Nagy, Péter R.; Surján, Péter R.; Szabados, Ágnes
2014-01-01
Cross sections of inelastic light scattering accompanied by vibronic excitation in large conjugated carbon structures is assessed at the π-electron level. Intensities of Raman and vibrational Raman optical activity (VROA) spectra of fullerenes are computed, relying on a single electron per atom. When considering only first neighbor terms in the Hamiltonian (a tight-binding (TB) type or Hückel-model), Raman intensities are captured remarkably well, based on comparison with frequency-dependent linear response of the self-consistent field (SCF) method. Resorting to π-electron levels when computing spectral intensities brings a beneficial reduction in computational cost as compared to linear response SCF. At difference with total intensities, the first neighbor TB model is found inadequate for giving the left and right circularly polarized components of the scattered light, especially when the molecular surface is highly curved. To step beyond first neighbor approximation, an effective π-electron Hamiltonian, including interaction of all sites is derived from the all-electron Fockian, in the spirit of the Bloch-equation. Chiroptical cross-sections computed by this novel π-electron method improve upon first-neighbor TB considerably, with no increase in computational cost. Computed VROA spectra of chiral fullerenes, such as C76 and C28, are reported for the first time, both by conventional linear response SCF and effective π-electron models.
Baiardi, A; Paoloni, L; Barone, V; Zakrzewski, V G; Ortiz, J V
2017-07-11
The analysis of photoelectron spectra is usually facilitated by quantum mechanical simulations. Because of the recent improvement of experimental techniques, the resolution of experimental spectra is rapidly increasing, and the inclusion of vibrational effects is usually mandatory to obtain a reliable reproduction of the spectra. With the aim of defining a robust computational protocol, a general time-independent formulation to compute different kinds of vibrationally resolved electronic spectra has been generalized to also support photoelectron spectroscopy. The electronic structure data underlying the simulation are computed using different electron propagator approaches. In addition to the more standard approaches, a new and robust implementation of the second-order self-energy approximation of the electron propagator based on a transition operator reference (TOEP2) is presented. To validate our implementation, a series of molecules has been used as test cases. The result of the simulations shows that, for ultraviolet photoionization spectra, the more accurate nondiagonal approaches are needed to obtain a reliable reproduction of vertical ionization energies but that diagonal approaches are sufficient for energy gradients and pole strengths. For X-ray photoelectron spectroscopy, the TOEP2 approach, besides being more efficient, is also the most accurate in the reproduction of both vertical ionization energies and vibrationally resolved bandshapes.
Energy Technology Data Exchange (ETDEWEB)
Lewis, Nicholas H. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dong, Hui [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliver, Thomas A. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-09-28
Two dimensional electronic spectroscopy has proven to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.
Energy Technology Data Exchange (ETDEWEB)
Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States)
2015-09-28
Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.
Struts, A. V.; Barmasov, A. V.; Brown, M. F.
2015-05-01
Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.
Nataraj, A.; Balachandran, V.; Karthick, T.
2013-01-01
In this work, the vibrational spectral analysis was carried out using Raman and infrared spectroscopy in the range 4000-400 cm-1 and 3500-100 cm-1, respectively, for the 2-hydroxy-5-bromobenzaldehyde (HBB). The experimental spectra were recorded in the solid phase. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-311G++(d,p) method and basis set. Normal co-ordinate calculations were performed with the DFT force field corrected by a recommended set of scaling factors yielding fairly good agreement between observed and calculated frequencies. Simulation of infrared and Raman spectra utilizing the results of these calculations led to excellent overall agreement with the observed spectral patterns. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The optimized geometric parameters (bond lengths and bond angles) were compared with experimental values of related compound. The stability of the molecule arising from hyper conjugative interactions and the charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (χ), electrophilicity index (ω), hardness (η), chemical potential (μ), and first electron excitation (τ) are all correlated with the HOMO and LUMO energies with their molecular properties. These show that charge transfer occurs within the molecule. Furthermore, molecular electrostatic potential maps (MESP) of the molecule have been calculated.
Vibrational spectroscopy in the electron microscope.
Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A
2014-10-09
Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.
Vibrationally coupled electron transport through single-molecule junctions
Energy Technology Data Exchange (ETDEWEB)
Haertle, Rainer
2012-04-26
Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting
Alling, BjöRn
We report the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron employing the disordered local moments molecular dynamics (DLM-MD). Vibrations strongly affect the distribution of local magnetic moments and the electronic density of states in the paramagnetic regime. When the coupling between vibrations and magnetism is taken into account at the γ- δ transition temperature (1662 K), the lattice distortions cause very similar mean magnetic moments and total electronic density of states of both bcc and fcc structures. Consequently, our simulations suggest that at the γ- δ transition temperature, electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe. In the next step, going beyond the approximation of magnetism as an adiabatically fast degree of freedom, we study paramagnetic CrN using a combination of atomistic spin dynamics and ab-initio molecular dynamics. We demonstrate how the relaxation time scales of the transverse spin dynamics and atomic vibrations are rather similar and study the impact of their explicit coupling on properties such as pair-correlation functions, potential energies, and trajectories.
Final Report: Vibrational Dynamics in Photoinduced Electron Transfer
Energy Technology Data Exchange (ETDEWEB)
Kenneth G. Spears
2006-04-19
The objective of this grant was to understand how molecular vibrational states (geometry distortions) are involved in photoinduced electron transfer rates of molecules. This subject is an important component of understanding how molecular absorbers of light convert that energy into charge separation. This is important because the absorption usually excites molecular vibrations in a new electronic state prior to electron transfer to other molecules or semiconductor nanoparticles, as in some types of solar cells. The speeds of charge separation and charge recombination are key parameters that require experiments such as those in this work to test the rules governing electron transfer rates. Major progress was made on this goal. Some of the molecular structures selected for developing experimental data were bimolecular charge transfer complexes that contained metals of cobalt or vanadium. The experiments used the absorption of an ultrafast pulse of light to directly separate charges onto the two different molecular parts of the complex. The charge recombination then proceeds naturally, and one goal was to measure the speed of this recombination for different types of molecular vibrations. We used picosecond and femtosecond duration pulses with tunable colors at infrared wavelengths to directly observe vibrational states and their different rates of charge recombination (also called electron transfer). We discovered that different contact geometries in the complexes had very different electron transfer rates, and that one geometry had a significant dependence on the amount of vibration in the complex. This is the first and only measurement of such rates, and it allowed us to confirm our interpretation with a number of molecular models and test the sensitivity of electron transfer to vibrational states. This led us to develop a general theory, where we point out how molecular distortions can change the electron transfer rates to be much faster than prior theories
Directory of Open Access Journals (Sweden)
Ying Chen
2016-01-01
Full Text Available Prognostic of electronic device under vibration condition can help to get information to assist in condition-based maintenance and reduce life-cycle cost. A prognostic and remaining life prediction method for electronic devices under random vibration condition is proposed. Vibration response is measured and monitored with acceleration sensor and OMA parameters, including vibration resonance frequency, especially first-order resonance frequency, and damping ratio is calculated with cross-power spectrum density (CPSD method and modal parameter identification (MPI algorithm. Steinberg vibration fatigue model which considers transmissibility factor is used to predict the remaining life of electronic component. Case study with a test board is carried out and remaining life is predicted. Results show that with this method the vibration response characteristic can be monitored and predicted.
Energy Technology Data Exchange (ETDEWEB)
Tarana, Michal [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); JILA, University of Colorado and NIST, Boulder, Colorado 80309-0440 (United States); Houfek, Karel; Horacek, Jiri [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, Prague (Czech Republic); Fabrikant, Ilya I. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)
2011-11-15
We present a study of dissociative electron attachment and vibrational excitation processes in electron collisions with the CF{sub 3}Cl molecule. The calculations are based on the two-dimensional nuclear dynamics including the C-Cl symmetric stretch coordinate and the CF{sub 3} symmetric deformation (umbrella) coordinate. The complex potential energy surfaces are calculated using the ab initio R-matrix method. The results for dissociative attachment and vibrational excitation of the umbrella mode agree quite well with experiment whereas the cross section for excitation of the C-Cl symmetric stretch vibrations is about a factor-of-three too low in comparison with experimental data.
Actively controlled vibration welding system and method
Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An
2013-04-02
A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.
DEFF Research Database (Denmark)
Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel
2011-01-01
, benzene, and cyanoanthracene have been simulated, and most notably, the increase in the spectral intensity for the lowest excited state transition as the temperature is increased observed experimentally is well reproduced. In addition, this method has been extended to treat luminescent processes also...
Symmetry-broken effects on electron momentum spectroscopy caused by adiabatic vibration
Zhu, Yinghao; Ma, Xiaoguang; Lou, Wenhua; Wang, Meishan; Yang, Chuanlu
2017-11-01
The vibronic coupling effect is usually studied by invoking the breakdown of Born-Oppenheimer approximation. The present study shows that the symmetry-broken effect induced by nuclei vibrations can also lead strong impact on the electronic states under the framework of Born-Oppenheimer approximation. This adiabatic-invoking vibrational effect on electron momentum spectroscopy of ethylene (C2H4), ethane (C2H6) and methanol (CH3OH) was studied with quantum mechanical method. The results show that electron momentum spectroscopy of localized electrons, especially core electrons in axial symmetric geometry molecules can be affected unusually and strongly by several asymmetric vibrational modes.
Passively damped vibration welding system and method
Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao
2013-04-02
A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.
Energy Technology Data Exchange (ETDEWEB)
Witek, Henryk A.; Irle, Stephen; Zheng, Guishan; De Jong, Wibe A.; Morokuma, Keiji
2006-12-07
The self-consistent charge density-functional tight-binding (SCC-DFTB) method is employed for studying various molecular properties of small fullerenes: C₂₈, C₆₀, and C₇₀. The computed optimized bond distances, vibrational infrared and Raman spectra, vibrational densities of states, and electronic densities of states are compared with experiment (where available) and density functional theory (DFT) calculations using various basis sets. The presented DFT benchmark calculations using the correlation-consistent polarized valence triple zeta (cc-pVTZ) basis set of Dunning are at present the most extensive calculations on harmonic frequencies of these species. Possible limitations of the SCC-DFTB method for the prediction of molecular vibrational and optical properties are discussed. The presented results suggest that SCC-DFTB is a computationally feasible and reliable method for predicting vibrational and electronic properties of such carbon nanostructures comparable in accuracy with small to medium size basis set DFT calculations at the computational cost of standard semiempirical methods.
DFT studies on the vibrational and electronic spectra of acetylsalicylic acid
Ye, Yunfeng; Tang, Guodong; Han, Yonghong; Culnane, Lance F.; Zhao, Jianyin; Zhang, Yu
2016-05-01
The following is a theoretical and experimental study on the vibrational and electronic properties of acetylsalicylic acid (ASA). Vibrational information was obtained by FT-IR and Raman spectroscopy which agree well with harmonic vibrational frequency calculations. The calculations were carried out using density functional theory B3LYP methods with 6-311G** and LANL2DZ basis sets. The vibrational assignments were calculated by Gaussview. Absorption UV-Vis experiments of ASA reveal three maximum peaks at 203, 224 and 277 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311G**.
Low cost subpixel method for vibration measurement
Energy Technology Data Exchange (ETDEWEB)
Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)
2014-05-27
Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.
Ultrafast electronic relaxation and vibrational dynamics in a polyacetylene derivative
Kobayashi, Takayoshi; Iiyama, Tsugumasa; Okamura, Kotaro; Du, Juan; Masuda, Toshio
2013-04-01
Real-time vibrational spectra in a polyacetylene derivative, poly[o-TFMPA([o-(trifluoromethyl) phenyl]acetylene)] in a broad electronic spectral region were observed using a sub-7-fs laser. Using the frequencies and initial phases of vibrational modes obtained by the spectroscopy, the assignment of the wavepackets was made. From the first moment, Huang-Rhys parameters were determined for six most prominent modes, which characterize the potential hypersurface composed of multi-dimensional vibrational mode spaces.
Vibration isolation techniques suitable for portable electronic speckle pattern interferometry
Findeis, Dirk M.; Gryzagoridis, Jasson; Rowland, David R.
2002-06-01
Electronic Speckle Pattern Interferometry (ESPI) and Digital Shearography are optical interference techniques, suitable for non-destructive inspection procedures. Due to the stringent vibration isolation conditions required for ESPI, the technique is mainly suited for laboratory based inspection procedures, which cannot be said for Digital Shearography. On the other hand, the interference patterns obtained using ESPI exhibit better fringe definition and contrast than those obtained using Digital Shearography. The image quality of Digital Shearography can be improved by introducing phase stepping and unwrapping techniques, but these methods add a level of complexity to the inspection system and reduce the image refresh rate of the overall process. As part of a project to produce a low cost portable ESPI system suitable for industrial applications, this paper investigates various methods of minimizing the impact of environmental vibration on the ESPI technique. This can be achieved by effectively 'freezing' the object movement during the image acquisition process. The methods employed include using a high-powered infra-red laser, which is continuously pulsed using an electronic signal generator as well as a mechanical chopper. The effect of using a variable shutter speed camera in conjunction with custom written software acquisition routines is also studied. The techniques employed are described and are applied to selected samples. The initial results are presented and analyzed. Conclusions are drawn and their impact on the feasibility of a portable ESPI system discussed.
Vibrational and electronic spectroscopic studies of melatonin
Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.
2014-01-01
We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.
Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration
Irvine, T.
2016-01-01
Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.
Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration
Irvine, T.
2016-09-01
Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested according. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.
Laporta, V; Tennyson, J; Celiberto, R; 10.1088/0963-0252/21/4/045005
2012-01-01
Resonant vibrational and rotation-vibration excitation cross sections for electron-CO scattering are calculated in the 0-10 eV energy range for all 81 vibrational states of CO, assuming that the excitation occur via the 2{\\Pi} shape resonance. Static exchange plus polarization calculations performed using the R-matrix method are used to estimate resonance positions and widths as functions of internuclear separation. The effects of nuclear motion are considered using a local complex potential model. Good agreement is obtained with available experimental data on excitation from the vibrational ground state. Excitation rates and cross sections are provided as a functions of the initial CO vibrational state for all ground state vibrational levels.
Vibrationally assisted electron transfer mechanism of olfaction: myth or reality?
Solov'yov, Ilia A; Chang, Po-Yao; Schulten, Klaus
2012-10-28
Smell is a vital sense for animals. The mainstream explanation of smell is based on recognition of the odorant molecules through characteristics of their surface, e.g., shape, but certain experiments suggest that such recognition is complemented by recognition of vibrational modes. According to this suggestion an olfactory receptor is activated by electron transfer assisted through odorant vibrational excitation. The hundreds to thousands of different olfactory receptors in an animal recognize odorants over a discriminant landscape with surface properties and vibrational frequencies as the two major dimensions. In the present paper we introduce the vibrationally assisted mechanism of olfaction and demonstrate for several odorants that, indeed, a strong enhancement of an electron tunneling rate due to odorant vibrations can arise. We discuss in this regard the influence of odorant deuteration and explain, thereby, recent experiments performed on Drosophila melanogaster. Our demonstration is based on known physical properties of biological electron transfer and on ab initio calculations on odorants carried out for the purpose of the present study. We identify a range of physical characteristics which olfactory receptors and odorants must obey for the vibrationally assisted electron transfer mechanism to function. We argue that the stated characteristics are feasible for realistic olfactory receptors, noting, though, that the receptor structure presently is still unknown, but can be studied through homology modeling.
Method and apparatus for vibrating a substrate during material formation
Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA
2008-10-21
A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.
Prabakaran, A.; Muthu, S.
2014-01-01
In the present work, the characterization of 7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethylpurine-2,6-dione (7DDMP26D) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of 7DDMP26D were recorded in solid phase. The UV-Vis absorption spectrum of the 7DDMP26D was recorded in the range of 200-400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of 7DDMP26D in the ground state have been calculated by HF and DFT methods using 6-31G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO). The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time-depended DFT (TD-DFT) approach. The other molecular properties like electrostatic potential (ESP), Fukui function and thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.
Electronic and Vibrational Coherences in Algal Light-Harvesting Proteins
Directory of Open Access Journals (Sweden)
Scholes Gregory D.
2013-03-01
Full Text Available We present broadband two-dimensional electronic spectra of a lightharvesting protein from photosynthetic algae. Analysis of the spectra show that the amplitude of the main cross peak oscillates as a function of the waiting time period. Both electronic coupling and intramolecular vibrational modes, and their mixture, can lead to such oscillations. Using predictions based on models of four-level systems, we describe ways to distinguish electronic from vibrational contributions to the coherence and find that both types of coupling contribute to the measured dynamics.
Energy Technology Data Exchange (ETDEWEB)
Wang, Haobin, E-mail: haobin.wang@ucdenver.edu [Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364 (United States); Thoss, Michael [Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 (Germany)
2016-12-20
The accuracy of the noninteracting electron approximation is examined for a model of vibrationally coupled electron transport in single molecule junction. In the absence of electronic-vibrational coupling, steady state transport in this model is described exactly by Landauer theory. Including coupling, both electronic-vibrational and vibrationally induced electron–electron correlation effects may contribute to the real time quantum dynamics. Using the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory to describe nuclear dynamics exactly while maintaining the noninteracting electron approximation for the electronic dynamics, the correlation effects are analyzed in different physical regimes. It is shown that although the noninteracting electron approximation may be reasonable for describing short time dynamics, it does not give the correct long time limit for certain initial conditions.
Emitted vibration measurement device and method
Gisler, G. L.
1986-10-01
This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.
Bavigadda, Viswanath; Moothanchery, Mohesh; Pramanik, Manojit; Mihaylova, Emilia; Toal, Vincent
2017-03-01
An out-of-plane sensitive electronic speckle pattern interferometer (ESPI) using holographic optical elements (HOEs) for studying rotations and vibrations is presented. Phase stepping is implemented by modulating the wavelength of the laser diode in a path length imbalanced interferometer. The time average ESPI method is used for vibration measurements. Some factors influencing the measurements accuracy are reported. Some advantages and limitations of the system are discussed.
Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).
Citir, Murat; Altinay, Gokhan; Metz, Ricardo B
2006-04-20
Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.
Vibrational kinetics of electronically excited states in H2 discharges
Colonna, Gianpiero; Pietanza, Lucia D.; D'Ammando, Giuliano; Celiberto, Roberto; Capitelli, Mario; Laricchiuta, Annarita
2017-11-01
The evolution of atmospheric pressure hydrogen plasma under the action of repetitively ns electrical pulse has been investigated using a 0D state-to-state kinetic model that self-consistently couples the master equation of heavy particles and the Boltzmann equation for free electrons. The kinetic model includes, together with atomic hydrogen states and the vibrational kinetics of H2 ground state, vibrational levels of singlet states, accounting for the collisional quenching, having a relevant role because of the high pressure. The mechanisms of excitations, radiative decay and collisional quenching involving the excited H2 states and the corresponding cross sections, integrated over the non-equilibrium electron energy distribution function (EEDF) to obtain kinetic rates, are discussed in the light of the kinetic simulation results, i.e. the time evolution during the pulse of the plasma composition, of the EEDF and of the vibrational distributions of ground and singlet excited states.
Low energy electron impact vibrational excitation of acetylene
Patra, Sigma; Hargreaves, Leigh; Khakoo, Murtadha
2016-05-01
Experimental differential cross sections for the vibration excitation of the four fundamental modes of acetylene at low incident electron energies from 1 eV to 20 eV and scattering angles of 10o to 130o will be presented. The results will be compared to results available in the literature. Funded by NSF-AMOP-RUI Grant.
Inelastic vibrational signals in electron transport across graphene nanoconstrictions
DEFF Research Database (Denmark)
Gunst, Tue; Markussen, Troels; Stokbro, Kurt
2016-01-01
We present calculations of the inelastic vibrational signals in the electrical current through a graphene nanoconstriction. We find that the inelastic signals are only present when the Fermi-level position is tuned to electron transmission resonances, thus, providing a fingerprint which can link ...
DEFF Research Database (Denmark)
Kuznetsov, A.M.; Ulstrup, Jens
2002-01-01
, corresponding to the fully diabatic limit. The rectification process then reduces to a sequence of vibrationally relaxed single-electron transfer steps. In the limits where the interactions are strong, denoted as the partially and fully adiabatic limits, the character of the rectification process is different......, and electron flow proceeds coherently, without vibrational relaxation. In still another class of mechanisms the electronic level broadening of either donor or acceptor from the adjacent electrode is so strong that it is comparable to the vibrational broadening. The process then reduces to a three...
Alling, B.; Kormann, F.H.W.; Grabowski, B; Glensk, A; Abrikosov, I.A.
2016-01-01
We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite
Analysis of Vibration Diagnostics Methods for Induction Motors
Directory of Open Access Journals (Sweden)
A. P. Kalinov
2012-01-01
Full Text Available The paper presents an analysis of existing vibration diagnostics methods. In order to evaluate an efficiency of method application the following criteria have been proposed: volume of input data required for establishing diagnosis, data content, software and hardware level, execution time for vibration diagnostics. According to the mentioned criteria a classification of vibration diagnostics methods for determination of their advantages and disadvantages, search for their development and improvement has been presented in paper. The paper contains a comparative estimation of methods in accordance with the proposed criteria. According to this estimation the most efficient methods are a spectral analysis and spectral analysis of the vibration signal envelope.
Large electron transfer rate effects from the Duschinsky mixing of vibrations
DEFF Research Database (Denmark)
Sando, Gerald M.; Spears, Kenneth G; Hupp, Joseph T
2001-01-01
vibrations are very important. The Duschinsky effect arises when two electronic states have vibrational normal mode coordinate systems that are rotated and translated relative to each other. We use a conventional quantum rate model for ET, and the examples include 6-8 vibrations, where two vibrational modes...
Methods of performing downhole operations using orbital vibrator energy sources
Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.
2004-02-17
Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.
Amplifying vibrational circular dichroism by manipulation of the electronic manifold.
Domingos, Sérgio R; Panman, Matthijs R; Bakker, Bert H; Hartl, Frantisek; Buma, Wybren J; Woutersen, Sander
2012-01-11
Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification. This journal is © The Royal Society of Chemistry 2012
Electronic and vibrational circular dichroism spectra of (R)-(-)-apomorphine
Energy Technology Data Exchange (ETDEWEB)
Abbate, Sergio, E-mail: abbate@med.unibs.it [Dipartimento di Scienze Biomediche e Biotecnologie, Universita di Brescia, Viale Europa 11, 25123 Brescia (Italy); CNISM, Consorzio Interuniversitario Scienze Fisiche della Materia, Via della Vasca Navale 84, 00146 Roma (Italy); Longhi, Giovanna; Lebon, France [Dipartimento di Scienze Biomediche e Biotecnologie, Universita di Brescia, Viale Europa 11, 25123 Brescia (Italy); CNISM, Consorzio Interuniversitario Scienze Fisiche della Materia, Via della Vasca Navale 84, 00146 Roma (Italy); Tommasini, Matteo [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Unita di Ricerca del Politecnico di Milano (Dip. CMIC), Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2012-09-11
Highlights: Black-Right-Pointing-Pointer ECD and VCD Spectra of (R)-(-)-apomorphine measured in various solvents. Black-Right-Pointing-Pointer DFT calculations allow to study the protonation state and conformations. Black-Right-Pointing-Pointer Contributions from catechol OH vibrations to the VCD spectra is studied. -- Abstract: Apomorphine is a chiral drug molecule; notwithstanding its extraordinary importance, little attention has been paid to the characterization of its chiroptical properties. Here we report on its electronic circular dichroism (ECD) spectra, recorded in methanol and water, and vibrational circular dichroism (VCD) in methanol and dimethyl sulfoxide (DMSO) solutions. Density functional theory (DFT) calculations have allowed us to interpret the spectra and to evaluate the role of possible conformations, charge-states and interactions with counter ions.
Kosov, Daniel S.
2017-09-01
Quantum transport of electrons through a molecule is a series of individual electron tunneling events separated by stochastic waiting time intervals. We study the emergence of temporal correlations between successive waiting times for the electron transport in a vibrating molecular junction. Using the master equation approach, we compute the joint probability distribution for waiting times of two successive tunneling events. We show that the probability distribution is completely reset after each tunneling event if molecular vibrations are thermally equilibrated. If we treat vibrational dynamics exactly without imposing the equilibration constraint, the statistics of electron tunneling events become non-renewal. Non-renewal statistics between two waiting times τ1 and τ2 means that the density matrix of the molecule is not fully renewed after time τ1 and the probability of observing waiting time τ2 for the second electron transfer depends on the previous electron waiting time τ1. The strong electron-vibration coupling is required for the emergence of the non-renewal statistics. We show that in the Franck-Condon blockade regime, extremely rare tunneling events become positively correlated.
THz-SAR Vibrating Target Imaging via the Bayesian Method
Directory of Open Access Journals (Sweden)
Bin Deng
2017-01-01
Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.
Possible interaction between thermal electrons and vibrationally excited N2 in the lower E-region
Directory of Open Access Journals (Sweden)
K.-I. Oyama
2011-03-01
Full Text Available As one of the tasks to find the energy source(s of thermal electrons, which elevate(s electron temperature higher than neutral temperature in the lower ionosphere E-region, energy distribution function of thermal electron was measured with a sounding rocket at the heights of 93–131 km by the applying second harmonic method. The energy distribution function showed a clear hump at the energy of ~0.4 eV. In order to find the reason of the hump, we conducted laboratory experiment. We studied difference of the energy distribution functions of electrons in thermal energy range, which were measured with and without EUV radiation to plasma of N2/Ar and N2/O2 gas mixture respectively. For N2/Ar gas mixture plasma, the hump is not clearly identified in the energy distribution of thermal electrons. On the other hand for N2/O2 gas mixture, which contains vibrationally excited N2, a clear hump is found when irradiated by EUV. The laboratory experiment seems to suggest that the hump is produced as a result of interaction between vibrationally excited N2 and thermal electrons, and this interaction is the most probable heating source for the electrons of thermal energy range in the lower E-region. It is also suggested that energy distribution of the electrons in high energy part may not be Maxwellian, and DC probe measures the electrons which are non Maxwellian, and therefore "electron temperature" is calculated higher.
Oliver, Thomas A A; Lewis, Nicholas H C; Fleming, Graham R
2014-07-15
Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics.
Theoretical methods for small-molecule ro-vibrational spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lodi, Lorenzo; Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.u [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom)
2010-07-14
The solution of the first principle equations of quantum mechanics provides an increasingly accurate and predictive approach for solving problems involving atoms and small molecules. A general introduction to the methods used for the ab initio calculation of rotational-vibrational spectra of small molecules is presented, with a strong focus on triatomic systems. The use of multi-reference electronic structure methods to compute molecular potential-energy and dipole-moment surfaces is discussed. Issues related to the construction of such surfaces and the inclusion of corrections due to relativistic and non-Born-Oppenheimer effects are reviewed. The derivation of exact, internal-coordinate nuclear-motion-effective Hamiltonians and their solution using a discrete-variable representation are discussed. Sample results for the water molecules are used throughout the tutorial to illustrate the theoretical and numerical issues in such calculations. (phd tutorial)
Electronic Properties of Si-Hx Vibrational Modes at Si Waveguide Interface.
Bashouti, Muhammad Y; Yousefi, Peyman; Ristein, Jürgen; Christiansen, Silke H
2015-10-01
Attenuated total reflectance (ATR) and X-ray photoelectron spectroscopy in suite with Kelvin probe were conjugated to explore the electronic properties of Si-Hx vibrational modes by developing Si waveguide with large dynamic detection range compared with conventional IR. The Si 2p emission and work-function related to the formation and elimination of Si-Hx bonds at Si surfaces are monitored based on the detection of vibrational mode frequencies. A transition between various Si-Hx bonds and thus related vibrational modes is monitored for which effective momentum transfer could be demonstrated. The combination of the aforementioned methods provides for results that permit a model for the kinetics of hydrogen termination of Si surfaces with time and advanced surface characterizing of hybrid-terminated semiconducting solids.
