electron donor species Cs, Rb, K, Na, Li, Ca and for each we determine the full electronic band structure, the Eliashberg function and the superconducting critical temperature Tc from the spectral function. An unexpected low-energy peak appears for all dopants with an energy and intensity that depend on the dopant atom. We show that this peak is the result of a dopant-related vibration. The low energy and high intensity of this peak are crucially important for achieving superconductivity, with Ca being the most promising candidate for realizing superconductivity in graphene.

  16. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  17. Exploring the Limits to Observational Diffuse Interstellar Band Studies

    Science.gov (United States)

    Foing, B. H.

    2014-02-01

    The status of DIB research (Herbig 1995) has strongly advanced since the DIB conference in Boulder in 1994. In the same year we reported the discovery of two near IR diffuse bands coincident with C60 +, that was confirmed in subsequent years. Since then a number of DIB observational studies have been published such as DIB surveys, measurements of DIB families, correlations and environment dependences as well as DIBs in extra-galactic sources. Resolved substructures were measured and compared to predicted rotational contours of large molecules. Polarisation studies provided constraints on possible carrier molecules and upper limits. DIBs carriers have been linked with several classes of organic molecules observed in the interstellar medium, in particular to the UIR bands (assigned to PAHs), the Extended Red Emission (ERE) or the recently detected Anomalous Microwave Emission (AME, assigned to spinning dust). In particular fullerenes and PAHs have been proposed to explain some DIBs and specific molecules were searched for in DIB spectra. DIB carriers could be present in various dehydrogenation and ionization states. Experiments in the laboratory and in space contribute to our understanding of the photo-stability of possible DIB carriers. In summary, the status of DIB research in the last 20 years has strongly advanced. We review DIB observational results and their interpretation and introduce the relevant plenary discussion.

  18. Prototype observation and influencing factors of environmental vibration induced by flood discharge

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5–3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.

  19. Alternative measures to observe and record vocal fold vibrations

    NARCIS (Netherlands)

    Schutte, HK; McCafferty, G; Coman, W; Carroll, R

    1996-01-01

    Vocal fold vibration patterns form the basis for the production of vocal sound. Over the years much effort has been spend to optimize the ways to visualize and give a description of these patterns. Before video possibilities became available the description of the patterns was Very time-consuming.

  20. Vibrational echo spectral observables and frequency fluctuations of ...

    Indian Academy of Sciences (India)

    Deepak Ojha

    Vibrational echo; frequency fluctuations; hydration shell water; fluoride ion; ab initio molecular dynamics. 1. Introduction. Ions dissolved in liquid water play important roles in several chemical and biological processes.1,2 Simi- larly, water molecules in aqueous ionic solutions exhibit different dynamics in comparison to pure ...

  1. Spectral band discrimination for species observed from hyperspectral remote sensing

    CSIR Research Space (South Africa)

    Dudeni, N

    2009-08-01

    Full Text Available to assess whether various sets of bands including the full spectrum, the visible (VIS), the near infrared (NIR), the shortwave infra-red (SWIR) region, as well as sets of bands identified by the stepwise discriminant analysis (SDA), can be used...

  2. Observation of a novel stapler band in 75As

    Directory of Open Access Journals (Sweden)

    C.G. Li

    2017-03-01

    Full Text Available The heavy ion fusion–evaporation reaction study for the high-spin spectroscopy of 75As has been performed via the reaction channel 70Zn(9Be, 1p3n75As at a beam energy of 42 MeV. The collective structure especially a dipole band in 75As is established for the first time. The properties of this dipole band are investigated in terms of the self-consistent tilted axis cranking covariant density functional theory. Based on the theoretical description and the examination of the angular momentum components, this dipole band can be interpreted as a novel stapler band, where the valence neutrons in (1g9/2 orbital rather than the collective core are responsible for the closing of the stapler of angular momentum.

  3. Observational studies on the near-infrared unidentified emission bands in galactic H II regions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ohsawa, Ryou; Bell, Aaron C. [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ishihara, Daisuke [Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Shimonishi, Takashi, E-mail: morii@astron.s.u-tokyo.ac.jp [Department of Earth and Planetary Sciences, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada Kobe 657-8501 Japan (Japan)

    2014-03-20

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I {sub 3.4-3.6} {sub μm}/I {sub 3.3} {sub μm} decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I {sub cont,} {sub 3.7} {sub μm}/I {sub 3.3} {sub μm}, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I {sub 9} {sub μm}/I {sub 18} {sub μm} also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I {sub Brα}/I {sub 3.3} {sub μm}. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  4. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    Science.gov (United States)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  5. Vibration Control of a Semiactive Vehicle Suspension System Based on Extended State Observer Techniques

    Directory of Open Access Journals (Sweden)

    Ze Zhang

    2014-01-01

    Full Text Available A feedback control method based on an extended state observer (ESO method is implemented to vibration reduction in a typical semiactive suspension (SAS system using a magnetorheological (MR damper as actuator. By considering the dynamic equations of the SAS system and the MR damper model, an active disturbance rejection control (ADRC is designed based on the ESO. Numerical simulation and real-time experiments are carried out with similar vibration disturbances. Both the simulation and experimental results illustrate the effectiveness of the proposed controller in vibration suppression for a SAS system.

  6. Methodology for Analysing Controllability and Observability of Bladed Disc Coupled Vibrations

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    and observability of bladed discs. The aim is to determine where to locate actuators and sensors in order to be capable of controlling and monitoring both disc lateral and blade vibrations. The analysis methodology is based on the time-variant modal analysis. A numerical example of the methodogy is provided....... A tuned rotating bladed disc is analysed. The analysis shows that blade actuators and sensors are inevitable in order to control and monitor the vibrations. Moreover, it shows that the controllability and observability depends very strongly on the rotational speed.......Many bladed rotating machines such as helicopters, turbines and compressors are susceptible to blade faults due to vibration problems. Typically, blade vibrations in this kind of machines are suppressed by using passive mechanical components. However, when passive control techniques...

  7. A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram

    Science.gov (United States)

    Barszcz, Tomasz; JabŁoński, Adam

    2011-01-01

    The narrowband amplitude demodulation of a vibration signal enables the extraction of components carrying information about rotating machine faults. However, the quality of the demodulated signal depends on the frequency band selected for the demodulation. The spectral kurtosis (SK) was proved to be a very efficient method for detection of such faults, including defective rolling element bearings and gears [1]. Although there are conditions, under which SK yields valid results, there are also cases, when it fails, e.g. in the presence of a relatively strong, non-Gaussian noise containing high peaks or for a relatively high repetition rate of fault impulses. In this paper, a novel method for selection of the optimal frequency band, which attempts to overcome the aforementioned drawbacks, is presented. Subsequently, a new tool for presentation of results of the method, called the Protrugram, is proposed. The method is based on the kurtosis of the envelope spectrum amplitudes of the demodulated signal, rather than on the kurtosis of the filtered time signal. The advantage of the method is the ability to detect transients with smaller signal-to-noise ratio comparing to the SK-based Fast Kurtogram. The application of the proposed method is validated on simulated and real data, including a test rig, a simulated signal, and a jet engine vibration signal.

  8. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    Science.gov (United States)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  9. Observation of high-spin oblate band structures in Pm141

    Science.gov (United States)

    Gu, L.; Zhu, S. J.; Wang, J. G.; Yeoh, E. Y.; Xiao, Z. G.; Zhang, S. Q.; Meng, J.; Zhang, M.; Liu, Y.; Ding, H. B.; Xu, Q.; Zhu, L. H.; Wu, X. G.; He, C. Y.; Li, G. S.; Wang, L. L.; Zheng, Y.; Zhang, B.

    2011-06-01

    The high-spin states of Pm141 have been investigated through the reaction Te126(F19,4n) at a beam energy of 90 MeV. A previous level scheme has been updated with spins up to 49/2ℏ. Six collective bands at high spins are newly observed. Based on the systematic comparison, one band is proposed as a decoupled band; two bands with strong ΔI=1 M1 transitions inside the bands are suggested as the oblate bands with γ ~-60°; three other bands with large signature splitting have been proposed with the oblate-triaxial deformation with γ~ -90°. The triaxial n-particle-n-hole particle rotor model calculations for one of the oblate bands in Pm141 are in good agreement with the experimental data. The other characteristics for these bands have been discussed.

  10. Using Lunar Observations to Assess Terra MODIS Thermal Emissive Bands Calibration

    Science.gov (United States)

    Xiong, Xiaoxiong; Chen, Hongda

    2010-01-01

    MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues.

  11. Observation of full plasmonic stop bands in fractal structures

    Science.gov (United States)

    Yasrebi, Navid; Khorasani, Sina; Hazeghi, Aryan; Rashidian, Bizhan

    2011-03-01

    In the last year's meeting we reported a novel approach for stabilization of numerical calculation of plasmonic propagation band structure. This method enables us to precisely obtain the propagation modes of periodically patterned two-dimensional conducting sheets, with arbitrarily high order of spatial harmonic content. Following the above contribution, we here present successful construction of a periodic fractal structure based on the combination of square array of wires and the space-filling Hilbert curves, leading to very large plasmonic gaps in the propagation spectrum. Different parameters affecting that gap, and the way to control each of them will be presented. Possible applications will be discussed.

  12. A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer

    Science.gov (United States)

    Riley, A. L.; Hansen, D. M.; Mileant, A.; Hartop, R. W.

    1987-02-01

    A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz).

  13. Characterization and Simulation of Transient Vibrations Using Band Limited Temporal Moments

    Directory of Open Access Journals (Sweden)

    David O. Smallwood

    1994-01-01

    Full Text Available A method is described to characterize shocks (transient time histories in terms of the Fourier energy spectrum and the temporal moments of the shock passed through a contiguous set of band pass filters. The product model is then used to generate of a random process as simulations that in the mean will have the same energy and moments as the characterization of the transient event.

  14. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  15. Vibrational Dependence of Line Coupling and Line Mixing in Self-Broadened Parallel Bands of NH3

    Science.gov (United States)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2017-01-01

    Line coupling and line mixing effects have been calculated for several self-broadened NH3 lines in parallel bands involving an excited v2 mode. It is well known that once the v2 mode is excited, the inversion splitting quickly increases as this quantum number increases. In the present study, we have shown that the v2 dependence of the inversion splitting plays a dominant role in the calculated line-shape parameters. For the v2 band with a 36 cm-1 splitting, the intra-doublet couplings practically disappear and for the 2v2 and 2v2 - v2 bands with much higher splitting values, they are completely absent. With respect to the inter-doublet coupling, it becomes the most efficient coupling mechanism for the v2 band, but it is also completely absent for bands with higher v2 quantum numbers. Because line mixing is caused by line coupling, the above conclusions on line coupling are also applicable for line mixing. Concerning the check of our calculated line mixing effects, while the present formalism has well explained the line mixing signatures observed in the v1 band, there are large discrepancies between the measured Rosenkranz mixing parameters and our calculated results for the v2 and 2v2 bands. In order to clarify these discrepancies, we propose to make some new measurements. In addition, we have calculated self-broadened half-widths in the v2 and 2v2 bands and made comparisons with several measurements and with the values listed in HITRAN 2012. In general, the agreements with measurements are very good. In contrast, the agreement with HITRAN 2012 is poor, indicating that the empirical formula used to predict the HITRAN 2012 data has to be updated.

  16. Ortho-Para-Dependent Pressure Effects Observed in the Near Infrared Band of Acetylene by Dual-Comb Spectroscopy

    Science.gov (United States)

    Iwakuni, Kana; Okubo, Sho; Yamada, Koichi M. T.; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki

    2016-09-01

    We demonstrate that dual-comb spectroscopy, which allows one to record broadband spectra with high frequency accuracy in a relatively short time, provides a real advantage for the observation of pressure-broadening and pressure-shift effects. We illustrate this with the ν1+ν3 vibration band of 12C2 H2 . We observe transitions from P (26 ) to R (29 ) , which extend over a 3.8 THz frequency range, at six pressures ranging up to 2654 Pa. Each observed absorption line profile is fitted to a Voigt function yielding pressure-broadening and pressure-shift coefficients for each rotation-vibration transition. The effectiveness of this technique is such that we are able to discern a clear dependence of the pressure-broadening coefficients on the nuclear spin state, i.e., on the ortho or para modification. This information, combined with the pressure-shift coefficients, can facilitate a detailed understanding of the mechanism of molecular collisions.

  17. Proposed colour banded early warning observation charts for South ...

    African Journals Online (AJOL)

    Health care worker inability to recognise critically sick patients based on standard vital observations or to act upon abnormal observations is a South African phenomenon and at present poorly understood. Practices elsewhere in the world have shown that although health professionals are poor to comply with risk scoring ...

  18. Radio Band Observations of Blazar Variability Margo F. Aller , Hugh ...

    Indian Academy of Sciences (India)

    VLBA observations place the CP emission site at or near the radio core (e.g. Homan. & Wardle 2004), the region believed to be the τ = 1 surface or a standing shock. UMRAO monitoring observations of Stokes V were carried out for a few sources at. 4.8 and 8 GHz during the late 1970s and early 1980s, but the program was ...

  19. Multi-band Observations of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... This talk focuses on the various aspects we learnt from multiband observations of GRBs both, before and during the afterglow era. A statistical analysis to estimate the probable redshifts of host galaxies using the luminosity function of GRBs compatible with both the afterglow redshift data as well as the ...

  20. Integration of SMAP and SMOS L-Band Observations

    Science.gov (United States)

    Bindlish, Rajat; Jackson, Thomas J.; Chan, Steven; Colliander, Andreas; Kerr, Yaan

    2017-01-01

    Soil Moisture Active Passive (SMAP) mission and the ESA Soil Moisture and Ocean Salinity (SMOS) missions provide brightness temperature and soil moisture estimates every 2-3 days. SMAP brightness temperature observations were compared with SMOS observations at 40 Degrees incidence angle. The brightness temperatures from the two missions are not consistent and have a bias of about 2.7K over land with respect to each other. SMAP and SMOS missions use different retrieval algorithms and ancillary datasets which result in further inconsistencies between the soil moisture products. The reprocessed constant-angle SMOS brightness temperatures were used in the SMAP soil moisture retrieval algorithm to develop a consistent multi-satellite product. The integrated product will have an increased global revisit frequency (1 day) and period of record that would be unattainable by either one of the satellites alone. Results from the development and validation of the integrated product will be presented.

  1. Observation of a nonradiative flat band for spoof surface plasmons in a metallic Lieb lattice

    CERN Document Server

    Kajiwara, Sho; Nakata, Yosuke; Nakanishi, Toshihiro; Kitano, Masao

    2016-01-01

    We demonstrate a nonradiative flat band for spoof surface plasmon polaritons bounded on a structured surface with Lieb lattice symmetry in the terahertz regime. First, we theoretically derive the dispersion relation of spoof plasmons in a metallic Lieb lattice based on the electrical circuit model. We obtain three bands, one of which is independent of wave vector. To confirm the theoretical result, we numerically and experimentally observe the flat band in transmission and attenuated total reflection configurations. We reveal that the quality factor of the nonradiative flat-band mode decoupled from the propagating wave is higher than that of the radiative flat-band mode. This indicates that the nonradiative flat-band mode is three-dimensionally confined in the lattice.

  2. Unusual quantum interference in the S1 state of DABCO and observation of intramolecular vibrational redistribution.

    Science.gov (United States)

    Poisson, Lionel; Maksimenska, Raman; Soep, Benoît; Mestdagh, Jean-Michel; Parker, David H; Nsangou, Mama; Hochlaf, Majdi

    2010-03-11

    In this paper we report an experimental study of the time-resolved response of the molecule 1,4-diazabicyclo[2.2.2]octane (DABCO) to 266.3 nm electronic excitation of the S(1) state with a femtosecond laser. Rotational decoherence and vibrational oscillation within the S(1) state are observed. We performed state-of-the-art ab initio calculations on the ground and low electronic states of the neutral molecule and the cation, which assist in the assignment of the observed photoelectron signals. Using our theoretical and spectroscopic data, the experimental findings are interpreted in terms of an unusual quantum interference between two different vibrational modes, with only the nu = 1 level of each mode being populated.

  3. Vibrational self-trapping in beta-sheet structures observed with femtosecond nonlinear infrared spectroscopy.

    Science.gov (United States)

    Bodis, Pavol; Schwartz, Erik; Koepf, Matthieu; Cornelissen, Jeroen J L M; Rowan, Alan E; Nolte, Roeland J M; Woutersen, Sander

    2009-09-28

    Self-trapping of NH-stretch vibrational excitations in synthetic beta-sheet helices is observed using femtosecond infrared pump-probe spectroscopy. In a dialanine-based beta-sheet helix, the transient-absorption change upon exciting the NH-stretch mode exhibits a negative absorption change at the fundamental frequency and two positive peaks at lower frequencies. These two induced-absorption peaks are characteristic for a state in which the vibrational excitation is self-trapped on essentially a single NH-group in the hydrogen-bonded NH...OC chain, forming a small (Holstein) vibrational polaron. By engineering the structure of the polymer we can disrupt the hydrogen-bonded NH...OC chain, allowing us to eliminate the self-trapping, as is confirmed from the NH-stretch pump-probe response. We also investigate a trialanine-based beta-sheet helix, where each side chain participates in two NH...OC chains with different hydrogen-bond lengths. The chain with short hydrogen bonds shows the same self-trapping behavior as the dialanine-based beta-sheet helix, whereas in the chain with long hydrogen bonds the self-trapping is too weak to be observable.

  4. Extremely slow intramolecular vibrational redistribution: Direct observation by time-resolved raman spectroscopy in trifluoropropyne

    Science.gov (United States)

    Malinovsky, A. L.; Makarov, A. A.; Ryabov, E. A.

    2011-04-01

    We have studied the dynamics of intramolecular vibrational redistribution (IVR) from the initially excited mode v1 ≈ 3330 cm-1 (acetylene-type H-C bond) in H-C≡C-CF3 molecules in the gaseous phase by means of anti-Stokes spontaneous Raman scattering. The time constant of this process is estimated as 2.3 ns—this is the slowest IVR time reported so far for the room-temperature gases. It is suggested that so long IVR time with respect to the other propyne derivatives can be explained by a larger defect, in this case, of the Fermi resonance of v1 with v2 + 2v7—the most probable doorway state leading to IVR from v1 to the bath of all vibrational-rotational states with the close energies. In addition, it is shown that the observed dynamics is in agreement with a theoretical model assuming strong vibrational-rotational mixing.

  5. Real-time observation of vibrational revival in the fastest molecular system

    Science.gov (United States)

    Rudenko, A.; Ergler, Th.; Feuerstein, B.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2006-10-01

    After preparing a coherent vibrational wave packet in the hydrogen molecular ion by ionizing neutral H 2 molecules with a 6.5 fs, 760 nm laser pulse at 3 × 10 14 W/cm 2, we map its spatio-temporal evolution by the fragmentation induced with a second 6.5 fs laser pulse of doubled intensity. In this proof-of-principle experiment, we visualize the oscillations of this most fundamental molecular system, observe a dephasing of the vibrational wave packet and its subsequent revival. Whereas the experimental data exhibit an overall qualitative agreement with the results of a simple numerical simulation, noticeable discrepancy is found in the characteristic revival time. The most likely reasons for this disagreement originate from the simplifications used in the theoretical model, which assumes a Franck-Condon transition induced by the pump pulse with subsequent field-free propagation of the H2+ vibrational wave packet, and neglects the influence of the rotational motion.

  6. Inter-comparison of SMAP, SMOS and Aquarius L-band brightness temperature observations

    Science.gov (United States)

    Verifying the calibration of the SMAP radiometer over land observations is an important mission requirement. Inter-comparison of L-band brightness temperature observations from different satellites (SMAP, SMOS and Aquarius) is a useful tool for radiometer calibration. Brightness temperatures observa...

  7. Temperature-independent band structure of WTe2 as observed from angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Thirupathaiah, S.; Jha, Rajveer; Pal, Banabir; Matias, J. S.; Das, P. Kumar; Vobornik, I.; Ribeiro, R. A.; Sarma, D. D.

    2017-10-01

    Extremely large magnetoresistance (XMR), observed in transition-metal dichalcogenides, WTe2, has attracted recently a great deal of research interest as it shows no sign of saturation up to a magnetic field as high as 60 T, in addition to the presence of type-II Weyl fermions. Currently, there is a great deal of discussion on the role of band structure changes in the temperature-dependent XMR in this compound. In this contribution, we study the band structure of WTe2 using angle-resolved photoemission spectroscopy and first-principles calculations to demonstrate that the temperature-dependent band structure has no substantial effect on the temperature-dependent XMR, as our measurements do not show band structure changes upon increasing the sample temperature between 20 and 130 K. We further observe an electronlike surface state, dispersing in such a way that it connects the top of bulk holelike band to the bottom of bulk electronlike band. Interestingly, similarly to bulk states, the surface state is also mostly intact with the sample temperature. Our results provide valuable information in shaping the mechanism of temperature-dependent XMR in WTe2.

  8. Multi-instrument observations of the electric and magnetic field structure of omega bands

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    2000-01-01

    Full Text Available High time resolution data from the CUTLASS Finland radar during the interval 01:30-03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending ~5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes ~500 km and an eastward propagation velocity ~0.75 km s-1. They occur in the morning sector (~05 MLT, simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed..Key words. Ionosphere (auroral ionosphere; electric fields and currents · Magnetospheric physics (magnetosphere-ionosphere interactions

  9. Observation of sound-induced corneal vibrational modes by optical coherence tomography

    OpenAIRE

    Akca, B. Imran; Chang, Ernest W.; Kling, Sabine; Ramier, Antoine; Scarcelli, Giuliano; Marcos, Susana; Yun, Seok H.

    2015-01-01

    The mechanical stability of the cornea is critical for maintaining its normal shape and refractive function. Here, we report an observation of the mechanical resonance modes of the cornea excited by sound waves and detected by using phase-sensitive optical coherence tomography. The cornea in bovine eye globes exhibited three resonance modes in a frequency range of 50-400 Hz. The vibration amplitude of the fundamental mode at 80-120 Hz was ~8 µm at a sound pressure level of 100 dB (2 Pa). Vibr...

  10. Multi-Resolution L-Band Microwave Observations for Growing Vegetation during SMAPVEX16-IA

    Science.gov (United States)

    Judge, J.; Liu, P. W.; Chakrabarti, S.; De Roo, R. D.; Colliander, A.; Misra, S.; Yueh, S. H.; Williamson, R.; Ramos, I.; Tripp, S.; England, A. W.

    2016-12-01

    Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The NASA Soil Moisture Active/Passive (SMAP) mission includes passive sensor at L-band that provides global observations of SM at 36 km, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture when data assimilated into land surface models (LSMs). The SMAP Validation Experiment-2016 (SMAPVEX16) was conducted during the summer from May through August 2016 in predominantly agricultural regions in Iowa (SMAPVEX16-IA) and Manitoba. During the experiment, aircraft and ground-based observations of L-band active and passive signatures of corn and soybean were obtained at the SMAP incidence angle of 40•. The aircraft measurements were obtained from the NASA/JPL Passive Active L- and S-band Sensor (PALS) during the time of SMAP overpasses from May 23 through June 3 and from August 3 through August 16, 2016. The ground-based University of Florida (UFLMR) and University of Michigan L-band Radiometer (UMLMR) systems observed microwave signatures of soybean and corn, respectively, at the Sweeney Farms, about 70 km north of Ames, IA. The ground-based sensors conducted every 15-minutes observations from May 23 through September 2, 2016. In addition, soil, vegetation, and micro-meteorological conditions were also monitored throughout the growing season. In this study, we discuss the satellite observations from SMAP and ESA Soil Moisture and Ocean Salinity (SMOS) along with those from PALS, and UFLMR/UMLMR at differing resolutions to understand implications of spatial heterogeneity on soil moisture retrievals in agricultural regions. resolutions. The preliminary results show SMAP observations at 36 km correspond well with the ground-based observations for corn, the predominant land cover in the region.

  11. Resonance Vibrations of the Ross Ice Shelf and Observations of Persistent Atmospheric Waves

    Science.gov (United States)

    Zabotin, N. A.; Godin, O. A.

    2016-12-01

    Recently reported lidar observations at McMurdo have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at mid- and low-latitude locations [Chen et al., JGR Space Physics, 2016]. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 hours. Here, we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vector of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity.

  12. Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix

    Science.gov (United States)

    Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.

    2017-02-01

    Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

  13. An Observational Study of Intermediate Band Students' Self-Regulated Practice Behaviors

    Science.gov (United States)

    Miksza, Peter; Prichard, Stephanie; Sorbo, Diana

    2012-01-01

    The purpose of this study was to investigate intermediate musicians' self-regulated practice behaviors. Thirty sixth- through eighth-grade students were observed practicing band repertoire individually for 20 min. Practice sessions were coded according to practice frame frequency and duration, length of musical passage selected, most prominent…

  14. Preliminary Results on VLT K-band Imaging Observations of GRB ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. We have obtained K-band imaging observations of Gamma-. Ray Burst (GRB) host galaxies with the near-infrared spectro-imager. ISAAC installed on the Very Large Telescope at Paranal (Chile). The derived K magnitudes, combined with other photometric data taken from the literature, are used to investigate the ...

  15. Inter-comparison of SMAP, Aquarius and SMOS L-band brightness temperature observations

    Science.gov (United States)

    Soil Moisture Active Passive (SMAP) mission is scheduled for launch on January 29, 2015. SMAP will make observations with an L-band radar and radiometer using a shared 6 m rotating reflector antenna. SMAP is a fully polarimetric radiometer with the center frequency of 1.41 GHz. The target accuracy o...

  16. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  17. Spiral Modes and the Observation of Quantized Conductance in the Surface Bands of Bismuth Nanowires.

    Science.gov (United States)

    Huber, Tito E; Johnson, Scott; Konopko, Leonid; Nikolaeva, Albina; Kobylianskaya, Anna; Graf, Michael J

    2017-11-14

    When electrons are confined in two-dimensional materials, quantum-mechanical transport phenomena and high mobility can be observed. Few demonstrations of these behaviours in surface spin-orbit bands exist. Here, we report the observation of quantized conductance in the surface bands of 50-nm Bi nanowires. With increasing magnetic fields oriented along the wire axis, the wires exhibit a stepwise increase in conductance and oscillatory thermopower, possibly due to an increased number of high-mobility spiral surface modes based on spin-split bands. Surface high mobility is unexpected since bismuth is not a topological insulator and the surface is not suspended but in contact with the bulk. The oscillations enable us to probe the surface structure. We observe that mobility increases dramatically with magnetic fields because, owing to Lorentz forces, spiral modes orbit decreases in diameter pulling the charge carriers away from the surface. Our mobility estimates at high magnetic fields are comparable, within order of magnitude, to the mobility values reported for suspended graphene. Our findings represent a key step in understanding surface spin-orbit band electronic transport.

  18. Mini-RF S- and X-band Bistatic Observations of the Floor of Cabeus Crater

    Science.gov (United States)

    Patterson, Gerald Wesley; Stickle, Angela; Turner, Franklin; Jensen, James; Cahill, Joshua; Mini-RF Team

    2017-10-01

    The Mini-RF instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) and operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34 meter antenna DSS-13 to collect S- and X-band bistatic radar data of the Moon. Bistatic radar data provide a means to probe the near subsurface for the presence of water ice, which exhibits a strong response in the form of a Coherent Backscatter Opposition Effect (CBOE). This effect has been observed in radar data for the icy surfaces of the Galilean satellites, the polar caps of Mars, polar craters on Mercury, and terrestrial ice sheets in Greenland. Previous work using Mini-RF S-band (12.6 cm) bistatic data suggests the presence of a CBOE associated with the floor of the lunar south polar crater Cabeus. The LRO spacecraft has begun its third extended mission. For this phase of operations Mini-RF is leveraging the existing AO architecture to make S-band radar observations of additional polar craters (e.g., Haworth, Shoemaker, Faustini). The purpose of acquiring these data is to determine whether other polar craters exhibit the response observed for Cabeus. Mini-RF has also initiated a new mode of operation that utilizes the X-band (4.2cm) capability of the instrument receiver and a recently commissioned X/C-band transmitter within the Deep Space Network’s (DSN) Goldstone complex to collect bistatic X-band data of the Moon. The purpose of acquiring these data is to constrain the depth/thickness of materials that exhibit a CBOE response - with an emphasis on observing the floor of Cabeus. Recent Mini-RF X-band observations of the floors of the craters Cabeus do not show evidence for a CBOE. This would suggest that the upper ~0.5 meters of the regolith for the floor of Cabeus do not harber water ice in a form detectable at 4.2 cm wavelengths.

  19. Imaging spectroscopy of the missing REMPI bands of methyl radicals: Final touches on all vibrational frequencies of the 3p Rydberg states.

    Science.gov (United States)

    Pan, Huilin; Liu, Kopin

    2018-01-07

    (2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them-including partially and fully deuterated isotopologs-four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands-CHD2(611), CH2D(311), CH2D(511), and CH2D(611)-are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.

  20. HRO: A New Forward-Scatter Observation Method Using a Ham-Band Beacon

    Science.gov (United States)

    Maegawa, K.

    1999-02-01

    A new forward-scatter meteor observation method has been used since 1996 in Japan. It uses its own 50 W continuous wave beacon with a broad directivity antenna on 53.750 MHz. To compensate for the weak echo power from the beacon, observers use SSB mode receivers and narrow band echo detection methods with Fast Fourier Transform software on personal computers. More than 250000 echoes have been counted per year so far. >From these results, diurnal and seasonal variations have been derived and are presented and discussed here. This method (HRO) will continue to play a leading radio observation role in Japan for the future.

  1. Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating.

    Science.gov (United States)

    Ullah, Zakir; Wang, Zhiguo; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2014-12-01

    For the first time, we experimentally and theoretically research about the probe transmission signal (PTS), the reflected four wave mixing band gap signal(FWM BGS) and fluorescence signal (FLS) under the double dressing effect in an inverted Y-type four level system. FWM BGS results from photonic band gap structure. We demonstrate that the characteristics of PTS, FWM BGS and FLS can be controlled by power, phase and the frequency detuning of the dressing beams. It is observed in our experiment that FWM BGS switches from suppression to enhancement, corresponding to the switch from transmission enhancement to absorption enhancement in the PTS with changing the relative phase. We also observe the relation among the three signals, which satisfy the law of conservation of energy. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  2. Observation of high-spin bands with large moments of inertia in 124Xe

    Science.gov (United States)

    Nag, Somnath; Singh, A. K.; Hagemann, G. B.; Sletten, G.; Herskind, B.; Døssing, T.; Ragnarsson, I.; Hübel, H.; Bürger, A.; Chmel, S.; Wilson, A. N.; Rogers, J.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Zhu, S.; Korichi, A.; Stefanova, E. A.; Fallon, P.; Nyakó, B. M.; Timár, J.; Juhász, K.

    2016-09-01

    High-spin states in 124Xe have been populated using the 80Se(48Ca,4 n ) reaction at a beam energy of 207 MeV and high-multiplicity, γ -ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin bands with large moments of inertia, similar to those observed in neighboring nuclei, have been observed. The experimental results are compared with calculations within the framework of the cranked Nilsson-Strutinsky model. It is suggested that the configurations of the bands involve excitations of protons across the Z =50 shell gap coupled to neutrons within the N =50 -82 shell or excited across the N =82 shell closure.

  3. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    2001-08-01

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  4. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  5. Optical observations of the nearby galaxy IC342 with narrow band [SII] and Hα filters. I

    Directory of Open Access Journals (Sweden)

    Vučetić M.M.

    2013-01-01

    Full Text Available We present observations of a portion of the nearby spiral galaxy IC342 using narrow band [SII] and Hα filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, Hα and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 5 times higher than previously known in these two parts of the galaxy. [Projekat Ministarstva nauke Republike Srbije, br. 176005: Emission nebulae: structure and evolution

  6. MAPSAR: a small L-band SAR mission for land observation

    Science.gov (United States)

    Schröder, Reinhard; Puls, Jürgen; Hajnsek, Irena; Jochim, Fritz; Neff, Thomas; Kono, Janio; Renato Paradella, Waldir; Marcos Quintino da Silva, Mario; de Morisson Valeriano, Dalton; Pereira Farias Costa, Maycira

    2005-01-01

    This paper introduces Multi-Application Purpose SAR (MAPSAR). A new Synthetic Aperture Radar (SAR) mission for earth observation. MAPSAR is the result of a joint pre-phase A study conducted by INPE and DLR targeting a mission for assessment, management and monitoring of natural resources. The applicability of the sensor system was investigated for cartography, forestry, geology, geomorphology, hydrology, agriculture, disaster management, oceanography, urban studies and security. An L-band SAR, based on INPE's multi-mission platform (MMP), has been chosen as payload of the satellite. The key component of the SAR instrument is the SAR antenna, which is designed as an elliptical parabolic reflector antenna. L-band (high spatial resolution, quad-pol) has been selected for the SAR sensor as optimum frequency accounting for the majority of Brazilian and German user requirements. At the moment, the pre-phase A has been concluded and the phase A is planned to start in early 2003.

  7. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  8. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    Science.gov (United States)

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  9. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    Science.gov (United States)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This

  10. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  11. Optical observations of M81 galaxy group in narrow band [SII] and Hα filters: Holmberg IX

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2009-01-01

    Full Text Available We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and Hα filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supernova remnants (identified as sources with enhanced [SII] emission relative to their Hα emission in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant H® emission that probably represent uncatalogued HII regions.

  12. Improvement of the vibration isolation system for TAMA300

    CERN Document Server

    Takahashi, R

    2002-01-01

    The vibration isolation system for TAMA300 has a vibration isolation ratio large enough to achieve the requirement in the observation band around 300 Hz. At a lower frequency range, it is necessary to reduce the large fluctuation of mirrors for stable operation of the interferometer. With this aim, the mirror suspension systems were modified and an active vibration isolation system using pneumatic actuators was installed. These improvements contributed to the realization of a continuous interferometer lock for more than 24 h.

  13. Observation of electron excitation into silicon conduction band by slow-ion surface neutralization

    CERN Document Server

    Shchemelinin, S

    2016-01-01

    Bare reverse biased silicon photodiodes were exposed to 3eV He+, Ne+, Ar+, N2+, N+ and H2O+ ions. In all cases an increase of the reverse current through the diode was observed. This effect and its dependence on the ionization energy of the incident ions and on other factors are qualitatively explained in the framework of Auger-type surface neutralization theory. Amplification of the ion-induced charge was observed with an avalanche photodiode under high applied bias. The observed effect can be considered as ion-induced internal potential electron emission into the conduction band of silicon. To the best of our knowledge, no experimental evidence of such effect was previously reported. Possible applications are discussed.

  14. The key role of intramolecular Jahn-Teller vibrations and many-valley band spectrum effects in mechanism of superconductivity of doped fullerite C sub 6 sub 0

    CERN Document Server

    Loktev, V M; Shekhter, R I; Jonson, M

    2002-01-01

    Some conceivable reasons for superconductivity and enhancement of the critical temperature Tc of the superconducting phase transition in doped cubic and hexagonal fullerene C sub 6 sub 0 crystals are analyzed. It is shown that of primary importance in the mechanism of superconductivity in such a molecular metal are the Jahn-Teller intramolecular vibrations which appear due to change of the charge state of the high symmetrical C sub 6 sub 0 molecules during the electron-phonon interaction; the effect of degeneration (many-valleyness) of narrow, bands with high density of states and many-particle Coulomb correlations (the local field effects) which result in increase of the coupling constant at the Cooper pairing of current carriers.

  15. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); MacDonald, M. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States); Zastrau, U. [High-Energy Density Science Group, Hamburg (Germany); Gauthier, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gericke, D. O. [Univ. of Warwick (United Kingdom); Vorberger, J. [Helmholtz Association of German Research Centres, Dresden (Germany); Granados, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-25

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purely hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.

  16. Satellite Surface Characterization from Non-resolved Multi-band Optical Observations

    Science.gov (United States)

    Hall, D.; Hamada, K.; Kelecy, T.; Kervin, P.

    2012-09-01

    Ground-based optical and radar sites routinely acquire resolved images of satellites. These resolved images provide the means to construct accurate wire-frame models of the observed body, as well as an understanding of its orientation as a function of time. Unfortunately, because such images are typically acquired at a single wavelength, this kind of analysis provides little or no information on the types of materials covering the satellite's various surfaces. Detailed surface material characterization generally requires multi-band radiometric and/or spectrometric measurements. Fortunately, many widely-available instruments provide such multi-band information (e.g., spectrographs and multi-channel photometers). However, these sensors typically measure the brightness of sunlight reflected from the entire satellite, with no spatial resolution at all. Because such whole-body measurements represent a summation of contributions from many reflecting surfaces, an "un-mixing" analysis process must be employed to characterize the reflectance of the satellite's sub-components. The objective of this presentation is to outline the theory required to retrieve satellite surface properties from temporal sequences of whole-body, multi-band brightness measurements, focusing on two newly-developed analysis methods. Both methods require the following as input: 1) a set of multi-band measurements of a satellite's reflected-sunlight brightness, 2) the satellite's wire-frame model, including each major sub-component capable of reflecting sunlight, 3) the satellite's attitude, specifying the orientation of all of the body's components at the time of each multi-band measurement. In addition, the first method requires laboratory-measured bi-directional reflection distribution functions (BRDFs) for a set of candidate materials covering the satellite's surfaces, and yields estimates of the fraction of each major satellite sub-component covered by each candidate material. The second method

  17. Observer Based Optimal Vibration Control of a Full Aircraft System Having Active Landing Gears and Biodynamic Pilot Model

    Directory of Open Access Journals (Sweden)

    Hakan Yazici

    2016-01-01

    Full Text Available This paper deals with the design of an observed based optimal state feedback controller having pole location constraints for an active vibration mitigation problem of an aircraft system. An eleven-degree-of-freedom detailed full aircraft mathematical model having active landing gears and a seated pilot body is developed to control and analyze aircraft vibrations caused by runway excitation, when the aircraft is taxiing. Ground induced vibration can contribute to the reduction of pilot’s capability to control the aircraft and cause the safety problem before take-off and after landing. Since the state variables of the pilot body are not available for measurement in practice, an observed based optimal controller is designed via Linear Matrix Inequalities (LMIs approach. In addition, classical LQR controller is designed to investigate effectiveness of the proposed controller. The system is then simulated against the bump and random runway excitation. The simulation results demonstrate that the proposed controller provides significant improvements in reducing vibration amplitudes of aircraft fuselage and pilot’s head and maintains the safety requirements in terms of suspension stroke and tire deflection.

  18. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure.

    Science.gov (United States)

    Simakov, Evgenya I; Arsenyev, Sergey A; Buechler, Cynthia E; Edwards, Randall L; Romero, William P; Conde, Manoel; Ha, Gwanghui; Power, John G; Wisniewski, Eric E; Jing, Chunguang

    2016-02-12

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

  19. Mechanism of formation of wiggly compaction bands in porous sandstone: 1. Observations and conceptual model

    Science.gov (United States)

    Liu, Chun; Pollard, David D.; Deng, Shang; Aydin, Atilla

    2015-12-01

    Field observations are combined with microscopic analyses to investigate the mechanism of formation of wiggly compaction bands (CBs) in the porous Jurassic aeolian Aztec Sandstone exposed at Valley of Fire State Park, Nevada. Among the three types of CBs (T1, T2, and T3), we focused on the wiggly CBs (T3), which show a chevron (T31) or wavy (T32) pattern with typical corner angles of approximately 90° or 130°, respectively. Where corner angles of wiggly CBs increase to 180°, they become straight CBs (T33). Image analyses of thin sections using an optical microscope show host rock porosity increases downslope in this dune, and the predominant type of wiggly CBs also varies from chevron to straight CBs. Specifically, band type varies continuously from chevron to wavy to straight where the porosity and grain sorting of the host rock increase systematically. Based on the crack and anticrack models, we infer that the change from chevron to straight CBs is due to increasing failure angle of the sandstone and this may correlate with increasing grain sorting. Wavy CBs with intermediate failure angle and host rock porosity are an intermediate stage between chevron and straight CBs. Previous sedimentological studies also have suggested that grain size and sorting degree increase downslope on the downwind side of sand dunes due to a sieving process of the wind-blown grains. Therefore, the transition of wiggly CB types in this regard correlates with increasing sorting and perhaps with increasing porosity downslope.

  20. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y C; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M; Steinhardt, Paul J

    2013-10-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials.

  1. Measuring pulse times of arrival from broad-band pulsar observations

    Science.gov (United States)

    Liu, K.; Desvignes, G.; Cognard, I.; Stappers, B. W.; Verbiest, J. P. W.; Lee, K. J.; Champion, D. J.; Kramer, M.; Freire, P. C. C.; Karuppusamy, R.

    2014-10-01

    In recent years, instrumentation enabling pulsar observations with unprecedentedly high fractional bandwidth has been under development which can be used to substantially improve the precision of pulsar timing experiments. The traditional template-matching method used to calculate pulse times of arrival (ToAs) may not function effectively on these broad-band data due to a variety of effects such as diffractive scintillation in the interstellar medium, profile variation as a function of frequency, dispersion measure (DM) evolution, and so forth. In this paper, we describe the channelized discrete Fourier transform method that can greatly mitigate the influence of the aforementioned effects when measuring ToAs from broad-band timing data. The method is tested on simulated data, and its potential in improving timing precision is shown. We further apply the method to PSR J1909-3744 data collected at the Nançay Radio Telescope with the Nançay Ultimate Pulsar Processing Instrument. We demonstrate removal of systematics due to the scintillation effect as well as improvement on ToA measurement uncertainties. Our method also determines temporal variations in DM, which are consistent with multichannel timing approaches used earlier.

  2. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC

  3. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC are associated with

  4. Prototype partial one-third octave band spectrum analyzer for acoustic, vibration and other wideband data for flight applications

    Science.gov (United States)

    1973-01-01

    The design refinement of a compact frequency analyzer for measurement and analysis on board flight vehicles is discussed. The analyzer has been constructed in a partial one-third octave band configuration with six filters and detectors spaced by the square root of 10 from 316 Hz to 100,000 Hz and a broadband detector channel. The analyzer has been tested over a temperature range of 40 to 120 F at a pressure of one atmosphere, and at a temperature of 75 F at an absolute pressure of 0.000001 torr, and has demonstrated at least 60 db of dynamic range.

