Sample records for vibration pulse-tube cryocooler

  1. A high efficiency hybrid stirling-pulse tube cryocooler

    Directory of Open Access Journals (Sweden)

    Xiaotao Wang


    Full Text Available This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  2. Air Liquide Space Pulse Tube Cryocoolers (United States)

    Tanchon, J.; Trollier, T.; Buquet, J.; Ravex, A.; Crespi, P.


    Thanks to important internal development efforts completed and partial ESA funding, AL/DTA is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as MTG, Sentinel 3, etc… The two pulse tube coolers thermo-mechanical units have been qualified against thermal and mechanical environment constraints. To complete these two Pulse Tube coolers, a Cooler Drive Electronic has been developed for active damping and vibration cancellation. The paper presents the current status of these products and associated Cooler Drive Electronics.

  3. Vibration analysis of cryocoolers (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui


    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  4. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)


    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  5. Air liquide's space pulse tube cryocooler systems (United States)

    Trollier, T.; Tanchon, J.; Buquet, J.; Ravex, A.


    Thanks to important development efforts completed with ESA funding, Air Liquide Advanced Technology Division (AL/DTA), is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc… The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.

  6. Numerical study of a VM type multi-bypass pulse tube cryocooler operating at 4K (United States)

    Pan, Changzhao; Zhang, Tong; Wang, Jue; Chen, Liubiao; Cui, Chen; Wang, Junjie; Zhou, Yuan


    VM cryocooler is one kind of Stirling type cryocooler working at low frequency. At present, we have obtained the liquid helium temperature by using a two-stage VM/pulse tube hybrid cryocooler. As a new kind of 4K cryocooler, there are many aspects need to be studied and optimized in detail. In order to reducing the vibration and improving the stability of this cryocooler, a pulse tube cryocooler was designed to get rid of the displacer in the first stage. This paper presents a detail numerical investigation on this pulse tube cryocooler by using the SAGE software. The low temperature phase shifters were adopted in this cryocooler, which were low temperature gas reservoir, low temperature double-inlet and multi-bypass. After optimizing, the structure parameters and the best diameters of orifice, multi-bypass and double-inlet were obtained. With the pressure ratio of about 1.6 and operating frequency 2Hz, this cryocooler could supply above 40mW cooling power at 4.2K, and the total input power needs no more than 60W at 77K. Based on the highest efficiency of 77K high capacity cryocooler, the overall efficiency of this VM type pulse tube cryocooler is above 0.5% relative Carnot efficient.

  7. Propellant Conditioning Using Improved Pulse Tube Cryocooler Project (United States)

    National Aeronautics and Space Administration — Application of the proposed technology (an affordable, large-scale, high-efficiency, low-temperature pulse tube cryocooler system), serves two NASA needs: an...

  8. Design, development and testing twin pulse tube cryocooler (United States)

    Gour, Abhay Singh; Sagar, Pankaj; Karunanithi, R.


    The design and development of Twin Pulse Tube Cryocooler (TPTC) is presented. Both the coolers are driven by a single Linear Moving Magnet Synchronous Motor (LMMSM) with piston heads at both ends of the mover shaft. Magnetostatic analysis for flux line distribution was carried-out during design and development of LMMSM based pressure wave generator. Based on the performance of PWG, design of TPTC was carried out using Sage and Computational Fluid Dynamics (CFD) analysis. Detailed design, fabrication and testing of LMMSM, TPTC and their integration tests are presented in this paper.

  9. Air Liquide's pulse tube cryocooler systems for space applications (United States)

    Trollier, T.; Tanchon, J.; Rey, J. C.; Ravex, A.; Buquet, J.


    Thanks to important development efforts completed internally and with the European Space Agency (ESA) funding, Air Liquide Advanced Technology Division (AL/DTA) is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc... The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W maximal compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ESA ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.

  10. Numerical analysis of inertance pulse tube cryocooler with a modified reservoir (United States)

    Abraham, Derick; Damu, C.; Kuzhiveli, Biju T.


    Pulse tube cryocoolers are used for cooling applications, where very high reliability is required as in space applications. These cryocoolers require a buffer volume depending on the temperature to be maintained and cooling load. A miniature single stage coaxial Inertance Pulse Tube Cryocooler is proposed which operates at 80 K to provide a cooling effect of at least 2 W. In this paper a pulse tube cryocooler, with modified reservoir is suggested, where the reverse fluctuation in compressor case is used instead of a steady pressure in the reservoir to bring about the desired phase shift between the pressure and the mass flow rate in the cold heat exchanger. Therefore, the large reservoir of the cryocooler is replaced by the crank volume of the hermetically sealed linear compressor, and hence the cryocooler is simplified and compact in size. The components of the cryocooler consist of a connecting tube, aftercooler, regenerator, cold heat exchanger, flow straightener, pulse tube, warm heat exchanger, inertance tube and the modified reservoir along with the losses were designed and analyzed. Each part of the cryocooler was analysed using SAGE v11 and verified with ANSYS Fluent. The simulation results clearly show that there is 50% reduction in the reservoir volume for the modified Inertance pulse tube cryocooler.

  11. Progress on a novel VM-type pulse tube cryocooler for 4 K (United States)

    Pan, Changzhao; Wang, Jue; Luo, Kaiqi; Wang, Junjie; Zhou, Yuan


    VM type pulse tube cryocooler is a new type pulse tube cryocooler driven by the thermal-compressor. This paper presented the recent experimental results on a novel single-stage VM type pulse tube cryocooler with multi-bypass. The low temperature double-inlet, orifice and gas reservoir, and multi-bypass were used as phase shifters. With the optimal operating frequency of 1.6 Hz and optimal average pressure of 1.4 MPa, a no-load temperature of 4.9 K has been obtained and 30 mW@5.6 K cooling power has been achieved. It was the first time for the single-stage VM-PTC obtaining liquid helium temperature reported so far. Moreover, it was also the first time for the multi-bypass being used in the low-frequency Stirling type pulse tube cryocooler.

  12. Thermal performance testing of two Thales 9310 pulse-tube cryocoolers for PHyTIR (United States)

    Paine, Christopher G.


    PHyTIR is a NASA-funded technology demonstration for a near-term earth-observing instrument in the thermal infrared spectrum, intended for use in the HyspIRI mission. PHyTIR will use two Thales 9310 single-stage pulse tube cryocoolers, one to directly cool the FPA, the other to simulate a passive radiator. We report performance measurements for the two Thales 9310 cryocoolers intended for inclusion in the PHyTIR demonstrator.

  13. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator. (United States)

    Takamizawa, Akifumi; Yanagimachi, Shinya; Tanabe, Takehiko; Hagimoto, Ken; Hirano, Iku; Watabe, Ken-ichi; Ikegami, Takeshi; Hartnett, John G


    The frequency stability of an atomic fountain clock was significantly improved by employing an ultra-stable local oscillator and increasing the number of atoms detected after the Ramsey interrogation, resulting in a measured Allan deviation of 8.3 × 10(-14)τ(-1/2)). A cryogenic sapphire oscillator using an ultra-low-vibration pulse-tube cryocooler and cryostat, without the need for refilling with liquid helium, was applied as a local oscillator and a frequency reference. High atom number was achieved by the high power of the cooling laser beams and optical pumping to the Zeeman sublevel m(F) = 0 employed for a frequency measurement, although vapor-loaded optical molasses with the simple (001) configuration was used for the atomic fountain clock. The resulting stability is not limited by the Dick effect as it is when a BVA quartz oscillator is used as the local oscillator. The stability reached the quantum projection noise limit to within 11%. Using a combination of a cryocooled sapphire oscillator and techniques to enhance the atom number, the frequency stability of any atomic fountain clock, already established as primary frequency standard, may be improved without opening its vacuum chamber.

  14. Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler

    DEFF Research Database (Denmark)

    Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie


    Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four d...

  15. Advances on a cryogen-free Vuilleumier type pulse tube cryocooler (United States)

    Wang, Yanan; Zhao, Yuejing; Zhang, Yibing; Wang, Xiaotao; Vanapalli, Srinivas; Dai, Wei; Li, Haibing; Luo, Ercang


    This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1 K is obtained with a pressure ratio of 1.18, a working frequency of 3 Hz and an average pressure of 2.45 MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation.

  16. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)


    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  17. Experimental research on a 12.1 K gas-coupled two-stage high frequency pulse tube cryocooler (United States)

    Xiaoshuang, Zhu; Yuan, Zhou; Wenxiu, Zhu; Wei, Dai; Junjie, Wang


    High frequency pulse tube cryocoolers (HFPTC) have been widely used in many fields like physics experimental research and aerospace, for no moving part in cold region, low vibration and long life. A gas-coupled two-stage high frequency pulse tube cryocooler with single compressor is introduced in this paper. In the first stage of the cryocooler, double-inlet and multi-bypass has been adopted as phase shifters. To get a better performance in phase shifting the reservoir and the inertance tube of the second stage has been located on the cold head of the first stage. With SS mesh screen as the regenerator of both stage, no-load temperature of 13.5K has been achieved. To improve the heat capacity of the regenerator of the second stage magnetic material Er3Ni has been employed in the second stage as regenerator matrix. With the charge pressure of 1.8MPa, input power of 260W and operating frequency of 23.5 Hz, the no-load temperature of 12.1K has been achieved.

  18. Investigation of Flow Nonuniformities in a Large 50 K Pulse Tube Cryocooler (United States)

    Lewis, M. A.; Taylor, R. P.; Radebaugh, R.; Garaway, I.; Bradley, P. E.


    A single-stage pulse tube cryocooler was optimized to provide 50 W of net refrigeration power at 50 K when driven by a pressure oscillator that can produce up to 2.8 kW of acoustic power at 60 Hz. The cryocooler was designed with the ability to provide rapid cooldown. The rapid cooling technique makes use of a resonant phenomenon in the inertance tube and reservoir system to decrease the flow impedance and thereby increase the acoustic power and refrigeration power in the system when the cold end is near room temperature. Initial experimental data produced no-load temperatures of about 100 K and showed large azimuthal non-uniformities in temperature profiles around the center plane of both the regenerator and the pulse tube. Inadequate diffusion bonding in the initial aftercooler resulted in non-uniform temperatures in the aftercooler and regenerator warm end where temperatures were as high as 350 K. Jetting into the pulse tube through both the warm and cold heat exchangers also contributed to the poor performance. This paper discusses the performance after an improved aftercooler and pulse tube modifications are added. The steps taken to eliminate the non-uniformities and their effect on the cooler performance are discussed.

  19. 15 K two-stage Stirling-type pulse-tube cryocooler (United States)

    Yan, Pengda; Chen, Guobang; Dong, Jingjing; Gao, Weili


    A two-stage pulse-tube cryocooler driven by a linear compressor was designed, manufactured and tested. The compressor is a moving-magnet type and dual-opposed-piston configuration, in which a plate spring is used. The two-stage cold head is a gas-separating thermal-link configuration. The phase shifter of each stage of the cryocooler can be double-inlet or inertance-tube type. Experiments have been carried out. The linear compressor can provide a pressure ratio of 1.3-1.5. Under the conditions of 1.2 MPa charging pressure and 32 Hz frequency, the second stage of the cryocooler reached a lowest temperature of 14.2 K, and the corresponding cooling temperature of the first stage is 93.3 K.

  20. Influence of the connecting tube at the cold end in a U-shaped pulse tube cryocooler (United States)

    Hu, J. Y.; Zhang, X. Z.; Wang, X. T.; Luo, E. C.; Dai, W.


    In some special applications, the pulse tube cryocooler must be designed as U-shape; however, the connecting tube at the cold end will influence the cooling performance. Although lots of U-shape pulse tubes have been developed, the mechanism of the influence of the connecting tube on the performance has not been well demonstrated. Based on thermoacoustic theory, this paper discusses the influence of the length and diameter of the connecting tube, transition structure, flow straightener, impedance of the inertance tube, etc. on the cooling performance. Primary experiments were carried out in two in-line shape pulse tube cryocoolers to verify the analysis. The two cryocoolers shared the same regenerator, heat exchangers, inertance tube and straightener, and the pulse tube, so the influence of these components could be eliminated. With the same electric power, the pulse tube cryocooler without connecting parts obtained 31 W cooling power at 77 K; meanwhile, the other pulse tube cryocooler with the connecting parts only obtained 27 W, so the connecting tube induced more than a 12.9% decrease on the cooling performance, which agrees with the calculation quite well.

  1. An efficient miniature 120 Hz pulse tube cryocooler using high porosity regenerator material (United States)

    Yu, Huiqin; Wu, Yinong; Ding, Lei; Jiang, Zhenhua; Liu, Shaoshuai


    A 1.22 kg coaxial miniature pulse tube cryocooler (MPTC) has been fabricated and tested in our laboratory to provide cooling for cryogenic applications demanding compactness, low mass and rapid cooling rate. The geometrical parameters of regenerator, pulse tube and phase shifter are optimized. The investigation demonstrates that using higher mesh number and thinner wire diameter of stainless steel screen (SSS) can promote the coefficient of performance (COP) when the MPTC operates at 120 Hz. In this study, the 604 mesh SSS with 17 μm diameter of mesh wire is constructed as filler of regenerator. The experimental results show the MPTC operating at 120 Hz achieves a no-load temperature of 53.5 K with 3.8 MPa charging pressure, and gets a cooling power of 2 W at 80 K with 55 W input electric power which has a relative Carnot efficiency of 9.68%.

  2. Development of a 4.5 K Pulse Tube Cryocooler for Superconducting Electronics (United States)

    Nast, Ted; Olson, Jeff; Champagne, Patrick; Mix, Jack; Evtimov, Bobby; Roth, Eric; Collaco, Andre


    Lockheed Martin's (LM) Advanced Technology Center (ATC) has developed a four stage pulse tube cryocooler (stirling-type pulse tube system) to provide cooling at 4.5 K for superconducting digital electronics communications programs. These programs utilize superconducting niobium integrated circuits [1, 2]. A prior ATC 4 stage unit has provided cooling to 3.8 K. [3] The relatively high cooling loads for the present program led us to a new design which improves the 4.5 K power efficiency over prior systems. This design includes a unique pulse tube approach using both He-3 and He-4 working gas in two compression spaces. The compressor utilizes our standard moving magnet linear motor, clearance seal and flexure bearing system. The system is compact, lightweight and reliable and utilizes our aerospace cooler technology to provide unlimited lifetime. The unit is a proof of concept, but the construction is at an engineering model level. Follow on activities for improvements of performance and more compact packaging and future production for ground based communication systems is anticipated. This paper presents the experimental results at various cooling conditions. Primary results are shown for HYPRES cooling requirements and data is also included at lower cooling loads that may be required for future space missions. The system provides a maximum of 42 mW @ 4.5 K and a no load temperature of 3 K. The majority of this work was subcontracted by HYPRES and funded by the Army and Navy. A small part of this effort to obtain data at lower cooling loads (1-10 mW @ 4.5 K) was funded by LM internal funds.

  3. Design of a Very Large Pulse Tube Cryocooler for HTS Cable Application (United States)

    Tanchon, J.; Ercolani, E.; Trollier, T.; Ravex, A.; Poncet, J. M.


    The needs for large cooling powers are more and more increasing together with the increase of superconductor capabilities. Within the framework of an High Voltage HTS cable project (LIPA project funded by the DOE with American Superconductor AMSC, Nexans, LIPA and Air Liquide as consortium partners), the Technologies & Innovation Department of Air Liquide with the partnership of the CEA/SBT are currently developing a prototype of a Very Large Pulse Tube Cooler (VLPTC). This prototype is traditionally based on an In-Line pulse tube configuration, making use of an inertance and a buffer volume as phase shifter. The expected performances are 280W heat lift at 65K with a 300K rejection temperature. The cold head prototype has been manufactured and preliminary tests have been carried out with a 8 kW flexure bearing Stirling Technology Corporation STC linear compressor. One of the objectives of this prototype is to compete the Gifford-MacMahon coolers in term of cooling capacity while offering the advantage of the high frequency Pulse Tube in term of high lifetime, reliability and reduced exported vibrations.

  4. Development of high efficiency pulse tube cryocoolers for spaceborne infrared applications (United States)

    Dang, Haizheng


    This paper reviews the recent advances in high efficiency pulse tube cryocoolers (PTCs) in SITP/CAS for space-borne infrared applications. Due to the special aerospace environment where the power supply is limited and the rejection condition is adverse, the high cooler efficiency is especially emphasized. A brief history of the PTC and the last 30-year worldwide quest for highly reliable and efficient PTCs has been provided as a background. Then our efforts to achieve high efficiency coolers are discussed. Three typical geometrical arrangements, U-type, coaxial and in-line, are all involved, while the latter two are stressed on. Some typical development programs are introduced and a brief overview of the relevant data package is presented. To date, the no-load temperature reaches 25 K, and the typical cooling capacities of 0.9W@40K, 4.5W@60K, 8.0W@80K and 12W@95K have been achieved, respectively. For the mature coaxial coolers, the typical relative Carnot efficiencies of 2.8%, 9.4%, 14.4% and 15.7% has been achieved at 40 K, 60 K, 80 K and 95 K, respectively. For the newly-developed high efficiency in-line PTCs, the corresponding values are 2.9%, 9.6%, 16.2% and 17.8%, respectively. The acquired high efficiencies have made them enabling cryocoolers for the aimed space applications. The batch production of the main components has been realized and the typical EM machines have been worked out.

  5. Design, analyses, fabrication and characterization of Nb3Sn coil in 1 W pulse tube cryocooler (United States)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Kumar, Nitish; Pradhan, Subrata


    A laboratory scale Nb3Sn coil is designed, analysed, fabricated and characterized in 1 W pulse tube cryocooler in solid nitrogen cooling mode and in conduction cooling mode. The magnetic field profile in axial and radial direction, Lorentz force component across the winding volume in operational condition are estimated in COMSOL. The coil is designed for 1.5 T at 100 A. It is fabricated in wind and react method. Before winding, the insulated Nb3Sn strand is wound on a copper mandrel which is thermally anchored with the 2nd stage of the cold head unit via a 10 mm thick copper ‘Z’ shaped plate The temperature distribution in 2nd cold stage, copper z plate and coil is monitored in both solid nitrogen cooling and conduction cooling mode. In solid nitrogen cooling mode, the quench of the coil occurs at 150 A for 0.01 A/s current ramp rate. The magnetic field at the centre of the coil bore is measured using transverse Hall sensor. The measured magnetic field value is compared with the analytical field value and they are found to be deviating ∼5% in magnitude. Again the coil is tested in conduction cooling mode maintaining the same current ramp rate and it is observed that the coil gets quenched at 70 A at temperature ∼ 10K.

  6. High-frequency Operation and Miniaturization aspects of Pulse-tube Cryocoolers


    Vanapalli, Srinivas


    Cryocoolers are small refrigerators capable of achieving useful refrigeration below 120 K. Recent developments in the field of high Tc superconductors spawned a wide range of applications such as terahertz sensors, SQUIDS, low noise amplifiers, filters for microwave applications and many more. These devices are typically, nondissipating and require a cryocooler delivering refrigeration power of about 10 mW operating at 80 K. The existing commercial closed loop cryocoolers are huge, less relia...

  7. Blind vortex tube as heat-rejecting heat exchanger for pulse tube cryocooler (United States)

    Mitchell, M. P.; Fabris, D.; Sweeney, R. O.


    This project integrated several unusual design features in a coaxial pulse tube cooler driven by a G-M compressor. Design objectives were simplification of construction and validation of innovative components to replace screens. The MS*2 Stirling Cycle Code was used to develop the thermodynamic design of the cooler. The primary innovation being investigated is the vortex tube that serves as both the orifice and the heat-rejecting heat exchanger at the warm end of the pulse tube. The regenerator is etched stainless steel foil with a developmental etch pattern. The cold heat exchanger is a copper cup with axial slits in its wall. Flow straightening in the cold end of the pulse tube is accomplished in traditional fashion with screens, but flow in the warm end of the pulse tube passes through a diffuser nozzle that is an extension of the cold throat of the vortex tube. The G-M compressor is rated at 2 kW. The custom-built rotary valve permits operation at speeds up to about 12 Hz. A series of adjustments over a period of about 7 months improved cooling performance by an average of almost 20 K per month. A no-load temperature of 65 K has been achieved. Experimental apparatus and results of this patented device [1,2] are described.

  8. Air Liquide space cryocooler systems (United States)

    Trollier, T.; Tanchon, J.; Buquet, J.; Ravex, A.; Crespi, P.


    After successful developments these last 3 years, AL/DTA is now in position to propose two pulse tube cryocooler systems for space applications in the 40-80 K temperature range. The two pulse tube cryocoolers are yet qualified against stringent thermal and mechanical environmental constraints. AL/DTA also develops associated Cooler Drive Electronic at QM level implementing launch locking and vibrations cancellation. This paper presents these complete cryocooler systems available for space applications.

  9. Development of high-capacity U-type pulse tube cryocoolers for a cold optics system in space applications (United States)

    Dang, H. Z.; Li, S. S.; Wang, L. B.; Yang, K. X.; Shen, W. B.; Wu, Y. N.


    A robust U-type pulse tube cryocooler has been developed to replace the heavy and cumbersome passive radiator system for cooling the cold optics component of a sophisticated infrared sensors system used in a weather satellite. The U-type other than coaxial arrangement is chosen to obtain a robust and simple system, and also to avoid the potential loss introduced by the possible mismatch of the temperature profiles of pulse tube and regenerator as well. Besides the conventional integral "U"-shaped cold tip, a novel detachable two-half cold head is designed to enhance cooling performance. Some fine grooves are engraved in the cold head using electro discharge machining technology, which can not only increase the heat transfer area, but also serve as a straightener for the turbulence introduced by the flow reversal. The cooler is powered by a 7.5 cc dual opposed piston compressor and the overall weight is less than 11 kg. It can lift over 8.0W of heat at 150K with 87 W of electric input power and at 310 K of reject temperature. The design considers, experimental results, and performance analyses are presented.

  10. High-frequency Operation and Miniaturization aspects of Pulse-tube Cryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas


    Cryocoolers are small refrigerators capable of achieving useful refrigeration below 120 K. Recent developments in the field of high Tc superconductors spawned a wide range of applications such as terahertz sensors, SQUIDS, low noise amplifiers, filters for microwave applications and many more. These

  11. Influence of regenerator void volume on performance of a precooled 4 K Stirling type pulse tube cryocooler (United States)

    Li, Zhuopei; Jiang, Yanlong; Gan, Zhihua; Qiu, Limin; Chen, Jie


    Stirling type pulse tube cryocoolers (SPTC), typically operating at 30-60 Hz, have the advantage of compact structure, light weight, and long life compared with Gifford-McMahon type (1-2 Hz) PTC (GMPTC). The behavior of flow and heat transfer in the regenerator of a 4 K SPTC deviates from that at warmer temperatures and low frequencies. In this paper the behavior of 4 K regenerator at high frequencies is investigated based on a single-stage 4 K SPTC precooled by a two-stage GMPTC. The 4 K SPTC and the GMPTC is thermally coupled with two thermal bridges. The 4 K SPTC uses a 10 K cold inertance tube as phase shifter to improve phase relationship between mass flow and pressure. The regenerator void volume is an important factor that significantly influences the heat transfer between regenerator matrix and working fluid helium, pressure drop along the regenerator, and phase shift between mass flow and pressure. In this paper, influence of regenerator void volume on the performance of the 4 K SPTC with different operating parameters including operating frequencies and average pressure is studied theoretically and experimentally. The first and second precooling powers provided by the GMPTC are obtained which are important parameters to evaluate the efficiency of the whole 4 K system with precooling. The results of the regenerator void volume are given and discussed in normalized form for general use.

  12. Experimental study on a co-axial pulse tube cryocooler driven by a small thermoacoustic stirling engine (United States)

    Chen, M.; Ju, L. Y.; Hao, H. X.


    Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.

  13. A computational approach for coupled 1D and 2D/3D CFD modelling of pulse Tube cryocoolers (United States)

    Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.


    The physics behind Stirling-type cryocoolers are complicated. One dimensional (1D) simulation tools offer limited details and accuracy, in particular for cryocoolers that have non-linear configurations. Multi-dimensional Computational Fluid Dynamic (CFD) methods are useful but are computationally expensive in simulating cyrocooler systems in their entirety. In view of the fact that some components of a cryocooler, e.g., inertance tubes and compliance tanks, can be modelled as 1D components with little loss of critical information, a 1D-2D/3D coupled model was developed. Accordingly, one-dimensional – like components are represented by specifically developed routines. These routines can be coupled to CFD codes and provide boundary conditions for 2D/3D CFD simulations. The developed coupled model, while preserving sufficient flow field details, is two orders of magnitude faster than equivalent 2D/3D CFD models. The predictions show good agreement with experimental data and 2D/3D CFD model.

  14. The 7th International Cryocooler Conference (United States)


    The partial contents of this document include the following: SDIO and Air Force Cryocooler Technology Developments at USAF Phillips Laboratory; JPL Cryocooler Development and Test Program Overview; Development and Demonstration of a Diaphragm Stirling 65 K Standard Spacecraft Cryocooler; Stirling Space Cooler; Thermal, Vibration, and Reliability Test Results for a Balanced 80 K Cryocooler; Spacecraft Cooler Characterization; Performance of a Long Life Reverse Brayton Cryocooler; SDI Cryocooler Producibility Program; Miniature Pulse Tube Cooler; Flow Patterns Intrinsic to the Pulse Tube Refrigerator; Experimental Investigation of the Regenerative Magnetic Refrigerator Operating Between 4.2 K and 1.8 K; A 4 K Gifford-McMahon Refrigerator for Radio Astronomy; A Stirling Cycle Cryocooler for 4 K Applications; Regenerator Performance and Refrigeration Mechanism for 4 K GM Refrigerator Using Rare Earth Compound Regenerator Materials; Superfluid Stirling Refrigerator with a Counterflow Regenerator; Graded and Nongraded Regenerator Performance; Evolution of the 10 K Periodic Sorption Refrigerator Concept; Development of a Periodic 10 K Sorption Cryocooler; Assessment of a Hydrogen Joule-Thomson Expander and Vanadium Hydride Sorption Beds for 20 K Cryocoolers; Design of a Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cryocooler; JT Cryostat with Liquid-Solid Cryogen Reservoir; Design of A Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cooler; and Phase Equilibria in Cryogenic Mixtures.

  15. Attenuation of cryocooler induced vibration in spaceborne infrared payloads (United States)

    Veprik, A.; Twitto, A.


    Recent advancement of operational responsive space programs calls for a development of compact, reliable, low power and vibration free cryogenic cooling for sophisticated infrared payloads. The refrigeration in a typical closed cycle split Stirling linear cryocooler is achieved by a cyclic compression and expansion of a gaseous working agent due to a synchronized reciprocation of electro-dynamically and pneumatically actuated compressor and expander pistons. Attenuation of the cryocooler induced vibration usually relies on the concept of actively assisted momentum cancellation. In a typical dual-piston compressor this objective is achieved by actively synchronizing the motion of oppositely moving piston assemblies; a typical single-piston expander may be counterbalanced by a motorized counter-balancer. The above approach produces complexity, weight, size, high incurred costs and affects reliability. The authors analyze the case of passive attenuation the vibration export induced by the split Stirling linear cryocooler comprised of inline mounted single-piston compressor and expander. Placement of all the moving components onto a common axis results in a single axis consolidation of vibration export and enables use of single tuned dynamic absorber and low frequency vibration mount. From theoretical analysis and full-scale testing, the performance of such vibration protection arrangement is similar to known systems of active vibration cancellation.

  16. Proceedings of the 7th International Cryocooler Conference, part 2 (United States)


    Partial contents include: SDIO and Air Force Cryocooler Technology Developments at USAF Phillips Laboratory; JPL Cryocooler Development and Test Program Overview; Development and Demonstration of a Diaphragm Stirling 65 K Standard Spacecraft Cryocooler; Stirling Space Cooler; Thermal, Vibration, and Reliability Test Results for a Balanced 80 K Cryocooler; Spacecraft Cooler Characterization; Performance of a Long Life Reverse Brayton Cryocooler; SDI Cryocooler Producibility Program; Miniature Pulse Tube Cooler; Flow Patterns Intrinsic to the Pulse Tube Refrigerator; Experimental Investigation of the Regenerative Magnetic Refrigerator Operating Between 4.2 K and 1.8 K; A 4 K Gifford-McMahon Refrigerator for Radio Astronomy; A Stirling Cycle Cryocooler for 4 K Applications; Regenerator Performance and Refrigeration Mechanism for 4 K GM Refrigerator Using Rare Earth Compound Regenerator Materials; Superfluid Stirling Refrigerator with a Counterflow Regenerator; Graded and Nongraded Regenerator Performance; Evolution of the 10 K Periodic Sorption Refrigerator Concept; Development of a Periodic 10 K Sorption Cryocooler; Assessment of a Hydrogen Joule-Thomson Expander and Vanadium Hydride Sorption Beds for 20 K Cryocoolers; Design of a Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cryocooler; JT Cryostat with Liquid-Solid Cryogen Reservoir; Design of A Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cooler; Phase Equilibria in Cryogenic Mixtures.

  17. Proceedings of the 7th International Cryocooler Conference, part 1 (United States)


    Partial contents include: SDIO and Air Force Cryocooler Technology Developments at USAF Phillips Laboratory; JPL Cryocooler Development and Test Program Overview; Development and Demonstration of a Diaphragm Stirling 65 K Standard Spacecraft Cryocooler; Stirling Space Cooler; Thermal, Vibration, and Reliability Test Results for a Balanced 80 K Cryocooler; Spacecraft Cooler Characterization; Performance of a Long Life Reverse Brayton Cryocooler; SDI Cryocooler Producibility Program; Miniature Pulse Tube Cooler; Flow Patterns Intrinsic to the Pulse Tube Refrigerator; Experimental Investigation of the Regenerative Magnetic Refrigerator Operating Between 4.2 K and 1.8 K; A 4 K Gifford-McMahon Refrigerator for Radio Astronomy; A Stirling Cycle Cryocooler for 4 K Applications; Regenerator Performance and Refrigeration Mechanism for 4 K GM Refrigerator Using Rare Earth Compound Regenerator Materials; Superfluid Stirling Refrigerator with a Counterflow Regenerator; Graded and Nongraded Regenerator Performance; Evolution of the 10 K Periodic Sorption Refrigerator Concept; Development of a Periodic 10 K Sorption Cryocooler; Assessment of a Hydrogen Joule-Thomson Expander and Vanadium Hydride Sorption Beds for 20 K Cryocoolers; Design of a Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cryocooler; JT Cryostat with Liquid-Solid Cryogen Reservoir; Design of A Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cooler; Phase Equilibria in Cryogenic Mixtures.

  18. Proceedings of the 7th International Cryocooler Conference, part 3 (United States)


    Partial contents include: SDIO and Air Force Cryocooler Technology Developments at USAF Phillips Laboratory; JPL Cryocooler Development and Test Program Overview; Development and Demonstration of a Diaphragm Stirling 65 K Standard Spacecraft Cryocooler; Stirling Space Cooler; Thermal, Vibration, and Reliability Test Results for a Balanced 80 K Cryocooler; Spacecraft Cooler Characterization; Performance of a Long Life Reverse Brayton Cryocooler; SDI Cryocooler Producibility Program; Miniature Pulse Tube Cooler; Flow Patterns Intrinsic to the Pulse Tube Refrigerator; Experimental Investigation of the Regenerative Magnetic Refrigerator Operating Between 4.2 K and 1.8 K; A 4 K Gifford-McMahon Refrigerator for Radio Astronomy; A Stirling Cycle Cryocooler for 4 K Applications; Regenerator Performance and Refrigeration Mechanism for 4 K GM Refrigerator Using Rare Earth Compound Regenerator Materials; Superfluid Stirling Refrigerator with a Counterflow Regenerator; Graded and Nongraded Regenerator Performance; Evolution of the 10 K Periodic Sorption Refrigerator Concept; Development of a Periodic 10 K Sorption Cryocooler; Assessment of a Hydrogen Joule-Thomson Expander and Vanadium Hydride Sorption Beds for 20 K Cryocoolers; Design of a Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cryocooler; JT Cryostat with Liquid-Solid Cryogen Reservoir; Design of A Metal Hydride Sorption Cryocooler System; Linear Compressor for JT Cooler; Phase Equilibria in Cryogenic Mixtures.