First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine
Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.
2017-07-01
A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.
Vibrational and electronic properties of 4‧-halomethyl-2-biphenylcarbonitrile compounds
Shankar Rao, Y. B.; Veeraiah, V.; Sundius, Tom; Chaitanya, Kadali
2017-09-01
In this paper we studied the structural, vibrational and electronic properties of the 4‧-bromomethyl-2-biphenylcarbonitrile (BMBP) 4‧-chloromethyl-2-biphenylcarbonitrile (CMBP) and 4‧-fluoromethyl-2-biphenylcarbonitrile (FMBP) compounds using experimental and theoretical methods. The FT-IR and FT-Raman spectra of BMBP in solid phase were recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The UV absorption spectrum of BMBP was recorded in dichloromethane and methanol solvents in the range 180-400 nm. The theoretical spectral properties of title compounds were simulated using density functional theory (DFT) and time dependent DFT methods. Scaling of the vibrational frequencies was carried out with the MOLVIB program using multiple scaling factors and assignment to each vibrational frequency was consigned on the basis of potential energy distribution (PED). The electronic spectrum of BMBP in two different solvents (methanol and dichloromethane), calculated at the CAM-B3LYP/6-31G(d,p) level compares well with the experimental data and validates the current method for predicting the absorption spectrum of CMBP and FMBP. Furthermore, the electronic, nonlinear optical and thermodynamics properties of the three compounds were discussed in detailed.
Alternative methods for computing sound radiation from vibrating surfaces
Bernhard, R. J.; Gardner, B. K.; Smith, D. C.
1987-01-01
The merits of various numerical and experimental methods for computing sound fields radiated from vibrating structures are examined. The finite difference method, the finite element method, direct boundary element method, indirect boundary element near-field acoustic holography, two-microphone methods, and spatial transformation of sound fields are considered. The proper utilization of the methods is discussed.
Proposed method of reducing ground vibration from delay blasting
Energy Technology Data Exchange (ETDEWEB)
Coursen, D.L. [Dynatec Explosives Consultants, Inc., Espanola, NM (United States)
1995-12-31
In the proposed method, the charges are elongated and arranged in one or more arrays. The orientation of each charge in an array, its velocity of propagation of explosion, and the velocity of propagation of vibration in the formation are such that, at an outlying location where vibration is to be reduced, the onset of vibration from the explosion of the first negligibly small increment of each charge arrives a finite time before that from the explosion of the last negligibly small increment of that charge. The charges of each array are fired in accurately-timed sequence, with the times between initiations chosen so that, at the outlying location, the onset of vibration from the explosion of the last small increment of each charge, except the last charge, arrives a negligibly small increment of time before the onset of vibration from the explosion of the first negligibly small increment of the succeeding charge. With such timing, vibration may be reduced at the widest range of locations by tilting the boreholes so that the terminal end of each charge is directly above or below the terminal end of the succeeding charge. With the proposed method, vibration can be expected to decrease with increasing charge length, decreasing velocity of propagation of explosion, increasing number of charges per array, decreasing reverberation time, increasing precision of initiation timing, and increasing homogeneity of the rock. Computer modeling of the resulting vibration from single arrays having a total duration of explosion longer than the reverberation time shows a starting transient and an ending transient with little or no vibration between them. For patterns containing more than one array, the modeling indicates that the recommended timing between arrays can largely eliminate the vibration from the starting and ending transients as well when they are dominated by a single frequency.
A vibration correction method for free-fall absolute gravimeters
Qian, J.; Wang, G.; Wu, K.; Wang, L. J.
2018-02-01
An accurate determination of gravitational acceleration, usually approximated as 9.8 m s‑2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.
Nightmare from which you will never awake: Electronic to vibrational spectra!
Energy Technology Data Exchange (ETDEWEB)
De Silva, Nuwon [Iowa State Univ., Ames, IA (United States)
2013-01-01
The theoretical background of ab initio methods and density functional theory is provided. The anharmonicity associated with weakly bound metal cation dihydrogen complexes is examined using the vibrational self-consistent field (VSCF) method and the interaction between a hydrogen molecule and a metal cation is characterized. A study of molecular hydrogen clustering around the lithium cation and their accompanied vibrational anharmonicity employing VSCF is illustrated. A qualitative interpretation is provided of solvent-induced shifts of amides and simulated electronic absorption spectra using the combined time-dependent density functional theory/effective fragment potential method (TDDFT/EFP). An excited-state solvent assisted quadruple hydrogen atom transfer reaction of a coumarin derivative is elucidated using micro solvated quantum mechanical (QM) water and macro solvated EFP water. A dispersion correction to the QM-EFP1 interaction energy is presented.
Methods of Identification of Nonlinear Mechanical Vibrating Systems
Plakhtienko, N. P.
2000-12-01
Methods for determination of the dynamic characteristics and parameters of mechanical vibrating systems by processing experimental data on controlled vibrations are presented. These methods are intended for construction of mathematical models of objects to be identified and classed as parametric and nonparametric methods. The quadrature formulas of the nonparametric-identification method are derived by inverting the integral parameters of approximate analytical solutions of nonlinear differential equations. The parametric-identification method involves setting up and solving systems of linear algebraic equations in the sought-for inertia, stiffness, and dissipation parameters by integrating experimental processes using special weighting functions. Depending on the type of the nonlinearity of the vibrating system and the method of representing experimental processes, the weighting functions can be oriented toward displacement, velocity, or acceleration gauges. The results of studies made mainly at the Institute of Mechanics of the National Academy of Sciences of Ukraine are presented
Dai, Peng; Jiang, Nan; Tan, Ren-Xiang
2016-01-01
Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.
Reducing vibration transfer from power plants by active methods
Kiryukhin, A. V.; Milman, O. O.; Ptakhin, A. V.
2017-12-01
The possibility of applying the methods of active damping of vibration and pressure pulsations for reducing their transfer from power plants into the environment, the seating, and the industrial premises are considered. The results of experimental works implemented by the authors on the active broadband damping of vibration and dynamic forces after shock-absorption up to 15 dB in the frequency band up to 150 Hz, of water pressure pulsations in the pipeline up to 20 dB in the frequency band up to 600 Hz, and of spatial low-frequency air noise indoors of a diesel generator at discrete frequency up to 20 dB are presented. It is shown that a reduction of vibration transfer through a vibration-isolating junction (expansion joints) of pipelines with liquid is the most complicated and has hardly been developed so far. This problem is essential for vibration isolation of power equipment from the seating and the environment through pipelines with water and steam in the power and transport engineering, shipbuilding, and in oil and gas pipelines in pumping stations. For improving efficiency, reducing the energy consumption, and decreasing the overall dimensions of equipment, it is advisable to combine the work of an active system with passive damping means, the use of which is not always sufficient. The executive component of the systems of active damping should be placed behind the vibration isolators (expansion joints). It is shown that the existence of working medium and connection of vibration with pressure pulsations in existing designs of pipeline expansion joints lead to growth of vibration stiffness of the expansion joint with the environment by two and more orders as compared with the static stiffness and makes difficulties for using the active methods. For active damping of vibration transfer through expansion joints of pipelines with a liquid, it is necessary to develop expansion joint structures with minimal connection of vibrations and pulsations and minimal
Vehicle Vibration Analysis in Changeable Speeds Solved by Pseudoexcitation Method
Directory of Open Access Journals (Sweden)
Li-Xin Guo
2010-01-01
Full Text Available The vehicle driving comfort has become one of the important factors of vehicle quality and receives increasing attention. In this paper, the mechanical and mathematical models of the half-car, five degrees of freedom (DOF of a vehicle were established, as well as the pseudoexcitation model of road conditions for the front wheel and the rear wheel. By the pseudoexcitation method, the equations of transient response and power spectrum density were established. After numerical simulation to vehicle vibration response of changeable driving, the results show that the pseudoexcitation method is more convenient than the traditional method and effectively solves the smoothness computation problems of vehicles while the pseudoexcitation method is used to analyze vehicle vibration under nonstationary random vibration environments.
Mihaylova, Emilia; Naydenova, Izabela; Martin, Suzanne; Toal, Vincent
2004-01-01
Electronic speckle pattern shearing interferometry (ESPSI) is superior to Electronic speckle pattern interferometry (ESPI) when strain distribution, arising from object deformation or vibration, need to be measured. This is because shearography provides data directly related to the spatial derivatives of the displacement. Further development of ESPSI systems could be beneficial for wider application to the measurement of mechanical characteristics of vibrating objects. Two electronic speckle ...
DEFF Research Database (Denmark)
Olsen, Thomas; Schiøtz, Jakob
2010-01-01
We propose a mechanism which allows one to control the transmission of single electrons through a molecular junction. The principle utilizes the emergence of transmission sidebands when molecular vibrational modes are coupled to the electronic state mediating the transmission. We will show that i....... As an example we perform a density-functional theory analysis of a benzene molecule between two Au(111) contacts and show that exciting a particular vibrational mode can give rise to transmission of a single electron....
Jiang, Chi-Lun
2015-01-01
With a 600mk homebuilt UHV STM system, we studied molecular vibration at the solid surface with inelastic electron tunneling spectroscopy (IETS) of Acetylene single molecules adsorbed on Cu(100) surface and revealed five new vibrational modes that were previously inaccessible to STM-IETS at 8K temperature. The identification of vibrational IETS features with normalized conductance change (Δσ/σ) as low as 0.24% was demonstrated. Facilitated by the high energy resolution, we also revealed the a...
Vibration analysis of structural elements using differential quadrature method
Directory of Open Access Journals (Sweden)
Mohamed Nassar
2013-01-01
Full Text Available The method of differential quadrature is employed to analyze the free vibration of a cracked cantilever beam resting on elastic foundation. The beam is made of a functionally graded material and rests on a Winkler–Pasternak foundation. The crack action is simulated by a line spring model. Also, the differential quadrature method with a geometric mapping are applied to study the free vibration of irregular plates. The obtained results agreed with the previous studies in the literature. Further, a parametric study is introduced to investigate the effects of geometric and elastic characteristics of the problem on the natural frequencies.
Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule
Laporta, V; Celiberto, R
2016-01-01
Vibrational-excitation cross sections of ground electronic state of carbon dioxide molecule by electron-impact through the CO2-(2\\Pi) shape resonance is considered in the separation of the normal modes approximation. Resonance curves and widths are computed for each vibrational mode. The calculations assume decoupling between normal modes and employ the local complex potential model for the treatment of the nuclear dynamics, usually adopted for the electron-scattering involving diatomic molecules. Results are presented for excitation up to 10 vibrational levels in each mode and comparison with data present in the literature is discussed.
Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.
Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L
2016-12-16
We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.
Gunasekaran, Sethu; Rajalakshmi, K.; Kumaresan, Subramanian
2013-08-01
The Fourier transform (FT-IR) spectrum of Levofloxacin was recorded in the region 4000-400 cm-1 and a complete vibrational assignment of fundamental vibrational modes of the molecule was carried out using density functional method. The observed fundamental modes have been compared with the harmonic vibrational frequencies computed using DFT (B3LYP) method by employing 6-31 G (d, p) basis sets. The most stable geometry of the molecule under investigation has been determined from the potential energy scan. The first-order hyperpolarizability (βo) and other related properties (μ, αo) of Levofloxacin are calculated using density functional theory (DFT) on a finite field approach. UV-vis spectrum of the molecule was recorded and the electronic properties, such as HOMO and LUMO energies were performed by DFT using 6-31 G (d, p) basis sets. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The other molecular properties like molecular electrostatic potential (MESP), Mulliken population analysis and thermodynamic properties of the title molecule have been calculated.
Elastic scattering and vibrational excitation for electron impact on para-benzoquinone
Jones, D. B.; Blanco, F.; García, G.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; White, R. D.; Brunger, M. J.
2017-12-01
We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ˜80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To
Numerical analysis using state space method for vibration control of ...
African Journals Online (AJOL)
ATHARVA
Numerical analysis using state space method for vibration control of car seat by employing passive and semi active dampers. Udit S. Kotagi1, G.U. Raju1, V.B. Patil2, Krishnaraja G. Kodancha1*. 1Department of Mechanical Engineering, B.V. Bhoomaraddi College of Engineering & Technology, Hubli, Karnataka, INDIA.
Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen, E-mail: karen.hemelsoet@ugent.be [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); De Meyer, Thierry [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium); De Clerck, Karen [Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium)
2014-04-07
A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.
A Comparison of PSD Enveloping Methods for Nonstationary Vibration
Irvine, Tom
2015-01-01
There is a need to derive a power spectral density (PSD) envelope for nonstationary acceleration time histories, including launch vehicle data, so that components can be designed and tested accordingly. This paper presents the results of the three methods for an actual flight accelerometer record. Guidelines are given for the application of each method to nonstationary data. The method can be extended to other scenarios, including transportation vibration.
Disentangling electronic and vibrational coherence in the Phycocyanin-645 light-harvesting complex
Richards, Gethin H; Curmi, Paul M G; Davis, Jeffrey A
2013-01-01
Energy transfer between chromophores in photosynthesis proceeds with near unity quantum efficiency. Understanding the precise mechanisms of these processes is made difficult by the complexity of the electronic structure and interactions with different vibrational modes. Two-dimensional spectroscopy has helped resolve some of the ambiguities and identified quantum effects that may be important for highly efficient energy transfer. Many questions remain, however, including whether the coherences observed are electronic and/or vibrational in nature and what role they play. We utilise a two-colour four-wave mixing experiment with control of the wavelength and polarization to selectively excite specific coherence pathways. For the light-harvesting complex PC645, from cryptophyte algae, we reveal and identify specific contributions from both electronic and vibrational coherences and determine an excited state structure based on two strongly-coupled electronic states and two vibrational modes. Separation of the cohe...
Acoustic vibration modes and electron-lattice coupling in self-assembled silver nanocolumns.
Burgin, J; Langot, P; Arbouet, A; Margueritat, J; Gonzalo, J; Afonso, C N; Vallée, F; Mlayah, A; Rossell, M D; Van Tendeloo, G
2008-05-01
Using ultrafast spectroscopy, we investigated electron-lattice coupling and acoustic vibrations in self-assembled silver nanocolumns embedded in an amorphous Al2O3 matrix. The measured electron-lattice energy exchange time is smaller in the nanocolumns than in bulk silver, with a value very close to that of isolated nanospheres with comparable surface to volume ratio. Two vibration modes were detected and ascribed to the breathing and extensional mode of the nanocolumns, in agreement with numerical simulations.
Nonequilibrium electron-vibration coupling and conductance fluctuations in a C-60 junction
DEFF Research Database (Denmark)
Ulstrup, Soren; Frederiksen, Thomas; Brandbyge, Mads
2012-01-01
displacement. Combined with a vibrational heating mechanism we construct a model from our results that explain the polarity-dependent two-level conductance fluctuations observed in recent scanning tunneling microscopy (STM) experiments [N. Neel et al., Nano Lett. 11, 3593 (2011)]. These findings highlight...... the significance of nonequilibrium effects in chemical bond formation/breaking and in electron-vibration coupling in molecular electronics....
New methods for electron tomography
Ziese, Ulrike
2002-01-01
Electron tomography is a method for obtaining three-dimensional structural information from electron micrographs. It can be applied to a wide range of samples that can be prepared for transmission electron microscopy (TEM)may they be of biological origin like e.g. cryo or thin plastic sections of
Structural, electronic and vibrational properties of lanthanide monophosphide at high pressure
Energy Technology Data Exchange (ETDEWEB)
Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)
2016-05-06
A first-principles plane wave self-consistent method with the ultra-soft-pseudopotential scheme in the framework of the density functional theory (DFT) is performed to study structural, electronic and vibrational properties of LaP for Rock-salt (NaCl/Bl) and Cesium-chloride (CsCl/B2) phases. The instability of Rock-salt (NaCl/Bl) phases around the transition is discussed. Conclusions based on electronic energy band structure, density of state, phonon dispersion and phonon density of states in both phases are outlined. The calculated results are consistence and confirm the successful applicability of quasi-harmonic phonon theory for structural instability studies for the alloys.
Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.
2017-11-01
Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.
Damage-free vibrational spectroscopy of biological materials in the electron microscope.
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.
Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also
Fujihashi, Yuta; Ishizaki, Akihito
2015-01-01
In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and it has been suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with vibrational modes in the resonant condition [J. Chem. Phys. 142, 212403 (2015)]. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures. However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment coupling. In this study, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongl...
Vibrationally Assisted Electron Transfer Mechanism of Olfaction: Myth or Reality?
DEFF Research Database (Denmark)
Solov'yov, Ilia; Chang, Po-Yao; Schulten, Klaus
2012-01-01
Smell is a vital sense for animals. The mainstream explanation of smell is based on recognition of the odorant molecules through characteristics of their surface, e.g., shape, but certain experiments suggest that such recognition is complemented by recognition of vibrational modes. According to t...
Free vibration analysis of dragonfly wings using finite element method
M Darvizeh; A Darvizeh; H Rajabi; A Rezaei
2016-01-01
In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM) is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eac...
A data driven control method for structure vibration suppression
Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei
2018-02-01
High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.
Vibration Based Methods For Damage Detection In Structures
Directory of Open Access Journals (Sweden)
Manoach E.
2016-01-01
Full Text Available Vibration based damage detection methods are among the most popular and promising approaches for health monitoring of structures. In this work a critical review of different methods for damage detection methods of structures is presented. The theoretical bases of the most popular methods based on the changes in the modal properties of the structures are deduced. The review includes the modal displacements, the mode shape slopes, the modal curvatures and the strain energy methods. The efficiency of all these methods is compared by using a finite element analysis of intact and damaged beams. The methods are tested experimentally by using a scanning laser vibrometer to measure the modal properties of specially prepared composite beams with defects. All this methods are compared with the damage detection method based on the analysis of the Poincaré maps of the motion of the structures. Conclusions concerning the advantages and the applicability of the considered methods are deduced.
Free vibration analysis of dragonfly wings using finite element method
Directory of Open Access Journals (Sweden)
M Darvizeh
2016-04-01
Full Text Available In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eachmode shape evaluated and the ratio between numerical natural frequencyand experimental natural frequency presented as damping ratio. Theresults obtain from present method are in good agreement with sameexperimental methods.
Van Dyke, Michael B.
2013-01-01
Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.
Singh, R N; Rawat, Poonam; Sahu, Sangeeta
2015-01-25
In this work, detailed vibrational spectral analysis of ethyl 4-(1-(2-(hydrazinecarbonothioyl)hydrazono)ethyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (EHCHEDPC) molecule has been carried out using FT-IR spectroscopy and potential energy distribution (PED). Theoretical calculations were performed by ab initio RHF and density functional theory (DFT) method, using 6-31G(d,p) and 6-311+G(d,p) basis sets. The other carried outwork cover: structural, thermodynamic properties, electronic transitions, bonding, multiple interaction, chemical reactivity and hyperpolarizability analysis. The results of the calculation were applied to the simulated spectra of (EHCHEDPC), which show excellent agreement with observed spectra. The vibrational analysis shows red shift in both group, the proton donor (pyrrole N-H) and proton acceptor (C=O of ester) indicating the presence of intermolecular hydrogen bonding. Time dependent density functional theory (TD-DFT) has been used to find electronic excitations and their nature. The results of natural bond orbital (NBOs) analysis show the charges transfer and delocalization in various intra- and intermolecular interactions. The binding energy of intermolecular multiple interactions is calculated to be 12.54 kcal mol(-1) using QTAIM calculation. The electronic descriptors analyses reveal the investigated molecule used as precursor for heterocyclic derivatives synthesis. First hyperpolarizability (β0) has been computed to evaluate non-linear optical (NLO) response. Copyright © 2014 Elsevier B.V. All rights reserved.
Selfconsistent vibrational and free electron kinetics for CO2 dissociation in cold plasmas
Capitelli, Mario
2016-09-01
The activation of CO2 by cold plasmas is receiving new theoretical interest thanks to two European groups. The Bogaerts group developed a global model for the activation of CO2 trying to reproduce the experimental values for DBD and microwave discharges. The approach of Pietanza et al was devoted to understand the dependence of electron energy distribution function (eedf) of pure CO2 on the presence of concentrations of electronically and vibrationally excited states taken as parameter. To understand the importance of the vibrational excitation in the dissociation process Pietanza et al compared an upper limit to the dissociation process from a pure vibrational mechanism (PVM) with the corresponding electron impact dissociation rate, the prevalence of the two models depending on the reduced electric field and on the choice of the electron molecule cross section database. Improvement of the Pietanza et al model is being considered by coupling the time dependent Boltzmann solver with the non equilibrium vibrational kinetics of asymmetric mode and with simplified plasma chemistry kinetics describing the ionization/recombination process and the excitation-deexcitation of a metastable level at 10.5eV. A new PVM mechanism is also considered. Preliminary results, for both discharge and post discharge conditions, emphasize the action of superelastic collisions involving both vibrationally and electronically excited states in affecting the eedf. The new results can be used to plan a road map for future developments of numerical codes for rationalizing existing experimental values, as well as, for indicating new experimental situations.
Smart Woven Fabrics With Portable And Wearable Vibrating Electronics
Directory of Open Access Journals (Sweden)
Özdemir Hakan
2015-06-01
Full Text Available The portable and wearable instrumented fabrics capable of measuring biothermal variable is essential for drivers, especially long-distance drivers. Here we report on portable and wearable devices that are able to read the temperature of human body within the woven fabric. The sensory function of the fabric is achieved by temperature sensors, soldered on conductive threads coated with cotton. The presence of stainless steel wires gives these materials conductive properties, enabling the detection of human body temperature and transmitting the signal form sensors to the motors on the fabric. When body temperature decreases, hardware/software platforms send a signal to the vibration motors in order to stimulate the driver. The ‘smart woven fabric’-sensing architecture can be divided into two parts: a textile platform, where portable and wearable devices acquire thermal signals, and hardware/software platforms, to which a sensor sends the acquired data, which send the signals to the vibration motors.
Mode-selective vibrational modulation of charge transport in organic electronic devices
Bakulin, Artem A.
2015-08-06
The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.
Electronic, vibrational, superconducting and thermodynamic properties of cubic antiperovskite ZnNNi3
Tütüncü, H. M.; Srivastava, G. P.
2013-12-01
We present results of ab initio theoretical investigations of the structural and electronic properties of the cubic superconductor ZnNNi? by employing the plane wave pseudopotential method within the generalized gradient approximation. The density of states at the Fermi level is found to be governed by the Ni 3d electrons. A linear-response approach to the density functional theory is used to derive the phonon dispersion curves, vibrational density of states and the electron-phonon coupling parameter. The calculated electron-phonon coupling constant ? and the logarithmically averaged phonon frequency are calculated to be 0.654 and 169.89 K, respectively, giving the superconducting transition temperature T?=2.925 K according to the Allen-Dynes formula. Our calculated value of T? is in excellent accord with the corresponding experimental value of 3 K. Using the phonon dispersion results, we further present an assessment of important thermodynamical properties such as internal energy (E), Helmholtz free energy (F), constant-volume specific heat (C?), entropy (S) and Debye temperature (?) in the framework of quasi harmonic approximation theory.
Srivastava, Anubha; Joshi, B. D.; Tandon, Poonam; Ayala, A. P.; Bansal, A. K.; Grillo, Damián
2013-02-01
Imatinib mesylate, 4-(4-methyl-piperazin-1-ylmethyl)-N-u[4-methyl-3-(4-pyridin-3-yl)pyrimidine-2-ylamino)phenyl]benzamide methanesulfonate is a therapeutic drug that is approved for the treatment of chronic myelogeneous leukemia (CML) and gastrointestinal stromal tumors (GIST). It is known that imatinib mesylate exists in two polymorphic forms α and β. However, β-form is more stable than the α-form. In this work, we present a detailed vibrational spectroscopic investigation of β-form by using FT-IR and FT-Raman spectra. These data are supported by quantum mechanical calculations using DFT employing 6-311G(d,p) basis set, which allow us to characterize completely the vibrational spectra of this compound. The FT-IR spectrum of α-form has also been discussed. The importance of hydrogen-bond formation in the molecular packing arrangements of both forms has been examined with the vibrational shifts observed due to polymorphic changes. The red shift of the NH stretching bands in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond. The UV-vis spectroscopic studies along with the HOMO-LUMO analysis of both polymorphs (α and β) were performed and their chemical activity has been discussed. The TD-DFT method was used to calculate the electronic absorption spectra in the gas phase as well as in the solvent environment using IEF-PCM model and 6-31G basis set. Finally, the results obtained complements to the experimental findings.
Excitonic, vibrational, and van der Waals interactions in electron energy loss spectroscopy.
Mizoguchi, T; Miyata, T; Olovsson, W
2017-09-01
The pioneer, Ondrej L. Krivanek, and his collaborators have opened up many frontiers for the electron energy loss spectroscopy (EELS), and they have demonstrated new potentials of the EELS method for investigating materials. Here, inspired by those achievements, we show further potentials of EELS based on the results of theoretical calculations, that is excitonic and van der Waals (vdW) interactions, as well as vibrational information of materials. Concerning the excitonic interactions, we highlight the importance of the two-particle calculation to reproduce the low energy-loss near-edge structure (ELNES), the Na-L 2,3 edge of NaI and the Li-K edge of LiCl and LiFePO 4 . Furthermore, an unusually strong excitonic interaction at the O-K edge of perovskite oxides, SrTiO 3 and LaAlO 3 , is shown. The effect of the vdW interaction in the ELNES is also investigated, and we observe that the magnitude of the vdW effect is approximately 0.1eV in the case of the ELNES from a solid and liquid, whereas its effect is almost negligible in the case of the ELNES from the gaseous phase owing to the long inter-molecular distance. In addition to the "static" information, the influence of the "dynamic" behavior of atoms in materials to EELS is also investigated. We show that measurements of the infrared spectrum are possible by using a modern monochromator system. Furthermore, an estimation of the atomic vibration in core-loss ELNES is also presented. We show the acquisition of vibrational information using the ELNES of liquid methanol and acetic acid, solid Al 2 O 3 , and oxygen gas. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Fernández, David; Parlak, Cemal; Bilge, Metin; Kaya, Mehmet Fatih; Tursun, Mahir; Keşan, Gürkan; Rhyman, Lydia; Ramasami, Ponnadurai; Şenyel, Mustafa
2017-09-01
The halogen and solvent effects on the structure of 4-bromo-2-halogenobenzaldehydes [C7H4BrXO; X = F (BFB), Cl (BCB) or Br (BBB)] were investigated by the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The B3LYP functional and HF and MP2 levels of theory were used with the 6-311+G(3df,p) or aug-cc-pVDZ basis sets. Computations were focused on the cis and trans conformers of the investigated compounds in the gas phase and solutions of 18 different polar or non-polar organic solvents. The computed frequencies of the C=O stretching vibration of the compounds were correlated with some empirical solvent parameters such as the Kirkwood-Bauer-Magat (KBM) equation, solvent acceptor number (AN), Swain parameters and linear solvation energy relationships (LSERs). The electronic properties of the compounds were also examined. The present work explores the effects of the medium and halogen on the conformation, geometrical parameters, dipole moment, ν(C=O) vibration, UV data, frontier orbitals and density-of-states diagram of the compounds. The findings of this research can be useful for studies on benzaldehydes.
Valduga de Almeida Camargo, Franco; Anderson, Harry; Meech, Steve; Heisler, Ismael
2015-01-01
In this work we present experimental and calculated two-dimensional electronic spectra for a 5,15-bisalkynyl porphyrin chromophore. The lowest energy electronic Qy transition couples mainly to a single 380 cm–1 vibrational mode. The two-dimensional electronic spectra reveal diagonal and cross peaks which oscillate as a function of population time. We analyze both the amplitude and phase distribution of this main vibronic transition as a function of excitation and detection frequencies. Even t...