  5. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  6. Stroboscopic Image Modulation to Reduce the Visual Blur of an Object Being Viewed by an Observer Experiencing Vibration

    Science.gov (United States)

    Kaiser, Mary K. (Inventor); Adelstein, Bernard D. (Inventor); Anderson, Mark R. (Inventor); Beutter, Brent R. (Inventor); Ahumada, Albert J., Jr. (Inventor); McCann, Robert S. (Inventor)

    2014-01-01

    A method and apparatus for reducing the visual blur of an object being viewed by an observer experiencing vibration. In various embodiments of the present invention, the visual blur is reduced through stroboscopic image modulation (SIM). A SIM device is operated in an alternating "on/off" temporal pattern according to a SIM drive signal (SDS) derived from the vibration being experienced by the observer. A SIM device (controlled by a SIM control system) operates according to the SDS serves to reduce visual blur by "freezing" (or reducing an image's motion to a slow drift) the visual image of the viewed object. In various embodiments, the SIM device is selected from the group consisting of illuminator(s), shutter(s), display control system(s), and combinations of the foregoing (including the use of multiple illuminators, shutters, and display control systems).

  7. Experimental and numerical characterization of a mid-infrared plasmonic perfect absorber for dual-band enhanced vibrational spectroscopy

    Science.gov (United States)

    Aslan, Erdem; Aslan, Ekin; Turkmen, Mustafa; Saracoglu, Omer Galip

    2017-11-01

    Plasmonic perfect absorbers (PPAs) have promising properties to be utilized in molecular sensing and spectroscopy applications such as surface enhanced infrared absorption (SEIRA) and surface enhanced Raman spectroscopy (SERS). In order to employ these properties and demonstrate the great potential of PPAs, investigation and demonstration of PPA designs and their sensing applications are highly needed. In this context, we present the design, optical characterization, experimental realization and dual-band sensing application of a subwavelength PPA array for infrared detection and surface enhanced spectroscopy applications. We analyze the PPA to investigate the absorption spectra and the fine-tuning mechanism through the parameter sweep simulations and experiments. In order to understand the absorption mechanism, we investigate the charge and current density distribution maps with electric and magnetic field enhancement effects. Additionally, we demonstrate the potential usage and reliability of the proposed PPA by presenting the experimental results of the dual-band detection of a conformal polymethyl methacrylate layer with nanometer-scale thickness atop the PPA. According to the experimental and simulation results of this study, the proposed PPA can be utilized in multiband molecular detection and high sensitive spectroscopy applications.

  8. Field observations of mating behavior in the neck-banded snake Scaphiodontophis annulatus (Serpentes: Colubridae

    Directory of Open Access Journals (Sweden)

    Mahmood Sasa

    2006-06-01

    Full Text Available We observed the mating behavior of the neck-banded snake Scaphiodontophis annulatus (a common species of colubrid in the South Pacific of Costa Rica in the pre-montane wet forest of Las Cruces Biological Station (San Vito de Java, Costa Rica. Three S. annulatus were observed during courtship between 10-12 AM in a patch of primary forest. The two males were observed to interact with the female, but not signs of male-male agonistic interactions were observed. Their behavior includes grabbing and holding the female, copula, and biting during the copula. Rev. Biol. Trop. 54(2: 647-650. Epub 2006 Jun 01.El comportamiento de apareamiento es descrito para la serpiente Scaphiodontophis annulatus, una especie de colúbrido común en el Pacífico sur de Costa Rica. El comportamiento incluye capturar y sujetar a la hembra, mordiscos durante la cópula y coito. Dos machos fueron observados al interactuar con una sola hembra, pero no se detectó señales de interacciones antagónicas macho-macho.

  9. Regional Mapping of Permafrost Active Layer Properties Using P-Band AirMOSS and L-Band UAVSAR Time-Series Observations in Alaska

    Science.gov (United States)

    Chen, R. H.; Tabatabaeenejad, A.; Moghaddam, M.

    2016-12-01

    Monitoring the active layer atop permafrost is critical to enhancing our knowledge about the cryopedogenic processes, carbon dynamics, and the extent of permafrost degradation due to climate change. Ground-based measurements of active layer soils have provided high quality in-situ data in recent decades, but are limited by spatial coverage due to the remoteness and inaccessibility of most high-latitude regions. Since August 2014, P-band AirMOSS has flown time-series SAR observations over Northern Alaska to enable regional mapping of active layer properties. In October 2015, L-band UAVSAR also flew with AirMOSS to provide nearly concurrent dual-band SAR data. To retrieve active layer properties, we use a scattering model for layered soils, along with assumptions made from field measurements. This presentation will discuss the assumed soil structures used for different active layer soil conditions (maximum thawed or partially frozen) and the subsurface features which can be observed by low-frequency radars. A physics-based active layer retrieval algorithm is developed to incorporate different vertical resolutions of P- and L-band radars to obtain better characterization of active layer soil profile. The retrieved maps of active layer properties such as active layer thickness (ALT) and soil dielectric profiles will be presented and validated against the ALT measurements conducted at Circumpolar Active Layer Monitoring (CALM) sites in Alaska. Field activities and measurements for further model improvements and validations will also be discussed.

  10. Bistatic scattering from a contaminated sea surface observed in C, X, and Ku bands

    Science.gov (United States)

    Ghanmi, H.; Khenchaf, A.; Comblet, F.

    2014-10-01

    The aim of the work presented in this paper focuses on the study and analysis of variations of the bistatic electromagnetic signature of the sea surface contaminated by pollutants. Therefore, we will start the numerical analyses of the pollutant effect on the geometrical and physical characteristics of sea surface. Then, we will evaluate the electromagnetic (EM) scattering coefficients of the clean and polluted sea surface observed in bistatic configuration by using the numerical Forward-Backward Method (FBM). The obtained numerical results of the electromagnetic scattering coefficients are studied and given as a function of various parameters: sea state, wind velocity, type of pollutant (sea surface polluted by oil emulsion, and sea surface covered by oil layer), incidence and scattering angles, frequencies bands (C, X and Ku) and radar polarization.

  11. ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) - Merging Observations and Laboratory Data

    Science.gov (United States)

    Salama, Farid

    2016-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of 500 absorption bands that are detected in the spectra of stars with interstellar clouds in the line of sight. DIBs are found from the NUV to the NIR in the spectra of reddened stars spanning different interstellar environments in our local, and in other galaxies. DIB carriers are a significant part of the interstellar chemical inventory. They are stable and ubiquitous in a broad variety of environments and play a unique role in interstellar physics/chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics, and astrophysical modeling of line-of-sights. PAHs are among the molecular species that have been proposed as DIB carriers. We will present an assessment of the PAH-DIB model in view of the progress and the advances that have been achieved over the past years through a series of studies involving astronomical observations of DIBs, laboratory simulation of interstellar analogs for neutrals and ionized PAHs, theoretical calculations of PAH spectra and the modelization of diffuse and translucent interstellar clouds. We will present a summary of what has been learned from these complementary studies, the constraints that can now be derived for the PAHs as DIB carriers in the context of the PAH-DIB model and how these constraints can be applied to the EDIBLES project. The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the

  12. Analysis of a Least-Squares Soil Moisture Retrieval Algorithm from L-band Passive Observations

    Directory of Open Access Journals (Sweden)

    Alessandra Monerris

    2010-01-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission of the European Space Agency (ESA, launched on November 2009, is an unprecedented initiative to globally monitor surface soil moisture using a novel 2-D L-band interferometric radiometer concept. Airborne campaigns and ground-based field experiments have proven that radiometers operating at L-band are highly sensitive to soil moisture, due to the large contrast between the dielectric constant of soil minerals and water. Still, soil moisture inversion from passive microwave observations is complex, since the microwave emission from soils depends strongly on its moisture content but also on other surface characteristics such as soil type, soil roughness, surface temperature and vegetation cover, and their contributions must be carefully de-coupled in the retrieval process. In the present study, different soil moisture retrieval configurations are examined, depending on whether prior information is used in the inversion process or not. Retrievals are formulated in terms of vertical (Tvv and horizontal (Thh polarizations separately and using the first Stokes parameter (TI , over six main surface conditions combining dry, moist and wet soils with bare and vegetation-covered surfaces. A sensitivity analysis illustrates the influence that the geophysical variables dominating the Earth’s emission at L-band have on the precision of the retrievals, for each configuration. It shows that, if adequate constraints on the ancillary data are added, the algorithm should converge to more accurate estimations. SMOS-like brightness temperatures are also generated by the SMOS End-to-end Performance Simulator (SEPS to assess the retrieval errors produced by the different cost function configurations. Better soil moisture retrievals are obtained when the inversion is constrained with prior information, in line with the sensitivity study, and more robust estimates are obtained using TI than using Tvv and Thh. This

  13. Wide-banded NTC radiation: local to remote observations by the four Cluster satellites

    Directory of Open Access Journals (Sweden)

    P. M. E. Décréau

    2015-10-01

    Full Text Available The Cluster multi-point mission offers a unique collection of non-thermal continuum (NTC radio waves observed in the 2–80 kHz frequency range over almost 15 years, from various view points over the radiating plasmasphere. Here we present rather infrequent case events, such as when primary electrostatic sources of such waves are embedded within the plasmapause boundary far from the magnetic equatorial plane. The spectral signature of the emitted electromagnetic waves is structured as a series of wide harmonic bands within the range covered by the step in plasma frequency encountered at the boundary. Developing the concept that the frequency distance df between harmonic bands measures the magnetic field magnitude B at the source (df = Fce, electron gyrofrequency, we analyse three selected events. The first one (studied in Grimald et al., 2008 presents electric field signatures observed by a Cluster constellation of small size (~ 200 to 1000 km spacecraft separation placed in the vicinity of sources. The electric field frequency spectra display frequency peaks placed at frequencies fs = n df (n being an integer, with df of the order of Fce values encountered at the plasmapause by the spacecraft. The second event, taken from the Cluster tilt campaign, leads to a 3-D view of NTC waves ray path orientations and to a localization of a global source region at several Earth radii (RE from Cluster (Décréau et al., 2013. The measured spectra present successive peaks placed at fs ~ (n+ 1/2 df. Next, considering if both situations might be two facets of the same phenomenon, we analyze a third event. The Cluster fleet, configured into a constellation of large size (~ 8000 to 25 000 km spacecraft separation, allows us to observe wide-banded NTC waves at different distances from their sources. Two new findings can be derived from our analysis. First, we point out that a large portion of the plasmasphere boundary layer, covering a large range of magnetic

  14. Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4.

    Science.gov (United States)

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Proctor, John E; Sapiña, Fernando; Bettinelli, Marco

    2015-08-03

    The crystal structures, lattice vibrations, and electronic band structures of PbCrO4, PbSeO4, SrCrO4, and SrSeO4 were studied by ab initio calculations, Raman spectroscopy, X-ray diffraction, and optical-absorption measurements. Calculations properly describe the crystal structures of the four compounds, which are isomorphic to the monazite structure and were confirmed by X-ray diffraction. Information is also obtained on the Raman- and IR-active phonons, with all of the vibrational modes assigned. In addition, the band structures and electronic densities of states of the four compounds were determined. All are indirect-gap semiconductors. In particular, chromates are found to have band gaps smaller than 2.5 eV and selenates higher than 4.3 eV. In the chromates (selenates), the upper part of the valence band is dominated by O 2p states and the lower part of the conduction band is composed primarily of electronic states associated with the Cr 3d and O 2p (Se 4s and O 2p) states. Calculations also show that the band gap of PbCrO4 (PbSeO4) is smaller than the band gap of SrCrO4 (SrSeO4). This phenomenon is caused by Pb states, which, to some extent, also contribute to the top of the valence band and the bottom of the conduction band. The agreement between experiments and calculations is quite good; however, the band gaps are underestimated by calculations, with the exception of the bang gap of SrCrO4, for which theory and calculations agree. Calculations also provide predictions of the bulk modulus of the studied compounds.

  15. Quantum chemical study and experimental observation of a new band system of C(2), e 3Pi(g)-c 3Sigma(u)+.

    Science.gov (United States)

    Nakajima, Masakazu; Joester, Jenna A; Page, Nathan I; Reilly, Neil J; Bacskay, George B; Schmidt, Timothy W; Kable, Scott H

    2009-07-28

    A new band system of C(2), e (3)Pi(g)-c (3)Sigma(u)(+) was studied by ab initio quantum chemical and experimental methods. The calculations were carried out at the multireference configuration interaction level of theory with Davidson's correction using aug-cc-pV6Z basis set and include core and core-valence correlation as well as relativistic corrections computed with aug-cc-pCVQZ and cc-pVQZ bases, respectively. The vibrational energies and rotational constants of the upper e (3)Pi(g) state were calculated from the computed ab initio potential energy curve. The ab initio results indicate that the electronic transition moment of the e (3)Pi(g)-c (3)Sigma(u)(+) system is approximately one-half that of the Fox-Herzberg e (3)Pi(g)-a (3)Pi(u) system. Franck-Condon factors were calculated for both systems and used to guide experiments aimed at discovering the e (3)Pi(g)-c (3)Sigma(u)(+) system. The e (3)Pi(g)(v(') = 4)-c (3)Sigma(u)(+)(v(") = 3) band of jet-cooled C(2) was successfully observed by laser-induced fluorescence spectroscopy by monitoring the ensuing e (3)Pi(g)-a (3)Pi(u) emission.

  16. Direct Observation of Electrostatically Driven Band Gap Renormalization in a Degenerate Perovskite Transparent Conducting Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lebens-Higgins, Z.; Scanlon, D. O.; Paik, H.; Sallis, S.; Nie, Y.; Uchida, M.; Quackenbush, N. F.; Wahila, M. J.; Sterbinsky, G. E.; Arena, Dario A.; Woicik, J. C.; Schlom, D. G.; Piper, L. F. J.

    2016-01-01

    We have directly measured the band gap renormalization associated with the Moss-Burstein shift in the perovskite transparent conducting oxide (TCO), La-doped BaSnO 3 , using hard x-ray photoelectron spectroscopy. We determine that the band gap renormalization is almost entirely associated with the evolution of the conduction band. Our experimental results are supported by hybrid density functional theory supercell calculations. We determine that unlike conventional TCOs where interactions with the dopant orbitals are important, the band gap renormalization in La - BaSnO 3 is driven purely by electrostatic interactions.

  17. Observation of two coupled Faraday waves in a vertically vibrating Hele-Shaw cell with one of them oscillating horizontally

    CERN Document Server

    Li, Xiaochen; Liao, Shijun

    2016-01-01

    A system of two-dimensional, two coupled Faraday interfacial waves is experimentally observed at the two interfaces of the three layers of fluids (air, pure ethanol and silicon oil) in a sealed Hele-Shaw cell with periodic vertical vibration. The upper and lower Faraday waves coexist: the upper vibrates vertically, but the crests of the lower one oscillate horizontally with unchanged wave height and a frequency equal to the half of the forcing one of the vertically vibrating basin, while the troughs of the lower one always stay in the same place (relative to the basin). Besides, they are strongly coupled: the wave height of the lower Faraday wave is either a linear function (in the case of a fixed forcing frequency) or a parabolic function (in the case of a fixed acceleration amplitude) of that of the upper, with the same wave length. In addition, the upper Faraday wave temporarily loses its smoothness at around $t=T/4$ and $t=3T/4$, where $T$ denotes the wave period, and thus has fundamental difference from ...

  18. Deformation Bands as Linear Elastic Fractures: Progress in Theory and Observation

    Science.gov (United States)

    Sternlof, K.; Pollard, D.

    2001-12-01

    Deformation bands (DBs) are thin, tabular, bounded features of highly localized shear and/or compaction that commonly occur as systematic and pervasive arrays in porous sandstone. They also constitute an active area of theoretical and experimental research into the compressive failure of granular materials. Based on our ongoing study of DBs in the field, we propose that they originate at stress concentrations and propagate as brittle fractures in a linear elastic medium. Furthermore, we suggest that individual DB morphology is largely dominated by the closing (anti-mode I) component of the displacement discontinuity accommodated. The notion of DBs as "anti-cracks" akin to pressure solution surfaces is not new. But close examination of real DB arrays within the unifying context of linear elastic fracture mechanics is needed to add depth and bring quantitative rigor to our understanding of the phenomenon. Thus, we are building a body of detailed data based on field observation and thin-section analysis to substantiate and expand our central hypothesis, while also laying the foundation for an effort to replicate realistic DB arrays using numerical modeling techniques. Our field effort focuses on the Jurassic Aztec Sandstone as exposed in and around the Valley of Fire State Park, Nevada. This area offers expansive and varied DB exposures within a thick and relatively consistent sequence of dune-dominated aeolian sandstone. We will present interim results, interpretations and conclusions specific to the elastic nature of DBs, in particular comparing our data to the three distinct fracture-tip models: the dislocation, and the crack with and without cohesive end zones. Each of these models predicts substantially different near-tip stress fields for the same material under the same remote loading conditions, leading to different expectations for basic DB shape, structure, and propagation and mechanical interaction behavior. These expectations will be compared to and judged

  19. Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations

    Science.gov (United States)

    Das, Subrata Kumar

    Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations Subrata Kumar Das*, S. M. Deshpande, K. Chakravarty and M. C. R. Kalapureddy Indian Institute of Tropical Meteorology, Pune, India ABSTRACT The Western Ghats (WGs) located parallel to the west coast of India receives a huge amount of rainfall during the Indian summer monsoon (ISM) in which topography plays a huge role in it. To understand the dynamics and microphysics of monsoon precipitating clouds over the WGs, a High Altitude Cloud Physics Laboratory (HACPL) has been setup at Mahabaleshwar (17.92 oN, 73.6 oE, ~1.4 km AMSL) in 2012. As part of this laboratory, a mobile X-band (9.5 GHz) and Ka-band (35.29 GHz) dual-polarization Doppler weather radar system is installed at Mandhardev (18.04 oN, 73.87 oE, ~1.3 km AMSL, at 26 km radial distance from the HACPL). The X-band radar shows the dominant cloud movement is from the western side of the WGs to the eastern side, crossing the HACPL and the radar site. The cloud occurrence statistics show a sudden reduction within a distance of ~30 km on the eastern side of WGs indicates the possibility of a rain shadow area. Further, we investigate the vertical structure of cloud over the HACPL, and identified four cloud modes viz., shallow cumulus mode, congestus mode, deep convective mode, and overshooting convection mode. The frequency distribution of cloud-cell base height (CBH) and cloud-cell top height (CTH) shows most of the clouds with base below 2.5 km and tops usually not exceeding 9 km. This indicates the dominance of warm-rain process in the WGs region. The positive relationships between surface rainfall rates and CTH and 0oC isotherm level have observed. Details will be presented in the upcoming symposium.

  20. Observations of copolar correlation coefficient through a bright band at vertical incidence

    Science.gov (United States)

    Zrnic, D. S.; Raghavan, R.; Chandrasekar, V.

    1994-01-01

    This paper discusses an application of polarimetric measurements at vertical incidence. In particular, the correlation coefficients between linear copolar components are examined, and measurements obtained with the National Severe Storms Laboratory (NSSL)'s and National Center for Atmospheric Research (NCAR)'s polarimetric radars are presented. The data are from two well-defined bright bands. A sharp decrease of the correlation coefficient, confined to a height interval of a few hundred meters, marks the bottom of the bright band.

  1. Octupole vibration in the superdeformed {sup 196}Pb nucleus; Vibration octupolaire dans le noyau superdeforme {sup 196}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Azaiez, F.; Duprat, J. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others

    1999-11-01

    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. All the three observed excited SD bands were found to decay to the Yrast SD band through, presumably, E1 transitions, allowing relative spin and excited energy assignments. Comparisons with calculation using the random phase approximation suggests that all three excited bands can be interpreted as octupole vibrational structures. (authors) 5 refs., 1 fig.

  2. Some observations on deformation banding and correlated microstructures of two aluminum alloys compressed at different temperatures and strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, S.S.; Starke, E.A. Jr.; Kuhlmann-Wilsdorf, D. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Materials Science and Engineering

    1998-09-18

    In compressed samples of high-purity aluminum alloys, without (Al-0.5 wt% Cu) and with hard precipitates (Al-0.5 wt% Cu-1.0 wt% Si), a variety of deformation band patterns has been observed, including occasional exquisite detailed structuring. According to the present preliminary results, the banding does not significantly depend on strain rates between 0.05 and 100%/s, nor on temperature from ambient to cryogenic ({minus}193 C). However, it is greatly decreased by the presence of precipitates in the Al-Cu-Si alloy and was barely if at all visible at and above 200 C. The banding is due to changing selections of operating slip systems, falling short of the five required in the Taylor model of homologous deformation in polycrystals. The occasional exquisite detail in the banding pattern is accepted as virtual proof of the low-energy dislocation structure (LEDS) hypothesis, the basic tenet from which the LEDS theory of crystal plasticity follows without further assumptions. In agreement with this interpretation, also the underlying dislocation cell structure, which did not reveal any evident correlation with the deformation banding, as well as the observed workhardening features as dependent on strain rate and temperature are in accord with the LEDS theory.

  3. Development of a L-band ocean emissivity electromagnetic model using observations from the Aquarius Radiometer

    Science.gov (United States)

    Hejazin, Y.; Jones, W.; El-Nimri, S.

    2012-12-01

    The Aquarius/SAC-D ocean salinity measurement mission was launched into polar orbit during the summer of 2011. The prime sensor is an L-band radiometer/scatterometer developed jointly by NASA Goddard Space Flight Center and the Jet Propulsion Laboratory. This paper deals with the development of an ocean emissivity model using AQ radiometer brightness temperature (Tb) observations. This model calculates the ocean surface emissivity as a function of ocean salinity, sea surface temperature, surface wind speed and direction. One unique aspect of this model is that it calculates ocean emissivity over wide ranges of Earth incidence angles (EIAs) from nadir to > 60°and ocean wind speeds from 0 m/s to > 70 m/s. This physical electromagnetic model with empirical coefficients follows the form of Stogryn [1967] that treats the ocean as a mixture of foam and clean rough water. The CFRSL ocean surface emissivity (ɛocean) is modeled as a linear sum of foam (ɛfoam) and foam-free seawater (ɛrough) emissivities, according to ɛocean = FF * ɛfoam + (1 - FF) * ɛrough (1) where FF is the fractional area coverage by foam. The foam emissivity is modeled as ɛfoam = Q(freq, U10, EIA) (2) where Q( ) is the empirical dependence of foam emissivity on radiometer frequency, the 10-m neutral stability wind speed and EIA according to El-Nimri [2010]. Following Stogryn, the foam-free seawater emissivity (ɛrough) is modeled ɛrough = ɛsmooth +Δɛexcess (3) where ɛsmooth = (1 - Γ) is the smooth surface emissivity, Γ is the Fresnel power reflection coefficient, and Δɛexcess is the wind-induced excess emissivity, given by Δɛexcess = G(freq, U10, WDir, EIA) (4) Where G( ) is the empirical signature of foam-free rough ocean, which depends upon the surface wind speed and wind direction. This function is determined empirically from measured AQ radiometer Tb's associated with surface wind vector from collocated NOAA GDAS numerical weather model. Ocean emissivity calculations are compared

  4. Wide-band simultaneous observations of pulsars: disentangling dispersion measure and profile variations : disentangling dispersion measure and profile variations

    NARCIS (Netherlands)

    Hassall, T. E.; Stappers, B. W.; Hessels, J. W. T.; Kramer, M.; Alexov, A.; Anderson, K.; Coenen, T.; Karastergiou, A.; Keane, E. F.; Kondratiev, V. I.; Lazaridis, K.; van Leeuwen, J.; Noutsos, A.; Serylak, M.; Sobey, C.; Verbiest, J. P. W.; Weltevrede, P.; Zagkouris, K.; Fender, R.; Wijers, R. A. M. J.; Bahren, L.; Bell, M. E.; Broderick, J. W.; Corbel, S.; Daw, E. J.; Dhillon, V. S.; Eisloeffel, J.; Falcke, H.; Griessmeier, J. -M.; Law, C.; Markoff, S.; Miller-Jones, J. C. A.; Osten, R.; Rol, E.; Scaife, A. M. M.; Scheers, B.; Schellart, P.; Spreeuw, H.; Swinbank, J.; ter Veen, S.; Wise, M. W.; Wijnands, R.; Wucknitz, O.; Zarka, P.; Asgekar, A.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Boonstra, A. J.; Brentjens, M.; Brouw, W. N.; Brueggen, M.; Butcher, H. R.; Ciardi, B.; Garrett, M. A.; Gerbers, M.; Gunst, A. W.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Holties, H.; de Jong, A.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; Loose, G. M.; Maat, P.; Masters, J.; McKean, J. P.; Meulman, H.; Mevius, M.; Munk, H.; Noordam, J. E.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A.; Reich, W.; Rottgering, H.; Sluman, J.; Steinmetz, M.; Sterks, C. G. M.; Tagger, M.; Tang, Y.; Tasse, C.; Vermeulen, R.; van Weeren, R. J.; Wijnholds, S. J.; Yatawatta, S.; Jonker, P.

    Dispersion in the interstellar medium is a well known phenomenon that follows a simple relationship, which has been used to predict the time delay of dispersed radio pulses since the late 1960s. We performed wide-band simultaneous observations of four pulsars with LOFAR (at 40-190 MHz), the 76-m

  5. Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations

    NARCIS (Netherlands)

    De Lannoy, G.J.M.; Reichle, R.H.; Vrugt, J.A.

    2014-01-01

    Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation

  6. Combined observations of Arctic sea ice with near-coincident colocated X-band, C-band, and L-band SAR satellite remote sensing and helicopter-borne measurements

    Science.gov (United States)

    Johansson, A. M.; King, J. A.; Doulgeris, A. P.; Gerland, S.; Singha, S.; Spreen, G.; Busche, T.

    2017-01-01

    In this study, we compare colocated near-coincident X-, C-, and L-band fully polarimetry SAR satellite images with helicopter-borne ice thickness measurements acquired during the Norwegian Young sea ICE 2015 (N-ICE2015) expedition in the region of the Arctic Ocean north of Svalbard in April 2015. The air-borne surveys provide near-coincident snow plus ice thickness, surface roughness data, and photographs. This unique data set allows us to investigate how the different frequencies can complement one another for sea ice studies, but also to raise awareness of limitations. X-band and L-band satellite scenes were shown to be a useful complement to the standard SAR frequency for sea ice monitoring (C-band) for lead ice and newly formed sea ice identification. This may be in part be due to the frequency but also the high spatial resolution of these sensors. We found a relatively low correlation between snow plus ice thickness and surface roughness. Therefore, in our dataset ice thickness cannot directly be observed by SAR which has important implications for operational ice charting based on automatic segmentation.

  7. Observations of Heavy Rainfall in a Post Wildland Fire Area Using X-Band Polarimetric Radar

    Science.gov (United States)

    Cifelli, R.; Matrosov, S. Y.; Gochis, D. J.; Kennedy, P.; Moody, J. A.

    2011-12-01

    Polarimetric X-band radar systems have been used increasingly over the last decade for rainfall measurements. Since X-band radar systems are generally less costly, more mobile, and have narrower beam widths (for same antenna sizes) than those operating at lower frequencies (e.g., C and S-bands), they can be used for the "gap-filling" purposes for the areas when high resolution rainfall measurements are needed and existing operational radars systems lack adequate coverage and/or resolution for accurate quantitative precipitation estimation (QPE). The main drawback of X-band systems is attenuation of radar signals, which is significantly stronger compared to frequencies used by "traditional" precipitation radars operating at lower frequencies. The use of different correction schemes based on polarimetric data can, to a certain degree, overcome this drawback when attenuation does not cause total signal extinction. This presentation will focus on examining the use of high-resolution data from the NOAA Earth System Research Laboratory (ESRL) mobile X-band dual polarimetric radar for the purpose of estimating precipitation in a post-wildland fire area. The NOAA radar was deployed in the summer of 2011 to examine the impact of gap-fill radar on QPE and the resulting hydrologic response during heavy rain events in the Colorado Front Range in collaboration with colleagues from the National Center for Atmospheric Research (NCAR), Colorado State University (CSU), and the U.S. Geological Survey (USGS). A network of rain gauges installed by NCAR, the Denver Urban Drainage Flood Control District (UDFCD), and the USGS are used to compare with the radar estimates. Supplemental data from NEXRAD and the CSU-CHILL dual polarimetric radar are also used to compare with the NOAA X-band and rain gauges. It will be shown that rainfall rates and accumulations estimated from specific differential phase measurements (KDP) at X-band are in good agreement with the measurements from the gauge

  8. Temperature dependent equilibrium native to unfolded protein dynamics and properties observed with IR absorption and 2D IR vibrational echo experiments.

    Science.gov (United States)

    Chung, Jean K; Thielges, Megan C; Bowman, Sarah E J; Bren, Kara L; Fayer, M D

    2011-05-04

    Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures. © 2011

  9. Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution

    NARCIS (Netherlands)

    Page, K.L.; Willingale, R.; Bissaldi, E.; de Ugarte Postigo, A.; Holland, S.T.; McBreen, S.; O'Brien, P.T.; Osborne, J.P.; Prochaska, J.X.; Rol, E.; Rykoff, E.S.; Starling, R.L.C.; Tanvir, N.R.; van der Horst, A.J.; Wiersema, K.; Zhang, B.; Aceituno, F.J.; Akerlof, C.; Beardmore, A.P.; Briggs, M.S.; Burrows, D.N.; Castro-Tirado, A.J.; Connaughton, V.; Evans, P.A.; Fynbo, J.P.U.; Gehrels, N.; Guidorzi, C.; Howard, A.W.; Kennea, J.A.; Kouveliotou, C.; Pagani, C.; Preece, R.; Perley, D.; Steele, I.A.; Yuan, F.

    2009-01-01

    GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by Robotic Optical Transient Search Experiment (ROTSE) and a host of other telescopes, and was detected in

  10. High dispersion spectroscopic observations of Venus near superior conjunction. IV - Results for the carbon dioxide bands in the IV-N photographic region

    Science.gov (United States)

    Young, L. D. G.; Schorn, R. A. J.; Young, A. T.

    1980-01-01

    Phase curves for the CO2 bands at 7883, 7820, and 8689 A are presented. While the weaker bands at 7820 and 7883 A show a definite 'inverse phase effect,' the band at 8689 A shows a more normal phase curve; it also exhibited much larger day-to-day variations in the CO2 abundance near superior conjunction in 1971. Because the variation of the phase curves with band strength is comparable to temporal variations on Venus, simultaneous observations of strong and weak bands are still needed to determine the dependence on band strength accurately.

  11. Analysis of vibration characteristics of a prestressed concrete cable-stayed bridge using strong motion observation data. Jishin kansoku ni motozuku PC shachokyo no shindo tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Inatomi, T. (Port and Harbour Research Institute, Kanagawa (Japan)); Takeda, T.; Obi, N.; Yamanobe, S. (Kajima Corp., Tokyo (Japan))

    1994-05-31

    Records of seismic observation were analyzed for the purpose of proving the validity of antiseismic design for a prestressed concrete (PC) cable-stayed bridge. This bridge is a three span continuous PC cable-stayed bridge of 498 m in bridge length, and is constructed on alluvial soft ground. The seismometer used is a servo type accelerometer. The observed frequency and mode of seismic vibration are in good agreement with those in the analysis and hence the validity of modelling of the structure in designing was confirmed. It was also confirmed that the bending vibration and torsional vibration of the main girder are separated as designed. However, some points such as a large difference in the observed vibration and analysed vibration in the mode accompanying rotation of the base are listed as problems to be solved in antiseismic design. In order to investigate the attenuation constant of the upper structure, a seismic wave response analysis was performed and its results were compared with observed ones. When the attenuation constant is assumed to be 2%, agreement of data between analysis and observation is good, and it is considered that the attenuation constant of the upper structure only without the effects of attenuation of energy escape from the base and crack generation in concrete was about 2% in the observed earthquake (maximum acceleration on the ground: 51 Gal). 8 refs., 9 figs., 2 tabs.

  12. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    DEFF Research Database (Denmark)

    Zribi, Mehrez; Parde, Mickael; Boutin, Jacquline

    2011-01-01

    on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer-STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21......The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed...... flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight...

  13. Determination of Internal Wave Properties From X-Band Radar Observations

    Science.gov (United States)

    Ramos, R. J.; Lund, B.; Graber, H. C.

    2008-12-01

    Characterization of the properties of internal waves (IWs) in the ocean has been typically accomplished by using a combination of SAR imagery and in situ sampling devices. The capabilities of other remote sensing techniques to study these events have been mostly unexplored. In particular, radar systems working in the X-Band range of the electromagnetic spectrum are capable of detecting IWs, but their use has been mostly limited to measure surface waves and currents. In this work, we examine the application of nautical X- Band radars to measure key IW properties by introducing a methodology to characterize their signature in backscatter image sequences. Such methodology is based on the use of Radon Transform (RT) techniques to detect IW related features and to find associated properties such as direction of propagation, non-linear celerity (Co), distance between solitons (Lcc) and number of solitons per packet (solibore). The proposed methodology was applied to several events recorded during the NLIWI experiment by a ship- mounted X-Band radar system (WaMoS). Results from the comparisons to simultaneous measurements taken at neighboring oceanographic moorings indicated that Co can be estimated with a RMS error of - 0.06 m s-1, which corresponds to a mean relative error of 8%. Similarly, Lcc can be estimated with a RMS error of 98 m, which is associated to a mean relative error of 20%. This latter error estimate however is likely to be overestimated, because it reflects strongly the separation between sampling stations as Lcc was shown to be highly dependent on propagation distance. The accuracy of the results show that X-Band systems are well suited to measure IW properties offering some advantages over SAR and other in situ devices.

  14. Monitoring the On-Orbit Calibration of Terra MODIS Reflective Solar Bands Using Simultaneous Terra MISR Observations

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng

    2016-01-01

    On December 18, 2015, the Terra spacecraft completed 16 years of successful operation in space. Terra has five instruments designed to facilitate scientific measurements of the earths land, ocean, and atmosphere. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectroradiometer (MISR) instruments provide information for the temporal studies of the globe. After providing over 16 years of complementary measurements, a synergistic use of the measurements obtained from these sensors is beneficial for various science products. The 20 reflective solar bands (RSBs) of MODIS are calibrated using a combination of solar diffuser and lunar measurements, supplemented by measurements from pseudoinvariant desert sites. MODIS views the on-board calibrators and the earth via a two-sided scan mirror at three spatial resolutions: 250 m using 40 detectors in bands 1 and 2, 500 m using 20 detectors in bands 3 and 4, and 1000 m using 10 detectors in bands 819 and 26. Simultaneous measurements of the earths surface are acquired in a push-broom fashion by MISR at nine view angles spreading out in the forward and backward directions along the flight path. While the swath width for MISR acquisitions is 360 km, MODIS scans a wider swath of 2330 km via its two-sided scan mirror. The reflectance of the MODIS scan mirror has an angle dependence characterized by the response versus scan angle (RVS). Its on-orbit change is derived using the gain from a combination of on-board and earth-view measurements. The on-orbit RVS for MODIS has experienced a significant change, especially for the short-wavelength bands. The on-orbit RVS change for the short-wavelength bands (bands 3, 8, and 9) at nadir is observed to be greater than 10 over the mission lifetime. Due to absence of a scanning mechanism, MISR can serve as an effective tool to evaluate and monitor the on-orbit performance of the MODIS RVS. Furthermore, it can also monitor the detector and scan

  15. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  16. Infrared absorption spectra of matrix-isolated cis, cis-HOONO and its ab initio CCSD(T) anharmonic vibrational bands

    Science.gov (United States)

    Zhang, Xu; Nimlos, Mark R.; Ellison, G. Barney; Varner, Mychel E.; Stanton, John F.

    2006-02-01

    The infrared absorption spectra of matrix-isolated cis, cis-peroxynitrous acid (HOONO and DOONO) in argon have been observed. Six of the nine fundamental vibrational modes for cis, cis-HOONO have been assigned definitively, and one tentatively. Coupled-cluster, ab initio anharmonic force field calculations were used to help guide some of the assignments. The experimental matrix frequencies (cm-1) for cis, cis-HOONO are (a'modes)ν1=3303±1,ν2=1600.6±0.6,ν3=1392±1,ν4=922.8±0.5,ν5=789.7±0.4,ν6=617±1; and (a″mode)ν8=462±1. The fundamentals for the deuterated isotopomer, cis, cis-DOONO, are (a'modes)ν1=2447.2±0.6,ν2=1595.7±0.7,ν3=1089.1±0.4,ν4=888.1±0.4,ν5=786.6±0.5,ν6=613.9±0.9; and (a″mode)ν8=456.5±0.5.

  17. Partially Observable Markov Decision Process-Based Transmission Policy over Ka-Band Channels for Space Information Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-09-01

    Full Text Available The Ka-band and higher Q/V band channels can provide an appealing capacity for the future deep-space communications and Space Information Networks (SIN, which are viewed as a primary solution to satisfy the increasing demands for high data rate services. However, Ka-band channel is much more sensitive to the weather conditions than the conventional communication channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter can only obtain delayed Channel State Information (CSI from feedback. In this paper, the noise temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad state. An optimal transmission scheme based on Partially Observable Markov Decision Processes (POMDP is proposed, and the key thresholds for selecting the optimal transmission method in the SIN communications are derived. Simulation results show that our proposed scheme can effectively improve the throughput.

  18. Observation of intermediate bands in Eu3+ doped YPO4 host: Li+ ion effect and blue to pink light emitter

    Directory of Open Access Journals (Sweden)

    Abdul Kareem Parchur

    2012-09-01

    Full Text Available This article explores the tuning of blue to pink colour generation from Li+ ion co-doped YPO4:5Eu nanoparticles prepared by polyol method at ∼100-120 °C with ethylene glycol (EG as a capping agent. Interaction of EG molecules capped on the surface of the nanoparticles and/or created oxygen vacancies induces formation of intermediate/mid gap bands in the host structure, which is supported by UV-Visible absorption data. Strong blue and pink colors can be observed in the cases of as-prepared and 500 °C annealed samples, respectively. Co-doping of Li+ enhances the emission intensities of intermediate band as well as Eu3+. On annealing as-prepared sample to 500 °C, the intermediate band emission intensity decreases, whereas Eu3+ emission intensity increases suggesting increase of extent of energy transfer from the intermediate band to Eu3+ on annealing. Emission intensity ratio of electric to magnetic dipole transitions of Eu3+ can be varied by changing excitation wavelength. The X-ray photoelectron spectroscopy (XPS study of as-prepared samples confirms the presence of oxygen vacancies and Eu3+ but absence of Eu2+. Dispersed particles in ethanol and polymer film show the strong blue color, suggesting that these materials will be useful as probes in life science and also in light emitting device applications.

  19. First rotational analysis of the (111) and (021) vibrational state of S16O18O from the "hot" ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 bands

    Science.gov (United States)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Ziatkova, A. G.; Sklyarova, E. A.; Kuznetsov, S. I.; Sydow, C.; Bauerecker, S.

    2017-11-01

    The rotational structure of the (111) and (021) vibrational states is determined for the first time from the high resolution analysis of the ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 ;hot; bands. The 480 and 74 transitions of these bands (Jmax /Kamax = 45/14 and 15/12 respectively) were assigned in the spectra, which have been recorded with the Bruker IFS 120 Fourier transform infrared (FTIR) spectrometer. A weighted fit analysis allowed us to generate a set of 5 fitted parameters for the (111) state and 4 fitted parameters for the (021) state. Calculation with the 9 parameters, obtained from the fit, reproduces the initial 363 energy values (about 550 assigned experimental transitions) of two vibrational states with the drms deviations of 3.2 ×10-4 cm-1 , which is comparable with the experimental uncertainties of very weak transitions of the ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 ;hot; bands in our experiment.

  20. Evaluating the potential use of a high-resolution X-band polarimetric radar observations in Urban Hydrology

    Science.gov (United States)

    Anagnostou, Marios N.; Kalogiros, John; Marzano, Frank S.; Anagnostou, Emmanouil N.; Baldini, Luca; Nikolopoulos, EfThymios; Montopoli, Mario; Picciotti, Errico

    2014-05-01

    The Mediterranean area concentrates the major natural risks related to the water cycle, including heavy precipitation and flash-flooding during the fall season. Every year in central and south Europe we witness several fatal and economical disasters from severe storm rainfall triggering Flash Floods, and its impacts are increasing worldwide, but remain very difficult to manage. The spatial scale of flash flood occurrence is such that its vulnerability is often focused on dispersed urbanization, transportation and tourism infrastructures (De Marchi and Scolobig 2012). Urbanized and industrialized areas shows peculiar hydrodynamic and meteo-oceanographic features and they concentrate the highest rates of flash floods and fatal disasters. The main causes of disturbance being littoral urban development and harbor activities, the building of littoral rail- and highways, and the presence of several polluted discharges. All the above mentioned characteristics limit our ability to issue timely flood warnings. Precipitation estimates based on raingauge networks are usually associated with low coverage density, particularly at high altitudes. On the other hand, operational weather radar networks may provide valuable information of precipitation at these regimes but reliability of their estimates is often limited due to retrieval (e.g. variability in the reflectivity-to-rainfall relationship) and spatial extent constrains (e.g. blockage issues, overshooting effects). As a result, we currently lack accurate precipitation estimates over urban complex terrain areas, which essentially means that we lack accurate knowledge of the triggering factor for a number of hazards like flash floods and debris flows/landslides occurring in those areas. A potential solution to overcome sampling as well as retrieval uncertainty limitations of current observational networks might be the use of network of low-power dual-polarization X-band radars as complement to raingauges and gap-filling to

  1. Ultrafast Relaxation Dynamics of Photoexcited Heme Model Compounds: Observation of Multiple Electronic Spin States and Vibrational Cooling.