  19. Development of the LPT9510 1 W Concentric Pulse Tube (United States)

    Mullié, J. C.; Bruins, P. C.; Benschop, T.; Charles, I.; Coynel, A.; Duband, L.


    In order to provide cryogenic cooling for applications that are extremely sensitive to mechanical vibration, Thales Cryogenics has been delivering U-shape pulse tube cryocoolers since 2001. The disadvantage of the U-shape design is that the available regenerator volume is too limited if the application puts constrains on the overall diameter of the cold finger, thus limiting the coolers efficiency. As presented at CEC/ICMC 2003, Thales Cryogenics and CEA/SBT have achieved very good results with a large concentric pulse tube delivering 4W @ 77K driven by a flexure bearing compressor. Furthermore, the same team, together with Air Liquide DTA, developed a very efficient 1W pulse tube cooler for the ESA MPTC project. Based on the experiences obtained with those programs, Thales Cryogenics and CEA/SBT have now developed a small concentric pulse tube that is driven by a flexure bearing compressor. The result is a very compact and reliable cooler, with an efficiency that is nearly doubled compared to the U-shape version with the same overall external diameter dimensions. This paper describes the trade-offs that have been considered in the design phase, and gives a detailed overview of the test results, the status of the qualification program and a comparison with a comparable Stirling cold finger.

  20. Dynamics of cryocooler development

    Energy Technology Data Exchange (ETDEWEB)

    Timmerhaus, K.D. [Univ. of Colorado, Boulder, CO (United States)


    A few of the recent developments and future directions of cryocoolers are summarized. Those that will be covered include Joule-Thomson (J-T) microminiature cryocoolers, modified Stirling refrigerators designated as orifice pulse tube refrigerators (OPTR), and thermal acoustic driver orifice pulse tube refrigerators (TADOPTR) as well as the sorption refrigerators.

  1. Attenuation of cryocooler induced vibration using multimodal tuned dynamic absorber (United States)

    Veprik, A.; Babitsky, V.; Tuito, A.


    Modern infrared imagers often rely on low Size, Weight and Power split Stirling linear cryocoolers comprised of side-by-side packed compressor and expander units fixedly mounted upon a common frame and interconnected by the configurable transfer line. Imbalanced reciprocation of moving assemblies generates vibration export in the form of tonal force couple producing angular and translational dynamic responses. Resulting line of sight jitter and dynamic defocusing may affect the image quality. The authors explore the concept of multimodal tuned dynamic absorber, the translational and tilting modal frequencies of which are essentially matched to the driving frequency. Dynamic analysis and full-scale testing show that the dynamic reactions (forces and moments) produced by such a device may effectively attenuate both translational and angular components of cryocooler-induced vibration.

  2. Vibration-free stirling cryocooler for high definition microscopy (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.


    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  3. Pulse Tube Refrigerator (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  4. 150K - 200K miniature pulse tube cooler for micro satellites (United States)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald; Daniel, Christophe; Crespin, Maurice; Duvivier, Eric


    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  5. Investigation on Dynamic Behavior of Linear Compressor in Stirling-Type Pulse Tube Refrigerator (United States)

    Ko, Junseok; Jeong, Sangkwon; Kim, Youngkwon


    This paper describes the experimental study of the dynamic behavior of a linear compressor in a Stirling-type pulse tube refrigerator (PTR). The dynamic behavior of the piston is closely coupled with the hydraulic force of gas and, therefore, directly influenced by the specific load condition of the pulse tube refrigerator. In the experiment, the frequency response of the pressure at each component, the cooling performance and the piston displacement are measured while an alternate current with fixed magnitude is supplied to the linear motor. The linear compressor in this study was originally designed for a Stirling cryocooler and its maximum input power is approximately 200 W. The pulse tube refrigerator is configured as an in-line type and an inertance tube is incorporated as the phase control device in the pulse tube refrigerator. The pressure difference between both ends of the piston imposes additional stiffness and the PV power in the compression space can be considered a damping effect in the vibration system of the piston. From the experimental results, the effect of the gas force on the dynamic behavior of the piston is discussed. The dynamic relation among the input current, the displacement of the piston, the pulsating pressure and the cooling performance is also studied.

  6. Pulse tube coolers for Meteosat third generation (United States)

    Butterworth, James; Aigouy, Gérald; Chassaing, Clement; Debray, Benoît; Huguet, Alexandre


    Air Liquide's Large Pulse Tube Coolers (LPTC) will be used to cool the focal planes of the Infrared Sounder (IRS) and Flexible Combined Imager (FCI) instruments aboard the ESA/Eumetsat satellites Meteosat Third Generation (MTG). This cooler consists of an opposed piston linear compressor driving a pulse tube cold head and the associated drive electronics including temperature regulation and vibration cancellation algorithms. Preparations for flight qualification of the cooler are now underway. In this paper we present results of the optimization and qualification activities as well as an update on endurance testing.

  7. 8th International Cryocooler Conference

    CERN Document Server


    The last few years have witnessed a substantial maturing of long life Stirling-cycle cryocoolers built upon the heritage of the flexure-bearing cryocoolers from Oxford University, and have seen the emergence of mature pulse tube cryocoolers competing head-to-head with the Stirling cryocoolers. Hydrogen sorption cryocoolers, Gifford-McMahon cryocoolers with rare earth regenerators, and helium Joule-Thomson cryocoolers have also made tremendous progress in opening up applications in the 4 K to 10 K temperature range. Tactical Stirling cryocoolers, now commonplace in the defense industry, are finding application in a number of cost­ constrained commercial applications and space missions, and are achieving ever longer lives as they move to linear-drive, clearance-seal compressors. Building on this expanding availability of commercially viable cryocoolers, numerous new applications are being enabled; many of these involve infrared imaging systems, and high­ temperature superconductors in the medical and ...

  8. Method for estimating off-axis pulse tube losses (United States)

    Fang, T.; Mulcahey, T. I.; Taylor, R. P.; Spoor, P. S.; Conrad, T. J.; Ghiaasiaan, S. M.


    Some Stirling-type pulse tube cryocoolers (PTCs) exhibit sensitivity to gravitational orientation and often exhibit significant cooling performance losses unless situated with the cold end pointing downward. Prior investigations have indicated that some coolers exhibit sensitivity while others do not; however, a reliable method of predicting the level of sensitivity during the design process has not been developed. In this study, we present a relationship that estimates an upper limit to gravitationally induced losses as a function of the dimensionless pulse tube convection number (NPTC) that can be used to ensure that a PTC would remain functional at adverse static tilt conditions. The empirical relationship is based on experimental data as well as experimentally validated 3-D computational fluid dynamics simulations that examine the effects of frequency, mass flow rate, pressure ratio, mass-pressure phase difference, hot and cold end temperatures, and static tilt angle. The validation of the computational model is based on experimental data collected from six commercial pulse tube cryocoolers. The simulation results are obtained from component-level models of the pulse tube and heat exchangers. Parameter ranges covered in component level simulations are 0-180° for tilt angle, 4-8 for length to diameter ratios, 4-80 K cold tip temperatures, -30° to +30° for mass flow to pressure phase angles, and 25-60 Hz operating frequencies. Simulation results and experimental data are aggregated to yield the relationship between inclined PTC performance and pulse tube convection numbers. The results indicate that the pulse tube convection number can be used as an order of magnitude indicator of the orientation sensitivity, but CFD simulations should be used to calculate the change in energy flow more accurately.

  9. Vibration Isolation System for Cryocoolers of Soft X-Ray Spectrometer (SXS) Onboard ASTRO-H (Hitomi) (United States)

    Takei, Yoh; Yasuda, Susumu; Ishimura, Kosei; Iwata, Naoko; Okamoto, Atsushi; Sato, Yoichi; Ogawa, Mina; Sawada, Makoto; Kawano, Taro; Obara, Shingo; hide


    Soft X-ray Spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a micro-calorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from micro-vibration from cryocoolers mounted on the dewar. This is mitigated for the flight model by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the flight model was verified before launch of the spacecraft in both ambient condition and thermal-vac condition, showing no detectable degradation in energy resolution. The in-orbit performance was also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the micro-vibration could degrade the cryogenic detector is shown.

  10. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics (United States)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.; Bustamante, John G.; Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F.


    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  11. Cascading pulse tubes on a large diaphragm pressure wave generator to increase liquefaction potential (United States)

    Caughley, A.; Meier, J.; Nation, M.; Reynolds, H.; Boyle, C.; Tanchon, J.


    Fabrum Solutions, in collaboration with Absolut System and Callaghan Innovation, produce a range of large pulse tube cryocoolers based on metal diaphragm pressure wave generator technology (DPWG). The largest cryocooler consists of three in-line pulse tubes working in parallel on a 1000 cm3 swept volume DPWG. It has demonstrated 1280 W of refrigeration at 77 K, from 24 kW of input power and was subsequently incorporated into a liquefaction plant to produce liquid nitrogen for an industrial customer. The pulse tubes on the large cryocooler each produced 426 W of refrigeration at 77 K. However, pulse tubes can produce more refrigeration with higher efficiency at higher temperatures. This paper presents the results from experiments to increase overall liquefaction throughput by operating one or more pulse tubes at a higher temperature to pre-cool the incoming gas. The experiments showed that the effective cooling increased to 1500 W resulting in an increase in liquefaction rate from 13 to 16 l/hour.

  12. Cryocooler With Cold Compressor for Deep Space Applications Project (United States)

    National Aeronautics and Space Administration — The unique built-in design features of the proposed mini pulse tube cryocooler avoid all thermal expansion issues enabling it to operate within a cold, 150 K...

  13. Cryocooler With Cold Compressor for Deep Space Applications Project (United States)

    National Aeronautics and Space Administration — The innovation is a high-frequency single-stage pulse tube cryocooler (PTC) that operates at a heat rejection temperature of 150 K. It employs a flexure-bearing cold...

  14. Numerical and experimental study of an annular pulse tube used in the pulse tube cooler (United States)

    Pang, Xiaomin; Chen, Yanyan; Wang, Xiaotao; Dai, Wei; Luo, Ercang


    Multi-stage pulse tube coolers normally use a U-type configuration. For compactness, it is attractive to build a completely co-axial multi-stage pulse tube cooler. In this way, an annular shape pulse tube is inevitable. Although there are a few reports about previous annular pulse tubes, a detailed study and comparison with a circular pulse tube is lacking. In this paper, a numeric model based on CFD software is carried out to compare the annular pulse tube and circular pulse tube used in a single stage in-line type pulse tube cooler with about 10 W of cooling power at 77 K. The length and cross sectional area of the two pulse tubes are kept the same. Simulation results show that the enthalpy flow in the annular pulse tube is lower by 1.6 W (about 11% of the enthalpy flow) compared to that in circular pulse tube. Flow and temperature distribution characteristics are also analyzed in detail. Experiments are then conducted for comparison with an in-line type pulse tube cooler. With the same acoustic power input, the pulse tube cooler with a circular pulse tube obtains 7.88 W of cooling power at 77 K, while using an annular pulse tube leads to a cooling power of 7.01 W, a decrease of 0.9 W (11.4%) on the cooling performance. The study sets the basis for building a completely co-axial two-stage pulse tube cooler.

  15. Latest pulse tube coolers developments of Air Liquide for space (United States)

    Buquet, J.; Trollier, T.; Tanchon, J.; Aigouy, G.; Ravex, A.; Crespi, P.


    Thanks to important development efforts completed and partial ESA funding, Air Liquide Advanced Technology Division (AL/DTA), is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation, Sentinel 3, etc... The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase, the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES) of course the electrical interfaces with the compressor. This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.

  16. Multistage Pulse Tube Refrigeration Characterization of the Northrop Grumman High Capacity Cooler - An Update (United States)


    International Cryocooler Conference, pp. 219-224, 2003. 2. Roberts, T. et al, “Multistage Stirling Cycle Refrigeration Performance Mapping of the Ball...the performance of a macro/nano scaled refrigeration cycle J. Appl. Phys. 112, 084325 (2012) Cell-encapsulating droplet formation and freezing...characterization of a multistage Pulse Tube cycle refrigeration system has been partially performed on the Northrop Grumman High Capacity Cooler (NG HCC

  17. Use of inertance in orifice pulse tube refrigerators (United States)

    Gardner, D. L.; Swift, G. W.

    In efficient Stirling-cycle cryocoolers, the oscillating velocity leads the oscillating pressure at the hot end of the regenerator, and lags behind it at the cold end. In single-orifice pulse tube refrigerators, the velocity leads pressure at both ends, resulting in lower efficiency. The phase shift between oscillating pressure and oscillating velocity at the cold end is determined in part by the purely resistive nature of the "orifice" of the orifice pulse tube refrigerator, so that the pressure difference across the orifice is in phase with the velocity through it. We show that the phase shift between velocity and pressure can be shifted to the more efficient Stirling values by adding an "inertance" in series with the orifice. The word "inertance" is an acoustics term connoting both inertia and inductance, because it is due to inertial effects of moving gas and is the acoustic analog of electrical inductance. Use of an inertance is significantly beneficial only when the gross cooling power is sufficiently large. 1997 Elsevier Science Limited

  18. Development of a 30-50 K dual-stage pulse tube space cooler (United States)

    Leenders, H.; de Jonge, G.; Mullié, J.; Prouvé, T.; Charles, I.; Trollier, T.; Tanchon, J.


    There has been a trend towards increasing heat loads for cryogenically cooled Earth Observation instruments in recent years. This is the case at both the current operational temperature levels (∼50K), as well as at lower operational temperature levels (30-50 K). One solution to meet this trend is to use existing pulse tube technology in a double stage configuration. With such technology increased cooling power at a lower temperature can be achieved at the payload detector. Another advantage of such a system is the possibility to increase overall system efficiency by cooling an intermediate shield to avoid parasitic heat losses towards the detector. Therefore a consortium consisting of Thales Cryogenics B.V. (TCBV), Alternative Energies and Atomic Energy Commission (CEA) and Absolut System (AS) is working on the development of a space cryostat actively cooled by a 2-stage high reliability pulse tube cryocooler. This work is being performed in the frame of an European Space Agency (ESA) Technical Research Program (TRP) (refer 4000109933/14/NL/RA) with a target TRL of 6. This paper presents the design of the overall equipped cryostat and cryostat itself but is mainly focused on the 2-stage cryocooler. Design, manufacturing and test aspects of cryocooler and its the lower level components such as the compressor and cold finger are discussed in detail in this paper. The cryocooler test campaign is meanwhile in final stages of completion and the obtained test results are in line with program objectives.

  19. 4 Kelvin Cooling with Innovative Final Stage of Multistage Cryocooler Project (United States)

    National Aeronautics and Space Administration — Proposed for development is a proof-of-concept prototype for the final stage of a multistage cryocooler. This final stage comprises a high frequency pulse tube cold...

  20. Performance envelope and reliability assessment of the NGST HEC cryocooler (United States)

    Roberts, Tom; Abhyankar, Nandu; Davis, Thomas


    The Northrup Grumman Space Technologies High Efficiency Cryocooler (NGST HEC) was designed to support a 10 Watt cooling load at 95 Kelvin while rejecting heat to an effective sink interface temperature of 300 Kelvin. This design is an example of the pulse tube with inertance tube variant of the Stirling thermodynamic cycle whose compressor section uses dual opposed pistons to minimize vibration imparted to any cooling load through the cold end. The Air Force Research Laboratory has characterized the extended performance envelope of this refrigeration system, including its off nominal design point performance and efficiency, its response to transient loading and rejection temperatures, and its cool down performance from ambient. In order to assess this system's long term ability to support extended continuous duty space missions, this cryocooler has been running continuously for over two years, as part of a five year study on whether significant degradation in performance can be measured over that time. Finally, comparison of this cryocooler to other similar space qualifiable refrigeration systems has been made.

  1. A review of pulse tube refrigeration (United States)

    Radebaugh, Ray


    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  2. Development of a fluorescent cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C.; Buchwald, M.I.; Epstein, R.I.; Gosnell, T.R.; Mungan, C.E.


    Recent work at Los Alamos National Laboratory has demonstrated the physical principles for a new type of solid-state cryocooler based on anti-Stokes fluorescence. Design studies indicate that a vibration-free, low-mass ``fluorescent cryocooler`` could operate for years with efficiencies and cooling powers comparable to current commercial systems. This paper presents concepts for a fluorescent cryocooler, design considerations and expected performance.

  3. New developments in small cryocoolers (United States)

    Cottereau, Alain; Ben David, Marc


    An overview of the new developments in small cryocoolers at L'Air Liquide-DTA is presented. The results of a pulse tube refrigerator developed in collaboration with l'Ecole Normale Superieure, the first French laboratory which worked on this subject, are discussed. An original two flowrate flat Joule- Thomson cooler is extensively described. This last development shows the historic willingness of L'Air Liquide- DTA to be present in demand flow cryostat and fast cool-down systems for defense programs.

  4. 20-50 K and 40-80 K pulse tube coolers: Two candidates for a low temperature cooling chain (United States)

    Tanchon, J.; Trollier, T.; Triqueneaux, S.; Ravex, A.


    Following its important cryogenics heritage for the European Space industry for both Ariane launcher and Orbital programs, Air Liquide - Advanced Technology Division (AL/DTA) is proposing different pulse tube cryocoolers all over the temperature range to answer the needs of earth observation and scientific missions. This paper presents recent performance improvement of the large heat lift 40-80 K pulse tube cooler (LPTC). Four units have been manufactured and tested. Three units are dedicated to lifetime testing in the framework of French Military Space Program (under CNES contract) and Meteosat Third Generation program (ESA contract). The batch performances are described and the product maturity is discussed in this paper. To lower the temperature range and to complete our cryogenic chain, we developed in partnership with CEA/INAC/SBT, a heat intercepted 20-50 K pulse tube cryocooler. This cooler has been developed in the framework of an ESA contract (ESA/ESTEC No 20497/0/NL/PA-20-50 K pulse tube cooler). A development phase has been performed to test and optimize different cold head architectures to reach the 300 mW@20 K specification. A no-load temperature of 12.5 K has been demonstrated on breadboard model. The outputs of the trade-off, the resulting design and the performances are described. In complement to the dilution cooler similar to the one developed for the PLANCK mission, those two pulse tube coolers are potential candidates for a very low temperature cooling chain. By optimizing the capabilities of the 20 K stage for low temperature operation (no-load in the range of 8 K) the coupling of the three independent stages becomes possible.

  5. Role of size on the relative importance of fluid dynamic losses in linear cryocoolers (United States)

    Kirkconnell, Carl; Ghavami, Ali; Ghiaasiaan, S. Mostafa; Perrella, Matthew


    Thermodynamic modeling results for a novel small satellite (SmallSat) Stirling Cryocooler, capable of delivering over 200 mW net cooling power at 80 K for less than 6 W DC input power, are used in this paper as the basis for related pulse tube computational fluid dynamics (CFD) analysis. Industry and government requirements for SmallSat infrared sensors are driving the development of ever-more miniaturized cryocooler systems. Such cryocoolers must be extremely compact and lightweight, a challenge met by this research team through operating a Stirling cryocooler at a frequency of approximately 300 Hz. The primary advantage of operating at such a high frequency is that the required compression and expansion swept volumes are reduced relative to linear coolers operating at lower frequencies, which evidently reduces the size of the motor mechanisms and the thermodynamic components. In the case of a pulse tube cryocooler, this includes a reduction in diameter of the pulse tube itself. This unfortunately leads to high boundary layer losses, as the presented results demonstrate. Using a Stirling approach with a mechanical moving expander piston eliminates this small pulse tube loss mechanism, but other challenges are introduced, such as maintaining very tight clearance gaps between moving and stationary elements. This paper focuses on CFD modelling results for a highly miniaturized pulse tube cooler.

  6. Pulse Tube Interference in Cryogenic Sensor Resonant Circuits - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Tyler [SLAC National Accelerator Lab., Menlo Park, CA (United States)


    Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise, it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.

  7. Pulse Tube Interference in Cryogenic Sensors - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Tyler [SLAC National Accelerator Lab., Menlo Park, CA (United States)


    Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise, it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.

  8. Simulation of Thermodynamics Aspects about Pulse Tube Refrigerator (United States)

    Hozumi, Yoshikazu; Shiraishi, Masao; Murakami, Masahide


    In order to investigate the heat transfer mechanism inside a pulse tube refrigerator, CFD has been applied to simulate the working gas behavior. Three dimensional compressible Navier-Stokes equations with viscous dissipation have been solved. Heat conduction between the working gas and the tube metal solids are incorporated into the simulation. A Stirling cycle refrigerator has been also simulated to validate the heat transfer mechanism of the pulse tube refrigerator. However, there is a distinctive heat transfer from the cold end to the hot end of pulse tube, the pulse tube works as a gas displacer to induce a phase shift. The heat transfer of pulse tube refrigerator is caused by the same mechanism of Stirling cycle refrigerator. Additionally, thermal convection at an inclined pulse tube on the angle less than horizontal installation is investigated to show simulation capability of the three dimensional modeling.

  9. Flexure bearing cryocoolers at Thales Cryogenics (United States)

    Meijers, M.; Benschop, A. A. J.; Mullié, J. C.


    Thales Cryogenics (NL) and Thales Cryogenie (F), formerly known as Signal Usfa and Cryotechnologies, closely co-operate in the field of production and development of linear and rotary cryocoolers. Over the past years, Thales Cryogenics has developed a complete range of Stirling cryocoolers with flexure bearings. In this paper the main design features of the flexure bearing compressor are explained. With these flexure bearing cryocoolers, which are available in slip-on configuration as well as IDCA (Integrated Detector Cooler Assembly), up to 6 W @80 K cooling power can be obtained. Also a pulse tube cryocooler with a specified cooling power of 500 mW @80 K has been developed. Two specific production machines have been developed and introduced in the production line. With this equipment Thales Cryogenics has been able to further improve the quality and reproducibility of its coolers. Up to now, several flexure bearing cryocoolers have been built and integrated in various new commercial and military applications requiring long life cryocoolers. Besides this, Thales Cryogenics is active in several space applications in co-operation with Air Liquide/DTA.

  10. Development of a 4K-10K Collins-type cryocooler for space (United States)

    Hannon, Charles; Krass, Brady; Gerstmann, Joseph; Chaudhry, Gunaranjan; Brisson, John; Smith, Joseph, Jr.; Davis, Thomas


    An innovative cryocooler is under development that promises to provide high efficiency 4K-10K cooling for space-based focal plane arrays. It is based upon a novel modification of the Collins cycle, which is commonly used in large-scale high-efficiency terrestrial cryogenic machines. Cryogenic machines based on the conventional Collins or Brayton cycles routinely operate with input powers of about 740 Watts per Watt of refrigeration at 4K. Currently available small-scale cryocoolers capable of about 1W of cooling at 4K typically require 5kW - 7.5kW per Watt of cooling. Microelectronic technology is employed in the modified cycle to enable a reduction in scale and mechanical complexity while retaining the high efficiency potential of the conventional Collins cycle. The modified Collins cycle is a continuous, or DC, flow device. This eliminates the need for the costly exotic alloys used in the regenerators of periodic, or AC, flow pulse-tube and Stirling type cryocoolers. It also permits separation of the cryocooler cold head from the load without a significant thermodynamic penalty, thereby enabling vibration isolation and the potential for improved system integration. An engineering prototype is currently undergoing development testing to demonstrate the potential of this concept to provide cooling at 10K and below. This paper will present the major design concepts employed in the engineering prototype, the results of initial engineering prototype development testing, as well as a discussion of the benefits of this approach and the anticipated space-based and terrestrial applications.

  11. High-Efficiency, Low-Temperature Regenerators for Cryocoolers Project (United States)

    National Aeronautics and Space Administration — Future NASA planetary and astrophysics missions will require various enhancements in multi-stage cryocoolers. These include increased efficiency, reduced vibration...

  12. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T.; Morello, Andrea, E-mail: [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney NSW 2052 (Australia)


    Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5–10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.

  13. Numerical study of a gas coupled VM-PT hybrid cryocooler using 3He as the working fluid (United States)

    Wang, J.; Pan, C. Z.; Zhang, T.; Wang, J. J.; Zhou, Y.


    The two-stage Vuilleumier gas-coupling pulse tube cryocooler (VM-PT) is one kind of novel low-frequency cryocoolers. In this gas-coupled form, the single stage Vuilleumier cryocooler serves as both pressure wave generator and a pre-cooler for coaxial pulse tube. Compared with the most commercialized GM and GM pulse tube cryocooler, the two-stage VM-PT cryocooler is characterized by its high stability, compact size and thermal actuation which are indispensable for space application. It has already been verified experimentally that this cryocooler can obtain 9.75mW@4.2K and the lowest no-load temperature 3.39K when 4He as the working fluid. However, such refrigerating capacity seems not enough for further application. 3He as a more potential substitution of 4He has better physical properties to improve performance, which has been studied in GM type and Stirling pulse tube cryocooler. For further optimization, a numerical study on the specific performance of two-stage VM-PT cryocooler using 3He is carried out in the present paper though Sage software. Working at the frequency of 1.0Hz and the pressure of 0.8MPa, the two-stage VM-PT cryocooler with 3He obtained 50mW@4.06K. The usage of 3He was 0.0038kg, about 30L under STP. At 4.2K, using 3He can obtain 58mW cooling power and 0.49% relative Carnot efficiency, about 1.6 times higher than using 4He.

  14. Effect of pulse tube volume on dynamics of linear compressor and cooling performance in Stirling-type pulse tube refrigerator (United States)

    Ko, Junseok; Jeong, Sangkwon; Ki, Taekyoung


    In a Stirling-type pulse tube refrigerator (PTR), the pulse tube volume affects the dynamic behavior of a linear compressor as well as the cooling performance of PTR. In this study, PTRs which have different pulse tube volume are tested and simulated. The simulation code is verified with the experimental measurement of piston displacement, pressure wave, input power and cooling capacity. And then, the power transfer from the electric power input to the cooling capacity is explained with the simulation results. The smaller pulse tube increases the resonant frequency of a linear compressor and suppresses the piston motion because it imposes larger gas spring effect and also larger gas damping effect to the piston. The smaller one allows larger power transfer from electric power to expansion PV work despite the smaller piston displacement, but shows less cooling capacity due to larger thermal losses.

  15. Concepts for a low-vibration and cryogen-free tabletop dilution refrigerator (United States)

    Uhlig, Kurt


    The purpose of this article is to describe several concepts of how to cool a modern tabletop dilution refrigerator (DR) with a cryogen-free pulse tube cryocooler (PTC). Tabletop DRs have come more and more into the focus of scientists, recently, because they offer easy access to the mixing chamber mounting plate from all directions and because of their very short cooldown times. However, these milli-Kelvin coolers are precooled with LHe which makes their handling inconvenient and often expensive. In the paper it is explained how a cryocooler can be directly coupled to a DR unit making the use of LHe superfluous. Furthermore, concepts are discussed where a tabletop DR is cooled by a remote PTC; PTC and DR are mounted in separate vacuum containers which are connected by a stainless steel bellows tube. This kind of apparatus would offer an extremely low level of vibration at the mixing chamber mounting plate.

  16. Air Liquide cryocoolers for space applications (United States)

    Buquet, J.; Trollier, T.; Tanchon, J.; Ravex, A.; Crespi, P.


    AL/DTA became a major supplier in the field of space cryogenics for the European Space Industry. From MELFI freezer for the International Space Station (ISS) to HERSCHEL and PLANCK satellites for Cosmic Vision, AL/DTA has acquired a large know-how in space cryogenic systems. Convinced by the great interest of Pulse Tube technology for space applications and especially for Earth Observation or Surveillance Tracking, AL/DTA started its first development in mid nineteenths. Then the European Space Agency started to support the development in 2000. Partnerships were launched with CEA/SBT (France; Thales Cryogenics B.V. (The Netherlands) in order to take the advantage of the competencies and experience of each other. Based on the will to improve important issues such as reliability and mechanical robustness, technology improvements are now available in AL/DTA Pulse Tube coolers. This paper proposes an overview of AL/DTA cryocoolers for space applications following by a detailed description of Pulse Tube Coolers and particularly their integration.

  17. Pressure cryocooling protein crystals (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY


    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  18. A 4-Kelvin Pulse-Tube/Reverse-Brayton Hybrid Cryocooler Project (United States)

    National Aeronautics and Space Administration — NASA's ability to perform cutting edge space science, including lunar and planetary exploration, requires the use of cryogenically cooled detectors and sensors for...

  19. Miniature Turbine for Pulse-Tube/Reverse-Brayton Hybrid Cryocooler Project (United States)

    National Aeronautics and Space Administration — Many future advances in NASA's ability to perform cutting edge space science will require improvements in cryogenic system technology, including the development of...

  20. Socool: A 300 K-0.3 K pulse tube/sorption cooler (United States)

    Duband, L.; Clerc, L.; Ravex, A.


    CEA/SBT has acquired substantial experience in the fields of Pulse Tube (PTC) and Sorption coolers. Double stage PTC capable of lifting about 0.5 W of cooling power at 4 K have been successfully experimented in the past years. Single stage 3He and 4He sorption coolers have been developed for both ground and space applications. A precooling temperature below 2.5 K is required to operate a 3He sorption cooler efficiently. This is commonly achieved with a pumped liquid 4He bath. However for some applications (for example bolometers cooling in astrophysics) the vibrations induced by the pumping system are problematic. In addition the fraction of liquid lost during the bath pumped down significantly affects the bath hold time. To overcome this difficulty, a double stage (4He/3He) sorption cooler has been developed which can be operated either from an atmospheric 4He bath or from a 4 K PTC, and which provides temperature down to 260 mK. The first experimental results obtained with this cooler and a 4 K PTC developed at CEA-SBT were excellent and has lead us to develop this cooler with a commercial 4 K PTC. This paper presents the performance obtained with a double stage sorption cooler using a 4 K CRYOMECH PT405 Pulse tube. This new cooler concept is the first cryogen free system covering the range 300 K-300 mK. This technology has been transferred to Air Liquide for industrial manufacturing and commercialization.

  1. Proceedings of the International Cryocooler Conference (7th) Held in Santa Fe, New Mexico on 17-19 November 1992. Part 3 (United States)


    G. Johnson, D. B. Eiscnhaure, F. J. Flynn, M. S. Gaffney, ....R. L. Hockney , D. L. Johnson, and R. G. Ross, Jr ......................... 820 THU RSDAY...PULSE TUBE REFRIGERATOR PERFORMANCES .... M. David , J. Marecha!, and Y. Simon ................................ 1078 CRX• OCOOLER TIP MOTION...Cryocoolers for Space Application," Proceedings of the 6th i ternational Cryocooler Conference. Plymouth. MA, DTRC-91/002, David Taylor Research Center (1991

  2. Development of a miniature Stirling cryocooler for LWIR small satellite applications (United States)

    Kirkconnell, C. S.; Hon, R. C.; Perella, M. D.; Crittenden, T. M.; Ghiaasiaan, S. M.


    The optimum small satellite (SmallSat) cryocooler system must be extremely compact and lightweight, achieved in this paper by operating a linear cryocooler at a frequency of approximately 300 Hz. Operation at this frequency, which is well in excess of the 100-150 Hz reported in recent papers on related efforts, requires an evolution beyond the traditional Oxford-class, flexure-based methods of setting the mechanical resonance. A novel approach that optimizes the electromagnetic design and the mechanical design together to simultaneously achieve the required dynamic and thermodynamic performances is described. Since highly miniaturized pulse tube coolers are fundamentally ill-suited for the sub-80K temperature range of interest because the boundary layer losses inside the pulse tube become dominant at the associated very small pulse tube size, a moving displacer Stirling cryocooler architecture is used. Compact compressor mechanisms developed on a previous program are reused for this design, and they have been adapted to yield an extremely compact Stirling warm end motor mechanism. Supporting thermodynamic and electromagnetic analysis results are reported.