DEFF Research Database (Denmark)
Johannessen, Christian; Thulstrup, Peter W.
2007-01-01
Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt...
Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.
Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C
2016-03-21
Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.
Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet
2016-11-01
One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of
Comparison of methods for separating vibration sources in rotating machinery
Klein, Renata
2017-12-01
Vibro-acoustic signatures are widely used for diagnostics of rotating machinery. Vibration based automatic diagnostics systems need to achieve a good separation between signals generated by different sources. The separation task may be challenging, since the effects of the different vibration sources often overlap. In particular, there is a need to separate between signals related to the natural frequencies of the structure and signals resulting from the rotating components (signal whitening), as well as a need to separate between signals generated by asynchronous components like bearings and signals generated by cyclo-stationary components like gears. Several methods were proposed to achieve the above separation tasks. The present study compares between some of these methods. The paper also presents a new method for whitening, Adaptive Clutter Separation, as well as a new efficient algorithm for dephase, which separates between asynchronous and cyclo-stationary signals. For whitening the study compares between liftering of the high quefrencies and adaptive clutter separation. For separating between the asynchronous and the cyclo-stationary signals the study compares between liftering in the quefrency domain and dephase. The methods are compared using both simulated signals and real data.
Standardized Methods for Electronic Shearography
Lansing, Matthew D.
1997-01-01
Research was conducted in development of operating procedures and standard methods to evaluate fiber reinforced composite materials, bonded or sprayed insulation, coatings, and laminated structures with MSFC electronic shearography systems. Optimal operating procedures were developed for the Pratt and Whitney Electronic Holography/Shearography Inspection System (EH/SIS) operating in shearography mode, as well as the Laser Technology, Inc. (LTI) SC-4000 and Ettemeyer SHS-94 ISTRA shearography systems. Operating practices for exciting the components being inspected were studied, including optimal methods for transient heating with heat lamps and other methods as appropriate to enhance inspection capability.
Energy Technology Data Exchange (ETDEWEB)
Cobut, V.; Frongillo, Y.; Jay-Gerin, J.-P. (Sherbrooke Univ., PQ (Canada). Faculte de Medecine); Patau, J.-P. (Toulouse-3 Univ., 31 (France))
1992-12-01
An energy spectrum of ''subexcitation electrons'' produced in liquid water by electrons with initial energies of a few keV is obtained by using a Monte Carlo transport simulation calculation. It is found that the introduction of vibrational-excitation cross sections leads to the appearance of a sharp peak in the probability density function near the electronic-excitation threshold. Electrons contributing to this peak are shown to be more naturally described if a novel energy spectrum, that we propose to name ''vibrationally-relaxing electron'' spectrum, is introduced. The corresponding distribution function is presented, and an empirical expression of it is given. (author).
Huang, Chi-Hung; Chen, Yi-Yu
2006-02-01
The transverse vibration of piezoceramic rectangular thin plates is investigated theoretically and experimentally using the Ritz's method incorporated with the defined equivalent constants. The equivalent constants are derived by comparing the characteristic equations of transverse resonant frequencies between isotropic and piezoceramic disks. By replacing the Poisson's ratio and flexural rigidity with the equivalent constants, the well-known Ritz's method can be used to investigate the transverse vibration of piezoceramic rectangular plates. Two different types of boundary conditions-clamped-free-free-free (CFFF) and clamped-free-clamped-free (CFCF)-are analyzed in this paper. For the experimental measurement, two optical techniques-amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV)-are used to validate the analytical results. Both the transverse vibration modes and resonant frequencies of piezoceramic rectangular plates are obtained by the AF-ESPI method. Numerical calculations using the finite-element method (FEM) are performed, and the results are compared with the theoretical analysis and experimental measurements. Excellent agreements are obtained for results of both resonant frequencies and mode shapes. According to the theoretical calculations with different equivalent Poisson's ratios, resonant frequency variations versus aspect ratios ranging from 0.1 to 10 also are discussed for the first several modes in the work.
Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng
2016-01-01
The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...
Electronic and vibrational spectroscopy of intermediates in methane-to-methanol conversion by CoO+
Altinay, Gokhan; Kocak, Abdulkadir; Silva Daluz, Jennifer; Metz, Ricardo B.
2011-08-01
At room temperature, cobalt oxide cations directly convert methane to methanol with high selectivity but very low efficiency. Two potential intermediates of this reaction, the [HO-Co-CH3]+ insertion intermediate and [H2O-Co=CH2]+ aquo-carbene complex are produced in a laser ablation source and characterized by electronic and vibrational spectroscopy. Reaction of laser-ablated cobalt cations with different organic precursors seeded in a carrier gas produces the intermediates, which subsequently expand into vacuum and cool. Ions are extracted into a time-of-flight mass spectrometer and spectra are measured via photofragment spectroscopy. Photodissociation of [HO-Co-CH3]+ in the visible and via infrared multiple photon dissociation (IRMPD) makes only Co+ + CH3OH, while photodissociation of [H2O-Co=CH2]+ produces CoCH2+ + H2O. The electronic spectrum of [HO-Co-CH3]+ shows progressions in the excited state Co-C stretch (335 cm-1) and O-Co-C bend (90 cm-1); the IRMPD spectrum gives νOH = 3630 cm-1. The [HO-Co-CH3]+(Ar) complex has been synthesized and its vibrational spectrum measured in the O-H stretching region. The resulting spectrum is sharper than that obtained via IRMPD and gives νOH = 3642 cm-1. Also, an improved potential energy surface for the reaction of CoO+ with methane has been developed using single point energies calculated by the CBS-QB3 method for reactants, intermediates, transition states and products.
A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones
Directory of Open Access Journals (Sweden)
Yongmeng Zhang
2015-01-01
Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.
A numerical method for free vibration analysis of beams
Directory of Open Access Journals (Sweden)
A. Prokić
Full Text Available In this paper, a numerical method for solution of the free vibration of beams governed by a set of second-order ordinary differential equations of variable coefficients, with arbitrary boundary conditions, is presented. The method is based on numerical integration rather than the numerical differentiation since the highest derivatives of governing functions are chosen as the basic unknown quantities. The kernelsof integral equations turn out to be Green's function of corresponding equation with homogeneous boundary conditions. The accuracy of the proposed method is demonstrated by comparing the calculated results with those available in the literature. It is shown that good accuracy can be obtained even with a relatively small number of nodes.
Energy Technology Data Exchange (ETDEWEB)
Laporta, V. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari, Italy and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Celiberto, R. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Italy and Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari (Italy); Tennyson, J. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)
2014-12-09
Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.
Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie
2017-11-01
The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.
Using consumer electronic devices to estimate whole-body vibration exposure.
Wolfgang, Rebecca; Burgess-Limerick, Robin
2014-01-01
The cost and complexity of commercially available devices for measuring whole-body vibration is a barrier to the systematic collection of the information required to manage this hazard at workplaces. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by use of an accelerometer calibrator, and by collecting 42 simultaneous pairs of measurements from a fifth-generation iPod Touch and one of two gold standard vibration measurement devices (Svantech SV111 [Svantech, Warsaw, Poland] or Brüel & Kjær 4447 [Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark]) while driving light vehicles on a variety of different roadway surfaces. While sampling rate limitations make the accelerometer data collected from the iPod Touch unsuitable for frequency analysis, the vibration amplitudes recorded are sufficiently accurate (errors less than 0.1 m/s(2)) to assist workplaces manage whole-body vibration exposures.
Energy Technology Data Exchange (ETDEWEB)
Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)
2001-04-01
A list of papers reporting cross sections for electron-impact excitations of rotational and vibrational states of molecules is presented. The list includes both the theoretical and the experimental papers published in 1980-2000. An index by molecular species is provided at the end of the bibliography. (author)
Vibrational excitation resulting from electron capture in LUMO of F 2 ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 1. Vibrational excitation resulting from electron capture in LUMO of F2 and HCl - A treatment using the time-dependent wave packet approach. Bhavesh K Shandilya Manabendra Sarma Satrajit Adhikari Manoj K Mishra. Volume 124 Issue 1 January 2012 ...
A New Vibration Measurement Procedure for On-Line Quality Control of Electronic Devices
Directory of Open Access Journals (Sweden)
Gian Marco Revel
2002-01-01
Full Text Available In this paper the problem of experimentally testing the mechanical reliability of electronic components for quality control is approached. In general, many tests are performed on electronic devices (personal computers, power supply units, lamps, etc., according to the relevant international standards (IEC, in order to verify their resistance to shock and vibrations, but these are mainly “go no-go” experiments, performed on few samples taken from the production batches.
The separation of vibrational coherence from ground- and excited-electronic states in P3HT film
Song, Yin
2015-06-07
© 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.
Energy Technology Data Exchange (ETDEWEB)
Picher, Matthieu; Mazzucco, Stefano [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 (United States); Blankenship, Steve [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Sharma, Renu, E-mail: renu.sharma@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States)
2015-03-15
Here, we present a measurement platform for collecting multiple types of spectroscopy data during high-resolution environmental transmission electron microscopy observations of dynamic processes. Such coupled measurements are made possible by a broadband, high-efficiency, free-space optical system. The critical element of the system is a parabolic mirror, inserted using an independent hollow rod and placed below the sample holder which can focus a light on the sample and/or collect the optical response. We demonstrate the versatility of this optical setup by using it to combine in situ atomic-scale electron microscopy observations with Raman spectroscopy. The Raman data is also used to measure the local temperature of the observed sample area. Other applications include, but are not limited to: cathodo- and photoluminescence spectroscopy, and use of the laser as a local, high-rate heating source. - Highlights: • Broadband, high-efficiency design adaptable to other electron microscopes. • Raman spectroscopy integrated with environmental transmission electron microscopy. • Raman spectra peak frequency shifts enable measurement of local sample temperature. • Multiple types of optical spectroscopy enabled, e.g. cathodoluminescence.
Correlating electronic and vibrational motions in charge transfer systems
Energy Technology Data Exchange (ETDEWEB)
Khalil, Munira [Univ. of Washington, Seattle, WA (United States)
2014-06-27
The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.
Mihaylova, Emilia M.; Naydenova, Izabela; Martin, Suzanne; Toal, Vincent
2004-06-01
Electronic speckle pattern shearing interferometry (ESPSI) is superior to Electronic speckle pattern interferometry (ESPI) when strain distribution, arising from object deformation or vibration, need to be measured. This is because shearography provides data directly related to the spatial derivatives of the displacement. Further development of ESPSI systems could be beneficial for wider application to the measurement of mechanical characteristics of vibrating objects. Two electronic speckle pattern shearing interferometers (ESPSI) suitable for vibration measurements are presented. In both ESPSI systems photopolymer holographic gratings are used to shear the images and to control the size of the shear. The holographic gratings are recorded using an acrylamide-based photopolymer material. Since the polymerization process occurs during recording, the holograms are produced without any development or processing. The ESPSI systems with photopolymer holographic gratings are simple and compact. Introducing photopolymer holographic gratings in ESPSI gives the advantage of using high aperture optical elements at relatively low cost. It is demonstrated that both ESPSI system can be used for vibration measurements. The results obtained are promising for future applications of the systems for modal analysis.
Translational, rotational, vibrational and electron temperatures of a gliding arc discharge.
Zhu, Jiajian; Ehn, Andreas; Gao, Jinlong; Kong, Chengdong; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro; Li, Zhongshan
2017-08-21
Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A-X (0, 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A-X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring the instantaneous length of the plasma column, the discharge voltage and the translational temperature, from which the electron temperature (Te) of the gliding arc discharge was estimated. The uncertainties of the translational, rotational, vibrational and electron temperatures were analyzed. The relations of these four different temperatures (Te>Tv>Tr >Tt) suggest a high-degree non-equilibrium state of the gliding arc discharge.
Hale, Thomas C.; Telschow, Kenneth L.
1998-01-01
A vibration detection assembly is described which includes an emitter of light which has object and reference beams, the object beam reflected off of a vibrating object of interest; and a photorefractive substance having a given response time and which passes the reflected object beam and the reference beam, the reference beam and the object beam interfering within the photorefractive substance to create a space charge field which develops within the response time of the photorefractive substance.
Excitation of vibrational quanta in furfural by intermediate-energy electrons
Energy Technology Data Exchange (ETDEWEB)
Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580 São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others
2015-12-14
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.
Jerk Minimization Method for Vibration Control in Buildings
Abatan, Ayo O.; Yao, Leummim
1997-01-01
In many vibration minimization control problems for high rise buildings subject to strong earthquake loads, the emphasis has been on a combination of minimizing the displacement, the velocity and the acceleration of the motion of the building. In most cases, the accelerations that are involved are not necessarily large but the change in them (jerk) are abrupt. These changes in magnitude or direction are responsible for most building damage and also create discomfort like motion sickness for inhabitants of these structures because of the element of surprise. We propose a method of minimizing also the jerk which is the sudden change in acceleration or the derivative of the acceleration using classical linear quadratic optimal controls. This was done through the introduction of a quadratic performance index involving the cost due to the jerk; a special change of variable; and using the jerk as a control variable. The values of the optimal control are obtained using the Riccati equation.
Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro
2017-07-01
We develop a powerful simulation method that can treat electronic transport in a super-micron-scale open system with atomic vibration at finite temperature. As an application of the developed method to realistic materials, we simulate electronic transport in metallic single-walled carbon nanotubes from nanometer scale to micrometer scale at room temperature. Based on the simulation results, we successfully identify two different crossovers, namely, ballistic to diffusive crossover and coherent to incoherent crossover, simultaneously and with equal footing, from which the mean free path and the phase coherence length can be extracted clearly. Moreover, we clarify the scaling behavior of the electrical resistance and the electronic current in the crossover regime.
Jiang, Chi-Lun
2015-01-01
With a 600mk homebuilt UHV STM system, we studied molecular vibration at the solid surface with inelastic electron tunneling spectroscopy (IETS) of Acetylene single molecules adsorbed on Cu(100) surface. The identification of vibrational IETS features with normalized conductance change (Δσ/σ) as low as 0.24% in dI2/d2V spectra was demonstrated. Five vibrational modes with energy level at 117.70meV (Δσ/σ =0.42%), 84.07meV (Δσ/σ =0.24%), 58.46meV (Δσ/σ =1.18%), 34.80meV (Δσ/σ =0.65% ) and 22.1...
Translational, rotational, vibrational and electron temperatures of a gliding arc discharge
DEFF Research Database (Denmark)
Zhu, Jiajian; Ehn, Andreas; Gao, Jinlong
2017-01-01
Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source...... and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A–X (0......, 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A–X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring...
Trapping of an electron due to molecular vibrations
Narevicius; Moiseyev
2000-02-21
Here we first show that the nuclear motion of H-2 generates a continuum of autoionization resonance states. The interference between them increases the lifetime of the trapped electron in the e(-)/H(2) scattering experiments and leads to asymmetric oscillations in the phase of the excitation probability amplitude. This collective coherent interference resonance phenomenon is very different from any known mechanism in quantum mechanics which reveals the fingerprints of overlapping resonances in scattering cross section and results from the non-Hermitian properties of the H-2 Hamiltonian.
Graus, M; Grimm, M; Metzger, C; Dauth, M; Tusche, C; Kirschner, J; Kümmel, S; Schöll, A; Reinert, F
2016-04-08
Electron-phonon coupling is one of the most fundamental effects in condensed matter physics. We here demonstrate that photoelectron momentum mapping can reveal and visualize the coupling between specific vibrational modes and electronic excitations. When imaging molecular orbitals with high energy resolution, the intensity patterns of photoelectrons of the vibronic sidebands of molecular states show characteristic changes due to the distortion of the molecular frame in the vibronically excited state. By comparison to simulations, an assignment of specific vibronic modes is possible, thus providing unique information on the coupling between electronic and vibronic excitation.
Non-traditional vibration mitigation methods for reciprocating compressor system
Eijk, A.; Lange, T.J. de; Vreugd, J. de; Slis, E.J.P.
2016-01-01
Reciprocating compressors generate vibrations caused by pulsation-induced forces, mechanical (unbalanced) free forces and moments, crosshead guide forces and cylinder stretch forces. The traditional way of mitigating the vibration and cyclic stress levels to avoid fatigue failure of parts of the
Excitation of the lowest CO2 vibrational states by electrons in hypersonic boundary layers
Armenise, I.
2017-07-01
The state-to-state vibrational kinetics of a CO2/O2/CO/C/O/e- mixture in a hypersonic boundary layer under conditions compatible with the Mars re-entry is studied. The model adopted treats three CO2 modes (the two degenerated bending modes are approximated as a unique one) as not independent ones. Vibrational-translational transitions in the bending mode, inter-mode exchanges within CO2 molecule and between molecules of different chemical species as well as dissociation-recombination reactions are considered. Attention is paid to the electron-CO2 collisions that cause transitions from the ground vibrational state, CO2(0,0,0), to the first excited ones, CO2(1,0,0), CO2(0,1,0) and CO2(0,0,1). The corresponding processes rate coefficients are obtained starting from the electron energy distribution function, calculated either as an equilibrium Boltzmann distribution at the local temperature or by solving the Boltzmann equation. Results obtained either neglecting or including in the kinetic scheme the electron-CO2 collisions are compared and explained by analysing the rate coefficients of the electron-CO2 collisions.
Ultrafast Control of the electronic phase of a manganite viamode-selective vibrational excitation
Energy Technology Data Exchange (ETDEWEB)
Rini, Matteo; Tobey, Ra' anan I.; Dean, Nicky; Tokura, Yoshinori; Schoenlein, Robert W.; Cavalleri, Andrea
2007-05-01
Controlling a phase of matter by coherently manipulatingspecific vibrational modes has long been an attractive (yet elusive) goalfor ultrafast science. Solids with strongly correlated electrons, inwhich even subtle crystallographic distortions can result in colossalchanges of the electronic and magnetic properties, could be directedbetween competing phases by such selective vibrational excitation. Inthis way, the dynamics of the electronic ground state of the systembecome accessible, and new insight into the underlying physics might begained. Here we report the ultrafast switching of the electronic phase ofa magnetoresistive manganite via direct excitation of a phonon mode at 71meV (17 THz). A prompt, five-order-of-magnitude drop in resistivity isobserved, associated with a non-equilibrium transition from the stableinsulating phase to a metastable metallic phase. In contrast withlight-induced, and current-driven phase transitions, the vibrationallydriven bandgap collapse observed here is not related to hot-carrierinjection and is uniquely attributed to a large-amplitude Mn-Odistortion. This corresponds to a perturbation of theperovskite-structure tolerance factor, which in turn controls theelectronic bandwidth via inter-site orbital overlap. Phase control bycoherent manipulation of selected metal--oxygen phonons should findextensive application in other complex solids--notably in copper oxidesuperconductors, in which the role of Cu-O vibrations on the electronicproperties is currently controversial.
Structural, electronic, vibrational and optical properties of Bin clusters
Liang, Dan; Shen, Wanting; Zhang, Chunfang; Lu, Pengfei; Wang, Shumin
2017-10-01
The neutral, anionic and cationic bismuth clusters with the size n up to 14 are investigated by using B3LYP functional within the regime of density functional theory and the LAN2DZ basis set. By analysis of the geometries of the Bin (n = 2-14) clusters, where cationic and anionic bismuth clusters are largely similar to those of neutral ones, a periodic effect by adding units with one to four atoms into smaller cluster to form larger cluster is drawn for the stable structures of bismuth clusters. An even-odd alteration is shown for the properties of the clusters, such as the calculated binding energies and dissociation energies, as well as frontier orbital energies, electron affinities, ionization energies. All the properties indicate that the Bi4 cluster is the most possible existence in bismuth-containing materials, which supports the most recent experiment. The orbital compositions, infrared and Raman activities and the ultraviolet absorption of the most possible tetramer bismuth cluster are given in detail to reveal the periodic tendency of adding bismuth atoms and the stability of tetramer bismuth cluster.
Energy Technology Data Exchange (ETDEWEB)
Tuan, H.P.; Larsson, C.; Huehnerfuss, H. [Hamburg Univ. (Germany). Inst. fuer Organische Chemie; Hoffmann, F.; Froeba, M. [Giessen Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Bergmann, Aa. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry
2004-09-15
The present paper represents a first result of an ongoing systematic study of atropisomeric methylsulfonyl, methylthionyl, hydroxy, and methoxy metabolites of environmentally most relevant PCBs. This involves semi-preparative enantioselective HPLC separation to obtain pure atropisomers from synthesized PCB metabolite standards, their configuration estimation using the electronic circular dichroism (UV-CD) method and the determination / confirmation of these absolute configurations applying the combined vibrational circular dichroism (VCD) / ab initio approach. The following substances have been investigated: 4-HO-, 4-MeO-, 4-MeS-, 4-MeSO2-, 3-MeS- and 3-MeSO{sub 2}-CB149.
Prasad, O.; Sinha, L.; Misra, N.; Narayan, V.; Kumar, N.; Kumar, A.
2010-09-01
The present work deals with the structural, electronic, and vibrational analysis of rivastigmine. Rivastigmine, an antidementia medicament, is credited with significant therapeutic effects on the cognitive, functional, and behavioural problems that are commonly associated with Alzheimer’s dementia. For rivastigmine, a number of minimum energy conformations are possible. The geometry of twelve possible conformers has been analyzed and the most stable conformer was further optimized at a higher basis set. The electronic properties and vibrational frequencies were then calculated using a density functional theory at the B3LYP level with the 6-311+G(d, p) basis set. The different molecular surfaces have also been drawn to understand the activity of the molecule. A narrower frontier orbital energy gap in rivastigmine makes it softer and more reactive than water and dimethylfuran. The calculated value of the dipole moment is 2.58 debye.
Pietanza, L. D.; Colonna, G.; Capitelli, M.
2017-12-01
Nanopulse atmospheric carbon monoxide discharges and corresponding afterglows have been investigated in a wide range of applied reduced electric field (130 kinetics of vibrational and electronic excited states as well as to a simplified plasma chemistry for the different species formed during the activation of CO. The molar fraction of electronically excited states generated in the discharge is sufficient to create structures in the EEDF in the afterglow regime. On the other hand, only for long duration pulses (i.e. 50 ns), non-equilibrium vibrational distributions can be observed especially in the afterglow. The trend of the results for the case study E/N = 200 Td, \\text{pulse}=2$ ns is qualitatively and quantitatively similar to the corresponding case for CO2 implying that the activation of CO2 by cold plasmas should take into account the kinetics of formed CO with the same accuracy as the CO2 itself.
Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech
Bitner, Rachel M.; Begault, Durand R.
2014-01-01
Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.
Cross Sections and Rate Coefficients for Vibrational Excitation of HeH+ Molecule by Electron Impact
Directory of Open Access Journals (Sweden)
Mehdi Ayouz
2016-12-01
Full Text Available Cross sections and thermally-averaged rate coefficients for vibration (de-excitation of HeH + by an electron impact are computed using a theoretical approach that combines the multi-channel quantum defect theory and the UK R-matrix code. Fitting formulas with a few numerical parameters are derived for the obtained rate coefficients. The interval of applicability of the formulas is from 40 to 10,000 K.
Resonant electron-impact excitation of vibrational modes in polyatomic molecules
Cartwright, David C.; Trajmar, Sandor
1996-04-01
Measured differential cross sections (DCSs) for electron-impact excitation of bending vibrational modes involving an odd number of vibrational quanta in 0953-4075/29/8/018/img5 by 4 eV incident energy electrons display a strong trend to zero for forward and backward scattering which is characteristic of `symmetry-forbidden' transitions. This DCS behaviour is postulated here to be produced by a Feshbach resonant mechanism involving a low-lying bent excited state of 0953-4075/29/8/018/img5. The model described here identifies three additional low-lying bent excited states of 0953-4075/29/8/018/img5 which could also be parent states for core-excited Feshbach resonances, one of which may play a role in dissociative attachment in this 3.5 - 5.0 eV energy region. The resonant vibrational excitation mechanism proposed here is also believed to be operative in other polyatomic molecules and could be investigated by performing selected electron energy-loss measurements within the lowest energy resonance regions of the molecules 0953-4075/29/8/018/img8 and 0953-4075/29/8/018/img9.
Pinjari, Rahul V; Joshi, Kaustubh A; Gejji, Shridhar P
2008-12-01
Electronic structure and the vibrational spectra of CH(3)(OCH(2)CH(2))(2)OCH(3)-M(+)-AsF(6)(-) (M=Li, Na, K) have been obtained using the density functional theory. Lithium ion exhibits a pentavalent coordination via 3 oxygens from diglyme and two fluorines of AsF(6)(-) whereas Na(+) and K(+) exhibit coordinate number 6 with 3 fluorines of the anion binding to alkali metal in these complexes. Analysis of calculated spectra reveal that the CH(2) wag (840-1120 cm(-1)) vibrations in the complex are sensitive to metal ion coordination. A frequency downshift relative to the free anion has been predicted for the vibrations of AsF(6)(-) anion when the fluorines are directly bonded (denoted by F) to metal ion. Consequent reorganization of electron density in the complex engenders a frequency shift in the opposite direction for As-F vibrations wherein the fluorine atoms are not coordinating to the alkali metal ion. An approach based on the molecular electron density topography coupled with the difference electron density map explains the direction of the frequency shifts of C-O-C and the As-F stretchings compared to those of free diglyme or AsF(6) anion. A new method, which includes the color-mapping function for the difference molecular electron density (MED), superimposed on the bond critical points in MED topography has been suggested to explain the direction of the frequency shifts in a single attempt.
Electronic and Vibrational Spectra of InP Quantum Dots Formed by Sequential Ion Implantation
Hall, C.; Mu, R.; Tung, Y. S.; Ueda, A.; Henderson, D. O.; White, C. W.
1997-01-01
We have performed sequential ion implantation of indium and phosphorus into silica combined with controlled thermal annealing to fabricate InP quantum dots in a dielectric host. Electronic and vibrational spectra were measured for the as-implanted and annealed samples. The annealed samples show a peak in the infrared spectra near 320/cm which is attributed to a surface phonon mode and is in good agreement with the value calculated from Frolich's theory of surface phonon polaritons. The electronic spectra show the development of a band near 390 nm that is attributed to quantum confined InP.
Neural-Net Processing of Characteristic Patterns From Electronic Holograms of Vibrating Blades
Decker, Arthur J.
1999-01-01
Finite-element-model-trained artificial neural networks can be used to process efficiently the characteristic patterns or mode shapes from electronic holograms of vibrating blades. The models used for routine design may not yet be sufficiently accurate for this application. This document discusses the creation of characteristic patterns; compares model generated and experimental characteristic patterns; and discusses the neural networks that transform the characteristic patterns into strain or damage information. The current potential to adapt electronic holography to spin rigs, wind tunnels and engines provides an incentive to have accurate finite element models lor training neural networks.
CSIR Research Space (South Africa)
de Clercq, L
2010-09-01
Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...
CSIR Research Space (South Africa)
De Clercq, L
2010-09-01
Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible....
Vibrational excitation resulting from electron capture in LUMO of F2 ...
Indian Academy of Sciences (India)
resonance anionic Hamiltonian HAB- (AB=F2/HCl) is effected using Lanczos reduction technique followed by fast Fourier transform and the target (AB) vibrational eigenfunctions φνi (R) and φν f (R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curve of the neutral target. The result-.