    Science.gov (United States)

    Govind, Chinju; Karunakaran, Venugopal

    2017-04-13

    Hemin is a unique model compound of heme proteins carrying out variable biological functions. Here, the excited state relaxation dynamics of heme model compounds in the ferric form are systematically investigated by changing the axial ligand (Cl/Br), the peripheral substituent (vinyl/ethyl-meso), and the solvent (methanol/DMSO) using femtosecond pump-probe spectroscopy upon excitation at 380 nm. The relaxation time constants of these model compounds are obtained by global analysis. Excited state deactivation pathway of the model compounds comprising the decay of the porphyrin excited state (S*) to ligand to metal charge transfer state (LMCT, τ 1 ), back electron transfer from metal to ligand (MLCT, τ 2 ), and relaxation to the ground state through different electronic spin states of iron (τ 3 and τ 4 ) are proposed along with the vibrational cooling processes. This is based on the excited state absorption spectral evolution, similarities between the transient absorption spectra of the ferric form and steady state absorption spectra of the low-spin ferrous form, and the data analysis. The observation of an increase of all the relaxation time constants in DMSO compared to the methanol reflects the stabilization of intermediate states involved in the electronic relaxation. The transient absorption spectra of met-myoglobin are also measured for comparison. Thus, the transient absorption spectra of these model compounds reveal the involvement of multiple iron spin states in the electronic relaxation dynamics, which could be an alternative pathway to the ground state beside the vibrational cooling processes and associated with the inherent features of the heme b type.

  2. The first observations of wide-band interferometers and the spectra of relic gravitons

    Directory of Open Access Journals (Sweden)

    Massimo Giovannini

    2016-08-01

    Full Text Available Stochastic backgrounds of relic gravitons of cosmological origin extend from frequencies of the order of the aHz up to the GHz range. Since the temperature and polarization anisotropies constrain the low frequency normalization of the spectra, in the concordance paradigm the strain amplitude corresponding to the frequency window of wide-band interferometers turns out to be, approximately, nine orders of magnitude smaller than the astounding signal recently reported and attributed to a binary black hole merger. The backgrounds of relic gravitons expected from the early Universe are compared with the stochastic foregrounds stemming from the estimated multiplicity of the astrophysical sources. It is suggested that while the astrophysical foregrounds are likely to dominate between few Hz and 10 kHz, relic gravitons with frequencies exceeding 100 kHz represent a potentially uncontaminated signal for the next generation of high-frequency detectors currently under scrutiny.

  3. Shear Banding of Colloidal Glasses: Observation of a Dynamic First-Order Transition

    Science.gov (United States)

    Chikkadi, V.; Miedema, D. M.; Dang, M. T.; Nienhuis, B.; Schall, P.

    2014-11-01

    We demonstrate that application of an increasing shear field on a glass leads to an intriguing dynamic first-order transition in analogy with equilibrium transitions. By following the particle dynamics as a function of the driving field in a colloidal glass, we identify a critical shear rate upon which the diffusion time scale of the glass exhibits a sudden discontinuity. Using a new dynamic order parameter, we show that this discontinuity is analogous to a first-order transition, in which the applied stress acts as the conjugate field on the system's dynamic evolution. These results offer new perspectives to comprehend the generic shear-banding instability of a wide range of amorphous materials.

  4. The first observations of wide-band interferometers and the spectra of relic gravitons

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    Stochastic backgrounds of relic gravitons of cosmological origin extend from frequencies of the order of the aHz up to the GHz range. Since the temperature and polarization anisotropies constrain the low frequency normalization of the spectra, in the concordance paradigm the strain amplitude corresponding to the frequency window of wide-band interferometers turns out to be, approximately, nine orders of magnitude smaller than the astounding signal recently reported and attributed to a binary black hole merger. The backgrounds of relic gravitons expected from the early Universe are compared with the stochastic foregrounds stemming from the estimated multiplicity of the astrophysical sources. It is suggested that while the astrophysical foregrounds are likely to dominate between few Hz and 10 kHz, relic gravitons with frequencies exceeding 100 kHz represent a potentially uncontaminated signal for the next generation of high-frequency detectors currently under scrutiny.

  5. Observation of Dirac bands in artificial graphene in small-period nanopatterned GaAs quantum wells

    Science.gov (United States)

    Wang, Sheng; Scarabelli, Diego; Du, Lingjie; Kuznetsova, Yuliya Y.; Pfeiffer, Loren N.; West, Ken W.; Gardner, Geoff C.; Manfra, Michael J.; Pellegrini, Vittorio; Wind, Shalom J.; Pinczuk, Aron

    2018-01-01

    Charge carriers in graphene behave like massless Dirac fermions (MDFs) with linear energy-momentum dispersion1, 2, providing a condensed-matter platform for studying quasiparticles with relativistic-like features. Artificial graphene (AG)—a structure with an artificial honeycomb lattice—exhibits novel phenomena due to the tunable interplay between topology and quasiparticle interactions3-6. So far, the emergence of a Dirac band structure supporting MDFs has been observed in AG using molecular5, atomic6, 7 and photonic systems8-10, including those with semiconductor microcavities11. Here, we report the realization of an AG that has a band structure with vanishing density of states consistent with the presence of MDFs. This observation is enabled by a very small lattice constant (a = 50 nm) of the nanofabricated AG patterns superimposed on a two-dimensional electron gas hosted by a high-quality GaAs quantum well. Resonant inelastic light-scattering spectra reveal low-lying transitions that are not present in the unpatterned GaAs quantum well. These excitations reveal the energy dependence of the joint density of states for AG band transitions. Fermi level tuning through the Dirac point results in a collapse of the density of states at low transition energy, suggesting the emergence of the MDF linear dispersion in the AG.

  6. Broad Band Observations of Gravitationally Lensed Blazar during a Gamma-Ray Outburst

    Directory of Open Access Journals (Sweden)

    Julian Sitarek

    2016-09-01

    Full Text Available QSO B0218+357 is a gravitationally lensed blazar located at a cosmological redshift of 0.944. In July 2014 a GeV flare was observed by Fermi-LAT, triggering follow-up observations with the MAGIC telescopes at energies above 100 GeV. The MAGIC observations at the expected time of arrival of the trailing component resulted in the first detection of QSO B0218+357 in Very-High-Energy (VHE, >100 GeV gamma rays. We report here the observed multiwavelength emission during the 2014 flare.

  7. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.

    Science.gov (United States)

    Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F

    2009-04-30

    Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time gamma > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm(-1) and 215 cm(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm(-1) component is assigned to the internal rotation of the N-methylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of pi-electron density from the porphyrin in the ground state onto the rings in the pi* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (gamma modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the pi-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of covalency; the strongest modulations are observed in acetonitrile

  8. Soil Moisture Retrieval using observation at C-band of RISAT-1 over ...

    Indian Academy of Sciences (India)

    59

    Dente L 2016 Microwave Remote Sensing for Moisture Mointoring synergy of active and passive observation and validation of retrieved products. PhD thesis, Faulty of Geo-. Information Science and Earth observation, University of Twente. 9. Dobson M C and Ulaby F T 1981 Microwave backscatter dependence on surface.

  9. The 2002 Leonids Using 28 MHz Ham-band Radio Observations (HRO) over = Japan

    Science.gov (United States)

    Usui, T.; Ogawa, H.; Hashimoto, T.; Ohnishi, K.; Yaguchi, N.; = Maegawa, K.

    2002-12-01

    The 2002 Leonids were expected to present a spectacular appearance = over Europe and America. No spectacular appearance was expected in Japan. On = the evening of November 17 (UT), however, the 1965 dust trail was predicted = to approach the Earth closely. Therefore, Japanese observers tried to = detect this trail using 28 MHz radio. This is because 28 MHz observations can = detect fainter meteor echoes than 53 MHz observations which are prevalent in Japan. = This study shows the observing method and results of 28 MHz observations of the = 2002 Leonids. We found that the Leonids were detectable for longer at 28 MHz than at = 53.75 MHz. This indicates that the distribution of fainter (smaller) meteors is = wider than that of larger ones.

  10. THz absorption spectrum of the CO2–H2O complex: Observation and assignment of intermolecular van der Waals vibrations

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Wallin Mahler Andersen, Denise

    2014-01-01

    Terahertz absorption spectra have been recorded for the weakly bound CO2–H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit...... have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed...

  11. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    Science.gov (United States)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  12. A database of synthetic photometry in the GALEX ultraviolet bands for the stellar sources observed with the International Ultraviolet Explorer

    Science.gov (United States)

    Beitia-Antero, Leire; Gómez de Castro, Ana I.

    2016-11-01

    Context. The Galaxy Evolution Explorer (GALEX) has produced the largest photometric catalogue of ultraviolet (UV) sources. As such, it has defined the new standard bands for UV photometry: the near UV band (NUV) and the far UV band (FUV). However, due to brightness limits, the GALEX mission has avoided the Galactic plane which is crucial for astrophysical research and future space missions. Aims: The International Ultraviolet Explorer (IUE) satellite obtained 63 755 spectra in the low dispersion mode (λ/δλ 300) during its 18-year lifetime. We have derived the photometry in the GALEX bands for the stellar sources in the IUE Archive to extend the GALEX database with observations including the Galactic plane. Methods: Good quality spectra have been selected for the IUE classes of stellar sources. The GALEX FUV and NUV magnitudes have been computed using the GALEX transmission curves, as well as the conversion equations between flux and magnitudes provided by the mission. Results: Consistency between GALEX and IUE synthetic photometries has been tested using white dwarfs (WD) contained in both samples. The non-linear response performance of GALEX inferred from this data agrees with the results from GALEX calibration. The photometric database is made available to the community through the services of the Centre de Données Stellaires at Strasbourg (CDS). The catalogue contains FUV magnitudes for 1628 sources, ranging from FUV = 1.81 to FUV = 18.65 mag. In the NUV band, the catalogue includes observations for 999 stars ranging from NUV = 3.34 to NUV = 17.74 mag. Conclusions: UV photometry for 1490 sources not included in the GALEX AIS GR5 catalogue is provided; most of them are hot (O-A spectral type) stars. The sources in the catalogue are distributed over the full sky, including the Galactic plane. Full Tables A.1 and B.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  13. Spectroscopy of 9Be and observation of neutron halo structure in the states of positive parity rotational band

    Directory of Open Access Journals (Sweden)

    Demyanova A.S.

    2014-03-01

    Full Text Available The differential cross sections of the 9Be + α inelastic scattering at 30 MeV were measured at the tandem of Tsukuba University. All the known states of 9Be up to energies ~ 12 MeV were observed and decomposed into three rotational bands, each of them having a cluster structure consisting of a 8Be core plus a valence neutron in one of the sub-shells: p3/2−, s1/2+ and p1/2−. Existence of a neutron halo in the positive parity states was confirmed.

  14. Optical Observations of M81 Galaxy Group in Narrow Band [SII] and H_alpha Filters: Holmberg IX

    Directory of Open Access Journals (Sweden)

    Arbutina, B.

    2009-12-01

    Full Text Available We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and H$alpha$ filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supernova remnants (identified as sources with enhanced [SII] emission relative to their H$alpha$ emission in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant H$alpha$ emission that probably represent uncatalogued HII regions.

  15. Preliminary Results on VLT K-band Imaging Observations of GRB ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The derived magnitudes, combined with other photometric data taken from the literature, are used to investigate the – colors of GRB hosts. We do not find any extremely reddened starbursts in our sample, despite the capability of GRBs to trace star formation even in dusty regions. The observed – ...

  16. Characteristics of observed tropopause height derived from L-band sounder over the Tibetan Plateau and surrounding areas

    Science.gov (United States)

    Jiang, Xiaoling; Wang, Donghai; Xu, Jianjun; Zhang, Yuwei; Chiu, Long S.

    2017-02-01

    The tropopause, which plays important roles in the stratosphere-troposphere exchange, is an interface between the troposphere and stratosphere. In this study, the characteristics of tropopause is investigated with the high vertical resolution daily sounding data during the period from 2008 to 2014 collected by the network of L-band sounder at 119 observational stations over Mainland China developed by the China Meteorological Administration (CMA). The results show that the tropopause height increases from the north to the south and has little correspondence with the station elevation. In addition, the spectral analyses and wavelet analyses are also performed to understand the intraseasonal variations of the tropopause. The results show that usually there are seasonal cycles with maximum in summer and minimum in winter. The strongest spectral band with period of 25-35 days is observed over the Southeast China. Besides, 20-60 days signals over the Changjiang River basin and the Tibetan Plateau has a good correlation to the Oceanic Niño Index (ONI), suggesting that the behavior of tropopause over the regions between 30oN and 40oN could relate to the Niño events.

  17. Phase diagram of dirty two-band superconductors and observability of impurity-induced s +i s state

    Science.gov (United States)

    Silaev, Mihail; Garaud, Julien; Babaev, Egor

    2017-01-01

    We investigate the phase diagram of dirty two-band superconductors. This paper primarily focuses on the properties and observability of the time-reversal symmetry-breaking s +i s superconducting states, which can be generated in two-band superconductors by interband impurity scattering. We show that such states can appear in two distinct ways. First, according to a previously discussed scenario, the s +i s state can form as an intermediate phase at the impurity-driven crossover between s± and s++ states. We show that there is a second scenario where domains of the s +i s state exists in the form of an isolated dome inside the s± domain, completely detached from the transition between s± and s++ states. We demonstrate that in both cases the s +i s state generated by impurity scattering exists in an extremely small interval of impurity concentrations. Although this likely precludes direct experimental observation of the s +i s state formation due to this mechanism, this physics leads to the appearance of a region inside both the s± and s++ domains with unusual properties due to softening of normal modes.

  18. Extrapolation of earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations

    Science.gov (United States)

    Reagan, John A.; Pilewskie, Peter A.; Scott-Fleming, Ian C.; Herman, Benjamin M.; Ben-David, Avishai

    1987-01-01

    Techniques for extrapolating earth-based spectral band measurements of directly transmitted solar irradiance to equivalent exoatmospheric signal levels were used to aid in determining system gain settings of the Halogen Occultation Experiment (HALOE) sunsensor being developed for the NASA Upper Atmosphere Research Satellite and for the Stratospheric Aerosol and Gas (SAGE) 2 instrument on the Earth Radiation Budget Satellite. A band transmittance approach was employed for the HALOE sunsensor which has a broad-band channel determined by the spectral responsivity of a silicon detector. A modified Langley plot approach, assuming a square-root law behavior for the water vapor transmittance, was used for the SAGE-2 940 nm water vapor channel.

  19. Broad Band Data and Noise Observed with Surface Station and Borehole Station

    Science.gov (United States)

    Tunc, Suleyman; Ozel, Oguz; Safa Arslan, Mehmet; Behiye Akşahin, Bengi; Hatipoglu, Mustafa; Cagin Yalcintepe, Ragip; Ada, Samim; Meral Ozel, Nurcan

    2016-04-01

    Marmara region tectonically is very active and many destructive earthquakes happened in the past. North Anatolian Fault Zone crosses the Marmara region and it has three branches. The northern branch passes through Marmara Sea and expected future large earthquake will happen along this fault zone. There is a gap in seismic network in the Marmara region at offshore and onshore areas. We have started broadband borehole seismographic observations to obtain the detailed information about fault geometry and its stick-slip behavior beneath the western Marmara Sea, as a part of the MARsite collaborative Project, namely "New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite-MARsite". The target area western Marmara of Turkey. In the beginning of the project, we installed eight Broadband surface station around Marmara Sea in April 2014. Then, we added broadband sensor and broadband surface sensor at the same location in November 2014. In this study, we developed a Matlab application to calculate Power Spectral Density against the New Low Noise Model (NLNM) and New High Noise Model (NHNM) determined for one-hour segments of the data. Also we compared ambient noise of broadband borehole sensor and surface broadband sensor.

  20. The absorption spectrum of D2O in the region of 0.97 μm: the 3ν1 + ν3 vibrational-rotational band

    Science.gov (United States)

    Serdyukov, V. I.; Sinitsa, L. N.

    2017-08-01

    The vibrational-rotational absorption spectrum of D2O in the range from 10 120 to 10 450 cm-1 is recorded on a Fourier transform spectrometer with a resolution of 0.05 cm-1. The measurements were performed using a multipass White cell with an optical path length of 24 m. A light-emitting diode with brightness higher than that of other devices was used as a radiation source. The signal-to-noise ratio was about 104. The spectrum is interpreted as consisting of lines of more than 400 transitions. The spectral characteristics of lines (centers, intensities, and half widths) are determined by fitting the Voigt profile parameters to experimental data by the least-squares method. The intensities of lines and the experimental rotational energy levels of the (301) vibrational state of the D2 16O molecule with high rotational quantum numbers are determined for the first time.

  1. Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap.

    Science.gov (United States)

    Longhi, S; Marano, M; Laporta, P; Belmonte, M; Crespi, P

    2002-04-01

    We report on the experimental observation of superluminal reflection of picosecond optical pulses at 1.5 microm using a specially designed 30-cm-long fiber Bragg grating (FBG) that realizes a spectral reflectivity profile given by the superposition of two closely spaced Lorentzian lines. Probing pulses of 380 ps duration tuned midway between the two Lorentzian lines are reflected without appreciable distortion with a measured peak pulse advancement of approximately 60 ps. The achievement of the negative group delay is due to the interference of the two resonance modes of the FBG structure and has a close connection to the phenomenon of negative group velocity for pulse propagation in an inverted medium possessing a doublet line.

  2. Observational consequences of optical band milliarcsec-scale structure in active galactic nuclei discovered by Gaia

    Science.gov (United States)

    Petrov, L.; Kovalev, Y. Y.

    2017-11-01

    We interpret the recent discovery of a preferred very long baseline interferometry (VLBI)/Gaia offset direction for radio-loud active galactic nuclei (AGNs) along pc-scale radio jets as a manifestation of their optical structure on scales of 1-100 milliarcsec (mas). The extended jet structure affects the Gaia position more strongly than the VLBI position, due to the difference in observing techniques. Gaia detects total power, while VLBI measures a correlated quantity, visibility, and is therefore sensitive to compact structures. The synergy of VLBI, which is sensitive to the position of the most compact source component, usually associated with the opaque radio core, and Gaia, which is sensitive to the centroid of optical emission, opens a window of opportunity to study optical jets at milliarcsec resolution, two orders of magnitude finer than the resolution of most existing optical instruments. We demonstrate that strong variability of optical jets is able to cause a jitter comparable to the VLBI/Gaia offsets in a quiet state, I.e. several mas. We show that the VLBI/Gaia position jitter correlation with the AGN optical light curve may help to locate the region where a flare has occurred and estimate its distance from the supermassive black hole and the ratio of the flux density in the flaring region to the total flux density.

  3. Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations

    Directory of Open Access Journals (Sweden)

    Shu Wang

    2015-05-01

    Full Text Available Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the  parameter on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting were used as inputs in a retrieval process. In the first step, we retrieved a parameter (referred to as the  parameter accounting for the combined effects of roughness and vegetation. Then, global MODIS NDVI data were used to decouple the effects of vegetation from those of surface roughness. Finally, global maps of the Hr parameters were produced and discussed. Initial results showed that some spatial patterns in the  values could be associated with the main vegetation types (higher values of  were retrieved generally in forested regions, intermediate values were obtained over crops and grasslands, and lower values were obtained over shrubs and desert and topography. For instance, over the USA, lower values of  were retrieved in relatively flat regions while relatively higher values were retrieved in hilly regions.

  4. Evidence of non‐LTE in the CO2 15 µm weak bands from ISAMS and WINDII observations

    National Research Council Canada - National Science Library

    López‐Puertas, M; Dudhia, A; Shepherd, M. G; Edwards, D. P

    1997-01-01

    .... This constitutes the first experimental evidence of non‐LTE emissions in these CO 2 15 µ m weak bands. The measurements also represent indirect evidence of the net radiative heating produced by these bands around the summer mesopause.

  5. Further refinements to the spatiotemporal forecast model for L-band scintillation based on comparison with C/NOFS observations

    Science.gov (United States)

    Yadav, Sneha; Sridharan, R.; Sunda, Surendra; Pant, Tarun K.

    2017-05-01

    The model-generated spatiotemporal maps to forecast the occurrence pattern of plasma density irregularities in the nightside equatorial F region that are responsible for the L-band scintillations have been put to test, in both space and time, by comparing it with actual observations by the Communication/Navigation Outage Forecasting System satellite. The forecast model is based on (i) the temporal variations of the density perturbations during daytime in the Nmax region and (ii) the a priori knowledge of zonal velocity of the perturbations in the postsunset hours. The present study not only substantiates the hypothesis used for the generation of the scintillation forecast but also suggests that the equatorial plasma bubbles remain tied-up with the initial perturbations which trigger the primary Rayleigh-Taylor instability. The outcome highlights the need to take into account the altitudinal profile of the topside F region electron density as it could modify the zonal extent of the plasma bubbles that support the generation of the density irregularities and the consequent L-band scintillations. The present study takes us one more step closer toward the realization of an operational forecast system for satellite-based navigation.

  6. Sea ice melt pond fraction estimation from dual-polarisation C-band SAR - Part 1: In situ observations

    Science.gov (United States)

    Scharien, R. K.; Landy, J.; Barber, D. G.

    2014-01-01

    An understanding of the evolution of melt ponds on Arctic sea ice is important for climate model parameterizations, weather forecast models, and process studies involving mass, energy and biogeochemical exchanges across the ocean-sea ice-atmosphere interface. A field campaign was conducted on landfast first-year sea ice in the Canadian Arctic Archipelago during the summer of 2012, to examine the potential for estimating melt pond fraction from C-band synthetic aperture radar (SAR). In this study, in situ dual-polarisation radar scatterometer observations of pond covered ice are combined with surface physical measurements to analyse the effects of radar and surface parameters on backscatter. LiDAR measurements of ice surface roughness and ultrasonic wind-wave height profiles of melt ponds are used to quantify the sea ice surface rms-height. Variables contributing to the roughness of wind-generated melt pond surface waves within the fetch-limited pond environment are evaluated, and we show that pond roughness and backscatter cannot be explained by wind speed alone. The utility of the VV / HH polarisation ratio (PR) for retrieving melt pond properties including pond fraction, due to the dielectric contrast between free surface water and sea ice, is demonstrated and explained using Bragg scattering theory. Finally, the PR approach is discussed in the context of retrievals from satellite C-, L-, and P-band dual-polarisation SAR.

  7. Design and Experimental Implementation of a Beam-Type Twin Dynamic Vibration Absorber for a Cantilevered Flexible Structure Carrying an Unbalanced Rotor: Numerical and Experimental Observations

    Directory of Open Access Journals (Sweden)

    Abdullah Özer

    2015-01-01

    Full Text Available This paper presents experimental and numerical results about the effectiveness of a beam-type twin dynamic vibration absorber for a cantilevered flexible structure carrying an unbalanced rotor. An experimental laboratory prototype setup has been built and implemented in our laboratory and numerical investigations have been performed through finite element analysis. The proposed system design consists of a primary cantilevered flexible structure with an attached dual-mass cantilevered secondary dynamic vibration absorber arrangement. In addition, an unbalanced rotor system is attached to the tip of the flexible cantilevered structure to inspect the system response under harmonic excitations. Numerical findings and experimental observations have revealed that significant vibration reductions are possible with the proposed dual-mass, cantilevered dynamic vibration absorber on a flexible cantilevered platform carrying an unbalanced rotor system at its tip. The proposed system is efficient and it can be practically tuned for variety of design and operating conditions. The designed setup and the results in this paper can serve for practicing engineers, researchers and can be used for educational purposes.

  8. High-resolution infrared spectroscopy of CH2D79Br: ro-vibrational analysis of the ν4 and ν8 fundamental bands

    DEFF Research Database (Denmark)

    Stoppa, P.; Visinoni, R.; Baldacci, A.

    2017-01-01

    The high-resolution Fourier transform infrared spectrum of CH2D79Br has been recorded and analysed in the region of the ν4 and ν8 fundamentals located in the range 1125−1360 cm−1. The strong ν4 band, centred at 1225 cm−1, shows an a/b-hybrid structure with predominant a-type character, whereas ν8....../ν8/2ν6/ν5+ν6 by also including in the dataset the assigned transitions of the 2ν6−ν6 and ν5+ν6−ν6 hot bands obtained from previous analysis....

  9. Towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations

    Science.gov (United States)

    Bircher, Simone; Richaume, Philippe; Mahmoodi, Ali; Mialon, Arnaud; Fernandez-Moran, Roberto; Wigneron, Jean-Pierre; Demontoux, François; Jonard, François; Weihermüller, Lutz; Andreasen, Mie; Rautiainen, Kimmo; Ikonen, Jaakko; Schwank, Mike; Drusch, Mattias; Kerr, Yann H.

    2017-04-01

    evaluated using the default dielectric model for mineral soils is ongoing for the "organic" L-MEB version. Additionally, in order to decide where a soil moisture retrieval using the "organic" dielectric model should be triggered, information on soil organic matter content in the soil surface layer has to be considered in the retrieval algorithm. For this purpose, SoilGrids (www.soilgrids.org) providing soil organic carbon content (SOCC) in g/kg is under study. A SOCC threshold based on the relation between the SoilGrids' SOCC and the presence of organic soil surface layers (relevant to alter the microwave L-band emissions from the land surface) in the SoilGrids' source soil profile information has to be established. In this communication, we present the current status of the above outlined studies with the objective to advance towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations.

  10. Horizontal flow fields observed in Hinode G-band images. II. Flow fields in the final stages of sunspot decay

    Science.gov (United States)

    Verma, M.; Balthasar, H.; Deng, N.; Liu, C.; Shimizu, T.; Wang, H.; Denker, C.

    2012-02-01

    Context. Generation and dissipation of magnetic fields is a fundamental physical process on the Sun. In comparison to flux emergence and the initial stages of sunspot formation, the demise of sunspots still lacks a comprehensive description. Aims: The evolution of sunspots is most commonly discussed in terms of their intensity and magnetic field. Here, we present additional information about the three-dimensional flow field in the vicinity of sunspots towards the end of their existence. Methods: We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca ii H images, whereas line-of-sight velocities were extracted from VTT echelle Hα λ656.28 nm spectra and Fe i λ630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms, in addition to the high-resolution observations for the entire disk passage of the active region. Results: We perform a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observe moat flow and moving magnetic features (MMFs), even after its penumbra had decayed. We also detect a superpenumbral structure around this pore. We find that MMFs follow well-defined, radial paths from the spot all the way to the border of a supergranular cell surrounding the spot. In contrast, flux emergence near the other sunspot prevents the establishment of similar well ordered flow patterns, which could be discerned around a tiny pore of merely 2 Mm diameter. After the disappearance of the sunspots/pores, a coherent patch of abnormal

  11. Uplift of Kelud Volcano Prior to the November 2007 Eruption as Observed by L-Band Insar

    Directory of Open Access Journals (Sweden)

    Ashar Muda Lubis

    2014-09-01

    Full Text Available Kelud volcano, a stratovolcano with summit elevation of 1731 m above sea level, is considered to be one of the most dangerous volcanoes in Java, Indonesia. Kelud volcano erupts frequently, with the most recent eruption occurred on November 3, 2007. Therefore, volcano monitoring, especially detecting precursory signals prior to an eruption, is important for hazard mitigation for Kelud volcano. Interferometric Synthetic Aperture Radar (InSAR has been proven to bea powerful tool for investigating earth-surface deformation. Hence, we applied D-InSAR (differential InSAR in an effort to identify pre-eruptive deformation of Kelud volcano before November 2007 eruption. SAR images, L band ALOS-PALSAR, were used to construct 3 coherent interferograms between January to May 2007. We used the D-InSAR technique to remove topographic effects from interferometry images. During the interval observation, we detected a continuous inflation with a maximum line-of-sight (LOS displacement of 11cm. Uplift of Kelud volcano was also observed by the tiltmeter 1-2 months prior to the November 2007 eruption. We interpret this inflation as a manifestation of increased volume of magmatic material in the shallow reservoir and magmatic migration towards the surface, indicating an imminent eruption. This study confirms that InSAR technique is a valuable tool for monitoring volcano towards better hazard mitigations.

  12. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 850 and 1020 cm-1

    Science.gov (United States)

    McKellar, A. R. W.; Billinghurst, B. E.; Xu, Li-Hong; Lees, R. M.

    2015-11-01

    Using spectra obtained at the Canadian Light Source synchrotron radiation facility, a previously unobserved out-of-plane vibration of trans-acrolein (propenal) is reliably assigned for the first time. Its origin is at 1002.01 cm-1, which is about 20 cm-1 higher than usually quoted in the past. This mode is thus labelled as v14, leaving the label v15 for the known vibration at 992.66 cm-1. Weak combination bands 171182 ← 182, 171131 ← 131, 121182 ← 181, and 171182 ← 181 are studied for the first time, and assignments in the known v11, v16, and v15 fundamental bands are also extended. The seven excited vibrations involved in these bands are analyzed, together with five more unobserved vibrations in the same region (850-1020 cm-1), in a large 12-state simultaneous fit which accounts for most of the many observed perturbations in the spectra.

  13. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  14. Observation of bright-band height data from TRMM-PR for satellite communication in South Africa

    Science.gov (United States)

    Olurotimi, E. O.; Sokoya, O.; Ojo, J. S.; Owolawi, P. A.

    2017-07-01

    The deleterious effects of rain on a satellite link operating at a frequency above 10 GHz can be estimated using various parameters such as rain rate, drop size distribution, and rain height. In order to accurately account for rain fade along satellite link, real-time measurement of rain height data are needed. In this paper, Bright-Band Height (BBH) and 0 °C isotherm height (ZDIH) over some selected stations in South Africa were processed and used to determine rain height based on the precipitation data of 5-year (2011-2015) collected by the Tropical Rainfall Measuring Mission-Precipitation Radar (TRMM-PR) satellite. These results are then compared with the previous ITU-R P.839-2 and the recent ITU-R P.839-4. The results show that the BBH vary over the years and locations, and will mostly lie between 3.4557 and 4.2244 km. The average rain height observed also lies between 4.085 and 4.457 km across the studied locations. Comparison between the two versions of Recommendation P.839 showed that the ITU-R P.839-2 performs better with respect to three chosen locations such as Durban, Johannesburg, and Kimberley. However, the most recent version (ITU-R P.839-4) appears to be better in the case of a location like Cape Town. The overall results suggest the use of locally derived rain height values for rain attenuation prediction.

  15. Vibrational Investigations of Silver-Doped Hydroxyapatite with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available Silver-doped hydroxyapatite (Ag:HAp was obtained by coprecipitation method. Transmission electron microscopy (TEM, infrared, and Raman analysis confirmed the development of Ag:HAp with good crystal structure. Transmission electron microscopy analysis showed an uniform ellipsoidal morphology with particles from 5 nm to 15 nm. The main vibrational bands characteristic to HAp were identified. The bands assigned to phosphate vibrational group were highlighted in infrared and Raman spectra. The most intense peak Raman spectrum is the narrow band observed at 960 cm−1. In this article Ag:HAp-NPs were also evaluated for their antimicrobial activities against gram-positive, gram-negative, and fungal strains. The specific antimicrobial activity revealed by the qualitative assay demonstrates that our compounds are interacting differently with the microbial targets.

  16. Coastal heavy rainband formed along Sumatera Island, Indonesia, observed with X-band Doppler radars during HARIMAU2011 campaign

    Science.gov (United States)

    Mori, Shuichi; Jun-Ichi, Hamada; Hattori, Miki; Kamimera, Hideyuki; Wu, Peiming; Arbain, Ardhi A.; Lestari, Sopia; Syamsudin, Fadli; Yamanaka, Manabu D.

    2013-04-01

    , Indonesia, during 01-31 December 2011 in collaboration with CINDY and DYNAMO to study the CHeR formed along the southwestern coastline of Sumatera Island by using X-band Doppler and dual polarimetric (DP) radars, intensive soundings at two stations, disdrometers, and surface observation network. Two MJOs (MJO-2 and -3) were identified which passed over Sumatera Island during the campaign period. We divided the period into four phases: MJO-2 active (phase-I), MJO inactive (phase-II), MJO-3 active (phase-III), and MJO inactive (phase IV). CHeRs organized by a lot of mesoscale convections were observed throughout the period, however, those convections developed mainly over the coastal sea, coastal land, and both coastal sea and land, during phase-I, -II, and -III, respectively. Diurnal cycle of convections was not clear during the phase-I and -II. Whereas, that during the phase-III was clearly observed and a lot of convections were identified which migrated from the coastal land to sea during the night. Radar observations showed CHeRs were formed by both convections, a) generated originally over the coastal land in the evening and developed in the night after migrated into the sea, b) generated over the coastal sea in the night and developed independently. Environmental conditions including MJO activity and local circulations were also examined in terms of CHeR formation process.

  17. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  18. A numerical study of the nonlinear dynamics of a light, axially moving band in surrounding fluid

    Science.gov (United States)

    Koivurova, H.; Laukkanen, J.

    2009-07-01

    The vibration characteristics of a submerged axially moving band are investigated by a numerical study. A geometrically nonlinear axially moving band model is coupled to the acoustic fluid model and the periodic nonlinear problem is solved by the Fourier-Galerkin-Newton (FGN) method. The nonlinear dynamic behaviour is examined through the dependences between fundamental frequency, axial velocity and the amplitude of nonlinear free vibration. The results are compared with the behaviour of an axially moving band in a vacuum as considered in the companion paper [H. Koivurova, Journal of Sound and Vibration 320 (2009) 373-385]. In the subcritical speed range the system behaved as expected, in that the effect of the surrounding air field reduced the fundamental frequency to about one fifth of the vibration observed in a vacuum. In the supercritical speed range the effects of the surrounding air depended on the amplitude of vibration and its change with increasing geometrical nonlinearity. With linear vibrations the fundamental frequency grows faster as a function of axial velocity than in vacuum, but with nonlinear vibrations the increase in frequency is slower than in a vacuum at near-critical velocities, but with a tendency to increase faster at higher velocities.

  19. N-H stretching modes around 3300 wavenumber from peptide backbones observed by chiral sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Fu, Li; Wang, Zhuguang; Yan, Elsa C Y

    2014-09-01

    We present a detailed analysis of the molecular origin of the chiral sum frequency generation (SFG) signals of proteins and peptides at interfaces in the N-H stretching vibrational region. The N-H stretching can be a probe for investigating structural and functional properties of proteins, but remains technically difficult to analyze due to the overlapping with the O-H stretching of water molecules. Chiral SFG spectroscopy offers unique tools to study the N-H stretching from proteins at interfaces without interference from the water background. However, the molecular origin of the N-H stretching signals of proteins is still unclear. This work provides a justification of the origin of chiral N-H signals by analyzing the vibrational frequencies, examining chiral SFG theory, studying proton (hydrogen/deuterium) exchange kinetics, and performing optical control experiments. The results demonstrate that the chiral N-H stretching signals at ~3300 cm(-1) originate from the amide group of the protein backbones. This chiral N-H stretching signal offers an in situ, real-time, and background-free probe for interrogating the protein structures and dynamics at interfaces at the molecular level. © 2014 Wiley Periodicals, Inc.

  20. Herschel/PACS observations of the 69 μm band of crystalline olivine around evolved stars

    NARCIS (Netherlands)

    Blommaert, J.A.D.L.; de Vries, B.L.; Waters, L.B.F.M.; Waelkens, C.; Min, M.; Van Winckel, H.; Molster, F.; Decin, L.; Groenewegen, M.A.T.; Barlow, M.; García-Lario, P.; Kerschbaum, F.; Posch, T.; Royer, P.; Ueta, T.; Vandenbussche, B.; Van de Steene, G.; van Hoof, P.

    2014-01-01

    Context. We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67−72 μm. This wavelength range covers the 69 μm band of crystalline olivine (Mg2−2xFe(2x)SiO4). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline

  1. Examining Scattering Mechanisms within Bubbled Freshwater Lake Ice using a Time-Series of RADARSAT-2 (C-band) and UW-Scat (X-, Ku-band) Polarimetric Observations

    Science.gov (United States)

    Gunn, Grant; Duguay, Claude; Atwood, Don

    2017-04-01

    This study identifies the dominant scattering mechanism for C-, X- and Ku-band for bubbled freshwater lake ice in the Hudson Bay Lowlands near Churchill, Canada, using a winter time series of fully polarimetric ground-based (X- and Ku-band, UW-Scat) scatterometer and spaceborne (C-band) synthetic aperture radar (SAR, Radarsat-2) observations collected coincidentally to in-situ snow and ice measurements. Scatterometer observations identify two dominant backscatter sources from the ice cover: the snow-ice, and ice-water interface. Using in-situ measurements as ground-truth, a winter time series of scatterometer and satellite acquisitions show increases in backscatter from the ice-water interface prior to the timing of tubular bubble development in the ice cover. This timing indicates that scattering in the ice is independent of double-bounce scatter caused by tubular bubble inclusions. Concurrently, the co-polarized phase difference of interactions at the ice-water interface from both scatterometer and SAR observations are centred at 0° throughout the time series, indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of SAR observations is presented for C-band acquisitions indicating a dominant single-bounce scattering mechanism regime, which is hypothesized to be a result of an ice-water interface that presents a rough surface or a surface composed of preferentially oriented facets. This study is the first to present a winter time series of coincident ground-based and spaceborne fully polarimetric active microwave observations for bubbled freshwater lake ice.

  2. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    Science.gov (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2012-01-01

    The A 1B1 interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies

  3. Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsukasa, Takashi [Chalk River Labs., Ontario (Canada); Matsuyanagi, Kenichi [Kyoto Univ. (Japan); Mizutori, Shoujirou [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.

  4. Observer agreement in the assessment of narrow-band imaging system surface patterns in Barrett's esophagus : a multicenter study

    NARCIS (Netherlands)

    Singh, M.; Bansal, A.; Curvers, W. L.; Kara, M. A.; Wani, S. B.; Herrero, L. Alvarez; Lynch, C. R.; van Kouwen, M. C. A.; Peters, F. T.; Keighley, J. D.; Rastogi, A.; Pondugula, K.; Kim, R.; Singh, V.; Gaddam, S.; Bergman, J. J.; Sharma, P.

    Background and study aims: The clinical utility of narrow-band imaging (NBI) for Barrett's esophagus is limited by the multiplicity of classification schemes. We evaluated the interobserver agreement and accuracy of a new consensus-driven simplified binary classification of NBI surface patterns.

  5. Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis

    Science.gov (United States)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-01-01

    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies.

  6. Acetylene weak bands at 2.5 μm from intracavity Cr:ZnSe laser absorption observed with time-resolved Fourier transform spectroscopy.

    Science.gov (United States)

    Girard, Véronique; Farrenq, Robert; Sorokin, Evgeni; Sorokina, Irina T; Guelachvili, Guy; Picqué, Nathalie

    2006-02-26

    The spectral dynamics of a mid-infrared multimode Cr(2+):ZnSe laser located in a vacuum sealed chamber containing acetylene at low pressure is analyzed by a stepping-mode high-resolution time-resolved Fourier transform interferometer. Doppler-limited absorption spectra of C(2)H(2) in natural isotopic abundance are recorded around 4000 cm(-1) with kilometric absorption path lengths and sensitivities better than 3 10(-8) cm(-1). Two cold bands are newly identified and assigned to the ν(1)+ν(4) (1) and ν(3)+ν(5) (1) transitions of (12)C(13)CH(2). The ν(1)+ν(5) (1) band of (12)C(2)HD and fourteen (12)C(2)H(2) bands are observed, among which for the first time ν(2)+2ν(4) (2)+ν(5) (-1).

  7. Acetylene weak bands at 2.5 μm from intracavity Cr2+:ZnSe laser absorption observed with time-resolved Fourier transform spectroscopy

    Science.gov (United States)

    Girard, Véronique; Farrenq, Robert; Sorokin, Evgeni; Sorokina, Irina T.; Guelachvili, Guy; Picqué, Nathalie

    2010-01-01

    The spectral dynamics of a mid-infrared multimode Cr2+:ZnSe laser located in a vacuum sealed chamber containing acetylene at low pressure is analyzed by a stepping-mode high-resolution time-resolved Fourier transform interferometer. Doppler-limited absorption spectra of C2H2 in natural isotopic abundance are recorded around 4000 cm−1 with kilometric absorption path lengths and sensitivities better than 3 10−8 cm−1. Two cold bands are newly identified and assigned to the ν1+ν41 and ν3+ν51 transitions of 12C13CH2. The ν1+ν51 band of 12C2HD and fourteen 12C2H2 bands are observed, among which for the first time ν2+2ν42+ν5−1. PMID:21151826

  8. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  9. Localization and instability in sheared granular materials: Role of friction and vibration

    Science.gov (United States)

    Kothari, Konik R.; Elbanna, Ahmed E.

    2017-02-01

    Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies, and variability under different loading conditions have not been fully explored. Here we use a nonequilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as the presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and delocalize slip at these rates. Stick-slip is observed only for frictional grains, and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear-induced dilation and vibration-induced compaction. We discuss the implications of our results on dynamic triggering, quiescence, and strength evolution in gouge-filled fault zones.

  10. Turbulent Fluctuations in G-band and K-line Intensities Observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) Instrument

    Science.gov (United States)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.

    2012-12-01

    Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.

  11. Constraining the pass-band of future space-based coronagraphs for observations of solar eruptions in the FeXIV 530.3 nm "green line"

    Science.gov (United States)

    Bemporad, Alessandro; Pagano, Paolo; Giordano, Silvio; Fineschi, Silvano

    2017-10-01

    Observations of the solar corona in the FeXIV 530.3 nm "green line" have been very important in the past, and are planned for future coronagraphs on-board forthcoming space missions such as PROBA-3 and Aditya. For these instruments, a very important parameter to be optimized is the spectral width of the band-pass filter to be centred over the "green line". Focusing on solar eruptions, motions occurring along the line of sight will Doppler shift the line profiles producing an emission that will partially fall out of the narrower pass-band, while broader pass-band will provide observations with reduced spectral purity. To address these issues, we performed numerical (MHD) simulation of CME emission in the "green line" and produced synthetic images assuming 4 different widths of the pass-band (Δλ = 20 Å, 10 Å, 5 Å, and 2 Å). It turns out that, as expected, during solar eruptions a significant fraction of "green line" emission will be lost using narrower filters; on the other hand these images will have a higher spectral purity and will contain emission coming from parcels of plasma expanding only along the plane of the sky. This will provide a better definition of single filamentary features and will help isolating single slices of plasma through the eruption, thus reducing the problem of superposition of different features along the line of sight and helping physical interpretation of limb events. For these reasons, we suggest to use narrower band passes (Δλ ≤ 2 Å) for the observations of solar eruptions with future coronagraphs.