  3. Air Force Research Laboratory Cryocooler Technology Development (United States)

    Davis, Thomas M.; Smith, D. Adam; Easton, Ryan M.


    This paper presents an overview of the cryogenic refrigerator and cryogenic integration programs in development and characterization under the Cryogenic Cooling Technology Group, Space Vehicles Directorate of the Air Force Research Laboratory (AFRL). The vision statement for the group is to support the space community as the center of excellence for developing and transitioning space cryogenic thermal management technologies. This paper will describe the range of Stirling, pulse tube; reverse Brayton, and Joule-Thomson cycle cryocoolers currently under development to meet current and future Air Force and Department of Defense requirements. Cooling requirements at 10K, 35K, 60K, 95K, and multistage cooling requirements at 35/85K are addressed. In order to meet these various requirements, the Air Force Research Laboratory, Space Vehicles Directorate is pursuing various strategic cryocooler and cryogenic integration options. The Air Force Research Laboratory, working with industry partners, is also developing several advanced cryogenic integration technologies that will result in the reduction in current cryogenic system integration penalties and design time. These technologies include the continued development of gimbaled transport systems, 35K and 10K thermal storage units, heat pipes, cryogenic straps, and thermal switches.

  4. Cryocooler Electromagnetic Compatibility (United States)

    Johnson, D.; Smedley, G.; Mon, G.; Ross, R.; Narvaez, J.; Narvaez, P.


    Jet Propulsion Laboratory, under joint Ballistic Missile and Defense Organization/Air Force and NASA/Eos Atmospheric Infrared Sounder sponsorship is conducting extensive space cryocooler characterization to provide a reliable and accurate data base on cryocooler performance for use by the space community.

  5. A large cooling capacity single stage coaxial pulse tube cooler (United States)

    Poncet, J. M.; Trollier, T.; Ravex, A.


    CEA/SBT has a long experience in Pulse Tube Coolers (PTC) development. In the framework of the Brite Euram Program READY, for an HTS transformer demonstrator designed by Schneider Electric, a specific large cooling power single stage coaxial PTC has been designed, manufactured and successfully tested in partnership between CEA/SBT and Air Liquide. The performance requirement was 65 W between 50 K and 77 K. The prototype, associated with a 6 kW Gifford McMohan compression unit, has demonstrated the following performance: an ultimate temperature of 30 K, and typical heat lift of 40 W @40 K, 80 W @60 K and 100 W @80 K were achieved. This particular prototype featured a stainless-steel mesh regenerator: the introduction of lead shot would further increase the cooling capacity below 50 K. The original design and performance of this prototype are presented. A scaled down version of this coaxial PTC is currently under development for an HTS NMR probe cooling at 65 K (more than 20 W).

  6. 3rd Cryocooler Conference

    CERN Document Server

    Louie, Berverly; McCarthy, Sandy


    Cryocoolers 3 documents the output of the Third Cryocooler Conference, held at the National Bureau of Standards, Boulder, Colorado, on September 17-18, 1984. About 140 people from 10 countries attended the conference representing industry, government, and academia. A total of 26 papers were presented orally at the conference and all appear in written form in the proceedings. The focus of this conference was on small cryocoolers in the temperature range of 4 - 80 K. Mechanical and nonmechanical types are discussed in the various papers. Applications of these small cryocoolers include the cooling of infrared detectors, cryopumps, small superconducting devices and magnets, and electronic devices. The conference proceedings reproduced here was published by the National Bureau of Standards in Boulder, Colorado as NBS Special Publication #698.

  7. International Cryocooler Conference

    CERN Document Server

    Cryocoolers 13


    This is the 13th volume in the conference series. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature super-capacitor applications.

  8. Development and experimental results on a 15 K high frequency pulse tube cold finger (United States)

    Duval, Jean-Marc; Charles, Ivan


    Future space missions such as IXO would benefit from a pulse tube cooler providing several hundreds milliwatts of cooling power at 15 K for the pre cooling of a Joule Thomson loop. Our team, in partnership with Air Liquide and Thales Cryogenics BV, is involved in the development of such a product in the framework of an ESA contract. The goal is the development of an engineering model of a 3 stage pulse tube. Our approach is based on multistage pulse tube thermally linked together. This modular approach allows for more flexibility in the mechanical design while keeping a high thermal efficiency. Our first experimental results with performances below 15 K are described. A preliminary structure for a 3 stage pulse tube reaching 15 K is presented.

  9. Development of a Miniature Pulse Tube Cryocooler of 2.5W at 65K for Telecommunication Applications

    National Research Council Canada - National Science Library

    MATSUMOTO, Noboru; YASUKAWA, Yukio; OHSHIMA, Keishi; TAKEUCHI, Takayuki; MATSUSHITA, Tomoyuki; MIZOGUCHI, Yoshinori


    .... In the development of a new compressor, we introduce a moving magnet to a driving system to achieve greater compactness and higher efficiency in place of the moving coil that had about 70% efficiency...

  10. 17th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G


    Cryocoolers 17 archives developments and performance measurements in the field of cryocoolers based on the contributions of leading international experts at the 17th International Cryocooler Conference that was held in Los Angeles, California, on July 9-12, 2012. The program of this conference consisted of 94 papers; of these, 71 are published here. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  11. 16th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G


    Cryocoolers 16 archives developments and performance measurements in the field of cryocoolers based on the contributions of leading international experts at the 16th International Cryocooler Conference that was held in Atlanta, Georgia, on May 17-20, 2010. The program of this conference consisted of 116 papers; of these, 89 are published here. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  12. Investigations for low noise cooling by means of a pulse tube cooler for highly sensitive SQUID magnetometers from high temperature superconductors

    CERN Document Server

    Lienerth, C


    110fT/[Root]Hz at 10 Hz. For the discret peaks at the working frequency the vibration compensation is capable of reducing the cooler-generated peaks in the field noise spectrum by a factor of the order of 4. This noise level is low enough for applications such as nondestructive evaluation of materials. For identifying the origin of the remaining disturbances, one has to consider in addition to the residual vibrations also temperature oscillations and oscillating fields from eddy current at the SQUID location. The commercial acceptance of superconducting applications is closely associated with the availability of appropriate cryocoolers that enable continuous operation without the need to re-fill liquid cryogens. For cooling of highly-sensitive HT-SQUID sensors the cryocooler has to meet rather severe demands concerning interference from the cooler itself. In particular, cooler-generated noise from electromagnetic interference (EMI), mechanical vibrations and temperature fluctuations should be below the intrin...

  13. 18th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G


    Cryocoolers 18 Cryocoolers 18 archives developments and performance measurements in the field of cryocoolers based on the contributions of leading international experts at the 18th International Cryocooler Conference that was held in Syracuse, New York, on June 9-12, 2014. The program of this conference lead to the 76 peer-reviewed papers that are published here. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  14. Low frequency split cycle cryocooler (United States)

    Bian, S. X.; Zhang, Y. D.; Wan, W. W.; Wang, L.; Hu, Q. C.


    A split cycle Stirling cryocooler with two different drive motors and operating at a low drive frequency can have high thermodynamic efficiency. The temperature of the cold end of the cryocooler varies with drive frequency, voltage of the input electrical power and initial charge pressure values. The cryocooler operating at 8 Hz can provide 7 watts of refrigeration at 77 K for 230 watts of electrical input power.

  15. 10th International Cryocooler Conference

    CERN Document Server


    Cryocoolers 10 is the premier archival publication of the latest advances and performance of small cryogenic refrigerators designed to provide localized cooling for military, space, semi-conductor, medical, computing, and high-temperature superconductor cryogenic applications in the 2-200 K temperature range. Composed of papers written by leading engineers and scientists in the field, Cryocoolers 10 reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications.

  16. Design and prototyping of a large capacity high frequency pulse tube (United States)

    Ercolani, E.; Poncet, J. M.; Charles, I.; Duband, L.; Tanchon, J.; Trollier, T.; Ravex, A.


    This document describes the design and the prototyping performed at CEA/SBT in partnership with AIR LIQUIDE of a high frequency large cooling power pulse tube. Driven at 58 Hz by a 7.5 kW flexure bearing pressure wave generator, this system provides a net heat lift of 210 W at 65 K. The phase shift is obtained by an inertance and a buffer volume. This type of cryogenic cooler can be used for on site gas liquefaction or drilling site and for high temperature superconductivity power device cooling (transmission lines, large generators, fault current limiters). In this paper, we focus on two essential points, the regenerator and the flow straightener. The regenerator is a key component for good performance of the pulse tube cooler. It must have a large thermal inertia, a low dead volume, a good heat transfer gas/matrix and at the same time, small pressure drop. In the present case and unlike typical moderate cooling power pulse tubes, the regenerator is very compact. However, the resulting conductive losses remain negligible compared to the cooling power targeted. The goal of the flow straightener is to avoid as much as possible any jet stream effect and to guarantee the uniformity of the velocity field at both ends of the pulse tube. Indeed multi-dimensional flow effects can significantly impact the performances of the machine.

  17. Floating Piston Expander Development for a Small-Scale Collins Type 10 K Cryocooler for Space Applications (United States)

    Hannon, C. L.; Gerstmann, J.; Krass, B. J.; Traum, M. J.; Brisson, J. G.; Smith, J. L.


    Future spacecraft cooling and sensing systems will require advanced multi-stage cryocoolers capable of providing continuous cooling at multiple temperature levels ranging from 10 K to 95 K. Stirling and pulse-tube cryocoolers have achieved compactness and reliability by adopting mechanically simple cold head configurations at the expense of thermodynamic efficiency. Large-scale terrestrial cryogenic refrigerators achieve much higher efficiencies by employing complex designs, but their high efficiency is not retained at the small scale required for spacecraft cryogenic cooling. AMTI, in collaboration with MIT, is developing a multi-stage 10 K cryocooler that applies modern microelectronic sophistication to achieve high efficiency in a reliable, compact design. The cryocooler is based upon a novel modification of the Collins cycle, a cycle commonly used in many high-efficiency terrestrial cryogenic machines. Innovations of the design include floating piston expanders and electro-magnetic smart valves, which eliminate the need for mechanical linkages and reduce the input power, size, and weight of the cryocooler in an affordable modular design. This paper will present the design of the first generation prototype, the results of development testing, and the direction of future development efforts.

  18. Multimodal tuned dynamic absorber for split Stirling linear cryocooler (United States)

    Veprik, A.; Tuito, A.


    Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.

  19. Experimental progress of a 4K VM/PT hybrid cryocooler for pre-cooling 1K sorption cooler (United States)

    Pan, Changzhao; Zhang, Tong; Wang, Jue; Chen, Liubiao; Guo, Jia; Zhou, Yuan; Wang, Junjie


    Sub-kelvin refrigerator has many applications in space detector and manned space station, such as for the transition-edge superconducting (TES) bolometers operated in the 50 mK range. In order to meet the requirement of space applications, the high efficient, vibration free and high stability refrigerator need to be designed. VM/PT hybrid cryocooler is a new type cryocooler capable of attaining temperature below 4K. As a low frequency Stirling type cryocooler, it has the advantages of high stability and high efficiency. Combined with the vibration free sorption cooler and ADR refrigerator, a novel sub-kelvin cooling chain can be designed for the TES bolometer. This paper presents the recent experimental progress of the 4K VM/PT hybrid cryocooler in our laboratory. By optimizing of regenerators, phase shifters and heat exchangers, a lowest temperature of 2.6K was attained. Based on this cryocooler, a preliminary sorption cooler could be designed.

  20. Influence of the Water-Cooled Heat Exchanger on the Performance of a Pulse Tube Refrigerator

    Directory of Open Access Journals (Sweden)

    Wei Wang


    Full Text Available The water-cooled heat exchanger is one of the key components in a pulse tube refrigerator. Its heat exchange effectiveness directly influences the cooling performance of the refrigerator. However, effective heat exchange does not always result in a good performance, because excessively reinforced heat exchange can lead to additional flow loss. In this paper, seven different water-cooled heat exchangers were designed to explore the best configuration for a large-capacity pulse tube refrigerator. Results indicated that the heat exchanger invented by Hu always offered a better performance than that of finned and traditional shell-tube types. For a refrigerator with a working frequency of 50 Hz, the best hydraulic diameter is less than 1 mm.

  1. 7th International Cryocooler Conference

    CERN Document Server


    Cryocoolers 7 archives developments and performance measurements in the field of cryocoolers based on the contributions of leading international experts at the 7th International Cryocooler Conference which was held in Santa Fe, New Mexico, on November 17-19, 1992. This year's conference consisted of over 100 papers and was hosted by the Nichols Research Corp. and the Air Force Phillips Laboratory of Albuquerque, New Mexico. The conference proceedings were published by the Air Force Phillips Laboratory in the four-volume set reproduced here.

  2. 4th International Cryocoolers Conference

    CERN Document Server

    Patton, George; Knox, Margaret


    The Cryocoolers 4 proceedings archives the contributions of leading international experts at the 4th International Cryocooler Conference that was held in Easton, Maryland on September 25-26, 1986. About 170 people attended the conference representing 11 countries, 14 universities, 21 government laboratories and 60 industrial companies. Thirty-one papers were presented describing advancements and applications of cryocoolers in the temperature range below 80K. This year's conference was sponsored by the David Taylor Naval Ship Research and Development Center of Annapolis, Maryland, and the conference proceedings reproduced here was published by them.

  3. 6th International Cryocoolers Conference

    CERN Document Server

    Knox, Margaret


    Cryocoolers 6 archives developments and performance measurements in the field of cryocoolers based on the contributions of leading international experts at the 6th International Cryocooler Conference that was held in Plymouth, Massachusetts, on October 25-26, 1990. This year's conference consisted of 54 papers and was sponsored by the David Taylor Naval Ship Research and Development Center of Annapolis, Maryland. The conference proceedings containing 49 submitted manuscripts was published by the David Taylor Naval Ship Research and Development Center in the report reproduced here.

  4. 14th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G


    This is the 14th volume in the conference series. Over the years the International Cryocoolers Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  5. 15th International Cryocooler Conference

    CERN Document Server

    Ross, Ronald G


    This is the 15th volume in the conference series. Over the years the International Cryocooler Conference has become the preeminent worldwide conference for the presentation of the latest developments and test experiences with cryocoolers. The typical applications of this technology include cooling space and terrestrial infrared focal plane arrays, space x-ray detectors, medical applications, and a growing number of high-temperature superconductor applications.

  6. Influence of hot end heat exchangers on cascading three pulse tube coolers (United States)

    Y Zhao, Q.; Y Wang, L.; Gan, Z. H.; Sun, X.; Chao, Y. J.; Li, S. Z.; Ren, S. J.


    Hot end heat exchanger (HHX), an indispensable part in the traditional pulse tube cooler (PTC), rejects the heat generated by dissipation of the acoustic power. The acoustic power, which should have been dissipated at the phase shifters, is delivered to the latter stage cooler in the cascade PTC. Therefore, by removing the HHX, power loss could be decreased. Specifically, in our experiment, after removing HHXs, the cooling power obtained by cascading three PTCs could reach 273.2 W at 233 K under the same working condition, which is 23.6 W more than that of the original structure.

  7. High-power stirling-type pulse tube cooler for power engineering applications of high temperature superconductivity; Hochleistungspulsrohrkuehler vom Stirling-Typ fuer energietechnische Anwendungen der Hochtemperatursupraleitung

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc


    For the cooling of high temperature superconducting 4 MVA machines (motors or generators), a single-stage Stirling-type pulse-tube cryocooler was built. The cooling power, which the cryocooler was aimed for, is 80 - 100 W at 30 K with an electrical input power of 10 kW (8 kW pV-power). The advantages of this cooler type compared to traditional cooling concepts are an increased reliability and long maintenance intervals. While single-stage Stirling-type pulse-tube cryocoolers for the temperature range of liquid nitrogen (77 K) are already commercially available, there exist currently no commercial systems for the temperature range near 30 K, which is the important range for applications of high-temperature superconductivity. The experimental setup consisted of a 10 kW linear compressor, type 2S297W, from CFIC Inc. which was used as the pressure wave generator. The compressor was operated by a Micromaster 440 frequency inverter from Siemens, which was controlled by a custom-made computer program. The cold head was made in inline configuration, in order to avoid deflection losses. During the first cool-downs tests a temperature inhomogeneity occurred in the regenerator at low temperature and high pV-power, which was attributed to a constant mass flow (circular dc-flow) within the regenerator. This firstly observed dc-flow, generates a net energy flow from the hot end to the cold end of the regenerator, which reduces the cooling capacity considerably and hence the minimum attainable temperature is severely increased. For the design and optimization of the cold-head, a cryocooler model was initially created using the commercial simulation software Sage, which did not include the regenerator inhomogeneity seen in the experiment. For the modeling of the observed streaming inhomogeneity caused by the dc-flow, the regenerator was replaced by two identical parallel regenerators with variable transverse thermal coupling. In the inhomogeneous case (without dc-flow) the

  8. Analysis on the stirling-type pulse tube refrigerator in consideration of dynamics of linear compressor (United States)

    Ko, Junseok; Jeong, Sangkwon


    This paper describes the performance analysis of Stirling-type pulse tube refrigerator (PTR) in conjunction with the dynamics of the accompanied linear compressor. The dynamic behavior of the piston in the linear compressor is directly influenced by the load condition of the PTR. In this paper, the dynamic equation of the piston is simultaneously solved with the thermo-hydraulic governing equations of the PTR using linear analysis model and the performance of the PTR is predicted with the accompanied thermal losses. The developed analysis code is verified with the experimental results. The effect of the inertance tube length which plays an important role in the PTR is also specifically investigated from the experimental and simulation results. It clearly shows the effect of the flow impedance of the inertance tube on the dynamic response of the piston as well as the cooling performance of the PTR.

  9. 5th International Conference on Cryocoolers

    CERN Document Server


    The Cryocoolers 5 proceedings archives the contributions of leading international experts at the 5th International Cryocooler Conference that was held in Monterey, California on August 18-19, 1988. The authors submitted twenty six papers describing advancements and applications of cryocoolers in the temperature range below 80K. This year's conference was hosted by the U.S. Naval Postgraduate School in Monterey, California, and the conference proceedings reproduced here were published by the Wright-Patterson AFB in Ohio.

  10. Regenerators for Liquid Hydrogen Cryocoolers Project (United States)

    National Aeronautics and Space Administration — Future NASA exloration, planetary and astrophysics missions will require various enhancements in multi-stage cryocoolers. These include increased efficiency, reduced...

  11. Stirling-type pulse tube refrigerator (PTR) with cold compression: Cold compressor, colder expander (United States)

    Park, Jiho; Ko, Junseok; Cha, Jeongmin; Jeong, Sangkwon


    This research paper focuses on the performance prediction and its validation via experimental investigation of a Stirling-type pulse tube refrigerator (PTR) equipped with a cold linear compressor. When the working gas is compressed at cryogenic temperature, the acoustic power (PV power) can be directly transmitted through the regenerator to the pulsating tube without experiencing unnecessary precooling process. The required PV power generated by the linear compressor, furthermore, can be significantly diminished due to the relatively small specific volume of the working gas at low temperature. The PTR can reach lower temperature efficiently with higher heat lift at the corresponding temperature than other typical single-stage Stirling-type PTRs. Utilizing a cryogenic reservoir as a warm end and regulating the entire operating temperature range of the PTR will enable a PTR to operate efficiently under space environment. In this research, the experimental validation as a proof of concept was carried out to demonstrate the capability of PTR operating between 80 K and 40 K. The linear compressor was submerged in a liquid nitrogen bath and the lowest temperature was measured as 38.5 K. The test results were analyzed to identify loss mechanisms with the simple numerical computation (linear model) which considers the dynamic characteristics of the cold linear compressor with thermo-hydraulic governing equations for each of sub components of the PTR. All the mass flows and pressure waves were assumed to be sinusoidal.

  12. Design Models for the Development of Helium-Carbon Sorption Cryocoolers (United States)

    Lindensmith, Chris A.; Ahart, M.; Bhandari, P.; Wade, L. A.; Paine, C. G.


    We have developed models for predicting the performance of helium-based Joule-Thomson continuous-flow cryocoolers using charcoal-pumped sorption compressors. The models take as inputs the number of compressors, desired heat-lift, cold tip temperature, and available precooling temperature and provide design parameters as outputs. Future laboratory development will be used to verify and improve the models. We will present a preliminary design for a two-stage vibration-free cryocooler that is being proposed as part of a mid-infrared camera on NASA's Next Generation Space Telescope. Model predictions show that a 10 mW helium-carbon cryocooler with a base temperature of 5.5 K will reject less than 650 mW at 18 K. The total input power to the helium-carbon stage is 650 mW. These models, which run in MathCad and Microsoft Excel, can be coupled to similar models for hydrogen sorption coolers to give designs for 2-stage vibration-free cryocoolers that provide cooling from approximately 50 K to 4 K.

  13. Single-stage 25 K pulsed tube cooler for HTS energy applications; Einstufiger 25 K Pulsrohrkuehler fuer HTS-Energie Applikationen

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, H.U. [Leybold Vakuum GmbH, Koeln (Germany); Giebeler, F.; Thummes, G. [TransMit GmbH, Giessen (Germany). Zentrum fuer Adaptive Kryotechnik und Sensorik


    High-temperature superconductors used in energy engineering, especially in magnetic applications, must be cooled to about 25-30 K. The project investigated the application of a pulsed tube cooler which has no piston and thus has advantages in terms of vibration, life, and flexible integrability. A 25-30 K prototype was developed at Siemens AG, Erlangen, for a prototype HTS motor. Although the COP is lower than for the Gifford-McMahon motor, the refrigerating power of about 30 W at 25 K was fully reached at a power consumption of 6 kW. With higher power consumption, higher refrigerating capacities will be achieved. Long-term tests of several months demonstrated the feasibility of this technology. (orig.) [German] Bei Applikationen von Hochtemperatur Supraleitern (HTS) in der Energietechnik (insbesondere magnetischen Anwendungen) wird eine Kuehlung des HTS-Teils auf ca. 25-30K benoetigt. Der bei Kryokuehlern zu erwartende Trend von Gifford-McMahon Kuehlern in Richtung Pulsrohr-Kuehltechnik (PRK) brachte die Idee auf, einen PRK auch fuer diese HTS-Applikationen bereitzustellen, da durch den Wegfall des Verdraengerkolbens im Kaltteil Vorteile bezueglich der Vibration, der Lebensdauer sowie einer flexibleren Integrierbarkeit gesehen werden. Fuer den Prototyp eines HTS-Motors bei der Siemens AG, Erlangen, wurde ein 25-30K PRK als Demonstrator entwickelt. Im Vordergrund standen dabei: Versuche mit rotierendem Pulsrohrkuehler, Optimierung der Kaelteleistung am Betriebspunkt, Beseitigung der aus frueheren Experimenten bekannten Langzeitdriften. Im Wirkungsgrad (COP) bleibt der Kuehler, wie erwartet, hinter der Gifford-McMahon Maschine zurueck, die fuer den Betrieb des 400 kW Motors notwendige Kaelteleistung von ca. 30W bei 25K wurde aber bei einer Leistungsaufnahme von 6kW voll erreicht. Durch Erhoehen der Leistungsaufnahme koennen auch noch hoehere Kaelteleistungen erzielt werden. Mehrmonatige Langzeitversuche demonstrierten die generelle Eignung von Pulsrohrkuehlern fuer

  14. MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. (United States)

    Abada, Hicham T; Larchez, Christophe; Daoud, Béatrice; Sigal-Cinqualbre, Anne; Paul, Jean-François


    The objective of our study was to show the feasibility of coronary CT using low kilovoltage (80 kV) combined with ECG-pulsed tube current modulation in selected patients. This study showed the combined effect of lowering the kilovoltage setting (80 kV) and using an automatic modulation technique (ECG-pulsed tube current modulation) for coronary CT. Radiation dose exposure can be reduced by up to 88% for slim patients without impairing image quality.

  15. Thermal Systems (TS): High Capacity Cryocooler Project (United States)

    National Aeronautics and Space Administration — The 20 Watt, 20 Kelvin cryocooler utilizes the reverse turbo-Brayton thermodynamic cycle to cool helium working gas at cryogenic temperatures, circulated through a...

  16. Review of the Oxford Cryocooler (United States)

    Davey, G.

    The Oxford Cryocooler incorporates a linear drive compressor operating close to resonance. All dynamic seals are noncontacting clearance seals maintained by mounting the piston and displacer on mechanical suspension systems with infinite fatigue life. The displacer is pneumatically driven but controlled by a miniature linear motor. The cooler is therefore nonwearing and performance can be maintained even in adverse environments by servo control of piston and displacer strokes and relative phase. Split and integral, single- and two-stage coolers have been produced with operating temperatures between 30 K and 200 K, refrigeration powers between 50 mW and several watts and capable of operating in ambient temperatures from -40 C to 70 C. A current project aims to extend the refrigeration power to 500 watts at 80 K. Experimental optimisation techniques have been devised for rapid development of high efficiency coolers.

  17. Performance Investigations of a 4 to 10 K Long-Life Mechanical Cryocooler (United States)

    Gully, W. J.; Glaister, D.; Marquardt, E.


    We believe that the quickest way of obtaining a reliable space cooler in the range of 4 to 10 K is to combine a Stirling mechanical cooler with a Joule-Thomson (J-T) cooler. In this approach we perform the bulk of the cooling with the Stirling cooler and use the J-T cooler for the small amount of cooling required at the lowest temperatures. The recuperative J-T stage can reach low temperatures more easily because it does not have the regenerator limitations shared by Stirling and Pulse Tube mechanical coolers. We present our system concept in detail and discuss its merits. To demonstrate the capabilities of a hybrid cooler, we built a breadboard version consisting of a precooler, a J-T circulating compressor, and a cold head. With it we achieved closed-cycle refrigeration rates of 35 mW at 6 K and 10 mW at 3.7 K. For simplicity we used a commercial Gifford McMahon (GM) refrigerator as our precooler and focused on building the J-T compressor and passive cold head. The J-T compressor was an Oxford-style linear compressor equipped with an external reed valve package. The cold head consisted of heat exchangers, heat sinks, and an expansion valve. The system worked quite well. The performance was transparent and the results agreed with our analytical models. We are proceeding with the construction of a full engineering model on a NASA technology development program, the Advanced Cryocooler Development Program (ACTDP). Within 2 years we will have a complete engineering model of the mechanical cryocooler capable of 4 K operation.

  18. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Dietrich, M.; Carlsen, Henrik


    Transverse asymmetry in the temperature profile of the regenerator in a Stirling-type pulse tube cooler as observed in experiments was analysed in a numerical study. The asymmetry was reproduced using a one-dimensional model of the cooler where the regenerator was modelled using two identical...... parallel regenerator channels. The asymmetry was caused by a circulating flow that was superimposed on the oscillating flow. The primary mechanism driving the circulating flow was due to the wave form of the pressure difference between the ends of the regenerator and the dependence of the instantaneous...


    Directory of Open Access Journals (Sweden)

    RAJESH V. R.


    Full Text Available In the range of milliwatt to a few watts cooling capacity, Stirling cycle and pulse tube coolers are most suitable for producing cryogenic temperatures owing to their eco-friendliness, high efficiency, cooling capacity to mass ratio etc. The compressor of a Stirling cooler is powered by a linear motor. The power piston of the cooler is held in position and moves to and fro with the support of so called flexure springs or flexure bearings. Flexures avoid direct contact between moving parts of the compressor of the cooler. Thus, if designed adequately to withstand fatigue, flexure bearings can easily outlast rolling element bearings and slider bearings. In this work, a computational analysis is used to study the performance of flexure spring by varying the geometrical parameters. Three of the most common spring materials namely, SS304, beryllium copper and spring steel are considered for analysis. The analysis was made by varying the parameters like spiral sweep angle, slot width, number of spirals and disc thickness. The influence of each of these parameters on the fatigue life of the spring has been investigated. The results suggest that flexure springs of three spiral arms would be the ideal choice for the selected cryocooler. The variation of stress developed with respect to different design parameters and fatigue damage factor are presented graphically.

  20. Experimental helium liquefier with a GM cryocooler (United States)

    Choudhury, Anup; Sahu, Santosh


    A helium liquefier has been developed with a Gifford-McMahon cryocooler using the cold enthalpy available at the first stage, the inter-stage, and the second stage of the cryocooler. Most of the enthalpy of the helium gas at 300 K is absorbed in the first stage by a coaxial heat exchanger and inter-stage region of the cryocooler. Pre-cooled helium gas is liquefied at the second stage heat exchanger where the final cooldown and condensation happens. The measured production capacity of the liquefier is 17.4 l/day at atmospheric pressure. The whole setup has been designed to work in a coaxial configuration where the two heat exchangers, the cryostat, and the dewar are symmetrically placed around the central axis.

  1. Modelling heating effects in cryocooled protein crystals

    CERN Document Server

    Nicholson, J; Fayz, K; Fell, B; Garman, E


    With the application of intense X-ray beams from third generation synchrotron sources, damage to cryocooled macromolecular crystals is being observed more commonly . In order to fully utilize synchrotron facilities now available for studying biological crystals, it is essential to understand the processes involved in radiation damage and beam heating so that, if possible, action can be taken to slow the rate of damage. Finite Element Analysis (FEA) has been applied to model the heating effects of X-rays on cryocooled protein crystals, and to compare the relative cooling efficiencies of nitrogen and helium.

  2. Cryocoolers near their low-temperature limit (United States)

    de Waele, A. T. A. M.


    This paper analyses the recently-observed temperature-time dependence in a GM-cooler near its low-temperature limit. The paper mainly focusses on GM-coolers with 4He as the working fluid, but some attention is also paid to pulse-tube refrigerators (PTR's) using 3He and many features of the treatment equally apply to Stirling coolers. Ample attention is paid to the thermodynamics of the cycle by considering the isentropes in the Tp-diagrams of 4He and 3He. The role of the line, where the thermal expansion coefficient is zero, is emphasized. Some fundamental thermodynamic relationships are derived.

  3. The 4 K Stirling cryocooler demonstration (United States)

    Stacy, W. Dodd


    This report briefly summarizes the results and conclusions from an SBIR program intended to demonstrate an innovative Stirling cycle cryocooler concept for efficiently lifting heat from 4 K. Refrigeration at 4 K, a temperature useful for superconductors and sensitive instruments, is beyond the reach of conventional regenerative thermodynamic cycles due to the rapid loss of regenerator matrix heat capacity at temperatures below about 20 K. To overcome this fundamental limit, the cryocooler developed under this program integrated three unique features: recuperative regeneration between the displacement gas flow streams of two independent Stirling cycles operating at a 180 degree phase angle, tailored distortion of the two expander volume waveforms from sinusoidal to perfectly match the instantaneous regenerator heat flux from the two cycles and thereby unload the regenerator, and metal diaphragm working volumes to promote near isothermal expansion and compression processes. Use of diaphragms also provides unlimited operating life potential and eliminates bearings and high precision running seals. A phase 1 proof-of-principle experiment demonstrated that counterflow regenerator operation between 77 K and 4 K increases regenerator effectiveness by minimizing metal temperature transient cycling. In phase 2, a detailed design package for a breadboard cryocooler was completed. Fabrication techniques were successfully developed for manufacturing high precision miniature parallel plate recuperators, and samples were produced and inspected. Process development for fabricating suitably flat diaphragms proved more difficult and expensive than anticipated, and construction of the cryocooler was suspended at a completion level of approximately 75%. Subsequent development efforts on other projects have successfully overcome diaphragm fabrication difficulties, and alternate funding is currently being sought for completion and demonstration testing of the 4 K Stirling cryocooler.