Liicg - a New Method for Rotational and Ro-Vibrational Spectroscopy at 4K
Kluge, Lars; Stoffels, Alexander; Bruenken, Sandra; Asvany, Oskar; Schlemmer, Stephan
2014-06-01
Since many years low temperature ion trapping techniques are successfully used in our laboratories in combination with sensitive action spectroscopy schemes (Laser Induced Reactions) to measure high resolution ro-vibrational and rotational spectra of gas-phase molecular ions. Here we present a further development of a LIR method first introduced for recording rotationally resolved electronic spectra of N2+. This new method, called LIICG (Light Induced Inhibition of Complex Growth), makes use of state specific He-attachment rates to stored cold molecular ions. We have recently demonstrated its applicability to rotational and ro-vibrational spectroscopy of C3H+ and CH5+. The measurements were performed in recently completed 4K 22-pole ion trap instruments. Ionic species are produced in a storage ion source and are mass selected before they enter the trap. For spectroscopy normally a few thousand ions are stored at 4K together with He at high number densities (around 1014 cm-3). Under these conditions He attaches to the ions via ternary collision processes. As we will show, this attachement process is hindered by exciting a rotational or ro-vibrational transition, likely because the attachment rates for He are slower for higher rotational or ro-vibrational levels. So by exciting the bare ion the number of ion- He complexes at equilibrium is reduced. In this way the spectrum of the bare ion can be recorded by counting the number of ion-He complexes as a function of frequency. To test the new method we chose well known rotational ground state transitions of CO+, HCO+ and CD+. In particular CD+ appeared to be a good candidate for understanding the new method in detail, due to its strong LIICG signal and its simple rotational spectrum. In this contribution we will explain the LIICG scheme and its underlying kinetics using the example of CD+. We will show effects of different experimental conditions on the signal (e.g. He number density, temperature, radiation power…) to
Han, Jiande; Freel, Keith; Heaven, Michael C.
2011-06-01
We have examined state-to-state rotational and vibrational energy transfers for the vibrational levels (1010000) and (0112000) of C2H2 in the ground electronic state at ambient temperature. Measurements were made using a pulsed IR - UV double resonance technique. Total removal rate constants and state-to-state rotational energy transfer rate constants have been characterized for certain even-numbered rotational levels from J = 0 to 12 within the two vibrational modes. The measured state-to-state rotational energy transfer rate constants were fit to some energy-based empirical scaling and fitting laws, and the rate constants were found to be best reproduced by the statistical power-exponential gap law (PEGL). The measured rate constants were then further evaluated by a kinetic model which simulated the experimental spectra by solving simultaneous first order differential rate equations. Some rotationally-resolved vibrational energy transfer channels were also observed following excitation of (1010000). The vibrational relaxation channels were found to contribute less than 30% to the total removal rate constants of the measured rotational levels for both of the studied vibrational states.
Dynamic Assessment of Vibration of Tooth Modification Gearbox Using Grey Bootstrap Method
Directory of Open Access Journals (Sweden)
Hui-liang Wang
2015-01-01
Full Text Available The correlation analysis between gear modification and vibration characteristics of transmission system was difficult to quantify; a novel small sample vibration of gearbox prediction method based on grey system theory and bootstrap theory was presented. The method characterized vibration base feature of tooth modification gearbox by developing dynamic uncertainty, estimated true value, and systematic error measure, and these parameters could indirectly dynamically evaluate the effect of tooth modification. The method can evaluate the vibration signal of gearbox with installation of no tooth modification gear and topological modification gear, respectively, considering that 100% reliability is the constraints condition and minimum average uncertainty is the target value. Computer simulation and experiment results showed that vibration amplitude of gearbox was decreased partly due to topological tooth modification, and each value of average dynamic uncertainty, mean true value, and systematic error measure was smaller than the no tooth modification value. The study provided an important guide for tooth modification, dynamic performance optimization.
Analytical design method of a device for ultrasonic elliptical vibration cutting.
Huang, Weihai; Yu, Deping; Zhang, Min; Ye, Fengfei; Yao, Jin
2017-02-01
Ultrasonic elliptical vibration cutting (UEVC) is effective in ultraprecision diamond cutting of hard-brittle materials and ferrous metals. However, its design is quite empirical and tedious. This paper proposes an analytical design method for developing the UEVC device which works at the Flexural-Flexural complex-mode to generate the elliptical vibration. For such UEVC device, the resonant frequencies of the two flexural vibrations are required to be the same. In addition, the nodal points of the two flexural vibrations should be coincident so that the device can be clamped without affecting the vibrations. Based on the proposed analytical design method, an UEVC device was first designed. Modal analysis of the designed UEVC device was performed by using the finite element method, which shows that the resonant frequencies coincide well with the targeted ones. Then a prototype UEVC device was fabricated, and its vibration characteristics were measured by an impedance analyzer and a laser displacement sensor. Experimental results indicate that the designed UEVC device can generate elliptical vibration with the resonant frequencies closed to the target ones. In addition, the vibration trajectory can be precisely tuned by adjusting the phase difference and the amplitude of the applied voltage. Simulation and experimental results validated the effectiveness of the analytical design method.
Yang, Fujun; Ma, Yinhang; Tao, Nan; He, Xiaoyuan
2017-06-01
Due to its multi properties, including excellent stiffness-to-weight and strength-to-weight ratios, closed-cell aluminum and its alloy foams become candidate materials for use in many high-technology industries, such as the automotive and aerospace industries. For the efficient use of closed-cell foams in structural applications, it is necessary and important to detailly understand their mechanical characteristics. In this paper, the nonlinear vibration responses of the cantilever beams of closed-cell aluminum foams were investigated by use of electronic speckle pattern interferometry (ESPI). The nonlinear resonant mode shapes of testing specimens under harmonic excitation were measured. It is first time to obtain from the experimental results that there exist super-harmonic responses when the cantilever beams of closed-cell aluminum foam were forced to vibrate, which was caused by its specific cellular structures.
Kaloni, Thaneshwor P.
2013-11-01
This thesis covers the structural, electronic, magnetic, and vibrational properties of graphene and silicene. In Chapter I, we will start with an introduction to graphene and silicene. In Chapter II, we will briefly discuss about the methodology (i. e. density functional theory)In Chapter III, we will introduce band gap opening in graphene either by introducing defects/doping or by creating superlattices with h-BN substrate. In Chapter IV, we will focus on the structural and electronic properties of K and Ge-intercalated graphene on SiC(0001). In addition, the enhancement of the superconducting transition temperature in Li-decorated graphene supported by h-BN substrate will be discussed. In Chapter V, we will discuss the vibrational properties of free-standing silicene. In addition, superlattices of silicene with h-BN as well as the phase transition in silicene by applying an external electric field will be discussed. The electronic and magnetic properties transition metal decorated silicene will be discussed, in particular the realization of the quantum anomalous Hall effect will be addressed. Furthermore, the structural, electronic, and magnetic properties of Mn decorated silicene supported by h-BN substrate will be discussed. The conclusion is included in Chapters VI. Finally, we will end with references and a list of publications for this thesis.
Zenkov, S. A.
2017-10-01
The article describes the method of defining rational parameters for excavator buckets vibrating devices in order to reduce soil adhesion under various operating conditions. The method includes limits formation, calculating geometric parameters of curved mold concentrator for excavator buckets with magnetostriction vibration exciters; calculating parameters of acoustic influence equipment; calculating power demand of equipment, defining adhesive forces of soil to buckets with given values of external factors; defining equipment operation mode (turn-on frequency, exposure time). Suggested method enables one to define required parameters of vibrating equipment to excavator buckets during the design phase.
Agnes, Gregory Stephen
Linear vibration absorbers are a valuable tool used to suppress vibrations due to harmonic excitation in structural systems. Limited evaluation of the performance of nonlinear vibration absorbers for nonlinear structures exists in the current literature. The state of the art is extended in this work to vibration absorbers in their three major physical implementations: the mechanical vibration absorber, the inductive-resistive shunted piezoelectric vibration absorber, and the electronic vibration absorber (also denoted a positive position feedback controller). A single, consistent, physically similar model capable of examining the response of all three devices is developed. The performance of vibration absorbers attached to single-degree-of-freedom structures is next examined for performance, robustness, and stability. Perturbation techniques and numerical analysis combine to yield insight into the tuning of nonlinear vibration absorbers for both linear and nonlinear structures. The results both clarify and validate the existing literature on mechanical vibration absorbers. Several new results, including an analytical expression for the suppression region's location and bandwidth and requirements for its robust performance, are derived. Nonlinear multiple-degree-of-freedom structures are next evaluated. The theory of Non-linear Normal Modes is extended to include consideration of modal damping, excitation, and small linear coupling, allowing estimation of vibration absorber performance. The dynamics of the N+1-degree-of-freedom system reduce to those of a two-degree-of-freedom system on a four-dimensional nonlinear modal manifold, thereby simplifying the analysis. Quantitative agreement is shown to require a higher order model which is recommended for future investigation. Finally, experimental investigation on both single and multi-degree-of-freedom systems is performed since few experiments on this topic are reported in the literature. The experimental results
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)
1996-08-01
The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.
Nondestructive quality evaluation of agro-products using acoustic vibration methods-A review.
Zhang, Wen; Lv, Zhenzhen; Xiong, Shuangli
2017-06-14
Quality evaluation of agro-products is quite important because it is the basis for growers, distributers, and consumers. Various novel and emerging nondestructive methods were proposed for quality evaluation of agro-products. The acoustic vibration method is one of the major nondestructive methods for agro-products in pre- and postharvest research and industrial practice. Acoustic vibration characteristics of agro-products can be used for texture evaluation, prediction of optimum eating and harvest ripeness, ripeness classification and defect detection. Generally, there are three parts in the process of acoustic vibration method, including the excitation module, signal acquisition module, and signal-processing module. The impact method and forced method are two excitation methods in the excitation module, and there are contact and noncontact sensors for vibration measurement in the signal acquisition module. Noncontact measurement can meet the requirement of rapid and nondestructive measurement, especially for the on-line detection. However, increasing demand for accurate and cost-effective measurement remains a challenge in the agro-products industry. Comparison of acoustic vibration methods and traditional destructive methods was also discussed, which helps to give a more comprehensive assessment for the acoustic vibration method.
A new compound control method for sine-on-random mixed vibration test
Zhang, Buyun; Wang, Ruochen; Zeng, Falin
2017-09-01
Vibration environmental test (VET) is one of the important and effective methods to provide supports for the strength design, reliability and durability test of mechanical products. A new separation control strategy was proposed to apply in multiple-input multiple-output (MIMO) sine on random (SOR) mixed mode vibration test, which is the advanced and intensive test type of VET. As the key problem of the strategy, correlation integral method was applied to separate the mixed signals which included random and sinusoidal components. The feedback control formula of MIMO linear random vibration system was systematically deduced in frequency domain, and Jacobi control algorithm was proposed in view of the elements, such as self-spectrum, coherence, and phase of power spectral density (PSD) matrix. Based on the excessive correction of excitation in sine vibration test, compression factor was introduced to reduce the excitation correction, avoiding the destruction to vibration table or other devices. The two methods were synthesized to be applied in MIMO SOR vibration test system. In the final, verification test system with the vibration of a cantilever beam as the control object was established to verify the reliability and effectiveness of the methods proposed in the paper. The test results show that the exceeding values can be controlled in the tolerance range of references accurately, and the method can supply theory and application supports for mechanical engineering.
Baiardi, Alberto; Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien
2014-06-01
Two parallel theories including Franck-Condon, Herzberg-Teller and Duschinsky (i.e., mode mixing) effects, allowing different approximations for the description of excited state PES have been developed in order to simulate realistic, asymmetric, electronic spectra line-shapes taking into account the vibrational structure: the so-called sum-over-states or time-independent (TI) method and the alternative time-dependent (TD) approach, which exploits the properties of the Fourier transform. The integrated TI-TD procedure included within a general purpose QM code [1,2], allows to compute one photon absorption, fluorescence, phosphorescence, electronic circular dichroism, circularly polarized luminescence and resonance Raman spectra. Combining both approaches, which use a single set of starting data, permits to profit from their respective advantages and minimize their respective limits: the time-dependent route automatically includes all vibrational states and, possibly, temperature effects, while the time-independent route allows to identify and assign single vibronic transitions. Interpretation, analysis and assignment of experimental spectra based on integrated TI-TD vibronic computations will be illustrated for challenging cases of medium-sized open-shell systems in the gas and condensed phases with inclusion of leading anharmonic effects. 1. V. Barone, A. Baiardi, M. Biczysko, J. Bloino, C. Cappelli, F. Lipparini Phys. Chem. Chem. Phys, 14, 12404, (2012) 2. A. Baiardi, V. Barone, J. Bloino J. Chem. Theory Comput., 9, 4097-4115 (2013)
Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study
Directory of Open Access Journals (Sweden)
Bin Tang
2018-01-01
Full Text Available As a widely used gas insulator, sulfur hexafluoride (SF6 has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV, which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.
Goncharova, Iryna; Urbanová, Marie
2009-09-01
Complexation of bilirubin (BR) and biliverdin (BV) with biogenic and toxic metals (Mn, Cu, Cd, Co, Fe, Ni, Zn, and Ag) has been studied by means of electronic circular dichroism (ECD) and vibrational circular dichroism (VCD). Poly-L-lysine and beta-cyclodextrin in water were chosen as matrices capable of recognizing the single stereoconformer of the pigments with defined M-helicity. Such systems allow structural changes caused by complexation of pigments with metals in aqueous solution at pH 10-11 to be followed using chiroptical methods, which are intrinsically sensitive to spatial structure. These and other spectroscopic techniques have revealed that BV and BR form monomeric complexes with Cd, Cu, and Zn and dimeric complexes with Mn. The stabilities of the complexes with Fe, Ni, Co, and Ag are remarkably lower. The sign of the ECD and VCD patterns of the complexed BV does not change for the chelates of any of the studied metals other than Zn, this exception being interpreted in terms of manifestation of the opposite helicity of BV in its chelate with Zn. In the case of BR, the observed inversion of ECD signal after complexation, together with the analysis of VCD spectra, reveals that a flattening of the molecule takes place, i.e., an increase in the angle between the pyrrinone chromophores without an inversion of helicity. This chiral stereoselectivity, which is very specific in the case of the Zn chelates, is discussed in connection with the specific inhibition of Zn-required enzymes by bile pigments.
Mode selection of modal expansion method estimating vibration field of washing machine
Jung, B. K.; Jeong, W. B.
2015-03-01
This paper is about a study estimating the vibration and radiated noise of a washing machine by using a mode selection-applied modal expansion method (MEM). MEM is a technique that identifies the vibration field from a portion of eigenvectors (or mode shapes) of a structure, and thus, the selection of the eigenvectors has a big impact on the vibration results identified. However, there have been few studies about selecting the eigenvectors with respect to the structural vibration and radiated noise estimation. Accordingly, this paper proposes the use of a new mode selection method to identify the vibration based on the MEM and then calculate radiated noise of a washing machine. The results gained from the experiment were also compared. The vibration and noise results of numerical analysis using the proposed selection method are in line with the measured results. The selection method proposed in this paper corresponds well with the MEM and this process seems to be applicable to the estimation of various structure vibrations and radiated noise.
Threshold vibrational excitation of CO{sub 2} by slow electrons
Energy Technology Data Exchange (ETDEWEB)
Vanroose, Wim; Zhang, Zhiyong; McCurdy, C.W.; Rescigno, T.N.
2003-07-08
Threshold structures, reminiscent of those seen in the polar hydrogen halides, have recently been observed in the cross sections for electron impact excitation of certain vibrational levels of the non-polar CO2 molecule. These structures occur at energies outside the range where shape resonances dominate the dynamics. We propose a virtual state model that describes the multi-dimensional nuclear dynamics during the collision and explains quantitatively the selectivity observed in the excitation of the Fermi dyad, as well as the pattern of threshold peaks and oscillations seen in the upper levels of the higher polyads.
Chebodayev, M. I.
2017-10-01
Within the framework of the linear thermal elasticity theory a dynamic thermoelastic bending of a whisker crystal is considered under conditions of its irradiation with a high-current electron beam of nanosecond duration. It is shown that the characteristic time of leveling the temperature of superthin pin-type rod nonuniformely heated over its thickness is comparable with the period of the fundamental wave of flexural vibrations. This gives rise to a considerable decrease in the bending amplitude, which is concurrent with the heat conduction processes.
Nonlinear vibration of edged cracked FGM beams using differential quadrature method
Ke, LiaoLiang; Wang, YueSheng; Yang, Jie; Kitipornchai, Sritawat; Alam, Firoz
2012-11-01
This paper investigated the nonlinear vibration of functionally graded beams containing an open edge crack based on Timoshenko beam theory. The cracked section is modeled by a massless elastic rotational spring. It is assumed that material properties follow exponential distributions through the beam thickness. The differential quadrature (DQ) method is employed to discretize the nonlinear governing equations which are then solved by a direct iterative method to obtain the nonlinear vibration frequencies of beams with different boundary conditions. The effects of the material gradient, crack depth and boundary conditions on nonlinear free vibration characteristics of the cracked FGM beams are studied in detail.
NASA-DoD Lead-Free Electronics Project: Vibration Test
Woodrow, Thomas A.
2010-01-01
Vibration testing was conducted by Boeing Research and Technology (Seattle) for the NASA-DoD Lead-Free Electronics Solder Project. This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-Free Solder Project which was the first group to test the reliability of lead-free solder joints against the requirements of the aerospace/miLItary community. Twenty seven test vehicles were subjected to the vibration test conditions (in two batches). The random vibration Power Spectral Density (PSD) input was increased during the test every 60 minutes in an effort to fail as many components as possible within the time allotted for the test. The solder joints on the components were electrically monitored using event detectors and any solder joint failures were recorded on a Labview-based data collection system. The number of test minutes required to fail a given component attached with SnPb solder was then compared to the number of test minutes required to fail the same component attached with lead-free solder. A complete modal analysis was conducted on one test vehicle using a laser vibrometer system which measured velocities, accelerations, and displacements at one . hundred points. The laser vibrometer data was used to determine the frequencies of the major modes of the test vehicle and the shapes of the modes. In addition, laser vibrometer data collected during the vibration test was used to calculate the strains generated by the first mode (using custom software). After completion of the testing, all of the test vehicles were visually inspected and cross sections were made. Broken component leads and other unwanted failure modes were documented.
Pireaux, J.J.; Gregoire, Ch.; Caudano, R.; Rei Vilar, M.; Brinkhuis, R.; Schouten, A.J.
1991-01-01
Among the surface-sensitive spectroscopies used to characterize clean and surface-modified polymers, one technique has rather recently emerged as a very promising complementary tool. High-resolution electron energy loss spectroscopy, or electron-induced vibrational spectroscopy, has potentially all
METHOD OF ELECTRON BEAM PROCESSING
DEFF Research Database (Denmark)
2003-01-01
As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...
An analytical method for free vibration analysis of functionally graded beams with edge cracks
Wei, Dong; Liu, Yinghua; Xiang, Zhihai
2012-03-01
In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.
Tapaswini, Smita; Chakraverty, S
2014-01-01
This paper proposes a new technique based on double parametric form of fuzzy numbers to handle the uncertain vibration equation for very large membrane for different particular cases. Uncertainties present in the initial condition and the wave velocity of free vibration are modelled through Gaussian convex normalised fuzzy set. Using the single parametric form of fuzzy number, the original fuzzy vibration equation is converted first to an interval fuzzy vibration equation. Next this equation is transformed to crisp form by applying double parametric form of fuzzy numbers. Finally the same governing equation is solved by Adomian decomposition method (ADM) symbolically to obtain the uncertain bounds. The present methods are very simple and effective. Obtained results are depicted in terms of plots to show the efficiency and powerfulness of the present analysis. Results obtained by the methods with new techniques are compared with existing results in special cases.
An Efficient Method of Vibration Diagnostics For Rotating Machinery Using a Decision Tree
Directory of Open Access Journals (Sweden)
Bo Suk Yang
2000-01-01
Full Text Available This paper describes an efficient method to automatize vibration diagnosis for rotating machinery using a decision tree, which is applicable to vibration diagnosis expert system. Decision tree is a widely known formalism for expressing classification knowledge and has been used successfully in many diverse areas such as character recognition, medical diagnosis, and expert systems, etc. In order to build a decision tree for vibration diagnosis, we have to define classes and attributes. A set of cases based on past experiences is also needed. This training set is inducted using a result-cause matrix newly developed in the present work instead of using a conventionally implemented cause-result matrix. This method was applied to diagnostics for various cases taken from published work. It is found that the present method predicts causes of the abnormal vibration for test cases with high reliability.
Quantum entanglement between electronic and vibrational degrees of freedom in molecules.
McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R
2011-12-28
We consider the quantum entanglement of the electronic and vibrational degrees of freedom in molecules with tendencies towards double welled potentials. In these bipartite systems, the von Neumann entropy of the reduced density matrix is used to quantify the electron-vibration entanglement for the lowest two vibronic wavefunctions obtained from a model Hamiltonian based on coupled harmonic diabatic potential-energy surfaces. Significant entanglement is found only in the region in which the ground vibronic state contains a density profile that is bimodal (i.e., contains two separate local maxima). However, in this region two distinct types of density and entanglement profiles are found: one type arises purely from the degeneracy of energy levels in the two potential wells and is destroyed by slight asymmetry, while the other arises through strong interactions between the diabatic levels of each well and is relatively insensitive to asymmetry. These two distinct types are termed fragile degeneracy-induced entanglement and persistent entanglement, respectively. Six classic molecular systems describable by two diabatic states are considered: ammonia, benzene, BNB, pyridine excited triplet states, the Creutz-Taube ion, and the radical cation of the "special pair" of chlorophylls involved in photosynthesis. These chemically diverse systems are all treated using the same general formalism and the nature of the entanglement that they embody is elucidated.
Sajan, D.; Devi, T. Uma; Safakath, K.; Philip, Reji; Němec, Ivan; Karabacak, M.
2013-05-01
FT-IR, FT-Raman and UV-Vis spectra of the nonlinear optical molecule ninhydrin have been recorded and analyzed. The equilibrium geometry, bonding features, and harmonic vibrational wavenumbers have been investigated with the help of B3LYP density functional theory method. A detailed interpretation of the vibrational spectra is carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. Solvent effects have been calculated using time-dependent density functional theory in combination with the polarized continuum model. Natural bond orbital analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule. Employing the open-aperture z-scan technique, nonlinear optical absorption of the sample has been studied in the ultrafast and short-pulse excitation regimes, using 100 fs and 5 ns laser pulses respectively. It is found that ninhydrin exhibits optical limiting for both excitations, indicating potential photonic applications.
Energy Technology Data Exchange (ETDEWEB)
Gornyi, I. V. [Karlsruhe Institute of Technology, Institut für Nanotechnologie (Germany); Dmitriev, A. P., E-mail: apd1812@hotmail.com [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Mirlin, A. D.; Protopopov, I. V. [Karlsruhe Institute of Technology, Institut für Nanotechnologie (Germany)
2016-08-15
We have studied the motion of an electron in a membrane under the influence of flexural vibrations with a correlator that decreases upon an increase in the distance in accordance with the law r–{sup 2η}. We have conducted a detailed consideration of the case with η < 1/2, in which the perturbation theory is inapplicable, even for an arbitrarily weak interaction. It is shown that, in this case, reciprocal quantum time 1/τ{sub q} is proportional to g{sup 1/(1–η)}T{sup (2–η)/(2–2η)}, where g is the electron–phonon interaction constant and T is the temperature. The method developed here is applied for calculating the electron density of states in a magnetic field perpendicular to the membrane. In particular, it is shown that the Landau levels in the regime with ω{sub c}τ{sub q} » 1 have a Gaussian shape with a width that depends on the magnetic field as B{sup η}. In addition, we calculate the time τ{sub φ} of dephasing of the electron wave function that emerges due to the interaction with flexural phonons for η < 1/2. It has been shown that, in several temperature intervals, quantity 1/τ{sub φ} can be expressed by various power functions of the electron–phonon interaction constant, temperature, and electron energy.
Research on vibration signal of engine based on subband energy method
Wu, Chunmei; Cui, Feng; Zhao, Yong; Fu, Baohong; Ma, Junchi; Yang, Guihua
2017-04-01
Based on the research of DA462 type engine cylinder and cylinder head vibration signal of the surface, the signal measured in the time domain and frequency domain are analyzed in detail, draw the following conclusions: the analysis of vibration signal of the subband energy method is applied to the engine, the concentration response of each of the motivation band can clearly be seen. Through the analysis we can see that the combustion excitation frequency response from 0k to 1K, the vibration influence on the body piston lateral impact force is mainly concentrated in 2K˜5K frequency range of Hz, valve opening and closing the excitation response frequency is mainly concentrated in the 3K˜4K range of Hz, and thus locating the valve clearance fault. This method is simple, accurate and practical for the post processing and analysis of vibration signals.
Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method
Boyd, Iain D.
1991-01-01
A new model is proposed for energy transfer between the vibrational and translational modes for use in the direct simulation Monte Carlo method (DSMC). The model modifies the Landau-Teller theory for a harmonic oscillator and the rate transition is related to an experimental correlation for the vibrational relaxation time. Assessment of the model is made with respect to three different computations: relaxation in a heat bath, a one-dimensional shock wave, and hypersonic flow over a two-dimensional wedge. These studies verify that the model achieves detailed balance, and excellent agreement with experimental data is obtained in the shock wave calculation. The wedge flow computation reveals that the usual phenomenological method for simulating vibrational nonequilibrium in the DSMC technique predicts much higher vibrational temperatures in the wake region.
Energy Technology Data Exchange (ETDEWEB)
Balazs, A. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Altalanos es Szervetlen Kemiai Intezet)
1981-01-01
A CNDO/2 force method calculation has been carried out on the in-plane force field of formamide, acetamide, N-methylformamide, and N-methylacetamide. After a least-squares fitting for the spectra with a few empirical scalling parameters, the force constant matrices are reasonably good even to permit critical judgement of the vibrational assignments of all the four molecules including N-deuterated derivatives. The /sup 15/N isotope shifts of formamide and acetamide are also correctly reproduced. The scaling factors are proved to be transferable and are shown to permit calculation of fundamental frequencies of related molecules within a mean deviation of 30 cm/sup -1/.
Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu
2014-02-01
In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.
Energy Technology Data Exchange (ETDEWEB)
Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR
2016-10-05
Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.
Energy Technology Data Exchange (ETDEWEB)
Choi, Myung Soo; Choi, Hee Jong [Chonnam National University, Yeosu (Korea, Republic of); Kondou, Takahiro [Kyushu University, Fukuoka (Japan)
2015-07-15
We developed a computational method for effectively conducting the free vibration analysis of axisymmetric shells with various shapes. This paper describes a computational algorithm for the free vibration analysis of axisymmetric shells using the Sylvester-transfer stiffness coefficient method (S-TSCM). From the free vibration analyses of three axisymmetric shells (joined conical-cylindrical shell, hermetic capsule and built-up shell), we verified the applicability of the S-TSCM. We then confirmed that the computational power of the S-TSCM is much better than both the finite element-transfer matrix method and finite element-transfer stiffness coefficient method, in terms of computational accuracy and time. In particular, when axisymmetric shells are modeled into a large number of conical shell elements, the S-TSCM is superior to both the bisection method using Sturm sequence property and Jacobi method, in terms of computational time and storage.
Directory of Open Access Journals (Sweden)
Polat Sendur
2017-01-01
Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10
Energy Technology Data Exchange (ETDEWEB)
Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)
2015-08-14
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.
Energy Technology Data Exchange (ETDEWEB)
Wang, Huan; Fenton, J. C.; Chiatti, O. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Warburton, P. A. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2013-07-15
Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.
Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo
2013-06-01
Moving from the common practice of extracting numerical data from experiment to be compared with quantum mechanical (QM) results toward a direct vis-à-vis} comparison of experimental and simulated spectra would strongly reduce any arbitrariness in analysis of complex experimental outcomes and allow a proper account of the information connected to both position and shape of spectral bands. The development of such ``virtual ab initio spectrometers'' for a wide range of wavelengths has been one of our major research goals in the last years [1,2]. Recent methodological advances from our group allow simulation of optical (IR, Raman, UV-vis, etc.) spectra line-shapes for medium-to-large closed- and open-shell molecular systems. Vibrational spectra are computed including anharmonicities through perturbative corrections while electronic spectra line-shapes are simulated accounting for the vibrational structure. Well resolved and accurate theoretical spectra provide data as close as possible to the results directly available from experiment allowing to avoid ambiguities in analysis of the latter. Several examples illustrating interpretation, assignment or revision of experimental spectra for prototypes of bio-molecular systems (phenyl radical, glycine, thymine, pyrimidine, anisole dimer) will be presented. 1. V. Barone, A. Baiardi, M. Biczysko, J. Bloino, C. Cappelli, F. Lipparini Phys. Chem. Chem. Phys, 14, 12404, 2012 2. M. Biczysko, J. Bloino, G. Brancato, et al. Theor. Chem. Acc. 113, 1201, 2012
Singh, Poorva; Bala, Anu; Nautiyal, Tashi; Auluck, Sushil
2013-07-01
We have studied evolution of the electronic, magnetic, optical, and vibrational properties of Pd nanowires (NWs) as we go from linear chains (LCs) (the ideal one-dimensional structure) to zigzag (ZZ) structure to 2 × 2 NWs. The 2 × 2 structure is found to be more stable and stiff, as compared to the LCs and ZZ NWs, with promising and versatile optical and vibrational properties. This 2 × 2 structure, built from the stacking of face-centered cubic (110) planes, has already been observed experimentally for silver NWs. Our calculations, which include relaxation of atomic positions, show that on stretching 2 × 2 NWs undergo a structural change from (110) stacking to a more symmetric (001) stacking, which culminates into a metastable state with stable magnetism. Furthermore, inclusion of spin orbit coupling beautifully illustrates its impact on the atomic magnetic moments in 2 × 2 NWs. Structure dependence of the axial anisotropy and azimuthal anisotropy is nicely brought out on comparison for the three structures. The charge density plots show charge accumulation transverse to NW axis for 2 × 2 NWs, consistent with their one-dimensional nature. A late start of the optical response, to the electric field perpendicular to the wire axis, indicates that well-aligned ultrathin Pd wires can effectively be used as polarizers of the light. Our systematic study also resolves discrepancies in the previous reports on Pd ZZ NWs.
Modeling of wave propagation in drill strings using vibration transfer matrix methods.
Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour
2013-09-01
In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results.
Sparta, Manuel; Hansen, Mikkel B; Matito, Eduard; Toffoli, Daniele; Christiansen, Ove
2010-10-12
The availability of an accurate representation of the potential energy surface (PES) is an essential prerequisite in an anharmonic vibrational calculation. At the same time, the high dimensionality of the fully coupled PES and the adverse scaling properties with respect to the molecular size make the construction of an accurate PES a computationally demanding task. In the past few years, our group tested and developed a series of tools and techniques aimed at defining computationally efficient, black-box protocols for the construction of PESs for use in vibrational calculations. This includes the definition of an adaptive density-guided approach (ADGA) for the construction of PESs from an automatically generated set of evaluation points. Another separate aspect has been the exploration of the use of derivative information through modified Shepard (MS) interpolation/extrapolation procedures. With this article, we present an assembled machinery where these methods are embedded in an efficient way to provide both a general machinery as well as concrete computational protocols. In this framework we introduce and discuss the accuracy and computational efficiency of two methods, called ADGA[2gx3M] and ADGA[2hx3M], where the ADGA recipe is used (with MS interpolation) to automatically define modest sized grids for up to two-mode couplings, while MS extrapolation based on, respectively, gradients only and gradients and Hessians from the ADGA determined points provides access to sufficiently accurate three-mode couplings. The performance of the resulting potentials is investigated in vibrational coupled cluster (VCC) calculations. Three molecular systems serve as benchmarks: a trisubstituted methane (CHFClBr), methanimine (CH2NH), and oxazole (C3H3NO). Furthermore, methanimine and oxazole are addressed in accurate calculations aiming to reproduce experimental results.
Camargo, Franco V A; Anderson, Harry L; Meech, Stephen R; Heisler, Ismael A
2015-01-08
In this work we present experimental and calculated two-dimensional electronic spectra for a 5,15-bisalkynyl porphyrin chromophore. The lowest energy electronic Qy transition couples mainly to a single 380 cm(-1) vibrational mode. The two-dimensional electronic spectra reveal diagonal and cross peaks which oscillate as a function of population time. We analyze both the amplitude and phase distribution of this main vibronic transition as a function of excitation and detection frequencies. Even though Feynman diagrams provide a good indication of where the amplitude of the oscillating components are located in the excitation-detection plane, other factors also affect this distribution. Specifically, the oscillation corresponding to each Feynman diagram is expected to have a phase that is a function of excitation and detection frequencies. Therefore, the overall phase of the experimentally observed oscillation will reflect this phase dependence. Another consequence is that the overall oscillation amplitude can show interference patterns resulting from overlapping contributions from neighboring Feynman diagrams. These observations are consistently reproduced through simulations based on third order perturbation theory coupled to a spectral density described by a Brownian oscillator model.
Directory of Open Access Journals (Sweden)
L. S. Konev
2015-09-01
Full Text Available Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.
Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di
2017-04-01
This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.
A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal
Directory of Open Access Journals (Sweden)
Hsin-Min Lee
2017-01-01
Full Text Available Focusing on the feature of porosity in bamboo charcoal, this study applies the ultrasonic-assisted vibration method to perform surface polishing of the silicon wafer workpiece. The self-developed bamboo charcoal polishing spindle and ultrasonic- assisted vibration mechanism are attached to a single lapping machine. In the machining process, ultrasonic vibration enables the diamond slurry to smoothly pass through the microscopic holes of bamboo charcoal; the end of the bamboo charcoalis able to continue machining on the surface of the workpiece through the grasping force which exists in the microscopic holes. Under the polishing and machining parameters of ultrasonic-assisted vibration, with a diamond slurry concentration of 0.3%, the experimental results show a polishing time of 20 min, a loading of 25 N on the workpiece surface, a spindle speed of 1200 rpm, a vibration frequency of 30 kHz and the original surface roughness value of Ra 0.252 μm equals that of a mirror-like surface at Ra 0.017 μm. These research results prove that by using bamboo charcoal and ultrasonic-assisted vibration for polishing, a very good improvement can be achieved on the workpiece surface.
Energy Technology Data Exchange (ETDEWEB)
Plenio, M. B.; Almeida, J.; Huelga, S. F. [Institute for Theoretical Physics, Albert-Einstein-Allee 11, University Ulm, D-89069 Ulm (Germany)
2013-12-21
We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.
Plenio, M B; Almeida, J; Huelga, S F
2013-12-21
We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.
Evaluation of Methods used for Separation of Vibrations Produced by Gear Transmissions
Directory of Open Access Journals (Sweden)
A. Dočekal
2008-01-01
Full Text Available This paper evaluates methods used for separating vibrations produced by a gear transmission from the vibration signal acquired on the gearbox. The paper presents a novel method for evaluating the algorithms used for this separation. The evaluation method takes into account the statistical reliability of the results achieved on multiple sets of signals acquired on the same machine and conditions. The signal separation was applied in order to process data obtained during an experiment carried out with the aim of analyzing the influence of a torque load affecting a gearbox on the vibrations produced by the gear transmission. It is supposed that the vibration characteristics of the gear transmission are strongly affected by the value of the torque load influencing the gearbox shafts. This influence is analyzed using the vibration signal acquired on the gearbox housing. The vibration signal contains significant disturbances, and its interpretation is unclear. The vibration signal generated by the gear transmission can be separated using methods that make it possible to select the valid features included in the signal. Methods for feature selection which implement a systematic search in the state space and methods based on the genetic algorithm were applied. The genetic algorithm poses a robust stochastic global search in the state space that is well suited to deal with nonlinear problems and also shortens the necessary computing time. The evaluation and comparison of the results achieved during the separation process using different methods have to be taken into account. In the case of signal separation, it is important to evaluate differences between the results achieved during particular executions of the separation process performed by the same method on different datasets which were acquired in the case of the same experiment and conditions. Methods with results that vary, or that are different from the results given by other methods, are assumed
An automatic method to quantify the vibration properties of human vocal folds via videokymography
Qiu, QJ; Schutte, HK; Gu, L; Yu, QL
2003-01-01
The study offers an automatical quantitative method to obtain vibration properties of human vocal folds via videokymography. The presented method is based on image processing, which combines an active contour model with a genetic algorithm to improve detecting precision and processing speed, can
Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.
2009-01-01
The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.
Rahman, T.; Jansen, E.L.; Tiso, P.
2011-01-01
In this paper, a finite element-based approach for nonlinear vibration analysis of shell structures is presented. The approach makes use of a perturbation method that gives an approximation for the amplitude-frequency relation of the structure. The method is formulated using a functional notation
Directory of Open Access Journals (Sweden)
WANG Minhao
2017-08-01
Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.
Vibrational Energy Relaxation: A Benchmark for Mixed Quantum-Classical Methods.
Jain, Amber; Subotnik, Joseph E
2018-01-11
We investigate the ability of mixed quantum-classical methods to capture the dynamics of vibrational energy relaxation. Several methods, including surface hopping, and Ehrenfest and symmetrical quasiclassical (SQC) dynamics, are benchmarked for the exactly solvable model problem of a harmonic oscillator bilinearly coupled to a bath of harmonic oscillators. Results show that, very often, one can recover accurate vibrational relaxation rates and detailed balance using simple mixed quantum-classical approaches. A few anomalous results do appear, however, especially regarding Ehrenfest and SQC dynamics.
Survey of electronic payment methods and systems
Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Helme, A.; Verbraeck, A.
1996-01-01
In this paper an overview of electronic payment methods and systems is given. This survey is done as part of the Moby Dick project. Electronic payment systems can be grouped into three broad classes: traditional money transactions, digital currency and creditdebit payments. Such payment systems have
Application of Time Delay Consideration on Bridge Vibration Control Method with Active Tendons
Directory of Open Access Journals (Sweden)
Lezin Seba MINSILI
2010-12-01
Full Text Available For many years bridge structures have been designed or constructed as passive structures that rely on their mass and solidity to resist external forces, while being incapable of adapting to the dynamics of an ever-changing environment. When the rigidity assumption is not met in particular for high-rise structures like bridge towers, a proper dynamic model should be established and conclusions made on the differential vibration of the tower when it is investigated out of the bridge system. The present work outlines a vibration control method by tendons on the tower of cable supported structures considering time delay effects, based on the discrete-time Linearization of the Feedback Gain Matrix. The efficiency of this vibration control method first proposed on the design process of a local bridge in Cameroon, is more compatible to the control of civil structures and is of great interest in accordance with simulation results.
Languy, Fabian; Vandenrijt, Jean-François; Thizy, Cédric; Rochet, Jonathan; Loffet, Christophe; Simon, Daniel; Georges, Marc P.
2016-12-01
We present our investigations on two interferometric methods suitable for industrial conditions dedicated to the visualization of vibration modes of aeronautic blades. First, we consider long-wave infrared (LWIR) electronic speckle pattern interferometry (ESPI). The use of long wavelength allows measuring larger amplitudes of vibrations compared with what can be achieved with visible light. Also longer wavelengths allow lower sensitivity to external perturbations. Second, shearography at 532 nm is used as an alternative to LWIR ESPI. Both methods are used in time-averaged mode with the use of phase-stepping. This allows transforming Bessel fringes, typical to time averaging, into phase values that provide higher contrast and improve the visualization of vibration mode shapes. Laboratory experimental results with both techniques allowed comparison of techniques, leading to selection of shearography. Finally a vibration test on electrodynamic shaker is performed in an industrial environment and mode shapes are obtained with good quality by shearography.
Ferré, A.; Boguslavskiy, A. E.; Dagan, M.; Blanchet, V.; Bruner, B. D.; Burgy, F.; Camper, A.; Descamps, D.; Fabre, B.; Fedorov, N.; Gaudin, J.; Geoffroy, G.; Mikosch, J.; Patchkovskii, S.; Petit, S.; Ruchon, T.; Soifer, H.; Staedter, D.; Wilkinson, I.; Stolow, A.; Dudovich, N.; Mairesse, Y.
2015-01-01
High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20–26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected. PMID:25608712
Cartmell, Matthew P.
2016-09-01
The Editor wishes to make the reader aware that the paper "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140, did not contain a direct citation of the fundamental and original work in this field by Dr. Mark Svinkin. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.
A first principles study of the mechanical, electronic, and vibrational properties of lead oxide
Zhuravlev, Yu. N.; Korabel'nikov, D. V.
2017-11-01
The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.
Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes
Directory of Open Access Journals (Sweden)
Hugo Lourenço-Martins
2017-12-01
Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].
Egidi, Franco; Giovannini, Tommaso; Piccardo, Matteo; Bloino, Julien; Cappelli, Chiara; Barone, Vincenzo
2014-06-10
Reliable computations of linear and non-linear optical properties of molecular systems in condensed phases require a proper account of stereo-electronic, vibrational, and environmental effects. In the framework of density functional theory, these effects can be accurately introduced using second-order vibrational perturbation theory in conjunction with polarizable continuum models. We illustrate the combination of an anharmonic description of the ground-state potential energy surface with solvation effects treated with the polarizable continuum model (PCM) in the calculation of the electronic, zero-point, and pure vibrational polarizabilities of selected systems. The description of the solvation environment is enriched by taking into account the dynamical aspects of the solute-solvent interactions through the inclusion of both electronic and vibrational non-equilbrium effects, as well as the direct effect of the solvent on the electric field that generates the molecular response (local field effect). This treatment yields accurate results which can be directly compared with experimental findings without the need of empirical corrections.
An examination of an adapter method for measuring the vibration transmitted to the human arms.
Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W
2015-09-01
The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system.
The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: A government overview
Kvaternik, Raymond G.
1993-01-01
NASA-Langley, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work has been done by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program has been made to identify those accomplishments and contributions which may be ascribed to the program. The purpose of this paper is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization.
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
A method of real-time fault diagnosis for power transformers based on vibration analysis
Hong, Kaixing; Huang, Hai; Zhou, Jianping; Shen, Yimin; Li, Yujie
2015-11-01
In this paper, a novel probability-based classification model is proposed for real-time fault detection of power transformers. First, the transformer vibration principle is introduced, and two effective feature extraction techniques are presented. Next, the details of the classification model based on support vector machine (SVM) are shown. The model also includes a binary decision tree (BDT) which divides transformers into different classes according to health state. The trained model produces posterior probabilities of membership to each predefined class for a tested vibration sample. During the experiments, the vibrations of transformers under different conditions are acquired, and the corresponding feature vectors are used to train the SVM classifiers. The effectiveness of this model is illustrated experimentally on typical in-service transformers. The consistency between the results of the proposed model and the actual condition of the test transformers indicates that the model can be used as a reliable method for transformer fault detection.
Determining shear modulus of thin wood composite materials using a cantilever beam vibration method
Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan
2016-01-01
Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...
VáÅa, Martin; Houfek, Karel
2017-02-01
A two-dimensional model of the resonant electron-molecule collision processes with one nuclear and one electronic degree of freedom introduced by K. Houfek, T. N. Rescigno, and C. W. McCurdy [Phys. Rev. A 73, 032721 (2006), 10.1103/PhysRevA.73.032721] is reformulated within the time-dependent framework and solved numerically using the finite-element method with the discrete variable representation basis, the exterior complex scaling method, and the generalized Crank-Nicolson method. On this model we illustrate how the time-dependent calculations can provide deep insight into the origin of oscillatory structures in the vibrational excitation cross sections if one evaluates the cross sections not only at sufficiently large time to obtain the final cross sections, but also at several characteristic times which are given by the evolution of the system. It is shown that all details of these structures, especially asymmetrical peaks, can be understood as quantum interference of several experimentally indistinguishable processes separated in time due to a resonant capture of the electron and the subsequent vibrational motion of the negative molecular ion. Numerical results are presented for the N2-like, NO-like, and F2-like models and compared with ones obtained within the time-independent approach and within the local complex potential approximation.
Study of the vibration of bulkhead-stiffened cylindrical shells by laser-based methods
Zhu, Ninghui
The first part of this dissertation work deals with an experimental study of the vibration behavior of bulkhead stiffened cylindrical shells by using laser-based vibration measurement methods. Holographic interferometry and laser speckle photography are first demonstrated on revealing the dynamic behavior of a 22 ft long cylindrical shell. These methods are thereafter further explored to study the vibration characteristic of cylindrical shells with different stiffeners such as a full bulkhead or a partial bulkhead. Many experimentally obtained holograms and specklegrams reveal interesting features of the vibration of bulkhead stiffened cylindrical shells. The experimentally obtained results are compared with those obtained from a finite element model developed by General Dynamic Electric Boat Division, and the finite element model is generally validated. Mode localization theory is used to explain some interesting findings in experiments and the reason of some discrepancies between the finite element analysis and experiment results. The presence of irregularities in a weakly coupled structure such as a bulkhead-stiffened cylindrical shell is shown to be able to localize the modes of vibration and inhibit the propagation of vibration within the shell. A numerical simulation based on the finite element modal analysis indicates the validation of this explanation of the experimental findings. Thereafter, the eigensolutions of disordered, plate-stiffened cylindrical shell stiffened are derived by the use of receptance method. Numerical calculations are thereafter performed based upon this model and indeed reveal the exist of localized vibration in this kind of structure. This analytical study provides physical insights into the mode localization phenomenon in stiffened cylindrical shell type of structures from a more systematic manner. The conditions and the effect of mode localization on natural frequencies and mode shapes of cylindrical shell structure are also
Habib, Muddasar; Miles, Nicholas J; Hall, Philip
2013-03-01
The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated. Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs. The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang
2015-01-01
A vibration testing method based on free vibration theory in a ââfreeâfreeâ support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...
A Heterodyne-based Method for Measuring Object Movement Speed and Vibration Parameters
Directory of Open Access Journals (Sweden)
M. A. Kostromin
2015-01-01
Full Text Available Now, in the industry and science, laser methods and tools are widely used to measure various parameters of objects and environment. Among them is distinguished the method of a heterodyne interferometry allowing real time measurements of fairly high accuracy. However, there is an essential shortcoming in this method. It is rather narrow range of measurements because a period of the wave-interference pattern is commensurable with the light wavelength. Therefore, for measurement of parameters of extended objects this work offers a method, which allows us to form the period wave-interference pattern commensurable with the object sizes using two channels of measurement, i.e. rough and exact, thereby providing a wide range and high accuracy of measurement. The article considers the offered method application to measure a movement speed and vibration parameters of the object and shows its advantage. It describes a structure of the heterodyne-based meter of the cross speed of object movement using the offered method where, as a result of the reflector cross movement, the phase of interfering beams is changed because the wave-interference pattern will be displaced with respect to the optoelectronic sensor slit. The paper defines efficiently working borders of this method for measuring object speed. It is found that to measure the amplitude of vibrations it is determined in this case by calculating the Bessel function transitions through zero. Thus, for disambiguation in determination of the amplitude size rather complicated equipment is demanded. It is shown that the offered method allows us to take absolute measurements of amplitude and frequency of vibrations along with simplified implementation. The calculations show that for the real speeds of the object movement this method, as compared to a known Doppler method, will have the higher sensitivity, which is easily regulated in a wide range by changing the frequency to the cross speeds of the movement
An experimental method for validating compressor valve vibration theory
Habing, R.A.; Peters, M.C.A.M.
2006-01-01
This paper presents an experimental method for validating traditional compressor valve theory for unsteady flow conditions. Traditional valve theory considers the flow force acting on the plate and the flow rate as quasi-steady variables. These variables are related via semi-empirical coefficients
Numerical analysis using state space method for vibration control of ...
African Journals Online (AJOL)
... on sagged bridges and car moving on road humps. The paper also presents the comparison of performance of both the dampers for the two cases. State space method has been employed for the numerical analysis of the study. It is found that the amplitude of displacements is reduced considerably by the employment of ...
Femtochemistry in the electronic ground state: Dynamic Stark control of vibrational dynamics
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Thomas, Esben Folger; Henriksen, Niels Engholm
2017-01-01
We study the interplay of vibrational and rotational excitation in a diatomic molecule due to the non-resonant dynamic Stark effect. With a fixed peak intensity, optimal Gaussian pulse durations for maximizing vibrational or rotational transitions are obtained analytically and confirmed numerically...
Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods
Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.
2003-01-01
In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.
Directory of Open Access Journals (Sweden)
Sun Yi-Hang
2017-01-01
Full Text Available In order to detect a mechanical type of structural failure of the circuit breaker, the characteristics of the circuit breaker mechanical vibration signal is analyzed in this paper. A combination of medium voltage circuit breaker based on empirical mode decomposition (EMD amount of energy and support vector machine (SVM theory vibration signal feature vector extraction and analysis of fault classification method is proposed. First, the vibration signal of the circuit breaker is decomposed by EMD, then intrinsic mode function (IMF is obtain. The major fault feature information intrinsic mode functions the amount of energy of the component is obtained by discrete sampling points and the amount of energy. Using the amount of energy of IMF component as a feature vector, the failure of the test sample signal as input feature vector into trained “BT-SVM” support vector machine classification mechanism for fault classification. The differences and fault type of vibration signals can be identified by this method through the experimental analysis.
Champagne, Benoît; Spassova, Milena; Jadin, Jean-Benoit; Kirtman, Bernard
2002-03-01
The effect of charging on the longitudinal second hyperpolarizability of polyacetylene (PA) chains containing up to nearly 70 carbon atoms has been investigated ab initio by characterizing chains with and without an explicit alkali atom (Li, Na, K) as dopant. Whereas charging dramatically enhances the static electronic and vibrational hyperpolarizabilities, γLe(0) and γLv, of an isolated chain at intermediate chain lengths, the presence of an alkali atom counterion substantially reduces this effect. As the size of the alkali atom increases, most properties, including the hyperpolarizabilities, approach those of the isolated chain. Detailed analysis shows that the behavior of γLe(0) is most simply explained in terms of a reduced electrostatic pinning potential due to increased distance between chain and counterion. At all chain lengths studied γLe(0) of PA is enhanced by alkali doping. For chains containing 50 carbon atoms (NC=50), the increase due to K doping is about 9×107a.u., which more than doubles the value for an undoped chain of similar length. The normalized quantity γLe(0)/NC exhibits a maximum for the isolated soliton (at about NC=61) that is over four times that of the infinite undoped (and unbent) chain. When the alkali dopant is taken into account this maximum diminishes considerably and shifts to larger NC than we have considered. In comparison with the maximum for the undoped species (at NC=∞) there is a small enhancement of γLe(0)/NC for K doping, but none for either Li or Na doping at the coupled-perturbed Hartree-Fock (CPHF)/6-31G level of theory. Intermediate length isolated chains bearing a charged soliton show order of magnitude increases in γv for the degenerate four-wave mixing (DFWM) and, especially, electric field-induced second harmonic generation (dc-SHG) processes compared to undoped PA. As in the case of γLe(0) this enhancement persists, but is significantly reduced when the dopant atom is included. Vibrational anharmonicity
Energy Technology Data Exchange (ETDEWEB)
Badel, D.; Cocchi, G.; Oules, H. [Centre d' Etudes Scientifiques et Techniques d' Aquitaine (France). Centre d' Etudes Nucleaires
1969-07-01
The S.I.D.E.X. is a digital computer assisted facility for Data acquisition and Data processing. It is designed for sine wave or random environment tests, mechanical or acoustical vibrations, shock waves. The mathematical principles and the system configuration have been described in the CEA file nb R-3666. The present one describes the numerical methods and the programs available up to now. Some examples of results obtained are shown at the end. (authors) [French] Le systeme integre de depouillement pour l'experimentation S.I.D.E.X., a pour but d'effectuer les calibration, les acquisitions et les depouillements des essais aux vibrations sinusoidales ou aleatoires, mecaniques ou acoustiques et des essais de chocs. Les methodes mathematiques correspondantes et la configuration digitale employee ont ete decrites dans le rapport CEA nb CEA-R-3666. Le present rapport indique les methodes numeriques en vigueur et les programmes actuellement disponibles. Des exemples de resultats obtenus sont egalement presentes. (auteurs)
Covington, Cody L; Raghavan, Vijay; Smuts, Jonathan P; Armstrong, Daniel W; Polavarapu, Prasad L
2017-11-01
The absolute configuration (AC) of an axially chiral sulfonate (aCSO), 3,5-dimethyl-2-(naphthalen-1-yl)-6-(naphthalen-1-yl)benzenesulfonate (labeled as aCSO5), was investigated using optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) spectroscopies. All three methods led to the same conclusion and the AC of aCSO5 is reliably determined to be (-)-(aR, aR), or conversely (+)-(aS, aS). © 2017 Wiley Periodicals, Inc.
Mei, Chuh; Shen, Mo-How
1987-01-01
Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.
Varga, Zoltán; Groen, Cornelis Petrus; Kolonits, Mária; Hargittai, Magdolna
2010-07-21
The molecular and electronic structure of dysprosium triiodide, DyI(3), and its dimer, Dy(2)I(6), was determined by high level computations, gas-phase electron diffraction, and gas-phase infrared and matrix-isolation infrared and Raman spectroscopy. The free monomeric molecule is planar from all methods with an equilibrium bond length of 2.808(9) A; the thermal average bond length from electron diffraction is 2.828(6) A. The molecule forms complexes in the matrix-isolation experiments causing pyramidalisation of planar monomeric molecules. The likelihood of having both pyramidal and planar DyI(3) molecules in the matrix is discussed in order to explain certain features of the spectra. Our computations suggest that the dimer geometry depends on the occupation of the partially filled 4f orbitals. As this is the third molecule in the dysprosium trihalide series studied, trends in their electronic and molecular structures are presented and discussed.
Energy Technology Data Exchange (ETDEWEB)
Celiberto, R., E-mail: r.celiberto@poliba.it [Department of Water Engineering and Chemistry, Polytechnic of Bari, 70125 Bari (Italy); Institute of Inorganic Methodologies and Plasmas, CNR, 70125 Bari (Italy); Janev, R.K., E-mail: r.janev@fz-juelich.de [Macedonian Academy of Sciences and Arts, P.O.B 428, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH Association EURATOM-FZJ, Partner in Trilateral Euregio Cluster, 52425 Juelich (Germany); Wadehra, J.M., E-mail: wadehra@wayne.edu [Physics Department, Wayne State University, Detroit, MI 48202 (United States); Tennyson, J., E-mail: j.tennyson@ucl.ac.uk [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)
2012-04-04
Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v{sub i} = 0-5, 10 of the H{sub 2} molecule. Highlights: Black-Right-Pointing-Pointer We calculated electron-hydrogen dissociative attachment cross sections and rates coefficients. Black-Right-Pointing-Pointer Collision processes occurring through a resonant Rydberg state are considered. Black-Right-Pointing-Pointer Cross sections and rates were obtained for vibrationally excited hydrogen molecules. Black-Right-Pointing-Pointer The cross sections exhibit pronounced oscillatory structures. Black-Right-Pointing-Pointer A comparison with the process involving the electron-hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H{sub 2} molecule taking place via the {sup 2}{Sigma}{sub g}{sup +} Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v{sub i} = 0-14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v{sub i}, when the process proceeds via the X {sup 2}{Sigma}{sub u}{sup +} shape resonance of H{sub 2}, for the {sup 2}{Sigma}{sub g}{sup +} Rydberg resonance the cross sections increase only gradually up to v{sub i} = 3 and then decrease. Moreover, the cross sections for v{sub i} Greater-Than-Or-Slanted-Equal-To 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v{sub i} levels are also calculated in the 0.5-1000 eV temperature range.
Molchanov, A. M.; Bykov, L. V.; Yanyshev, D. S.