  12. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Sun, Y. -E [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maxwell, T. J. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Ruan, J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Rihaoui, M. M. [Northern Illinois Univ., DeKalb, IL (United States); Thurman-Keup, R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  13. Vibrational kinetics in Cl2 and O2 low-pressure inductively-coupled plasmas

    Science.gov (United States)

    Booth, Jean-Paul; Foucher, Mickael; Marinov, Daniil; Chabert, Pascal; Annusova, Anna; Guerra, Vasco; Agarwal, Ankur; Rauf, Shahid

    2015-09-01

    Low energy electron interactions with molecules via resonances can cause vibrational excitation (affecting chemical kinetics), electron energy loss and modification of the EEDF. However, with the exception of N2 and H2 plasmas, very little attention has been paid to this subject. We have implemented a novel high-sensitivity ultra-broadband UV absorption bench, allowing spectra to be recorded with noise as low as 2×10-5 over a 250 nm wavelength range, and recording of complete vibronic bands. We applied this to radiofrequency inductively-coupled plasmas in low pressure (5-50 mTorr) pure O2 and pure Cl2. In O2 plasmas we surprisingly observe highly vibrationally excited O2 (v'' up to 18) via B-X Schumann-Runge bands. Cl2 molecules show a broad UV absorption spectrum in the region 250-400 nm, with distinctly different absorption spectra for vibrationally excited molecules. However, only a small fraction of the Cl2 molecules were observed in vibrationally excited states and the vibrational temperature is close to equilibrium with the local gas translational temperature (up to 1000 K), in contrast to O2. We are currently working on global models with vibrational kinetics to explain these results. Work supported by LABEX Plas@par (ANR-11-IDEX-0004-02), and Applied Materials.

  14. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    Science.gov (United States)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  15. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  16. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  17. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  18. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.

    2015-01-01

    on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3......This paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed......LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated...

  19. Ground-based L-band active and passive observations of growing corn and soybean during SMAPVEX16-MicroWEX

    Science.gov (United States)

    Judge, Jasmeet; Liu, Pang-Wei; Chakrabarti, Subit; Steele-Dunne, Susan; Monsivais-Huertero, Alejandro; Bongiovanni, Tara; DeRoo, Roger; England, Anthony

    2017-04-01

    The NASA Soil Moisture Active/Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity (SMOS) missions include microwave radiometers at L-band that provides global observations of SM at 36 and 25km, respectively, with a repeat coverage of every 2-3 days. Agricultural regions, with their highly dynamic vegetation and spatial heterogeneity are particularly challenging for soil moisture retrieval algorithms. The Microwave Water and Energy Balance Experiment was conducted as part of the SMAP Validation Experiment (SMAPVEX16-MicroWEX) during the summer of 2016 in a predominantly agricultural region in Iowa, USA. During SMAPVEX16-MicroWEX, ground-based observations of active and passive signatures were obtained every 15-30 minutes during a growing season of corn and soybean from May 23 through September 2, 2016. The field site was within the South Fork Watershed at the Sweeney Farms, near the city of Buckeye. The University of Florida L-band Automated Radar System (UF-LARS) observed the backscatter from corn. The brightness temperatures (TB) at the corn site were observed by the University of Michigan L-Band Radiometer (UMLMR), while those at the soybean site were observed by the University of Florida L-band Microwave Radiometer (UFLMR). Concurrent and co-located observations of soil, vegetation, and micro-meteorological conditions were also conducted at both the sites. The passive signatures from both the corn and the soybean sites were found to be similar during the early season, as both the fields were nearly bare terrains. As expected, the TB diverge during the mid-season, when the vegetation water content (VWC) of the corn is about 2 kg/m2. Interestingly, the TB of the two crops are similar again toward the end of the season, when VWC of the soybean crop reaches about 2 kg/m2. Preliminary modeling results show that physically-based emission models significantly underestimate vegetation opacity for a mature soybean canopy. These findings provide insights into

  20. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  1. Weekly Gridded Aquarius L-band Radiometer-scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 1: Product Description

    Science.gov (United States)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Koenig, Lora S.

    2014-01-01

    Passive and active observations at L band (frequency (is) approximately 1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50 degrees are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km×156 km and 74 km×122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html

  2. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  3. The observation of valence band change on resistive switching of epitaxial Pr0.7Ca0.3MnO3 film using removable liquid electrode

    Science.gov (United States)

    Lee, Hong-Sub; Park, Hyung-Ho

    2015-12-01

    The resistive switching (RS) phenomenon in transition metal oxides (TMOs) has received a great deal of attention for non-volatile memory applications. Various RS mechanisms have been suggested as to explain the observed RS characteristics. Many reports suggest that changes of interface and the role of oxygen vacancies originate in RS phenomena; therefore, in this study, we use a liquid drop of mercury as the top electrode (TE), epitaxial Pr0.7Ca0.3MnO3 (PCMO) (110) film of the perovskite manganite family for RS material, and an Nb-doped (0.7 at. %) SrTiO3 (100) single crystal as the substrate to observe changes in the interface between the TE and TMOs. The use of removable liquid electrode Hg drop as TE not only enables observation of the RS characteristic as a bipolar RS curve (counterclockwise) but also facilitates analysis of the valence band of the PCMO surface after resistive switching via photoelectron spectroscopy. The observed I-V behaviors of the low and high resistance states (HRS) are explained with an electrochemical migration model in PCMO film where accumulated oxygen vacancies at the interface between the Hg TE and PCMO (110) surface induce the HRS. The interpreted RS mechanism is directly confirmed via valence band spectrum analysis.

  4. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  5. Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar Level 1.0: 2006-2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Americas ALOS Data Node (AADN) With the Japan Aerospace Exploration Agency's (JAXA's) launch of the Advanced Land Observation Satellite (ALOS) in January 2006, a new...

  6. Revealing the Faraday Depth Structure of Radio Galaxy NGC 612 with Broad-Band Radio Polarimetric Observations

    Science.gov (United States)

    Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.

    2018-02-01

    We present full-polarisation, broadband observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarisation mechanisms responsible for the observed Faraday depth structure. By fitting complex polarisation models to the polarised spectrum of each pixel, we find that a single polarisation component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarised emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.

  7. ISO-SWS observations of weak bands of trace components of ices towards the young stellar object W 33A

    NARCIS (Netherlands)

    Schutte, WA; Greenberg, JM; Van Dishoeck, EF; Tielens, AGGM; Boogert, ACA; Whittet, DCB

    1998-01-01

    ISO-SWS observations of the highly obscured young stellar object W 33A reveal two broad absorption features centered at 7.24 and 7.40 mu m The position and width of these features indicates that they are due to the XH bending mode (X= C, N, or O) of molecules in the solid state. Comparison to

  8. Optically active vibrational modes of PPV derivatives on textile substrate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.A.T. da, E-mail: seaquinhos@uel.br [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Dias, I.F.L. [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Santos, E.P. dos; Martins, A.A. [Departamento de Fisica, Universidade Vale do Paraiba-UNIVAP, Avenida Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, Sao Paulo (Brazil); Duarte, J.L.; Laureto, E.; Reis, G.A. dos [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Guimaraes, P.S.S.; Cury, L.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, C.P. 702, Belo Horizonte, CEP 30123-970 Minas Gerais (Brazil)

    2013-02-15

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on 'dirty' textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I{sub (01)}/I{sub (00)}, were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: Black-Right-Pointing-Pointer MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. Black-Right-Pointing-Pointer Their properties were studied by photoluminescence and Raman techniques. Black-Right-Pointing-Pointer We observed inversion of first vibrational band in relation to purely electronic peak. Black-Right-Pointing-Pointer Optically active vibrational modes of PPV derivatives were studied.

  9. Band gap opening in graphene: a short theoretical study

    Science.gov (United States)

    Sahu, Sivabrata; Rout, G. C.

    2017-03-01

    Graphene, being a gapless semiconductor, cannot be used in pristine form for nano-electronic applications. Therefore, it is essential to generate a finite gap in the energy dispersion at Dirac point. We present here the tight-binding model Hamiltonian taking into account of various interactions for tuning band gap in graphene. The model Hamiltonian describes the hopping of the π-electrons up to third nearest-neighbours, substrate effects, Coulomb interaction at two sub-lattices, electron-phonon interaction in graphene-on-substrates and high phonon frequency vibrations, besides the bi-layer graphene. We have solved the Hamiltonian using Zubarev's double time single particle Green's function technique. The quasi-particle energies, electron band dispersions, the expression for effective band gap and the density of states (DOS) are calculated numerically. The results are discussed by varying different model parameters of the system. It is observed that the electron DOS and band dispersion exhibit linear energy dependence near Dirac point for nearest-neighbour hopping integral. However, the second and third nearest-neighbour hoppings provide asymmetry in DOS. The band dispersions exhibit wider band gaps with stronger substrate effect. The modified gap in graphene-on-substrate attains its maximum value for Coulomb interaction energy U_{{C}} = 1.7 t1. The critical Coulomb interaction is enhanced to U_{{C}} = 2.5 t1 to produce maximum band gap in the presence of electron-phonon interaction and phonon vibration. The bi-layer graphene exhibits Mexican hat type band gap near Dirac point for transverse gating potential. The other conclusions for the present work are described in the text.

  10. Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in South-West Germany

    Directory of Open Access Journals (Sweden)

    Stephan Jacobi

    2016-11-01

    Full Text Available Rainfall-induced attenuation is a major source of underestimation for radar-based precipitation estimation at C-band. Unconstrained gate-by-gate correction procedures are known to be inherently unstable and thus not suited for unsupervised attenuation correction. In this study, we evaluate three different procedures to constrain gate-by-gate attenuation correction using reflectivity as the only input. These procedures are benchmarked against rainfall estimates from uncorrected radar data, using six years of radar observations from the single-polarized C-band radar in South-West Germany. The precipitation estimation error is obtained by comparing the radar-based estimates to rain gauge observations. All attenuation correction procedures benchmarked in this study lead to an effective improvement of precipitation estimation. The first method caps the corrections if the rain intensity increase exceeds a factor of two. The second method decreases the parameters of the attenuation correction iteratively for every radar beam calculation until attaining a stability criterion. The second method outperforms the first method and leads to a consistent distribution of path-integrated attenuation along the radar beam. As a third method, we propose a slight modification of Kraemer's approach which allows users to exert better control over attenuation correction by introducing an additional constraint that prevents unplausible corrections in cases of dramatic signal losses.

  11. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    Science.gov (United States)

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and

  12. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  13. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  14. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations

    Science.gov (United States)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.

    1988-01-01

    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  15. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  16. Combined optical, EISCAT and magnetic observations of the omega bands/Ps6 pulsations and an auroral torch in the late morning hours: a case study

    Directory of Open Access Journals (Sweden)

    V. Safargaleev

    2005-07-01

    Full Text Available We present here the results of multi-instrument observations of auroral torch and Ps6 magnetic pulsations, which are assumed to be the magnetic signature of the spatially periodic optical auroras known as omega bands. Data from TV and ASC cameras in Barentsburg and Ny Ålesund, EISCAT radars in Longyearbyen and Tromsø, as well as IMAGE network were used in this study. The auroral phenomenon which was considered differed from that previously discussed, as it occurred both in an unusual place (high latitudes and at an unusual time (late morning hours. We show that this might occur due to specific conditions in the interplanetary medium, causing the appropriate deformation of the magnetosphere. In such a case, the IMF turned out to be an additional factor in driving the regime of Ps6/omega bands, namely, only by acting together could a substorm onset in the night sector and Bz variations result in their generation. Since the presumable source of Ps6/omega bands does not co-locate with convection reversal boundaries, we suggest the interpretation of the phenomena in the frame of the interchange instability instead of the Kelvin-Helmholtz instability that is widely discussed in the literature in connection with omega auroras. Some numerical characteristics of the auroral torch were obtained. We also emphasize to the dark hole in the background luminosity and the short-lived azimuthally-restricted auroral arc, since their appearance could initiate the auroral torch development.

    Keywords. Magnetospheric physics (Auroral phenomena; Plasma convection; Solar wind-magnetosphere interaction

  17. The broad-band X-ray spectrum of IC 4329A from a joint NuSTAR/Suzaku observation

    DEFF Research Database (Denmark)

    Brenneman, L. W.; Madejski, G.; Fuerst, F.

    2014-01-01

    also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than justNuSTAR alone: Ecut = 186±14 keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate......We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku andNuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption, and distant reflection components in the spectrum. The absorbing column is found...... this parameter from the plasma’s optical depth and to update our results for these parameters as well. We derive kT = 50−3+6 keV with τ = 2.34−0.11+0.16 using a spherical geometry, kT = 61±1 keV with τ = 0.68±0.02 for a slab geometry, with both having an equivalent goodness-of-fit....

  18. Volcanic Ash Cloud Observation using Ground-based Ka-band Radar and Near-Infrared Lidar Ceilometer during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2015-03-01

    Full Text Available Active remote sensing techniques can probe volcanic ash plumes, but their sensitivity at a given distance depends upon the sensor transmitted power, wavelength and polarization capability. Building on a previous numerical study at centimeter wavelength, this work aims at i simulating the distal ash particles polarimetric response of millimeter-wave radar and multi-wavelength optical lidar; ii developing and applying a model-based statistical retrieval scheme using a multi-sensor approach. The microphysical electromagnetic forward model of volcanic ash particle distribution, previously set up at microwaves, is extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena for both millimeter and optical bands. Monte Carlo generation of radar and lidar signatures are driven by random variability of volcanic particle main parameters, using constraints from available data and experimental evidences. The considered case study is related to the ground-based observation of the Eyjafjallajökull (Iceland volcanic ash plume on May 15, 2010, carried out by the Atmospheric Research Station at Mace Head (Ireland with a 35-GHz Ka-band Doppler cloud radar and a 1064-nm ceilometer lidar. The detection and estimation of ash layer presence and composition is carried out using a Bayesian approach, which is trained by the Monte Carlo model-based dataset. Retrieval results are corroborated exploiting auxiliary data such as those from a ground-based microwave radiometer also positioned at Mace Head.

  19. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a scientific assessment of the observational capabilities in the hard X-ray band

    Science.gov (United States)

    D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.

    2017-12-01

    ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.

  20. Dispersed fluorescence spectroscopy of the SiCN A ˜ 2 Δ - X ˜ 2 Π system: Observation of some vibrational levels with chaotic characteristics

    Science.gov (United States)

    Fukushima, Masaru; Ishiwata, Takashi

    2016-12-01

    The laser induced fluorescence (LIF) spectrum of the A ˜ 2Δ - X ˜ 2Π transition was obtained for SiCN generated by laser ablation under supersonic free jet expansion. The vibrational structures of the dispersed fluorescence (DF) spectra from single vibronic levels (SVL's) were analyzed with consideration of the Renner-Teller (R-T) interaction. Analysis of the pure bending (ν2) structure by a perturbation approach including R-T, anharmonicity, spin-orbit (SO), and Herzberg-Teller (H-T) interactions indicated considerably different spin splitting for the μ and κ levels of the X ˜ 2Π state of SiCN, in contrast to identical spin splitting for general species derived from the perturbation approach, where μ and κ specify the lower and upper levels, respectively, separated by R-T. Further analysis of the vibrational structure including R-T, anharmonicity, SO, H-T, Fermi, and Sears interactions was carried out via a direct diagonalization procedure, where Sears resonance is a second-order interaction combined from SO and H-T interactions with Δ K = ± 1, ΔΣ = ∓1, and Δ P = 0, and where P is a quantum number, P = K + Σ. The later numerical analysis reproduced the observed structure, not only the pure ν2 structure but also the combination structure of the ν2 and the Si-CN stretching (ν3) modes. As an example, the analysis demonstrates Sears resonance between vibronic levels, (0110) κ Σ(+) and ( 0 2 0 0 ) μ Π /1 2 , with Δ K = ± 1 and Δ P = 0. On the basis of coefficients of their eigen vectors derived from the numerical analysis, it is interpreted as an almost one-to-one mixing between the two levels. The mixing coefficients of the two vibronic levels agree with those obtained from computational studies. The numerical analysis also indicates that some of the vibronic levels show chaotic characteristics in view of the two-dimensional harmonic oscillator (2D-HO) basis which is used as the basis function in the present numerical analysis; i.e., the

  1. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  2. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.

    Science.gov (United States)

    Nozawa, Tomohiro; Takagi, Hiroyuki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2015-07-08

    We present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser. These results reveal the direct demonstration of the two-step photon absorption in a single QD. This is an essential result for both the fundamental operation and the realization of ultrahigh solar-electricity energy conversion in quantum dot intermediate-band solar cells.

  3. A vibrational analysis of the O2 (A 3Sigma/+/u) Herzberg I system using rocket data

    Science.gov (United States)

    Siskind, David E.; Sharp, William E.

    1990-01-01

    An observation of the UV nightglow between 2670 and 3040 A was conducted over White Sands Missile Range on October 22, 1984. A 1/4-m spectrometer operating at 3.5-A resolution viewed the earth's limb at tangent heights between 90 and 110 km for 120 sec. A total of 41 spectral scans of the nightglow were obtained with the brightest feature being the O2 Herzberg I bands. The data were sorted into two groups, one from the top side of the layer and one containing the emission peak, and compared with synthetic spectra. The deduced vibrational distributions indicate that, at low altitudes, the higher vibrational levels (v-prime greater than 6) were relatively depleted; however, the magnitude of the vibrational shift is much less than that predicted from theories of vibrational relaxation. It is shown that increasing the electronic quenching with respect to the vibrational quenching can reduce the vibrational shift in the model and qualitatively explain the observations; however, several details of the vibrational distribution are not well reproduced.

  4. Assessment of scan-angle dependent radiometric bias of Suomi-NPP VIIRS day/night band from night light point source observations

    Science.gov (United States)

    Bai, Yan; Cao, Changyong; Shao, Xi

    2015-09-01

    The low gain stage of VIIRS Day/Night Band (DNB) on Suomi-NPP is calibrated using onboard solar diffuser. The calibration is then transferred to the high gain stage of DNB based on the gain ratio determined from data collected along solar terminator region. The calibration transfer causes increase of uncertainties and affects the accuracy of the low light radiances observed by DNB at night. Since there are 32 aggregation zones from nadir to the edge of the scan and each zone has its own calibration, the calibration versus scan angle of DNB needs to be independently assessed. This study presents preliminary analysis of the scan-angle dependence of the light intensity from bridge lights, oil platforms, power plants, and flares observed by VIIRS DNB since 2014. Effects of atmospheric path length associated with scan angle are analyzed. In addition, other effects such as light changes at the time of observation are also discussed. The methodology developed will be especially useful for JPSS J1 VIIRS due to the nonlinearity effects at high scan angles, and the modification of geolocation software code for different aggregation modes. It is known that J1 VIIRS DNB has large nonlinearity across aggregation zones, and requires new aggregation modes, as well as more comprehensive validation.

  5. Vibrational analysis of amino acids: cysteine, serine, β-chloroalanine

    Science.gov (United States)

    Susi, Heino; Byler, D. Michael; Gerasimowicz, Walter V.

    1983-10-01

    Normal coordinate calculations were carried out involving a total of seven isotopically substituted analogs of the amino acids cysteine, serine, and β-chloroalanine. Raman spectra were obtained for polycrystalline β-chloroalanine and the ND 3 analog. Overlay calculations were employed to obtain 55 force constants which reproduce 206 observed frequencies of seven molecules with an average error of ca. 9 cm -1. The valence force field used was based on local symmetry coordinates. Band assignments were based on the potential energy distribution. About 60% of the normal modes of the seven isotopomers can be called group vibrations by the PED criterion. Most skeletal stretching and bending vibrations are highly mixed and cannot be assigned to individual bond stretching or angle deformation modes.

  6. Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes

    Science.gov (United States)

    Tang, Liling; Cheng, Li

    2017-05-01

    The Acoustic Black Hole (ABH) effect can be used to effectively reduce structural vibrations by trapping flexural waves in a thin-walled structure with a power-law thickness variation. In the present study, we used a wavelet-decomposed energy method to investigate an Euler-Bernoulli beam embedded with multiple ABHs. Broadband transmission attenuation bands at relatively low frequencies are observed in a beam containing only a few ABH elements. To explain the underlying phenomena, an infinite structure with periodic ABH elements is analyzed. Numerical results show that the periodic boundary conditions in terms of displacement and rotational slope of a unit cell, based on the finite model, are sufficient to describe the band structures, without requiring full treatment of the entire infinite structure. This provides an efficient and flexible means to predict, and eventually optimize, the band structure based on a single element. Meanwhile, the ABH-induced locally resonant band gaps coincide with the attenuation bands observed in the finite beams. Because of the unique ABH feature, the proposed beam requires only a small number of elements to obtain broad attenuation bands, which offers great potential for vibrational isolation applications and wave filter designs in beam structures.

  7. Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state.

    Science.gov (United States)

    Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken

    2014-03-03

    This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.

  8. Vibrational and theoretical study of selected diacetylenes.

    Science.gov (United States)

    Roman, Maciej; Baranska, Malgorzata

    2013-11-01

    Six commonly used disubstituted diacetylenes with short side-chains (RCCCCR, where R=CH2OH, CH2OPh, C(CH3)2OH, C(CH3)3, Si(CH3)3, and Ph) were analyzed using vibrational spectroscopy and quantum-chemical calculations to shed new light on structural and spectroscopic properties of these compounds. Prior to that the conformational analysis of diacetylenes was performed to search the Potential Energy Surface for low-energy minima. Theoretical investigations were followed by the potential energy distribution (PED) analysis to gain deeper insight into FT-Raman and FT-IR spectra that, in some cases, were recorded for the first time for the studied compounds. The analysis was focused mainly on spectral features of the diacetylene system sensitive to the substitution. Shifts of the characteristic bands and changes in bond lengths were observed when changing the substituent. Furthermore, Fermi resonance was observed in the vibrational spectra of some diacetylenes. FT-IR spectra were measured by using two methods, i.e. transmission (with KBr substrate) and Attenuated Total Reflection (ATR), showing the latter adequate and fast tool for IR measurements of diacetylenes. Additionally, Surface Enhanced Raman Spectroscopy (SERS) was applied for phenyl derivative for the first time to study its interaction with metallic nanoparticles that seems to be perpendicular. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Vibration mode shape control by prestressing

    Science.gov (United States)

    Holnicki-Szulc, Jan; Haftka, Raphael T.

    1992-01-01

    A procedure is described for reducing vibration at sensitive locations on a structure, by induced distortions. The emphasis is placed on the excitation in a narrow frequency band, so that only a small number of vibration modes contribute to the intensity of the forced response. The procedure is demonstrated on an antenna truss example, showing that, with repeated frequencies, it is very easy to move nodal lines of one of the modes.

  10. Vibrational analysis of L-alanine and deuterated analogs

    Science.gov (United States)

    Susi, Heino; Byler, D. Michael

    1980-05-01

    Raman spectra of the polycrystalline L-alanine analogs CH 3CH(NH +3)COO -, CH 3CH(ND +3)-COO -, CD 3CD(NH +3)COO -, and CD 3CD(ND +3)COO - have been obtained. A normal coordinate analysis is carried out based on the experimental frequencies of the four isotopic analogs and a 34 parameter valence-type force field defined in terms of local symmetry coordinates. The final refinement, in which five stretching force constants are constrained to fixed values obtained from bond length data, results in an average error of 7 cm -1 (0.9%) for the observed frequencies of the four isotopically substituted molecules. Band assignments are given in terms of the potential energy distribution for local symmetry coordinates. For non-deuterated L-alanine, the vibrations above 1420 cm -1 and below 950 cm -1 may be described as localized group vibrations. By contrast, the eight modes in the middle frequency range, viz. the three skeletal stretching, the COO - symmetric stretching, one NH +3 rocking, the symmetric CH 3 deformation, and the two methyne CH deformation vibrations, are very strongly coupled to one another. Some decoupling appears to take place in the perdeutero molecule, and all but five modes can be described as localized group vibrations.

  11. Characteristics and performance of L-band radar-based soil moisture retrievals using Soil Moisture Active Passive (SMAP) synthetic aperture radar observations

    Science.gov (United States)

    Kim, S.; Johnson, J. T.; Moghaddam, M.; Tsang, L.; Colliander, A.

    2016-12-01

    Surface soil moisture of the top 5-cm was estimated at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Radar observations of soil moisture offer the advantage of high spatial resolution, but have been challenging in the past due to the complicating factors of surface roughness and vegetation scattering. In this work, physically-based forward models of radar scattering for individual vegetation types are inverted using a time-series approach to retrieve soil moisture while correcting for the effects of roughness and dynamic vegetation. The predictions of the forward models used agree with SMAP measurements to within 0.5 dB unbiased-RMSE (root mean square error, ubRMSE) and -0.05 dB (bias). The forward models further allow the mechanisms of radar scattering to be examined to identify the sensitivity of radar scattering to soil moisture. Global patterns of the soil moistures retrieved by the algorithm generally match well with those from other satellite sensors. However biases exist in dry regions, and discrepancies are found in thick vegetation areas. The retrievals are compared with in situ measurements of soil moisture in locations characterized as cropland, grassland, and woody vegetation. Terrain slopes, subpixel heterogeneity, tillage practices, and vegetation growth influence the retrievals, but are largely corrected by the retrieval processes. Soil moisture retrievals agree with the in-situ measurements at 0.052 m3/m3 ubRMSE, -0.015 m3/m3 bias, and a correlation of 0.50. These encouraging retrieval results demonstrate the feasibility of a physically-based time-series retrieval with L-band SAR data for characterizing soil moisture over diverse conditions of soil moisture, surface roughness, and vegetation types. The findings are important for future L-band radar missions with frequent revisits that permit time

  12. Discussion of vicarious calibration of GOSAT/TANSO-CAI UV-band (380nm) and aerosol retrieval in wildfire region in the OCO-2 and GOSAT observation campaign at Railroad Valley in 2016

    Science.gov (United States)

    Hashimoto, M.; Kuze, A.; Bruegge, C. J.; Shiomi, K.; Kataoka, F.; Kikuchi, N.; Arai, T.; Kasai, K.; Nakajima, T.

    2016-12-01

    The GOSAT (Greenhouse Gases Observing Satellite) / TANSO-CAI (Cloud and Aerosol Imager, CAI) is an imaging sensor to measure cloud and aerosol properties and observes reflected sunlight from the atmosphere and surface of the ground. The sensor has four bands from near ultraviolet (near-UV) to shortwave infrared, 380, 674, 870 and 1600nm. The field of view size is 0.5 km for band-1 through band-3, and 1.5km for band-4. Band-1 (380nm) is one of unique function of the CAI. The near-UV observation offers several advantages for the remote sensing of aerosols over land: Low reflectance of most surfaces; Sensitivity to absorbing aerosols; Absorption of trace gases is weak (Höller et al., 2004). CAI UV-band is useful to distinguish absorbing aerosol (smoke) from cloud. GOSAT-2/TANSO-CAI-2 that will be launched in the future also has UV-bands, 340 and 380nm. We carried out an experiment to calibrate CAI UV-band radiance using data taken in a field campaign of OCO-2 and GOSAT at Railroad Valley in 2016. The campaign period is June 27 to July 3 in 2016. We measured surface reflectance by using USB4000 Spectrometer with 74-UV collimating lens (Ocean Optics) and Spectralon (Labsphere). USB4000 is a UV spectrometer, and its measurement range from 300 to 520nm. We simulated CAI UV-band radiance using a vector type of radiation transfer code, i.e. including polarization calculation, pstar3 (Ota et al., 2010) using measured surface reflectance and atmospheric data, pressure and relative humidity by radiosonde in the same campaign, and aerosol optical depth by AERONET, etc. Then, we evaluated measured UV radiances with the simulated data. We show the result of vicarious calibration of CAI UV-band in the campaign, and discuss about this method for future sensor, CAI-2. Around the campaign period, there was wildfire around Los Angeles, and aerosol optical thickness (AOT) observed by AERONET at Rail Road valley and Caltech sites is also high. We tried to detect and retrieve aerosol

  13. A multitude of rotational bands in {sup 163}Er and their mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bosetti, P.; Leoni, S.; Bracco, A. [Univ. of Milan (Italy)] [and others

    1996-12-31

    Using the {sup 150}Nd({sup 18}O, 5n){sup 163}Er reaction a multitude of rotational bands have been established with firm spin and parity assignments in {sup 163}Er. In 16 out of {approximately} 23 band crossings E2 cross-band transitions have been observed. The interaction strength varies between {approximately} 1 and {approximately} 50 keV. These interactions sample a variety of the lowest (multi)-quasiparticle configurations. Some of the band configurations, in particular those with high K-values, can be rather well established. Quite complicated changes in the wavefunctions must occur at these crossings, and, to explain the observed interaction strengths, one may have to invoke coupling to various vibrational degrees of freedom, in addition to possible residual neutron-proton interactions.

  14. Implications of morphologic patterns of intraepithelial microvasculature observed by narrow-band imaging system in cases of oral squamous cell carcinoma.

    Science.gov (United States)

    Yang, Shih-Wei; Lee, Yun-Shien; Chang, Liang-Che; Hsieh, Tsan-Yu; Chen, Tai-An

    2013-01-01

    To investigate the intraepithelial microvascular morphology of oral squamous cell carcinoma (OSCC) by using narrow-band imaging (NBI) and analyze whether the intraepithelial papillary capillary loop (IPCL) patterns correlate with infiltration depth and disease severity in OSCC. The clinicopathologic data, morphology of vascular architecture as observed by NBI, and histopathology of patients with OSCC were retrospectively reviewed and analyzed. A total of 80 patients, including 73 males and 7 females with an average age of 54.18±12.23 years, were enrolled. Three patterns of intraepithelial microvasculature were revealed by NBI and differences in these three patterns were significant with regard to pathologic T-classification (p<0.0001), N-classification (p=0.00022), TNM stage (p<0.0001), lymphovascular invasion (p<0.0001), perineural invasion (p=0.000299), depth of tumor infiltration (p<0.0001), and tumor differentiation (p<0.0001). A cut-off point of tumor infiltration of 10.012 mm was best predicted for the destructive pattern of IPCL (sensitivity=100%, specificity=90.0%). Three different patterns of IPCL, showing step-wise increased severity according to pathologic parameters, were observed by NBI in cases of OSCC. The pattern indicating IPCL destruction with angiogenesis was associated with more advanced disease stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  16. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  17. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  18. Photoacoustic Detection of New Bands of HCN between 11 390 and 13 020 cm(-1).

    Science.gov (United States)

    Lecoutre; Rohart; Huet; Maki

    2000-09-01

    A laser photoacoustic technique has been used to measure the absorption spectrum of HCN in the region from 11 390 to 13 020 cm(-1) with a resolution that is limited by the Doppler- and pressure-broadened linewidth. This is a very sensitive technique that has allowed us to measure very weak bands with a small volume of gas. These measurements provide the rovibrational constants for a number of newly observed vibrational energy levels. Copyright 2000 Academic Press.

  19. A tubular dielectric elastomer actuator: Fabrication, characterization and active vibration isolation

    DEFF Research Database (Denmark)

    Sarban, R.; Jones, R. W.; Mace, B. R.

    2011-01-01

    This contribution reviews the fabrication, characterization and active vibration isolation performance of a core-free rolled tubular dielectric elastomer (DE) actuator, which has been designed and developed by Danfoss PolyPower A/S. PolyPower DE material, PolyPower (TM), is produced in thin sheets...... the dominant dynamic characteristics of the core-free tubular actuator. It has been observed that all actuators have similar dynamic characteristics in a frequency range up to 1 kHz. A tubular actuator is then used to provide active vibration isolation (AVI) of a 250 g mass subject to shaker generated 'ground...... vibration'. An adaptive feedforward control approach is used to achieve this. The tubular actuator is shown to provide excellent isolation against harmonic vibratory disturbances with attenuation of the resulting 5 and 10 Hz harmonics being 66 and 23 dB, respectively. AVI against a narrow band vibratory...

  20. Stochastic Response of Energy Balanced Model for Vortex-Induced Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Krenk, S.

    of lightly damped structures are found on two branches, with the highest amplification branch on the low-frequency branch. The effect free wind turbulence is to destabilize the vibrations on the high amplification branch, thereby reducing the oscillation amplitude. The effect is most pronounced for very......A double oscillator model for vortex-induced oscillations of structural elements based on exact power exchange between fluid and structure, recently proposed by authors, is extended to include the effect of the turbulent component of the wind. In non-turbulent flow vortex-induced vibrations...... lightly damped structures. The character of the structural vibrations changes with increasing turbulence and damping from nearly regular harmonic oscillation to typical narrow-banded stochastic response, closely resembling observed behaviour in experiments and full-scale structures....

  1. Vibrational spectroscopy modeling of a drug in molecular solvents and enzymes

    Science.gov (United States)

    Devereux, Christian J.; Fulfer, Kristen D.; Zhang, Xiaoliu; Kuroda, Daniel G.

    2017-09-01

    Modeling of drugs in enzymes is of immensurable value to many areas of science. We present a theoretical study on the vibrational spectroscopy of Rilpivirine, a HIV reverse transcriptase inhibitor, in conventional solvents and in clinically relevant enzymes. The study is based on vibrational spectroscopy modeling of the drug using molecular dynamics simulations, DFT frequency maps, and theory. The modeling of the infrared lineshape shows good agreement with experimental data for the drug in molecular solvents where the local environment motions define the vibrational band lineshape. On the other hand, the theoretical description of the drug in the different enzymes does not match previous experimental findings indicating that the utilized methodology might not apply to heterogeneous environments. Our findings show that the lack of reproducibility might be associated with the development of the frequency map which does not contain all of the possible interactions observed in such systems.

  2. Study of vibrational spectra of polyaniline doped with sulfuric acid and phosphoric acid.

    Science.gov (United States)

    Arora, M; Luthra, V; Singh, R; Gupta, S K

    2001-01-01

    Vibrational spectra of insulator emeraldine base (EB) form of polyaniline and electrical conductive sulfuric acid- and phosphoric acid-doped emeraldine salts (ES) were studied in the region of 4000-400 cm(-1) at ambient temperature by Fourier transform infrared spectroscopy. Infrared transmittance spectra of EB and ES were investigated to understand the bonding behavior of different organic and inorganic groups present in the polymeric chains and their structural variations on protonation by sulfate or phosphate ion inclusion in the polymer salt network. These studies revealed the para-coupling of deformed disubstituted benzenoid (B) and quinoid (Q) rings with ends capped predominantly by (B4Q1) units. The deformation of B and Q rings was confirmed by the appearance of many weak bands, very weak bands, and satellite structures in strong transmittance peaks of polymeric chain-constituting groups. Protonation takes place at the nitrogen sites of Q rings and forms semiquinone radical ions in ES. The vibrational bands pertaining to B rings, Q rings, B4Q1 units, semiquinone segment, sulfate ions, and phosphate ions were observed and assigned from these measurements. The shift in peak position of some bands with gain or loss in intensity and appearance of some new bands were observed in sulfuric acid- and phosphoric acid-doped ES spectra. These variations are attributed to the formation of new structural groups in ES on protonation and a change in crystalline field by sulfate and phosphate ion doping for crosslinking the polymeric chains.

  3. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    Science.gov (United States)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  4. Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan in possible association with an earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2008-12-01

    Full Text Available The ELF observation at Moshiri (geographic coordinates: 44.29° N, 142.21° E in Hokkaido, Japan, was used to find anomalous phenomena in the Schumann resonance band, possibly associated with a large earthquake (magnitude of 7.8 in Taiwan on 26 December 2006. The Schumann resonance signal (fundamental (n=1, 8 Hz; 2nd harmonic, 14 Hz, 3rd harmonic, 20 Hz, 4th, 26 Hz etc. is known to be supported by electromagnetic radiation from the global thunderstorms, and the anomaly in this paper is characterized by an increase in intensity at frequencies from the third to fourth Schumann resonance modes mainly in the BEW component with a minor corresponding increase in the BNS component also. Spectral modification takes place only in the interval of 21:00 UT±1 h, which corresponds to the global lightning activity concentrated in America. While distortions were absent in other lightning-active UT intervals, in particular, around 08:00 UT±1 h (Asian thunderstorms and around 15±1 h (African lightning activity. The anomaly occurred on 23 December three days prior to the main shock. The results observed were explained in terms of ELF radio wave perturbation caused by the lower ionospheric depression around the earthquake epicenter. The difference in the path lengths between the direct radio wave from an active global thunderstorm center and the wave scattered from the non-uniformity above Taiwan causes interference at higher resonance modes, which is successful in explaining the observational data.

  5. Detection of urban environments using advanced land observing satellite phased array type L-band synthetic aperture radar data through different classification techniques

    Science.gov (United States)

    Pradhan, Biswajeet; Abdullahi, Saleh; Seddighi, Younes

    2016-07-01

    Urban environments are very dynamic phenomena, and it is essential to update urban-related information for various applications. In this regard, remotely sensed data have been utilized widely to extract and monitor urban land use and land cover changes. Particularly, synthetic aperture radar (SAR) data, due to several advantages of this technology in comparison to passive sensors, provides better performance especially in tropical regions. However, the methodological approaches for extraction of information from SAR images are another important task that needs to be considered appropriately. This paper attempts to investigate and compare the performance of different image classification techniques for extracting urban areas using advanced land observing satellite phased array type L-band synthetic aperture radar imagery. Several object- [such as rule based (RB), support vector machine (SVM) and K-nearest neighbor (K-NN)] and pixel-based [decision tree (DT)] classification techniques were implemented, and their results were compared in detail. The overall results indicated RB classification performed better than other techniques. Furthermore, DT method, due to its predefined rules, distinguished the land cover classes better than SVM and K-NN, which were based on training datasets. Nevertheless, this study confirms the potential of SAR data and object-based classification techniques in urban detection and land cover mapping.

  6. Origin of the 2.45 eV luminescence band observed in ZnO epitaxial layers grown on c-plane sapphire by chemical vapour deposition

    Science.gov (United States)

    Saroj, R. K.; Dhar, S.

    2014-12-01

    Zinc oxide epitaxial layers have been grown on c-plane sapphire substrates by the chemical vapour deposition (CVD) technique. A structural study shows (0001)-oriented films with good crystalline quality. The temperature and excitation power dependence of the photoluminescence (PL) characteristics of these layers is studied as a function of various growth parameters, such as the growth temperature, oxygen flow rate and Zn flux, which suggest that the origin of the broad visible luminescence (VL), which peaks at 2.45 eV, is the transition between the conduction band and the Zn vacancy acceptor states. A bound excitonic transition observed at 3.32 eV in low temperature PL has been identified as an exciton bound to the neutral Zn vacancy. Our study also reveals the involvement of two activation processes in the dynamics of VL, which has been explained in terms of the fluctuation of the capture barrier height for the holes trapped in Zn vacancy acceptors. The fluctuation, which might be a result of the inhomogeneous distribution of Zn vacancies, is found to be associated with an average height of 7 and 90 meV, respectively, for the local and global maxima.

  7. Vibrational infrared spectra of biuret and its thioanalogs. An ab initio SCF/3-21G study

    Science.gov (United States)

    Sullivan, Richard H.; Kwiatkowski, Józef S.; Leszczyński, Jerzy; Jabalameli, Ali

    1993-05-01

    The results of ab initio SCF/3-21G * calculations are reported for vibrational IR spectra (harmonic wavenumbers, absolute intensities) of biuret, thiobiuret, dithiobiuret and their model systems, formamide and thioformamide. The predicted vibrational spectra of both biurets and model systems compare well with the available experimental data, and the observed shifts of the IR wavenumbers upon deuteration of the molecules are correctly predicted by the calculations. The positions and relative intensities of characteristic IR bands of formamide and thioformamide correlate well with the corresponding data for the biurets.

  8. Band Saw Blade Crack before and after Comparison and Analysis of Experiments (2

    Directory of Open Access Journals (Sweden)

    Gao Jin-gui

    2016-01-01

    Full Text Available Based on MJ3310 woodworking band saw machine as the research object, under the no-load and load of Vib system vibration signal acquisition, processing and analysis software of band saw blade transverse vibration test and the signal acquisition and analysis of the collected signals obtained: to determine the transverse vibration displacement 5.66μm ~ 7.86μm and the main vibration frequency between 624 Hz ~ 792 Hz, then saw blade crack at least 3 mm, need timely saw blade, cutting high hardness of wood band saw blade transverse vibration displacement and frequency will increase sharply. Can be generated according to the band saw blade crack before and after the changing rule of the horizontal vibration displacement and frequency of transverse vibration and scope, judgment and replacement time of saw blade saw blade defect types, which can fully rational utilization of saw blade work effectively.

  9. Effects of solar zenith angles on CO Cameron bands emission intensities in the dayside atmosphere of Mars: MEX/SPICAM observations

    Science.gov (United States)

    Pothuraju, Thirupathaiah; Haider, Syed A.

    2016-07-01

    We have developed a model to calculate the photoelectron energy fluxes and emission intensities of the CO Cameron bands in the upper atmosphere of Mars between solar zenith angles 0° to 90°. The production and loss mechanisms of CO (a ^{3}Π) are incorporated in the model. The atmospheric neutral parameters are adopted from the Mars Climate Database (v5.2). The required solar EUV fluxes are taken from the Solar2000 model (v2.37) and scaled to Mars. The photoelectron fluxes are calculated at different solar zenith angles using an analytical yield spectrum approach based on the Monte Carlo method. In this model we have assumed that crustal magnetic fields are horizontal in direction. Thus, photoelectrons are losing their energy at the same height where they are produced. This assumption is valid at mid and high latitudes where magnetic fields are mostly horizontal. We have also developed a coupled chemistry model to calculate the ion and electron density at different solar zenith angles, which are used in the airglow model. The model results are compared with the observations provided by the SPICAM onboard MEX. Our model reproduces the observed intensity profiles quite well. The CO (a ^{3}Π) is produced due to photoelectron excitation/dissociation, photodissociation, and dissociative recombination processes. It is destroyed by CO _{2}, CO and radiative decay. It is found that photon and photoelectron dissociation are dominant production processes of CO (a ^{3}Π), while radiative decay is a major loss mechanism of this state. The estimated photoelectron fluxes, production rates and intensities are decreasing with increasing solar zenith angles.