  4. Hydrodynamic parameters of micro porous media for steady and oscillatory flow: Application to cryocooler regenerators (United States)

    Cha, Jeesung Jeff

    Pulse Tube Cryocoolers (PTC) are a class of rugged and high-endurance refrigeration systems that operate without a moving part at their low temperature ends, and are capable of easily reaching 120°K. These devices can also be configured in multiple stages to reach temperatures below 10 °K. PTCs are particularly suitable for applications in space, missile guiding systems, cryosurgery, medicine preservation, superconducting electronics, magnetic resonance imaging, weather observation, and liquefaction of nitrogen. Although various designs of PTCs have been in use for a few decades, they represent a dynamic and developmental field. PTCs ruggedness comes at the price of relatively low efficiency, however, and thus far they have been primarily used in high-end applications. They have the potential of extensive use in consumer products, however, should sufficiently higher efficiencies be achieved. Intense research competition is underway worldwide, and newer designs are continuously introduced. Some of the fundamental processes that are responsible for their performance are at best not fully understood, however, and consequently systematic modeling of PTC systems is difficult. Among the challenges facing the PTC research community, besides improvement in terms of system efficiency, is the possible miniaturization (total fluid volume of few cubic centimeters (cc)) of these systems. The operating characteristics of a PTC are significantly different from the conventional refrigeration cycles. A PTC implements the theory of oscillatory compression and expansion of the gas within a closed volume to achieve desired refrigeration. Regenerators and pulse tubes are often viewed as the two most complex and essential components in cryocoolers. An important deficiency with respect to the state of art models dealing with PTCs is the essentially total lack of understanding about the directional hydrodynamic and thermal transport parameters associated with periodic flow in

  5. RMs1: qualification results of the rotary miniature Stirling cryocooler at Thales Cryogenics (United States)

    Martin, Jean-Yves; Seguineau, Cédric; Van-Acker, Sébastien; Sacau, Mikel; Le Bordays, Julien; Etchanchu, Thierry; Vasse, Christophe; Abadie, Christian; Laplagne, Gilles; Benschop, Tonny


    The trend for miniaturized Integrated Dewar and Cooler Assemblies (IDCA) has been confirmed over the past few years with several mentions of a new generation of IR detector working at High Operating Temperature (HOT). This key technology enables the use of cryocooler with reduced needs of cryogenics power. As a consequence, miniaturized IDCA are the combination of a HOT IR detector coupled with a low-size, low-weight and low-power (SWaP) cryocooler. Thales Cryogenics has developed his own line of SWaP products. Qualification results on linear solution where shown last year. The current paper focuses on the latest results obtained on RMs1 prototypes, the new rotary SWaP cryocooler from Thales Cryogenics. Cryogenic performances and induced vibrations are presented. In a second part, progress is discussed on compactness and weight on one side, and on power consumption on the other side. It shows how the trade-off made between weight and power consumption could lead to an optimized solution at system level. At least, an update is made on the qualification status.

  6. MODIL cryocooler producibility demonstration project results

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, G.E.; Franks, R.M.


    The production of large quantities of spacecraft needed by SDIO will require a cultural change in design and production practices. Low rates production and the need for exceedingly high reliability has driven the industry to custom designed, hand crafted, and exhaustively tested satellites. These factors have mitigated against employing design and manufacturing cost reduction methods commonly used in tactical missile production. Additional challenges to achieving production efficiencies are presented by the SDI spacecraft mission requirement. IR sensor systems, for example, are comprised of subassemblies and components that require the design, manufacture, and maintenance of ultra precision tolerances over challenging operational lifetimes. These IR sensors demand the use of reliable, closed loop, cryogenic refrigerators or active cryocoolers to meet stringent system acquisition and pointing requirements. The authors summarize some spacecraft cryocooler requirements and discuss observations regarding Industry`s current production capabilities of cryocoolers. The results of the Lawrence Livermore National Laboratory (LLNL) Spacecraft Fabrication and Test (SF and T) MODIL`s Phase I producibility demonstration project is presented.

  7. MODIL cryocooler producibility demonstration project results

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, G.E.; Franks, R.M.


    The production of large quantities of spacecraft needed by SDIO will require a cultural change in design and production practices. Low rates production and the need for exceedingly high reliability has driven the industry to custom designed, hand crafted, and exhaustingly tested satellites. These factors have mitigated against employing design and manufacturing cost reduction methods commonly used in tactical missile production. Additional challenges to achieving production efficiencies are presented by the SDI spacecraft mission requirement. IR sensor systems, for example, are comprised of subassemblies and components that require the design, manufacture, and maintenance of ultra precision tolerances over challenging operational lifetimes. These IR sensors demand the use of reliable, closed loop, cryogenic refrigerators or active cryocoolers to meet stringent system acquisition and pointing requirements. The authors summarize some spacecraft cryocooler requirements and discuss their observations regarding Industry`s current production capabilities of cryocoolers. The results of the Lawrence Livermore National Laboratory (LLNL) Spacecraft Fabrication and Test (SF and T) MODIL`s Phase I producibility demonstration project are presented. The current project that involves LLNL and industrial participants is discussed.

  8. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing (United States)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng


    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  9. Reducing the Liquid Helium Consumption of Superconducting Rock Magnetometers (SRMs) used in Paleomagnetic and Rock Magnetic studies: Gallium Lubrication of Gifford-McMahon Cryocoolers Leads to a Dramatic Increase in Cool-down Efficiency, and a Drop in Liquid Helium Consumption (United States)

    Kirschvink, J. L.


    Two-stage Gifford-McMahon helium-gas cryocoolers have been used for the past 40+ years in a wide variety of cryogenic applications, including reducing the liquid helium consumption of SRMs. However, the cooling efficiency depends greatly on the friction of the displacement pistons, which need to be replaced every few years. This and the rising cost of liquid helium are major headaches in the operation of modern paleomagnetic laboratories. Although the development of efficient pulse-tube cryocoolers has eliminated the need for liquid helium in new superconducting magnetometers, there are still nearly 100 older SRMs around the globe that use liquid helium. In a failed attempt to replace the Gifford-McMahon unit on one of Caltech's SRMs with a pulse-tube, we irreversibly contaminated the cylindrical surfaces of the stainless-steel heat exchanger with a thin film of gallium, a non-toxic metal that has a melting temperature of ~ 30˚C. Liquid gallium will diffuse into other metals, altering their surface properties. We noticed that the next cryocooler-assisted cool down of the SRM went nearly twice as fast as in previous cycles, and the helium boiloff rate for the past 2 years has stabilized at less than half of its average over the past 30 years. It seems that the thin layer of gallium may be reducing the sliding friction of the Gifford-McMahon cryocoolers. We recently tested this on a second SRM, with similar results. We found that the inner cryocooler surface reached its equilibrium temperature in about 1/3 of the time that it took in previous cool-down cycles. WSGI also confirmed that this cool-down was unusually efficient compared to other instruments they have built. Subsequent records of the helium gas boiloff show that this system is also running at about half of its former loss rate. Based on these two results, we tentatively recommend this simple procedure any time cold-head swaps are performed on these cryocoolers.

  10. A 4 K tactical cryocooler using reverse-Brayton machines (United States)

    Zagarola, M.; Cragin, K.; McCormick, J.; Hill, R.


    Superconducting electronics and spectral-spatial holography have the potential to revolutionize digital communications, but must operate at cryogenic temperatures, near 4 K. Liquid helium is undesirable for military missions due to logistics and scarcity, and commercial low temperature cryocoolers are unable to meet size, weight, power, and environmental requirements for many missions. To address this need, Creare is developing a reverse turbo-Brayton cryocooler that provides refrigeration at 4.2 K and rejects heat at 77 K to an upper-stage cryocooler or through boil-off of liquid nitrogen. The cooling system is predicted to reduce size, weight, and input power by at least an order of magnitude as compared to the current state-of-the-art 4.2 K cryocooler. For systems utilizing nitrogen boil-off, the boil-off rate is reasonable. This paper reviews the design of the cryocooler, the key components, and component test results.

  11. Development status of the mechanical cryocoolers for the Soft X-ray Spectrometer on board Astro-H (United States)

    Sato, Yoichi; Sawada, Kenichiro; Shinozaki, Keisuke; Sugita, Hiroyuki; Nishibori, Toshiyuki; Sato, Ryota; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Takei, Yoh; Goto, Ken; Nakagawa, Takao; Fujimoto, Ryuichi; Kikuchi, Kenichi; Murakami, Masahide; Tsunematsu, Shoji; Ootsuka, Kiyomi; Kanao, Kenichi; Narasaki, Katsuhiro


    Astro-H is the Japanese X-ray astronomy satellite to be launched in 2015. The Soft X-ray Spectrometer (SXS) on board Astro-H is a high energy resolution spectrometer utilizing an X-ray micro-calorimeter array, which is operated at 50 mK by the ADR with the 30 liter superfluid liquid helium. The mechanical cryocoolers, 4 K-class Joule Thomson (JT) cooler and 20 K-class double-staged Stirling (2ST) cooler, are key components of the SXS cooling system to extend the lifetime of LHe cryogen beyond 3 years as required. Higher reliability was therefore investigated with higher cooling capability based on the heritage of existing cryocoolers. As the task of assessing further reliability dealt with the pipe-choking phenomena by contaminant solidification of the on-orbit SMILES JT cryocooler, outgassing from materials and component parts used in the cryocoolers was measured quantitatively to verify the suppression of carbon dioxide gas by their storage process and predict the total accumulated carbon dioxide for long-term operation. A continuous running test to verify lifetime using the engineering model (EM) of the 4 K-JT cooler is underway, having operated for a total of 720 days as of June 2013 and showing no remarkable change in cooling performance. During the current development phase, prototype models (PM) of the cryocoolers were installed to the test SXS dewar (EM) to verify the overall cooling performance from room temperature to 50 mK. During the EM dewar test, the requirement to reduce the transmitted vibration from the 2ST cooler compressor was recognized as mitigating the thermal instability of the SXS microcalorimeter at 50 mK.

  12. A Low Input Power Cryocooler for Space Applications Project (United States)

    National Aeronautics and Space Administration — Future NASA missions will require cryocoolers providing cooling capacities upwards of 0.3W at 35K with heat rejection capability to temperature sinks as low as 150K...

  13. A Compact Remote Heat Transfer Device for Space Cryocoolers (United States)

    Yan, T.; Zhao, Y.; Liang, T.

    In this paper a compact remote heat transfer device (CRHD) for cryocoolers is proposed. This device is especially attractive in cases where cryocoolers are not easy to set near the heat source, generally the infrared sensor. The CRHD is designed on basis of the concept of loop heat pipes, while the primary evaporator is located near the cryocooler cold head and a simple tube-in-tube secondary evaporator is remotely located and thermally connected with the heat source for cooling. With such a device a cooling power of 1 W is achieved across a heat transfer distance of about 2 m. The major problem of this device is the low heat transfer efficiency (1 W of net cooling power at the cost of about 7 W of cooling power from the cryocooler), and in the future a secondary wicked evaporator will be used instead of the tube-in-tube evaporator in order to improve the efficiency.

  14. Second Generation Low Cost Cryocooler Electronics (LCCE-2) Project (United States)

    National Aeronautics and Space Administration — The LCCE-2 Program builds off the successes of the USAF "Low Cost Cryocooler Electronics for Space Missions" Program, extending the performance of the developed LCCE...

  15. Highly Effective Thermal Regenerator for Low Temperature Cryocoolers Project (United States)

    National Aeronautics and Space Administration — Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We...

  16. Remote actuated cryocooler for superconducting generator and method of assembling the same

    Energy Technology Data Exchange (ETDEWEB)

    Stautner, Ernst Wolfgang; Haran, Kiruba Sivasubramaniam; Fair, Ruben Jeevanasan


    In one embodiment, a cryocooler assembly for cooling a heat load is provided. The cryocooler assembly includes a vacuum vessel surrounding the heat load and a cryocooler at least partially inserted into the vacuum vessel, the cryocooler including a coldhead. The assembly further includes an actuator coupled to the cryocooler. The actuator is configured to translate the cryocooler coldhead into thermal engagement with the heat load and to maintain constant pressure of the coldhead against the heat load to facilitate maintaining thermal engagement with the heat load as the heat load shrinks during a cool down process.

  17. Miniature Joule-Thomson cryocooling principles and practice

    CERN Document Server

    Maytal, Ben-Zion


    This book is the first in English being entirely dedicated to Miniature Joule-Thomson Cryocooling. The category of Joule-Thomson (JT) cryocoolers takes us back to the roots of cryogenics, in 1895, with figures like Linde and Hampson. The "cold finger" of these cryocoolers is compact, lacks moving parts, and sustains a large heat flux extraction at a steady temperature. Potentially, they cool down unbeatably fast. For example, cooling to below 100 K (minus 173 Celsius) might be accomplished within only a few seconds by liquefying argon. A level of about 120 K can be reached almost instantly with krypton. Indeed, the species of coolant plays a central role dictating the size, the intensity and the level of cryocooling. It is the JT effect that drives these cryocoolers and reflects the deviation of the "real" gas from the ideal gas properties. The nine chapters of the book are arranged in five parts. • The Common Principle of Cyrocoolers shared across the broad variety of cryocooler types • Theoretical Aspec...

  18. An Application of Space-Based Gas Mixtures for Joule-Thompson Cryocoolers (United States)

    Arkhipov, V. T.; Yevdokimova, O. V.; Lobko, M. P.; Yakuba, V. V.

    An extension of deepspace research, specifically, the work done on Alpha program, will inevitably require new and different cryostating systems. The primary differences will be in the areas of cooling power and temperature. One variant which can be used with J-T cryocoolers is the application of diverse gas mixtures which can work over a large temperature range. We have found that the J-T cycle is an efficient application of mixed gas working fluids, being very similar to a vapor-compression cycle utilized in household refrigerants. The simplicity and viability of a J-T design and the associated minimal heat losses compensate for theoretical efficiency ratio of Stirling-type machines. Simultaneously, the J-T machines are never restricted in terms of output power and contain no moving parts in the cold zone resulting in minimal vibration during operation. The effective cooling of these systems allows parallel cooling of multiple objects. Finally in long-life system designs these cryocooler systems are feasibly coupled with phase-transition thermal storage accumulators. The application of such J-T systems is especially efficient under space conditions, due to the fact that there is an option to use at low temperatures a radiation release unit for the outlet of compression heat and for preliminary cooling of the system. This is not possible for terrestrial applications. Particularly, obtaining the -10 to 100 (C temperature range is feasible through the use of low As/(( - coefficient coatings; shade screens; or radiator unit orientations. Computational and experimental research has provided us high efficiency gas-mixture J-T cryocooler results between 60 to 100K cooling temperatures. We have actual space systems which were tested and operated for 80-90 K with efficiencies of 20 to 25 W/W. The authors of this research have studied various gas mixtures as candidates for use with simple J-T single contour J-T systems. We have seen resultant reduction of energy consumption

  19. Outgas analysis of mechanical cryocoolers for long lifetime (United States)

    Sato, Yoichi; Shinozaki, Keisuke; Sawada, Kenichiro; Sugita, Hiroyuki; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Nakagawa, Takao; Tsunematsu, Shoji; Otsuka, Kiyomi; Kanao, Kenichi; Yoshida, Seiji; Narasaki, Katsuhiro


    Mechanical cryocoolers for space applications are required to have high reliability to achieve long-term operation in orbit. ASTRO-H (Hitomi), the 6th Japanese X-ray astronomy mission, has a major scientific instrument onboard-the Soft X-ray Spectrometer (SXS) with several 20K-class two-stage Stirling (2ST) coolers and a 4K-class Joule Thomson (JT) cooler, which must operate for 3 years to ensure the lifetime of liquid helium as a cryogen for cooling of its detectors [1,2]. Other astronomical missions such as SPICA [3,4], LiteBIRD [5], and Athena [6] also have top requirements for these mechanical cryocoolers, including a 1K-class JT cooler to be operated for more than 3-5 years with no cryogen system. The reliability and lifetime of mechanical cryocoolers are generally understood to depend on (1) mechanical wear of the piston seal and valve seal, and (2) He working gas contaminated by impurity outgases, mainly H2O and CO2 released from the materials in the components of the cryocoolers. The second factor could be critical relative to causing blockage in the JT heat exchanger plumbing and the JT orifice or resulting in blockage in the Stirling regenerator and thereby degrading its performance. Thus, reducing the potential for outgassing in the cryocooler design and fabrication process, and predicting the total amount of outgases in the cryocooler are very important to ensure cryocooler lifetime and cooling performance in orbit. This paper investigates the outgas analysis of the 2ST and the 1K/4K-JT coolers for achieving a long lifetime. First, gas analysis was conducted for the materials and components of the mechanical cryocoolers, focusing on non-metallic materials as impurity gas sources. Then gas analysis of the mechanical wear effect of the piston seal materials and linear ball bearings was investigated. Finally, outgassing from a fully assembled cryocooler was measured to evaluate whether the outgas reduction process works properly to meet the requirement

  20. Colouring cryo-cooled crystals: online microspectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    McGeehan, John [EMBL, 6 rue Jules Horowitz, 38042 Grenoble (France); Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY (United Kingdom); Ravelli, Raimond B. G., E-mail: [EMBL, 6 rue Jules Horowitz, 38042 Grenoble (France); Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center (LUMC), PO Box 9600, 2300RC Leiden (Netherlands); Murray, James W. [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Imperial College, Exhibition Road, London SW7 2AZ (United Kingdom); Owen, Robin Leslie [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Cipriani, Florent [EMBL, 6 rue Jules Horowitz, 38042 Grenoble (France); McSweeney, Sean [ESRF, 6 rue Jules Horowitz, 38043 Grenoble (France); Weik, Martin [Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, Jean Pierre EBEL, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1 (France); Garman, Elspeth F., E-mail: [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom)


    A portable and readily aligned online microspectrophotometer that can be easily installed on macromolecular crystallography beamlines is described. It allows measurement of the spectral characteristics of macromolecular crystals prior, during, and after the X-ray diffraction experiment. X-rays can produce a high concentration of radicals within cryo-cooled macromolecular crystals. Some radicals have large extinction coefficients in the visible (VIS) range of the electromagnetic spectrum, and can be observed optically and spectrally. An online microspectrophotometer with high temporal resolution has been constructed that is capable of measuring UV/VIS absorption spectra (200–1100 nm) during X-ray data collection. The typical X-ray-induced blue colour that is characteristic of a wide range of cryo-conditions has been identified as trapped solvated electrons. Disulphide-containing proteins are shown to form disulphide radicals at millimolar concentrations, with absorption maxima around 400 nm. The solvated electrons and the disulphide radicals seem to have a lifetime in the range of seconds up to minutes at 100 K. The temperature dependence of the kinetics of X-ray-induced radical formation is different for the solvated electrons compared with the disulphide radicals. The online microspectrophotometer provides a technique complementary to X-ray diffraction for analysing and characterizing intermediates and redox states of proteins and enzymes.

  1. Size effects on miniature Stirling cycle cryocoolers (United States)

    Yang, Xiaoqin; Chung, J. N.


    Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.

  2. Tactical versus space cryocoolers: a comparision (United States)

    Arts, R.; Mullié, J.; Leenders, H.; de Jonge, G.; Benschop, T.


    In recent years, several space cryocooler developments have been performed in parallel at Thales Cryogenics. On one end of the spectrum are research programmes such as the ESA-funded 30-50 K system developed in cooperation with CEA and Absolut System and the LPT6510 cooler developed in cooperation with Absolut System. On the other end of the spectrum are commercial designs adapted for space applications, such as the LPT9310 commercial coolers delivered for JPL's ECOSTRESS instrument and the LSF9199/30 SADA-compatible cooler delivered for various space programmes at Sofradir. In this paper, an overview is presented of the latest developments regarding these coolers. Initial performance results of the 30-50K cooler are discussed, pending developments for the LPT6510 cooler are presented, and the synergies between COTS and space are reviewed, such as design principles from space coolers being applied to an upgraded variant of the COTS LPT9310, as well as design principles from COTS coolers being applied to the LPT6510 for improved manufacturability.

  3. CFD analysis of a diaphragm free-piston Stirling cryocooler (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan


    This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.

  4. Fatigue stress detection of VIRTIS cryocoolers on board Rosetta (United States)

    Giuppi, Stefano; Politi, Romolo; Capria, Maria Teresa; Piccioni, Giuseppe; De Sanctis, Maria Cristina; Erard, Stéphane; Tosi, Federico; Capaccioni, Fabrizio; Filacchione, Gianrico

    Rosetta is a planetary cornerstone mission of the European Space Agency (ESA). It is devoted to the study of minor bodies of our solar system and it will be the first mission ever to land on a comet (the Jupiter-family comet 67P/Churyumov-Gerasimenko). VIRTIS-M is a sophisticated imaging spectrometer that combines two data channels in one compact instrument, respectively for the visible and the infrared range (0.25-5.0 μm). VIRTIS-H is devoted to infrared spectroscopy (2.5-5.0 μm) with high spectral resolution. Since the satellite will be inside the tail of the comet during one of the most important phases of the mission, it would not be appropriate to use a passive cooling system, due to the high flux of contaminants on the radiator. Therefore the IR sensors are cooled by two Stirling cycle cryocoolers produced by RICOR. Since RICOR operated life tests only on ground, it was decided to conduct an analysis on VIRTIS onboard Rosetta telemetries with the purpose of study possible differences in the cryocooler performancies. The analysis led to the conclusion that cryocoolers, when operating on board, are subject to a fatigue stress not present in the on ground life tests. The telemetries analysis shows a cyclic variation in cryocooler rotor angular velocity when -M or -H or both channel are operating (it has been also noted an influence of -M channel operations in -H cryocooler rotor angular velocity and vice versa) with frequencies mostly linked to operational parameters values. The frequencies have been calculated for each mission observation applying the Fast Fourier Transform (FFT). In order to evaluate possible hedge effects it has been also applied the Hanning window to compare the results. For a more complete evaluation of cryocoolers fatigue stress, for each mission observation the angular acceleration and the angular jerk have been calculated.

  5. Characterization of sorption compressor for mixed refrigerant J-T cryocooler (United States)

    Mehta, Rohitkumar; Bapat, Shridhar; Atrey, Milind


    The requirement of a cryocooler with minimum vibrations for space borne system and highly sophisticated electronic devices for ground application, has led to the development of sorption compressor type J-T cryocooler. The adsorption capacity of any adsorbent material increases with an increase in pressure and decreases with an increase in temperature. In a Sorption compressor, adsorbed gases are desorbed in a confined volume by raising temperature of the sorption bed which results in increase in pressure of gas. A uniform temperature across the sorption bed ensures maximum discharge from the compressor amounting to higher flow rates and longer cycle time on account of reduced residual loading. In addition, it is also very important to determine the adsorption capacity of any material with respect to the gas or gases to be adsorbed as this varies with source of the adsorbent. The present work reports the characterization of a fully operational two-cell sorption compressor developed. The sorption compressor is characterized for discharge pressure variation with cycle time; this is essentially a function of a) the amount of adsorbent, b) the adsorption capacity for respective gas or gases, c) desorption temperature and its uniformity, and d) system dead volume. The present paper analyses these aspects theoretically and the results are compared with the experimental data obtained for individual gases as well as for gas mixtures. The effect of gas distribution on temperature uniformity across the bed and of heater power on high pressure generated is also studied. The paper also discusses the pressure profile obtained for a given amount of adsorbent for different gas or gas mixture. The work, based on the results obtained so far is being further extended for a four cell sorption compressor.

  6. A helium-3/helium-4 dilution cryocooler for operation in zero gravity (United States)

    Hendricks, John B.


    This research effort covered the development of He-3/He-4 dilution cryocooler cycles for use in zero gravity. The dilution cryocooler is currently the method of choice for producing temperatures below 0.3 Kelvin in the laboratory. However, the current dilution cryocooler depends on gravity for their operation, so some modification is required for zero gravity operation. In this effort, we have demonstrated, by analysis, that the zero gravity dilution cryocooler is feasible. We have developed a cycle that uses He-3 circulation, and an alternate cycle that uses superfluid He-4 circulation. The key elements of both cycles were demonstrated experimentally. The development of a true 'zero-gravity' dilution cryocooler is now possible, and should be undertaken in a follow-on effort.

  7. Testing of a Neon Loop Heat Pipe for Large Area Cryocooling (United States)

    Ku, Jentung; Robinson, Franklin Lee


    Cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks is required for future NASA missions. A cryogenic loop heat pipe (CLHP) can provide a closed-loop cooling system for this purpose and has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A neon CLHP was tested extensively in a thermal vacuum chamber using a cryopump as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components. Tests conducted included loop cool-down from the ambient temperature, startup, power cycle, heat removal capability, loop capillary limit and recovery from a dry-out, low power operation, and long duration steady state operation. The neon CLHP demonstrated robust operation. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by applying power to both the pump and evaporator without any pre-conditioning. It could adapt to changes in the pump power andor evaporator power, and reach a new steady state very quickly. The evaporator could remove heat loads between 0.25W and 4W. When the pump capillary limit was exceeded, the loop could resume its normal function by reducing the pump power. Steady state operations were demonstrated for up to 6 hours. The ability of the neon loop to cool large areas was therefore successfully verified.

  8. Development of a hermetically sealed brushless DC motor for a J-T cryocooler (United States)

    Joscelyn, Edwin; Hochler, Irwin; Ferri, Andrew; Rott, Heinz; Soukaris, Ted


    This development was sponsored by Ball Aerospace for the Cryogenic On-Orbit LongLife Active Refrigerator (COOLLAR) program. The cryocooler is designed to cool objects to 65 K and operate in space for at least 7 years. The system also imports minimal impact to the spacecraft in terms of vibration and heat. The basic Joule-Thompson cycle involves compressing a working fluid, nitrogen in this case, at near-constant temperature from 17.2 KPa to 6.89 MPa. The nitrogen is then expanded through a Joule-Thompson valve. The pure nitrogen gas must be kept clean; therefore, any contamination from motor organic materials must be eliminated. This requirement drove the design towards sealing of the motor within a titanium housing without sacrificing motor performance. It is estimated that an unsealed motor would have contributed 1.65 g of contaminants, due to the organic insulation and potting materials, over the 7-year life. This paper describes the motor electrical and mechanical design, as well as the sealing difficulties encountered, along with their solutions.

  9. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)


    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  10. Performance prediction and parametric analysis of two stage stirling cycle cryocooler (United States)

    Natu, P. V.; Narayankhedkar, K. G.

    The lowest temperature that can be achieved inStirling cycle cryocooler is governed by various losses. This paper presents performance prediction of Two Stage Stirling Cryocooler(for 20K as the second stage temperature) by using second order analysis which calculates the ideal refrigerating effect at intermediate and final stage temperatures and the ideal power input. The losses are found out for both the stages to determine the actual refrigerating effects and power input. The results obtained are in good agreement with reported values. The performance of the cryocooler is governed by various operating and geometric parameters. Parametric analysis is carried.

  11. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt


    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency

  12. A Study of the CryoTel® DS 1.5 Cryocooler for Higher Cooling Capacity (United States)

    Kim, Yongsu; Wade, Jimmy; Wilson, Kyle


    The CryoTel® DS 1.5 is a split type Stirling cryocooler which was developed by Sunpower for systems requiring compact size, high efficiency, and high reliability. The DS 1.5 has a nominal lift of 1.5 watts at 77 K with 30 watts of input power. The cooler design includes gas bearings on the pistons and displacer for non-contact operation, and achieves low vibration by using dual-opposed pistons inside the wave generator, and a passive balancer on the cold head to offset the displacer motion. The efficiency of the DS 1.5 is ranked highly compared to other cryocoolers at 14.2% Carnot efficiency, but there are many customers who want more lift with the same size and reliability. Therefore, Sunpower performed a study on the feasibility of maximizing the lift of the DS 1.5 without increasing its size. This paper describes the analysis and test results of increasing the cooler power density by using a higher operating frequency and charge pressure. Prototype testing showed good agreement with the model. Testing performed at various frequencies and charge pressures with a few internal component changes resulted in a maximum lift of 2.1 watts with an input power of 43 watts, achieving 13.9% of Carnot. The prototype high-capacity DS 1.5 achieved 0.6 watts more lift with only a slight decrease in efficiency, and with less than 0.2% cooler mass increase. The impact on the cooldown time on a thermal mass system was tested and the cool-down time was 37% faster while consuming less input energy during that time. Sunpower plans to build more units to gain a broader range of performance data and will then decide whether to proceed with a commercial product.

  13. Cryocooler load increase due to external contamination of low-epsilon cyrogenic surfaces (United States)

    Ross, R. G.


    This paper attempts to compile available flight data on contamination effects experienced during multi-year space missions and ground tests to date as a help to those designing and conducting future long-life missions with cryocoolers.

  14. Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage Project (United States)

    National Aeronautics and Space Administration — Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and...

  15. Miniature Stirling cryocoolers at Thales Cryogenics: qualification results and integration solutions (United States)

    Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; de Jonge, G.; Van Acker, S.; Mullié, J.; Le Bordays, J.; Benschop, T.


    During the 2015 SPIE-DSS conference, Thales Cryogenics presented new miniature cryocoolers for high operating temperatures. In this paper, an update is given regarding the qualification programme performed on these new products. Integration aspects are discussed, including an in-depth examination of the influence of the dewar cold finger on sizing and performance of the cryocooler. The UP8197 will be placed in the reference frame of the Thales product range of high-reliability linear cryocoolers, while the rotary solution will be considered as the most compact solution in the Thales portfolio. Compatibility of the cryocoolers design with new and existing 1/4" dewar designs is examined, and potential future developments are presented.

  16. Development of a 77K Reverse-Brayton Cryocooler with Multiple Coldheads Project (United States)

    National Aeronautics and Space Administration — RTI will design and optimize an 80 W, 77K cryocooler based on the reverse turbo Brayton cycle (RTBC) with four identical coldheads for distributed cooling. Based on...

  17. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.


    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enabling technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given.

  18. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space (United States)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.


    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  19. Microminiature rotary Stirling cryocooler for compact, lightweight, and low-power thermal imaging systems (United States)

    Filis, Avishai; Bar Haim, Zvi; Pundak, Nachman; Broyde, Ramon


    Novel compact and low power consuming cooled infrared thermal imagers as used in gyro-stabilized payloads of miniature unmanned aerial vehicles, Thermal small arms sights and tactical night vision goggles often rely on integral rotary micro-miniature closed cycle Stirling cryogenic engines. Development of EPI Antimonides technology and optimization of MCT technology allowed decreasing in order of magnitudes the level of dark current in infrared detectors thus enabling an increase in the optimal focal plane temperature in excess of 95K while keeping the same radiometric performances as achieved at 77K using regular technologies. Maintaining focal plane temperature in the range of 95K to 110K instead of 77K improves the efficiency of Stirling thermodynamic cycle thus enlarging cooling power and enabling the development of a mini micro cooler similar to RICOR's K562S model which is three times smaller, lighter and more compact than a standard tactical cryocooler like RICOR's K508 model. This cooler also features a new type of ball bearings and internal components which were optimized to fit tight bulk constraints and maintain the required life span, while keeping a low level of vibration and noise signature. Further, the functions of management the brushless DC motor and temperature stabilization are delivered by the newly developed high performance sensorless digital controller. By reducing Dewar Detector thermal losses and increasing the focal plane temperature, longer life time operation is expected as was proved with RICOR's K508 model. Resulting from this development, the RICOR K562S model cryogenic engine consumes 1.2 - 3.0 WDC while operating in the closed loop mode and maintaining the typical focal plane arrays at 200-100K. This makes it compatible with very compact battery packages allowing further reduction of the overall thermal imager weight thus making it comparable with the compatible uncooled infrared thermal imager relying on a microbolometer detector

  20. Performance Testing of a Lightweight, High Efficiency 95 K Cryocooler (United States)

    Salerno, Lou; Kittel, P.; Kashani, A.; Helvensteijn, B. P. M.; Tward, E.; Arnold, Jim A. (Technical Monitor)


    Performance data are presented for a flight-like, lightweight, high efficiency pulse tube cryogenic cooler. The cooler has a mass of less than 4.0 kg, and an efficiency of 12 W/W, which is 18% of Carnot at 95 K, nearly double the efficiency of previous cooler designs, The mass of the cooler has been reduced by approximately a factor of three. The design point cooling power is 10 watts at 95 K at a heat rejection temperature of 300 K. The no-load temperature is 45 K. The compressor is built by Hymatic Engineering, UK, and is of a horizontally opposed piston design using flexure bearings. The vertical pulse tube is built by TRW with the heat exchanger or cold block located approximately mid-way along the tube. The final assembly and integration is also performed by TRW. The inertance tube and dead volume are contained within one of the compressor end caps. The cooler was developed by TRW under a joint NASA-DOD program, and has a goal of 10 yr operating lifetime. Potential NASA applications will focus on using coolers of this type in Zero boil off (ZBO) cryogen storage topologies for next generation launch vehicles. Zero boil off systems will feature significant reductions in tank size and Initial Mass to Low Earth Orbit (IMLEO), thereby significantly reducing the cost of access to space, and enabling future missions. The coolers can be used directly in liquid oxygen (LOx) or liquid methane ZBO systems, as shield coolers in liquid hydrogen tanks, or as first stage coolers in two-stage liquid hydrogen (LH2) ZBO cooler systems. Finally, the coolers could find applications in exploration missions where either propellants or breathable oxygen are extracted from the planetary atmosphere using a Sabatier or similar process. The gases could then be liquefied for storage either directly in return vehicle propellant tanks or on the planetary surface. Data presented were taken with the cooler operating in a vacuum of 10 (exp -5) torr, at controlled rejection temperatures from

  1. SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard


    Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough into National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.