2017-05-01
The method has been developed to calculate infrared radiation of vibrational nonequilibrium gas based on k-distribution. A comparison of the data on the calculated nonequilibrium radiation with results of other authors and with experimental data has shown satisfactory agreement. It is shown that the results of calculation of radiation intensity using nonequilibrium and equilibrium methods significantly differ from each other. The discrepancy increases with increasing height (decreasing pressure) and can exceed an order of magnitude.
METHOD OF COMPENSATING LOADS FOR SHALLOW SHELLS. VIBRATION AND STABILITY PROBLEMS
Directory of Open Access Journals (Sweden)
Tran Duc Chinh
2015-12-01
Full Text Available Based on the integral representation of the displacements functions through Green's functions, the author proposed a method to solve the system of differential equations of the given problem. The equations were solved approximately by reducing to algebraic equations by finite difference techniques in Samarsky scheme. Some examples are given for calculation of eigenvalues of shallow shell vibration problem, which are compared with results received by Onyashvili using Galerkin method.
Mei, Chuh
1987-01-01
A finite element method is presented for the large amplitude vibrations of complex structures that can be modelled with beam and rectangular plate elements subjected to harmonic excitation. Both inplane deformation and inertia are considered in the formulation. Derivation of the harmonic force and nonlinear stiffness matrices for a beam and a rectangular plate element are presented. Solution procedures and convergence characteristics of the finite element method are described. Nonlinear response to uniform and concentrated harmonic loadings and improved nonlinear free vibration results are presented for beams and rectangular plates of various boundary conditions.
Gaynor, James D; Courtney, Trevor L; Balasubramanian, Madhumitha; Khalil, Munira
2016-06-15
The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles.
Methods for fabrication of flexible hybrid electronics
Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos
2017-08-01
Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.
Crystalline indole at high pressure: chemical stability, electronic, and vibrational properties.
Citroni, Margherita; Costantini, Barbara; Bini, Roberto; Schettino, Vincenzo
2009-10-15
Vibrational and electronic spectra of crystalline indole were measured up to 25.5 GPa at room temperature in a diamond anvil cell. In particular, Fourier transform infrared (FTIR) spectra in the mid-infrared region and two-photon excitation profiles and fluorescence spectra in the region of the HOMO-LUMO transitions were obtained. The analysis of the FTIR spectra revealed a large red-shift of the N-H stretching mode with increasing pressure, indicating the strengthening of the H-bond between the NH group and the pi electron density of nearest neighbor molecules. The frequencies of four vibronic bands belonging to the (1)L(a) and (1)L(b) systems were obtained as a function of pressure. Comparison with literature data shows that the crystal acts as a highly polar environment with regard to the position of the (1)L(b) origin and of the fluorescence maximum, which are largely red-shifted with respect to the gas phase or to solutions in apolar solvents. A large, and increasing with pressure, frequency difference between the (1)L(b) origin and the blue edge of the fluorescence spectrum suggests that the emitting state is (1)L(a), that is known to be more stabilized than (1)L(b) by dipolar relaxation. Crystalline indole was found to be very stable with respect to pressure-induced reactivity. Only traces of a reaction product, containing saturated C-H bonds, are detected after a full compression-decompression cycle. In addition, differently from many unsaturated compounds at high pressure, irradiation with light matching a two-photon absorption for a HOMO-LUMO transition has no enhancing effect on reactivity. The chemical stability of indole at high pressure is ascribed to the crystal structure, where nearest neighbor molecules, formig H-bonds, are not in a favorable position to react, while reaction between equivalent molecules, for which a superposition of the pi electron clouds would be possible, is hindered by H-bonded molecules. Consistently, no excimer emission was
Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module
Zuckerwar, Allan J.; Garza, Frederico R.
2001-01-01
A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.
Sienkiewicz-Gromiuk, Justyna
2018-01-01
The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.
Directory of Open Access Journals (Sweden)
Aboozar Heydari
2017-09-01
Full Text Available In this paper, the effects of nonlinear forces due to the electromagnetic field of bearing and the unbalancing force on nonlinear vibration behavior of a rotor is investigated. The rotor is modeled as a rigid body that is supported by two magnetic bearings with eight-polar structures. The governing dynamics equations of the system that are coupled nonlinear second order ordinary differential equations (ODEs are derived, and for solving these equations, the homotopy perturbation method (HPM is used. By applying HPM, the possibility of presenting a harmonic semi-analytical solution, is provided. In fact, with equality the coefficient of auxiliary parameter (p, the system of coupled nonlinear second order and non-homogenous differential equations are obtained so that consists of unbalancing effects. By considering some initial condition for displacement and velocity in the horizontal and vertical directions, free vibration analysis is done and next, the forced vibration analysis under the effect of harmonic forces also is investigated. Likewise, various parameters on the vibration behavior of rotor are studied. Changes in amplitude and response phase per excitation frequency are investigated. Results show that by increasing excitation frequency, the motion amplitude is also increases and by passing the critical speed, it decreases. Also it shows that the magnetic bearing system performance is in stable maintenance of rotor. The parameters affecting on vibration behavior, has been studied and by comparison the results with the other references, which have a good precision up to 2nd order of embedding parameter, it implies the accuracy of this method in current research.
Vibration analysis of hydropower house based on fluid-structure coupling numerical method
Directory of Open Access Journals (Sweden)
Shu-he Wei
2010-03-01
Full Text Available By using the shear stress transport (SST model to predict the effect of random flow motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the powerhouse and its tube water was developed. The effects of fluid-structure interaction are considered through the kinematic and dynamic conditions applied to the fluid-structure interfaces (FSI. Numerical simulation of turbulent flow through the whole flow passage of the powerhouse and concrete structure vibration analysis in the time domain were carried out with the model. Considering the effect of coupling the turbulence and the powerhouse structure, the time history response of both turbulent flows through the whole flow passage and powerhouse structure vibration were generated. Concrete structure vibration analysis shows that the displacement, velocity, and acceleration of the dynamo floor respond dramatically to pressure fluctuations in the flow passage. Furthermore, the spectrum analysis suggests that pressure fluctuation originating from the static and dynamic disturbances of hydraulic turbine blades in the flow passage is one of the most important vibration sources.
Vibration-Based Method Developed to Detect Cracks in Rotors During Acceleration Through Resonance
Sawicki, Jerzy T.; Baaklini, George Y.; Gyekenyesi, Andrew L.
2004-01-01
In recent years, there has been an increasing interest in developing rotating machinery shaft crack-detection methodologies and online techniques. Shaft crack problems present a significant safety and loss hazard in nearly every application of modern turbomachinery. In many cases, the rotors of modern machines are rapidly accelerated from rest to operating speed, to reduce the excessive vibrations at the critical speeds. The vibration monitoring during startup or shutdown has been receiving growing attention (ref. 1), especially for machines such as aircraft engines, which are subjected to frequent starts and stops, as well as high speeds and acceleration rates. It has been recognized that the presence of angular acceleration strongly affects the rotor's maximum response to unbalance and the speed at which it occurs. Unfortunately, conventional nondestructive evaluation (NDE) methods have unacceptable limits in terms of their application for online crack detection. Some of these techniques are time consuming and inconvenient for turbomachinery service testing. Almost all of these techniques require that the vicinity of the damage be known in advance, and they can provide only local information, with no indication of the structural strength at a component or system level. In addition, the effectiveness of these experimental techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the use of vibration monitoring along with vibration analysis has been receiving increasing attention.
Errors in the estimation method for the rejection of vibrations in adaptive optics systems
Kania, Dariusz
2017-06-01
In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.
Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method
Kania, Dariusz
2017-06-01
The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.
Energy Technology Data Exchange (ETDEWEB)
Shiohata, K.; Nemoto, K.; Nagawa, Y.; Sakamoto, S.; Kobayashi, T.; Ito, M.; Koharagi, H. [Hitachi, Ltd, Tokyo (Japan)
1998-11-01
In this analysis method, electromagnetic force calculated by 2-dimensional analysis is transformed into external force for 3-dimensional structural-vibration analysis. And a modeling procedure for a vibrating structure is developed. Further, a space-modal-resonance criteria which relates electromagnetic force to structural-vibration or noise is introduced. In the structural-vibration analysis, the finite element method is used; and in the noise analysis, the boundary element method is used. Finally, vibration and noise of an induction motor are calculated using this criteria. Consequently, high-accuracy modeling is achieved and noise the calculated by the simulation almost coincides with that obtained by experiments. And it is clarified that the-space-modal resonance criteria is effective in numerical simulation. 11 refs., 9 figs., 3 tabs.
Numerical methods in electron magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Soernes, A.R
1998-07-01
The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system.
Directory of Open Access Journals (Sweden)
Apoorva Dwivedi
2015-01-01
Full Text Available The spectroscopic, optical, and electronic properties of tetrahydrofuran and its derivatives were investigated by FTIR techniques. We have done a comparative study of tetrahydrofuran and its derivatives with B3LYP with 6-311 G (d, p as the basis set. Here we have done a relative study of their structures, vibrational assignments, and thermal, electronic, and optical properties of ttetrahydrofuran and its derivatives. We have plotted frontier orbital HOMO-LUMO surfaces and molecular electrostatic potential surfaces to explain the reactive nature of tetrahydrofuran and its derivatives.
Energy Technology Data Exchange (ETDEWEB)
Habib, Muddasar, E-mail: muddasar77@hotmail.com [Department of Chemical Engineering, University of Engineering and Technology, Peshawar (Pakistan); Miles, Nicholas J.; Hall, Philip [Faculty of Science and Engineering, University of Nottingham Ningbo China, Taikang East Road, Ningbo 315100 (China)
2013-03-15
Highlights: ► This work focuses on demonstrating a new scaled up technology to separate the metallic and non-metallic fractions of PCBs. ► PCBs comminuted to <1 mm in size resulted in metallic grade concentration of 95% in some of the recovered products. ► Good separation was observed at 40 mm particle bed height due to the formation of well-structured global convection currents. ► The work reported here contributes to the development of a new approach to dry, fine particle separation. - Abstract: The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated. Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs. The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1 mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products.
Energy Technology Data Exchange (ETDEWEB)
Babenko, V A; Sychev, Andrei A [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2012-09-30
In exciting water possessing an enhanced optical strength by the radiation of a YAG : Nd{sup 3+} laser with 20-ps pulses, nonlinear scattering of light was detected in the frequency range of the optical second harmonic. A relationship was established of the signal of the nonlinear scattering with a stimulated Raman scattering (SRS) of the laser radiation in water. Near the SRS threshold, the structure was observed in the spectrum of nonlinear scattering, which is related to intermolecular libration vibrations of water molecules. (laser applications and other topics in quantum electronics)
Directory of Open Access Journals (Sweden)
Vita Solomko
2016-01-01
Full Text Available The energetic structures and conformations of trimethine cyanine dye molecules were investigated. For research, group theoretical and quantum chemical calculation methods were used. The theoretical group analysis of electronic and vibrational structure of molecules was carried out. Also, the energetic structures and conformations of the molecule of this dye were studied. Research shows that the investigated molecule may reside in three different conformational states, one of which is highly symmetric (symmetry C2v and the other two with low symmetry. The third conformer is characterized by lowering of binding energy of the electronic system by 0.23 eV, and the long-wavelength absorption band is shifted to lower energies. Also the group theoretical analysis of the trimethine cyanine molecule had allowed systematizing the vibrational and electronic quantum transitions and identifying the bands in the absorption spectra. It is shown that the excitation of the molecule in S1-state causes trans-cis-isomerization. The presence of the barrier of ~0.1 eV allows the fluorescence process to compete with isomerization process, but isomerization causes a decrease in the fluorescence quantum yield of the dye.
Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment
Directory of Open Access Journals (Sweden)
Ioannis KOSMADAKIS
2015-04-01
Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.
Computing vibrational energy levels of CH4 with a Smolyak collocation method
Avila, Gustavo; Carrington, Tucker
2017-10-01
In this paper, we demonstrate that it is possible to apply collocation to compute vibrational energy levels of a five-atom molecule using an exact kinetic energy operator (with cross terms and coordinate-dependent coefficients). This is made possible by using (1) a pruned basis of products of univariate functions; (2) a Smolyak grid made from nested sequences of grids for each coordinate; (3) a collocation method that obviates the need to solve a generalized eigenvalue problem; (4) an efficient sequential transformation between the (nondirect product) grid and the (nondirect product) basis representations; and (5) hierarchical univariate functions that make it possible to avoid storing large intermediate vectors. The accuracy of the method is confirmed by computing 500 vibrational energy levels of methane.
Method to characterize the vibrational response of a beetle type scanning tunneling microscope
Energy Technology Data Exchange (ETDEWEB)
Behler, S.; Rose, M.K.; Ogletree, D.F.; Salmeron, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)
1997-01-01
We describe a method for analyzing the external vibrations and intrinsic mechanical resonances affecting scanning probe microscopes by using the microscope as an accelerometer. We show that clear correlations can be established between the frequencies of mechanical vibrational modes and the frequencies of peaks in the tunnel current noise power spectrum. When this method is applied to our {open_quotes}beetle{close_quotes} type scanning tunneling microscope (STM), we find unexpected low frequency {open_quotes}rattling resonances{close_quotes} in the 500{endash}1700 Hz range that depend on the exact lateral position of the STM, in addition to the expected mechanical resonances of the STM above 4 kHz which are in good agreement with theoretical estimates. We believe that these rattling resonances may be a general problem for scanning probe microscopes that use some type of kinetic motion for coarse positioning. {copyright} {ital 1997 American Institute of Physics.}
Alternative Therapeutic Method for Type Two Diabetes: Whole Body Vibration Therapy: A Mini-Review
Erika L Simmerman; Xu Qin; Henrik O Berdel; Mozaffari, Mahmood S.; Babak Baban; Jack C Yu
2016-01-01
Context As the prevalence of obesity and diabetes continues to increase there is a need for new interventions to control this epidemic. Multiple alternative treatment methods exist for type 2 diabetes mellitus such as acupuncture, bariatric surgery, yoga, aromatherapy, herbal remedies, etc. Whole Body Vibration is a relatively new area of interest recently utilized as an adjunctive therapy in type 2 diabetes mellitus, representing a potentially new and novel treatment for type 2 diabetes mell...
Active vibration control using state space LQG and internal model control methods
DEFF Research Database (Denmark)
Mørkholt, Jakob; Elliott, S.J.
1998-01-01
Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....
Vibration and Buckling Analysis of Moderately Thick Plates using Natural Element Method
Mohammad Etemadi; Fakhri Etemadi; Tayeb Pourreza
2015-01-01
Using natural element method (NEM), the buckling and the free vibration behaviors of moderate thick plates is studied here. The basis of NEM is natural neighbors and Voronoi cells concepts. The shape functions of nodes located in the domain is equal to the proportion of common natural neighbors area divided by area that related by each Voronoi cells. First step in analyzing the moderate thick plates is identification boundaries. This is done by nodes scattering on problem do...
Directory of Open Access Journals (Sweden)
H. Vershina
2012-01-01
Full Text Available The paper presents investigations of processes pertaining to surface charge accumulation and running of fluoropolymer-4 products using vibrating capacitor method. Modification of a measurement technique allowing to register distribution of dielectric surface potential without disturbance of the surface charged state has been described in the paper. The paper contains graphics of spatial distribution of surface potential of fluoropolymer-4 products after various treatments. The paper reveals that thermal treatment (tempering reduces static characteristics of fluoropolymer-4.
Directory of Open Access Journals (Sweden)
Lin Cheng
2015-01-01
Full Text Available The ambient vibration testing (AVT measurement of concrete dams on full-scale can show the practical dynamic properties of structure in the operation state. For most current researches, the AVT data is generally analyzed to identify the structural vibration characteristics, that is, modal parameters. The identified modal parameters, which can provide the global damage information or the damage location information of structure, can be used as the basis of structure health monitoring. Therefore, in this paper, the health monitoring method of concrete dams based on the AVT is studied. The kernel principle analysis (KPCA based method is adopted to eliminate the effect of environmental variables and monitor the health of dam under varying environments. By taking full advantage of the AVT data obtained from vibration observation system of dam, the identification capabilities and the warning capabilities of structural damage can be improved. With the simulated AVT data of the numerical model of a concrete gravity dam and the measured AVT data of a practical engineering, the performance of the dam health monitoring method proposed in this paper is verified.
Multiple-mode nonlinear free and forced vibrations of beams using finite element method
Mei, Chuh; Decha-Umphai, Kamolphan
1987-01-01
Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.
Directory of Open Access Journals (Sweden)
A.M. Yu
2012-01-01
Full Text Available Free vibration equations for non-cylindrical (conical, barrel, and hyperboloidal types helical springs with noncircular cross-sections, which consist of 14 first-order ordinary differential equations with variable coefficients, are theoretically derived using spatially curved beam theory. In the formulation, the warping effect upon natural frequencies and vibrating mode shapes is first studied in addition to including the rotary inertia, the shear and axial deformation influences. The natural frequencies of the springs are determined by the use of improved Riccati transfer matrix method. The element transfer matrix used in the solution is calculated using the Scaling and Squaring method and Pad'e approximations. Three examples are presented for three types of springs with different cross-sectional shapes under clamped-clamped boundary condition. The accuracy of the proposed method has been compared with the FEM results using three-dimensional solid elements (Solid 45 in ANSYS code. Numerical results reveal that the warping effect is more pronounced in the case of non-cylindrical helical springs than that of cylindrical helical springs, which should be taken into consideration in the free vibration analysis of such springs.
Faizan, Mohd; Alam, Mohammad Jane; Ahmad, Shabbir
2017-11-01
In the present investigation, spectroscopic techniques (FTIR, FT-Raman and UV-Vis) and quantum chemical calculations are employed for exploring vibrational and electronic spectra of sulindac compound. The calculations are performed on most stable conformer of the sulindac molecule using density functional theory (DFT). Anharmonic corrections are made to frequencies using vibrational second-order perturbation theory (VPT2). The effect of intermolecular interactions on the vibrational dynamics has been analyzed using dimeric structure of sulindac molecule. Hirshfeld surface analysis and 2D fingerprint plots are utilized to investigate the nature of interaction present in the crystal system. To account for electronic spectra in different solvents, an integral equation formalism of polarizable continuum model (IEFPCM) at TD-DFT/B3LYP/6-31G(d,p) level of theory has been employed. An excellent agreement between the theoretical and experimental data over the entire spectral region is observed. In addition, natural bond orbital (NBO) analysis, frontier molecular orbitals, nonlinear optical properties (NLO) and molecular electrostatic potential (MEP) analysis are also reported.
Improved methods for high resolution electron microscopy
Energy Technology Data Exchange (ETDEWEB)
Taylor, J.R.
1987-04-01
Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.
Fiducialization of the small-aperture quadrupoles based on the vibrating wire method
Energy Technology Data Exchange (ETDEWEB)
Wang, Baichuan, E-mail: wangbaichuan@nint.ac.cn [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Tsinghua University, Beijing 100084 (China); Zheng, Shuxin, E-mail: zhengsx@tsinghua.edu.cn [Tsinghua University, Beijing 100084 (China); Wu, Lin; Du, Changtong; Xing, Qingzi [Tsinghua University, Beijing 100084 (China); Wang, Zhongming; Qiu, Mengtong [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Wang, Xuewu [Tsinghua University, Beijing 100084 (China)
2016-03-11
A fiducialization method based on vibrating wire is described dedicated to the problem of locating the magnetic center relative to external fiducials for the small-aperture quadrupoles. The advantage of this method is that the measurement of the wire position, which may be the main error source, is no longer needed. The position of the magnetic center can be directly obtained by measuring the position shift of the magnet fiducials. This method has been validated on small Permanent Magnet Quadrupoles (PMQs). Experiments have confirmed its feasibility of measuring PMQs with good repeatability of about 10 μm, and shown its high sensitivity as well as convenience.
Latha, B.; Gunasekaran, S.; Srinivasan, S.; Ramkumaar, G. R.
2014-11-01
The solid phase FTIR and FT-Raman spectra of Losartan have been recorded in the region 400-4000 cm-1. The spectra were interpreted in terms of fundamental modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by Quantum chemical methods. The vibrational frequencies yield good agreement between observed and calculated values. The infrared and Raman spectra were also predicted from the calculated intensities. (1)H and (13)C NMR spectra were recorded and resonance chemical shifts of the molecule were calculated. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies calculated by TD-HF approach. NBO atomic charges of the molecules and second order perturbation theory analysis of Fock matrix also calculated and interpreted. The geometrical parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, and absorption wavelengths were compared with experimental and theoretical data of the molecule.
Wang, H. P.; Guan, Y. C.; Zheng, H. Y.
2017-12-01
Rough surface features induced by laser irradiation have been a challenging for the fabrication of micro/nano scale features. In this work, we propose hybrid ultrasonic vibration polishing method to improve surface quality of microcraters produced by femtosecond laser irradiation on cemented carbide. The laser caused rough surfaces are significantly smoothened after ultrasonic vibration polishing due to the strong collision effect of diamond particles on the surfaces. 3D morphology, SEM and AFM analysis has been conducted to characterize surface morphology and topography. Results indicate that the minimal surface roughness of Ra 7.60 nm has been achieved on the polished surfaces. The fabrication of microcraters with smooth surfaces is applicable to molding process for mass production of micro-optical components.
Directory of Open Access Journals (Sweden)
Susilo Widyanto
2010-10-01
Full Text Available The research of deposition process is the first step in development process of multi materials selective laser sintering. The deposition process enables to settle multi materials powder in horizontal formation on one layer. In this research we use low frequency (70 - 200Hz to vibrate a hopper nozzle in which powder is settled. The research method consists of two steps, the first step is to determine flow-ability parameters and the second is to join flow ability parameter with other parameters such that the line width can be controlled. The results show that the line width depends on uniformity of particle size, particle size, frequency of vibration, deposition gap, particle shape and feed-rate of hopper-nozzle.
Directory of Open Access Journals (Sweden)
R. Rabenstein
2004-06-01
Full Text Available The functional transformation method (FTM is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.
The GDQ Method of Thermal Vibration Laminated Shell with Actuating Magnetostrictive Layers
Directory of Open Access Journals (Sweden)
C.C. Hong
2017-06-01
Full Text Available The research of laminated magnetostrictive shell under thermal vibration was computed by using the generalized differential quadrature (GDQ method. In the thermoelastic stress-strain equations that contain the terms linear temperature rise and the magnetostrictive material with velocity feedback control. The dynamic equilibrium differential equations with displacements were normalized and discretized into the dynamic discretized equations by the GDQ method. Two edges of laminated shell with clamped boundary conditions were considered. The values of interlaminar thermal stresses and center displacement of shell with and without velocity feedback control were calculated, respectively. The purpose of this research is to compute the time responses of displacement and stresses in the laminated magnetostrictive shell subjected to thermal vibration with suitable controlled gain values. The numerical GDQ results of displacement and stresses are also obtained and investigated. With velocity feedback and suitable control gain values are found to reduce the amplitude of displacement and stresses into a smaller value. The higher values of temperature get the higher amplitude of displacement and stresses. The GDQ results of actuating magnetostrictive shells can be applied in the field of morphing aircraft (adaptive structures and smart materials to reduce and suppress the vibration when under aero-thermal flutter.
Approximate natural vibration analysis of rectangular plates with openings using assumed mode method
Directory of Open Access Journals (Sweden)
Dae Seung Cho
2013-09-01
Full Text Available Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM as well as those available in the relevant literature, and very good agreement is achieved.
An Accurate Integral Method for Vibration Signal Based on Feature Information Extraction
Directory of Open Access Journals (Sweden)
Yong Zhu
2015-01-01
Full Text Available After summarizing the advantages and disadvantages of current integral methods, a novel vibration signal integral method based on feature information extraction was proposed. This method took full advantage of the self-adaptive filter characteristic and waveform correction feature of ensemble empirical mode decomposition in dealing with nonlinear and nonstationary signals. This research merged the superiorities of kurtosis, mean square error, energy, and singular value decomposition on signal feature extraction. The values of the four indexes aforementioned were combined into a feature vector. Then, the connotative characteristic components in vibration signal were accurately extracted by Euclidean distance search, and the desired integral signals were precisely reconstructed. With this method, the interference problem of invalid signal such as trend item and noise which plague traditional methods is commendably solved. The great cumulative error from the traditional time-domain integral is effectively overcome. Moreover, the large low-frequency error from the traditional frequency-domain integral is successfully avoided. Comparing with the traditional integral methods, this method is outstanding at removing noise and retaining useful feature information and shows higher accuracy and superiority.
Yu, Y. H.; Liu, D.; Yang, X. F.; Si, J.
2017-08-01
To analyse the flow characteristics of leakage as well as the mechanism of selfexcited vibration in valves, the method of characteristics was used to assess the effect of flexible valve leakage on the self-excited vibration in water-supply pump system. Piezometric head in upstream of the valve as a function of time was obtained. Two comparative schemes were proposed to simulate the process of self-excited vibration by changing the length, the material of the pipeline and the leakage of valves in the above pump system. It is shown that the length and material of the pipe significantly affect the amplitude and cycle of self-excited vibration as well as the increasing rate of the vibration amplitude. In addition, the leakage of the valve has little influence on the amplitude and cycle of self-excited vibration, but has a significant effect on the increasing rate of vibration amplitude. A pipe explosion accident may occur without the inhibiting of self-excited vibration.
National Research Council Canada - National Science Library
Zeng, Zhiping; Zhu, Kunteng; He, Xianfeng; Xu, Wentao; Chen, Lingkun; Lou, Ping
2015-01-01
This paper investigates the random vibration and the dynamic reliability of operation stability of train moving over slab track on bridge under track irregularities and earthquakes by the pseudoexcitation method (PEM...
Methods and apparatus for cooling electronics
Hall, Shawn Anthony; Kopcsay, Gerard Vincent
2014-12-02
Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.
A comparison of several methods for the calculation of vibration mode shape derivatives
Sutter, T. R.; Camarda, C. J.; Walsh, J. L.; Adelman, H. M.
1986-01-01
Four methods for the calculation of derivatives of vibration mode shapes (eigenvectors) with respect to design parameters are reviewed and compared. These methods (finite difference method, Nelson's method, modal method and a modified modal method) are implemented in a general-purpose commercial finite element program and applied to a cantilever beam and a stiffened cylinder with a cutout. A beam tip mass, a beam root height and specific dimensions of the cylinder model comprise the design variables. Data are presented showing the amount of central processor time used to compute the first four eigenvector derivatives for each example problem; errors and rapidity of convergence of the approximate derivative to the exact derivative are taken into account. Nelson's method proved to be most reliable and efficient.
Directory of Open Access Journals (Sweden)
N. D. Anh
Full Text Available Abstract In this paper, the Equivalent Linearization Method (ELM with a weighted averaging, which is proposed by Anh (Anh, 2015, is applied to analyze some vibrating systems with nonlinearities. The strongly nonlinear Duffing oscillator with third, fifth, and seventh powers of the amplitude, the other strongly nonlinear oscillators and the cubic Duffing with discontinuity are considered. The results obtained via this method are compared with the ones achieved by the Min-Max Approach (MMA, the Modified Lindstedt - Poincare Method (MLPM, the Parameter - Expansion Method (PEM, the Homotopy Perturbation Method (HPM and 4th order Runge-Kutta method. The obtained results demonstrate that this method is very convenient for solving nonlinear equations and also can be successfully exerted to a lot of practical engineering and physical problems.
Vibrational properties of TaW alloy using modified embedded atom method potential
Energy Technology Data Exchange (ETDEWEB)
Chand, Manesh, E-mail: maneshchand@gmail.com; Uniyal, Shweta; Joshi, Subodh; Semalty, P. D., E-mail: semalty@rediffmail.com [Department of Physics, H.N.B. Garhwal University Campus, Badshahi Thaul, Tehri Garhwal – 249 199 (India)
2016-05-06
Force-constants up to second neighbours of pure transition metal Ta and TaW alloy are determined using the modified embedded atom method (MEAM) potential. The obtained force-constants are used to calculate the phonon dispersion of pure Ta and TaW alloy. As a further application of MEAM potential, the force-constants are used to calculate the local vibrational density of states and mean square thermal displacements of pure Ta and W impurity atoms with Green’s function method. The calculated results are found to be in agreement with the experimental measurements.