  10. LOFAR low-band antenna observations of the 3C 295 and Boötes fields: source counts and ultra-steep spectrum sources

    Energy Technology Data Exchange (ETDEWEB)

    Van Weeren, R. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Williams, W. L.; Röttgering, H. J. A.; Rafferty, D. A.; Van der Tol, S. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Tasse, C. [Department of Physics and Electronics, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Heald, G. [Netherlands Institute for Radio Astronomy (ASTRON), P.O. Box 2, NL-7990 AA Dwingeloo (Netherlands); White, G. J. [Department of Physics and Astronomy, The Open University, Buckinghamshire MK7 6AA (United Kingdom); Shulevski, A. [Kapteyn Astronomical Institute, P.O. Box 800, NL-9700 AV Groningen (Netherlands); Best, P. [Institute for Astronomy, University of Edinburgh, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Intema, H. T.; Bhatnagar, S. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Reich, W. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Steinmetz, M. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Van Velzen, S. [Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Enßlin, T. A. [Max Planck Institute for Astrophysics, Karl-Schwarzschildstrasse 1, D-85748 Garching (Germany); Prandoni, I.; Brunetti, G. [INAF—Istituto di Radioastronomia, Via Gobetti 101, I-40129 Bologna (Italy); De Gasperin, F. [Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Jamrozy, M., E-mail: rvanweeren@cfa.harvard.edu [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków (Poland); and others

    2014-10-01

    We present Low Frequency Array (LOFAR) Low Band observations of the Boötes and 3C 295 fields. Our images made at 34, 46, and 62 MHz reach noise levels of 12, 8, and 5 mJy beam{sup –1}, making them the deepest images ever obtained in this frequency range. In total, we detect between 300 and 400 sources in each of these images, covering an area of 17-52 deg{sup 2}. From the observations, we derive Euclidean-normalized differential source counts. The 62 MHz source counts agree with previous GMRT 153 MHz and Very Large Array 74 MHz differential source counts, scaling with a spectral index of –0.7. We find that a spectral index scaling of –0.5 is required to match up the LOFAR 34 MHz source counts. This result is also in agreement with source counts from the 38 MHz 8C survey, indicating that the average spectral index of radio sources flattens toward lower frequencies. We also find evidence for spectral flattening using the individual flux measurements of sources between 34 and 1400 MHz and by calculating the spectral index averaged over the source population. To select ultra-steep spectrum (α < –1.1) radio sources that could be associated with massive high-redshift radio galaxies, we compute spectral indices between 62 MHz, 153 MHz, and 1.4 GHz for sources in the Boötes field. We cross-correlate these radio sources with optical and infrared catalogs and fit the spectral energy distribution to obtain photometric redshifts. We find that most of these ultra-steep spectrum sources are located in the 0.7 ≲ z ≲ 2.5 range.

  11. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  12. Infrared spectrum of 4-methoxypicolinic acid N-oxide: computation of asymmetric O-H stretching band.

    Science.gov (United States)

    Balazic, Katja; Stare, Jernej; Mavri, Janez

    2007-01-01

    In this article we studied the strong intramolecularly hydrogen-bonded system 4-methoxypicolinic acid N-oxide. The potential energy surface V = V(rOH,rOO) and the corresponding dipole moment function were calculated using the DFT B3LYP/6-31+G(d,p) level of approximation. The time-independent vibrational Schrödinger equation was solved using a rectangular grid basis set and shifted Gaussian basis set. The vibrational spectrum and metric parameters were also calculated. Effects of deuteration were considered. The calculated vibrational spectra were compared with the experimental spectra. The vibrational transition corresponding to asymmetric O-H stretching that occurs at about 1400 cm-1 compares well with the experimentally assigned O-H asymmetric stretching band centered at 1380 cm-1. The corresponding asymmetric O-D stretching band was predicted to be at 1154 cm-1, while the experimental O-D band was not assigned due to its very low intensity. Several overtones and hot transitions of significant intensities were located in the vicinity of the fundamental O-H stretching frequency, effectively broadening the infrared absorption attributed to the O-H stretching mode. This is in a good agreement with the observed broad protonic absorptions found in the infrared spectra of the title compound and its analogs. We have shown that the Gaussian basis set is the method of choice for a two-dimensional vibrational problem that requires several hundreds of vibrational basis functions and when high accuracy of the eigenvalues is required or when extending the calculations to more vibrational degrees of freedom. We have also demonstrated that for a large number of basis functions the Gramm-Schmidt orthogonalization procedure outperforms symmetric and canonical orthogonalization schemes.

  13. Observation of a {pi}h{sub 9/2} x {nu}i{sub 13/2} oblate band in {sup 188}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.H.; Ma, L.; Xing, Y.B.; Zhang, Y.H.; Guo, Y.X.; Lei, X.G.; Xie, C.Y. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Oshima, M.; Toh, Y.; Koizumi, M.; Osa, A.; Hatsukawa, Y. [Japan Atomic Energy Research Institute, Ibaraki (Japan); Sugawara, M. [Chiba Institute of Technology, Chiba (Japan); Ndontchueng, M.M. [University of Douala, P. O. Box 24157, Douala (Cameroon)

    2006-06-15

    Excited states in {sup 188}Tl have been studied experimentally using the {sup 157}Gd({sup 35}Cl,4n) reaction at a beam energy of 170 MeV. A rotational band built on the {pi}h{sub 9/2} x {nu}i{sub 13/2} configuration with oblate deformation has been established for {sup 188}Tl. Based on the structure systematics of the oblate {pi}h{sub 9/2} x {nu}i{sub 13/2} bands in the heavier odd-odd Tl nuclei, we have tentatively proposed spin values for the new band in {sup 188}Tl. The {pi}h{sub 9/2} x {nu}i{sub 13/2} oblate band in {sup 188}Tl shows low-spin signature inversion, and it can be interpreted qualitatively by the two-quasiparticle plus rotor model including a J-dependent p-n residual interaction. (orig.)

  14. Observation of the exciton and Urbach band tail in low-temperature-grown GaAs using four-wave mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Webber, D.; Yildirim, M.; Hacquebard, L.; March, S.; Mathew, R.; Gamouras, A.; Hall, K. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Liu, X.; Dobrowolska, M.; Furdyna, J. K. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-11-03

    Four-wave mixing (FWM) spectroscopy reveals clear signatures associated with the exciton, free carrier inter-band transitions, and the Urbach band tail in low-temperature-grown GaAs, providing a direct measure of the effective band gap as well as insight into the influence of disorder on the electronic structure. The ability to detect (and resolve) these contributions, in contrast to linear spectroscopy, is due to an enhanced sensitivity of FWM to the optical joint density of states and to many-body effects. Our experiments demonstrate the power of FWM for studying the near-band-edge optical properties and coherent carrier dynamics in low-temperature-grown semiconductors.

  15. Vibrational overtone spectrum of matrix isolated cis, cis-HOONO

    Science.gov (United States)

    Zhang, Xu; Nimlos, Mark R.; Ellison, G. Barney; Varner, Mychel E.; Stanton, John F.

    2007-05-01

    Cis, cis-peroxynitrous acid is known to be an intermediate in atmospheric reactions between OH and NO2 as well as HOO and NO. The infrared absorption spectra of matrix-isolated cc-HOONO and cc-DOONO in argon have been observed in the range of 500-8000cm-1. Besides the seven fundamental vibrational modes that have been assigned earlier for this molecule [Zhang et al., J. Chem. Phys. 124, 084305 (2006)], more than 50 of the overtone and combination bands have been observed for cc-HOONO and cc-DOONO. Ab initio CCSD(T)/atomic natural orbital anharmonic force field calculations were used to help guide the assignments. Based on this study of the vibrational overtone transitions of cis, cis-HOONO that go as high as 8000cm-1 and the earlier paper on the vibrational fundamentals, we conclude that the CCSD(T)/ANO anharmonic frequencies seem to correct to ±35cm-1. The success of the theoretically predicted anharmonic frequencies {υ } in assigning overtone spectra of HOONO up to 8000cm-1 suggests that the CCSD(T)/ANO method is producing a reliable potential energy surface for this reactive molecule.

  16. Application of system concept in vibration and noise reduction

    Directory of Open Access Journals (Sweden)

    SHENG Meiping

    2017-08-01

    Full Text Available Although certain vibration and noise control technologies are maturing, such as vibration absorption, vibration isolation, sound absorption and sound insulation, and new methods for specific frequency bands or special environments have been proposed unceasingly, there is still no guarantee that practical effective vibration and noise reduction can be obtained. An important constraint for vibration and noise reduction is the lack of a system concept, and the integrity and relevance of such practical systems as ship structure have not obtained enough attention. We have tried to use the system engineering theory in guiding vibration and noise reduction, and have already achieved certain effects. Based on the system concept, the noise control of a petroleum pipeline production workshop has been completed satisfactorily, and the abnormal noise source identification of an airplane has been accomplished successfully. We want to share our experience and suggestions to promote the popularization of the system engineering theory in vibration and noise control.

  17. Picosecond thermometer in the amide I band of myoglobin

    DEFF Research Database (Denmark)

    Austin, R.H.; Xie, A.; Meer, L. van der

    2005-01-01

    The amide I and II bands in myoglobin show a heterogeneous temperature dependence, with bands at 6.17 and 6.43 mu m which are more intense at low temperatures. The amide I band temperature dependence is on the long wavelength edge of the band, while the short wavelength side has almost...... can be used to determine the time it takes vibrational energy to flow into the hydration shell. We determine that vibrational energy flow to the hydration shell from the amide I takes approximately 20 ps to occur....

  18. Earthquake Vibration Control of Structures using Tuned Liquid Dampers: Experimental Studies

    Directory of Open Access Journals (Sweden)

    Pradipta Banerji

    2010-12-01

    Full Text Available Earlier studies have shown conclusively that a Tuned Liquid Damper (TLD is effective for controlling vibrations in structures subjected to narrow-banded wind excitations. A recent numerical study has shown that if the design parameters of a TLD are properly set, this device could also be very effective for controlling structural vibration to broad-banded earthquake excitations. Here the results of a reasonably comprehensive set of experiments are presented to investigate the overall effectiveness of TLDs and the specific effect of TLD parameters (depth and mass ratios for earthquake vibration control of structures. Effects of various earthquake ground motions parameters such as amplitude, frequency content, duration of excitation etc. are also evaluated. It is shown that there is good agreement between the numerical simulation and experimental results. This experimental study conclusively shows that a properly designed TLD reduces structural response to broad-band earthquake excitations. It is also observed that effectiveness of TLD increases with increase in mass ratio, depth ratio and amplitude of ground motion.

  19. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  20. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    Science.gov (United States)

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  1. Onset of positional vertigo during exposure to combined G loading and chest-to-spine vibration.

    Science.gov (United States)

    Liston, Dorion B; Adelstein, Bernard D; Stone, Leland S

    2014-02-01

    Aerospace environments commonly expose pilots to vibration and sustained acceleration, alone and in combination. Of 16 experimental research participants, 3 reported symptoms of vertigo and signs of torsional nystagmus during or shortly following exposure to sustained chest-to-spine (+3.8 Gx) acceleration (G loading) and chest-to-spine (0.5 g(x)) vibration in the 8-16 Hz band. Two of the participants reported intermittent vertigo for up to 2 wk, were diagnosed with benign paroxysmal positional vertigo (BPPV), and were treated successfully with the Epley Maneuver. On a follow-up survey, a third participant reported transient BPPV-like vertigo, which resolved spontaneously. The follow-up survey also prompted participants to self-report other effects following research protocol exposure to vibration and G loading, revealing details about other minor and transient, but more common, effects that resolved within 3 h. Our studies indicated a significantly elevated incidence of BPPV following exposure to vibration plus G loading compared to vibration alone that was positively correlated with participant age. One mechanism for the rolling sensation in BPPV involves broken or dislodged otoconia floating within one of the posterior semicircular canals, making the canal gravity-sensitive. Our observations highlight a heretofore unforeseen risk of otolith damage sustained during launch, undetectable in space, potentially contributing to vertigo and perceived tumbling upon re-entry from microgravity.

  2. The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH) · 5H2O--a vibrational spectroscopic study.

    Science.gov (United States)

    Frost, Ray L; López, Andrés; Xi, Yunfei; Lima, Rosa Malena Fernandes; Scholz, Ricardo; Granja, Amanda

    2013-12-01

    We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH) · 5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [Formula: see text] soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm(-1) are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm(-1) are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm(-1) with sharper bands at 3459, 3530 and 3562 cm(-1) assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Observation

    Science.gov (United States)

    Kripalani, Lakshmi A.

    2016-01-01

    The adult who is inexperienced in the art of observation may, even with the best intentions, react to a child's behavior in a way that hinders instead of helping the child's development. Kripalani outlines the need for training and practice in observation in order to "understand the needs of the children and...to understand how to remove…

  4. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  5. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  6. Vibrationally Hot HCN in the Laboratory and IRC+10216

    Science.gov (United States)

    Pearson, John C.; Yu, Shanshan; Gupta, Harshal; Drouin, Brian J.

    2011-06-01

    HCN has historically been used as a tracer of the dense gas in the in interstellar medium. The envelopes of carbon rich asymptotic giant branch stars are generally rich in HCN; however, the large and generally variable infrared flux emitted by the star enormously complicates the interpretation. HCN in IRC+10216 shows an enormous number of masers and lasers pumped by the central star and often enhanced by line overlaps with other abundant molecules such as acetylene in the infrared. A total of seven laser transitions including two previously unreported transitions associated with the 040-011 interacting bands have been observed. To understand the astronomical observations a study of the radio frequency discharge plasma of CH_4 and N_2 was performed. Rotational transitions of HCN in vibrational states up to 15,000 Cm-1 have been observed including inverted levels and a number of previously undetected states. The spectra from IRC+10216 and the laboratory are presented.

  7. Morphologies of omega band auroras

    Science.gov (United States)

    Sato, Natsuo; Yukimatu, Akira Sessai; Tanaka, Yoshimasa; Hori, Tomoaki

    2017-08-01

    We examined the morphological signatures of 315 omega band aurora events observed using the Time History of Events and Macroscale Interactions during Substorm ground-based all-sky imager network over a period of 8 years. We find that omega bands can be classified into the following three subtypes: (1) classical (O-type) omega bands, (2) torch or tongue (T-type) omega bands, and (3) combinations of classical and torch or tongue (O/T-type) omega bands. The statistical results show that T-type bands occur the most frequently (45%), followed by O/T-type bands (35%) and O-type bands (18%). We also examined the morphologies of the omega bands during their formation, from the growth period to the declining period through the maximum period. Interestingly, the omega bands are not stable, but rather exhibit dynamic changes in shape, intensity, and motion. They grow from small-scale bumps (seeds) at the poleward boundary of preexisting east-west-aligned auroras, rather than via the rotation or shear motion of preexisting east-west-aligned auroras, and do not exhibit any shear motion during the periods of auroral activity growth. Furthermore, the auroral luminosity is observed to increase during the declining period, and the total time from the start of the growth period to the end of the declining period is found to be about 20 min. Such dynamical signatures may be important in determining the mechanism responsible for omega band formation.

  8. Clinical results of treatment using a modified K-wire tension band versus a cannulated screw tension band in transverse patella fractures: A strobe-compliant retrospective observational study.

    Science.gov (United States)

    Tan, Honglue; Dai, Pengyi; Yuan, Yanhao

    2016-10-01

    It was a retrospective case-control study. The aim of this study was to explore the clinical efficacy and complication of treatment using a modified Kirschner wire tension band (MKTB) or a cannulated screw tension band (CSTB) in transverse patellar fractures.In total, 55 patients with transverse patellar fractures were retrospectively reviewed and divided into 2 groups according to the surgical technique: 29 patients were in the MKTB group and 26 patients in the CSTB group. B[Latin Small Letter o with Caron]stman's clinical grading scale, including range of movement (ROM), pain, ability to work, atrophy of quadriceps femoris, assistance in walking, effusion, giving way, and stair-climbing, was used to evaluate the clinical results. Complications including painful hardware, implant loosening or breakage, and bone nonunion were also assessed.Both groups were evaluated at the final follow-up before removing implant in the MKTB group. The B[Latin Small Letter o with Caron]stman's score of ROM, pain, atrophy of quadriceps femoris, and effusion were all higher in the CSTB group than in the MKTB group (P  0.05). Seventeen patients achieved excellent results, 9 had good results, and 3 reported fair results in the MKTB group; the CSTB group had excellent results in 22 patients and good results in 4 patients, showing a significant difference in the excellent rate between the 2 groups (P = 0.021). Total B[Latin Small Letter o with Caron]stman scores in the MKTB and CSTB groups (26.96 ± 4.47 and 29.42 ± 1.47, respectively) were significantly different (P = 0.01). Total scores in the MKTB group after removing implant were higher than those before removing implant (P = 0.001), and similar to those in the CSTB group (P = 0.224). Eleven patients in the MKTB group reported painful hardware, including 4 cases of implant loosening.CSTB achieves better clinical results than MKTB, meanwhile avoiding the problems of painful hardware and implant loosening

  9. Quantum chemistry-based analysis of the vibrational spectra of five-coordinate metalloporphyrins [M(TPP)Cl].

    Science.gov (United States)

    Paulat, Florian; Praneeth, V K K; Näther, Christian; Lehnert, Nicolai

    2006-04-03

    Vibrational properties of the five-coordinate porphyrin complexes [M(TPP)(Cl)] (M = Fe, Mn, Co) are analyzed in detail. For [Fe(TPP)(Cl)] (1), a complete vibrational data set is obtained, including nonresonance (NR) Raman, and resonance Raman (RR) spectra at multiple excitation wavelengths as well as IR spectra. These data are completely assigned using density functional (DFT) calculations and polarization measurements. Compared to earlier works, a number of bands are reassigned in this one. These include the important, structure-sensitive band at 390 cm(-1), which is reassigned here to the totally symmetric nu(breathing)(Fe-N) vibration for complex 1. This is in agreement with the assignments for [Ni(TPP)]. In general, the assignments are on the basis of an idealized [M(TPP)]+ core with D(4h) symmetry. In this Work, small deviations from D(4h) are observed in the vibrational spectra and analyzed in detail. On the basis of the assignments of the vibrational spectra of 1, [Mn(TPP)(Cl)] (2), and diamagnetic [Co(TPP)(Cl)] (3), eight metal-sensitive bands are identified. Two of them correspond to the nu(M-N) stretching modes with B(1g) and Eu symmetries and are assigned here for the first time. The shifts of the metal sensitive modes are interpreted on the basis of differences in the porphyrin C-C, C-N, and M-N distances. Besides the porphyrin core vibrations, the M-Cl stretching modes also show strong metal sensitivity. The strength of the M-Cl bond in 1-3 is further investigated. From normal coordinate analysis (NCA), force constants of 1.796 (Fe), 0.932 (Mn), and 1.717 (Co) mdyn/A are obtained for 1-3, respectively. The weakness of the Mn-Cl bond is attributed to the fact that it only corresponds to half a sigma bond. Finally, RR spectroscopy is used to gain detailed insight into the nature of the electronically excited states. This relates to the mechanism of resonance enhancement and the actual nature of the enhanced vibrations. It is of importance that anomalous

  10. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    Science.gov (United States)

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Molecular and vibrational structure of thiosulfonate S-esters

    DEFF Research Database (Denmark)

    Luu, Thi Xuan Thi; Duus, Fritz; Spanget-Larsen, Jens

    2013-01-01

    /cc-pVTZ). The vibrational spectra of 2 and 3 are sensitive to the orientation of the alkyl group attached to the sulfonylic sulfur atom. Rotamers corresponding to anti and gauche conformations are thus predicted to have distinctly different vibrational transitions in the 800–400 cm–1 region. The observed vibrational...

  12. Spectroscopy of Vibrational States in Diatomic Iodine Molecules

    Science.gov (United States)

    Mulholland, Mary; Harrill, Charles H.; Smith, R. Seth

    2015-04-01

    This project is focused on understanding the vibrational structure of iodine, which is a homonuclear diatomic molecule. A 20 mW, 532 nm cw diode laser was used to selectively excite neutral iodine molecules to a higher energy electronic state. By performing spectroscopy on the transitions from this state to a lower energy electronic state, the data only showed those vibrational bands which connect the two electronic states. Since a number of vibrational levels are populated in the higher energy electronic state, the transitions to all of the allowed vibrational levels in the lower energy electronic state provided sufficient data to determine the vibrational structures of both states. Emission spectra were collected with an Ocean Optics USB4000 Compact CCD Spectrometer. The spectrometer had a range of 500 - 770 nm with a resolution of approximately 0.5 nm and was sensitive enough to resolve the vibrational states in diatomic iodine molecules. The results were compared to a simple harmonic oscillator model.

  13. Stroboscopic shearography for vibration analysis

    Science.gov (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank

    1999-09-01

    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  14. Thermal, vibrational spectra and photoluminescence properties of the nonlinear optical material MnTeMoO6

    Science.gov (United States)

    Jin, Chengguo; Shao, Juxiang; Li, Zhen; Yang, Junsheng; Cao, Qilong; Huang, Duohui; Wan, Mingjie; Wang, Fanhou

    2015-04-01

    MnTeMoO6 is a novel nonlinear optical material in near-mid-IR region. Vibrational spectra characterization, thermal and photoluminescent properties of polycrystalline MnTeMoO6 have been investigated in this work. The results show that polycrystalline MnTeMoO6 has a relatively high melting point at 725.2 °C and exhibits superheating of crystal. The observed Raman and IR bands of MnTeMoO6 are assigned to vibrations of the Mn-O bonds, MoO4 tetrahedra, and TeO4 polyhedra. Photoluminescence measurements show that MnTeMoO6 displays a strong emission peak at 467 nm under excitation at 280 nm, and the absorption band at 0.47-0.52 μm in UV-vis spectra may be caused by photoluminescence.

  15. Relative vibrational overtone intensity of cis-cis and trans-perp peroxynitrous acid

    Science.gov (United States)

    Matthews, Jamie; Sinha, Amitabha; Francisco, Joseph S.

    2004-06-01

    The vibrational overtone spectrum of HOONO is examined in the region of the 2νOH and 3νOH bands using action spectroscopy in conjunction with ab initio intensity calculations. The present measurements indicate that the oscillator strength associated with the higher energy trans-perp conformer of HOONO is stronger relative to the lower energy cis-cis conformer for both these vibrational overtone levels. Ab initio intensity calculations carried out at the QCISD level of theory suggest that this disparity in oscillator strength apparently arises from differences in the second derivative of the transition dipole moment function of the two isomers. The calculations indicate that the oscillator strength for the trans-perp isomer is ˜5.4 times larger than that of the cis-cis isomer for the 2νOH band and ˜2 times larger for 3νOH band. The band positions and intensities predicted by the calculations are used to aid in the assignment of features in the experimental action spectra associated with the OH stretching overtones of HOONO. The observed relative intensities in the experimental action spectra when normalized to the calculated oscillator strengths appears to suggest that the concentration of the higher energy trans-perp isomer is comparable to the concentration of the cis-cis isomer in these room temperature experiments.

  16. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  17. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  18. Torsional excitation in the 2CH vibrational overtone of the C2H2-CO2 and C2H2-N2O van der Waals complexes

    Science.gov (United States)

    Lauzin, C.; Didriche, K.; Földes, T.; Herman, M.

    2011-09-01

    Infrared spectra of the weakly-bound C2H2-CO2 and C2H2-N2O complexes in the region of the 2CH acetylene overtone band (∼1.52 µm) were recorded using CW-cavity ring down spectroscopy in a continuous supersonic expansion. A new, c-type combination band is observed in each case. The rotational analysis of low J, K lines is performed and rotational constants are obtained. The band origins are 40.491(2) and 40.778(2) cm-1 higher in energy than the 2CH excitation bands for C2H2-CO2 and C2H2-N2O, respectively. The combination band is assigned in each case as involving intermolecular torsional excitation combined to 2CH. The values of the torsional vibrational frequency and of the xCH/torsion anharmonicity constant are briefly discussed.

  19. Molecular structure, vibrational spectral analysis, NBO, HOMO-LUMO and conformational studies of ninhydrin

    Science.gov (United States)

    Arivazhagan, M.; Anitha Rexalin, D.

    2013-03-01

    The FT-IR and FT-Raman vibrational spectra of ninhydrin have been recorded in the range 4000-400 cm-1and 3600-50 cm-1, respectively. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state are calculated using ab initio HF and density functional B3LYP methods with 6-311++G(d,p) basis set combination. In order to find the most optimized geometry, the energy calculations are carried out for various possible conformers. Keto and enol forms of ninhydrin are also studied. The condensed summary of the principal NBOs shows the occupancy, orbital energy and the qualitative pattern of delocalization interactions of ninhydrin. The calculated HOMO-LUMO energies reveal that charge transfer occurs within the molecule. The predicted first hyperpolarizability also shows that the ninhydrin molecule have good optical quality and nonlinear optical (NLO) behavior. With the help of specific scaling procedures, the observed vibrational wave numbers in FT-IR and FT-Raman spectra are analyzed and assigned to different normal modes of the molecule.

  20. Interfacial Infrared Vibrational Spectroscopy.

    Science.gov (United States)

    1986-07-30

    aqueous sulphuric acid has been used as the electrolyte, bands in the 900 to 1250 cmŕ region are often observed, and these can be assigned to...high angles of incidence. Fig. 2 shows that Ep is maximized for angles of incidence near 80. For aqueous acid solutions the largest angle of incidence...from a change in dielectric function of the electrode producing a difference in reflectivity of the electrode at the two potentials defining the

  1. Relevance of motion artifact in electromyography recordings during vibration treatment.

    Science.gov (United States)

    Fratini, Antonio; Cesarelli, Mario; Bifulco, Paolo; Romano, Maria

    2009-08-01

    Electromyography readings (EMGs) from quadriceps of fifteen subjects were recorded during whole body vibration treatment at different frequencies (10-50 Hz). Additional electrodes were placed on the patella to monitor the occurrence of motion artifact, triaxial accelerometers were placed onto quadriceps to monitor motion. Signal spectra revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with the accelerometer data. EMG total power was compared to that associated with vibration harmonics narrow bands, before and during vibration. On average, vibration associated power resulted in only 3% (+/-0.9%) of the total power prior to vibration and 29% (+/-13.4%) during vibration. Often, studies employ surface EMG to quantitatively evaluate vibration evoked muscular activity and to set stimulation frequency. However, previous research has not accounted for motion artifacts. The data presented in this study emphasize the need for the removal of motion artifacts, as they consistently affect RMS estimation, which is often used as a concise muscle activity index during vibrations. Such artifacts, rather unpredictable in amplitude, might be the cause of large inter-study differences and must be eliminated before analysis. Motion artifact filtering will contribute to thorough and precise interpretation of neuromuscular response to vibration treatment.

  2. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm(-1): new observations and exhaustive review.

    Science.gov (United States)

    Campargue, A; Barbe, A; De Backer-Barilly, M-R; Tyuterev, Vl G; Kassi, S

    2008-05-28

    Weak vibrational bands of (16)O(3) could be detected in the 5850-7030 cm(-1) spectral region by CW-cavity ring down spectroscopy using a set of fibered DFB diode lasers. As a result of the high sensitivity (noise equivalent absorption alpha(min) approximately 3 x 10(-10) cm(-1)), bands reaching a total of 16 upper vibrational states have been previously reported in selected spectral regions. In the present report, the analysis of the whole investigated region is completed by new recordings in three spectral regions which have allowed: (i) a refined analysis of the nu(1) + 3nu(2) + 3nu(3) band from new spectra in the 5850-5900 cm(-1) region; (ii) an important extension of the assignments of the 2nu(1)+5nu(3) and 4nu(1) + 2nu(2) + nu(3) bands in the 6500-6600 cm(-1) region, previously recorded by frequency modulation diode laser spectroscopy. The rovibrational assignments of the weak 4nu(1) + 2nu(2) + nu(3) band were fully confirmed by the new observation of the 4nu(1) + 2nu(2) + nu(3)- nu(2) hot band near 5866.9 cm(-1) reaching the same upper state; (iii) the observation and modelling of three A-type bands at 6895.51, 6981.87 and 6990.07 cm(-1) corresponding to the highest excited vibrational bands of ozone detected so far at high resolution. The upper vibrational states were assigned by comparison of their energy values with calculated values obtained from the ground state potential energy surface of (16)O(3). The vibrational mixing and consequently the ambiguities in the vibrational labelling are discussed. For each band or set of interacting bands, the spectroscopic parameters were determined from a fit of the corresponding line positions in the frame of the effective Hamiltonian (EH) model. A set of selected absolute line intensities was measured and used to derive the parameters of the effective transition moment operator. The exhaustive review of the previous observations gathered with the present results is presented and discussed. It leads to a total number

  3. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  4. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  5. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  6. 2-Chloro- and 2-bromo-3-pyridinecarboxaldehydes: structures, rotamers, fermi resonance and vibration modes.

    Science.gov (United States)

    Yenagi, Jayashree; Shettar, Anita; Tonannavar, J

    2011-09-01

    FT-Infrared (4000-400 cm(-1)) and NIR-FT-Raman (4000-50 cm(-1)) spectral measurements have been made for 2-chloro- and 2-bromo-3-pyridinecarboxaldehydes. A DFT vibration analysis at B3LYP/6-311++G (d,p) level, valence force-fields and vibrational mode calculations have been performed. Aided by very good agreement between observed and computed vibration spectra, a complete assignment of fundamental vibration modes to the observed absorptions and Raman bands has been proposed. Orientations of the aldehydic group have produced two oblate asymmetric rotamers for each molecule, ON-trans and ON-cis: the ON-trans rotamer being more stable than cis by 3.42 kcal mol(-1) for 2-chloro-3-pyridinecarboxaldehyde and 3.68 kcal mol(-1) for 2-bromo-3-pyridinecarboxaldehyde. High potential energy barrier ca 14 kcal/mol, induced by steric hindrance, restricts rotamers' population to ON-trans only. It is observed that, in the presence of bromine, C-H stretching modes are pronounced; a missing characteristic ring mode in chlorine's presence shows at 1557 cm(-1); the characteristic ring mode at 1051 cm(-1) is diminished; a mixed mode near 707 cm(-1) is enhanced. Further, an observed doublet near 1696-1666 cm(-1) in both IR and Raman spectra is explained on the basis of Fermi resonance between aldehydic carbonyl stretching at 1696 cm(-1) and a combination mode of ring stretch near 1059 cm(-1) and deformation vibration, 625 cm(-1). A strong Raman aldehydic torsional mode at 62 cm(-1) is interpreted to correspond to the dominant ON-trans over cis rotamers population. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Molecular geometry, vibrational spectra, atomic charges, frontier molecular orbital and Fukui function analysis of antiviral drug zidovudine

    Science.gov (United States)

    Ramkumaar, G. R.; Srinivasan, S.; Bhoopathy, T. J.; Gunasekaran, S.

    2012-12-01

    The solid phase FT-IR and FT-Raman spectra of zidovudine (AZT) were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of zidovudine were obtained by the Restricted Hartree-Fock (RHF) density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The harmonic vibrational frequencies for zidovudine were calculated and the scaled values have been compared with experimental values of FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The harmonic vibrational wave numbers and intensities of vibrational bands of zidovudine with its cation and anion were calculated and compared with the neutral AZT. The DFT calculated HOMO and LUMO energies shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in AZT.

  8. The Ã1Au state of acetylene: ungerade vibrational levels in the region 45,800-46,550 cm-1

    Science.gov (United States)

    Baraban, Joshua H.; Changala, P. Bryan; Merer, Anthony J.; Steeves, Adam H.; Bechtel, Hans A.; Field, Robert W.

    2012-11-01

    The ungerade vibrational levels of the ? 1Au (S1-trans) state of C2H2 lying in the region 45,800-46,550 cm-1 have been assigned from IR-UV double resonance spectra. The aim has been to classify the complete manifold of S1-trans levels in this region, so as to facilitate the assignment of the bands of S1-cis C2H2. The rotational structure is complicated because of the overlapping of vibrational polyads with different Coriolis and Darling-Dennison parameters, but assignments have been possible with the help of predictions based on the properties of polyads at lower energy. An important result is that the analysis of the (1141, 1161) polyad determines the anharmonicity constants x 14 and x 16, which will be needed to proceed to higher energies. Some regions of impressive complexity occur. Among these is the band given by the 3361, K = 1 state at 45,945 cm-1, where a three-level interaction within the S1 state is confused by triplet perturbations. Several probable S1-cis states have been observed, including cis-62, K = 1; this vibrational level appears to show a K-staggering, of the type that arises when quantum mechanical tunnelling through the barrier to cis-trans isomerization is possible. The total number of identified cis vibrational states is now 6 out of an expected 10 up to the energies discussed in this paper.

  9. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 1(exp 1)A' l-C3H(-): A Possible Link to Lines Observed in the Horsehead Nebula PDR

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.

  10. Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy

    Directory of Open Access Journals (Sweden)

    Ching-Hwa Ho

    2012-06-01

    Full Text Available Optical examination of a chaocogenide compound AgAlS2 which can spontaneously transfer to a AgAlO2 oxide has been investigated by thermoreflectance (TR spectroscopy herein. The single crystals of AgAlS2 were grown by chemical vapor transport (CVT method using ICl3 as a transport agent sealed in evacuated quartz tubes. The as-grown AgAlS2 crystals essentially possess a transparent and white color in vacuum. The crystal surface of AgAlS2 becomes darkened and brownish when putting AgAlS2 into atmosphere for reacting with water vapor or hydrogen gas. Undergoing the chemical reaction process, oxygen deficient AgAlO2-2x with brownish and reddish-like color on surface of AgAlS2 forms. The transition energy of deficient AgAlO2-2x was evaluated by TR experiment. The value was determined to be ∼2.452 eV at 300 K. If the sample is kept dry and moved away from moisture, AgAlS2 crystal can stop forming more deficient AgAlO2-2x surface oxides. The experimental TR spectra for the surface-reacted sample show clearly two transition features at EW=2.452 eV for deficient AgAlO2-2x and EU=3.186 eV for AgAlS2, respectively. The EU transition belongs to direct band-edge exciton of AgAlS2. Alternatively, for surface-oxidation process of AgAlS2 lasting for a long time, a AgAlO2 crystal with yellowish color will eventually form. The TR measurements show mainly a ground-state band edge exciton of E OX 1 detected for AgAlO2. The energy was determined to be E OX 1=2.792 eV at 300 K. The valence-band electronic structure of AgAlS2 has been detailed characterized using polarized-thermoreflectance (PTR measurements in the temperature range between 30 and 340 K. Physical chemistry behaviors of AgAlS2 and AgAlO2 have been comprehensively studied via detailed analyses of PTR and TR spectra. Based on the experimental analyses, optical and chemical behaviors of the AgAlS2 crystals under atmosphere are realized. A possible optical-detecting scheme for using AgAlS2 as a humidity

  11. Conformational and vibrational reassessment of solid paracetamol

    Science.gov (United States)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.

    2017-08-01

    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  12. The nature of the low energy band of the Fenna-Matthews-Olson complex: vibronic signatures.

    Science.gov (United States)

    Caycedo-Soler, Felipe; Chin, Alex W; Almeida, Javier; Huelga, Susana F; Plenio, Martin B

    2012-04-21

    Based entirely upon actual experimental observations on electron-phonon coupling, we develop a theoretical framework to show that the lowest energy band of the Fenna-Matthews-Olson complex exhibits observable features due to the quantum nature of the vibrational manifolds present in its chromophores. The study of linear spectra provides us with the basis to understand the dynamical features arising from the vibronic structure in nonlinear spectra in a progressive fashion, starting from a microscopic model to finally performing an inhomogeneous average. We show that the discreteness of the vibronic structure can be witnessed by probing the diagonal peaks of the nonlinear spectra by means of a relative phase shift in the waiting time resolved signal. Moreover, we demonstrate that the photon-echo and non-rephasing paths are sensitive to different harmonics in the vibrational manifold when static disorder is taken into account. Supported by analytical and numerical calculations, we show that non-diagonal resonances in the 2D spectra in the waiting time, further capture the discreteness of vibrations through a modulation of the amplitude without any effect in the signal intrinsic frequency. This fact generates a signal that is highly sensitive to correlations in the static disorder of the excitonic energy albeit protected against dephasing due to inhomogeneities of the vibrational ensemble.

  13. Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings

    Science.gov (United States)

    Fang, Tian-Shen

    2007-01-01

    This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…

  14. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Science.gov (United States)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  15. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

    Science.gov (United States)

    Karhu, J; Nauta, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-06-28

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits.

  16. Site-selective detection of vibrational modes of an iron atom in a trinuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Faus, Isabelle, E-mail: faus@rhrk.uni-kl.de; Rackwitz, Sergej; Wolny, Juliusz A. [University of Kaiserslautern, Department of Physics (Germany); Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg [University of Kaiserslautern, Department of Chemistry (Germany); Schlage, Kai; Wille, Hans-Christian [DESY, PETRA III, P01 (Germany); Schünemann, Volker [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [{sup 57}Fe{L-N_4(CH_2Fc)_2} (CH{sub 3}CN){sub 2}](ClO{sub 4}){sub 2} have been performed. The octahedral iron ion in the complex was labelled with {sup 57}Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the {sup 57}Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.

  17. A structural and vibrational study of the chromyl chlorosulfate, fluorosulfate, and nitrate compounds

    CERN Document Server

    Brandán, Silvia A

    2014-01-01

    A Structural and Vibrational Study of the Chromyl Chlorosulfate, Fluorosulfate and Nitrate Compounds presents important studies related to the structural and vibrational properties on the chromyl compounds based on Ab-initio calculations. The synthesis and the study of such properties are of chemical importance because the stereo-chemistries and reactivities of these compounds are strongly dependent on the coordination modes that adopt the different ligands linked to the chromyl group. In this book, the geometries of all stable structures in gas phase for chromyl chlorosulfate, fluorosulfate, and nitrate are optimized by using Density functional Theory (DFT). Then, the complete assignments of all observed bands in the infrared and Raman spectra are performed combining DFT calculations with Pulay´s Scaled Quantum Mechanics Force Field (SQMFF) methodology and taking into account the type of coordination adopted by the chlorosulfate, fluorosulfate and nitrate ligands as monodentate and bidentate. Moreover, the ...

  18. New results on the superdeformed {sup 196}Pb nucleus: The decay of the excited bands to the yrast band

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Azaiez, F.; Duprat, J. [IPN, Orsay (France)] [and others

    1996-12-31

    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. In addition to the known yrast and two lowest excited SD bands, a third excited SD band has been seen. All of the three excited bands were found to decay to the yrast SD band through, presumably, E1 transitions, allowing relative spin and excitation energy assignments. Comparisons with calculations using the random-phase approximation suggest that all three excited bands can be interpreted as octupole vibrational structures.

  19. Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten saccadic reaction time.

    Science.gov (United States)

    Fujiwara, Katsuo; Kunita, Kenji; Furune, Naoe; Maeda, Kaoru; Asai, Hitoshi; Tomita, Hidehito

    2006-09-01

    Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten the saccadic reaction time was examined. Subjects were 14 healthy young adults. Visual targets (LEDs) were located 10 degrees left and right of a central point. The targets were alternately lit for random durations of 2-4 seconds in a resting neck condition and various vibration conditions, and saccadic reaction times were measured. Vibration amplitude was 0.5 mm in every condition. The upper trapezius muscles were vibrated at 40, 60, 80, and 100 Hz in a sub-maximum stretch condition in which the muscles were stretched at 70% of maximum stretch. In addition, the muscles were vibrated at 60 Hz with the muscles maximally stretched, with 70% vertical pressure without stretching, and with vibration applied to the skin in the same area as the muscle vibration. At 60, 80, and 100 Hz at 70% maximum stretch, saccadic reaction time shortened significantly compared with the resting neck condition. However, no significant difference in the reaction time was observed among the frequencies. The saccadic reaction times in the maximum stretch condition, muscle pressure condition, and skin contact condition did not differ significantly from that in the resting neck condition. Vibration stimulation to the trapezius with 60-100 Hz frequencies at 0.5 mm amplitude in the sub-maximum stretch condition was effective for shortening saccadic reaction time. The main mechanism appears to be Ia information originating from the muscle spindle.

  20. Line Assignments and Position Measurements in Several Weak CO2 Bands between 4590 /cm and 7930/ cm

    Science.gov (United States)

    Giver, L. P.; Kshirsagar, R. J.; Freedman, R. C.; Chackerian, C.; Wattson, R. B.

    1998-01-01

    A substantial set of CO2 spectra from 4500 to 12000 /cm has been obtained at Ames with 1500 m path length using a Bomem DA8 FTS. The signal/noise was improved compared to prior spectra obtained in this laboratory by including a filter wheel limiting the band-pass of each spectrum to several hundred/cm. We have measured positions of lines in several weak bands not previously resolved in laboratory spectra. Using our positions and assignments of lines of the Q branch of the 31103-00001 vibrational band at 4591/cm, we have re-determined the rotational constants for the 31103f levels. Q-branch lines of this band were previously observed, but misassigned, in Venus spectra by Mandin. The current HITRAN values of the rotational constants for this level are incorrect due to the Q-branch misassignments. Our prior measurements of the 21122-00001 vibrational band at 7901/cm were limited to Q- and R-branch lines; with the improved signal/noise of these new spectra we have now measured lines in the weaker P branch.

  1. Vibrational Circular Dichroism (VCD) Reveals Subtle Conformational Aspects and Intermolecular Interactions in the Carnitine Family.

    Science.gov (United States)

    Mazzeo, Giuseppe; Abbate, Sergio; Longhi, Giovanna; Castiglioni, Ettore; Villani, Claudio

    2015-12-01

    Vibrational circular dichroism spectra (VCD) in the mid-IR region and electronic circular dichroism (ECD) spectra for three carnitine derivatives in the form of hydrochloride salts were recorded in deuterated methanol solutions. Density Functional Theory calculations help one to understand the significance of the observed VCD bands. VCD and ECD spectra are informative about the absolute configuration of the molecule, but VCD data reveal also some conformational aspects in the N,N,N-trimethyl moiety and inform us about intermolecular interactions gained from the carbonyl stretching region for the acyl substituted carnitines. © 2015 Wiley Periodicals, Inc.