  2. RICOR Cryocoolers for HOT IR detectors from development to optimization for industrialized production (United States)

    Levin, Eli; Katz, Amiram; Bar Haim, Zvi; Nachman, Ilan; Riabzev, Sergey; Gover, Dan; Segal, Victor; Filis, Avishai


    The modern needs of the electro-optical market for small low-power and light-weight IR systems are impelling research and development of High Operating Temperature (HOT) IR detectors, requiring development of dedicated "HOT" cryocoolers. The development of cryocoolers with emphasis on the "SWAP3" configuration means small size, low weight, improved performance, low power consumption and low price, in order to optimize IDDCA for future hand held thermal sights. This paper will present the development and the progress made with the new "HOT" cryocooler, including customer data after the evaluation process, performances achieved using a common cold finger, test results update on a large series of production coolers, life and qualification test update and acoustic noise reduction. All the above mentioned information relates to the FPA temperature range of 130 - 200K for various cryocooler models based on rotary and linear design concepts. The paper will also review the progress with the latest development activities implemented in the cryocoolers and the electronic control modules in order to improve reliability and minimize regulated power consumption.

  3. High frequency pressure oscillator for microcryocoolers


    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt


    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at ...

  4. Cryocooler for cryopump use. Cryopump yo goku teion reitoki

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, K.; Nishiba, T.; Nomura, K.; Murayama, S.; Yamaguchi, Y. (Sanyo Electric Co. Ltd., Osaka (Japan))


    A cryocooler for cryopump using the G-M (Gifford-McMahon) cycle was developed. A cryopump is a type of vacuum pump which evacuates a gas by means of coagulating gaseous molecules on a cryogenic surface. The suction and exhaust valves adopted are of a unique double spool type to improve the performance and reliability of the freezer. Its features include a simple construction, easy maintenance, high reliability, and no staggered timing in the suction and exhaust at the valve seats. A PIA-based resin was selected for the valve material, which is slidable without lubrication in the working He gas, and excellent in wear resistance. The He compressor generates a large amount of heat because of its compression heat, raising temperatures at various parts. Oil was injected into the compressor cylinders to suppress the temperature rise and an He gas leakage. A long life and high reliability were realized through concurrent use of an oil injection system for internal cooling, lubrication and gas sealing, with an oil circulation system. 5 refs., 18 figs., 1 tab.

  5. Operating characteristics of a single-stage Stirling cryocooler capable of providing 700 W cooling power at 77 K (United States)

    Xu, Ya; Sun, Daming; Qiao, Xin; Yu, Yan S. W.; Zhang, Ning; Zhang, Jie; Cai, Yachao


    High cooling capacity Stirling cryocooler generally has hundreds to thousands watts of cooling power at liquid nitrogen temperature. It is promising in boil-off gas (BOG) recondensation and high temperature superconducting (HTS) applications. A high cooling capacity Stirling cryocooler driven by a crank-rod mechanism was developed and studied systematically. The pressure and frequency characteristics of the cryocooler, the heat rejection from the ambient heat exchanger, and the cooling performance are studied under different charging pressure. Energy conversion and distribution in the cryocooler are analyzed theoretically. With an electric input power of 10.9 kW and a rotating speed of 1450 r/min of the motor, a cooling power of 700 W at 77 K and a relative Carnot efficiency of 18.2% of the cryocooler have been achieved in the present study, and the corresponding pressure ratio in the compression space reaches 2.46.

  6. New application of plate-fin heat exchanger with regenerative cryocoolers (United States)

    Chang, Ho-Myung; Gwak, Kyung Hyun


    A design idea is newly proposed and investigated for the application of plate-fin heat exchanger (PFHX) with regenerative cryocoolers. The role of this heat exchanger is to effectively absorb heat from the stream of coolant and deliver it to the cold-head of a cryocooler. While various types of tubular HX's have been developed so far, a small PFHX could be more useful for this purpose by taking advantage of compactness and design flexibility. In order to confirm the feasibility and effectiveness, a prototype of aluminum-brazed PFHX is designed, fabricated, and tested with a single-stage GM cryocooler in experiments for subcooling liquid nitrogen from 78 K to 65-70 K. The results show that the PFHX is 30-50% more effective in cooling rate than the tubular HX's. Several potential applications of PFHX are presented and discussed with specific design concepts.

  7. A 1 T, 0.33 m bore superconducting magnet operating with cryocoolers at 12 K

    NARCIS (Netherlands)

    van der Laan, M.T.G.; van der Laan, M.T.G.; Tax, R.B.; ten Kate, Herman H.J.; van de Klundert, L.J.M.


    The application of small cryocoolers to cooling a superconducting magnet at 12 K has important advantages, especially for small and medium-size magnets. Simple construction and a helium-free magnet system were obtained. The demonstration magnet developed is a six-coil system with a volume of 75 L

  8. Optimization of loading ratio of ErN as regenerator of 4K-GM cryocooler (United States)

    Nakagawa, T.; Miyauchi, T.; Shiraishi, T.; Seino, S.; Yamamoto, T. A.; Fujimoto, Y.; Masuyama, S.


    High purity erbium nitride (ErN) spheres with the size range of 150-180 µm and 180-212 µm were prepared by nitriding Er metal spheres with low oxygen content. The initial regenerator material of HoCu2 on the cold end of the second regenerator column in 4K-GM cryocooler with nominal cooling power of 0.1 W at 4.2 K was replaced by ErN with different sizes. Higher cooling power was obtained when ErN of smaller size with lower oxygen content was used. We investigated the effect of partial replacement of HoCu2 by ErN in the cold end side of second stage regenerator column on cooling power of 4K-GM cryocoolers. When ErN were substituted for 20 % of HoCu2, the cooling power at 4.2 K reached 0.318 W. This value was 1.36 times as high as that of the cooling power of the GM cryocooler with commercially available regenerator arrangement. Therefore, use of ErN regenerator materials leads to the energy-saving and downsizing of 4K-GM cryocoolers.

  9. Performance estimation of an oil-free linear compressor unit for a new compact 2K Gifford-McMahon cryocooler (United States)

    Hiratsuka, Y.; Bao, Q.; Y Xu, M.


    Since 2012, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed and reported by Sumitomo Heavy Industries, Ltd. (SHI). Also, it was reported that National Institute of Information and Communications Technology (NICT) developed a multi-channel, conduction-cooled SSPD system. However, the size and power consumption reduction becomes indispensable to apply such a system to the optical communication of AdHoc for a mobile system installed in a vehicle. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design cooling capacity targets of the first and the second stages 1 W at 60 K and 20 mW at 2.3 K respectively. In 2016, Hiratsuka et al. reported that an oil-free compressor was developed for a 2K GM cryocooler. The cooling performance of a 2K GM expander driven by an experimental unit of the linear compressor was measured. No-load temperature less than 2.1 K and the cooling capacity of 20 mW at 2.3 K were successfully achieved with an electric input power of only 1.1 kW. After that, the compressor capsule and the heat exchanger, etc. were assembled into one enclosure as a compressor unit. The total volume of the compressor unit and electrical box was significantly reduced to about 38 L, which was close to the target of 35 L. Also, the sound noise, vibration characteristics, the effect of the compressor unit inclination and the ambient temperature on the cooling performance, were evaluated. The detailed experimental results are discussed in this paper.

  10. Effect of operating frequency and phase angle on performance of Alpha Stirling cryocooler driven by a novel compact mechanism (United States)

    Sant, K. D.; Bapat, S. L.


    Amongst the mechanical cryocoolers in use, Stirling cycle cryocoolers exhibit the desirable features such as high efficiency, low specific power consumption, small size and mass and large mean time before failure. Stirling cycle cryocooler of Alpha configuration exhibits better theoretical performance as compared to Gamma. However, the theory could not be put into practice due to unavailability of compatible drive mechanism for Alpha cryocooler providing large stroke to diameter ratio. The concept of novel compact drive mechanism can be made functional to operate miniature Alpha Stirling cryocoolers. It allows the use of multicylinder system while converting rotary motion to reciprocating. This permits the drive mechanism to be employed for driving different configurations of Stirling cryocooler simultaneously. This drive is capable of providing large stroke to diameter ratio compared to other drive mechanisms generally in use for the purpose. A stroke to diameter ratio of three is chosen in the present work and the drive dimensions are calculated for four piston-cylinder arrangements with 90° phase difference between adjacent arrangements providing two Alpha Stirling cryocoolers working simultaneously. It has to be noted that the coolers operate at half the frequency of the motor used. As the two coolers operate at phase difference of 180°, during compression stroke of one unit, the suction stroke occurs for the other unit. Due to power output of second unit, the combined peak torque requirement falls by 26.81% below the peak torque needed when one unit is operated separately. This allows for use of a comparatively lower torque motor. The practicability of the drive ensuring smooth operation of the system is decided based on comparison between torque availability from the motor and torque requirement of the complete unit. The second order method of cyclic (or thermodynamic) analysis provides a simple computational procedure useful for the design of Stirling

  11. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering


    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  12. Performance analysis of a miniature Joule-Thomson cryocooler with and without the distributed J-T effect (United States)

    Damle, Rashmin; Atrey, Milind


    Cryogenic temperatures are obtained with Joule-Thomson (J-T) cryocoolers in an easier way as compared to other cooling techniques. Miniature J-T cryocoolers are often employed for cooling of infrared sensors, cryoprobes, biological samples, etc. A typical miniature J-T cryocooler consists of a storage reservoir/compressor providing the high pressure gas, a finned tube recuperative heat exchanger, an expansion valve/orifice, and the cold end. The recuperative heat exchanger is indispensable for attaining cryogenic temperatures. The geometrical parameters and the operating conditions of the heat exchanger drastically affect the cryocooler performance in terms of cool down time and cooling effect. In the literature, the numerical models for the finned recuperative heat exchanger have neglected the distributed J-T effect. The distributed J-T effect accounts for the changes in enthalpy of the fluid due to changes of pressure in addition to those due to changes of temperature. The objective of this work is to explore the distributed J-T effect and study the performance of a miniature J-T cryocooler with and without the distributed J-T effect. A one dimensional transient model is employed for the numerical analysis of the cryocooler. Cases with different operating conditions are worked out with argon and nitrogen as working fluids.

  13. Proceedings of the International Cryocooler Conference (7th) Held in Santa Fe, New Mexico on 17-19 November 1992. Part 2, (United States)


    CRYOCOOLER TESTBED ....B. G. Johnson, D. B. Eisenhaure, F. J. Flynn, M. S. Gaffney, ....R. L. Hockney , D. L. Johnson, and R. G. Ross, Jr...PERFORMANCES ....M. David , J. Marechal, and Y. Simon ................................ 1078 CRYOCOOLER TIP MOTION SUPPRESSION USING ACTIVE CONTROL OF...Kotsubo & G.W. Swift in Proceedings of the Sixth International Cryocoolers Conference, edited by Geoffrey Green and Margaret Knox ( David Taylor

  14. Vibrational Diver (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef


    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  15. New oxide magnetic material for sub-4K cryocoolers; Sankabutsu jiseitai no chikureizai eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T.; Sato, A.; Wada, H. [National Research Inst. of Metals, Tokyo (Japan). Tsukuba Magnet Lab.; Arai, O. [Tokyo Inst. of Tech., Tokyo (Japan)


    Aiming at improvement of refrigerating performance below 4 K, magnetic cryocoolers with large heat capacity in this region were examined. Noticing comparatively weak and simple magnetic interaction of oxide magnetic materials, possible substances which have large volume specific heat below 4 K were searched, and found perovskite system rare earth magnetic material GdAlO{sub 3}. Though GdAlO{sub 3} polycrystal shows {lambda} type ferromagnetic transition directly below 4 K, magnetic entropy of Gd is sufficiently maintained, and Gd has a large specific heat peak in 3 {approx} 4 K. Comparing with practical magnetic cryocooler HoCu{sub 2}, this GdAlO{sub 3} was found to have over 3.5 times specific heat. (NEDO)

  16. Development of 1 L hr-1 scale hydrogen liquefier using Gifford-McMahon (GM) cryocooler (United States)

    Baik, J. H.; Karng, S. W.; Garceau, N.; Jang, Y. H.; Lim, C. M.; Kim, S. Y.; Oh, I. H.


    Korea Institute of Science and Technology (KIST) and Florida Solar Energy Center (FSEC) have collaborated to develop a demonstration-scale hydrogen liquefier for future liquid hydrogen research in Korea. A 1 L hr-1 liquefaction rate, direct-cooling type hydrogen liquefier using a commercially available GM cryocooler has been designed, fabricated, and tested at KIST. The liquefier consists of a GM cryocooler, finned heat pipe, liquid nitrogen precooler, ortho-para hydrogen converter, and vacuum jacketed internal storage tank. The system successfully demonstrated more than 1 L hr-1 of hydrogen liquefaction rate from ambient temperature gas. A detailed design method, loss analysis, overview of component fabrication, and experimental results are discussed in this paper.

  17. Cool-down acceleration of G-M cryocoolers with thermal oscillations passively damped by helium (United States)

    Webber, R. J.; Delmas, J.


    4 K Gifford-McMahon cryocoolers suffer from inherent temperature oscillations which can be a problem for certain attached electronic instrumentation. Sumitomo Heavy Industries has exploited the high volumetric specific heat of super-critical He to quell these oscillations (approx. 10 dB) by strongly thermally linking a separate vessel of He to the second stage; no significant thermal resistance is added between the payload and the working gas of the cryocooler. A noticeable effect of the helium damper is to increase the cool-down time of the second stage below 10 K. For the operation of niobium-based superconducting electronics (NbSCE), a common practice is to warm the circuits above the critical temperature (∼9 K) and then cool to the operating point in order to redistribute trapped magnetic fluxons, so for NbSCE users, the time to cool from 10 K is important. The gas in the helium damper is shared between a room-temperature buffer tank and the 2nd stage vessel, which are connected by a capillary tube. We show that the total cool-down time below 10 K can be substantially reduced by introducing a combination of thermal linkages between the cryocooler and the capillary tube and in-line relief valves, which control the He mass distribution between the warm canister and cold vessel. The time to reach operating temperature from the superconducting transition has been reduced to <25% of the time needed without these low-cost modifications.

  18. Mars Propellant Liquefaction and Storage Performance Modeling using Thermal Desktop with an Integrated Cryocooler Model (United States)

    Desai, Pooja; Hauser, Dan; Sutherlin, Steven


    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.

  19. Experimental study of a mixed refrigerant Joule-Thomson cryocooler using a commercial air-conditioning scroll compressor (United States)

    Lee, Jisung; Lee, Kyungsoo; Jeong, Sangkwon


    Mixed refrigerant Joule-Thomson (MR J-T) cryocoolers have been used to create cryogenic temperatures and are simple, efficient, cheap, and durable. However, compressors for MR J-T cryocoolers still require optimization. As the MR J-T cryocooler uses a commercial scroll compressor developed for air-conditioning systems, compressor overheating due to the use of less optimized refrigerants may not be negligible, and could cause compressor malfunction due to burn-out of scroll tip seals. Therefore, in the present study, the authors propose procedures to optimize compressor operation to avoid the overheating issue when the MR J-T cryocooler is used with a commercial oil lubricated scroll compressor, and the present experimental results obtained for a MR J-T cryocooler. A single stage 1.49 kW (2 HP) scroll compressor designed for R22 utilizing a mixture of nitrogen and hydrocarbons was used in the present study. As was expected, compressor overheating and irreversible high temperatures at a compressor discharge port were found at the beginning of compressor operation, which is critical, and hence, the authors used a water injection cooling system for the compressor to alleviate temperature overshooting. In addition, a portion of refrigerant in the high-pressure stream was by-passed into the compressor suction port. This allowed an adequate compression ratio, prevented excessive temperature increases at the compressor discharge, and eventually enabled the MR J-T cryocooler to operate stably at 121 K. The study shows that commercial oil lubricated scroll compressors can be used for MR J-T cryocooling systems if care is exercised to avoid compressor overheating.

  20. Vibrating minds

    CERN Document Server


    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  1. Modelling Micro-Vibrations By Finite Element Model Approach (United States)

    Soula, Laurent; Laduree, Gregory


    With payloads requiring more and more severe environment stability and spacecrafts becoming more and more sensitive to internal mechanical disturbances, micro-vibrations are a key contributor to the performance of new missions. To help predict such behaviour by analyses and verify it by testing, a “METhodology for Analysis of structure-borne MICro- vibrations” is being defined in the frame of the above- named ESA R&D study (METAMIC). This methodology is soon to be validated by a full-test campaign. Meanwhile, this paper proposes a description of the current processes using the Finite Element Models, which start from the perturbation source. Based on ASTRIUM experience, a classification of disturbance sources is proposed. Three different types are selected to illustrate the modelling and the micro- vibrations characterization performed by tests: momentum wheels, cryo-coolers, and stepper motor mechanisms. The perturbation is then to be implemented into system modelling in order to predict its propagation and effect on overall performance. The main assumptions made on structure modelling have to be identified as well as the level of coupling with the disturbance sources has to be anticipated. Most of the questions a project should ask to deal with micro- vibrations are tackled, with the objective to identify all uncertainties, limitations, and validity domains for micro-vibrations prediction.

  2. Design and Development of a Novel Knudsen Compressor as a Part of a Joule-Thomson Cryocooler (United States)

    Muthuvijayan, Indra; Antelius, Mikael; Björneklett, Are; Nilsson, Peter; Thorslund, Robert


    This paper presents the design and development of a novel Knudsen compressor, with no moving parts, as a part of a Joule-Thomson cryocooler. The compressor works by using the Knudsen diffusion principle and includes a combination of graphene-based layers and Knudsen membranes in a particular fashion to pressurize the fluid. The Knudsen membrane for this application was selected by testing several commercially available materials. Prototypes of single stage and a multistage compressors are presented together with experimental evaluations. Insights on a Tube-in-Tube heat exchanger, as another part a the Joule-Thomson cryocooler, intended to integrate with the Knudsen compressor, are also presented.

  3. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen


      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  4. Performance studies of Cryocooler based cryosorption pumps with indigenous activated carbons for fusion applications (United States)

    Kasthurirengan, S.; Vivek, G. A.; Verma, Ravi; Behera, Upendra; Udgata, Swarup; Gangradey, Ranjana


    Cryosorption pumps are the only solution for pumping helium and hydrogen in fusion systems, due to their high pumping speeds and suitability in harsh environments. Their development requires the right Activated Carbons (ACs) and suitable adhesives to bind them to metallic panels with liquid helium (LHe) flow channels. However, their performance evaluation will require large quantities of LHe. Alternatively, these pumps can be built with small size panels adhered with ACs and cooled by a cryocooler. The paper describes the development of a cryopump using a commercial cryocooler (Sumitomo RDK415D), with 1.5W@4.2 K, integrated with small size AC panel mounted on 2nd stage, with the 1st stage acting as radiation shield. Under no load, the cryopump reaches the ultimate pressure of 2.1E-7 mbar. The pump is built using panels with different indigenously developed ACs such as granules, pellets, ACF-FK2 and activated carbon of knitted IPR cloth. We present the experimental results of pumping speeds for gases such as nitrogen, argon and helium using the procedures outlined by American Vacuum Society (AVS). These studies will enable to arrive at the right ACs and adhesives for the development of large scale cryosorption pumps with liquid helium flow.

  5. Validation of accelerated ageing of Thales rotary Stirling cryocoolers for the estimation of MTTF (United States)

    Seguineau, C.,; Cauquil, J.-M.; Martin, J.-Y.; Benschop, T.


    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The current market needs tend to reliability figures higher than 15,000hrs in "standard conditions". Field returns are hardly useable mostly because of the uncertain environmental conditions of use, or the differences in user profiles. A previous paper explains how Thales Cryogenics has developed an approach based on accelerated ageing and statistical analysis [1]. The aim of the current paper is to compare results obtained on accelerated ageing on one side, and on the other side, specific field returns where the conditions of use are well known. The comparison between prediction and effective failure rate is discussed. Moreover, a specific focus is done on how some new applications of cryocoolers (continuous operation at a specific temperature) can increase the MTTF. Some assumptions are also exposed on how the failure modes, effects and criticality analysis evolves for continuous operation at a specific temperature and compared to experimental data.

  6. Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application (United States)

    Bhojwani, Virendra; Inamdar, Asif; Lele, Mandar; Tendolkar, Mandar; Atrey, Milind; Bapat, Shridhar; Narayankhedkar, Kisan


    A two-stage Stirling Cryocooler has been developed and tested for cooling IR sensors in space application. The concept uses an opposed piston linear compressor to drive the two-stage Stirling expander. The configuration used a moving coil linear motor for the compressor as well as for the expander unit. Electrical phase difference of 80 degrees was maintained between the voltage waveforms supplied to the compressor motor and expander motor. The piston and displacer surface were coated with Rulon an anti-friction material to ensure oil less operation of the unit. The present article discusses analysis results, features of the cryocooler and experimental tests conducted on the developed unit. The two-stages of Cryo-cylinder and the expander units were manufactured from a single piece to ensure precise alignment between the two-stages. Flexure bearings were used to suspend the piston and displacer about its mean position. The objective of the work was to develop a two-stage Stirling cryocooler with 2 W at 120 K and 0.5 W at 60 K cooling capacity for the two-stages and input power of less than 120 W. The Cryocooler achieved a minimum temperature of 40.7 K at stage 2.

  7. Adaptive filtering and feed-forward control for suppression of vibration and jitter (United States)

    Anderson, Eric H.; Blankinship, Ross L.; Fowler, Leslie P.; Glaese, Roger M.; Janzen, Paul C.


    This paper describes the use of adaptive filtering to control vibration and optical jitter. Adaptive filtering is a class of signal processing techniques developed over the last several decades and applied since to applications ranging from communications to image processing. Basic concepts in adaptive filtering and feedforward control are reviewed. A series of examples in vibration, motion and jitter control, including cryocoolers, ground-based active optics systems, flight motion simulators, wind turbines and airborne optical beam control systems, illustrates the effectiveness of the adaptive methods. These applications make use of information and signals that originate from system disturbances and minimize the correlations between disturbance information and error and performance measures. The examples incorporate a variety of disturbance types including periodic, multi-tonal, broadband stationary and non-stationary. Control effectiveness with slowly-varying narrowband disturbances originating from cryocoolers can be extraordinary, reaching 60 dB of reduction or rejection. In other cases, performance improvements are only 30-50%, but such reductions effectively complement feedback servo performance in many applications.

  8. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A


    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  9. Proceedings of the International Cryocooler Conference (7th) Held in Santa Fe, New Mexico on 17-19 November 1992, Part 1 (United States)


    Typical, small Stirling cryocoolers pumping heat between 80 and 300 K achieve < 7% of Camot efficiency at the power input terminals to the typical...efficiency no better than 9.2% of Camot for 80 to 300 K heat pumping can typically be achieved. This results from the fact that cryocooler losses...K for cooling loads up to 10 W. Cycle efficiency approaches 10 per cent of Camot . Initial testing of a brassboard system demonstrated that

  10. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC

    Energy Technology Data Exchange (ETDEWEB)

    Vernik, Igor V; Kirichenko, Dmitri E; Dotsenko, Vladimir V; Miller, Robert; Webber, Robert J; Shevchenko, Pavel; Talalaevskii, Andrei; Gupta, Deepnarayan; Mukhanov, Oleg A [HYPRES, Inc., 175 Clearbrook Road, Elmsford, NY 10523 (United States)


    We have demonstrated a digital receiver performing direct digitization of radio-frequency signals over a wide frequency range from kilohertz to gigahertz. The complete system, consisting of a cryopackaged superconductor all-digital receiver (ADR) chip followed by room-temperature interface electronics and a field programmable gate array (FPGA) based post-processing module, has been developed. The ADR chip comprises a low-pass analog-to-digital converter (ADC) delta modulator with phase modulation-demodulation architecture together with digital in-phase and quadrature mixer and a pair of digital decimation filters. The chip is fabricated using a 4.5 kA cm{sup -2} process and is cryopackaged using a commercial-off-the-shelf cryocooler. Experimental results in HF, VHF, UHF and L bands and their analysis, proving consistent operation of the cryopackaged ADR chip up to 24.32 GHz clock frequency, are presented and discussed.

  11. Cryo-Cooled Sapphire Oscillator for the Cassini Ka-Band Experiment (United States)

    Wang, Rabi T.; Dick, G. John


    We present features for an ultra-stable sapphire cryogenic oscillator which has been designed to support the Cassini Ka-band Radio Science experiment. The design of this standard is new in several respects. It is cooled by a commercial cryocooler instead of liquid cryogens to increase operating time, and it uses a technology to adjust the temperature turn-over point to extend the upper operating temperature limit and to enable construction of multiple units with uniform operating characteristics. Objectives are 3 x 10(exp -15) stability for measuring times 1 second less than or equal to (tau) less than or equal to 100 seconds, phase noise of -85 dBc/Hz from offset frequencies of 1 Hz to 1000 Hz at 10 GHz carrier frequency, and a one year continuous operating period.

  12. Working Fluid State Properties Measurements in Medium and High Frequency Cryocoolers (United States)

    Roberts, Thomas P.; Desai, Prateen V.


    The measurement of the internal thermodynamic states in operational cryocoolers has been an experimental challenge of long standing. An experimental data acquisition system is described which uses high frequency pressure and hot wire anemometry transducers to measure the pressure, temperature, and mass flow within a working Stirling cycle refrigerator operating in the 20 to 60 hertz frequency range. Problems with establishing refrigerator hermeticity and instrumentation calibrations are discussed and the solutions which were used are detailed. A subset of the empirical data obtained by the experimental effort is shown in order to demonstrate how working fluid equations of state can be used to describe refrigeration component performance and estimate how components contribute to overall system characteristics.

  13. Analysis of resonant frequency of moving magnet linear compressor of stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ming; Chen, Xiaoping [Kunming Institute of Physics, Kunming 650223 (China)


    This paper analyzes resonant frequency of the moving magnet linear compressor of Stirling cryocooler. The CFD (Computational Fluid Dynamics) and FEM (Finite Element Method) are used for the analysis of resonant frequency with FLUENT 6.2 and ANSYS 11.0 and an experiment is designed for testing the resonant frequency of moving magnet linear compressor. Results from simulations and experiments showed that the resonant frequency of the moving magnet linear compressors is affected by the machine spring, the gas spring, the magnet spring, and the mass of moving assembly, while the resonant frequency of the moving coil linear compressors is only affected by the machine spring, the gas spring, and the mass of moving assembly. (author)

  14. Three-stage linear, split-Stirling cryocooler for 1 to 2K magnetic cold stage (United States)

    Longsworth, R. C.


    A long-life, linear, high efficiency 8K split Stirling cycle cryocooler was designed, built, and tested. The refrigerator is designed for cooling a 50 mW, 1.5K magnetic cold stage. Dual opposed piston compressors are driven by moving-coil linear motors. The three stage expander, although not completed, is also driven by a linear motor and is designed to produce 1 SW at 60K, 4W at 16K, and 1.2W at 8K. The cold regenerator employs a parallel gap construction for high efficiency. The key technology areas addressed include warm and cold flexible suspension bearings and a new cold regenerator geometry for high efficiency at 8K.

  15. Performance evaluation of heat exchanger for mixed refrigerant J-T cryocooler (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.


    In mixed refrigerant Joule-Thomson cryocooler, a multi-component mixture of nitrogen-hydrocarbons undergoes evaporation and condensation process in a helical coiled heat exchanger simultaneously at different pressures. Experimental data and empirical correlations for predicting heat transfer coefficients of evaporating and condensing streams of multi-component mixtures at cryogenic temperatures are unavailable. As a result, design of these heat exchangers is a challenging task. The present work aims to address this challenge. It assesses the existing condensation correlations against the calculated data obtained during experimentation. Experiments are conducted to determine overall heat transfer coefficients along the length of the heat exchanger for various mixtures. The paper studies the applicability of these correlations to the multi-component mixtures at cryogenic temperatures.

  16. Experimental study of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler (United States)

    Zhang, Cun-quan; Zhong, Cheng


    A concept for a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor has recently been described, along with a theoretical model for simulating its operation and performance (Zhang, in preparation, 2003). This paper describes experiments that have been carried out to systematically validate the model, and to characterize the performance of the cryocooler in several key areas. These include: oscillatory flow within the cooler, correlation between the compression piston and the free displacer, the impact of the cold-tip temperature and phase-adjusting clearance gaps on cooler performance. The minimum cold-tip temperature is used as primary gauge of refrigeration performance. Real-time measurements of gas pressures in different chambers, displacements of the compression piston and the free displacer have been performed to reveal the internal physical processes. The experimental results are found to be in good agreement with the simulated ones.

  17. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler (United States)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng


    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  18. Development of a rotary union for Gifford-McMahon cryocoolers utilized in a 10 MW offshore superconducting wind turbine (United States)

    Sun, Jiuce; Sanz, Santiago; León, Andrés; Fraser, Jim; Neumann, Holger


    Superconducting generators (SCG) show the potential to reduce the head mass of large offshore wind turbines. By evaluating the availability and required cooling capacity in the temperatures range around 20 K, a Gifford-McMahon (GM) cryocooler among all the candidates was selected. The cold head of GM cryocooler is supposed to rotate together with the rotating superconducting coil. However, the scroll compressor of the GM cryocooler must stay stationary due to lubricating oil. As a consequence, a rotary helium union (RHU) utilizing Ferrofluidic® sealing technology was successfully developed to transfer helium gas between the rotating cold head and stationary helium compressor at ambient temperatures. It contains a high-pressure and low-pressure helium path with multiple ports, respectively. Besides the helium line, slip rings with optical fiber channels are also integrated into this RHU to transfer current and measurement signals. With promising preliminary test results, the RHU will be installed in a demonstrator of SCG and further performance investigation will be performed.

  19. Tunable Passive Vibration Suppressor (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)


    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  20. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  1. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong


    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  2. Experimental study of one-stage VM cryocooler operating below 8 K (United States)

    Pan, Changzhao; Zhang, Tong; Zhou, Yuan; Wang, Junjie


    The Vuilleumier (VM) refrigerator, known as heat driven refrigerator, is one kind of closed-cycle Stirling type regenerative refrigerator. The VM refrigerator with power being supplied by liquid nitrogen was proposed by Hogen and developed by Zhou, which shows great potential for development below 10 K. This paper describes the experimental development of a VM cryocooler operating below 8 K, which was achieved by using liquid nitrogen as a heat sink of middle cavity. The regenerator was optimized by using a part of metallic magnetic regenerator material Er3Ni to replace the lead sphere and a no-load temperature of 7.8 K was obtained. Then all the lead spheres were replaced by Er0.6Pr0.4 material and a no-load temperature of 7.35 K was obtained, which is the lowest temperature for this kind of refrigerator reported so far. The cooling power at 10 K is about 500 mW with a pressure ratio near 1.6 and a charge pressure of 1.8 MPa. Especially, the magnetic material Er0.6Pr0.4 was found to be a potential substitution for the conventional lead.