Theory of vibration protection
Karnovsky, Igor A
2016-01-01
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...
Directory of Open Access Journals (Sweden)
Maziar Janghorban
Full Text Available Static and free vibration analysis of carbon nano wires with rectangular cross section based on Timoshenko beam theory is studied in this research. Differential quadrature method (DQM is employed to solve the governing equations. From the knowledge of author, it is the first time that free vibration of nano wires is investigated. It is also the first time that differential quadrature method is used for bending analysis of nano wires.
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi, Farzad; Ghadiri, Majid; Salari, Erfan; Shaghaghi, Gholam Reza [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Hoseini, Seied Amir Hosein [University of Zanjan, Zanjan (Iran, Islamic Republic of)
2015-03-15
In this study, the applicability of differential transformation method (DTM) in investigations on vibrational characteristics of functionally graded (FG) size-dependent nanobeams is examined. The material properties of FG nanobeam vary over the thickness based on the power law. The nonlocal Eringen theory, which takes into account the effect of small size, enables the present model to be effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle. The obtained results exactly match the results of the presented Navier-based analytical solution as well as those available in literature. The DTM is also demonstrated to have high precision and computational efficiency in the vibration analysis of FG nanobeams. The detailed mathematical derivations are presented and numerical investigations performed with emphasis placed on investigating the effects of several parameters, such as small scale effects, volume fraction index, mode number, and thickness ratio on the normalized natural frequencies of the FG nanobeams. The study also shows explicitly that vibrations of FG nanobeams are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.
Directory of Open Access Journals (Sweden)
Jiaqian Li
2015-12-01
Full Text Available The longitudinal vibration band gaps in periodic (n, 0–(2n, 0 single-walled carbon nanotube(SWCNT intramolecular junctions(IMJs are investigated based on the finite element calculation. The frequency ranges of band gaps in frequency response functions(FRF simulated by finite element method (FEM show good agreement with those in band structure obtained by simple spring-mass model. Moreover, a comprehensive parametric study is also conducted to highlight the influences of the geometrical parameters such as the size of unit cell, component ratios of the IMJs and diameters of the CNT segments as well as geometric imperfections on the first band gap. The results show that the frequency ranges and the bandwidth of the gap strongly depend on the geometrical parameters. Furthermore, the influences of geometrical parameters on gaps are nuanced in IMJs with different topological defects. The existence of vibration band gaps in periodic IMJs lends a new insight into the development of CNT-based nano-devices in application of vibration isolation.
A synergistic method for vibration suppression of an elevator mechatronic system
Knezevic, Bojan Z.; Blanusa, Branko; Marcetic, Darko P.
2017-10-01
Modern elevators are complex mechatronic systems which have to satisfy high performance in precision, safety and ride comfort. Each elevator mechatronic system (EMS) contains a mechanical subsystem which is characterized by its resonant frequency. In order to achieve high performance of the whole system, the control part of the EMS inevitably excites resonant circuits causing the occurrence of vibration. This paper proposes a synergistic solution based on the jerk control and the upgrade of the speed controller with a band-stop filter to restore lost ride comfort and speed control caused by vibration. The band-stop filter eliminates the resonant component from the speed controller spectra and jerk control provides operating of the speed controller in a linear mode as well as increased ride comfort. The original method for band-stop filter tuning based on Goertzel algorithm and Kiefer search algorithm is proposed in this paper. In order to generate the speed reference trajectory which can be defined by different shapes and amplitudes of jerk, a unique generalized model is proposed. The proposed algorithm is integrated in the power drive control algorithm and implemented on the digital signal processor. Through experimental verifications on a scale down prototype of the EMS it has been verified that only synergistic effect of controlling jerk and filtrating the reference torque can completely eliminate vibrations.
Pessoa, Renato; Castro, Marcos A.; Amaral, Orlando A. V.; Fonseca, Tertius L.
2005-08-01
In this work we report results of CPHF calculations, including vibrational corrections, for the dynamic polarizability and first hyperpolarizability of the LiF molecule. Vibrational corrections were computed through the Numerov-Cooley and perturbation-theoretic methods. Comparison between the results obtained using both methods shows that first-order perturbation-theoretic provides a good approximation for the zpva contribution. The double-harmonic-oscillator approximation is reliable for the pv contributions of αzz, βxxz and βzxx, while [ μα] 0 + [ μ3] I is a good approximation for βzzz. CCSD(T) results obtained for the pv contribution show that the electron correlation effects are small for the polarizability but significant for the first hyperpolarizability.
Life Cycle Cost Evaluation of Noise and Vibration Control Methods at Urban Railway Turnouts
Directory of Open Access Journals (Sweden)
Rodrigo Tavares de Freitas
2016-12-01
Full Text Available A focus of the railway industry over the past decades has been to research, find and develop methods to mitigate noise and vibration resulting from wheel/rail contact along track infrastructure. This resulted in a wide range of abatement measures that are available for today’s engineers. The suitability of each method must be analysed through budget and timeframe limitations, which includes building, maintenance and inspection costs and time allocation, while also aiming at delivering other benefits, such as environmental impact and durability of infrastructure. There are several situations that need noise and vibration mitigation methods, but each design allocates different priorities on a case-by-case basis. Traditionally, the disturbance caused by railways to the community are generated by wheel/rail contact sound radiation that is expressed in different ways, depending on the movement of the rolling stock and track alignment, such as rolling noise, impact noise and curve noise. More specifically, in special trackworks such as turnouts (or called “switches and crossings”, there are two types of noise that can often be observed: impact noise and screeching noise. With respect to the screeching (or flanging, its mitigation methods are usually associated with curve lubrications. In contrast, the impact noise emerges from the sound made by the rolling stock moving through joints and discontinuities (i.e., gaps, resulting in various noise abatement features to minimise such noise impact. Life cycle analysis is therefore vital for cost efficiency benchmarking of the mitigation methods. The evaluation is based on available data from open literature and the total costs were estimated from valid industry reports to maintain coherency. A 50-year period for a life cycle analysis is chosen for this study. As for the general parameters, an area with a high density of people is considered to estimate the values for a community with very strict limits
Berg, Christopher J; LaFountain, Amy M; Prum, Richard O; Frank, Harry A; Tauber, Michael J
2013-11-15
Rhodoxanthin is one of few retro-carotenoids in nature. These chromophores are defined by a pattern of single and double bond alternation that is reversed relative to most carotenoids. Rhodoxanthin is found in the plumage of several families of birds, including fruit doves (Ptilinopus, Columbidae) and the red cotingas (Phoenicircus, Cotingidae). The coloration associated with the rhodoxanthin-containing plumage of these fruit dove and cotinga species ranges from brilliant red to magenta or purple. In the present study, rhodoxanthin is characterized in situ by UV-Vis reflectance and resonance Raman spectroscopy to gain insights into the mechanisms of color-tuning. The spectra are compared with those of the isolated pigment in solution and in thin solid films. Key vibrational signatures are identified for three isomers of rhodoxanthin, primarily in the fingerprint region. Electronic structure (DFT) calculations are employed to describe the normal modes of vibration, and determine characteristic modes of retro-carotenoids. These results are discussed in the context of various mechanisms that change the electronic absorption, including structural distortion of the chromophore or enhanced delocalization of π-electrons in the ground-state. From the spectroscopic evidence, we suggest that the shift in absorption is likely a consequence of perturbations that primarily affect the excited state of the chromophore. Copyright © 2013 Elsevier Inc. All rights reserved.
Vibration Analysis of Collecting Electrodes by means of the Hybrid Finite Element Method
Directory of Open Access Journals (Sweden)
I. Adamiec-Wójcik
2014-01-01
Full Text Available The paper presents a hybrid finite element method of shell modeling in order to model collecting electrodes of electrostatic precipitators. The method uses the finite element method to reflect elastic features and the rigid finite element method in order to model mass features of the body. A model of dust removal systems of an electrostatic precipitator is presented. The system consists of two beams which are modeled by means of the rigid finite element method and a system of collecting shells modeled by means of the hybrid finite element method. The paper discusses both the procedure of deriving the equations of motion and the results of numerical simulations carried out in order to analyze vibrations of the whole system. Experimental verification of the model is also presented.
Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method
Directory of Open Access Journals (Sweden)
GAO Honglin
2017-08-01
Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.
Nonlinear nonuniform torsional vibrations of bars by the boundary element method
Sapountzakis, E. J.; Tsipiras, V. J.
2010-05-01
In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an "average" axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand.
Ittianuwat, R; Fard, M; Kato, K
2017-01-01
Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.
Zhao, Libo; Hu, Yingjie; Hebibul, Rahman; Ding, Jianjun; Wang, Tongdong; Xu, Tingzhong; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde
2016-09-11
A novel method, which was called a slope method, has been proposed to measure fluid density by the micro-cantilever sensing chip. The theoretical formulas of the slope method were discussed and established when the micro-cantilever sensing chip was under flexural and torsional vibrations. The slope was calculated based on the fitted curve between the excitation and output voltages of sensing chip under the nonresonant status. This measuring method need not sweep frequency to find the accurate resonant frequency. Therefore, the fluid density was measured easily based on the calculated slope. In addition, the micro-cantilver was drived by double sided excitation and free end excitation to oscillate under flexural and torsional vibrations, respectively. The corresponding experiments were carried out to measure the fluid density by the slope method. The measurement results were also analyzed when the sensing chip was under flexural and torsional nonresonant vibrations separately. The measurement accuracies under these vibrations were all better than 1.5%, and the density measuring sensitivity under torsional nonresonant vibration was about two times higher than that under flexural nonresonant vibration.
Vibration Analysis of a Framework Structure by Generalized Transfer Stiffness Coefficient Method
Bonkobara, Yasuhiro; Kondou, Takahiro; Ayabe, Takashi; Choi, Myung-Soo
A generalized transfer stiffness coefficient method using graph theory is developed in order to improve the applicability of the transfer stiffness coefficient method. In the new method, an analytical model is expressed by a weighted signal-flow graph, and the graph is contracted according to the series and parallel contraction rules. The computational complexity and the memory requirement for the contraction process are both minimized by choosing the optimal contraction route. In addition, it is possible to develop a data-driving program that is applicable to various structures without updating the source program. An algorithm based on the present method is formulated for the in-plane longitudinal and flexural coupled free and forced vibration analyses of a two-dimensional framework structure. Furthermore, an overview for applying the method to a three-dimensional framework structure is briefly presented. The validity of the present algorithm is confirmed by the results of numerical computations.
Vibration and Buckling Analysis of Moderately Thick Plates using Natural Element Method
Directory of Open Access Journals (Sweden)
Mohammad Etemadi
2015-07-01
Full Text Available Using natural element method (NEM, the buckling and the free vibration behaviors of moderate thick plates is studied here. The basis of NEM is natural neighbors and Voronoi cells concepts. The shape functions of nodes located in the domain is equal to the proportion of common natural neighbors area divided by area that related by each Voronoi cells. First step in analyzing the moderate thick plates is identification boundaries. This is done by nodes scattering on problem domain. Mindlin/Reissner theory is used to express the equations of moderate thick plate. First and second order shape functions obtained from natural element method are used to discretize differential equations. Using numerical integration on whole discrete equations of domain, stiffness, geometry and mass matrices of plate are obtained. Buckling loads and vibration modes are expressed by substituting these matrices in plate equations of motions. Arbitrary shapes of plate are selected for solution. Comparing the results of the current approach with those obtained by other numerical analytical methods, it is shown that natural element method can solve problems with complex areas accurately.
Directory of Open Access Journals (Sweden)
Johan Debayle
2011-05-01
Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.
Energy Technology Data Exchange (ETDEWEB)
Saeedi, Khodabakhsh; Bhat, Rama B.; Stiharu, Ion [Concordia University, Montreal (Canada); Leo, Alfin [2Parker Filtration Canada, Laval (Canada)
2012-05-15
The free vibration of a circular plate with multiple perforations is analyzed by using the Rayleigh-Ritz method. Admissible functions are assumed to be separable functions of radial and tangential coordinates. Trigonometric functions are assumed in the circumferential direction. The radial shape functions are the boundary characteristic orthogonal polynomials generated following the Gram-Schmidt recurrence scheme. The assumed functions are used to estimate the kinetic and the potential energies of the plate depending on the number and the position of the perforations. The eigenvalues, representing the dimensionless natural frequencies, are compared with the results obtained using Bessel functions, where the exact solution is available. Moreover, the eigenvectors, which are the unknown coefficients of the Rayleigh-Ritz method, are used to present the mode shapes of the plate. To validate the analytical results of the plates with multiple perforations, experimental investigations are also performed. Two unique case studies that are not addressed in the existing literature are considered. The results of the Rayleigh-Ritz method are found to be in good agreement with those from the experiments. Although the method presented can be employed in the vibration analysis of plates with different boundary conditions and shapes of the perforations, circular perforations that are free on the edges are studied in this paper. The results are presented in terms of dimensionless frequencies and mode shapes.
Zhen, Chong; Jiffri, Shakir; Li, Daochun; Xiang, Jinwu; Mottershead, John E.
2018-01-01
New output feedback-linearisation theory is presented for the treatment of nonlinear vibration problems by a receptance-based approach. An important aspect is a new formulation for investigating the stability of the zero dynamics. The overall methodology possesses the usual benefits of the receptance method, namely that the system matrices (with associated assumptions and approximations) do not have to be known. In addition, it has the distinction of not requiring the form and parameter values of the nonlinearity when the input and output degrees of freedom are away from the nonlinearity itself. This represents a valuable advance over the conventional time-domain feedback linearisation approach.
Fractal Two-Level Finite Element Method For Free Vibration of Cracked Beams
Directory of Open Access Journals (Sweden)
A.Y.T. Leung
1998-01-01
Full Text Available The fractal two-level finite element method is extended to the free vibration behavior of cracked beams for various end boundary conditions. A cracked beam is separated into its singular and regular regions. Within the singular region, infinite number of finite elements are virturally generated by fractal geometry to model the singular behavior of the crack tip. The corresponding numerous degrees of freedom are reduced to a small set of generalized displacements by fractal transformation technique. The solution time and computer storage can be remarkably reduced without sacrifying accuracy. The resonant frequencies and mode shapes computed compared well with the results from a commercial program.
Analysis of Vibrating Timoshenko Beams Using the Method of Differential Quadrature
Directory of Open Access Journals (Sweden)
P.A.A. Laura
1993-01-01
Full Text Available The main advantages of the differential quadrature method are its inherent conceptual simplicity and the fact that easily programmable algorithmic expressions are obtained. It was developed by Bellman in the 1970s but only recently has been applied in the solution of technically important problems. Essentially, it consists of the approximate solution of the differential system by means of a polynomial–collocation approach at a finite number of points selected by the analyst. This article reports some numerical experiments on vibrating Timoshenko beams of nonuniform cross-section.
Vibrational effects on UV/Vis laser-driven π-electron ring currents in aromatic ring molecules
Mineo, H.; Lin, S. H.; Fujimura, Y.
2014-10-01
We present the results of a theoretical study of vibrational effects on UV/Vis laser-driven π-electron ring currents in aromatic ring molecules. We consider vibrational effects on both coherent and non-coherent (single quantum state) ring currents. The coherent ring current originates from an excitation of a pair of quasi-degenerate electronic states by an ultrashort linearly polarized UV/Vis laser pulse, while the non-coherent ring current originates from by an excitation of a degenerated electronic state of an aromatic ring molecule with high symmetry by a circularly polarized electric field of a UV/Vis laser pulse. The magnitude of a generated ring current can be expressed as an average of those of the bond currents for both the coherent and non-coherent cases. We derive an analytical expression for the magnitude of the bond currents in the adiabatic approximation. Using the expression, we performed calculations of a non-coherent ring current generated in the optically allowed excited state (1E1U) of benzene and the time evolution of coherent ring current of (P)-2,2-biphenol. Vibrational effects on the non-coherent ring current of benzene were found to be negligibly small. We paid particular attention to the vibrational effects induced by the torsion mode on time evolution of the coherent ring current along the bond bridging between the two aromatic rings of (P)-2,2-biphenol. By comparing the time evolution of the coherent ring current with that in the frozen-nuclear approximation, we found that inclusion of the low-frequency torsion mode brings about modulations in the beating in the ring current. The modulations in the time evolution of the coherent ring current were brought about by contribution of several pairs of the coherently excited vibronic states. Coherent vibronic ring currents generated from pairs of the coherently excited vibronic states interfere each other. The existence of the pairs originates from relatively large potential displacement of the
Suvitha, A.; Periandy, S.; Boomadevi, S.; Govindarajan, M.
2014-01-01
In this work, the vibrational spectral analysis is carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1and 50-4000 cm-1, respectively, for pycolinaldehyde oxime (PAO) (C6H6N2O) molecule. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on HF and B3LYP methods with 6-311++G(d,p) basis set. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The optimized geometric parameters are compared with experimental values of PAO. The non linear optical properties, NBO analysis, thermodynamics properties and mulliken charges of the title molecule are also calculated and interpreted. A study on the electronic properties, such as HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) are performed. The effects due to the substitutions of CHdbnd NOH ring are investigated. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.
Cole, Milton W; Crespi, Vincent H; Dresselhaus, Mildred S; Dresselhaus, Gene; Fischer, John E; Gutierrez, Humberto R; Kojima, K; Mahan, Gerald D; Rao, Apparao M; Sofo, Jorge O; Tachibana, M; Wako, K; Xiong, Qihua
2010-08-25
This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature
Cole, Milton W.; Crespi, Vincent H.; Dresselhaus, Mildred S.; Dresselhaus, Gene; Fischer, John E.; Gutierrez, Humberto R.; Kojima, K.; Mahan, Gerald D.; Rao, Apparao M.; Sofo, Jorge O.; Tachibana, M.; Wako, K.; Xiong, Qihua
2010-08-01
This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C60 and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature
Directory of Open Access Journals (Sweden)
I. Khatami
2008-01-01
Full Text Available The objective of this paper is to present an analytical investigation to analyze the vibration of parametrically excited oscillator with strong cubic negative nonlinearity based on Mathieu-Duffing equation. The analytic investigation was conducted by using He's homotopy-perturbation method (HPM. In order to obtain the analytical solution of Mathieu-Duffing equation, homotopy-perturbation method has been utilized. The Runge-Kutta's (RK algorithm was used to solve the governing equation via numerical solution. Finally, to demonstrate the validity of the proposed method, the response of the oscillator, which was obtained from approximate solution, has been shown graphically and compared with that of numerical solution. Afterward, the effects of variation of the parameters on the accuracy of the homotopy-perturbation method were studied.
STUDY ON DE-NOISING METHODS FOR SOIL COMPRESSIVE STRESS SIGNAL DURING VIBRATION COMPACTION
Directory of Open Access Journals (Sweden)
Qingzhe Zhang
2017-12-01
Full Text Available The compressive stress signal of soil during vibration compaction is an unstable and transient saltation signal accompanied by broadband noise, and the spectra of the signal and noise always overlap. To extract the ideal original signal from noisy data, this paper studies several signal de-noising methods such as low-pass filtering, multi-resolution wavelet transform, spectrum subtraction and independent component analysis. Experiments show that the traditional low-pass filter is only applicable when the spectra of the signal and noise can be separated in the frequency domain. The multi-resolution wavelet transform can decompose the signal into different frequency bands and remove the noise efficiently by extracting useful the frequency band of the signal, but this method is not reliable when the signal to noise ratio (SNR is low. Spectrum subtraction can remove strong background noise with stationary statistical characteristics even if the noise level is high and the spectrum of the signal overlaps with that of the noise. Independent component analysis can extract weak signals which are combined with heavy noise and can separate the noise from signal effectively when the independent channel hypothesis holds. These de-noising methods are of great importance for further analysing vibration signals in engineering.
Directory of Open Access Journals (Sweden)
Hongtao Xue
2014-01-01
Full Text Available This paper proposed an intelligent diagnosis method for a centrifugal pump system using statistic filter, support vector machine (SVM, possibility theory, and Dempster-Shafer theory (DST on the basis of the vibration signals, to diagnose frequent faults in the centrifugal pump at an early stage, such as cavitation, impeller unbalance, and shaft misalignment. Firstly, statistic filter is used to extract the feature signals of pump faults from the measured vibration signals across an optimum frequency region, and nondimensional symptom parameters (NSPs are defined to represent the feature signals for distinguishing fault types. Secondly, the optimal classification hyperplane for distinguishing two states is obtained by SVM and NSPs, and its function is defined as synthetic symptom parameter (SSP in order to increase the diagnosis’ sensitivity. Finally, the possibility functions of the SSP are used to construct a sequential fuzzy diagnosis for fault detection and fault-type identification by possibility theory and DST. The proposed method has been applied to detect the faults of the centrifugal pump, and the efficiency of the method has been verified using practical examples.
Directory of Open Access Journals (Sweden)
Laith K. Abbas
2014-01-01
Full Text Available In this paper, an approach based on transfer matrix method of linear multibody systems (MS-TMM is developed to analyze the free vibration of a multilevel beam, coupled by spring/dashpot systems attached to them in-span. The Euler-Bernoulli model is used for the transverse vibration of the beams, and the spring/dashpot system represents a simplified model of a viscoelastic material. MS-TMM reduces the dynamic problem to an overall transfer equation which only involves boundary state vectors. The state vectors at the boundaries are composed of displacements, rotation angles, bending moments, and shear forces, which are partly known and partly unknown, and end up with reduced overall transfer matrix. Nontrivial solution requires the coefficient matrix to be singular to yield the required natural frequencies. This paper implements two novel algorithms based on the methodology by reducing the zero search of the reduced overall transfer matrix's determinate to a minimization problem and demonstrates a simple and robust algorithm being much more efficient than direct enumeration. The proposal method is easy to formulate, systematic to apply, and simple to code and can be extended to complex structures with any boundary conditions. Numerical results are presented to show the validity of the proposal method against the published literature.
Two-Dimensional Electronic-Vibrational Spectroscopy of Chlorophyll a and b
Energy Technology Data Exchange (ETDEWEB)
Lewis, Nicholas H. C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kavli Energy Nanoscience Institute at Berkeley, CA (United States); Fleming, Graham R. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kavli Energy Nanoscience Institute at Berkeley, CA (United States)
2016-03-03
Presented are two-dimensional electronic-vibrational (2DEV) spectra of isolated chlorophyll a and b in deuterated ethanol. We excite the Q-band electronic transitions and measure the effects on the carbonyl and C=C double-bond stretch region of the infrared spectrum. With the aid of density functional theory calculations, we provide assignments for the major features of the spectrum. We show how the 2DEV spectra can be used to readily distinguish different solvation states of the chlorophyll, with features corresponding to the minority pentacoordinate magnesium (Mg) species being resolved along each dimension of the 2DEV spectra from the dominant hexacoordinate Mg species. These assignments represent a crucial first step toward the application of 2DEV spectroscopy to chlorophyll-containing pigment-protein complexes.
Govind, Chinju; Karunakaran, Venugopal
2017-04-13
Hemin is a unique model compound of heme proteins carrying out variable biological functions. Here, the excited state relaxation dynamics of heme model compounds in the ferric form are systematically investigated by changing the axial ligand (Cl/Br), the peripheral substituent (vinyl/ethyl-meso), and the solvent (methanol/DMSO) using femtosecond pump-probe spectroscopy upon excitation at 380 nm. The relaxation time constants of these model compounds are obtained by global analysis. Excited state deactivation pathway of the model compounds comprising the decay of the porphyrin excited state (S*) to ligand to metal charge transfer state (LMCT, τ 1 ), back electron transfer from metal to ligand (MLCT, τ 2 ), and relaxation to the ground state through different electronic spin states of iron (τ 3 and τ 4 ) are proposed along with the vibrational cooling processes. This is based on the excited state absorption spectral evolution, similarities between the transient absorption spectra of the ferric form and steady state absorption spectra of the low-spin ferrous form, and the data analysis. The observation of an increase of all the relaxation time constants in DMSO compared to the methanol reflects the stabilization of intermediate states involved in the electronic relaxation. The transient absorption spectra of met-myoglobin are also measured for comparison. Thus, the transient absorption spectra of these model compounds reveal the involvement of multiple iron spin states in the electronic relaxation dynamics, which could be an alternative pathway to the ground state beside the vibrational cooling processes and associated with the inherent features of the heme b type.
Qu, Zehua; Qin, Zhengbo; Zheng, Xianfeng; Wang, Hui; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng
2017-02-01
Slow electron velocity-map imaging (SEVI) of aniline has been investigated via two-color resonant-enhanced two-photo (1 + 1‧) ionization (2C-R2PI) method. A number of vibrational frequencies in the first excited state of neutral (S1) and 2B1 ground electronic state of cation (D0) have been accurately determined. In addition, photoelectron angular distributions (PADs) in the two-step transitions are presented and reveal a near threshold shape resonance in the ionization of aniline. The SEVI spectra taken via various S1 intermediate states provide the detailed vibrational structures of D0 state and directly deduce the accurate adiabatic ionization potential (IP) of 62,271 ± 6 cm- 1. Ab initio calculations excellently reproduce the experimental IP value (Theo. 62,242 cm- 1). For most vibrational modes, good agreement between theoretical and experimental frequencies in the S0 and D0 states of aniline is obtained to aid us to clearly assign vibrational modes. Especially, the vibrational frequencies calculated at the CASSCF level are much better consistent with experimental data than that obtained using the TDDFT and CIS methods.
Comparative evaluation of different methods of treatment of miners with vibration-noise pathology
Energy Technology Data Exchange (ETDEWEB)
Bel' skaya, M.L.; Nekhorosheva, M.A.; Konovalova, S.I.; Kukhtina, G.V.; Gonchar, I.G.; Terent' eva, D.P.; Grishchenko, L.A.; Soboleva, N.P.; Kharitonov, S.A.; Priklonskii, I.V.
1984-10-01
Two new therapeutic methods of treating vibration-noise pathology, needle acupuncture and hyperbaric oxygenation, are compared with established methods of medical and physical therapy. Four complexes of therapy are recommended: I complex (control), medication and physical therapy; II complex, acupuncture and medical therapy; III complex, acupuncture, medical and physical therapy; IV complex, hyperbaric oxygenation, medical and physical therapy. The four complexes were tested on a selected group of miners. II, III and IV complexes were correlated with control (I) on the basis of subjective signs, objective changes in nervous system and functional state of vegetative and peripheral nervous system. A table compares the effectiveness of II, III, IV complexes with I complex. Results confirm effectiveness of medical and physical therapy. Application of acupuncture increases benefits to cardiovascular system and hyperbaric therapy aids neurosensory hearing impairment. As a result of investigation, acupuncture and hyperbaric therapy are recommended for treatment of patients suffering vibration-noise pathology with a differential approach to their purpose. 8 references.
Application of empirical mode decomposition method for characterization of random vibration signals
Directory of Open Access Journals (Sweden)
Setyamartana Parman
2016-07-01
Full Text Available Characterization of finite measured signals is a great of importance in dynamical modeling and system identification. This paper addresses an approach for characterization of measured random vibration signals where the approach rests on a method called empirical mode decomposition (EMD. The applicability of proposed approach is tested in one numerical and experimental data from a structural system, namely spar platform. The results are three main signal components, comprising: noise embedded in the measured signal as the first component, first intrinsic mode function (IMF called as the wave frequency response (WFR as the second component and second IMF called as the low frequency response (LFR as the third component while the residue is the trend. Band-pass filter (BPF method is taken as benchmark for the results obtained from EMD method.