  2. Hydrogen Bonds and Vibrations of Water on (110) Rutile

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitin [ORNL; Neogi, Sanghamitra [Pennsylvania State University; Kent, Paul R [ORNL; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Wesolowski, David J [ORNL; Cole, David R [ORNL; Sofo, Jorge O. [Pennsylvania State University

    2009-01-01

    We study the relation between hydrogen bonding and the vibrational frequency spectra of water on the (110) surface of rutile (α-TiO2) with three structural layers of adsorbed water. Using ab-initio molecular dynamics simulations at 280, 300 and 320K, we find strong, crystallographically-controlled adsorption sites, in general agreement with synchrotron X-ray and classical MD simulations. We demonstrate that these sites are produced by strong hydrogen bonds formed between the surface oxygen atoms and sorbed water molecules. The strength of these bonds is manifested by substantial broadening of the stretching mode vibrational band. The overall vibrational spectrum obtained from our simulations is in good agreement with inelastic neutron scattering experiments. We correlate the vibrational spectrum with different bonds at the surface in order to transform these vibrational measurements into a spectroscopy of surface interactions.

  3. Electronic and vibrational properties of Pu3Ga : A theoretical explanation for the phonon softening observed in Pu-Ga alloys

    Science.gov (United States)

    Li, Menglei; Yang, Yu; Zheng, Fawei; Zhang, Ping

    2017-10-01

    By using the density functional theory plus U (DFT+U ) method and taking spin-orbit coupling into account, we investigate the electronic and phonon properties of Pu3Ga . Most interestingly, we find that there is a significant phonon softening in the transverse acoustic branch at the L point in the Brillouin zone. Via bond strength analysis, we reveal that the nearest-neighboring bond strengths in the face-centered-cubic lattice are weaker around Ga atoms, which is responsible for the observed phonon softening.

  4. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  5. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    Science.gov (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  6. Vibrations of Damaged Functionally Graded Cantilever Beams

    Science.gov (United States)

    Byrd, Larry W.; Birman, Victor

    2008-02-01

    The paper discusses closed-form solutions of the problems of free and forced vibrations of a functionally graded cantilever FGM beam with and without damage. The mode of damage considered in the paper is represented by cracks that are perpendicular to the axis of the beam. Notably, such mode of damage was observed in experiments on representative FGM beams. Forced vibrations considered in the paper were generated by a kinematic excitation of the clamped end of the beam.

  7. Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions - Part 1: Product description

    National Research Council Canada - National Science Library

    Brucker, L; Dinnat, E. P; Koenig, L. S

    2014-01-01

    ...), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day...

  8. Observations regarding 'quality of life' and 'comfort with food' after bariatric surgery: comparison between laparoscopic adjustable gastric banding and sleeve gastrectomy.

    Science.gov (United States)

    Brunault, Paul; Jacobi, David; Léger, Julie; Bourbao-Tournois, Céline; Huten, Noël; Camus, Vincent; Ballon, Nicolas; Couet, Charles

    2011-08-01

    Although laparoscopic adjustable gastric banding (LAGB) and laparoscopic sleeve gastrectomy (LSG) are coexisting first-choice restrictive procedures for bariatric surgery candidates, it is possible, given their different modes of action, that these procedures have different effects on quality of life (QOL). We hypothesized that improvement of QOL and comfort with food could be better with LSG compared to LAGB. This cohort study included 131 obese patients who had either LAGB (n = 102) or LSG (n = 29). Patients were assessed during preoperative and at 6- and 12-month postoperative visits. Five QOL dimensions were assessed using the 'Quality of Life, Obesity and Dietetics' rating scale: physical impact, psycho-social impact, impact on sex life, comfort with food and diet experience. We compared QOL evolution between LAGB and LSG using linear mixed models adjusted for gender and body mass index at each visit. Excess weight loss was 28.4 ± 14.7% and 34.8 ± 18.4% for LAGB and 35.7 ± 14.3% and 43.8 ± 17.8% for LSG at 6 and 12 months postoperatively, respectively. Both LAGB and LSG provided significant improvement in the physical, psycho-social, sexual and diet experience dimensions of QOL. LSG was associated with better improvement than LAGB in short-term (6-month) comfort with food. Our results add further evidence to the benefit of LSG and LAGB in obesity management. Within the first year of follow-up, there is no lasting difference in the comfort with food dimension between LSG and LABG.

  9. Changes in the MicroRNA Profile Observed in the Subcutaneous Adipose Tissue of Obese Patients after Laparoscopic Adjustable Gastric Banding

    Directory of Open Access Journals (Sweden)

    Carmela Nardelli

    2017-01-01

    Full Text Available Background. Laparoscopic adjustable gastric banding (LAGB results in significant lasting weight loss and improved metabolism in obese patients. To evaluate whether epigenetic factors could concur to these benefits, we investigated the subcutaneous adipose tissue (SAT microRNA (miRNA profile before (T0 and three years (T1 after LAGB in three morbidly obese women. Case Reports. SAT miRNA profiling, evaluated by TaqMan Array, showed four downexpressed (miR-519d, miR-299-5p, miR-212, and miR-671-3p and two upexpressed (miR-370 and miR-487a miRNAs at T1 versus T0. Bioinformatics predicted that these miRNAs regulate genes belonging to pathways associated with the cytoskeleton, inflammation, and metabolism. Western blot analysis showed that PPAR-alpha, which is the target gene of miR-519d, increased after LAGB, thereby suggesting an improvement in SAT lipid metabolism. Accordingly, the number and diameter of adipocytes were significantly higher and lower, respectively, at T1 versus T0. Bioinformatics predicted that the decreased levels of miR-212, miR-299-5p, and miR-671-3p at T1 concur in reducing SAT inflammation. Conclusion. We show that the miRNA profile changes after LAGB. This finding, although obtained in only three cases, suggests that this epigenetic mechanism, by regulating the expression of genes involved in inflammation and lipid metabolism, could concur to improve SAT functionality in postoperative obese patients.

  10. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  11. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2013-02-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  12. High-accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 11 A' l-C3H-: A Possible Link to Lines Observed in the Horsehead Nebula Photodissociation Region

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-07-01

    It has been shown that rotational lines observed in the Horsehead nebula photodissociation region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 1 A' C3H-. The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D eff for C3H- is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H+. As a result, 1 1 A' C3H- is a more viable candidate for these observed rotational transitions. It has been previously proposed that at least C6H- may be present in the Horsehead nebular PDR formed by way of radiative attachment through its dipole-bound excited state. C3H- could form in a similar way through its dipole-bound state, but its valence excited state increases the number of relaxation pathways possible to reach the ground electronic state. In turn, the rate of formation for C3H- could be greater than the rate of its destruction. C3H- would be the seventh confirmed interstellar anion detected within the past decade and the first C n H- molecular anion with an odd n.

  13. Chirped-pulse Fourier transform millimeter-wave spectroscopy of ten vibrationally excited states of i-propyl cyanide: exploring the far-infrared region.

    Science.gov (United States)

    Arenas, Benjamin E; Gruet, Sébastien; Steber, Amanda L; Giuliano, Barbara M; Schnell, Melanie

    2017-01-18

    We report here further spectroscopic investigation of the astrochemically relevant molecule i-propyl cyanide. We observed and analysed the rotational spectra of the ground state of the molecule and ten vibrationally excited states with energies between 180-500 cm(-1). For this, we used a segmented W-band spectrometer (75-110 GHz) and performed the experiments under room temperature conditions. This approach thus provides access to high-resolution, pure rotational data of vibrational modes that occur in the far-infrared fingerprint region, and that can be difficult to access with other techniques. The obtained, extensive data set will support further astronomical searches and identifications, such as in warmer regions of the interstellar space where contributions from vibrationally excited states become increasingly relevant.

  14. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: an atomic pair distribution function analysis.

    Science.gov (United States)

    Chapman, Karena W; Chupas, Peter J; Kepert, Cameron J

    2005-11-09

    The instantaneous structure of the cyanide-bridged negative thermal expansion (NTE) material Zn(CN)(2) has been probed using atomic pair distribution function (PDF) analysis of high energy X-ray scattering data (100-400 K). The temperature dependence of the atomic separations extracted from the PDFs indicates an increase of the average transverse displacement of the cyanide bridge from the line connecting the Zn(II) centers with increasing temperature. This allows the contraction of non-nearest-neighbor Zn...Zn' and Zn...C/N distances despite the observed expansion of the individual direct Zn-C/N and C-N bonds. Thus, this analysis provides definitive structural confirmation that an increase in the average displacement of bridging atoms is the origin of the NTE behavior. The lattice parameters reveal a slight reduction in the NTE behavior at high temperature from a minimum coefficient of thermal expansion (alpha = dl/ldT) of -19.8 x 10(-6) K(-1) below 180 K, which is attributed to interaction between the doubly interpenetrated frameworks that comprise the structure.

  15. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  16. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  17. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  18. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  19. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  20. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  1. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  2. Gradient and vorticity banding

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, Willem J.

    2008-01-01

    "Banded structures" of macroscopic dimensions can be induced by simple shear flow in many different types of soft matter systems. Depending on whether these bands extend along the gradient or vorticity direction, the banding transition is referred to as "gradient banding" or "vorticity banding,"

  3. High-resolution infrared spectrum of triacetylene: The ν5 state revisited and new vibrational states

    Science.gov (United States)

    Doney, K. D.; Zhao, D.; Linnartz, H.

    2015-10-01

    New data are presented that follow from a high-resolution survey, from 3302 to 3352 cm-1, through expanding acetylene plasma, and covering the Csbnd H asymmetric (ν5) fundamental band of triacetylene (HC6H). Absorption signals are recorded using continuous wave cavity ring-down spectroscopy (cw-CRDS). A detailed analysis of the resulting spectra allows revisiting the molecular parameters of the ν5 fundamental band in terms of interactions with a perturbing state, which is observed for the first time. Moreover, four fully resolved hot bands (501 1011, 501 1111, 501 1311, and 101 801 1110), with band origins at 3328.5829(2), 3328.9994(2), 3328.2137(2) and 3310.8104(2) cm-1, respectively, are reported for the first time. These involve low lying bending vibrations that have been studied previously, which guarantees unambiguous identifications. Combining available data allows to derive accurate molecular parameters, both for the ground state as well as the excited states involved in the bands.

  4. First analysis of the 2ν1 + 3ν3 band of NO2 at 7192.159 cm-1

    Science.gov (United States)

    Raghunandan, R.; Perrin, A.; Ruth, A. A.; Orphal, J.

    2014-03-01

    The first investigation of the very weak 2ν1 + 3ν3 absorption band of nitrogen dioxide, 14N16O2, located at 7192.1587(1) cm-1 was performed using Fourier-transform incoherent broadband cavity-enhanced absorption spectroscopy (FT-IBBCEAS) in the 7080-7210 cm-1 spectral range. The assigned 2ν1 + 3ν3 lines involve energy levels of the (2 0 3) vibrational state with rotational quantum numbers up to Ka = 7 and N = 47. Furthermore, due to local resonances involving energy levels from the (2,2,2)⇔(2,0,3) and (5,1,0)⇔(2,0,3) states, several transitions were also observed for the 2ν1 + 2ν2 + 2ν3 and 5ν1 + ν3 dark bands, respectively. The energy levels were satisfactorily reproduced within their experimental uncertainty using a theoretical model which takes explicitly into account the Coriolis interactions between the levels of the (2, 0, 3) vibrational state and those of (2, 2, 2) and of (5, 1, 0). As a consequence, precise vibrational energies, rotational, and coupling constants were achieved for the triad {(5, 0, 1), (2, 2, 2), (2, 0, 3)} of interacting states of 14N16O2. This theoretical model also accounts for the electron spin-rotation resonances within the (2, 0, 3), (2, 2, 2) and (5, 1, 0) vibrational states. However, owing to the limited experimental resolution (˜0.075 cm-1), it was not possible to observe the spin-rotation doublet structure. As a consequence, the spin-rotation constants in the {(2, 2, 2), (2, 0, 3), (5, 1, 0)} excited states were maintained fixed to their ground state values in this study. Using these parameters a comprehensive list of line positions and line intensities was generated for the 2ν1 + 3ν3 band of NO2.

  5. Cable Vibration due to Ice Accretions

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos; Larsen, Allan

    On March 29, 2001, the Great Belt East Bridge exhibited large-amplitude hanger vibrations having elliptical orbits for wind speeds of between 16 – 18m/s. Vibrational amplitudes were in the order of 2m in the across-wind direction and 0.6m in the along-wind. In this poster, a preliminary...... investigation behind the causes of this relatively isolated hanger vibration event on the Great Belt East Bridge is presented. Furthermore a stability criterion for a 3DOF bluff body is proposed. One of the main assumptions of the investigation is that icy conditions may have contributed in some way to large...... to a form of “drag instability”. From the visual observations of the vibrations it is assumed that the aerodynamic moment coefficient is zero...

  6. Vibrational coupling in plasmonic molecules.

    Science.gov (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2017-10-31

    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  7. Vibrational analysis of Fourier transform spectrum of the B 3− u (0

    Indian Academy of Sciences (India)

    ... microwave, was recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.035 cm-1. Vibrational constants were improved by putting the wave number of band origins in Deslandre table. The vibrational analysis was supported by determining the Franck–Condon factor and -centroid values.

  8. Diet after gastric banding

    Science.gov (United States)

    Gastric banding surgery - your diet; Obesity - diet after banding; Weight loss - diet after banding ... about any problems you are having with your diet, or about other issues related to your surgery ...

  9. Vibrational spectroscopy investigation using ab initio and DFT vibrational analysis of 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine-4-oxide

    Science.gov (United States)

    Prasath, M.; Muthu, S.; Arun Balaji, R.

    2013-09-01

    The FT-IR and FT-Raman spectrum of 7-chloro-2-methylamino-5-phenyl-3H-1, 4-benzodiazepine-4-oxide (7CMP4BO) has been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The optimized geometry, Thermodynamic properties, NBO, Molecular Electrostatic Potentials, PES, frequency and intensity of the vibrational bands of 7CMP4BO were obtained by the ab initio HF and density functional theory (DFT), B3LYP/6-31G (d,p) basis set. The molecule orbital contributions were studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The linear polarizability (α) and the first order hyperpolarizability (β) values of the investigated molecule have been computed using DFT quantum mechanical calculations. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically calculated values.

  10. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  11. Ultrafast electronic relaxation and vibrational dynamics in a polyacetylene derivative

    Science.gov (United States)

    Kobayashi, Takayoshi; Iiyama, Tsugumasa; Okamura, Kotaro; Du, Juan; Masuda, Toshio

    2013-04-01

    Real-time vibrational spectra in a polyacetylene derivative, poly[o-TFMPA([o-(trifluoromethyl) phenyl]acetylene)] in a broad electronic spectral region were observed using a sub-7-fs laser. Using the frequencies and initial phases of vibrational modes obtained by the spectroscopy, the assignment of the wavepackets was made. From the first moment, Huang-Rhys parameters were determined for six most prominent modes, which characterize the potential hypersurface composed of multi-dimensional vibrational mode spaces.

  12. Lateral vibration effects in atomic-scale friction

    OpenAIRE

    Roth, R.; Fajardo, O. Y.; Mazo, J. J.; Meyer, E; Gnecco, E.

    2014-01-01

    The influence of lateral vibrations on the stick-slip motion of a nanotip elastically pulled on a flat crystal surface is studied by atomic force microscopy measurements on a NaCl(001) surface in ultra-high vacuum. The slippage of the nanotip across the crystal lattice is anticipated at increasing driving amplitude, similarly to what is observed in presence of normal vibrations. This lowers the average friction force, as explained by the Prandtl-Tomlinson model with lateral vibrations superim...

  13. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  14. Hydrogen local vibrational modes in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  15. Vibration-rotation pattern in acetylene. II. Introduction of Coriolis coupling in the global model and analysis of emission spectra of hot acetylene around 3 μm

    Science.gov (United States)

    Amyay, Badr; Robert, Séverine; Herman, Michel; Fayt, André; Raghavendra, Balakrishna; Moudens, Audrey; Thiévin, Jonathan; Rowe, Bertrand; Georges, Robert

    2009-09-01

    A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 μm up to 1455 K under Doppler limited resolution (0.015 cm-1). The ν3-ground state (GS) and ν2+ν4+ν5 (Σu+ and Δu)-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states. Significantly higher J-values than previously reported are observed for 40 known substates while 37 new e or f vibrational substates, up to about 6000 cm-1, are identified and characterized by vibration-rotation parameters. The 3 811 new or improved data resulting from the analysis are merged into the database presented by Robert et al. [Mol. Phys. 106, 2581 (2008)], now including 15 562 lines accessing vibrational states up to 8600 cm-1. A global model, updated as compared to the one in the previous paper, allows all lines in the database to be simultaneously fitted, successfully. The updates are discussed taking into account, in particular, the systematic inclusion of Coriolis interaction.

  16. Vibration-rotation pattern in acetylene. II. Introduction of Coriolis coupling in the global model and analysis of emission spectra of hot acetylene around 3 microm.

    Science.gov (United States)

    Amyay, Badr; Robert, Séverine; Herman, Michel; Fayt, André; Raghavendra, Balakrishna; Moudens, Audrey; Thiévin, Jonathan; Rowe, Bertrand; Georges, Robert

    2009-09-21

    A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 mum up to 1455 K under Doppler limited resolution (0.015 cm(-1)). The nu(3)-ground state (GS) and nu(2)+nu(4)+nu(5) (Sigma(u) (+) and Delta(u))-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states. Significantly higher J-values than previously reported are observed for 40 known substates while 37 new e or f vibrational substates, up to about 6000 cm(-1), are identified and characterized by vibration-rotation parameters. The 3 811 new or improved data resulting from the analysis are merged into the database presented by Robert et al. [Mol. Phys. 106, 2581 (2008)], now including 15 562 lines accessing vibrational states up to 8600 cm(-1). A global model, updated as compared to the one in the previous paper, allows all lines in the database to be simultaneously fitted, successfully. The updates are discussed taking into account, in particular, the systematic inclusion of Coriolis interaction.

  17. CO laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Abstract. Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 µm and 10.6 µm regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with ...

  18. laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 m and 10.6 m regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with conventional low ...

  19. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  20. The vibration discomfort of standing people: evaluation of multi-axis vibration.

    Science.gov (United States)

    Thuong, Olivier; Griffin, Michael J

    2015-01-01

    Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.

  1. Behavior of Cell on Vibrating Micro Ridges

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2015-06-01

    Full Text Available The effect of micro ridges on cells cultured at a vibrating scaffold has been studied in vitro. Several parallel lines of micro ridges have been made on a disk of transparent polydimethylsiloxane for a scaffold. To apply the vibration on the cultured cells, a piezoelectric element was attached on the outside surface of the bottom of the scaffold. The piezoelectric element was vibrated by the sinusoidal alternating voltage (Vp-p < 16 V at 1.0 MHz generated by a function generator. Four kinds of cells were used in the test: L929 (fibroblast connective tissue of C3H mouse, Hepa1-6 (mouse hepatoma, C2C12 (mouse myoblast, 3T3-L1 (mouse fat precursor cells. The cells were seeded on the micro pattern at the density of 2000 cells/cm2 in the medium containing 10% FBS (fetal bovine serum and 1% penicillin/ streptomycin. After the adhesion of cells in several hours, the cells are exposed to the ultrasonic vibration for several hours. The cells were observed with a phase contrast microscope. The experimental results show that the cells adhere, deform and migrate on the scaffold with micro patterns regardless of the ultrasonic vibration. The effects of the vibration and the micro pattern depend on the kind of cells.

  2. Simultaneous microwave photonic and phononic band gaps in piezoelectric–piezomagnetic superlattices with three types of domains in a unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-hua [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Jiang, Zheng-Sheng [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Tao [Laboratory of Quantum Information and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lei, Da-Jun [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Yan, Wen-Yan, E-mail: yanwenyan88@126.com [School of Software and Communication Engineering, Xiangnan University, Chenzhou 423000 (China); Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China)

    2016-04-29

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe{sub 2}O{sub 4}) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices. - Highlights: • Dual microwave photonic and phononic band gaps can coexist in the PPSUC. • Two categories of phononic band gaps with different mechanism can be obtained. • Nearly dispersionless branches appear in the microwave photonic band gaps.

  3. High resolution infrared and Raman spectroscopy of ν 2 and associated combination and hot bands of 13C12CD2

    Science.gov (United States)

    Di Lonardo, G.; Fusina, L.; Baldan, A.; Martínez, R. Z.; Bermejo, D.

    2011-11-01

    Infrared and Raman spectra of dideuterated acetylene containing one 13C atom, 13C12CD2, have been recorded and analysed to obtain detailed information on the fundamental ν 2 band and associated combination and hot bands. Infrared spectra were recorded at 4 × 10-3 cm-1 resolution in the region 1150-2900cm-1, which contains combination and hot bands from the ground and the bending v 4 = 1 and v 5 = 1 states. The Q-branches of the ν 2 fundamental and associated hot bands (ν 2 + ν 4 - ν 4, ν 2 + ν 5 - ν 5, ν 2 + 2ν 4 - 2ν 4, ν 2 + 2ν 5 - 2ν 5 and ν 2 + ν 4 + ν 5 - (ν 4 + ν 5)) were recorded using inverse Raman spectroscopy, with an instrumental resolution of about 3 × 10-3 cm-1. In addition, the observation of the 2ν 2 - ν 2 Raman band was carried out populating the v 2 = 1 state by stimulated Raman pumping. In total, 11 Raman and 9 infrared bands were analysed, involving all the l-vibrational components of the excited stretching-bending manifolds up to v t = v 4 + v 5 = 2. A simultaneous analysis of all infrared and Raman assigned transitions has been performed on the basis of a theoretical model which takes into account the rotation and vibration l-type resonances within each vibrational manifold and the Darling-Dennison anharmonic resonance between the ν 2 + 2ν 4 and ν 2 + 2ν 5 states. The parameters obtained reproduce the assigned transition wavenumbers with a standard deviation of the same order of magnitude as the experimental uncertainty.

  4. Performance Monitoring of Vibration in Belt Conveyor System

    Directory of Open Access Journals (Sweden)

    S.Ojha

    2014-07-01

    Full Text Available We are always using some kind of machines in our daily life starting from fan, refrigerator and washing machines at home. In case of industries of industrial machinery items condition monitoring is important to know onset impending defects. There are so many types of indicating phenomenon such as vibration, heat, debris in oil, noise and sounds which emanate from these in efficiently running machines. This paper presents the vibration related fault identification and maintenance of belt conveyor systems (BCS. After analyzing the spectrum and vibration readings, it was observed that a combination of parallel and angular misalignment between motor & gear box was present causing high axial and radial vibration. The defect was rectified by mechanical maintenance activities and latter the vibration was found reduced within limit. Also the vibration readings were taken after rectification. The above results are presented in this paper.

  5. Do whole-body vibrations affect spatial hearing?

    Science.gov (United States)

    Frissen, Ilja; Guastavino, Catherine

    2014-01-01

    To assist the human operator, modern auditory interfaces increasingly rely on sound spatialisation to display auditory information and warning signals. However, we often operate in environments that apply vibrations to the whole body, e.g. when driving a vehicle. Here, we report three experiments investigating the effect of sinusoidal vibrations along the vertical axis on spatial hearing. The first was a free-field, narrow-band noise localisation experiment with 5- Hz vibration at 0.88 ms(-2). The other experiments used headphone-based sound lateralisation tasks. Experiment 2 investigated the effect of vibration frequency (4 vs. 8 Hz) at two different magnitudes (0.83 vs. 1.65 ms(-2)) on a left-right discrimination one-interval forced-choice task. Experiment 3 assessed the effect on a two-interval forced-choice location discrimination task with respect to the central and two peripheral reference locations. In spite of the broad range of methods, none of the experiments show a reliable effect of whole-body vibrations on localisation performance. We report three experiments that used both free-field localisation and headphone lateralisation tasks to assess their sensitivity to whole-body vibrations at low frequencies. None of the experiments show a reliable effect of either frequency or magnitude of whole-body vibrations on localisation performance.

  6. Interaction of spin and vibrations in transport through single-molecule magnets

    Directory of Open Access Journals (Sweden)

    Falk May

    2011-10-01

    Full Text Available We study electron transport through a single-molecule magnet (SMM and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.

  7. Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation

    Science.gov (United States)

    Turco, E.; Gardonio, P.

    2017-10-01

    This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.

  8. Monothiodibenzoylmethane: Structural and vibrational assignments

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen

    2007-01-01

    The vibrational structure of the title compound (1,3-diphenyl-3-thioxopropane-1-one, TDBM) was studied by a variety of experimental and theoretical methods. The stable ground state configuration of TDBM was investigated by IR absorption measurements in different media, by LD polarization spectros...... to an “open”, non-chelated enethiol form (t-TCC), thereby supporting the previous conclusions by Posokhov et al. No obvious indications of the contribution of other forms to the observed spectra could be found....

  9. Intramolecular Vibrational Dynamics of the Asymmetric &dbond;CH2 Hydride Stretch of Isobutene.

    Science.gov (United States)

    McWhorter; Pate

    1999-01-01

    The eigenstate-resolved, high-resolution (5 MHz) infrared spectrum of the asymmetric &dbond;CH2 hydride stretch of isobutene has been measured using an electric resonance optothermal spectrometer (EROS). This vibrational band near 3087 cm-1 was rotationally assigned with ground state microwave-infrared double-resonance spectroscopy. IVR rates from rotationally homogeneous IVR multiplets at values of total angular momentum, J ranging from J = 0 to J = 3 and Ka values of Ka = 0 to Ka = 2, were obtained. The average IVR lifetime for this vibrational mode is 105 ps and independent of rotational state. The experimental state density of the rotationless 000 vibrational state, approximately 150 states/cm-1, is in good agreement with the direct count result of 99 states/cm-1 using the C+3 v multiply sign in circle C-3 v (G36) molecular symmetry group. The lineshape profiles of the IVR multiplets are investigated in order to elucidate information concerning the dependence of IVR rates on the symmetry of the torsional wavefunction. We find that there is a common IVR rate among the various torsional symmetries. IVR lifetimes observed in the present study are compared to other asymmetric ethylenic hydride stretch IVR rates measured in our laboratory. Copyright 1999 Academic Press.

  10. Vibration-based angular speed estimation for multi-stage wind turbine gearboxes

    Science.gov (United States)

    Peeters, Cédric; Leclère, Quentin; Antoni, Jérôme; Guillaume, Patrick; Helsen, Jan

    2017-05-01

    Most processing tools based on frequency analysis of vibration signals are only applicable for stationary speed regimes. Speed variation causes the spectral content to smear, which encumbers most conventional fault detection techniques. To solve the problem of non-stationary speed conditions, the instantaneous angular speed (IAS) is estimated. Wind turbine gearboxes however are typically multi-stage gearboxes, consisting of multiple shafts, rotating at different speeds. Fitting a sensor (e.g. a tachometer) to every single stage is not always feasible. As such there is a need to estimate the IAS of every single shaft based on the vibration signals measured by the accelerometers. This paper investigates the performance of the multi-order probabilistic approach for IAS estimation on experimental case studies of wind turbines. This method takes into account the meshing orders of the gears present in the system and has the advantage that a priori it is not necessary to associate harmonics with a certain periodic mechanical event, which increases the robustness of the method. It is found that the MOPA has the potential to easily outperform standard band-pass filtering techniques for speed estimation. More knowledge of the gearbox kinematics is beneficial for the MOPA performance, but even with very little knowledge about the meshing orders, the MOPA still performs sufficiently well to compete with the standard speed estimation techniques. This observation is proven on two different data sets, both originating from vibration measurements on the gearbox housing of a wind turbine.

  11. Vibrational Study and Force Field of the Citric Acid Dimer Based on the SQM Methodology

    Directory of Open Access Journals (Sweden)

    Laura Cecilia Bichara

    2011-01-01

    Full Text Available We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT method with the B3LYP/6-31G∗ and B3LYP/6-311++G∗∗ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242 cm−1 together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM for the dimer were carried out to study the charge transference interactions of the compound.

  12. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  13. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    Science.gov (United States)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more

  14. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  15. Light-induced gaps in semiconductor band-to-band transitions.

    Science.gov (United States)

    Vu, Q T; Haug, H; Mücke, O D; Tritschler, T; Wegener, M; Khitrova, G; Gibbs, H M

    2004-05-28

    We observe a triplet around the third harmonic of the semiconductor band gap when exciting 50-100 nm thin GaAs films with 5 fs pulses at 3 x 10(12) W/cm(2). The comparison with solutions of the semiconductor Bloch equations allows us to interpret the observed peak structure as being due to a two-band Mollow triplet. This triplet in the optical spectrum is a result of light-induced gaps in the band structure, which arise from coherent band mixing. The theory is formulated for full tight-binding bands and uses no rotating-wave approximation.

  16. VLTI-UT vibrations effort and performances

    Science.gov (United States)

    Poupar, Sébastien; Haguenauer, Pierre; Alonso, Jaime; Schuhler, Nicolas; Henriquez, Juan-Pablo; Berger, Jean-Philippe; Bourget, Pierre; Brillant, Stephane; Castillo, Roberto; Gitton, Philippe; Gonte, Frederic; Di Lieto, Nicola; Lizon, Jean-Louis; Merand, Antoine; Woillez, Julien

    2014-07-01

    The ESO Very Large Telescope Interferometer (VLTI) using the Unit Telescope (UT) was strongly affected by vibrations since the first observations. Investigation by ESO on that subject had started in 2007, with a considerable effort since mid 2008. An important number of investigations on various sub-systems (On telescope: Guiding, Passive supports, Train Coude, insulation of electronics cabinets; On Instruments: dedicated campaign on each instruments with a special attention on the ones equipped with Close Cycle Cooler) were realized. Vibrations were not only recorded and analyzed using the usual accelerometers but also using on use sub-systems as InfRared Image Sensor (IRIS) and Multiple Applications Curvature Adaptive Optics (MACAO) and using a specific tool developed for vibrations measurements Mirror vibrAtion Metrology systeM for the Unit Telescope (MAMMUT). Those tools and systems have been used in order to improve the knowledge on telescope by finding sources. The sources whenever it was possible were damped. As known for years, instruments are still the principal sources of vibrations, for the majority of the UT. A special test in which 2 UTs instruments were completely shut down was realized to determine the minimum Optical Path Length (OPL) achievable. Vibrations is now a part of the instruments interface document and during the installation of any new instrument (KMOS) or system (AOF) a test campaign is realized. As a result some modifications (damping of CCC) can be asked in case of non-compliance. To ensure good operational conditions, levels of vibrations are regularly recorded to control any environmental change.

  17. Chiral flat bands: Existence, engineering, and stability

    Science.gov (United States)

    Ramachandran, Ajith; Andreanov, Alexei; Flach, Sergej

    2017-10-01

    We study flat bands in bipartite tight-binding networks with discrete translational invariance. Chiral flat bands with chiral symmetry eigenenergy E =0 and host compact localized eigenstates for finite range hopping. For a bipartite network with a majority sublattice chiral flat bands emerge. We present a simple generating principle of chiral flat-band networks and as a showcase add to the previously observed cases a number of new potentially realizable chiral flat bands in various lattice dimensions. Chiral symmetry respecting network perturbations—including disorder and synthetic magnetic fields—preserve both the flat band and the modified compact localized states. Chiral flat bands are spectrally protected by gaps and pseudogaps in the presence of disorder due to Griffiths effects.

  18. Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    Science.gov (United States)

    Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.

    1980-01-01

    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.

  19. Airflow induced vibration of the Si-IT prototype

    CERN Document Server

    Dijkstra, H; De Aguiar, V; Rigo, V

    2014-01-01

    In this note we present the results of air-flow induced vibration tests performed on mechanical prototypes of the Si option of the Inner Tracker upgrade. We made a modal analyze where we observed the eigenfrequency of the Si-ladder structure at ∼30 Hz as previously measured at CERN. Flowing dry-air to cool the prototypes we do not observe a lock-in state of the vortex induced vibration (VIV). The maximum observed vibration amplitude is calculated. We conclude that the VIV excites the eigenfrequency almost independently from the air-flow speed, and with an amplitude which does not damage the structure.

  20. A MEMS vibration energy harvester for automotive applications

    Science.gov (United States)

    van Schaijk, R.; Elfrink, R.; Oudenhoven, J.; Pop, V.; Wang, Z.; Renaud, M.

    2013-05-01

    The objective of this work is to develop MEMS vibration energy harvesters for tire pressure monitoring systems (TPMS), they can be located on the rim or on the inner-liner of the car tire. Nowadays TPMS modules are powered by batteries with a limited lifetime. A large effort is ongoing to replace batteries with small and long lasting power sources like energy harvesters [1]. The operation principle of vibration harvesters is mechanical resonance of a seismic mass, where mechanical energy is converted into electrical energy. In general, vibration energy harvesters are of specific interest for machine environments where random noise or repetitive shock vibrations are present. In this work we present the results for MEMS based vibration energy harvesting for applying on the rim or inner-liner. The vibrations on the rim correspond to random noise. A vibration energy harvester can be described as an under damped mass-spring system acting like a mechanical band-pass filter, and will resonate at its natural frequency [2]. At 0.01 g2/Hz noise amplitude the average power can reach the level that is required to power a simple wireless sensor node, approximately 10 μW [3]. The dominant vibrations on the inner-liner consist mainly of repetitive high amplitude shocks. With a shock, the seismic mass is displaced, after which the mass will "ring-down" at its natural resonance frequency. During the ring-down period, part of the mechanical energy is harvested. On the inner-liner of the tire repetitive (one per rotation) high amplitude (few hundred g) shocks occur. The harvester enables an average power of a few tens of μW [4], sufficient to power a more sophisticated wireless sensor node that can measure additional tire-parameters besides pressure. In this work we characterized MEMS vibration energy harvesters for noise and shock excitation. We validated their potential for TPMS modules by measurements and simulation.

  1. Reducing vibration transfer from power plants by active methods

    Science.gov (United States)

    Kiryukhin, A. V.; Milman, O. O.; Ptakhin, A. V.

    2017-12-01

    The possibility of applying the methods of active damping of vibration and pressure pulsations for reducing their transfer from power plants into the environment, the seating, and the industrial premises are considered. The results of experimental works implemented by the authors on the active broadband damping of vibration and dynamic forces after shock-absorption up to 15 dB in the frequency band up to 150 Hz, of water pressure pulsations in the pipeline up to 20 dB in the frequency band up to 600 Hz, and of spatial low-frequency air noise indoors of a diesel generator at discrete frequency up to 20 dB are presented. It is shown that a reduction of vibration transfer through a vibration-isolating junction (expansion joints) of pipelines with liquid is the most complicated and has hardly been developed so far. This problem is essential for vibration isolation of power equipment from the seating and the environment through pipelines with water and steam in the power and transport engineering, shipbuilding, and in oil and gas pipelines in pumping stations. For improving efficiency, reducing the energy consumption, and decreasing the overall dimensions of equipment, it is advisable to combine the work of an active system with passive damping means, the use of which is not always sufficient. The executive component of the systems of active damping should be placed behind the vibration isolators (expansion joints). It is shown that the existence of working medium and connection of vibration with pressure pulsations in existing designs of pipeline expansion joints lead to growth of vibration stiffness of the expansion joint with the environment by two and more orders as compared with the static stiffness and makes difficulties for using the active methods. For active damping of vibration transfer through expansion joints of pipelines with a liquid, it is necessary to develop expansion joint structures with minimal connection of vibrations and pulsations and minimal

  2. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  3. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  4. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  5. Effect of Spindle Parameters of Woodworking Band Saw on the AE Value of Crack Band Saw Blade in Compound Material Processing (1)

    Science.gov (United States)

    Gao, Jin-gui; Jiang, Zhao-fang; Luo, Lai-peng

    2017-04-01

    Taking the MJ3210A motion band saw as the research object, the AE value of the band saw blade vibration was obtained by analyzing the VIBSYS vibration signal acquisition and analysis software system in Beijing, and the change of the AE value of the band saw and the crack was found out. The experimental results show that in the MJ3210A sports car sawing machine, the band saw blade with width of 130 mm is used, and the AE value of the cracked band saw blade is well in the high band saw blade AE value. Under the best working condition of the band saw, the band saw blade AE If the value exceeds 104.7 dB (A) above, it means that the band saw blade has at least one crack length greater than 1.38 mm for the crack defect and the need to replace the band saw blade in time. Different species with saw blade of the AE value is different, white pine wood minimum, the largest oak wood; according to a variety of wood processing AE instrument value to determine the band saw blade crack to the situation; so as to fully rational use of band saw blade, The failure and the degree of development to find a new method.

  6. Vibration and Fluorescence Spectra of Porphyrin- CoredBis(methylol-propionic Acid Dendrimers

    Directory of Open Access Journals (Sweden)

    Boris Minaev

    2009-03-01

    Full Text Available Bis-MPA dendron-coated free-base tetraphenylporphyrin and zinc-tetraphenyl-porphyrin (TPPH2 and TPPZn were studied in comparison with simple porphyrins (H2P, ZnP by theoretical simulation of their infrared, Raman and electronic absorption spectra, as well as fluorescense emission. Infrared and fluorescence spectra of the dendrimers were measured and interpreted along with time-resolved measurements of the fluorescence. The 0-1 emission band of the dendron substituted TPPZn was found to experience a "heavy substitution"-effect. The 0-1 vibronic emission signal is associated with a longer decay time (approx. 7 - 8 ns than the 0-0 emission (approx. 1 - 1.5 ns. The former contributed with more relative emission yield for larger dendron substituents, in agreement with the appearance of steady-state emission spectra showing increased contribution from the 0-1 vibronic fluorescence band at 650 nm. No such substitution effect was observed in the electronic or vibrational spectra of the substituted free-base variant, TPPH2. Vibration spectra of the parent porphyrins (H2P, ZnP, TPPH2 and TPPZn were calculated by density functional theory (DFT using the B3LYP/6-31G** approximation and a detailed analysis of the most active vibration modes was made based on both literature and our own experimental data. Based on the results of theoretical calculations the wide vibronic bands in the visible region were assigned. The vibronic structure also gave a qualitative interpretation of bands in the electronic absorption spectra as well as in fluorescence emission depending on the size of dendrimer substitution. From the results of time-dependent DFT calculations it is suggested that the TPPZn-cored dendrimers indicate strong vibronic interaction and increased Jahn-Teller distortion of the prophyrin core for larger dendrimer generations. Specifically, this leads to the entirely different behaviour of the emission spectra upon substitution of the TPPH2 and TPPZn

  7. Phase diagram of vertically vibrated dense suspensions

    NARCIS (Netherlands)

    von Kann, S.; Snoeijer, Jacobus Hendrikus; van der Meer, Roger M.

    2014-01-01

    When a hole is created in a layer of a dense, vertically vibrated suspension, phenomena are known to occur that defy the natural tendency of gravity to close the hole. Here, an overview is presented of the different patterns that we observed in a variety of dense particulate suspensions.

  8. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  9. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...

  10. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  11. Vibration exposure and prevention in Japan.

    Science.gov (United States)

    Futatsuka, M; Ueno, T; Yamada, S

    1994-05-01

    Working conditions of vibration exposure have generally improved, but many difficult problems must be solved such as (1) hygienic improvements in a variety of vibrating tools; (2) improving working conditions, for example, by limiting the time of operation in spite of economic difficulties such as those faced by those who work on a piece rate basis; (3) gathering more complete information about the risk population because of the large number of self-employed in informal employment sectors; and (4) finding work places after rehabilitation for patients, particularly in mountainous rural areas or in small scale industries. Historical observation of vibration and preventive measures in Japanese national forests was presented on the basis of the results of a retrospective cohort study in Kyushu, Japan. Prevalence rate of VWF remarkably changed from 58.4% in the groups that began to operate chain saws in 1960 to only a few cases in the groups who started the operation after 1971. When we compare the relationships between the results of long term cohort study and the consequences of preventive measures of vibration syndrome, the most important factor is the decrease of vibration exposure (improvement in chain saws plus the time restriction system). The comprehensive prevention system used in Japanese national forests consists of the following: (1) Health care system; (2) Work regulation system; (3) System for improving mechanized tools; (4) Warming system to protect against cold conditions; and (5) Education and training system.

  12. Nanoscale piezoelectric vibration energy harvester design

    Directory of Open Access Journals (Sweden)

    Hamid Reza Foruzande

    2017-09-01

    Full Text Available Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton’s principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  13. Classical electricity analysis of the coupling mechanisms between admolecule vibrations and localized surface plasmons in STM for vibration detectability

    Science.gov (United States)

    Inaoka, Takeshi; Uehara, Yoich

    2017-08-01

    The presence of a dynamic dipole moment in the gap between the tip of a scanning tunneling microscope (STM) and a substrate, both of which are made of metal, produces a large dynamic dipole moment via the creation of localized surface plasmons (LSPLs). With regard to the vibration-induced structures that have been experimentally observed in STM light emission spectra, we have incorporated the effect of the phonon vibrations of an admolecule below the STM tip into the local response theory, and we have evaluated the enhancement of the dynamic dipole involving phonon vibrations. Our analysis shows how effectively this vibration becomes coupled with the LSPLs. This was shown using three mechanisms that considered the vibrations of a dipole-active molecule and the vibrations of a charged molecule emitting and receiving tunneling electrons. In each of the mechanisms, phonon vibrations with angular frequency ωp shifted each LSPL resonance by ℏωp or by a multiple of ℏωp . The phonon effect was negligibly small when the position of the dipole-active molecule vibrated with ωp, but it was largest and most detectable when the point charge corresponding to the admolecule at the surface of the tip vibrated with ωp. It was found that a series of LSPL resonances with or without phonon-energy shifts can be characterized by a few dominant orders of multipole excitations, and these orders become higher as the resonance energy increases.