  3. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers (United States)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Fernández, Joaquín


    Optical cryocoolers made of luminescent solids are very promising for many applications in the fields of optical telecommunications, aerospace industry, bioimaging, and phototherapy. To the present day, researchers have employed a number of crystal and glass host materials doped with rare-earth ions (Yb3+, Tm3+, and Er3+) to yield anti-Stokes optical refrigeration. In these host materials, the attainable minimum temperature is limited by the average phonon energy of the lattice and the impurity concentration. However, recently Ruan and Kaviany have theoretically demonstrated that the cooling efficiency can be dramatically enhanced when the host material doped with rare-earth ions is ground into a powder made of sub-micron size grains. This is due to two facts: firstly, the phonon spectrum is modified due to finite size of the grains and, secondly, light localization effects increase the photon density, leading to an enhanced absorptivity. In the present work, we propose that using a photonic crystal doped with rare earth ions offers many advantages with regards to getting a larger cooling efficiency at room temperature when compared to standard bulk materials or nano-powders. Indeed, apart to analogous phenomena to the ones predicted in nano-crystalline powders, there is the possibility of directly controlling the spontaneous emission rate of the ions embedded in the structure and, also, the absorption rate in the Stokes side of the absorption band by adequately tuning the density of photonic states, thus obtaining a large improvement in the cooling efficiency.

  4. Study on Deformation of Miniature Metal Bellows in Cryocooler Following Temperature Change of Internal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ha [LIGNex1 Co. Ltd., Gumi (Korea, Republic of); Lee, Tae Won [Kumoh National Institute of Technology, Gumi (Korea, Republic of)


    A bellows is an important temperature control component in a Joule-Thomson micro-cryocooler. It is designed using a very thin shell, and the inside of the bellows is filled with nitrogen gas. The bellows is made of a nickel-cobalt alloy that maintains its strength and elastic properties in a wide range of temperatures from cryogenic to 300℃. The pressure of the gas and the volume within the bellows vary according to the temperature of the gas. As a result, the bellows contracts or expands in the axial direction like a spring. To explore this phenomenon, the deformation of the bellows and its internal volume must be calculated iteratively under a modified pressure until the state equation of the gas is satisfied at a given temperature. In this paper, the modified Benedict-Webb-Rubin state equation is adopted to describe the temperature-volume-pressure relations of the gas. Experiments were performed to validate the proposed method. The results of a numerical analysis and the experiments showed good agreement.


    Directory of Open Access Journals (Sweden)



    Full Text Available A parametric study has been carried out using the software REGEN 3.3 to optimize the regenerator of a miniature Stirling cryocooler operating with a warm end temperature of 300 K and cold end temperature of 80 K. Regenerator designs which produce the maximum coefficient of performance (COP of the system is considered as an optimized regenerator. The length and diameter of the regenerator were fixed from the cooler system requirements. Single mesh regenerators made of 200, 250, 300, 400 and 450 Stainless Steel wire meshes were considered and the optimum phase angle and mesh size were obtained. A maximum COP of 0.1475 was obtained for 300 mesh regenerator at 70° phase angle. Then multi mesh regenerators were considered with finer mesh on the cold end and coarser mesh on the hot end. The optimum size and length of each mesh in the multi mesh regenerator and the optimum phase angle were calculated. The maximum COP of 0.156 was obtained for 200 300-400 multi mesh regenerator at 70° phase angle. The COP and net refrigeration obtained for an optimized multi mesh regenerator was found to be significantly higher than that of a single mesh regenerator. Thus a multi mesh regenerator design with a proper combination of regenerator mesh size and length can enhance the regenerator effectiveness.

  6. How to manage MTTF larger than 30,000hr on rotary cryocoolers (United States)

    Cauquil, Jean-Marc; Seguineau, Cédric; Martin, Jean-Yves; Van-Acker, Sébastien; Benschop, Tonny


    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. Indeed, Stirling coolers are mechanical systems where wear occurs on millimetric mechanisms. The exponential law classically used in electronics for Mean Time to Failure (MTTF) calculation cannot be directly used for mechanical devices. With new applications for thermal sensor like border surveillance, an increasing reliability has become mandatory for rotary cooler. The current needs are above several tens of thousands of continuous hour of cooling. Thales Cryogenics made specific development on that topic, for both linear and rotary applications. The time needed for validating changes in processes through suited experimental design is hardly affordable by following a robust and rigorous standard scientific approach. The targeted Mean Time to Failure (MTTF) led us to adopt an innovative approach to keep development phases in line with expected time to market. This innovative approach is today widespread on all of Thales Cryogenics rotary products and results in a proven increase of MTTF for RM2, RM3 and recently RM1. This paper will then focused on the current MTTF figures measured on RM1, RM2 and RM3. After explaining the limit of a conventional approach, the paper will then describe the current method. At last, the authors will explain how these principles are taken into account for the new SWaP rotary cooler of Thales Cryogénie SAS.

  7. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford


    Full Text Available We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200  μm, for two final bunch charges: 10^{5} electrons (16 fC and 10^{6} electrons (160 fC. Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of L_{c,x}/σ_{x}=0.27  nm/μm was obtained for a final bunch charge of 10^{5} electrons and final bunch length of σ_{t}≈100  fs. For a final charge of 10^{6} electrons the cryogun produces L_{c,x}/σ_{x}≈0.1  nm/μm for σ_{t}≈100–200  fs and σ_{x}≥50  μm. These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  8. Model Indepedent Vibration Control


    Yuan, Jing


    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  9. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  10. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  11. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus


    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  12. Gearbox vibration diagnostic analyzer (United States)


    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  13. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian


    Everything engineers need to know about mechanical vibration and one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  14. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick


    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  15. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  16. Vibration Analysis and the Accelerometer (United States)

    Hammer, Paul


    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  17. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  18. Experimental studies on twin PTCs driven by dual piston head linear compressor (United States)

    Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.


    An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.

  19. Performance of cryocoolers in a High Temperature Superconducting ECR ion source (HTS-ECR) and its application for the High Current Injector Programme at IUAC, New Delhi (United States)

    Rodrigues, G.; Mathur, Y.; Rao, U. K.; Lakshmy, P. S.; Mandal, A.; Roy, A.; Kanjilal, D.


    At the Inter University Accelerator Centre, a high current injector programme (HCI) is being developed as an alternate injector to the superconducting linear accelerator (SC-LINAC). For this purpose, a high temperature superconducting ECR ion source, PKDELIS, based on Gifford McMahon cryocoolers was designed, installed and commissioned in the Low Energy Beam Transport section of the high current injector. The ion source will inject multiply charged ions having A/q ∼ 6 for further acceleration into the downstream RFQ and DTL accelerators before final injection into the superconducting linear accelerator. The details of the design, and experimental results of the ion source together with performance of the cryocoolers are presented in this paper.

  20. Vibrational spectroscopy of resveratrol (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő


    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  1. Bumblebee vibration activated foraging


    Su, Dan Kuan-Nien


    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  2. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard


    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  3. Vibrations and waves

    CERN Document Server

    Kaliski, S


    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  4. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E


    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  5. Composite Struts Would Damp Vibrations (United States)

    Dolgin, Benjamin P.


    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  6. Ship Vibration Design Guide (United States)


    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  7. Compact Vibration Damper (United States)

    Ivanco, Thomas G. (Inventor)


    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  8. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  9. Blade Vibration Measurement System (United States)

    Platt, Michael J.


    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  10. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.


    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  11. Proceedings of the Sixth International Cryocoolers Conference Held in Plymouth, Massachusetts on 25-26 October 1990 Volume 1 (United States)


    resistance in the cryostat. VIBRATION CHARACTERISTICS Vibration characteristics at the 4 K cooling stage were measured by a laser Doppler vibrometer ...generated when electrical current-carrying or capacitively -coupled components undergo relative motions. Although no formally agreed upon requirements exist

  12. An Active Broad Area Cooling Model of a Cryogenic Propellant Tank with a Single Stage Reverse Turbo-Brayton Cycle Cryocooler (United States)

    Guzik, Monica C.; Tomsik, Thomas M.


    As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full

  13. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)


    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  14. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin


    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  15. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.


    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  16. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony


    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  17. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu


    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  18. Design And Tests Of A Superconducting Magnet With A Cryocooler For The Ion Source Decris-sc

    CERN Document Server

    Datskov, V I; Bekhterev, V V; Bogomolov, S L; Bondarenko, P G; Dmitriev, S N; Drobin, V M; Efremov, A A; Iakovlev, B I; Leporis, M; Malinowski, H; Nikiforov, S A; Paschenko, S V; Seleznev, V V; Shishov, Yu A; Tsvineva, G P; Yazvitsky, N Yu


    A superconducting magnet system (SMS) for the multicharged ion source DECRIS-SC was designed and manufactured at the Joint Institute for Nuclear Research. Successful tests of the SMS were conducted in late 2003 - early 2004. The peculiarities of this system are stipulated by using of a cryocooler 1 W in power for the cryostabilization of the magnet, and also by a special configuration of the magnetic field demanded for the source of ions. Four coils ensure induction of a magnetic field on the axes of the source of up to 3T (the mirror ratio of ~6) which considerably extends possibilities of the ion source from the point of view of producing intense highly charged ion beams. The problem of compensating large forces of interaction between the coils and surrounding iron yoke in this magnet has been successfully solved, and a reliable suspension of the magnet in a cryostat realized. For compounding of the windings working in vacuum at indirect cryostabilization prepreg is used. There has been applied a new techno...


    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich


    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  20. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith


    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  1. Cooling the dark energy camera instrument

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.L.; Cease, H.; /Fermilab; DePoy, D.; /Ohio State U.; Diehl, H.T.; Estrada, J.; Flaugher, B.; /Fermilab; Kuhlmann, S.; /Ohio State U.; Onal, Birce; Stefanik, A.; /Fermilab


    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been used when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.

  2. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)


    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  3. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.


    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  4. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  5. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E


    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  6. Vibrational Sensing in Marine Invertebrates (United States)


    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  7. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  8. The origins of vibration theory (United States)

    Dimarogonas, A. D.


    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  9. Vibration response of misaligned rotors (United States)

    Patel, Tejas H.; Darpe, Ashish K.


    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  10. Tissue vibration in prolonged running. (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M


    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C


    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  12. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.


    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  13. 14 CFR 33.63 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  14. 14 CFR 33.83 - Vibration test. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  15. 14 CFR 33.33 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  16. 14 CFR 33.43 - Vibration test. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  17. 49 CFR 178.819 - Vibration test. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  18. Rectangular Parallelepiped Vibration in Plane Strain State


    Hanckowiak, Jerzy


    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  19. Vibrational Damping of Composite Materials


    Biggerstaff, Janet M.


    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  20. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  1. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes


    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  2. Smart accelerometer. [vibration damage detection (United States)

    Bozeman, Richard J., Jr. (Inventor)


    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  3. Improved Predictions for Geotechnical Vibrations


    Macijauskas, Darius


    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  4. Stress analysis of vibrating pipelines (United States)

    Zachwieja, Janusz


    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  5. Vibrational modes of nanolines (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.


    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  6. Evaluation of hand-arm vibration reducing effect of anti-vibration glove


    樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎


    Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...

  7. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

    CERN Document Server

    Zhang, W J; Li, H; Huang, J; Lv, C L; Zhang, L; Liu, X Y; Wu, J J; Wang, Z; Xie, X M


    The fast development of superconducting nanowire single photon detector (SNSPD) in the past decade has enabled many advances in quantum information technology. The best system detection efficiency (SDE) record at 1550 nm wavelength was 93% obtained from SNSPD made of amorphous WSi which usually operated at sub-kelvin temperatures. We first demonstrate SNSPD made of polycrystalline NbN with SDE of 90.2% for 1550 nm wavelength at 2.1K, accessible with a compact cryocooler. The SDE saturated to 92.1% when the temperature was lowered to 1.8K. The results lighten the practical and high performance SNSPD to quantum information and other high-end applications.

  8. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru


    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  9. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L


    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  12. Stroboscopic shearography for vibration analysis (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank


    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  13. Vibrational Collapse of Hexapod Packings (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Zheng, Hu; Dierichs, Karola; Menges, Achim; Behringer, Robert


    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from non-convex grains can be stable without external support. In the current experiments, we investigate the effect of vibration on destroying such columns. The change of column height during vertical vibration, can be well characterized by stretched exponential relaxation when the column is short, which is in agreement with previous work, while a faster collapse happens when the column is tall. We investigate the collapse after the fast process including its dependence on column geometry, and on interparticle and basal friction.

  14. Innovative Techniques Simplify Vibration Analysis (United States)


    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  15. Active current-noise cancellation for Scanning Tunneling Microscopy (United States)

    Pabbi, Lavish; Shoop, Conner; Banerjee, Riju; Dusch, Bill; Hudson, E. W.

    The high sensitivity of the scanning tunneling microscope (STM) poses a barrier to its use in a noisy environment. Vibrational noise, whether structural or acoustic in source, manifests as relative motion between the probe tip and the sample, then appearing in the Z feedback that tries to cancel it. Here we describe an active noise cancellation process that nullifies this motion by adding a drive signal into the existing Z feedback loop. The drive is digitally calculated by actively monitoring vibrations measured by an accelerometer placed in-situ close to the STM head. By transferring the vibration cancellation effort to this drive signal, vibration-created noise in the Z-feedback (during topography) or current (during spectroscopy) is significantly reduced. This inexpensive and easy solution, requiring no major instrumental modifications, is ideal for those looking to place their STM in a noisier environment, for example in the presence of active refrigeration systems (e.g. pulse tube cryocoolers) or coupled to high-vibration instrumentation. This material is based upon work supported by the National Science Foundation under Grant No. 1229138.

  16. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.


    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  17. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker


    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  18. Low-energy isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.


    The low-lying isovector quadrupole vibrations are described by an extension of the vibrational model allowing independent proton and neutron vibrations coupled by the symmetry energy. The recently detected low-lying isovector states in nearly spherical nuclei with N=84 are described well concerning their energies and E2/M1 mixing ratios. (orig.).

  19. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN


    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  20. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar


    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  1. 33 CFR 159.103 - Vibration test. (United States)


    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  2. 14 CFR 27.907 - Engine vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of the...

  3. 14 CFR 29.251 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  4. 14 CFR 29.907 - Engine vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...

  5. 14 CFR 27.251 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  6. 49 CFR 178.608 - Vibration standard. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...

  7. 49 CFR 178.985 - Vibration test. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  8. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.


    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  9. Vibrations in a moving flexible robot arm (United States)

    Wang, P. K. C.; Wei, Jin-Duo


    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  10. Vibration Theory, Vol. 1A

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present collection of solved problems has been published as a supplement to the textbook Svingningsteori. Bind 1. Lineær svingningsteori,Aalborg tekniske Universitetsforlag, 1991, whicj is used in the introductory course on linear vibration theory that is being given on th e8th semester...

  11. Vibration Damping Circuit Card Assembly (United States)

    Hunt, Ronald Allen (Inventor)


    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  12. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain


    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...

  13. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O


    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  14. Effect of shelf aging on vibration transmissibility of anti-vibration gloves. (United States)

    Shibata, Nobuyuki


    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  15. The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration. (United States)

    Huang, Yu; Griffin, Michael J


    The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.

  16. Transient vibration of wind turbine blades (United States)

    Li, Yuanzhe; Li, Minghai; Jiang, Feng


    This article aims to the transient vibration of wind turbine blades. We firstly introduce transient vibration and previous studies in this area. The report then shows the fundamental equations and derivation of Euler Equation. A 3-D beam are created to compare the analytical and numerical result. In addition we operate the existing result and Patran result of a truncation wedge beam, especially the frequencies of free vibration and transient vibration. Transient vibration cannot be vanished but in some case it can be reduced.

  17. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling. (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W


    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  18. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis


    for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value......There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...

  19. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin


    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  20. Vibrational damping of composite materials (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  1. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.


    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  2. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M


    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  3. Vibrational coupling in plasmonic molecules. (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan


    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  4. A night with good vibrations

    CERN Multimedia


    Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva

  5. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker


    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  6. Package security recorder of vibration (United States)

    Wang, Xiao-na; Hu, Jin-liang; Song, Shi-de


    This paper introduces a new kind of electronic product — Package Security Recorder of Vibration. It utilizes STC89C54RD+ LQFP-44 MCU as its main controller. At the same time, it also utilizes Freescale MMA845A 3-Axis 8-bit/12-bit Digital Accelerometer and Maxim DS1302 Trickle Charge Timekeeping Chip. It utilizes the MCU to read the value of the accelerometer and the value of the timekeeping chip, and records the data into the inner E2PROM of MCU. The whole device achieves measuring, reading and recording the time of the vibration and the intensity of the vibration. When we need the data, we can read them out. The data can be used in analyzing the condition of the cargo when it transported. The device can be applied to monitor the security of package. It solves the problem of responsibility affirming, when the valuable cargo are damaged while it transported. It offers powerful safeguard for the package. It's very value for application.

  7. Actively controlled vibration welding system and method (United States)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An


    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  8. Coupled rotor/airframe vibration analysis (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.


    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  9. High force vibration testing with wide frequency range (United States)

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn


    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  10. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing


    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun


    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  11. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)


    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  12. Analysis of potential helicopter vibration reduction concepts (United States)

    Landgrebe, A. J.; Davis, M. W.


    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  13. Vibration fatigue using modal decomposition (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha


    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  14. Nonlinear vibration absorption for a flexible arm via a virtual vibration absorber (United States)

    Bian, Yushu; Gao, Zhihui


    A semi-active vibration absorption method is put forward to attenuate nonlinear vibration of a flexible arm based on the internal resonance. To maintain the 2:1 internal resonance condition and the desirable damping characteristic, a virtual vibration absorber is suggested. It is mathematically equivalent to a vibration absorber but its frequency and damping coefficients can be readily adjusted by simple control algorithms, thereby replacing those hard-to-implement mechanical designs. Through theoretical analyses and numerical simulations, it is proven that the internal resonance can be successfully established for the flexible arm, and the vibrational energy of flexible arm can be transferred to and dissipated by the virtual vibration absorber. Finally, experimental results are presented to validate the theoretical predictions. Since the proposed method absorbs rather than suppresses vibrational energy of the primary system, it is more convenient to reduce strong vibration than conventional active vibration suppression methods based on smart material actuators with limited energy output. Furthermore, since it aims to establish an internal vibrational energy transfer channel from the primary system to the vibration absorber rather than directly respond to external excitations, it is especially applicable for attenuating nonlinear vibration excited by unpredictable excitations.

  15. Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...

    Indian Academy of Sciences (India)

    operator which conveniently describes stretching vibrations of biomolecules. For a copper tetramesityl porphyrin molecule, the higher excited vibrational levels are calculated by applying the U(2) algebraic approach. Keywords. Lie algebraic techniques; vibrational spectra; copper tetramesityl porphyrin. PACS Nos 31.65.

  16. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton


    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  17. Introduction to vibrations and waves

    CERN Document Server

    Pain, H John


    Based on the successful multi-edition book "The Physics ofVibrations and Waves" by John Pain, the authors carry overthe simplicity and logic of the approach taken in the originalfirst edition with its focus on the patterns underlying andconnecting so many aspects of physical behavior, whilst bringingthe subject up-to-date so it is relevant to teaching in the21st century.The transmission of energy by wave propagation is a key conceptthat has applications in almost every branch of physics withtransmitting mediums essentially acting as a continuum of coupledoscillators. The characterization of t

  18. Vibration diagnostics instrumentation for ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, A.


    The future e{sup -}e{sup +} 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)

  19. Monothiodibenzoylmethane: Structural and vibrational assignments

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen


    The vibrational structure of the title compound (1,3-diphenyl-3-thioxopropane-1-one, TDBM) was studied by a variety of experimental and theoretical methods. The stable ground state configuration of TDBM was investigated by IR absorption measurements in different media, by LD polarization spectros...... to an “open”, non-chelated enethiol form (t-TCC), thereby supporting the previous conclusions by Posokhov et al. No obvious indications of the contribution of other forms to the observed spectra could be found....

  20. Vibrational Locomotion Enabling Subsurface Exploration of Unconsolidated Regolith Project (United States)

    National Aeronautics and Space Administration — The idea of vibrational locomotion is based on vibrational-fluidization in ISRU reactor systems, which has proven very effective for regolith mixing. The vibrating...


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the testing of the rebuilt laboratory prototype and its conversion into a version that will be operable in the drilling tests at TerraTek Laboratories. In addition, formations for use in these tests were designed and constructed, and a test protocol was developed. The change in scope and no-cost extension of Phase II to January, 2006, described in our last report, were approved. The tests are scheduled to be run during the week of January 23, and should be completed before the end of the month.

  2. Chaotic vibrations of heated plates (United States)

    Fermen-Coker, Muge


    In recent years, the investigation of dynamical behavior of plates under thermal loads has become important due to the high temperatures reached on external skin panels of hypersonic vehicles. It has been shown by other researchers that the skin panels may encounter chaotic vibrations about their thermally buckled positions. In this research, the chaotic vibrations of simply supported plates under thermal and sinusoidal excitation is studied in order to predict the vibratory behavior of a representative class of such skin panels. A method for the development of equations of motion, that forms a foundation for further investigation of the response of elastic panels under general thermal, mechanical and aerodynamic loading and various boundary conditions, is presented and discussed. The boundaries of regular and chaotic regions of motion are defined and the sensitivity of these boundaries to changes in design parameters is explored for the purpose of developing useful design criteria. The onset of chaos is predicted through the computation of Lyapunov exponents. The sensitivity of Lyapunov exponent calculations to the choice of numerical method of integration, numerical precision and the magnitude of coefficients as functions of design variables, is discussed. The effects of thermal moment, thermal buckling, amplitude and frequency of excitation, damping, thickness and length to width ratio of panels on the onset of chaos is studied. The results of the research are presented as a contribution to the panel design of hypersonic vehicles.

  3. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)


    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  4. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    We wish to report the occurrence of vibrational resonance in certain discrete systems like sine square map and sine circle map, in a unique fashion, comprising of multiple resonant peaks which pave the way for enrichment. As the systems of our choice are capable of exhibiting vibrational resonance behaviour unlike the ...

  5. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    system [10], bistable systems [1,11,12], time-delayed system [13] and also in a few low- dimensional maps [14] due to its ... the driving force, has attracted much attention in recent years. The study of vibrational ... odic trigonometric functions, one can expect the recurrence of multiple resonant peaks due to vibrational ...

  6. Modified Composite Struts Would Damp Vibrations (United States)

    Chen, Gun-Shing; Dolgin, Benjamin P.


    Composite-material (fiber/matrix laminate) struts damping longitudinal vibrations fabricated more easily in proposed new design. Prior design described in "Composite Struts Would Damp Vibrations" (NPO-17914). New design similar except pattern of fibers includes rounded bends (instead of sharp bends) in fibers.

  7. Torsional vibrations of infinite composite poroelastic cylinders

    African Journals Online (AJOL)


    Abstract. A study of torsional vibrations of an infinite composite poroelastic circular solid cylinder made of two different materials is made. The frequency equation of such torsional vibrations is obtained following analytical model based on Biot's theory of wave propagation in liquid saturated porous media. Each dilatation of ...

  8. Benefits of Spacecraft Level Vibration Testing (United States)

    Gordon, Scott; Kern, Dennis L.


    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  9. The analysis of nonstationary vibration data (United States)

    Piersol, Allan G.


    The general methodology for the analysis of arbitrary nonstationary random data is reviewed. A specific parametric model, called the product model, that has applications to space vehicle launch vibration data analysis is discussed. Illustrations are given using the nonstationary launch vibration data measured on the Space Shuttle orbiter vehicle.

  10. Quenching of self-excited vibrations

    NARCIS (Netherlands)

    Verhulst, F.


    Stable normal-mode vibrations in engineering can be undesirable and one of the possibilities for quenching these is by embedding the oscillator in an autoparametric system by coupling to a damped oscillator. There exists the possibility of destabilizing the undesirable vibrations by a suitable


    Directory of Open Access Journals (Sweden)

    Murat Aydın


    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  12. Vibrational Stability of NLC Linac Accelerating Structure

    CERN Document Server

    Le Pimpec, F; Bowden, G B; Doyle, E; McKee, B; Seryi, Andrei; Redaelli, S; Adiga, S


    The vibration of components of the NLC linac, such as accelerating structures and girders, is being studied both experimentally and analytically. Various effects are being considered including structural resonances and vibration caused by cooling water in the accelerating structure. This paper reports the status of ongoing work.

  13. Communication: creation of molecular vibrational motions via the rotation-vibration coupling

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm


    whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds......Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational...... motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length...

  14. Modeling Displacement Measurement using Vibration Transducers

    Directory of Open Access Journals (Sweden)

    AGOSTON Katalin


    Full Text Available This paper presents some aspects regarding to small displacement measurement using vibration transducers. Mechanical faults, usages, slackness’s, cause different noises and vibrations with different amplitude and frequency against the normal sound and movement of the equipment. The vibration transducers, accelerometers and microphone are used for noise and/or sound and vibration detection with fault detection purpose. The output signal of the vibration transducers or accelerometers is an acceleration signal and can be converted to either velocity or displacement, depending on the preferred measurement parameter. Displacement characteristics are used to indicate when the machine condition has changed. There are many problems using accelerometers to measure position or displacement. It is important to determine displacement over time. To determinate the movement from acceleration a double integration is needed. A transfer function and Simulink model was determinate for accelerometers with capacitive sensing element. Using these models the displacement was reproduced by low frequency input.

  15. Passively damped vibration welding system and method (United States)

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao


    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  16. High Energy Vibration for Gas Piping (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang


    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  17. The application of interference fits for overcoming limitations in clamping methodologies for cryo-cooling first crystal configurations in x-ray monochromators (United States)

    Stimson, J.; Docker, P.; Ward, M.; Kay, J.; Chapon, L.; Diaz-Moreno, S.


    The work detailed here describes how a novel approach has been applied to overcome the challenging task of cryo-cooling the first monochromator crystals of many of the world’s synchrotrons’ more challenging beam lines. The beam line configuration investigated in this work requires the crystal to diffract 15 Watts of 4-34 keV X-ray wavelength and dissipate the additional 485 watts of redundant X-ray power without significant deformation of the crystal surface. In this case the beam foot print is 25 mm by 25 mm on a crystal surface measuring 38 mm by 25 mm and maintain a radius of curvature of more than 50 km. Currently the crystal is clamped between two copper heat exchangers which have LN2 flowing through them. There are two conditions that must be met simultaneously in this scenario: the crystal needs to be clamped strongly enough to prevent the thermal deformation developing whilst being loose enough not to mechanically deform the diffracting surface. An additional source of error also occurs as the configuration is assembled by hand, leading to human error in the assembly procedure. This new approach explores making the first crystal cylindrical with a sleeve heat exchanger. By manufacturing the copper sleeve to be slightly larger than the silicon crystal at room temperature the sleeve can be slid over the silicon and when cooled will form an interference fit. This has the additional advantage that the crystal and its heat exchanger become a single entity and will always perform the same way each time it is used, eliminating error due to assembly. Various fits have been explored to investigate the associated crystal surface deformations under such a regime

  18. Probing Ir-Induced Isomerization of a Model Pentapeptide in a Cryo-Cooled Ion Trap Using Ir-Uv Double Resonance (United States)

    Harrilal, Christopher P.; DeBlase, Andrew F.; Fischer, Joshua L.; Lawler, John T.; McLuckey, Scott A.; Zwier, Timothy S.


    In the past decade, infrared and ultraviolet spectroscopy in cryo-cooled ion traps have become workhorse techniques to characterize the gas-phase 3D structures of biological ions. Often, multiple conformers of a single molecular ion are observed. While slow collisional cooling should result in funneling of many structures into a single minimum, recent studies show evidence for the kinetic trapping of entropically-favored structures near room temperature when these species are cooled to about 10K. In order to elucidate how the initial population fractionates during the cooling process, we use a variety of conformer specific IR-UV double resonance techniques to measure population distributions of the peptide ion [YGPAA+H]^{+} in the gas phase at 10K. Previous studies conducted in our lab show the YGPAA peptide adopts two spectroscopically distinct conformers which differ principally in the cis/trans configuration of the carboxylic acid group at the C-terminus. By using IR-UV hole filing spectroscopy (HFS) and population transfer spectroscopy (PTS) we demonstrate the ability to selectively excite and interconvert between conformations and to quantitatively measure the distribution of conformer populations within the ion trap. Experimentally, we find a 65:35 ratio for the trans:cis conformer population. These conformers are connected through a single calculated transition state, allowing intramolecular isomerization rates and equilibrium population distributions to be calculated by Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The relationship between the observed population ratio and the temperature-dependent equilibrium constant will be discussed.

  19. Carbon Nanotube Tape Vibrating Gyroscope (United States)

    Tucker, Dennis Stephen (Inventor)


    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  1. Super-multiplex vibrational imaging (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei


    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  2. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan


    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  3. Simulation studies for multichannel active vibration control (United States)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.


    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  4. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis


    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  5. Low cost subpixel method for vibration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)


    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  6. Reducing Transmitted Vibration Using Delayed Hysteretic Suspension

    Directory of Open Access Journals (Sweden)

    Lahcen Mokni


    Full Text Available Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.

  7. Review of magnetostrictive vibration energy harvesters (United States)

    Deng, Zhangxian; Dapino, Marcelo J.


    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  8. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.


    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  9. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely


    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  10. 14 CFR 23.251 - Vibration and buffeting. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...

  11. Whole-body vibration dosage alters leg blood flow

    NARCIS (Netherlands)

    Lythgo, Noel; Eser, Prisca; de Groot, Patricia; Galea, Mary

    The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used

  12. 14 CFR 25.251 - Vibration and buffeting. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 25.251 Section 25... Vibration and buffeting. (a) The airplane must be demonstrated in flight to be free from any vibration and... airplane must be demonstrated in flight to be free from excessive vibration under any appropriate speed and...

  13. Vibration improved the fluidity of aluminum alloys in thin wall ...

    African Journals Online (AJOL)


    The effect of vibration is quantified and incorporated into the fluidity model, such that the velocity with and without vibration can be considered in the fluidity model. High pouring temperature aluminum alloy in thin wall investment casting, fluidity characteristic is improved by application of vibration. Keywords: Vibration ...

  14. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S. (Sedco forex, Montrouge (France)); Malone, D. (Anadrill, Sugar Land, TX (United States)); Sheppard, M. (Schlumberger Cambridge Research, Cambridge (United Kingdom))


    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  15. A novel vibration sensor based on phase grating interferometry (United States)

    Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei


    Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.

  16. Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten saccadic reaction time. (United States)

    Fujiwara, Katsuo; Kunita, Kenji; Furune, Naoe; Maeda, Kaoru; Asai, Hitoshi; Tomita, Hidehito


    Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten the saccadic reaction time was examined. Subjects were 14 healthy young adults. Visual targets (LEDs) were located 10 degrees left and right of a central point. The targets were alternately lit for random durations of 2-4 seconds in a resting neck condition and various vibration conditions, and saccadic reaction times were measured. Vibration amplitude was 0.5 mm in every condition. The upper trapezius muscles were vibrated at 40, 60, 80, and 100 Hz in a sub-maximum stretch condition in which the muscles were stretched at 70% of maximum stretch. In addition, the muscles were vibrated at 60 Hz with the muscles maximally stretched, with 70% vertical pressure without stretching, and with vibration applied to the skin in the same area as the muscle vibration. At 60, 80, and 100 Hz at 70% maximum stretch, saccadic reaction time shortened significantly compared with the resting neck condition. However, no significant difference in the reaction time was observed among the frequencies. The saccadic reaction times in the maximum stretch condition, muscle pressure condition, and skin contact condition did not differ significantly from that in the resting neck condition. Vibration stimulation to the trapezius with 60-100 Hz frequencies at 0.5 mm amplitude in the sub-maximum stretch condition was effective for shortening saccadic reaction time. The main mechanism appears to be Ia information originating from the muscle spindle.