  14. Collective model for isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.

    1987-03-01

    The vibrational model is extended by introducing isospin-dependent collective coordinates, permitting a description out-of-phase neutron-proton vibrations coupled by a density-dependent symmetry energy. The restoring force is calculated microscopically using the wavefunctions of a Woods-Saxon potential and the coupling with three-phonon states is taken into account. The model is able to describe the available experimental data (energies and multipole mixing ratios) on low-lying 2/sup +/ states, which were observed recently in nuclei near the shell closures (/sup 124/Te, /sup 140/Ba, /sup 142/Ce and /sup 144/Nd), supporting the identification of these states as isovector quadrupole vibrations and predicting such states in /sup 126 -130/ Te.

  15. Fluctuation Diamagnetism in Two-Band Superconductors

    OpenAIRE

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-01-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed on iron selenide (FeSe) [S. Kasahara et al., unpublished]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has two-band structure, than in the familiar single-band superconductors. Motivated by the data in FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach w...

  16. Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Dolgin, Benjamin P.

    1991-01-01

    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  17. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  18. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  19. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  20. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  1. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  2. The infrared spectrum of (12)C2D2: the stretching-bending band system up to 5500 cm(-1).

    Science.gov (United States)

    Villa, Mattia; Canè, Elisabetta; Tamassia, Filippo; Di Lonardo, Gianfranco; Fusina, Luciano

    2013-04-07

    The infrared spectrum of the perdeuterated acetylene, (12)C2D2, has been recorded from 900 cm(-1) to 5500 cm(-1) by Fourier transform spectroscopy at a resolution ranging between 0.004 and 0.009 cm(-1). Ninety-two bands involving the ν1, ν2, and ν3 stretching modes, also associated with the ν4 and ν5 bending vibrations and 9 bands involving pure bending transitions have been observed and analysed. In total, 8345 transitions for the stretching-bending, and 862 for the pure bending modes have been assigned in the investigated spectral region. All the transitions relative to each stretching mode, i.e. the fundamental, its first overtone, and associated hot and combination bands involving bending states up to v4 + v5 = 2, were fitted simultaneously. The Hamiltonian adopted for the analysis is that appropriate to a linear molecule and includes vibration and rotation l-type interactions. The Darling-Dennison interaction between v4 = 2 and v5 = 2 levels associated with the various stretching states was also considered. The standard deviation for each global fit is smaller than 0.0006 cm(-1), of the same order of magnitude of the measurement precision.

  3. The infrared spectrum of 12C2D2: The stretching-bending band system up to 5500 cm-1

    Science.gov (United States)

    Villa, Mattia; Canè, Elisabetta; Tamassia, Filippo; Di Lonardo, Gianfranco; Fusina, Luciano

    2013-04-01

    The infrared spectrum of the perdeuterated acetylene, 12C2D2, has been recorded from 900 cm-1 to 5500 cm-1 by Fourier transform spectroscopy at a resolution ranging between 0.004 and 0.009 cm-1. Ninety-two bands involving the ν1, ν2, and ν3 stretching modes, also associated with the ν4 and ν5 bending vibrations and 9 bands involving pure bending transitions have been observed and analysed. In total, 8345 transitions for the stretching-bending, and 862 for the pure bending modes have been assigned in the investigated spectral region. All the transitions relative to each stretching mode, i.e. the fundamental, its first overtone, and associated hot and combination bands involving bending states up to v4 + v5 = 2, were fitted simultaneously. The Hamiltonian adopted for the analysis is that appropriate to a linear molecule and includes vibration and rotation l-type interactions. The Darling-Dennison interaction between v4 = 2 and v5 = 2 levels associated with the various stretching states was also considered. The standard deviation for each global fit is smaller than 0.0006 cm-1, of the same order of magnitude of the measurement precision.

  4. Piezoelectric nonlinear vibration focusing on the second-harmonic vibration mode.

    Science.gov (United States)

    Ozaki, Ryohei; Liu, Yaoyang; Hosaka, Hiroshi; Morita, Takeshi

    2018-01-01

    Resonant piezoelectric devices are driven under high power condition. In such condition, a nonlinear piezoelectric vibration becomes apparent and this nonlinearity should be taken into account in the design procedure using the finite elemental method (FEM). The purpose of this study is to introduce the nonlinear parameter to the FEM and to establish the method for measuring the nonlinear parameter through evaluating a nonlinear model for a piezoelectric vibration. In a previous study about the nonlinear piezoelectric vibration, the third term was mainly focused on because the third mode vibration affects the fundamental vibration in the case of a simple bar-type transducer. On the other hand, we considered the second nonlinear parameter of the compliance to the piezoelectric constitutive equation. We observed that this parameter affects the vibration amplitude with each position and the velocity at the tip of the transducer with a double frequency at resonant. It was confirmed that two measured nonlinear parameters based on these two relationships were almost same. From these values, we concluded that the proposed model is reasonable. Copyright © 2017. Published by Elsevier B.V.

  5. Ab-initio study of structural, vibrational and optical properties of solid oxidizers

    Energy Technology Data Exchange (ETDEWEB)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in

    2016-09-15

    We report the structural, elastic and vibrational properties of five ionic-molecular solid oxidizers MNO{sub 3} (M = Li, Na, K) and MClO{sub 3} (M = Na, K). By treating long range electron-correlation effects, dispersion corrected method leads to more accurate predictions of structural properties and phase stability of KNO{sub 3} polymorphs. The obtained elastic moduli show soft nature of these materials and are consistent with Ultrasonic Pulse Echo measurements. We made a complete assignment of vibrational modes which are in good accord with available experimental results. From calculated IR and Raman spectra, it is found that the vibrational frequencies show a red-shift from Li → Na → K (Na → K) and N → Cl for nitrates (chlorates) due to increase in mass of metal and non-metal atoms, respectively. The calculated electronic structure using recently developed Tran-Blaha modified Becke-Johnson potential show that the materials are wide band gap insulators with predominant ionic bonding between M{sup +} (metal) and NO{sub 3}{sup −}/ClO{sub 3}{sup −} ions and covalent bonding (N−O and Cl−O) within nitrate and chlorate anionic group. From the calculated optical spectra, we observe that electric-dipole transitions are due to nitrate/chlorate group below 20 eV and cationic transitions occur above 20 eV. The calculated reflectivity spectra are consistent with the available experimental measurements. - Highlights: • Ground state properties with inclusion of dispersion correction method. • Elastic constants and mechanical properties. • Vibrational spectra and their complete assignment. • Raman and IR spectra. • Electronic structure and optical properties using TB-mBJ potential.

  6. Comparison of interionic/intermolecular vibrational dynamics between ionic liquids and concentrated electrolyte solutions.

    Science.gov (United States)

    Fujisawa, Tomotsumi; Nishikawa, Keiko; Shirota, Hideaki

    2009-12-28

    In this study, we have compared the interionic/intermolecular vibrational dynamics of ionic liquids (ILs) and concentrated electrolyte solutions measured by femtosecond optically heterodyne-detected Raman-induced Kerr effect spectroscopy. A typical anion in ILs, bis(trifluoromethanesulfonyl)amide ([NTf(2)](-)), has been chosen as the anion for the sample ILs and concentrated electrolyte solutions. ILs used in this study are 1-butyl-3-methylimidazolium, 1-butylpyridinium, N-butyl-N,N,N-triethylammonium, and 1-butyl-1-methylpyrrolidinium with [NTf(2)](-). Li[NTf(2)] solutions (approximately 3.3 M) of water, methanol, propylene carbonate, and poly(ethylene glycol) have been selected as control samples. Kerr transients of the ILs and electrolyte solutions show intra- and interionic/intermolecular vibrational dynamics followed by slow picosecond overdamped relaxation. Fourier transform Kerr spectra have shown a difference in the relative intensities of intraionic vibrational bands of [NTf(2)](-) (280-350 cm(-1)) between the ILs and electrolyte solutions. The origin of the difference is attributed to the change in the conformational equilibrium between cisoid and transoid forms of [NTf(2)](-), which is caused by a favorable stabilization of dipolar cisoid form due to Li(+) and dipolar solvent molecules in the electrolyte solutions. Low-frequency Kerr spectra (0-200 cm(-1)) exhibit unique features with the variation of cation and solvent species. The aromatic ILs have a prominent high-frequency librational motion at about 100 cm(-1) in contrast to the case for the nonaromatic ones. The common structure of the spectra observed at about 20 cm(-1) likely comes from an interionic motion of [NTf(2)](-). The nonaromatic ILs allow a fair comparison with the electrolyte solutions of propylene carbonate and poly(ethylene glycol) because of the structural similarities. The comparison based on the first moment of the interionic/intermolecular vibrational spectrum suggests the

  7. Imaging study of vibrational predissociation of the HCl-acetylene dimer: pair-correlated distributions.

    Science.gov (United States)

    Li, Guosheng; Parr, Jessica; Fedorov, Igor; Reisler, Hanna

    2006-07-07

    The state-to-state predissociation dynamics of the HCl-acetylene dimer were studied following excitation in the asymmetric C-H (asym-CH) stretch and the HCl stretch. Velocity map imaging (VMI) and resonance enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Different vibrational predissociation mechanisms were observed for the two excited vibrational levels. Following excitation in the of the asym-CH stretch fundamental, HCl fragments in upsilon = 0 and j = 4-7 were observed and no HCl in upsilon = 1 was detected. The fragments' center-of-mass (c.m.) translational energy distributions were derived from images of HCl (j = 4-7), and were converted to rotational state distributions of the acetylene co-fragment by assuming that acetylene is generated with one quantum of C-C stretch (nu(2)) excitation. The acetylene pair-correlated rotational state distributions agree with the predictions of the statistical phase space theory, restricted to acetylene fragments in 1nu(2). It is concluded that the predissociation mechanism is dominated by the initial coupling of the asym-CH vibration to a combination of C-C stretch and bending modes in the acetylene moiety. Vibrational energy redistribution (IVR) between acetylene bending and the intermolecular dimer modes leads to predissociation that preserves the C-C stretch excitation in the acetylene product while distributing the rest of the available energy statistically. The predissociation mechanism following excitation in the Q band of the dimer's HCl stretch fundamental was quite different. HCl (upsilon = 0) rotational states up to j = 8 were observed. The rovibrational state distributions in the acetylene co-fragment derived from HCl (j = 6-8) images were non-statistical with one or two quanta in acetylene bending vibrational excitation. From the observation that all the HCl(j) translational energy distributions were similar, it is proposed that there exists a

  8. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    Science.gov (United States)

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  9. Molecular orbital studies (hardness, chemical potential, electrophilicity, and first electron excitation), vibrational investigation and theoretical NBO analysis of 2-hydroxy-5-bromobenzaldehyde by density functional method

    Science.gov (United States)

    Nataraj, A.; Balachandran, V.; Karthick, T.

    2013-01-01

    In this work, the vibrational spectral analysis was carried out using Raman and infrared spectroscopy in the range 4000-400 cm-1 and 3500-100 cm-1, respectively, for the 2-hydroxy-5-bromobenzaldehyde (HBB). The experimental spectra were recorded in the solid phase. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-311G++(d,p) method and basis set. Normal co-ordinate calculations were performed with the DFT force field corrected by a recommended set of scaling factors yielding fairly good agreement between observed and calculated frequencies. Simulation of infrared and Raman spectra utilizing the results of these calculations led to excellent overall agreement with the observed spectral patterns. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The optimized geometric parameters (bond lengths and bond angles) were compared with experimental values of related compound. The stability of the molecule arising from hyper conjugative interactions and the charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (χ), electrophilicity index (ω), hardness (η), chemical potential (μ), and first electron excitation (τ) are all correlated with the HOMO and LUMO energies with their molecular properties. These show that charge transfer occurs within the molecule. Furthermore, molecular electrostatic potential maps (MESP) of the molecule have been calculated.

  10. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  11. Universality in the dynamical properties of seismic vibrations

    Science.gov (United States)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  12. Rapid pointwise stabilization of vibrating strings and beams

    Directory of Open Access Journals (Sweden)

    Alia BARHOUMI

    2009-11-01

    Full Text Available Applying a general construction and using former results on the observability we prove, under rather general assumptions, a rapid pointwise stabilization of vibrating strings and beams.

  13. Vibrational and thermal study of l-methionine nitrate polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Victor, F.M.S.; Ribeiro, L.H.L.; Facanha Filho, P.F.; Santos, C.A.S.; Soares, R.A.; Abreu, D.C.; Sousa, J.C.F.; Carvalho, J.O.; Santos, A.O. dos [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: Intensified in studies of nonlinear optical materials has been observed over the past two decades for its wide application in telecommunications, optical modulation and optical signal processing. The goal of this work is the thermal and vibrational study of L-methionine nitrate polycrystalline. The polycrystals were obtained by the method of slow evaporation of solvent at ambient temperature of 25 ° C. The X-ray diffraction was performed to confirm the structure of the material, which has monoclinic structure (space group P21) with four molecules per unit cell structure. Refinement by Rietveld method has been optimized and good quality parameters Rwp = 7.97% , Rp = 5.74 and S = 1.92%. The thermal stability of the material was verified from Thermogravimetric analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The measures showed a possible phase transition event at about 107°C before the melting point of the material, which took place at about 127°C. Thermogravimetric analysis showed two mass loss events of 61.5% and 30.4%. The vibrational modes of the L-methionine nitrate molecule were identified by Raman spectroscopy in the spectral range between 35cm-1 and 3500 cm-1, the scattering measurements were made from room temperature up to the melting temperature of the material (140 ° C ) in which the disappearance of bands was found in the region of normal modes at 130 ° C, thus demonstrating a irreversible structural phase transition, because the spectrum obtained after returning the sample to ambient temperature is typical of amorphous material. (author)

  14. Experimental Raman and IR spectral and theoretical studies of vibrational spectrum and molecular structure of Pantothenic acid (vitamin B5)

    Science.gov (United States)

    Srivastava, Mayuri; Singh, N. P.; Yadav, R. A.

    2014-08-01

    Vibrational spectrum of Pantothenic acid has been investigated using experimental IR and Raman spectroscopies and density functional theory methods available with the Gaussian 09 software. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed using GAR2PED software. Optimized geometrical parameters suggest that the overall symmetry of the molecule is C1. The molecule is found to possess eight conformations. Conformational analysis was carried out to obtain the most stable configuration of the molecule. In the present paper the vibrational features of the lowest energy conformer C-I have been studied. The two methyl groups have slightly distorted symmetries from C3V. The acidic Osbnd H bond is found to be the smallest one. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule.

  15. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    Science.gov (United States)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  16. Postural sway under muscle vibration and muscle fatigue in humans.

    Science.gov (United States)

    Vuillerme, Nicolas; Danion, Frédéric; Forestier, Nicolas; Nougier, Vincent

    2002-11-22

    Separate studies have demonstrated that vibration and fatigue of ankle muscles alter postural control. The purpose of the present experiment was to investigate the effect of ankle muscle vibration on the regulation of postural sway in bipedal stance following ankle muscle fatigue. Center of foot pressure displacements were recorded using a force platform. Results showed a similar increase in postural sway under muscle fatigue as well as under muscle vibration. Interestingly, under muscle fatigue muscle vibration did not induce a further increase in postural sway. Two hypotheses could, at least, account for this observation: (1). fatigued muscles are less sensitive to muscle vibration and (2). the central nervous system relies less upon proprioceptive information originating from fatigued muscles for regulating postural sway.

  17. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  18. Triaxial superdeformed bands in {sup 86}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.; LaFosse, D.R.; Devlin, M.; Lerma, F. [Chemistry Department, Washington University, St. Louis, Missouri 63130 (United States); Wood, V.Q.; Saladin, J.X.; Winchell, D.F. [Physics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Baktash, C.; Yu, C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; MacLeod, R.W. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Afanasjev, A.V.; Ragnarsson, I. [Department of Mathematical Physics, Lund Institute of Technology, Box 118, S-22100 Lund (Sweden)

    1998-01-01

    Four new superdeformed bands have been found in the nucleus {sup 86}Zr. The good agreement between experiment and configuration-dependent shell correction calculations suggests that three of the bands have triaxial superdeformed shapes. Such unique features in mass A{approximately}80 superdeformed bands have been predicted, but not observed experimentally until now. A fourth band in {sup 86}Zr is interesting due to a fairly constant and unusually high dynamic moment of inertia. Possible interpretations of this structure are discussed. {copyright} {ital 1998} {ital The American Physical Society}

  19. Prediction and mitigation analysis of ground vibration caused by running high-speed trains on rigid-frame viaducts

    Science.gov (United States)

    Sun, Liangming; Xie, Weiping; He, Xingwen; Hayashikawa, Toshiro

    2016-03-01

    In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The highspeed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.

  20. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  1. Multi-band slow light metamaterial.

    Science.gov (United States)

    Zhu, Lei; Meng, Fan-Yi; Fu, Jia-Hui; Wu, Qun; Hua, Jun

    2012-02-13

    In this paper, a multi-band slow light metamaterial is presented and investigated. The metamaterial unit cell is composed of three cut wires of different sizes and parallel to each other. Two transparency windows induced by two-two overlaps of absorption bands of three cut wires are observed. The multi-band transmission characteristics and the slow light properties of metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impacts of structure parameters on transparency windows are also investigated. Simulation results show the spectral properties can be tuned by adjusting structure parameters of metamaterial. The equivalent circuit model and the synthesis method of the multi-band slow light metamaterial are presented. It is seen from simulation results that the synthesis method accurately predicts the center frequency of the multi-band metamaterial, which opens a door to a quick and accurate construction for multi-band slow light metamaterial.

  2. Flow distribution and tube vibration in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.

    1985-07-01

    A project was initiated to study flow distribution and tube vibration in heat exchangers. An experimental program was carried out on a full-size heat exchanger in four test phases of parametric study. The flow induced vibration data were used to quantify and develop non-intrusive vibration monitoring techniques for online problem evaluation and to study the influence of design features and conditions on the vibration. The in-tube vibration data obtained have shown that the vibroacoustic and microphone monitoring techniques to be reliable and accurate methods for the detection of tube impacting in an operating heat exchanger. Development of work on the use of a two-accelerator vibroacoustic technique for the location of impacting zones in a bundle showed promise and is currently being employed in the field. The in-tube vibration data have demonstrated the effects that changes in the design of a bundle can have on tube vibration in that bundle. These results indicate that an important factor in bundle design is the local flow distribution in areas of high vibration susceptibility. The in-tube data have demonstrated that tubes in zones other than the inlet region can be susceptible to a form of periodic resonant excitation. This observation has implications for cases where flow reduction is implemented to avoid an instability problem. Such a reduction could bring the tube bundle into a flow regime where it is susceptible to the resonant excitation. 10 refs., 55 figs., 4 tabs.

  3. The diffraction signatures of individual vibrational modes in polyatomic molecules

    Science.gov (United States)

    Ryu, Seol; Weber, Peter M.; Stratt, Richard M.

    2000-01-01

    Though one normally thinks of single-molecule diffraction studies as tools for eliciting molecular geometry, molecular diffraction patterns are really the Fourier transforms of complete molecular wave functions. There is thus at least the possibility of imaging the vibrational wave functions of polyatomic molecules by means of a pump-probe diffraction experiment: the pump laser could prepare a specific vibrational state and an electron or x-ray could then be diffracted off the molecule some short time later. The present paper develops the general theory of diffraction signatures for individual vibrational wave functions in polyatomic molecules and investigates the feasibility of seeing such signatures experimentally using the example of a linear triatomic molecule modeled after CS2. Although aligned molecules in specific vibrational quantum states turn out to exhibit very characteristic diffraction signatures, the signatures of the vibrational wave functions are partially washed out for the complete isotropy expected from gas phase molecules. Nonetheless, it is possible to design a diffraction experiment using a pump-dump sequence with a polarized laser beam which will select a nonisotropic sample of vibrationally excited molecules. We show that the resulting level of anisotropy should enhance the diffraction signature, helping to distinguish different vibrational components. These model calculations therefore suggest the possibility of observing the dynamics of vibrational wave packets using experimentally realizable diffraction techniques.

  4. Alternating-parity collective states of yrast and nonyrast bands in lanthanide and actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nadirbekov, M. S., E-mail: nodirbekov@inp.uz; Yuldasheva, G. A. [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan); Denisov, V. Yu. [National Academy of Sciences of Ukraine, Institute for Nuclear Research (Ukraine)

    2015-03-15

    Excited collective states of even-even nuclei featuring quadrupole and octupole deformations are studied within a nonadiabatic collective model with a Gaussian potential energy. Rotational states of the yrast band and vibrational-rotational states of nonyrast bands are considered in detail. The energies of alternating-parity excited states of the yrast band in the {sup 164}Er, {sup 220}Ra, and {sup 224}Th nuclei; the yrast and first nonyrast bands in the {sup 154}Sm and {sup 160}Gd nuclei; and the yrast, first nonyrast, and second nonyrast bands in the {sup 224}Ra and {sup 240}Pu nuclei are described well on the basis of the proposed model.

  5. Rotational Analysis of the nu(7) Band in Furan (C(4)H(4)O).

    Science.gov (United States)

    Mellouki; Herman; Demaison; Lemoine; Margulès

    1999-12-01

    We recorded and analyzed the absorption spectrum of the nu(7) fundamental band in furan, observed around 995 cm(-1). Fourier transform (FT) spectroscopy was used at ULB to record the spectrum under room-temperature conditions, at 0.01 cm(-1) instrumental resolution. Diode-laser (DL) spectroscopy in a supersonic jet was used to record some portions of the band at Lille, revealing the fine structure around the band center. Pure rotation (MMW) data in the upper state were also recorded at Lille. Some 5559 FT, 101 DL, and 23 MMW data were assigned in this work. We fitted, on one hand, the MMW and DL data together and, on the other hand, the MMW, DL, and FT data simultaneously using a weighted procedure, constraining the ground state constants to their value determined from the microwave data in the literature. The results from these fits are provided and the constants discussed. Ab initio calculations are also performed to provide a force field which is used to support the very strong increase with the vibrational excitation observed in the inertial defect determined from the experimental rotational constants. Copyright 1999 Academic Press.

  6. Approaches to Beam Stabilization in X-Band Linear Colliders

    CERN Document Server

    Frisch, J; Markiewicz, T W; Seryi, Andrei

    2004-01-01

    In order to stabilize the beams at the interaction point, the X-band linear collider proposes to use a combination of techniques: inter-train and intra-train beam-beam feedback, passive vibration isolation, and active vibration stabilization based on either accelerometers or laser interferometers. These systems operate in a technologically redundant fashion: simulations indicate that if one technique proves unusable in the final machine, the others will still support adequate luminosity. Experiments underway for all of these technologies, have already demonstrated adequate performance.

  7. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu

    2011-01-01

    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  8. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    Directory of Open Access Journals (Sweden)

    Veronica Vaida

    2008-01-01

    Full Text Available Atmospheric chemical reactions are often initiated by ultraviolet (UV solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical reactions. Experimental and theoretical O–H intensities of several carboxylic acids, alcohols, and peroxides are presented. The importance of combination bands in spectra at chemically relevant energies is examined in the context of atmospheric photochemistry. Candidate systems for overtone-initiated chemistry are provided, and their lowest energy barrier for reaction and the minimum quanta of O–H stretch required for reaction are calculated. We conclude with a discussion of the major pathways available for overtone-induced reactions in the atmosphere.

  9. Resonance vibrations of the Ross Ice Shelf cause persistent atmospheric waves

    Science.gov (United States)

    Godin, Oleg; Zabotin, Nikolay

    2017-04-01

    Recently reported lidar observations have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at mid- and low-latitude locations [Chen et al., 2016]. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 hours. Here, we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vectors of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity], including frequency band, vertical wavelength range, and weak variation of the vertical wavelength with the height. The present work is a motivation for in-depth studies of coupling between vibrations of ice shelves and waves in the upper and middle atmosphere at high latitudes.

  10. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  11. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  12. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  13. Influence of Structural Periodicity on Vibration Transmission in a Multi-Storey Wooden Building

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2013-01-01

    Noise is a nuisance to people, and buildings should therefore be designed to prevent propagation of sound and vibration in the audible frequency range as well as the range of frequencies relevant to whole-body vibrations of humans. In heavy structures made of concrete and masonry, a source...... with high energy content is required to mobilise the inertia. However, for lightweight building structures made of wood, less energy is required to produce vibrations since the mass is smaller. This leads to a high risk of sound and vibration propagation in terms of direct as well as flanking transmission...... is known to result in pass bands and stop bands regarding wave propagation. The paper focuses on analysing and quantifying the effects that a change in the structure, especially regarding the periodicity, has on the overall dynamic performance in the low to mid frequency range up to 250 Hz. The analysis...

  14. The Far Infrared Spectrum of Thiophosgene: Analysis of the νb{2} Fundamental Band at 500 wn

    Science.gov (United States)

    McKellar, A. R. W.; Billinghurst, B. E.

    2009-06-01

    Thiophosgene (Cl_2CS) is a model system for studies of vibrational dynamics. Many hundreds of vibrational levels in the ground electronic state have been experimentally observed, allowing a detailed anharmonic force field to be developed including all six vibrational modes. But there have been no previous high resolution studies of this molecule in the infrared, presumably because its mass and multiple isotopic species result in very congested spectra. Here we report a detailed study of the strong νb{2} fundamental band (symmetric C - Cl stretch) based on a spectrum obtained using synchrotron radiation with the Bruker IFS125 FT spectrometer at the Canadian Light Source far infrared beamline. Thiophosgene is an interesting example of an accidentally near-symmetric oblate rotor. Indeed, its inertial axes switch with isotopic substitution: for ^{35}Cl_2CS, the C_{2v} symmetry axis coincides with the a inertial axis, but for ^{37}Cl_2CS, this changes to the b axis. Fortunately for us, the ground state microwave spectrum has been well studied. Even so, it has required the full spectral resolution of the present results, with observed line widths of about 0.0008 wn, to achieve a true line-by-line analysis. [1] For example: P.D. Chowdary, B. Strickler, S. Lee, and M. Gruebele, Chem. Phys. Letters 434, 182 (2007). [2] J.H. Carpenter, D.F. Rimmer, J.G. Smith, and D.H. Whiffen, J. Chem. Soc. Faraday Trans. 2 71, 1752 (1971).

  15. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  16. Deep K-band Observations of TMC-1 with the Green Bank Telescope: Detection of HC7O, Nondetection of HC11N, and a Search for New Organic Molecules

    Science.gov (United States)

    Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y.-J.

    2017-12-01

    The 100 m Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8+/- 0.9)× {10}11 cm-2. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H-, and/or reaction of C6H2 + with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the first detections of emission from individual 13C isotopologues of HC7N, and derive abundance ratios HC7N/HCCC13CCCCN = 110 ± 16 and HC7N/HCCCC13CCCN = 96 ± 11, indicative of significant 13C depletion in this species relative to the local interstellar elemental 12C/13C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4× {10}10 {{cm}}-2 (at 95% confidence). This is significantly lower than the value of 2.8× {10}11 {{cm}}-2 previously claimed by Bell et al. and confirms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.

  17. Study of Perfluoroalkyl Chain-Specific Band Shift in Infrared Spectra on the Chain Length.

    Science.gov (United States)

    Shimoaka, Takafumi; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2017-11-09

    The CF 2 symmetric stretching vibration (ν s (CF 2 )) band of a perfluoroalkyl (Rf) group in an infrared (IR) spectrum exhibits a unique character, that is, an apparent high wavenumber shift with increasing the chain length, which is an opposite character to that of the CH stretching vibration band of a normal alkyl chain. To reveal the mechanism of the unusual IR band shift, two vibrational characters of an Rf chain are focused: (1) a helical conformation of an Rf chain, (2) the carbon (C) atoms having a smaller mass than the fluorine (F) atom dominantly vibrate as a coupled oscillator leaving F atoms stay relatively unmoved. These indicate that a "coupled oscillation of the skeletal C atoms" of an Rf chain should be investigated considering the helical structure. In the present study, therefore, the coupled oscillation of the Rf chain dependent on the chain length is investigated by Raman spectroscopy, which is suitable for investigating a skeletal vibration. The Raman-active ν s (CF 2 ) band is found to be split into two bands, the splitting is readily explained by considering the helical structure and length with respect to group theory, and the unusual peak shift is concluded to be explained by the helical length.

  18. Phase behaviour of transfer functions in vibrating systems

    DEFF Research Database (Denmark)

    Zhu, Jianyuan; Ohlrich, Mogens

    1998-01-01

    This paper investigates the applicabilities of pole-zero models and wave propagation theory in estimating the phase characteristics of vibrating systems. The measured phase spectra are compared with the estimated reverberant phase limit and wave propagation phase. The relations between transfer...... on frequency in this band, but from the transition frequency and onwards the phase increases only with the square root of frequency. This behaviour is characteristic for free propagating waves....

  19. Global modeling of vibration-rotation spectra of the acetylene molecule

    Science.gov (United States)

    Lyulin, O. M.; Perevalov, V. I.

    2016-07-01

    The global modeling of both line positions and intensities of the acetylene molecule in the 50-9900 cm-1 region has been performed using the effective operators approach. The parameters of the polyad model of effective Hamiltonian have been fitted to the line positions collected from the literature. The used polyad model of effective Hamiltonian takes into account the centrifugal distortion, rotational and vibrational ℓ-doubling terms and both anharmonic and Coriolis resonance interaction operators arising due to the approximate relations between the harmonic frequencies: ω1≈ω3≈5ω4≈5ω5 and ω2≈3ω4≈3ω5. The dimensionless weighted standard deviation of the fit is 2.8. The fitted set of 237 effective Hamiltonian parameters allowed reproducing 24,991 measured line positions of 494 bands with a root mean squares deviation 0.0037 cm-1. The eigenfunctions of the effective Hamiltonian corresponding to the fitted set of parameters were used to fit the observed line intensities collected from the literature for 15 series of transitions: ΔP = 0-13,15, where P=5V1+5V3 +3V2+V4+V5 is the polyad number (Vi are the principal vibrational quantum numbers). The fitted sets of the effective dipole moment parameters reproduce the observed line intensities within their experimental uncertainties 2-20%.

  20. Photochromism of Composite Organometallic Nanostructures Based on Diarylethenes. II. Vibrational Spectroscopy and Quantum Chemistry Studies

    Science.gov (United States)

    Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.

    2017-11-01

    The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.

  1. Elastic response of the atomic nucleus in gauge space: Giant Pairing Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Bortignon, P.F. [University of Milan, Department of Physics, Milan (Italy); INFN Sez. di Milano, Milan (Italy); Broglia, R.A. [University of Milan, Department of Physics, Milan (Italy); University of Copenhagen, The Niels Bohr Institute, Copenhagen (Denmark)

    2016-09-15

    Due to quantal fluctuations, the ground state of a closed shell system A{sub 0} can become virtually excited in a state made out of the ground state of the neighbour nucleus vertical stroke gs(A{sub 0}+2) right angle (vertical stroke gs(A{sub 0}-2) right angle) and of two uncorrelated holes (particles) below (above) the Fermi surface. These J{sup π} = 0{sup +} pairing vibrational states have been extensively studied with two-nucleon transfer reactions. Away from closed shells, these modes eventually condense, leading to nuclear superfluidity and thus to pairing rotational bands with excitation energies much smaller than ℎω{sub 0}, the energy separation between major shells. Pairing vibrations are the plastic response of the nucleus in gauge space, in a similar way in which low-lying quadrupole vibrations, i.e. surface vibrations with energies much smaller than ℎω{sub 0} whose eventual condensation leads to quadrupole deformed nuclei, provide an example of the plastic nuclear response in 3D space. While much is known, in particular concerning its damping, regarding the counterpart of quadrupole plastic modes, i.e. regarding the giant quadrupole resonances (GQR), J{sup π} = 2{sup +} elastic response of the nucleus with energies of the order of ℎω{sub 0}, little is known regarding this subject concerning pairing modes (giant pairing vibrations, GPV). Consequently, the recently reported observation of L = 0 resonances, populated in the reactions {sup 12}C({sup 18}O,{sup 16}O){sup 14}C and {sup 13}C({sup 18}O,{sup 16}O){sup 15}C and lying at an excitation energy of the order of ℎω{sub 0}, likely constitutes the starting point of a new field of research, that of the study of the elastic response of nuclei in gauge space. Not only that, but also the fact that the GPV have likely been serendipitously observed in these light nuclei when it has failed to show up in more propitious nuclei like Pb, provides unexpected and fundamental insight into the relation

  2. Decreasing patient identification band errors by standardizing processes.

    Science.gov (United States)

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P < .001) and was maintained for 8 months. Standardization of ID bands and labels in conjunction with other interventions resulted in a statistical decrease in ID band error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  3. Identification of the best DFT functionals for a reliable prediction of lignin vibrational properties

    DEFF Research Database (Denmark)

    Barsberg, Soren

    2015-01-01

    for a comprehensive study of the quality of available theoretical methods in relation to the task of predicting lignin vibrational properties. The present study examined more than 50 functionals for prediction of IR vibrations of an appropriate lignin model. Based on a basis set incompleteness study, the pc-2 basis...... set was used. B98, X3LYP and B97-1 were the overall best-performing functionals, and “fingerprint” band positions were predicted by single-factor scaling of harmonic frequencies to an average error of ±3 cm−1 by optimized scaling factors of 1.017, 1.021 and 1.016, respectively. Their performance using......Lignin is the most abundant aromatic plant polymer on earth. Useful information on its structure and interactions is gained by vibrational spectroscopy and relies on the quality of band assignments. B3LYP predictions were recently shown to support band assignments. Further progress calls...

  4. Characterization of real-world vibration sources with a view toward optimal energy harvesting architectures

    Science.gov (United States)

    Rantz, Robert; Roundy, Shad

    2016-04-01

    A tremendous amount of research has been performed on the design and analysis of vibration energy harvester architectures with the goal of optimizing power output; most studies assume idealized input vibrations without paying much attention to whether such idealizations are broadly representative of real sources. These "idealized input signals" are typically derived from the expected nature of the vibrations produced from a given source. Little work has been done on corroborating these expectations by virtue of compiling a comprehensive list of vibration signals organized by detailed classifications. Vibration data representing 333 signals were collected from the NiPS Laboratory "Real Vibration" database, processed, and categorized according to the source of the signal (e.g. animal, machine, etc.), the number of dominant frequencies, the nature of the dominant frequencies (e.g. stationary, band-limited noise, etc.), and other metrics. By categorizing signals in this way, the set of idealized vibration inputs commonly assumed for harvester input can be corroborated and refined, and heretofore overlooked vibration input types have motivation for investigation. An initial qualitative analysis of vibration signals has been undertaken with the goal of determining how often a standard linear oscillator based harvester is likely the optimal architecture, and how often a nonlinear harvester with a cubic stiffness function might provide improvement. Although preliminary, the analysis indicates that in at least 23% of cases, a linear harvester is likely optimal and in no more than 53% of cases would a nonlinear cubic stiffness based harvester provide improvement.

  5. Singing with the Band

    Science.gov (United States)

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  6. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric

  7. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  8. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  9. C-band Scatterometers and Their Applications

    OpenAIRE

    Naeimi, Vahid; Wagner, Wolfgang

    2010-01-01

    C-band scatterometers have demonstrated to be valuable sensors for large-scale observation of the Earth's surface in a variety of disciplines. High temporal sampling in all weather conditions, multi-viewing capability and availability of long-term measurements make the European C-band scatterometers excellent Earth observation tools. Scatterometer data are used to extract geophysical parameters such as wind speed and direction, surface soil moisture, seasonal dynamics of vegetation, spatial a...

  10. Experimental and DFT dimer modeling studies of the H-bond induced-vibration modes of l-β-Homoserine.

    Science.gov (United States)

    Yalagi, Shashikala; Tonannavar, J; Yenagi, Jayashree

    2017-06-15

    The vibrational spectra for l-β-Homoserine have been measured (IR absorption: 4000-400cm(-1)/Raman spectra: 4000-200cm(-1)). Characteristic vibrational modes of ammonium (-NH3(+)), carboxylate (-CO2(-)) and hydroxyl (-OH) groups across the 3700-1400cm(-1) are all identified to have originated in inter-molecular hydrogen bonding involving these functional groups. DFT calculations at B3LYP/6-311++G(d, p) level have yielded a single neutral monomer in the gas phase. Since as a member of the amino acids which are known to possess zwitterionic structure in condensed phase, the neutral monomer of l-β-Homoserine is optimized to a zwitterionic structure in a water medium. Consideration of two dimer structures, one dimer with -NH‧‧‧O bond and another -OH‧‧‧O bond, has given rise to vibrational modes that satisfactorily fit to all the observed absorption and Raman bands. It is found that the dimer with -OH‧‧‧O bond (binding energy, 8.896kcal/mol) is more tightly bound than the dimer with -NH‧‧‧O bond (8.363kcal/mol). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High resolution infrared and Raman spectra of (13)C(12)CD2: The CD stretching fundamentals and associated combination and hot bands.

    Science.gov (United States)

    Di Lonardo, G; Fusina, L; Canè, E; Tamassia, F; Martínez, R Z; Bermejo, D

    2015-09-07

    Infrared and Raman spectra of mono (13)C fully deuterated acetylene, (13)C(12)CD2, have been recorded and analysed to obtain detailed information on the C-D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm(-1) in the region 1800-7800 cm(-1). Sixty new bands involving the ν1 and ν3 C-D stretching modes also associated with the ν4 and ν5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm(-1). The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ4 + υ5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling-Dennison interaction between υ4 = 2 and υ5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm(-1), of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling-Dennison constants can be valuable for understanding energy flows between independent vibrations.

  12. High resolution infrared and Raman spectra of 13C12CD2: The CD stretching fundamentals and associated combination and hot bands

    Science.gov (United States)

    Di Lonardo, G.; Fusina, L.; Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-09-01

    Infrared and Raman spectra of mono 13C fully deuterated acetylene, 13C12CD2, have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm-1 in the region 1800-7800 cm-1. Sixty new bands involving the ν1 and ν3 C—D stretching modes also associated with the ν4 and ν5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm-1. The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ4 + υ5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling-Dennison interaction between υ4 = 2 and υ5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm-1, of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling-Dennison constants can be valuable for understanding energy flows between independent vibrations.

  13. DESIGN OF VIBRATION AND NOISE CONTROL SYSTEM FOR FLEXIBLE STRUCTURES

    Directory of Open Access Journals (Sweden)

    В. Макаренко

    2012-04-01

    Full Text Available In the article the control system is created, which is able to reduce steady-state vibration response of thinwalled flexible structure in the wide band of low frequencies. It is supposed, that the flexible structure is subject to external harmonic force with variable frequencies, and parameters of that force are available for the usage by the control system. The control system is based on pattern search algorithm and suggestion about the dependence of signal, which is formed by the control system, from the steady-state vibration response of the flexible structure. Developed software allows to use pattern search algorithm as the control system for plate vibration in real-time. The influence on control system operation of signal delay of executive device of compensating path and transition process after the change of control signal parameters is done by the usage of the additional idle time. During idle time the control signal is supported. It has parameters that have taken place before the beginning of idle mode. Step reset option for resuming of search after the long-term steady-state vibration of flexible structure do not derange control system operation, because step change take place only after polling cycle termination. The efficiency of proposed system is illustrated experimentally on the example of clamped plate. Experimental results analysis showed the necessity of multiple compensating devices application for vibration reduction in wide frequency range.

  14. Vibrational spectra and normal coordinate analysis of methyl thionitrite and isotopic analogs

    Science.gov (United States)

    Byler, D. Michael; Susi, Heino

    1981-11-01

    The observed gas-phase IR frequencies for forty-four fundamentals of methyl thionitrite (CH 3SNO) and its d 3-, 13C-, and 15N-substituted analogs have been used to calculate a nineteen-parameter symmetry valence force field. The final refinement resulted in an average error of less than 4 cm -1 (~0.5%) between the calculated and observed frequencies for the four isotopomers. Contrary to earlier reports, relative intensities, isotopic frequency shifts, as well as the calculated potential-energy distribution, all support the assignment of v(CS) to a higher frequency than that of v(SN). For the normal molecule, v(CS) is observed as a weak band at 735 cm -1; by contrast, v(SN) absorbs strongly at 646 cm -1. The NO stretching fundamental occurs at 1535 cm -1 in the gas-phase spectrum of the unsubstituted molecule but shifts to 1507 cm -1 when 15N replaces the normal isotope. The five fundamental bands associated with the skeletal vibrations of CH 3SNO are compared with the analogous absorptions in the spectra of CF 3SNO and CH 3ONO.

  15. Out-of-plane vibrations of acetone oxime-D o and -D 6

    Science.gov (United States)

    Keresztury, G.; Holly, S.; Incze, M.

    1984-03-01

    The Raman and polarized i.r. spectra of crystalline acetone oxime-d 6 (AD-d 6) were recorded and used for a complete assignment of the fundamental vibrations. Experimental evidence is presented for the assignment of the 650 cm -1 infrared absorption band of AO-d 0 and -d 6 crystals to a hot transition of the OH out-of-plane bending vibration. A simplified force field is proposed for the out-of-plane vibrations of the molecule.

  16. Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial

    Science.gov (United States)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-03-01

    Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.

  17. Measurement of Translational and Angular Vibration Using a Scanning Laser Doppler Vibrometer

    Directory of Open Access Journals (Sweden)

    A.B. Stanbridge

    1996-01-01

    Full Text Available An experimental procedure for obtaining angular and translational vibration in one measurement, using a continuously scanning laser Doppler vibrometer, is described. Sinusoidal scanning, in a straight line, enables one angular vibration component to be measured, but by circular scanning, two principal angular vibrations and their directions can be derived directly from the frequency response sidebands. Examples of measurements on a rigid cube are given. Processes of narrow-band random excitation and modal analysis are illustrated with reference to measurements on a freely suspended beam. Sideband frequency response references are obtained by using multiplied excitation force and mirror-drive signals.

  18. Concorde Noise-Induced Building Vibrations, Montgomery County, Maryland

    Science.gov (United States)

    Mayes, W. H.; Scholl, H. F.; Stephens, D. G.; Holliday, B. G.; Deloach, R.; Finley, T. D.; Holmes, H. K.; Lewis, R. B.; Lynch, J. W.