  17. Vibrational Excitation Can Control Tropospheric Chemistry

    National Research Council Canada - National Science Library

    Geoffrey Tyndall


    .... However, on page 1066 of this issue, Glowacki et al. show that a strikingly different product distribution can be obtained in the oxidation of acetylene depending on whether the radicals contain high amounts of internal (vibrational...

  18. Theory of Arched Structures Strength, Stability, Vibration

    CERN Document Server

    Karnovsky, Igor A


    Theory of Arched Structures: Strength, Stability, Vibration presents detailed procedures for analytical analysis of the strength, stability, and vibration of arched structures of different types, using exact analytical methods of classical structural analysis. The material discussed is divided into four parts. Part I covers stress and strain with a particular emphasis on analysis; Part II discusses stability and gives an in-depth analysis of elastic stability of arches and the role that matrix methods play in the stability of the arches; Part III presents a comprehensive tutorial on dynamics and free vibration of arches, and forced vibration of arches; and Part IV offers a section on special topics which contains a unique discussion of plastic analysis of arches and the optimal design of arches.

  19. Piezoelectric energy harvesting from broadband random vibrations (United States)

    Adhikari, S.; Friswell, M. I.; Inman, D. J.


    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

  20. Vibrational and electronic spectroscopic studies of melatonin (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.


    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  1. Vibration reduces thermal pain in adjacent dermatomes. (United States)

    Yarnitsky, D; Kunin, M; Brik, R; Sprecher, E


    Spatial summation of thermal pain crosses dermatomal boundaries. In this study we examined whether a vibrational stimulus applied to adjacent or remote dermatomes affects thermal pain perception to the volar forearm. Contact heat at 2 degrees C above thermal pain threshold was applied, and a Visual Analog Scale (VAS) was used for pain assessment. We found a significant decrease in mean VAS rating when simultaneous vibratory stimuli were given to the dermatome adjacent to that receiving thermal stimulation, or to the same dermatome on the contralateral side. There was no change in VAS rating when vibration was given two or more dermatomes away. Vibration within the same dermatome also did not yield a significant change in VAS rating, possibly due to difficulty in magnitude assessment of stimuli given simultaneously within a single dermatome. The finding that vibration can reduce pain across dermatomes may allow for more flexible design of stimulation therapy for pain.

  2. Chronic subdural hematomas caused by vibrating Chinese ...

    African Journals Online (AJOL)

    Abstract. We present two middle aged Nigerian patients who developed significant chronic subdural hematomas weeks after going on vibrating Chinese massage chairs. This complication of using the chairs has not been previously reported.

  3. Rheumatic effects of vibration at work (United States)

    Palmer, Keith T; Bovenzi, Massimo


    Occupational exposures to vibration come in many guises and are very common at a population level. It follows that an important minority of working-aged patients seen by medical services will have been exposed to this hazard of employment. Vibration can cause human health effects which may manifest in the patients that rheumatologists see. In this chapter we identify the health effects of relevance to them, and review their epidemiology, pathophysiology, clinical presentation, differential diagnosis, and vocational and clinical management. On either side of this, we describe the nature and assessment of the hazard, the scale and common patterns of exposure to vibration in the community, and the legal basis for controlling health risks, and comment on the role of health surveillance in detecting early adverse effects and what can be done to prevent the rheumatic effects of vibration at work. PMID:26612239

  4. Cable Vibration due to Ice Accretions

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos; Larsen, Allan

    On March 29, 2001, the Great Belt East Bridge exhibited large-amplitude hanger vibrations having elliptical orbits for wind speeds of between 16 – 18m/s. Vibrational amplitudes were in the order of 2m in the across-wind direction and 0.6m in the along-wind. In this poster, a preliminary...... investigation behind the causes of this relatively isolated hanger vibration event on the Great Belt East Bridge is presented. Furthermore a stability criterion for a 3DOF bluff body is proposed. One of the main assumptions of the investigation is that icy conditions may have contributed in some way to large...... to a form of “drag instability”. From the visual observations of the vibrations it is assumed that the aerodynamic moment coefficient is zero...

  5. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... the intramolecular dynamics during photodissociation is investigated. The apparent agreement with quantum mechanical calculations is shown to be in contrast to the applicability of the individual approximations used in deriving the model from a quantum mechanical treatment. In the spirit of the Bersohn-Zewail model...

  6. International Conference on Acoustics and Vibration

    CERN Document Server

    Chaari, Fakher; Walha, Lasaad; Abdennadher, Moez; Abbes, Mohamed; Haddar, Mohamed


    The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theori...

  7. Ground vibrations emanating from construction equipment. (United States)


    The recent trend in highway construction within New Hampshire has been toward reconstruction and rehabilitation projects in congested urban areas. This has resulted in a greater concern for vibrations generated by non-blasting construction activities...

  8. Tunable Mechanical Filter for Longitudinal Vibrations

    National Research Council Canada - National Science Library

    Asiri, S


    This paper presents both theoretically and experimentally a new kind of vibration isolator called tunable mechanical filter which consists of four parallel hybrid periodic rods connected between two plates...

  9. Vibration assisted femtosecond laser machining on metal (United States)

    Park, Jung-Kyu; Yoon, Ji-Wook; Cho, Sung-Hak


    We demonstrate a novel approach to improve laser machining quality on metals by vibrating the optical objective lens with a frequency (of 500 Hz) and various displacements (0-16.5 μm) during a femtosecond laser machining process. The laser used in this experiment is an amplified Ti:sapphire fs laser system that generates 100 fs pulses having an energy of 3.5 mJ/pulse with a 5 kHz repetition rate at a central wavelength of 790 nm. It is found that both the wall surface finish of the machined structures and the aspect ratio obtained using the frequency vibration assisted laser machining are improved, compared to those derived via laser machining without vibration assistance. This is the first report of low frequency vibration of an optical objective lens in the femtosecond laser machining process being exploited to obtain significantly improved surface roughness of machined side walls and increased aspect ratios.

  10. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir


     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  11. Vibration mode shape control by prestressing (United States)

    Holnicki-Szulc, Jan; Haftka, Raphael T.


    A procedure is described for reducing vibration at sensitive locations on a structure, by induced distortions. The emphasis is placed on the excitation in a narrow frequency band, so that only a small number of vibration modes contribute to the intensity of the forced response. The procedure is demonstrated on an antenna truss example, showing that, with repeated frequencies, it is very easy to move nodal lines of one of the modes.

  12. Actual behaviour of a ball vibration absorber

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš


    Roč. 90, č. 8 (2002), s. 987-1005 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum absorber Subject RIV: JM - Building Engineering Impact factor: 0.513, year: 2002

  13. Prediction of induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Thomsen, K.; Aagaard Madsen, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)


    The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)

  14. Human comfort in relation to sinusoidal vibration (United States)

    Jones, B.; Rao, B. K. N.


    An investigation was made to assess the overall subjective comfort levels to sinusoidal excitations over the range 1 to 19 Hz using a two axis electrohydraulic vibration simulator. Exposure durations of 16 minutes, 25 minutes, 1 hour, and 2.5 hours have been considered. Subjects were not exposed over such durations, but were instructed to estimate the overall comfort levels preferred had they been constantly subjected to vibration over such durations.


    Directory of Open Access Journals (Sweden)

    V.P. Babak


    Full Text Available  Bridge structure test results with using different types of dynamic force have been considered. It has been shown, that the developed technique of registering and processing vibration signals allows obtaining thin spectrum structure. The analysis of its change that is defined by the type of structure loading applied has been carried out. Key parameters of the vibration signals registered have been defined.

  16. Vibrations of Damaged Functionally Graded Cantilever Beams (United States)

    Byrd, Larry W.; Birman, Victor


    The paper discusses closed-form solutions of the problems of free and forced vibrations of a functionally graded cantilever FGM beam with and without damage. The mode of damage considered in the paper is represented by cracks that are perpendicular to the axis of the beam. Notably, such mode of damage was observed in experiments on representative FGM beams. Forced vibrations considered in the paper were generated by a kinematic excitation of the clamped end of the beam.

  17. Vibration-Powered Radiation of Quaking Magnetar


    Bastrukov, S.; Yu, J. W.; Xu, R. X.; Molodtsova, I.


    In juxtaposition with the standard model of rotation-powered pulsar, the model of vibration-powered magnetar undergoing quake-induced torsional Alfvén vibrations in its own ultrastrong magnetic field experiencing decay is considered. The presented line of argument suggests that the gradual decrease of frequencies (lengthening of periods) of long-periodic-pulsed radiation detected from a set of X-ray sources can be attributed to magnetic-field-decay-induced energy conversion from seismic vibra...

  18. Brain palpation from physiological vibrations using MRI


    Zorgani, Ali; Souchon, Rémi; Dinh, Au-Hoang; Chapelon, Jean-Yves; Ménager, Jean-Michel; Lounis, Samir; Rouvière, Olivier; Catheline, Stefan


    It is commonly supposed that noise obscures but does not contain useful information. However, in wave physics and especially, seismology, scientists developed some tools known as “noise correlation” to extract useful information and construct images from the random vibrations of a medium. Living tissues are full of unexploited vibrations as well. In this manuscript, we show that noise correlation techniques in the brain using MRI can conduct to a tomography related to the stiffness that physi...

  19. Data Management Techniques for Blade Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław


    Full Text Available Well-designed procedures are required to handle large amounts of data, generated by complex measurement systems used in engine tests. The paper presents selected methodologies and software tools for characterisation and monitoring of blade vibration. Common file formats and data structures as well as methods to process and visualise tip-timing data are discussed. Report Generation Framework (RGF developed in Python is demonstrated as a flexible tool for processing and publishing blade vibration results.

  20. Skyrmion Vibration Modes within the Rational Map Ansatz


    Lin, W.T.; Piette, B.


    We study the vibration modes of the Skyrme model within the rational map ansatz. We show that the vibrations of the radial profiles and the rational maps are decoupled and we consider explicitly the cases B=1, B=2, and B=4. We then compare our results with the vibration modes obtained numerically by Barnes et al. and show that qualitatively the rational map reproduces the vibration modes obtained numerically but that the vibration frequencies of these modes do not match very well.

  1. Method and apparatus for vibrating a substrate during material formation (United States)

    Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA


    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.

  2. Using piezo-electric material to simulate a vibration environment (United States)

    Jepsen, Richard A.; Davie, Neil T.; Vangoethem, Douglas J.; Romero, Edward F.


    A target object can be vibrated using actuation that exploits the piezo-electric ("PE") property. Under combined conditions of vibration and centrifugal acceleration, a centrifugal load of the target object on PE vibration actuators can be reduced by using a counterweight that offsets the centrifugal loading. Target objects are also subjected to combinations of: spin, vibration, and acceleration; spin and vibration; and spin and acceleration.

  3. Reliability Analysis of Random Vibration Transmission Path Systems


    Wei Zhao; Yi-Min Zhang


    The vibration transmission path systems are generally composed of the vibration source, the vibration transfer path, and the vibration receiving structure. The transfer path is the medium of the vibration transmission. Moreover, the randomness of transfer path influences the transfer reliability greatly. In this paper, based on the matrix calculus, the generalized second moment technique, and the stochastic finite element theory, the effective approach for the transfer reliability of vibratio...



    KOÇ, Gözde; K. Alparslan ERMAN


    Whole body vibration training, the person’s entire body on a platform, creates a vibration that may affect the muscles and bones. Despite the vibration used of massage and treatment since ancient times, it was used as a training method in recent years and became very popular and has attracted the attention of researchers. Whole body vibration training used both sport science with the aim to improve performance and in the fields of medicine for sports therapy. Whole body vibration training bri...

  5. Dancing drops over vibrating substrates (United States)

    Borcia, Rodica; Borcia, Ion Dan; Helbig, Markus; Meier, Martin; Egbers, Christoph; Bestehorn, Michael


    We study the motion of a liquid drop on a solid plate simultaneously submitted to horizontal and vertical harmonic vibrations. The investigation is done via a phase field model earlier developed for describing static and dynamic contact angles. The density field is nearly constant in every bulk region (ρ = 1 in the liquid phase, ρ ≈ 0 in the vapor phase) and varies continuously from one phase to the other with a rapid but smooth variation across the interfaces. Complicated explicit boundary conditions along the interface are avoided and captured implicitly by gradient terms of ρ in the hydrodynamic basic equations. The contact angle θ is controlled through the density at the solid substrate ρ S , a free parameter varying between 0 and 1 [R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)]. We emphasize the swaying and the spreading modes, earlier theoretically identified by Benilov and Billingham via a shallow-water model for drops climbing uphill along an inclined plane oscillating vertically [E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)]. The numerical phase field simulations will be completed by experiments. Some ways to prevent the release of the dancing drops along a hydrophobic surface into the gas atmosphere are also discussed in this paper.

  6. Vibrational characteristics of harp soundboards. (United States)

    Waltham, Chris; Kotlicki, Andrzej


    Harps exist in different forms, from large factory-made concert harps to small hand-made folk harps. This variety presents both a challenge and an opportunity for acousticians. The musical quality of a harp depends on many factors, but key among these is the soundboard. This work sets out to define some general desirable qualities of a harp soundboard. First, in order to understand the relationship between the vibrational behavior of a bare soundboard and that of a completed instrument, a 36-string harp was built from scratch. Measurements were made at each stage of construction, and the results showed how the bare soundboard properties affect those of the finished harp. Second, the soundboards of several harps of different sizes were assessed by measuring the admittances along the string bar. These data showed that one relationship crucial to the quality of the soundboard is that between the modal shapes and modal frequencies of the soundboard, and the position and fundamental frequencies of the strings attached to it. A general statement is made about this relationship, one which should be of use to harp makers.

  7. Vibrational spectroscopic characterization of fluoroquinolones (United States)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.


    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  8. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri


    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  9. On Kinetics Modeling of Vibrational Energy Transfer (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)


    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  10. Vibrational spectroscopy in the electron microscope. (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A


    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  11. Droplet impact on vibrating superhydrophobic surfaces (United States)

    Weisensee, Patricia B.; Ma, Jingcheng; Shin, Young Hwan; Tian, Junjiao; Chang, Yujin; King, William P.; Miljkovic, Nenad


    Many unanswered questions remain pertaining to droplet dynamics during impact on vibrating surfaces. Using optical high-speed imaging, we investigate the impact dynamics of macroscopic water droplets (≈2.5 mm ) on rigid and elastic superhydrophobic surfaces vibrating at 60-320 Hz and amplitudes of 0.2-2.7 mm. Specifically, we study the influence of the frequency, amplitude, rigidity, and substrate phase at the moment of impact on the contact time of impacting droplets. We show that a critical impact phase exists at which the contact time transitions from a minimum to a maximum greater than the theoretical contact time on a rigid, nonvibrating superhydrophobic surface. For impact at phases higher than the critical phase, contact times decrease until reaching a minimum of half the theoretical contact time just before the critical phase. The frequency of oscillation determines the phase-dependent variability of droplet contact times at different impact phases: higher frequencies (> 120 Hz) show less contact time variability and have overall shorter contact times compared to lower frequencies (60-120 Hz). The amplitude of vibration has little direct effect on the contact time. Through semiempirical modeling and comparison to experiments, we show that phase-averaged contact times can increase or decrease relative to a nonvibrating substrate for low (100 Hz ) vibration frequencies, respectively. This study not only provides new insights into droplet impact physics on vibrating surfaces, but also develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.

  12. Behavior of Cell on Vibrating Micro Ridges

    Directory of Open Access Journals (Sweden)

    Haruka Hino


    Full Text Available The effect of micro ridges on cells cultured at a vibrating scaffold has been studied in vitro. Several parallel lines of micro ridges have been made on a disk of transparent polydimethylsiloxane for a scaffold. To apply the vibration on the cultured cells, a piezoelectric element was attached on the outside surface of the bottom of the scaffold. The piezoelectric element was vibrated by the sinusoidal alternating voltage (Vp-p < 16 V at 1.0 MHz generated by a function generator. Four kinds of cells were used in the test: L929 (fibroblast connective tissue of C3H mouse, Hepa1-6 (mouse hepatoma, C2C12 (mouse myoblast, 3T3-L1 (mouse fat precursor cells. The cells were seeded on the micro pattern at the density of 2000 cells/cm2 in the medium containing 10% FBS (fetal bovine serum and 1% penicillin/ streptomycin. After the adhesion of cells in several hours, the cells are exposed to the ultrasonic vibration for several hours. The cells were observed with a phase contrast microscope. The experimental results show that the cells adhere, deform and migrate on the scaffold with micro patterns regardless of the ultrasonic vibration. The effects of the vibration and the micro pattern depend on the kind of cells.

  13. No Telescoping Effect with Dual Tendon Vibration.

    Directory of Open Access Journals (Sweden)

    Valeria Bellan

    Full Text Available The tendon vibration illusion has been extensively used to manipulate the perceived position of one's own body part. However, findings from previous research do not seem conclusive sregarding the perceptual effect of the concurrent stimulation of both agonist and antagonist tendons over one joint. On the basis of recent data, it has been suggested that this paired stimulation generates an inconsistent signal about the limb position, which leads to a perceived shrinkage of the limb. However, this interesting effect has never been replicated. The aim of the present study was to clarify the effect of a simultaneous and equal vibration of the biceps and triceps tendons on the perceived location of the hand. Experiment 1 replicated and extended the previous findings. We compared a dual tendon stimulation condition with single tendon stimulation conditions and with a control condition (no vibration on both 'upward-downward' and 'towards-away from the elbow' planes. Our results show a mislocalisation towards the elbow of the position of the vibrated arm during dual vibration, in line with previous results; however, this did not clarify whether the effect was due to arm representation contraction (i.e., a 'telescoping' effect. Therefore, in Experiment 2 we investigated explicitly and implicitly the perceived arm length during the same conditions. Our results clearly suggest that in all the vibration conditions there was a mislocalisation of the entire arm (including the elbow, but no evidence of a contraction of the perceived arm length.

  14. Vibration Analysis of a Split Path Gearbox (United States)

    Krantz, Timothy L.; Rashidi, Majid


    Split path gearboxes can be attractive alternatives to the common planetary designs for rotorcraft, but because they have seen little use, they are relatively high risk designs. To help reduce the risk of fielding a rotorcraft with a split path gearbox, the vibration and dynamic characteristics of such a gearbox were studied. A mathematical model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the natural frequencies and vibration energy of the gearbox. The first design variable, shaft angle, had little influence on the natural frequencies. The second variable, mesh phasing, had a strong effect on the levels of vibration energy, with phase angles of 0 deg and 180 deg producing low vibration levels. The third design variable, the stiffness of the shafts connecting the spur gears to the helical pinions, strongly influenced the natural frequencies of some of the vibration modes, including two of the dominant modes. We found that, to achieve the lowest level of vibration energy, the natural frequencies of these two dominant modes should be less than those of the main excitation sources.

  15. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi


    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 


    Directory of Open Access Journals (Sweden)



    Full Text Available Bu makale, şimdiye kadar doğrusal ve kalıcı olıııa�an sürekli süreçler şcklinde düşüniilen xenon vuruın tüplerindeki deşarj süreçlerinin, ayrık uyarlamalı gözleınİ ve modellernesi için yeni bir �·aklaşım sunar. Bu amaçla, Varna Teknik .. Universitesi'nde son 25 yılda geliştirilen optimum tekil uyarlanıalı bilgisayar gözlenıi ve nıodellemesi teorisinin araçları uygulandı

  17. Vibrational energy flow in substituted benzenes (United States)

    Pein, Brandt C.

    Using ultrafast infrared (IR) Raman spectroscopy, vibrational energy flow was monitored in several liquid-state substituted benzenes at ambient temperature. In a series of mono-halogenated benzenes, X-C6H 5 (X = F, Cl, Br, I), a similar CH-stretch at 3068 cm-1 was excited using picosecond IR pulses and the resulting vibrational relaxation and overall vibrational cooling processes were monitored with anti-Stokes spectroscopy. In the molecules with a heavier halide substituent the CH-stretch decayed slower while midrange vibrations decayed faster. This result was logical if the density of states (DOS) in the first few tiers, which is the DOS composed of vibrations with smaller quantum number, is what primarily determines energy flow. For tiers 1-4, the DOS was nearly identical in the CH-stretch region while it increased in the midrange region for heavier halide mass. Excitation spectroscopy, an extension of 3D IR-Raman spectroscopy, was developed and used to selectively pump vibrations localized to the substituent or the phenyl group in nitrobenzene (NB), o-fluoronitrobenzene (OFNB) and o-nitrotoluene (ONT) and in the alkylbenzene series toluene, isopropylbenzene (IPB), and t-butylbenzene (TBB). Using quantum chemical calculations, each Raman active vibration was sorted, according to their atomic displacements, into three classifications: substituent, phenyl, or global. Using IR pump wavenumbers that initially excited substituent or phenyl vibrations, IR-Raman spectroscopy was used to monitor energy flowing from the substituent to phenyl vibrations and vice versa. In NB nitro-to-phenyl and nitro-to-global energy flow was almost nonexistent while phenyl-to-nitro and phenyl-to-global was weak. When ortho substituents (-CH3, -F) were introduced, energy flow from nitro-to-phenyl and nitro-to-global was activated. In ONT, phenyl-to-nitro energy flow ceased possibly due to the added methyl group diverting energy from entering the nitro vibrations. Energy flow is therefore

  18. Entropy for Mechanically Vibrating Systems (United States)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators

  19. An Overview of NASA Efforts on Zero Boiloff Storage of Cryogenic Propellants (United States)

    Hastings, Leon J.; Plachta, D. W.; Salerno, L.; Kittel, P.; Haynes, Davy (Technical Monitor)


    Future mission planning within NASA has increasingly motivated consideration of cryogenic propellant storage durations on the order of years as opposed to a few weeks or months. Furthermore, the advancement of cryocooler and passive insulation technologies in recent years has substantially improved the prospects for zero boiloff storage of cryogenics. Accordingly, a cooperative effort by NASA's Ames Research Center (ARC), Glenn Research Center (GRC), and Marshall Space Flight Center (MSFC) has been implemented to develop and demonstrate "zero boiloff" concepts for in-space storage of cryogenic propellants, particularly liquid hydrogen and oxygen. ARC is leading the development of flight-type cryocoolers, GRC the subsystem development and small scale testing, and MSFC the large scale and integrated system level testing. Thermal and fluid modeling involves a combined effort by the three Centers. Recent accomplishments include: 1) development of "zero boiloff" analytical modeling techniques for sizing the storage tankage, passive insulation, cryocooler, power source mass, and radiators; 2) an early subscale demonstration with liquid hydrogen 3) procurement of a flight-type 10 watt, 95 K pulse tube cryocooler for liquid oxygen storage and 4) assembly of a large-scale test article for an early demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Near term plans include the large-scale integrated system demonstration testing this summer, subsystem testing of the flight-type pulse-tube cryocooler with liquid nitrogen (oxygen simulant), and continued development of a flight-type liquid hydrogen pulse tube cryocooler.

  20. Vibrational energy relaxation in liquids (United States)

    Chesnoy, J.; Gale, G. M.

    The de-excitation of the vibrational population of small molecules in the liquid state is considered. Experimental techniques applicable to the measurement of relaxation times in dense phases are first described. Theoretical approaches are subsequently developed with special emphasis on the relationship between ab-initio quantum methods and binary interaction models. Finally, a selection of experimental results is analysed in the light of these theories. Special attention is given to the dependence of the relaxation time on experimental parameters such as density, temperature or the concentration of a mixture. The behaviour of the relaxation time across the liquid/solid phase transition is also treated. La désexcitation vibrationnelle de petites molécules est étudiée en phase liquide. Les techniques expérimentales utilisables pour mesurer les temps de relaxation en phase dense sont d'abord décrites. Les approches théoriques sont ensuite développées en montrant en particulier les liens entre les deux principales : l'approche quantique ab-initio et les modèles d'interaction binaire. Un choix de résultats expérimentaux est finalement analysé à la lumière de ces théories. Les dépendances des temps de relaxation envers les paramètres expérimentaux, comme la densité, la température ou la concentration d'un mélange, sont spécialement étudiées. Le comportement de la relaxation à la transition liquide/solide est aussi abordé.

  1. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.


    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  2. Vibrations and alternated stresses in turbomachineries; Vibrations et contraintes alternees dans les turbomachines

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, M. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)]|[FRAMATOME, 92 - Paris-La-Defense (France); Pugnet, J.M. [Conservatoire National des Arts et Metiers (CNAM), Grenoble-1 Univ., 38 (France)]|[FRAMATOME, 92 - Paris-La-Defense (France)


    Vibration phenomena are sources of mechanical incidents in turbomachineries. A calculation of the Eigenmodes of machine parts and a knowledge of their possible excitation during the machine operation can greatly improve the reliability and availability of the equipments. The development of computer tools and in particular the use of finite-element codes has allowed a more and more precise calculation of Eigenmodes and Eigenfrequencies. However, the analysis of excitation sources remains sometimes insufficient to explain and anticipate some complex vibrational phenomena encountered in rotative machines. The aim of this paper is to present, using two different examples, the methodology to be used in order to perform a complete vibrational analysis of mechanical components. The following aspects are reviewed successively: 1 - the damped vibrational system: study of the free motion, study of the response to an harmonic forced excitation; 2 - vibrational analysis of turbine blades: steam turbine blades, Eigenmodes of mobile blades, excitation sources, Campbell diagram, calculation of static and dynamical stresses, Haigh diagram, acceptance criteria and safety coefficient, influence of corrosion; 3 - dynamical analysis of the bending of a lineshaft: different flexion Eigenmodes, stiffness and damping of bearings, calculation of flexion Eigenmodes, excitation sources, vibrational stability of the lineshaft and vibration level; 3 - generalization: vibration of blades, shaft dynamics, alternative machines. (J.S.) 10 refs.

  3. Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...

    Indian Academy of Sciences (India)

    ... Pramana – Journal of Physics; Volume 74; Issue 1. Vibrational spectroscopy of –/ – stretching vibrations of copper tetramesityl porphyrin: An algebraic approach. Srinivasa Rao Karumuri Joydeep Choudhury Nirmal Kumar Sarkar Ramendu Bhattacharjee. Research Articles Volume 74 Issue 1 January 2010 pp ...

  4. Low-noise magnetoencephalography system cooled by a continuously operating reliquefier (United States)

    Lee, Y. H.; Kwon, H.; Yu, K. K.; Kim, J. M.; Lee, S. K.; Kim, M.-Y.; Kim, K.


    We fabricated a low-noise magnetoencephalography (MEG) system based on a continuously operating reliquefier for cooling of low-temperature superconducting quantum interference device gradiometers. In order to reduce the vibration transmission, the gradiometers are mounted in the vacuum space of the helmet dewar with direct thermal contact with the liquid helium helmet. The reliquefier uses a 1.4 W pulse tube cryocooler with a remote motor, and a horizontal transfer tube with a downslope angle of 1°. The white noise of the system is 3.5 fTrms/√Hz (at 100 Hz). The vibration-induced peak at 1.4 Hz is 18 fTrms/√Hz averaged over the whole helmet array of 150 channels, which is the lowest among the reported values using reliquefier cooling and comparable to the noise peak cooled by conventional direct liquid helium cooling with axial gradiometers of the same baseline. The spontaneous brain activity signal showed nearly identical signal quality with the reliquefier turned on and off, and the reliquefier-based MEG system noise is well below the brain noise level.

  5. VLTI-UT vibrations effort and performances (United States)

    Poupar, Sébastien; Haguenauer, Pierre; Alonso, Jaime; Schuhler, Nicolas; Henriquez, Juan-Pablo; Berger, Jean-Philippe; Bourget, Pierre; Brillant, Stephane; Castillo, Roberto; Gitton, Philippe; Gonte, Frederic; Di Lieto, Nicola; Lizon, Jean-Louis; Merand, Antoine; Woillez, Julien


    The ESO Very Large Telescope Interferometer (VLTI) using the Unit Telescope (UT) was strongly affected by vibrations since the first observations. Investigation by ESO on that subject had started in 2007, with a considerable effort since mid 2008. An important number of investigations on various sub-systems (On telescope: Guiding, Passive supports, Train Coude, insulation of electronics cabinets; On Instruments: dedicated campaign on each instruments with a special attention on the ones equipped with Close Cycle Cooler) were realized. Vibrations were not only recorded and analyzed using the usual accelerometers but also using on use sub-systems as InfRared Image Sensor (IRIS) and Multiple Applications Curvature Adaptive Optics (MACAO) and using a specific tool developed for vibrations measurements Mirror vibrAtion Metrology systeM for the Unit Telescope (MAMMUT). Those tools and systems have been used in order to improve the knowledge on telescope by finding sources. The sources whenever it was possible were damped. As known for years, instruments are still the principal sources of vibrations, for the majority of the UT. A special test in which 2 UTs instruments were completely shut down was realized to determine the minimum Optical Path Length (OPL) achievable. Vibrations is now a part of the instruments interface document and during the installation of any new instrument (KMOS) or system (AOF) a test campaign is realized. As a result some modifications (damping of CCC) can be asked in case of non-compliance. To ensure good operational conditions, levels of vibrations are regularly recorded to control any environmental change.

  6. Physiology responses of Rhesus monkeys to vibration (United States)

    Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh

    Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate

  7. Driving an Active Vibration Balancer to Minimize Vibrations at the Fundamental and Harmonic Frequencies (United States)

    Holliday, Ezekiel S. (Inventor)


    Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.

  8. Reliability Analysis of Random Vibration Transmission Path Systems

    Directory of Open Access Journals (Sweden)

    Wei Zhao


    Full Text Available The vibration transmission path systems are generally composed of the vibration source, the vibration transfer path, and the vibration receiving structure. The transfer path is the medium of the vibration transmission. Moreover, the randomness of transfer path influences the transfer reliability greatly. In this paper, based on the matrix calculus, the generalized second moment technique, and the stochastic finite element theory, the effective approach for the transfer reliability of vibration transfer path systems was provided. The transfer reliability of vibration transfer path system with uncertain path parameters including path mass and path stiffness was analyzed theoretically and computed numerically, and the correlated mathematical expressions were derived. Thus, it provides the theoretical foundation for the dynamic design of vibration systems in practical project, so that most random path parameters can be considered to solve the random problems for vibration transfer path systems, which can avoid the system resonance failure.


    Directory of Open Access Journals (Sweden)

    Darryl J. Cochrane


    Full Text Available There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR, which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz. Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s occur during and post-vibration

  10. High frequency pressure oscillator for microcryocoolers (United States)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.


    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  11. Design of a nonlinear torsional vibration absorber (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  12. Vibrational lineshapes of adsorbates on solid surfaces (United States)

    Ueba, H.