    1976-01-01

    A series of studies are reported to assess the noise induced building vibrations associated with Concorde operations. The levels of induced vibration and associated indoor/outdoor noise levels resulting from aircraft and nonaircraft events in selected homes, historic and other buildings near Dulles International Airport were recorded. The building response resulting from aircraft operations was found to be directly proportional to the overall sound pressure level and approximately independent of the aircraft type. The noise levels and, consequently, the response levels were observed to be higher for the Concorde operations than for the CTOL operations. Furthermore, the vibration could be closely reproduced by playing aircraft noise through a loudspeaker system located near the vibration measurement location. Nonaircraft events such as door closing were again observed to result in higher response levels than those induced by aircraft.

  19. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  20. Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting, E-mail: WT323@mail.nwpu.edu.cn [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia); Sheng, Mei-Ping [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); Qin, Qing-Hua [College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia)

    2016-02-05

    Flexural vibration suppression in an Euler–Bernoulli beam with attached lateral local resonators (LLR) is studied theoretically and numerically. Hamilton's principle and Bloch's theorem are employed to derive the dispersion relation which reveals that two band gaps are generated. Within both band gaps, the flexural waves are partially transformed into longitudinal waves through a four-link-mechanism and totally blocked. The band gaps can be flexibly tuned by changing the geometry parameter of the four-link-mechanism and the spring constants of the resonators. Frequency response function (FRF) from finite element analysis via commercial software of ANSYS shows large flexural wave attenuation within the band gaps and the effect of damping from the LLR substructures which helps smooth and lower the response peaks at the sacrifice of the band gap effect. The existence of the multi-flexural band gaps can be exploited for the design of flexural vibration control of beams. - Highlights: • A metamaterial beam with lateral local resonance is proposed. • The metamaterial beam can generate multi-band gaps for flexural wave suppression. • The substructure can transform the flexural wave into longitudinal wave and absorb the waves. • Damping from different part has different influence on the band gaps. • The design of the metamaterial beam can be used for multi-flexural vibration control.

  1. Ultrafast dynamics in iron tetracarbonyl olefin complexes investigated with two-dimensional vibrational spectroscopy.

    Science.gov (United States)

    Panman, Matthijs R; Newton, Arthur C; Vos, Jannie; van den Bosch, Bart; Bocokić, Vladica; Reek, Joost N H; Woutersen, Sander

    2013-01-28

    The dynamics of iron tetracarbonyl olefin complexes has been investigated using two-dimensional infrared (2D-IR) spectroscopy. Cross peaks between all CO-stretching bands show that the CO-stretch modes are coupled, and from the cross-peak anisotropies we can confirm previous assignments of the absorption bands. From the pump-probe delay dependence of the diagonal peaks in the 2D-IR spectrum we obtain a correlation time of ∼3 ps for the spectral fluctuations of the CO-stretch modes. We observe a multi-exponential pump-probe delay dependence of the cross-peak intensities, with rate constants ranging from 0.1 ps(-1) to 0.6 ps(-1). To determine whether this delay dependence originates from fluxionality of the complex or from intramolecular vibrational relaxation (IVR), we modulate the free-energy barrier of fluxional rearrangement by varying the pi-backbonding capacities of the olefin ligand in two iron tetracarbonyl olefin complexes: Fe(CO)(4)(cinnamic acid) and Fe(CO)(4)(dimethyl fumarate). Since the pi-backbonding strongly influences the rate of fluxionality, comparing the dynamics in the two complexes allows us to determine to what extent the observed dynamics is caused by fluxionality. We conclude that on the time scale of our experiments (up to 100 ps) the cross-peak dynamics in the iron complexes is determined by intramolecular vibrational energy relaxation. Hence, in contrast to previously investigated irontricarbonyl and ironpentacarbonyl complexes, iron tetracarbonyl olefin complexes exhibit no fluxionality on the picosecond time scale.

  2. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  3. Piezoelectric bimorph cantilever for vibration-producing-hydrogen.

    Science.gov (United States)

    Zhang, Jun; Wu, Zheng; Jia, Yanmin; Kan, Junwu; Cheng, Guangming

    2012-12-27

    A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  4. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2005-04-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  5. Dayglow emissions of the O2 Herzberg bands and the Rayleigh backscattered spectrum of the earth

    Science.gov (United States)

    Frederick, J. E.; Abrams, R. B.

    1982-01-01

    It is pointed out that numerous fluorescent emissions from the Herzberg bands of molecular oxygen lie in the spectral region 242-300 nm. This coincides with the wavelength range used by orbiting spectrometers that observe the Rayleigh backscattered spectrum of the earth for the purpose of monitoring the vertical distribution of stratospheric ozone. Model calculations suggest that Herzberg band emissions in the dayglow could provide significant contamination of the ozone measurements if the quenching rate of O2(A3Sigma) is sufficiently small. It is noted that this is especially true near 255 nm, where the most intense fluorescent emissions relative to the Rayleigh scattered signal are located and where past satellite measurements have shown a persistent excess radiance above that expected for a pure ozone absorbing and molecular scattering atmosphere. Very small quenching rates, however, are adequate to reduce the dayglow emission to negligible levels. Noting that available laboratory data have not definitely established the quenching on the rate of O2(A3Sigma) as a function of vibration level, it is emphasized that such information is required before the Herzberg band contributions can be evaluated with confidence.

  6. Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps

    Science.gov (United States)

    Madeo, A.; Neff, P.; Ghiba, I. D.; Placidi, L.; Rosi, G.

    2015-09-01

    In this paper, the relaxed micromorphic model proposed in Ghiba et al. (Math Mech Solids, 2013), Neff et al. (Contin Mech Thermodyn, 2013) has been used to study wave propagation in unbounded continua with microstructure. By studying dispersion relations for the considered relaxed medium, we are able to disclose precise frequency ranges (band-gaps) for which propagation of waves cannot occur. These dispersion relations are strongly nonlinear so giving rise to a macroscopic dispersive behavior of the considered medium. We prove that the presence of band-gaps is related to a unique elastic coefficient, the so-called Cosserat couple modulus μ c , which is also responsible for the loss of symmetry of the Cauchy force stress tensor. This parameter can be seen as the trigger of a bifurcation phenomenon since the fact of slightly changing its value around a given threshold drastically changes the observed response of the material with respect to wave propagation. We finally show that band-gaps cannot be accounted for by classical micromorphic models as well as by Cosserat and second gradient ones. The potential fields of application of the proposed relaxed model are manifold, above all for what concerns the conception of new engineering materials to be used for vibration control and stealth technology.

  7. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  8. Vibration Analysis of a Residential Building

    Directory of Open Access Journals (Sweden)

    Sampaio Regina Augusta

    2015-01-01

    Full Text Available The aim of this paper is to present the results of a study regarding vibration problems in a 17 storey residential building during pile driving in its vicinity. The structural design of the building was checked according to the Brazilian standards NBR6118 and NBR6123, and using commercial finite element software. An experimental analysis was also carried out using low frequency piezo-accelerometers attached to the building structure. Structure vibrations were recorded under ambient conditions. Four monitoring tests were performed on different days. The objective of the first monitoring test was an experimental modal analysis. To obtain de modal parameters, data was processed in the commercial software ARTEMIS employing two methods: the Stochastic Subspace Identification and the Frequency Domain Decomposition. Human comfort was investigated considering the International Standard ISO 2631. The Portuguese standard, NP2074, was also used as a reference, since it aims to limit the adverse effects of vibrations in structures caused by pile driving in the vicinity of the structure. The carried out experimental tests have shown that, according to ISO2301, the measure vibration levels are above the acceptance limits. However, velocity peaks are below the limits established by NP2074. It was concluded that, although the structure has adequate capacity to resist internal forces according to normative criteria, it has low horizontal stiffness, which could be verified by observing the vibration frequencies and mode shapes obtained with the finite element models, and its similarity with the experimental results. Thus, the analyses indicate the occurrence of discomfort by the residents.

  9. A Novel Wireless and Temperature-Compensated SAW Vibration Sensor

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-11-01

    Full Text Available A novel wireless and passive surface acoustic wave (SAW based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration.  A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit.  High vibration sensitivity of ~10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements.

  10. Fatigue and soft tissue vibration during prolonged running.

    Science.gov (United States)

    Khassetarash, Arash; Hassannejad, Reza; Ettefagh, Mir Mohammad; Sari-Sarraf, Vahid

    2015-12-01

    Muscle tuning paradigm proposes that the mechanical properties of soft tissues are tuned in such a way that its vibration amplitude become minimized. Therefore, the vibrations of soft tissue are heavily damped. However, it has been hypothesized that the ability of muscle tuning decreases with fatigue. This study investigated the changes in vibration characteristics of soft tissue with fatigue. Vibrations of the gastrocnemius muscle of 8 runners during a prolonged run protocol on a treadmill at constant velocity (4 ms(-1)) were measured using a tri-axial accelerometer. The vibration amplitude is calculated using the Fourier transform and a wavelet-based method was used to calculate the damping coefficient. The results showed that: (1) the vibration amplitude in longitudinal direction increased with fatigue, which may be interpreted as the decreased muscle function with fatigue. (2) The amplitude increase percent strongly depended on the vibration frequency. (3) The damping coefficient of the gastrocnemius increased with fatigue. A 1-DOF mass-spring-damper model was used in order to validate the wavelet based method and simulate the observed phenomena. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E

    2003-08-01

    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  12. Prediction of vibration level in tunnel blasting; Tonneru kusshin happa ni yotte reiki sareru shindo no reberu yosoku ho

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, A. [Kumamoto Industries Univ, Kumamoto (Japan); Yamamoto, M. [Asahi Chemical Industry Co. Ltd., Tokyo (Japan); Inaba, C. [Nishimatsu Construction Co. Ltd., Kanagawa (Japan); Kaneko, K. [Hokkaido Univ (Japan)

    1997-08-01

    For avoiding the generation of public hazard due to ground vibration causes by blasting in tunneling, it is important to devise a blasting method for ensuring the level of the ground vibration caused thereby under a limit, and an exact predication of ground vibration before blasting is desirable. In this study, the characteristics of the ground vibration caused by tunnel blasting are analyzed, and a summary of amplitude spectra calculating method is described. A theoretical analysis method for predicting the vibration level is proposed based on spectrum-multiplicative method. Vibration caused by multistage blasting in tunneling is most strong and deemed as important. When observing the process of elastic wave motion caused by multistage blasting being measured, the process can be divided into three element processes in frequency area as vibration source spectrum, transmission attenuation spectrum and frequency response function vibrating test, and, with the multiplication of them, the amplitude spectra at an observation portion can be estimated. 12 refs., 12 figs.

  13. Study of core support barrel vibration monitoring using ex-core neutron noise analysis and fuzzy logic algorithm

    Directory of Open Access Journals (Sweden)

    Robby Christian

    2015-03-01

    A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

  14. Vibrational normal modes calculation in the crystalline state of methylated monosaccharides: Anomers of the methyl-D-glucopyranoside and methyl-D-xylopyranoside molecules.

    Science.gov (United States)

    Taleb-Mokhtari, Ilham Naoual; Lazreg, Abbassia; Sekkal-Rahal, Majda; Bestaoui, Noreya

    2016-01-15

    A structural investigation of the organic molecules is being carried out using vibrational spectroscopy. In this study, normal co-ordinate calculations of anomers of the methyl-D-glucopyranoside and methyl-β-D-xylopyranoside in the crystalline state have been performed using the modified Urey-Bradley-Shimanouchi force field (mUBSFF) combined with an intermolecular potential energy function. The latter includes Van der Waals interactions, electrostatic terms, and explicit hydrogen bond functions. The vibrational spectra of the compounds recorded in the crystalline state, in the 4000-500 cm(-1) spectral region for the IR spectra, and in the 4000-20 cm(-1) spectral range for the Raman spectra are presented. After their careful examination, several differences in the intensities and frequency shifts have been observed. The theoretical spectra have been obtained after a tedious refinement of the force constants. Thus, on the basis of the obtained potential distribution, each observed band in IR and in Raman has been assigned to a vibrational mode. The obtained results are indeed in agreement with those observed experimentally and thus confirm the previous assignments made for the methyl-α and β-D-glucopyranoside, as well as for the methyl-β-D-xylopyranoside. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Laparoscopic gastric banding - discharge

    Science.gov (United States)

    ... heart disease Gastric bypass surgery Laparoscopic gastric banding Obesity Obstructive sleep apnea - adults Type 2 diabetes Patient Instructions Weight-loss surgery - after - what to ask your doctor Weight- ...

  16. Vibrational Sensing in Marine Invertebrates

    Science.gov (United States)

    1997-09-30

    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  17. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  18. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of ^{12}C_2H_2 and ^{12}C_2D_2

    Science.gov (United States)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Symmetric molecules have no permanent dipole moment and are undetectable by rotational spectroscopy. Their interstellar observations have previously been limited to mid-infrared vibration-rotation spectroscopy. Although relatively weak, vibrational difference bands provide a means for detection of non polar molecules by terahertz techniques with microwave precision. Herschel, SOFIA, and ALMA have the potential to identify a number of difference bands of light symmetric species, e.g., C_2H_2, CH_4 and C_3. This paper reports the results of the laboratory study on ^{12}C_2H_2 and ^{12}C_2D_2. The symmetric isotopomers of acetylene have two bending modes, the trans bending ν_4 (^1{π}_g), and the cis bending ν_5 (^1{π}_u). For ^{12}C_2H_2, the two bending modes occur at 612 and 729 cm^{-1}, respectively. For ^{12}C_2D_2, the two bending modes occur at 511 and 538 cm^{-1}. The ν_5-ν_4 difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 117 cm^{-1} (3500 GHz) for ^{12}C_2H_2 and 27 cm^{-1} (900 GHz) for ^{12}C_2D_2. Two hundred and fifty-one ^{12}C_2D_2 transitions, which are from ν_5-ν_4, (ν_5+ν_4)-2ν_4 and 2ν_5-(ν_5+ν_4) bands, have been measured in the 0.2-1.6 THz region, and 202 of them were observed for the first time. The precision of these measurements is estimated to be from 50 kHz to 100 kHz. A multistate analysis was carried out for the bending vibrational modes ν_4 and ν_5 of ^{12}C_2D_2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for ^{12}C_2D_2 by adding the new measurements to the old data set which had only 10 lines with microwave measurement precision. The experiments on ^{12}C_2H_2 are in progress and ten P branch lines have been observed. We will present the ^{12}C_2H_2 results to date.

  19. Non-yrast bands in a coherent quadrupole-octupole model

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Michael; Lenske, Horst [Institut fuer Theoretische Physik, Universitaet Giessen (Germany); Minkov, Nikolay [Institute of Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2012-07-01

    A model assuming coherent quadrupole-octupole vibrations and rotations is applied to describe non-yrast energy sequences with alternating parity in several even-even nuclei from different regions. The energies are calculated from an analytically known formula in which for the first time we consider states with arbitrary large quantum numbers, allowing, as a new feature, to describe higher lying bands. A fit of the model parameters is performed for each nucleus in order to reach the best agreement with the experiment. The mass dependence of the parameters will be discussed. The model reproduces the structure of the spectra together with the observed B(E1), B(E2) and B(E3) reduced transition probabilities in the considered nuclei {sup 152,154}Sm, {sup 154,156,158}Gd, {sup 236}U and {sup 100}Mo. Aided by HIC for FAIR.

  20. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.

    Science.gov (United States)

    Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A

    2014-01-01

    We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.

  1. Vibrational spectroscopic analysis of aluminum phthalocyanine chloride. experimental and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, I.M., E-mail: solidhima@gmail.com [Physics Department, Faculty of Science, Ain Shams University, Abbasia, Cairo (Egypt); El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Eid, Kh.M. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Physics department, Bukairiayh for Sciences & Arts, Quassim University, Quassim (Saudi Arabia); Ammar, H.Y. [Physics Department, Faculty of Arts and science, Najran University, Najran (Saudi Arabia)

    2016-06-15

    In this work, we report a combined experimental and theoretical study of aluminum phthalocyanine chloride (AlPcCl). The FT-IR and Raman spectra of AlPcCl were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31g and B3LYP/6-311g to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All the observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. The natural bond orbital (NBO) calculations were performed to study the atomic charge distribution of the investigated compound. The calculated results showed that dipole moment of the investigated compound was 4.68 Debye and HOMO-LUMO energy gap was 2.14 eV. The lowering of frontier orbital gap appears to be the cause of its enhanced charge transfer interaction.

  2. Hand vibration: non-contact measurement of local transmissibility.

    Science.gov (United States)

    Scalise, Lorenzo; Rossetti, Francesco; Paone, Nicola

    2007-10-01

    Grip and push forces required for the use of vibrating tools are considered important influencing inputs for the assessment of hand-vibration transmissibility (TR). At present TR measurements are usually referred to the palm of the hand The aims of the present paper are: to present an original measurement procedure for non-contact assessment of the transmissibility of fingers; to report TR data measured on six points of the hand of nine subjects; to correlate TR with: grip, push, hand volume and BMI. Tests have been carried out using a cylindrical handle mounted on an shaker. A laser Doppler vibrometer is used to measure the vibration velocity. Push force is measured using a force platform, whereas grip force is measured using a capacitive pressure sensor matrix wrapped around the handle. Tests have been conducted on nine healthy subjects. Proximal and distal regions of the second, fourth and fifth fingers have been investigated. Tests were carried out using a push force of: 25, 50 and 75 N. The excitation signal was a broadband random vibration in the band 16-400 Hz with un-weighted rms acceleration level of 6 m/s(2). Results show how in general TR values measured on distal points are higher respect to the proximal points. A resonance peak is present for all the measured points in the band 55-80 Hz. ANOVA analysis showed that TR is not significantly dependent on: BMI, hand volume and push force alone. While TR is significantly dependent on: grip force alone, measurement positions and grip and push force together. The proposed procedure shows the advantage to allow local vibration measurement directly on the fingers without the necessity to apply any contact sensor. Results demonstrate how the transmissibility is significantly different on the point where the acceleration is measured.

  3. Warm-Up Activities of Middle and High School Band Directors Participating in State-Level Concert Band Assessments

    Science.gov (United States)

    Ward, Justin P.; Hancock, Carl B.

    2016-01-01

    The purpose of this study was to examine the warm-ups chosen by concert band directors participating in state-level performance assessments. We observed 29 middle and high school bands and coded the frequency and duration of warm-up activities and behaviors. Results indicated that most bands rehearsed music and played scales, long tones, and…

  4. Astrochemically Relevant Molecules in the W-Band Region

    Science.gov (United States)

    Arenas, Benjamin E.; Steber, Amanda; Gruet, Sébastien; Schnell, Melanie

    2017-06-01

    The interplay between laboratory spectroscopy and observational astronomy has allowed for the chemical complexity of the interstellar medium (ISM) to be explored. Our laboratory studies involve the measurement of the rotational spectra of commercially available samples in the region 75-110 GHz, thus covering a portion of Band 3 of the Atacama Large Millimeter/submillimeter Array (ALMA). Up until recently, we have concentrated on medium-sized (5 to 9 heavy atoms) nitrogen- and oxygen-containing molecules and their vibrationally excited states. Examples include amino alcohols, such as alaninol (2-amino-1-propanol), and cyanides. Further, we have extended the capabilities of our segmented chirped-pulse spectrometer [1] with electrical discharge apparatus. We present here the recent results from our set-up, including the typical rotational spectra of astrochemically relevant samples and the discharge-enabled rotational spectroscopy of mixtures of simple organic molecules. These experimental results have yielded transitions that will facilitate the detection of these molecules in the ISM with ALMA, and the discharge experiments should allow us to consider formation pathways of organic molecules from smaller building blocks. [1] B.E. Arenas, S. Gruet, A.L. Steber, B.M. Giuliano, M. Schnell, Phys. Chem. Chem. Phys. 19 (2017) 1751-1756.

  5. Study of polymorphism in imatinib mesylate: A quantum chemical approach using electronic and vibrational spectra

    Science.gov (United States)

    Srivastava, Anubha; Joshi, B. D.; Tandon, Poonam; Ayala, A. P.; Bansal, A. K.; Grillo, Damián

    2013-02-01

    Imatinib mesylate, 4-(4-methyl-piperazin-1-ylmethyl)-N-u[4-methyl-3-(4-pyridin-3-yl)pyrimidine-2-ylamino)phenyl]benzamide methanesulfonate is a therapeutic drug that is approved for the treatment of chronic myelogeneous leukemia (CML) and gastrointestinal stromal tumors (GIST). It is known that imatinib mesylate exists in two polymorphic forms α and β. However, β-form is more stable than the α-form. In this work, we present a detailed vibrational spectroscopic investigation of β-form by using FT-IR and FT-Raman spectra. These data are supported by quantum mechanical calculations using DFT employing 6-311G(d,p) basis set, which allow us to characterize completely the vibrational spectra of this compound. The FT-IR spectrum of α-form has also been discussed. The importance of hydrogen-bond formation in the molecular packing arrangements of both forms has been examined with the vibrational shifts observed due to polymorphic changes. The red shift of the NH stretching bands in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond. The UV-vis spectroscopic studies along with the HOMO-LUMO analysis of both polymorphs (α and β) were performed and their chemical activity has been discussed. The TD-DFT method was used to calculate the electronic absorption spectra in the gas phase as well as in the solvent environment using IEF-PCM model and 6-31G basis set. Finally, the results obtained complements to the experimental findings.

  6. The CFVib Experiment: Control of Fluids in Microgravity with Vibrations

    Science.gov (United States)

    Fernandez, J.; Sánchez, P. Salgado; Tinao, I.; Porter, J.; Ezquerro, J. M.

    2017-10-01

    The Control of Fluids in Microgravity with Vibrations (CFVib) experiment was selected for the 2016 Fly Your Thesis! programme as part of the 65th ESA Parabolic Flight Campaign. The aim of the project is to observe the potentially complex behaviour of vibrated liquids in weightless environments and to investigate the extent to which small-amplitude vibrations can be used to influence and control this behaviour. Piezoelectric materials are used to generate high-frequency vibrations to drive surface waves and large-scale reorientation of the interface. The theory of vibroequilibria, which treats the quasi-stationary surface configurations achieved by this reorientation, was used to predict interesting parameter regimes and interpret fluid behaviour. Here we describe the scientific motivation, objectives, and design of the experiment.

  7. Ultrafast Dynamics of Vibration-Cavity Polariton Modes

    Science.gov (United States)

    Owrutsky, Jeff; Dunkelberger, Adam; Fears, Kenan; Simpkins, Blake; Spann, Bryan

    Vibrational modes of polymers, liquids, and solvated compounds can couple to Fabry-Perot optical cavity modes, creating vibration-cavity polariton modes whose energy tunes with the cavity length and incidence angle. Here we report the pump-probe infrared spectroscopy of vibration-cavity polaritons in cavity-coupled W(CO)6. At very early times, we observe quantum beating between the two polariton states find an anomalously low degree of excitation. After the quantum beating, we directly observe spectroscopic signatures of excited-state absorption from both polariton modes and uncoupled reservoir modes. An analytical expression for cavity transmission reproduces these signatures. The upper polariton mode relaxes ten times more quickly than the uncoupled vibrational mode and the polariton lifetime depends on the angle of incidence of the infrared pulses. Coupling to an optical cavity gives a means of control of the lifetime of vibration-cavity polaritons and could have important implications for chemical reactivity in vibrationally excited molecules.

  8. Excitation of Banded Whistler Waves in the Magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S. Peter [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory

    2012-07-13

    Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.

  9. The high overtone and combination levels of SF6 revisited at Doppler-limited resolution: A global effective rovibrational model for highly excited vibrational states

    Science.gov (United States)

    Faye, M.; Boudon, V.; Loëte, M.; Roy, P.; Manceron, L.

    2017-03-01

    Sulfur hexafluoride is an important prototypal molecule for modeling highly excited vibrational energy flow and multi quanta absorption processes in hexafluoride molecules of technological importance. It is also a strong greenhouse gas of anthropogenic origin. This heavy species, however, features many hot bands at room temperature (at which only 30% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6=1 vibrational state. Using a cryogenic long path cell with variable optical path length and temperatures regulated between 120 and 163 K, coupled to Synchrotron Radiation and a high resolution interferometer, Doppler-limited spectra of the 2ν1 +ν3 , ν1 +ν2 +ν3 , ν1 +ν3 , ν2 +ν3 , 3ν3, ν2 + 3ν3 and ν1 + 3ν3 from 2000 to 4000 cm-1 near-infrared region has been recorded. Low temperature was used to limit the presence of hot bands. The spectrum has been analyzed thanks to the XTDS software package. Combining with previously observed weak difference bands in the far infrared region involving the v1, v2, v3=1 states, we are thus able to use the tensorial model to build a global fit of spectroscopic parameters for v1=1,2, v2=1, v3=1,2,3. The model constitutes a consistent set of molecular parameters and enable spectral rovibrational simulation for all multi-quanta transitions involving v1, v2 and v3 up to v1-3 = 3 . Tests simulation on rovibrational transitions not yet rovibrationally assigned are presented and compared to new experimental data.

  10. Do the OH Meinel bands provide mesospheric temperatures?

    Science.gov (United States)

    Slanger, Tom

    2016-04-01

    It is customary to determine local temperatures in the mesosphere and MLT by using Boltzmann plots based on the rotational distributions of the bands of the OH Meinel system, assuming that populations in these levels are in local thermodynamic equilibrium (LTE) with the kinetic temperature [Beig et al., Rev. Geophys., 2003; Turnbull and Lowe, PSS, 1989; von Savigny and Lednyts'kyy, GRL, 2013]. It has long been known that the higher rotational levels are not in LTE [Dodd et al., JGR,1994], so that a conventional Boltzmann plot cannot be used to obtain a temperature - only the lowest rotational levels are used, in the hope that LTE for such levels is appropriate. Because the atmosphere is dynamically active, it is important that the OH bands be observed simultaneously, particularly if the intent is to compare apparent temperatures from different vibrational levels. Using sky spectra from the Keck II telescope and the ESI echelle spectrograph, it has been shown that the LTE assumption seems to be invalid even for low rotational levels, based on earlier observations that show a reproducible pattern of apparent temperature vs OH vibrational level, with a general upward trend of temperature with increasing vibrational level, averaging 15-20 K [Cosby and Slanger, Can. J. Phys, 2007]. This work has now been repeated with a much larger database. using the X-shooter telescope and echelle spectrograph at the VLT (Very Large Telescope) in Chile [Noll et al., ACPD, 2015]. The results are in close accord with the earlier work, showing the same general pattern, with a marked temperature maximum at OH(v = 8), and an upward "temperature" trend from v = 2 to v = 9. As the OH layer lies below the mesopause, kinetic temperatures should fall from that layer ( 87 km) to the mesopause, near 95 km. Typically the modeled temperature in the OH layer is 17 K higher than that in the O2(b,v=0) layer [NRLMSIS00]. Rocket and satellite experiments indicate that there is a trend in altitude of the

  11. Interaction between Uneven Cavity Length and Shaft Vibration at the Inception of Synchronous Rotating Cavitation

    Directory of Open Access Journals (Sweden)

    Y. Yoshida

    2008-01-01

    Full Text Available Asymmetric cavitation is known as one type of the sources of cavitation induced vibration in turbomachinery. Cavity lengths are unequal on each blade under condition of synchronous rotating cavitation, which causes synchronous shaft vibration. To investigate the relationship of the cavity length, fluid force, and shaft vibration in a cavitating inducer with three blades, we observed the unevenness of cavity length at the inception of synchronous rotating cavitation. The fluid force generated by the unevenness of the cavity length was found to grow exponentially, and the amplitude of shaft vibration was observed to increase exponentially. These experimental results indicate that the synchronous shaft vibration due to synchronous rotating cavitation is like selfexcited vibrations arising from the coupling between cavitation instability and rotordynamics.

  12. Numerical and Experimental Investigation of Stop-Bands in Finite and Infinite Periodic One-Dimensional Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Manconi, Elisabetta; Vanali, Marcello

    2016-01-01

    vibration and noise transmission. The aim of this paper is to investigate, numerically and experimentally, stop-bands in periodic one-dimensional structures. Two methods for pre-dicting stop-bands are described: the first method applies to infinite periodic structures using a wave approach; the second...... method deals with the evaluation of a vibration level difference (VLD) in a finite periodic structure embedded within an infinite one-dimensional waveguide. This VLD is defined to predict the performance in terms of noise and vibration insulation of periodic cells embedded in an otherwise uniform...... structure. Numerical examples are presented, and results are discussed and validated experimentally. Very good agreement between the numerical and experimental models in terms of stop-bands is shown. In particular, the results show that the stop-bands obtained using a wave approach (applied to a single cell...

  13. Restrictive techniques: gastric banding

    Directory of Open Access Journals (Sweden)

    Katia Cristina da Cunha

    2006-03-01

    Full Text Available Surgery for the treatment of severe obesity has a definite role onthe therapeutic armamentarium all over the world. Initiated 40years ago, bariatric surgery has already a long way thanks tohundred of surgeons, who had constantly searched for the besttechnique for the adequate control of severe obesity. Among theimportant breakthroughs in obesity surgery there is theadjustable gastric band. It is a sylastic band, inflatable andadjustable, which is placed on the top of the stomach in order tocreate a 15-20 cc pouch, with an outlet of 1.3cm. The adjustablegastric band has also a subcutaneous reservoir through whichadjustments can be made, according to the patient evolution.The main feature of the adjustable gastric band is the fact thatis minimal invasive, reversible, adjustable and placedlaparoscopically. Then greatly diminishing the surgical traumato the severe obese patient. Belachew and Favretti’s techniqueof laparoscopic application of the adjustable gastric band isdescribed and the evolution of the technique during this years,as we has been practiced since 1998. The perioperative care ofthe patient is also described, as well as the follow-up and shortand long term controls.

  14. The 450-band resolution G- and R-banded standard karyotype of the donkey (Equus asinus, 2n = 62).

    Science.gov (United States)

    Di Meo, G P; Perucatti, A; Peretti, V; Incarnato, D; Ciotola, F; Liotta, L; Raudsepp, T; Di Berardino, D; Chowdhary, B; Iannuzzi, L

    2009-01-01

    Donkey chromosomes were earlier characterized separately by C-, G- and R-banding techniques. However, direct comparisons between G- and R-banding patterns have still not been carried out in this species. The present study reports this comparison at the 450-band level by using replication G- and R-banding patterns. Two sets of synchronized lymphocyte cultures were set up to obtain early (GBA+CBA-banding) and late (RBA-banding) BrdU incorporation. Slides were stained with acridine orange and observed under a fluorescence microscope. Reverse GBA+CBA- and RBA-banded karyotypes at the 450-band level were constructed. To verify G- and R-banding patterns in some acrocentric chromosomes, sequential GBA+CBA/Ag-NORs and RBA/Ag-NORs were also performed. The results of CBA-banding patterns obtained in 12 animals from 2 breeds showed a pronounced polymorphism of heterochromatin, especially in EAS1q-prox. Ideogrammatic representations of G- and R-banded karyotypes were constructed using only one common G- and R-banding nomenclature. In the present study both G- and R-banding patterns and relative ideograms are presented as standard karyotype for this species at the 450-band level. (c) 2009 S. Karger AG, Basel.

  15. Vibrationally excited water emission at 658 GHz from evolved stars

    Science.gov (United States)

    Baudry, A.; Humphreys, E. M. L.; Herpin, F.; Torstensson, K.; Vlemmings, W. H. T.; Richards, A. M. S.; Gray, M. D.; De Breuck, C.; Olberg, M.

    2018-01-01

    Context. Several rotational transitions of ortho- and para-water have been identified toward evolved stars in the ground vibrational state as well as in the first excited state of the bending mode (v2 = 1 in (0, 1, 0) state). In the latter vibrational state of water, the 658 GHz J = 11,0-10,1 rotational transition is often strong and seems to be widespread in late-type stars. Aims: Our main goals are to better characterize the nature of the 658 GHz emission, compare the velocity extent of the 658 GHz emission with SiO maser emission to help locate the water layers and, more generally, investigate the physical conditions prevailing in the excited water layers of evolved stars. Another goal is to identify new 658 GHz emission sources and contribute in showing that this emission is widespread in evolved stars. Methods: We have used the J = 11,0-10,1 rotational transition of water in the (0, 1, 0) vibrational state nearly 2400 K above the ground-state to trace some of the physical conditions of evolved stars. Eleven evolved stars were extracted from our mini-catalog of existing and potential 658 GHz sources for observations with the Atacama Pathfinder EXperiment (APEX) telescope equipped with the SEPIA Band 9 receiver. The 13CO J = 6-5 line at 661 GHz was placed in the same receiver sideband for simultaneous observation with the 658 GHz line of water. We have compared the ratio of these two lines to the same ratio derived from HIFI earlier observations to check for potential time variability in the 658 GHz line. We have compared the 658 GHz line properties with our H2O radiative transfer models in stars and we have compared the velocity ranges of the 658 GHz and SiO J = 2-1, v = 1 maser lines. Results: Eleven stars have been extracted from our catalog of known or potential 658 GHz evolved stars. All of them show 658 GHz emission with a peak flux density in the range ≈50-70 Jy (RU Hya and RT Eri) to ≈2000-3000 Jy (VY CMa and W Hya). Five Asymptotic Giant Branch (AGB

  16. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  18. $\\Delta I=4$ and $\\Delta I=8$ bifurcations in rotational bands of diatomic molecules

    CERN Document Server

    Bonatsos, Dennis; Lalazissis, G A; Drenska, S B; Minkov, N; Raychev, P P; Roussev, R P; Bonatsos, Dennis

    1996-01-01

    It is shown that the recently observed $\\Delta I=4$ bifurcation seen in superdeformed nuclear bands is also occurring in rotational bands of diatomic molecules. In addition, signs of a $\\Delta I=8$ bifurcation, of the same order of magnitude as the $\\Delta I=4$ one, are observed both in superdeformed nuclear bands and rotational bands of diatomic molecules.

  19. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  20. Surface and bulk vibrations in ion-implanted amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, G. W.

    1980-01-01

    Infrared reflection spectroscopy (IRS) has been used to identify the Si-O vibrational mode and confirm previous assignments of Si-OH, and Si-OD vibrational modes in porous amorphous silica implanted with heavy ions and with H/sup +/ and D/sup +/ ions. The Si-O stretching mode (approx. 1015 cm/sup -1/) is produced by the damage cascade and is seen in all implanted bulk silicas as well as in porous silica. Implantation of porous silica with H/sup +/ and D/sup +/ ions produces bands at approx. 985 cm/sup -1/ and approx. 960 cm-/sup 1/, respectively. The position of all three bands is consistent with O, OH, and OD mass considerations. Implantation of D/sup +/ ions into porous silica containing molecular water and OH/sup -/ groups results in D-H exchange. The Si-OH and Si-OD vibrations are also seen in the bulk fused silica at low H/D fluences. These results suggest that intrinsic E'-type defects in bulk silica and dangling Si bonds at internal surface sites.

  1. Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue

    OpenAIRE

    Chao Sun; Ruixia Zeng; Ge Cao; Zhibang Song; Yibo Zhang; Chang Liu

    2015-01-01

    Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n = 6). Although intrascapular BAT weight did not change significantly, vibrat...

  2. On the impact of Vibrational Raman Scattering of N2/O2 on MAX-DOAS Measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, Johannes; Zielcke, Johannes; Frieß, Udo; Platt, Ulrich; Wagner, Thomas

    2015-04-01

    In remote sensing applications, such as the applications of differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered since they can modify the observed spectra. Inelastic scattering of photons by N2 and O2 molecules can be observed as additional intensity, effectively leading to filling-in of both, solar Fraunhofer lines and absorption bands of atmospheric constituents. The main contribution is due to rotational Raman scattering, which can lead to changes in observed optical densities of absorption lines up to several percent. Measured optical densities are typically corrected for this effect (also known as Ring Effect). In contrast to that Vibrational Raman scattering of N2 and O2 was often thought to be negligible, but also contributes to this effect. We present calculations of Vibrational Raman cross-sections for O2 and N2 for the application in passive DOAS measurements. Consequences of vibrational Raman scattering are red-shifted Fraunhofer structures, so called 'Fraunhofer Ghost' lines (FGL), in scattered light spectra and filling-in of Fraunhofer lines, additional to rotational Raman scattering. We also present first unequivocal observations of FGL at optical densities of up to several 104. From our measurements and calculations of the optical density of these FGL, we conclude, that this phenomenon has to be included in the spectral evaluation of weak absorbers. Its relevance is demonstrated in spectral evaluations of Multi-Axis (MAX)-DOAS data and an agreement with calculated scattering cross-sections is found. To exclude cross-sensitivities with other absorbers, such as water vapour, MAX-DOAS data from different latitudes and different instruments were analysed. We evaluate the influence of the additional intensities due to vibrational Raman scattering on the spectral retrieval of IO, Glyoxal, H2O and NO2 in the blue wavelength range. In the case of NO2 the column densities derived from certain wavelength

  3. Deformation bands evolving from dilation to cementation bands in a hydrocarbon reservoir (Vienna Basin, Austria)

    Science.gov (United States)

    Exner, Ulrike; Kaiser, Jasmin; Gier, Susanne

    2013-01-01

    In this study we analyzed five core samples from a hydrocarbon reservoir, the Matzen Field in the Vienna Basin (Austria). Deformation bands occur as single bands or as strands of several bands. In contrast to most published examples of deformation bands in terrigeneous sandstones, the reduction of porosity is predominantly caused by the precipitation of Fe-rich dolomite cement within the bands, and only subordinately by cataclasis of detrital grains. The chemical composition of this dolomite cement (10–12 wt% FeO) differs from detrital dolomite grains in the host rock (<2 wt% FeO). This observation in combination with stable isotope data suggests that the cement is not derived from the detrital grains, but precipitated from a fluid from an external, non-meteoric source. After an initial increase of porosity by dilation, disaggregation and fragmentation of detrital grains, a Fe-rich carbonate fluid crystallized within the bands, thereby reducing the porosity relative to the host sediment. The retention of pyrite cement by these cementation bands as well as the different degree of oil staining on either side of the bands demonstrate that these cementation bands act as effective barriers to the migration of fluids and should be considered in reservoir models. PMID:26321782

  4. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  5. 14 CFR 33.63 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  6. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  7. 14 CFR 33.33 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  8. 14 CFR 33.43 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  9. 49 CFR 178.819 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  10. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  11. Interface dynamics and banding in rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A.; Sarkissian, A. (Physics Department, Northeastern University, Boston, Massachusetts 02115 (United States))

    1993-01-01

    Rapid-solidification experiments on metallic alloys in the last decade have provided widespread observations of a novel banded structure.'' We report the results of numerical and analytical studies of the interface dynamics underlying the formation of this structure in a model of directional solidification which includes both solute and heat diffusion and nonequilibrium effects. The thrust of these studies is on the unsteady dynamics of the planar interface and thermal effects. The main conclusion is that the origin of banding can be related to relaxation oscillations of the solidification front, characterized by large variations of the interface velocity, which are dramatically affected by latent-heat diffusion. Without the latter, the oscillations are found to be reasonably well approximated by the phenomenological model of Carrard [ital et] [ital al]. [Acta Metall. 40, 983 (1992)], and the band spacing is inversely proportional to the temperature gradient. In contrast, with latent-heat diffusion the band spacing is insensitive to the temperature gradient, but is controlled instead by the interplay of solute and heat diffusion. The smallness of the solutal diffusivity to thermal diffusivity ratio is exploited to explain analytically this effect and to derive considerably simpler equations of interface motion that provide an efficient numerical means to study the nonplanar interface dynamics expected to cause dark bands. A reasonable agreement with experiment is found for the spacing of banded structures dominated by light-band microsegregation-free regions in Al-Fe alloys.

  12. Continuum vibration analysis of dielectric elastomer membranes

    Science.gov (United States)

    Nalbach, S.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric Elastomer (DE) transducers are well known for the possibility of responding to an applied voltage with relatively large actuation strains, often larger than 100%, and for their relatively high actuation bandwidth (order of several kHz). However, up to date there are relatively few applications which use the dynamic behavior of DEs. Some relevant examples include loudspeakers and fluid dispensers. Motivated by the potentialities of DEs in high-frequency applications, the aim of this work is the investigation of the continuous vibrations observed when DE membranes are actuated electrically. The system under analysis consists of a circular DE membrane pre-loaded with a spring. While exciting the DE membrane actuator with high-voltage, high-frequency signals, the motion of the membrane is detected with a 3D laser vibrometer which uses Doppler effect to reconstruct the system spectrum and vibration modes. An extensive experimental investigation is performed to study the influence of system parameters, such as membrane geometry and pre-stress, on the membrane frequency spectrum and vibrational modes.

  13. Translational, rotational, vibrational and electron temperatures of a gliding arc discharge

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Ehn, Andreas; Gao, Jinlong

    2017-01-01

    Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source...... and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A–X (0......, 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A–X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring...

  14. Modeling of Axial Spring Stiffness in Active Vibration Controlled Drilling

    Directory of Open Access Journals (Sweden)

    Pao William

    2014-07-01

    Full Text Available During drilling process, substantial amount of vibration and shock are induced to the drill string. Active vibration controlled drilling is introduced to reduce the vibration and increase the efficiency of drilling process. In this system, two main components that determine the damping coefficient are magnetorheological (MR damper and spring assembly. Performance of vibration damping system is depending on the viscosity of MR fluid in the damper and spring constant of spring assembly. One of the key issues that are unclear from the design is the correlation between the axial spring stiffness configuration and the damping force which needs to be tuned actively. There has been lack of studies on how the viscosity of MR fluid on the active vibration damper affects the damping stiffness of the whole system. The objective of the project is to extract the correlations for the viscous damping coefficient, equivalent spring stiffness and power input to the system. Simplified vibration model is thus created using Simulink, together with experimental data fed from APS Technology’s in-house team. Inputs of the simulation such as force exerted, mass of mandrel, spring constant and step time are based on the experimental data and can be adjusted to suit different experiments. By having the model, behavior of the system can be studied and analyzed. From the simulation, it is also observed that the relationship between damping coefficient and power input of the system is linear.

  15. Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions

    Science.gov (United States)

    Tumer, Irem Y.; Huff, Edward M.

    2001-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.

  16. Laboratory and workplace assessments of rivet bucking bar vibration emissions.

    Science.gov (United States)

    McDowell, Thomas W; Warren, Christopher; Xu, Xueyan S; Welcome, Daniel E; Dong, Ren G

    2015-04-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  17. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  18. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  19. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  20. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.