    A review is presented of the current activity in vibrational spectroscopy of adsorbates on metal surfaces. A brief introduction of the representative spectroscopies is given to demonstrate the rich information contained in vibrational spectra, which are characterized by their intensity, peak position and width. Analysis of vibrational spectra enables us to gain the deep insight into not only the local character of adsorption site or geometry, but also the dynamical interaction between the adsorbates or between the adsorbate and the substrate. Some recent instructive experimental results, mostly of a CO molecule adsorbed on various metal surfaces, are accompanied by the corresponding theoretical recipe for vibrational excitation mechanisms. Wide spread experimental results of the C-O stretching frequency of CO adsorbed on metal surfaces are discussed in terms of the chemical effect involving the static and dynamic charge transfers between the chemisorbed CO and metal, and also of the electrostatic dipole-dipole interaction between the molecules. The central subject of this review is directed to the linshapes characterized by the vibrational relaxation processes of adsorbates. A simple and transparent model is introduced to show that the characteristic decay time of the correlation function for the vibrational coordinates is the key quantity to determine the spectral lineshapes. Recent experimental results focused on a search for an intrinsic broadening mechanism are reviewed in the light of the so-called T1 (energy) and T2 (phase) relaxation processesof the vibrational excited states of adsorbates. Those are the vibrational energy dissipation into the elementary excitation, such as phonons or electron-hole pairs in the metal substrate, and pure dephasing due to the energy exchange with the sorroundings. The change of width and frequency by varying the experimental variables, such as temperature or isotope effect, provides indispensable knowledge for the dynamical

  13. Nanoscale piezoelectric vibration energy harvester design (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin


    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  14. Vibration exposure and prevention in Japan. (United States)

    Futatsuka, M; Ueno, T; Yamada, S


    Working conditions of vibration exposure have generally improved, but many difficult problems must be solved such as (1) hygienic improvements in a variety of vibrating tools; (2) improving working conditions, for example, by limiting the time of operation in spite of economic difficulties such as those faced by those who work on a piece rate basis; (3) gathering more complete information about the risk population because of the large number of self-employed in informal employment sectors; and (4) finding work places after rehabilitation for patients, particularly in mountainous rural areas or in small scale industries. Historical observation of vibration and preventive measures in Japanese national forests was presented on the basis of the results of a retrospective cohort study in Kyushu, Japan. Prevalence rate of VWF remarkably changed from 58.4% in the groups that began to operate chain saws in 1960 to only a few cases in the groups who started the operation after 1971. When we compare the relationships between the results of long term cohort study and the consequences of preventive measures of vibration syndrome, the most important factor is the decrease of vibration exposure (improvement in chain saws plus the time restriction system). The comprehensive prevention system used in Japanese national forests consists of the following: (1) Health care system; (2) Work regulation system; (3) System for improving mechanized tools; (4) Warming system to protect against cold conditions; and (5) Education and training system.

  15. Vibrational dephasing in matter-wave interferometers (United States)

    Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.


    Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.

  16. Nanoscale piezoelectric vibration energy harvester design

    Directory of Open Access Journals (Sweden)

    Hamid Reza Foruzande


    Full Text Available Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton’s principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  17. A hybrid nonlinear vibration energy harvester (United States)

    Yang, Wei; Towfighian, Shahrzad


    Vibration energy harvesting converts mechanical energy from ambient sources to electricity to power remote sensors. Compared to linear resonators that have poor performance away from their natural frequency, nonlinear vibration energy harvesters perform better because they use vibration energy over a broader spectrum. We present a hybrid nonlinear energy harvester that combines bi-stability with internal resonance to increase the frequency bandwidth. A two-fold increase in the frequency bandwidth can be obtained compared to a bi-stable system with fixed magnets. The harvester consists of a piezoelectric cantilever beam carrying a movable magnet facing a fixed magnet. A spring allows the magnet to move along the beam and it provides an extra stored energy to further increase the amplitude of vibration acting as a mechanical amplifier. An electromechanically coupled mathematical model of the system is presented to obtain the dynamic response of the cantilever beam, the movable magnet and the output voltage. The perturbation method of multiple scales is applied to solve these equations and obtain approximate analytical solutions. The effects of various system parameters on the frequency responses are investigated. The numerical approaches of the long time integration (Runge-Kutta method) and the shooting technique are used to verify the analytical results. The results of this study can be used to improve efficiency in converting wasted mechanical vibration to useful electrical energy by broadening the frequency bandwidth.

  18. Active vibration control using DEAP actuators (United States)

    Sarban, Rahimullah; Jones, Richard W.


    Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.

  19. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen


    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  20. Characterization of pollen by vibrational spectroscopy. (United States)

    Zimmermann, Boris


    Classification, discrimination, and biochemical assignment of vibrational spectra of pollen samples belonging to 43 different species of the order Pinales has been made using three different vibrational techniques. The comparative study of transmission (KBr pellet) and attenuated total reflection (ATR) Fourier transform infrared (FT-IR) and FT-Raman spectroscopies was based on substantial variability of pollen grain size, shape, and relative biochemical composition. Depending on the penetration depth of the probe light, vibrational techniques acquire predominant information either on pollen grain walls (FT-Raman and ATR-FT-IR) or intracellular material (transmission FT-IR). Compared with the other two methods, transmission FT-IR obtains more comprehensive information and as a result achieves superior spectral identification and discrimination of pollen. The results strongly indicate that biochemical similarities of pollen grains belonging to the same plant genus or family lead to similar features in corresponding vibrational spectra. The exploitation of that property in aerobiological monitoring was demonstrated by simple and rapid pollen identification based on relatively small spectral libraries, with the same (or better) taxonomic resolution as that provided by optical microscopy. Therefore, the clear correlation between vibrational spectra and pollen grain morphology, biochemistry, and taxonomy is obtained, while successful pollen identification illustrates the practicability of such an approach in environmental studies.

  1. Desert ants learn vibration and magnetic landmarks.

    Directory of Open Access Journals (Sweden)

    Cornelia Buehlmann

    Full Text Available The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.

  2. Collective model for isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.


    The vibrational model is extended by introducing isospin-dependent collective coordinates, permitting a description out-of-phase neutron-proton vibrations coupled by a density-dependent symmetry energy. The restoring force is calculated microscopically using the wavefunctions of a Woods-Saxon potential and the coupling with three-phonon states is taken into account. The model is able to describe the available experimental data (energies and multipole mixing ratios) on low-lying 2/sup +/ states, which were observed recently in nuclei near the shell closures (/sup 124/Te, /sup 140/Ba, /sup 142/Ce and /sup 144/Nd), supporting the identification of these states as isovector quadrupole vibrations and predicting such states in /sup 126 -130/ Te.

  3. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system targeting the collective...

  4. Mechanical vibration to electrical energy converter (United States)

    Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM


    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  5. Conformational and vibrational reassessment of solid paracetamol (United States)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.


    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  6. Effects of Cutting Tool Parameters on Vibration

    Directory of Open Access Journals (Sweden)

    Ince Mehmet Alper


    Full Text Available This paper presents of the influence on vibration of Co28Cr6Mo medical alloy machined on a CNC lathe based on cutting parameters (rotational speed, feed rate, depth of cut and tool tip radius. The influences of cutting parameters have been presented in graphical form for understanding. To achieve the minimum vibration, the optimum values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 318 rpm, 0.25 mm/rev, 0.9 mm and 0.8 mm. Maximum vibration has been revealed the values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 636 rpm, 0.1 mm/rev, 0,5 mm and 0.8 mm.

  7. Chatter vibrations of high-performance motorcycles (United States)

    Sharp, R. S.; Watanabe, Y.


    Motorcycle racing teams occasionally experience speed-limiting vibrations of around 25 Hz frequency in mid-corner. The nature of the vibrations has not been closely defined yet and the mechanics are currently not properly understood. Conventional motorcycle-dynamics models are shown here to reveal the existence of a vibration mode that aligns with the experience being referred to, suggesting some explanations. Root loci for variations in speed or cornering vigour, demonstrating modal characteristics for small perturbations from trim states, are employed to indicate how the mode responds to changes in operation and design. Modal participation is examined for a lightly damped case. Influences on the natural frequency and damping of the mode are found and a way of stabilising the mode is suggested.

  8. Surface Vibration Reconstruction using Inverse Numerical Acoustics

    Directory of Open Access Journals (Sweden)

    F. Martinus


    Full Text Available This paper explores the use of inverse numerical acoustics to reconstruct the surface vibration of a noise source. Inverse numerical acoustics is mainly used for source identification. This approach uses the measured sound pressure at a set of field points and the Helmholtz integral equation to reconstruct the normal surface velocity. The number of sound pressure measurements is considerably less than the number of surface vibration nodes. An overview of inverse numerical acoustics is presented and compared with other holography techniques such as nearfield acoustical holography and the Helmholtz equation least squares method. In order to obtain an acceptable reproduction of the surface vibration, several critical factors such as the field point selection and the effect of experimental errors have to be handled properly. Other practical considerations such as the use of few measured velocities and regularization techniques will also be presented. Examples will include a diesel engine, a transmission housing and an engine cover.

  9. Diffusion of solid fuelon a vibrating grate

    DEFF Research Database (Denmark)

    Sabelström, Hanna Katarina

    of vibrations can be incorporated into a numerical model. The chosen model approach has been to separate the gas and solid phases into two independent models related to each other through the bed porosity. By treating the bed as a porous media and using Ergun's equation for the gas flow, the numerical work...... is simplified and the computational time shortened. The vibrations are affecting the transport and mixing of the fuel and incorporated into the model through the diffusion coefficient in the conservation equation of the solid phase. Experimental work has been carried out with the aim to study the behaviour...... of wood pellets on a vibrating grate and deriving the diffusion coefficient to be used in the numerical model. Three different grate designs are used and the particle trajectories have been captured by a camera placed above the grate. The diffusion coefficient is defined as the deviation from the mean...

  10. Transverse vibration of nematic elastomer Timoshenko beams. (United States)

    Zhao, Dong; Liu, Ying; Liu, Chuang


    Being a rubber-like liquid crystalline elastomer, a nematic elastomer (NE) is anisotropic viscoelastic, and displays dynamic soft elasticity. In this paper, the transverse vibration of a NE Timoshenko beam is studied based on the linear viscoelasticity theory of nematic elastomers. The governing equation of motion for the transverse vibration of a NE Timoshenko beam is derived. A complex modal analysis method is used to obtain the natural frequencies and decrement coefficients of NE beams. The influences of the nematic director rotation, the rubber relaxation time, and the director rotation time on the vibration characteristic of NE Timoshenko beams are discussed in detail. The sensitivity of the dynamic performance of NE beams to director initial angle and relaxation times provides a possibility of intelligent controlling of their dynamic performance.

  11. Vibration Based Sun Gear Damage Detection (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll


    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  12. Simple shearing interferometer suitable for vibration measurements (United States)

    Mihaylova, Emilia M.; Whelan, Maurice P.; Toal, Vincent


    Recently there has been an increasing interest in the application of shearography for modal analysis of vibrating objects. New interferometric systems, which are simple and flexible are of interest for engineering and industrial applications. An electronic speckle pattern shearing interferometer (ESPSI) with a very simple shearing device is used for study of vibrations. The shearing device consists of two partially reflective glass plates. The reflection coefficients of the coatings are 0.3 and 0.7 respectively. The distance between the two glass plates controls the size of the shear. The versatility of this simple shearing interferometer is shown. It is demonstrated that the ESPSI system can be used for vibration measurements and phase-shifting implemented for fringe analysis. The results obtained are promising for future applications of the system for modal analysis.

  13. Acoustic vibration can enhance bacterial biofilm formation. (United States)

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic


    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Lambda-matrices and vibrating systems

    CERN Document Server

    Lancaster, Peter; Stark, M; Kahane, J P


    Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late

  15. Free vibrations of circular cylindrical shells

    CERN Document Server

    Armenàkas, Anthony E; Herrmann, George


    Free Vibrations of Circular Cylindrical Shells deals with thin-walled structures that undergo dynamic loads application, thereby resulting in some vibrations. Part I discusses the treatment of problems associated with the propagation of plane harmonic waves in a hollow circular cylinder. In such search for solutions, the text employs the framework of the three-dimensional theory of elasticity. The text explains the use of tables of natural frequencies and graphs of representative mode shapes of harmonic elastic waves bounding in an infinitely long isotropic hollow cylinder. The tables are

  16. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration (United States)

    Irvine, T.


    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  17. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker


    The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....

  18. Vibrational Based Inspection Of A Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.


    The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination of accep......The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination...

  19. Mechanical Vibration Measurements on TTF Cryomodules

    CERN Document Server

    Bosotti, Angelo; Ferianis, Mario; Lange, Rolf; Pagani, Carlo; Paparella, Rocco; Pierini, Paolo; Sertore, Daniele


    Few of the TTF cryomodules have been equipped with Wire Position Monitors (WPM) for the on line monitoring of cold mass movements during cool-down, warm-up and operation. Each sensor can be used as a detector for mechanical vibrations of the cryostat. A Digital Receiver board is used to sample and analyze with high frequency resolution, the WPM picked up signals, looking to its amplitude modulation in the microphonic frequency range. Here we review and analyze the data and the vibration spectra taken during operation of the TTF cryomodules # 4 and #5.

  20. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik


    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  1. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire


    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  2. Noise and vibration in friction systems

    CERN Document Server

    Sergienko, Vladimir P


    The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.

  3. Free vibration of arches flexible in shear. (United States)

    Austin, W. J.; Veletsos, A. S.


    An analysis reported by Veletsos et al. (1972) concerning the free vibrational characteristics of circular arches vibrating in their own planes is considered. The analysis was based on a theory which neglects the effects of rotatory inertia and shearing deformation. A supplementary investigation is conducted to assess the effects of the previously neglected factors and to identify the conditions under which these effects are of practical significance or may be neglected. A simple approximate procedure is developed for estimating the natural frequencies of arches, giving due consideration to the effects of the previously neglected factors.

  4. Vibration-based testing of bolted joints

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Sah, Si Mohamed; Fidlin, Alexander


    In recent pilot studies we have started investigating how to possibly use measured flexural (i.e. transverse/bending) vibrations, induced by bolt-tapping, to estimate bolt tightness. Some of the vibration features we investigated showed strong correlation with bolt tightness. For example, the low...... to bolt tension, but also to slenderness ratio. Thus, if only the natural frequency feature were to be used for estimating bolt tension, accuracy will drop off for the short and thick bolts that are often used in critical joints....

  5. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang


    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  6. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration (United States)

    Irvine, T.


    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested according. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  7. Broadband vibration energy harvester utilizing three out-of-plane modes of one vibrating body (United States)

    Park, Shi-Baek; Jang, Seon-Jun; Kim, In-Ho; Choi, Yong Je


    In this paper, we introduce the concept, design equation, and realization of a broadband electromagnetic vibrational energy harvester. The spatial vibrating system in the proposed harvester is arranged to have three out-of-plane vibration modes. We devise the design method for its three natural frequencies and accompanying modes and apply it to the broadband energy harvesting by locating three frequencies close to each other. The numerical simulation and the experimental results show that it satisfies the designated frequencies as well as the enhanced bandwidth for power generation.

  8. Integrated predictive maintenance program vibration and lube oil analysis: Part I - history and the vibration program

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, H.


    This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or {open_quotes}synergy{close_quotes} between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The {open_quotes}Vibration{close_quotes} view of the combined program is then presented.

  9. The Shock Vibration Bulletin. Part 3. Isolation and Damping, Vibration Test Criteria, and Vibration Analysis and Test (United States)


    fatigae equivalent test time of 45-mimates. 1. BACKGROUND subjected to both vibration and loose cargo testing as well an the type and amount of...Environmental Test the track laying environment. Nethods, 10 March 1975. 8. FUTURE EFFORTS 11. Soci, Darrell F., Fatigae Life Estimation Techniques, Technical

  10. Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication? (United States)

    Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio


    Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.

  11. Alleviation of Buffet-Induced Vibration Using Piezoelectric Actuators

    National Research Council Canada - National Science Library

    Morgenstern, Shawn D


    .... The objective of this research was to determine the most critical natural modes of vibration for the F-16 ventral fin and design piezoelectric actuators capable of reducing buffet-induced ventral fin vibration...

  12. Coupled electromechanical model of an imperfect piezoelectric vibrating cylinder gyroscope

    CSIR Research Space (South Africa)

    Loveday, PW


    Full Text Available Coupled electromechanical equations of motion, describing the dynamics of a vibrating cylinder gyroscope, are derived using Hamilton's principle and the Rayleigh-Ritz method. The vibrating cylinder gyroscope comprises a thin walled steel cylinder...

  13. Evaluation of vibration limits and mitigation techniques for urban construction. (United States)


    The overriding purpose of this research was to develop a comprehensive framework to address : vibration issues prior to and during construction, including calculation of anticipated ground : vibrations during project design, condition surveys of stru...

  14. Update LADOTD policy on pile driving vibration management. (United States)


    The main objective of this project was to update the current Louisiana Department of Transportation and Development (LADOTD) policy on pile driving vibration risk management with a focus on how to determine an appropriate vibration monitoring area. T...

  15. Active vibration isolation of a rigidly mounted turbo pump

    NARCIS (Netherlands)

    Basten, T.G.H.; Doppenberg, E.J.J.


    Manufacturers of precision equipment are constantly aiming at increased accuracy. Elimination of disturbing vibrations is therefore getting more and more important. The technical limitations of passive isolation methods require alternative strategies for vibration reduction, such as active

  16. Self-excited and subharmonic vibrations in a pilot rotor (United States)

    Kumenko, A. I.; Kostyukov, V. N.; Kuzminykh, N. Yu.; Timin, A. V.


    The paper reviews the publications on low-frequency vibration in power plants. It is noted that the regulatory literature poorly defines the issues of rating and diagnosing self-excited and subharmonic vibrations. Analysis of the literature and ISO standards shows that despite the considerable experience gained by specialists in low-frequency vibration control, a number of issues, such as subharmonic resonances and nonlinear properties of complicated multi-seated rotor systems supported by journal bearings, are still understudied and require further calculations and experiments. The paper presents some results obtained in experiments of low-frequency vibrations for a rotor supported by journal bearings and having a residual deflection. The experimental results confirmed the classical hysteresis of self-excited vibrations - the difference in the boundaries of self-excited vibrations during ascent and descent is about 4 Hz. The arears of appearance and disappearance of subharmonic vibrations are shown using the spectral characteristics of vibrations and cascade spectra.

  17. Micromachined Joule-Thomson cryocooler

    NARCIS (Netherlands)

    Lerou, P.P.M.


    Cooling of electronic circuitry to very low temperatures can improve the signal-to-noise ratio and bandwidth of a system. In many cases the system, which is to be cooled, is very small so an accompanying small cooler would be obvious. This thesis describes the research performed in designing,

  18. Low Temperature Cryocooler Regenerator Materials

    Energy Technology Data Exchange (ETDEWEB)

    K.A. Gschneidner; A.O. Pecharsky; V.K. Pecharsky


    There are four important factors which influence the magnitude of the magnetic heat capacity near the magnetic ordering transition temperature. These include the theoretical magnetic entropy, the deGennes factor, crystalline electric field, and the RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction. The lattice contribution to the heat capacity also needs to be considered since it is the sum of the lattice and magnetic contributions which give rise to the heat capacity maxima. The lattice heat capacity depends on the chemical composition, crystal structure and temperature. As a result, one can obtain large changes in the heat capacity maxima by alloying. Several ternary intermetallic systems have been examined in light of these criteria. A number of deviations from the expected behaviors have been found and are discussed.

  19. Experimental Modal Analysis on Vibrations in the Building Construction


    成瀬, 治興; 佐野, 泰之; 北畠, 弘基


    This paper describes some results of vibration propagation characteristics of two rooms next door to each other in the actual building construction (including floor, walls, and upstairfloor) by experimental modal analysis. In addition, we investigate about vibration response of measuring points by forced response and sensitivity analysis. The results are summarized as follows. The vibration of lower modes gives larger effect to vibration propagation characteristics of building construction th...

  20. Supplementary Information Table: S1 Calculated vibrational wave ...

    Indian Academy of Sciences (India)


    514. 511 w. 519 vvw. 6a ring o.p bend. 508. 496 s. 500 vvw. 16 b ring o.p bend. 390. 387 vvw. 16a ring o.p bend. 334. 328 vvw. 9b C-H i.p bend. 274. 267 vvw. Hydrogen bonded vibrations. 184. 171 vs. Hydrogen bonded vibrations. 112. 120 vvs. Hydrogen bonded vibrations. 64. 57 sh. Hydrogen bonded vibrations.

  1. Sound insulation and vibration tests for lightweight steel framing floors


    Shi, Wanqing; Edfast, Fredrik; Ågren, Anders


    An experimental study of sound insulation and vibrations of lightweight steel framing floors due to different floor construction set up were performed. Floors with 3m, 5m and 7.2m span were tested. The impact and airborne sound insulation for 3m span floor were measured based on ISO 140 in lab condition. Vibration tests were carried out on all three different spans. The vibration transmission loss of the structure was determined from the surface vibration measurements. The fundamental natural...

  2. A seismic vertical vibrator driven by linear motors

    NARCIS (Netherlands)

    Noorlandt, R.P.; Drijkoningen, G.G.; Schneider, R.M.


    In this paper we present a newly developed vertical seismic vibrator driven by linear motors. We explain the different components the vibrator consists of. We show that the harmonic distortion of the linear-motor vibrator signal is very small. We also show that, without applying a feedback loop on

  3. Molecular and vibrational structure of thiosulfonate S-esters

    DEFF Research Database (Denmark)

    Luu, Thi Xuan Thi; Duus, Fritz; Spanget-Larsen, Jens


    /cc-pVTZ). The vibrational spectra of 2 and 3 are sensitive to the orientation of the alkyl group attached to the sulfonylic sulfur atom. Rotamers corresponding to anti and gauche conformations are thus predicted to have distinctly different vibrational transitions in the 800–400 cm–1 region. The observed vibrational...

  4. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  5. 47 CFR 10.530 - Common vibration cadence. (United States)


    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Common vibration cadence. 10.530 Section 10.530... § 10.530 Common vibration cadence. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include a vibration cadence capability that meets the...

  6. Vibration for Pain Reduction in a Plastic Surgery Clinic. (United States)

    Eichhorn, Mitchell George; Karadsheh, Murad Jehad; Krebiehl, Johanna Ruth; Ford, Dawn Marie; Ford, Ronald D


    Patients can experience significant pain during routine procedures in the plastic surgery clinic. Methods for clinical pain reduction are often impractical, time-consuming, or ineffective. Vibration is a safe, inexpensive, and highly applicable modality for pain reduction that can be readily utilized for a wide variety of procedures. This study evaluated the use of vibration as a viable pain-reduction strategy in the clinical plastic surgery setting. Patients requiring at least 2 consecutive procedures that are considered painful were enrolled in the study. These included injections, staple removal, and suture removal. In the same patient, one half of the procedures were performed without vibration and the other half with vibration. After completing the procedures, the patients rated their pain with vibration and without vibration. The patient and the researcher also described the experience with a short questionnaire. Twenty-eight patients were enrolled in the study. Patients reported significantly less pain on the Numeric Rating Scale pain scale when vibration was used compared with the control group (p vibration and 1.93 with vibration, and vibration with injections resulted in the greatest improvement. Eighty-six percent of the patients claimed that vibration significantly reduced their pain. Vibration is an effective method of pain reduction. It significantly reduces the pain experienced by patients during minor office procedures. Given its practicality and ease of use, it is a welcome tool in the plastic surgery clinic.

  7. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)



    Jul 11, 2017 ... Abstract. In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a ...

  8. 46 CFR 162.050-37 - Vibration test. (United States)


    ... 46 Shipping 6 2010-10-01 2010-10-01 false Vibration test. 162.050-37 Section 162.050-37 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-37 Vibration test. (a... and each control of a separator must be subjected to continuous sinusoidal vibration in each of the...

  9. Whole body vibration improves attention and motor performance in ...

    African Journals Online (AJOL)

    Background: Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are ...


    African Journals Online (AJOL)

    vibrations. And the program developed may be used to include other design characteristics by way of refining the blade modeling. REFERENCES. [1] Campbell,W., "Tangential Vibration of Steam. Turbine Buckets." Trans. of ASME, pp. 643 -. 671, 1924. [2] Lo, H.; RenbargerJ.L.; "Bending Vibration of a Rotating Beams." Proc ...

  11. Vibrational Relaxation in Neat Crystals of Naphthalene by Picosecond CARS

    NARCIS (Netherlands)

    Hesp, Ben H.; Wiersma, Douwe A.


    Picosecond delayed CARS experiments on totally symmetric modes in naphthalene at 1.5 K are reported. The Raman lineshape of the vibrational excitons is lorentzian and vibrational relaxation can be surprisingly slow. The Raman lineshape of the Ag exciton level of the 766 cm-1 vibrational mode reveals

  12. Three-dimensional free vibration analysis of thick laminated circular ...

    African Journals Online (AJOL)

    Dr Oke

    mechanical systems is understanding the free vibration behavior of different plate components. The dynamic response of complex engineering systems is intimately linked with plate response frequencies as well as vibration mode shapes. A thorough analysis of free vibration data is often useful in arriving at the resonant ...

  13. Estimation of spinal loading in vertical vibrations by numerical simulation

    NARCIS (Netherlands)

    Verver, M.M.; Hoof, J.F.A.M. van; Oomens, C.W.J.; Wouw, N. van de; Wismans, J.S.H.M.


    Objective. This paper describes the prediction of spinal forces in car occupants during vertical vibrations using a numerical multi-body occupant model. Background. An increasing part of the population is exposed to whole body vibrations in vehicles. In literature, vertical vibrations and low back

  14. Numerical Modelling of Rubber Vibration Isolators: identification of material parameters

    NARCIS (Netherlands)

    Beijers, C.A.J.; Noordman, Bram; de Boer, Andries; Ivanov, N.I.; Crocker, M.J.


    Rubber vibration isolators are used for vibration isolation of engines at high frequencies. To make a good prediction regarding the characteristics of a vibration isolator in the design process, numerical models can be used. However, for a reliable prediction of the dynamic behavior of the isolator,

  15. Effect of vibration stabilization of the process of postcritical deformation (United States)

    Wildemann, V. E.; Lomakin, E. V.; Tretyakov, M. P.


    Results of the experimental study of vibration stabilization of the process of postcritical deformation during the tensile testing of solid cylindrical specimens made of 20 and 40Cr structural steels under additional vibrations are presented. The vibrations are implemented using cyclic torsion of the specimens at a small amplitude and a frequency of 10-30 Hz.

  16. Finite Element Vibration Analysis of Beams, Plates and Shells

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle


    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element vibration analysis of beams, plates and shells that were published in 1994–1998. It contains 361 citations. Also included, as separated subsections, are vibration analysis of composite materials and vibration analysis of structural elements with cracks/contacts.

  17. DOE/ANL/HTRI heat exchanger tube vibration data bank

    Energy Technology Data Exchange (ETDEWEB)

    Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.


    This addendum to the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank includes 16 new case histories of field experiences. The cases include several exchangers that did not experience vibration problems and several for which acoustic vibration was reported.

  18. Vibration-induced PM Noise in Oscillators and Measurements of Correlation with Vibration Sensors

    National Research Council Canada - National Science Library

    Howe, D. A; LanFranchi, J. L; Cutsinger, L; Hati, A; Nelson, C


    ...) and acceleration/vibration sensors. We describe the equipment setup and measurement procedure. Data are in the form of scatter plots, which we find to be highly informative compared to usual L(f...

  19. Vibration modes and frequencies of structures (United States)

    Durling, R. J.; Kvaternik, R. G.


    SUDAN, Substructuring in Direct Analysis, analyzes natural modes and frequencies of vibration of structural systems. Based on direct method of analysis that employs substructures methodology, program is used with structures that may be represented as equivalent system of beam, springs, and rigid bodies.

  20. Index to the Shock and Vibration Bulletins (United States)


    See Welmers , E, TJ. 24(14) S SAIN, W. H. Mechanical properties of special tubes under high acceleration, 24(195) SANDERS, S. P. Pneumatic...resistance strain gages. 8(1) WELLER, R. K. Methods of achieving missile reliability. 18(9) WELMERS , E. T, Missile vibrations and instrumentation. 18

  1. Composite materials inspection. [ultrasonic vibration holographic NDT (United States)

    Erf, R. K.


    Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

  2. Wind-induced vibration of stay cables (United States)


    Cable-stayed bridges have become the form of choice over the past several decades for bridges in the medium- to long-span range. In some cases, serviceability problems involving large amplitude vibrations of stay cables under certain wind and rain co...

  3. Lambda-matrices and vibrating systems

    CERN Document Server

    Lancaster, Peter


    Features aspects and solutions of problems of linear vibrating systems with a finite number of degrees of freedom. Starts with development of necessary tools in matrix theory, followed by numerical procedures for relevant matrix formulations and relevant theory of differential equations. Minimum of mathematical abstraction; assumes a familiarity with matrix theory, elementary calculus. 1966 edition.

  4. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  5. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    Abstract. The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies ω and with. ≫ ω. In the damped and biharmoni- cally driven classical Morse oscillator, ...

  6. Phase diagram of vertically vibrated dense suspensions

    NARCIS (Netherlands)

    von Kann, S.; Snoeijer, Jacobus Hendrikus; van der Meer, Roger M.


    When a hole is created in a layer of a dense, vertically vibrated suspension, phenomena are known to occur that defy the natural tendency of gravity to close the hole. Here, an overview is presented of the different patterns that we observed in a variety of dense particulate suspensions.

  7. Vibrations of a pipe on elastic foundations

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    is investigated. Two cases of elastic foundations are considered: rotational and both linear and rotational. The major findings are the variations in frequency with flow velocity and displacements at different points and times. Keywords. Cantilevered pipe; vibrations of pipes; elastic foundations; exter- nal transverse force. 1.

  8. Vibration Measurements on the Frejlev Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hansen, Lars Pilegaard

    The present report presents full-scale measurements on the Frejlev-mast which is a 200 meter hight guyed steel mast located 10 km. from Aalborg. The goal of the research was to investigate various techniques which could be used to estimate cable forces from vibration measurements. The cables...

  9. Using periodicity to mitigate ground vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard


    Introduction of trenches, barriers and wave impeding blocks on the transmission path between a source and receiver can be used for mitigation of ground vibration. However, to be effective a barrier must have a depth of about one wavelength of the waves to be mitigated. Hence, while great reductions...

  10. Flexural vibrations of finite composite poroelastic cylinders

    Indian Academy of Sciences (India)

    Abstract. This paper deals with the flexural vibrations of composite poroelastic solid cylinder consisting of two cylinders that are bonded end to end. Poroelastic materials of the two cylinders are different. The frequency equations for pervious and impervious surfaces are obtained in the framework of Biot's theory of wave.

  11. Nonlinear Vibration of a Magnetic Spring (United States)

    Zhong, Juhua; Cheng, Zhongqi; Ge, Ziming; Zhang, Yuelan; Lu, Wenqiang; Song, Feng; Li, Chuanyong


    To demonstrate the different vibration characteristics of a magnetic spring compared with those of a metal one, a magnetic spring apparatus was constructed from a pair of circular magnets of the same size with an inside diameter of 2.07 cm and an outside diameter of 4.50 cm. To keep the upper magnet in a suspension state, the two magnets were…

  12. Longitudinal shear vibrations of composite poroelastic cylinders ...

    African Journals Online (AJOL)

    Employing Biot's theory of wave propagation in liquid saturated porous media, longitudinal shear vibrations of composite poroelastic cylinders of infinite extent are investigated. The composite poroelastic cylinder is made of two different poroelastic materials. The dilatations of liquid and solid media are zero, hence liquid ...

  13. Probability of Failure in Random Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard


    Close approximations to the first-passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first-passage probability density function and the distribution function for the time interval spent below a barrier before out...

  14. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu


    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  15. Vibration analysis of an elevated railway track

    NARCIS (Netherlands)

    Courage, W.M.G.; Staalduinen, P.C. van; Ruiter, B. de


    The results of a study are described with respect to the vibration analysis of an elevated railway track. In this study a numerical model was developed. This model is validated and tuned by means of measurements. For a new elevated railway track in design stage, the model is used for calculating the

  16. Analysis of real-time vibration data (United States)

    Safak, E.


    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  17. Free-Vibration Analysis of Structures (United States)

    Gupta, K. K.


    Unified numerical procedure for free-vibration analysis of structures developed and incorporated into EIGSOL computer program. Dynamic response analysis of primary importance in design of wide range of practical structures such as space-craft, buildings, and rotating machineries. Procedure determines natural frequencies and associated modes in structural design.

  18. Emitted vibration measurement device and method (United States)

    Gisler, G. L.


    This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

  19. Internal Temperature Control For Vibration Testers (United States)

    Dean, Richard J.


    Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.

  20. Free-Vibration Analysis of Structures (United States)

    Gupta, K. K.


    Improved numerical procedure more than twice as fast as previous methods. Unified numerical algorithm efficiently solves free-vibration problems of stationary or spinning structures with or without viscous or structural damping. Algorithm used to solve static problems involving multiple loads and to solve quadratic matrix eigenvalue problems associated with finite-dynamic-element structural discretization.