Lai, Wenqing; Wang, Yuandong; Li, Wenpeng; Sun, Guang; Qu, Guomin; Cui, Shigang; Li, Mengke; Wang, Yongqiang
2017-10-01
Based on long term vibration monitoring of the No.2 oil-immersed fat wave reactor in the ±500kV converter station in East Mongolia, the vibration signals in normal state and in core loose fault state were saved. Through the time-frequency analysis of the signals, the vibration characteristics of the core loose fault were obtained, and a fault diagnosis method based on the dual tree complex wavelet (DT-CWT) and support vector machine (SVM) was proposed. The vibration signals were analyzed by DT-CWT, and the energy entropy of the vibration signals were taken as the feature vector; the support vector machine was used to train and test the feature vector, and the accurate identification of the core loose fault of the flat wave reactor was realized. Through the identification of many groups of normal and core loose fault state vibration signals, the diagnostic accuracy of the result reached 97.36%. The effectiveness and accuracy of the method in the fault diagnosis of the flat wave reactor core is verified.
Alternative Test Methods for Electronic Parts
Plante, Jeannette
2004-01-01
It is common practice within NASA to test electronic parts at the manufacturing lot level to demonstrate, statistically, that parts from the lot tested will not fail in service using generic application conditions. The test methods and the generic application conditions used have been developed over the years through cooperation between NASA, DoD, and industry in order to establish a common set of standard practices. These common practices, found in MIL-STD-883, MIL-STD-750, military part specifications, EEE-INST-002, and other guidelines are preferred because they are considered to be effective and repeatable and their results are usually straightforward to interpret. These practices can sometimes be unavailable to some NASA projects due to special application conditions that must be addressed, such as schedule constraints, cost constraints, logistical constraints, or advances in the technology that make the historical standards an inappropriate choice for establishing part performance and reliability. Alternate methods have begun to emerge and to be used by NASA programs to test parts individually or as part of a system, especially when standard lot tests cannot be applied. Four alternate screening methods will be discussed in this paper: Highly accelerated life test (HALT), forward voltage drop tests for evaluating wire-bond integrity, burn-in options during or after highly accelerated stress test (HAST), and board-level qualification.
Modal mass estimation from ambient vibrations measurement: A method for civil buildings
Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.
2018-01-01
A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.
Nonequilibrium electron-vibration coupling and conductance fluctuations in a C60 junction
DEFF Research Database (Denmark)
Ulstrup, Søren; Frederiksen, Thomas; Brandbyge, Mads
2012-01-01
We investigate chemical bond formation and conductance in a molecular C60 junction under finite bias voltage using first-principles calculations based on density functional theory and nonequilibrium Green's functions (DFT-NEGF). At the point of contact formation we identify a remarkably strong...... displacement. Combined with a vibrational heating mechanism we construct a model from our results that explain the polarity-dependent two-level conductance fluctuations observed in recent scanning tunneling microscopy (STM) experiments [N. Ne´el et al., Nano Lett. 11, 3593 (2011)]. These findings highlight...
Ideguchi, Tsuyoshi; Yoshida, Ryujyu; Ooshima, Keita
We examined how test subject impressions of music changed when artificial vibrations were incorporated as constituent elements of a musical composition. In this study, test subjects listened to several music samples in which different types of artificial vibration had been incorporated and then subjectively evaluated any resulting changes to their impressions of the music. The following results were obtained: i) Even if rhythm vibration is added to a silent component of a musical composition, it can effectively enhance musical fitness. This could be readily accomplished when actual sounds that had been synchronized with the vibration components were provided beforehand. ii) The music could be listened to more comfortably by adding not only a natural vibration extracted from percussion instruments but also artificial vibration as tactile stimulation according to intentional timing. Furthermore, it was found that the test subjects' impression of the music was affected by a characteristic of the artificial vibration. iii) Adding vibration to high-frequency areas can offer an effective and practical way of enhancing the appeal of a musical composition. iv) The movement sensations of sound and vibration could be experienced when the strength of the sound and vibration are modified in turn. These results suggest that the intentional application of artificial vibration could result in a sensitivity amplification factor on the part of a listener.
Methode des elements finis hybride appliquee aux vibrations des coques spheriques
Menaa, Mohamed
The analysis of spherical shells filled with fluid and subjected to supersonic flow has been the subject of few research. Most of these studies treat the dynamic behaviour of empty shells. Few works have investigated spherical shells filled with fluid or subjected to supersonic flutter. In this thesis, we propose to develop a model to analyse the vibratory behaviour of both empty spherical shells and partially filled with fluid. This model is also applicable to study of the dynamic stability of spherical shells subjected to supersonic flow. The model developed is a combination of finite element method, thin shell theory, potential fluid theory and aerodynamic fluid theory. Different parameters are considered here in this study. In the first part of this study, free vibration analysis of spherical shell is carried out. The structural model is based on a combination of thin shell theory and the classical finite element method. Free vibration equations using the hybrid finite element formulation are derived and solved numerically. The results are validated using numerical and theoretical data available in the literature. The analysis is accomplished for spherical shells of different geometries, boundary conditions and radius to thickness ratios. This proposed hybrid finite element method can be used efficiently for design and analysis of spherical shells employed in high speed aircraft structures. In the second part of the present study, a hybrid finite element method is applied to investigate the free vibration of spherical shell filled with fluid. The structural model is based on a combination of thin shell theory and the classical finite element method. It is assumed that the fluid is incompressible and has no free-surface effect. Fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacement at the fluid-structure interface. Numerical simulation is done and vibration
Directory of Open Access Journals (Sweden)
Runze Zhang
2016-01-01
Full Text Available This paper presents a free vibration analysis of three-dimensional coupled beams with arbitrary coupling angle using an improved Fourier method. The displacement and rotation of the coupled beams are represented by the improved Fourier series which consisted of Fourier cosine series and closed-form auxiliary functions. The coupling and boundary conditions are accomplished by setting coupling and boundary springs and assigning corresponding stiffness values to the springs. Modal parameters are determined through the application of Rayleigh-Ritz procedure to the system energy formulation. The accuracy and convergence of the present method are demonstrated by finite element method (FEM result. Investigation on vibration of the propulsion shafting structure shows the extensive applicability of present method. The studies on the vibration suppression devices are also reported.
Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G
2013-10-07
An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.
Directory of Open Access Journals (Sweden)
Jinhua Xie
2012-01-01
Full Text Available Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through Energy Finite Element Method (EFEM and classical wave theory were compared to verify the EFEM model, which presented a good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and arrangement of piezoelectric patches on characteristics of system energy density distribution.
Vibrations of a polygonal plate having orthogonal straight edges by an extended rayleigh-ritz method
Yamaguchi, H.
1985-02-01
An extended Rayleigh-Ritz method is presented for solving vibration problems of a polygonal plate having orthogonal straight edges. The polygonal plate is considered as an assemblage of several rectangular plates. For each element rectangular plate, the transverse displacement is approximated by interpolation functions corresponding to unknown displacements and slopes at the discrete points which are chosen along the edges, and series of trial functions which satisfy homogeneous artificial boundary conditions. By minimizing the energy functional corresponding to the assumed displacement function, the dynamic stiffness matrix of the element rectangular plate, which is similar to that obtained in the finite element method, is derived. The dynamic stiffness matrix of the whole system is obtained by summing up those of the element rectangular plates. Numerical results are presented for the natural frequencies and mode shapes of cantilever L-shaped and T-shaped plates.
Automatic crack detection method for loaded coal in vibration failure process.
Li, Chengwu; Ai, Dihao
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.
Directory of Open Access Journals (Sweden)
Zhengjie Zhou
2010-01-01
Full Text Available Precast, prestressed concrete box girders are commonly used as superstructure components for short and medium span bridges. Their configuration and typical side-by-side placement make large portions of these elements inaccessible for visual inspection or the application of nondestructive testing techniques. This paper demonstrates that vibration-based damage detection (VBDD is an effective alternative for monitoring their structural health. A box girder removed from a dismantled bridge was used to evaluate the ability of five different VBDD algorithms to detect and localize low levels of spalling damage, with a focus on using a small number of sensors and only the fundamental mode of vibration. All methods were capable of detecting and localizing damage to a region within approximately 1.6 times the longitudinal spacing between as few as six uniformly distributed accelerometers. Strain gauges configured to measure curvature were also effective, but tended to be susceptible to large errors in near support damage cases. Finite element analyses demonstrated that increasing the number of sensor locations leads to a proportional increase in localization accuracy, while the use of additional modes provides little advantage and can sometimes lead to a deterioration in the performance of the VBDD techniques.
Langlois, Sebastien
Les vibrations eoliennes sont la cause principale de bris de conducteurs en fatigue des lignes aeriennes de transport d'energie electrique. Ces vibrations sont dues a des detachements tourbillonnaires produits dans le sillage du conducteur. Une methode commune de reduction des vibrations est l'ajout d'amortisseurs de vibrations pres des pinces de suspension. Contrairement aux essais en ligne experimentale, la modelisation numerique permet d'evaluer rapidement et a faible cout la performance d'un amortisseur de vibration sur une portee de ligne aerienne. La technologie la plus frequemment utilisee fait appel au principe de balance d'energie (PBE) en evaluant le niveau de vibrations pour lequel la puissance injectee par le vent est egale a la puissance dissipee par le conducteur et l'amortisseur. Les methodes actuelles pour la prediction des vibrations reposent sur des hypotheses simplificatrices quant a la modelisation de l'interaction conducteur-amortisseur. Une approche prometteuse pour la prediction des vibrations est l'utilisation d'un modele numerique temporel non lineaire qui permet de mieux representer la masse, la geometrie, la rigidite et l'amortissement du systeme. L'objectif principal de ce projet de recherche est de developper un modele numerique avec integration temporelle directe d'un conducteur et d'un amortisseur en vibration permettant de reproduire le comportement dynamique du systeme pour la gamme de frequence et d'amplitude typique des vibrations eoliennes des conducteurs. Un modele par elements finis d'un conducteur seul en vibration resolu par integration temporelle directe a d'abord ete developpe en considerant une rigidite de flexion variable. Comme une rigidite de flexion constante et egale a 50% de la rigidite de flexion maximale theorique ( EImax) est jugee adequate pour la modelisation du conducteur, c'est cette valeur qui a ete utilisee pour la suite du projet. Ensuite, des modeles non-lineaires pour deux types d'amortisseur de
Arun Sasi, B. S.; Jebin, R. P.; Suthan, T.; James, C.
2017-10-01
An organic nonlinear optical material 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline (DMBDNA) has been grown by slow evaporation technique. Vibrational spectral analysis has been carried out using FT Raman, FT-IR and UV-Vis spectroscopic techniques. The influence of intramolecular charge transfer within the molecule has been studied on the basis of NBO analysis. Vibrational frequencies have been calculated and scaled, which has been compared with the experimental FT-IR and FT Raman spectra. The effect of electronic localization and delocalization within the molecule is conceded on the basis of electron density partitioning paradigm.
Hodecker, Manuel; Biczysko, Malgorzata; Dreuw, Andreas; Barone, Vincenzo
2017-01-01
Vibrationally resolved one-photon absorption and electronic circular dichroism spectra of (R)-methyl oxirane were calculated with different electronic and vibronic models selecting, through an analysis of the convergence of the results, the best compromise between reliability and computational cost. Linear-response TD-DFT/CAM-B3LYP/SNST electronic computations in conjunction with the simple vertical gradient vibronic model were chosen and employed for systematic comparison with the available experimental data. Remarkable agreement between simulated and experimental spectra was achieved for both one photon absorption and circular dichroism concerning peak positions, relative intensities, and general spectral shapes considering the computational efficiency of the chosen theoretical approach. The significant improvement of the results with respect to smearing of vertical electronic transitions by phenomenological Gaussian functions and the possible inclusion of solvent effects by polarizable continuum models at a negligible additional cost paves the route toward the simulation and analysis of spectral shapes of complex molecular systems in their natural environment. PMID:27159495
Faizan, Mohd; Bhat, Sheeraz Ahmad; Alam, Mohammad Jane; Afroz, Ziya; Ahmad, Shabbir
2017-11-01
A combined experimental and theoretical study of the structure, vibrational spectra and electronic spectra of 2-amino-4-hydroxy-6-methylpyrimidine in the ground electronic state are reported. Anharmonic frequencies for the most stable conformer have been simulated using GVPT2, VSCF and PT2-VSCF methods with potential energy surface calculated using MP2 and DFT level of theory with 6-311G(d,p) basis set. The vibrational spectra (FTIR and FT-Raman) are interpreted in terms of fundamental, combination and overtone bands. It is found that the experimental and the VPT2 computed frequencies are in well agreement. The experimental and the calculated UV-Vis spectrum in gas and ethanol solvent are found comparable. Furthermore, HOMO-LUMO analysis, NLO, MEP, and natural charges of the molecule are also reported.
Electronic device and method of manufacturing an electronic device
Roozeboom, F.; Lifka, H.; Vanhelmont, F.; Dekkers, W.
2014-01-01
An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units
Electronic device and method of manufacturing an electronic device
Roozeboom, F.; Lifka, H.; Vanhelmont, F.; Dekkers, W.
2013-01-01
An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units
Directory of Open Access Journals (Sweden)
Ambrish Kumar Srivastava
2016-12-01
Full Text Available The present study deals with a non-native amino acid, cis-4-hydroxy-d-proline (CHDP using density functional theory at B3LYP/6-31+G(d,p level. The potential energy surface scan reveals the global minimum structure of CHDP along with two potential conformers. Highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential surfaces are used to explain the chemical reactivity of title molecule. The atomic charge analysis has been carried out using Mulliken and natural population schemes. The equilibrium geometry of CHDP dimer has been obtained and inter-molecular interactions are explored using QTAIM and Natural bonding orbital analyses. Vibrational spectroscopic analysis has been performed on CHDP monomer and dimer at the same level of theory. Assignments to all vibrational modes up to 400 cm−1 have been offered along with their potential energy distribution to the maximum possible accuracy. The calculated frequencies are scaled by an equation, rather than by a constant factor and then compared with experimental FT-IR frequencies obtained by KBr disc and Nujol mull techniques. A number of electronic and thermodynamic parameters have also been evaluated for CHDP monomer and dimer.
Directory of Open Access Journals (Sweden)
E. O. Zaitsev
2016-01-01
Full Text Available The objective of this paper is development and experimental verification special software of spectral analysis. Spectral analysis use of controlled vibrations objects. Spectral analysis of vibration based on use maximum-entropy autoregressive method of spectral analysis by the Berg algorithm. For measured signals use preliminary analysis based on regression analysis. This analysis of the signal enables to eliminate uninformative parameters such as – the noise and the trend. For preliminary analysis developed special software tools. Non-contact measurement of mechanical vibrations parameters rotating diffusely-reflecting surfaces used in circumstances where the use of contact sensors difficult or impossible for a number of reasons, including lack of access to the object, the small size of the controlled area controlled portion has a high temperature or is affected by strong electromagnetic fields. For control use offered laser measuring system. This measuring system overcomes the shortcomings interference or Doppler optical measuring systems. Such as measure the large amplitude and inharmonious vibration. On the basis of the proposed methods developed special software tools for use measuring laser system. LabVIEW using for developed special software. Experimental research of the proposed method of vibration signals processing is checked in the analysis of the diagnostic information obtained by measuring the vibration system grinding diamond wheel cold solid tungsten-containing alloy TK8. A result of work special software tools was complex spectrum obtained «purified» from non-informative parameters. Spectrum of the signal corresponding to the vibration process observed object.
High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method
Zhang, Zhen
Measuring the high frequency acoustic vibrations represents the fundamental interest in revealing the intrinsic dynamic characteristic of board range of systems, such as the growth of the fetus, blood flow in human palms, and vibrations of carbon nanotube. However, the acoustic wave detection capability is limited by the detection bandwidth and sensitivity of the commonly used piezoelectric based ultrasound detectors. To overcome these limitations, this thesis focuses on exploring the optical demodulation method for highly sensitive detection of broadband acoustic vibration. First, a transparent optical ultrasonic detector has been developed using micro-ring resonator (MRR) made of soft polymeric materials. It outperforms the traditional piezoelectric detectors with broader detection bandwidth, miniaturized size and wide angular sensitivity. Its ease of integration into photoacoustic microscopy system has resulted in the great improvement of the imaging resolution. A theoretic framework has been developed to establish the quantitative understanding of its unique distance and angular dependent detection characteristics and was subsequently validated experimentally. The developed theoretic framework provides a guideline to fully accounts for the trade-offs between axial and lateral resolution, working distance, and the field of view in developing optimal imaging performance for a wide range of biological and clinical applications. MRR-based ultrasonic detector is further integrated into confocal fluorescence microscopy to realize the simultaneous imaging of fluorescence and optical absorption of retinal pigment epithelium, achieving multi-contrast imaging at sub-cellular level. The needs to resolve the fine details of the biological specimen with the resolution beyond the diffraction limit further motivate the development of optical demodulated ultrasonic detection method based on near-field scanning optical microscopy (NSOM). The nano-focusing probe was developed
Directory of Open Access Journals (Sweden)
A Safrangian
2017-05-01
Full Text Available Introduction Vibrations include a wide range of engineering sciences and discuss from different aspects. One of the aspects is related to various types of engines vibrations, which are often used as power sources in agriculture. The created vibrations can cause lack of comfort and reduce effective work and have bad influence on the health and safety. One of the important parameters of the diesel engine that has the ability to create vibration and knocking is the type of fuel. In this study, the effects of different blends of biodiesel, bioethanol and diesel on the engine vibration were investigated. As a result, a blend of fuels such as synthetic fuel that creates less vibration engine can be identified and introduced. Materials and Methods In this study, canola oil and methanol alcohol with purity of 99.99% and the molar ratio of 6:1 and sodium hydroxide catalyst with 1% by weight of oil were used for biodiesel production. Reactor configurations include: maintaining the temperature at 50 ° C, the reaction time of 5 minutes and the intensity of mixing (8000 rpm, and pump flow, 0.83 liters per minute. A Massey Ferguson (MF 285 tractor with single differential (2WD, built in 2012 at Tractor factory of Iran was used for the experiment. To measure the engine vibration signals, an oscillator with model of VM120 British MONITRAN was used. Vibration signals were measured at three levels of engine speed (2000, 1600, 1000 rpm in three directions (X, Y, Z. The analysis performed by two methods in this study: statistical data analysis and data analysis using Adaptive neuro-fuzzy inference system (ANFIS. Statistical analysis of data: a factorial experiment of 10×3 based on completely randomized design with three replications was used in each direction of X, Y and Z that conducted separately. Data were compiled and analyzed by SPSS 19 software. Ten levels of fuel were including of biodiesel (5, 15 and 25% and bioethanol (2, 4 and 6%, and diesel fuel. Data
Sapountzakis, E. J.; Tsipiras, V. J.; Argyridi, A. K.
2015-10-01
In this paper a boundary element method (BEM) is developed for the torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the nonuniform warping and secondary torsional shear deformation effects (STSDE). The bar is subjected to arbitrarily distributed or concentrated dynamic torsional loading along its length, while its edges are subjected to the most general torsional and warping boundary conditions. Apart from the angle of twist, the primary angle of twist per unit length is considered as an additional 1-D degree of freedom in order to account for the STSDE in the equations of motion of the bar. The warping shear stress distribution and the pertinent secondary torsional rigidity are computed by satisfying local equilibrium considerations under dynamic conditions without adhering to assumptions of Thin Tube Theory (TTT). By employing a distributed mass model system accounting for rotatory and warping inertia, an initial boundary value and two boundary value problems with respect to the variable along the bar time-dependent 1-D kinematical components, to the primary and secondary warping functions, respectively, are formulated. The latter are solved employing a pure BE method, requiring exclusively boundary discretization of the bar's cross section. The numerical solution of the aforementioned initial boundary value problem is performed through a BE method leading to a system of differential equations with displacement only unknowns, which is solved using an efficient direct time integration technique. Additionally, for the free vibrations case, a generalized eigenvalue problem is formulated through a similar BE technique. The accuracy and reliability of the results is assessed by FEM solutions employing solid or shell modelling. Both open- and closed-shaped cross section bars are examined and the necessity to include nonuniform torsional and STSD effects in the dynamic analysis of bars is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Preciado, Jorge Sanchez; Lopez, Carlos Perez; Santoyo, Fernando Mendoza [Grupo de Metrología Optica, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150 (Mexico)
2014-05-27
Implementing a hybrid arrangement of Laser Doppler Vibrometry (LDV) and high speed Electronic Speckle Pattern Interferometry (ESPI) we were able to measure the dynamic patterns of a flat rectangular elastic membrane clamped at its edges stimulated with the sum of two resonance frequencies. ESPI is a versatile technique to analyze in real-time the deformation of a membrane since its low computational cost and easy implementation of the optical setup. Elastic membranes present nonlinear behaviors when stimulated with low amplitude signals. The elastic membrane under test, with several non rational related vibrating modals below the 200 Hz, was stimulated with two consecutives resonant frequencies. The ESPI patterns, acquired at high speed rates, shown a similar behavior for the dual frequency stimulation as in the case of patterns formed with the entrainment frequency. We think this may be related to the effects observed in the application of dual frequency stimulation in ultrasound.
[SciELO: method for electronic publishing].
Laerte Packer, A; Rocha Biojone, M; Antonio, I; Mayumi Takemaka, R; Pedroso García, A; Costa da Silva, A; Toshiyuki Murasaki, R; Mylek, C; Carvalho Reisl, O; Rocha F Delbucio, H C
2001-01-01
It describes the SciELO Methodology Scientific Electronic Library Online for electronic publishing of scientific periodicals, examining issues such as the transition from traditional printed publication to electronic publishing, the scientific communication process, the principles which founded the methodology development, its application in the building of the SciELO site, its modules and components, the tools use for its construction etc. The article also discusses the potentialities and trends for the area in Brazil and Latin America, pointing out questions and proposals which should be investigated and solved by the methodology. It concludes that the SciELO Methodology is an efficient, flexible and wide solution for the scientific electronic publishing.
Free Vibration Characteristics of Cylindrical Shells Using a Wave Propagation Method
Directory of Open Access Journals (Sweden)
A. Ghoshal
2001-01-01
Full Text Available In the present paper, concept of a periodic structure is used to study the characteristics of the natural frequencies of a complete unstiffened cylindrical shell. A segment of the shell between two consecutive nodal points is chosen to be a periodic structural element. The present effort is to modify Mead and Bardell's approach to study the free vibration characteristics of unstiffened cylindrical shell. The Love-Timoshenko formulation for the strain energy is used in conjunction with Hamilton's principle to compute the natural propagation constants for two shell geometries and different circumferential nodal patterns employing Floquet's principle. The natural frequencies were obtained using Sengupta's method and were compared with those obtained from classical Arnold-Warburton's method. The results from the wave propagation method were found to compare identically with the classical methods, since both the methods lead to the exact solution of the same problem. Thus consideration of the shell segment between two consecutive nodal points as a periodic structure is validated. The variations of the phase constants at the lower bounding frequency for the first propagation band for different nodal patterns have been computed. The method is highly computationally efficient.
A local flexibility method for vibration-based damage localization and quantification
Reynders, Edwin; De Roeck, Guido
2010-06-01
A method for vibration-based damage localization and quantification, based on quasi-static flexibility, is presented. The experimentally determined flexibility matrix is combined with a virtual load that causes nonzero stresses in a small part of the structure, where a possible local stiffness change is investigated. It is shown that, if the strain-stress relationship for the load is proportional, the ratio of some combination of deformations before and after a stiffness change has occurred, equals the inverse local stiffness ratio. The method is therefore called local flexibility (LF) method. Since the quasi-static flexibility matrix can be composed directly from modal parameters, the LF method allows to determine local stiffness variations directly from measured modal parameters, even if they are determined from output-only data. Although the LF method is in principle generally applicable, the emphasis in this paper is on beam structures. The method is validated with simulation examples of damaged isostatic and hyperstatic beams, and experiments involving a reinforced concrete free-free beam and a three-span prestressed concrete bridge, that are both subjected to a progressive damage test.
A simple method for designing structural models with closely spaced modes of vibration
Hallauer, W. L., Jr.; Weisshaar, T. A.; Shostak, A. G.
1978-01-01
A simple method for designing a mathematical model with closely spaced vibration modes is described. The design process begins with a reference model having specified geometry, continuous inertia and stiffness distributions, and degrees of freedom, all of which remain unchanged. Two natural frequencies of this model are then forced together by means of systematic perturbation of the model's discrete inertia and stiffness parameters. There is only one eigenvalue solution per design cycle, and the gradient vector is calculated directly from the resulting modal quantities. The minimization procedure employed is unconstrained. As applications, a cantilevered plane grid model with five degrees of freedom and a bending-torsion-oscillator with eleven degrees of freedom are treated.
Vibration analysis of composite pipes using the finite element method with B-spline wavelets
Energy Technology Data Exchange (ETDEWEB)
Oke, Wasiu A.; Khulief, Yehia A. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)
2016-02-15
A finite element formulation using the B-spline wavelets on the interval is developed for modeling the free vibrations of composite pipes. The composite FRP pipe element is treated as a beam element. The finite pipe element is constructed in the wavelet space and then transformed to the physical space. Detailed expressions of the mass and stiffness matrices are derived for the composite pipe using the Bspline scaling and wavelet functions. Both Euler-Bernoulli and Timoshenko beam theories are considered. The generalized eigenvalue problem is formulated and solved to obtain the modal characteristics of the composite pipe. The developed wavelet-based finite element discretization scheme utilizes significantly less elements compared to the conventional finite element method for modeling composite pipes. Numerical solutions are obtained to demonstrate the accuracy of the developed element, which is verified by comparisons with some available results in the literature.
Approximations to the Probability of Failure in Random Vibration by Integral Equation Methods
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Sørensen, John Dalsgaard
Close approximations to the first passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first passage probability density function and the distribution function for the time interval spent below a barrier before...... outcrossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval, and hence for the first...... passage probability density. The results of the theory agree well with simulation results for narrow banded processes dominated by a single frequency, as well as for bimodal processes with 2 dominating frequencies in the structural response....
Petrenko, Taras; Rauhut, Guntram
2017-03-28
Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.
Petrenko, Taras; Rauhut, Guntram
2017-03-01
Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.
Yang, Pan; Shen, Wei; Li, Ming; He, Rongxing
2017-01-01
The vibrationally resolved electronic spectra of five metal-free NKX-2587 derivatives containing heteroatom with different atomic sizes and electronegativity, were simulated within the Franck-Condon approximation including the Herzberg-Teller and Duschinsky effects, aimed at exploring the correlation of vibronic structure associated with the spectrum and efficiency of dye sensitized solar cells (DSSCs). The parameters of short-circuit current density (Jsc) and open circuit voltage (Voc) involving efficiency of DSSCs, such as total dipole moments (μnormal), the light harvesting efficiency (LHE), injection driving force (Δ Ginject), and the number of electrons in the conduction band (nc), were calculated and discussed in detail. Results showed that the heteroatoms in the same period with large size and weak electronegativity and the ones in the same main group with large size and weak electronegativity are beneficial to Voc. The sizes and electronegativity of the heteroatoms have a weak effect on Jsc. The low-frequency modes play important roles in enhancing the intensities of the electronic spectra and structures can affect light harvesting efficiency (LHE). In this sense, our results provided guidance for understanding the sources of spectral intensities of dye molecules, and a valuable help for rational design of new molecules to improve the energy conversion efficiency (η) of DSSCs.
Energy Technology Data Exchange (ETDEWEB)
Balci, Murat [Dept. of Mechanical Engineering, Bayburt University, Bayburt (Turkmenistan); Gundogdu, Omer [Dept. of Mechanical Engineering, Ataturk University, Erzurum (Turkmenistan)
2017-01-15
In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed.
Energy Technology Data Exchange (ETDEWEB)
Granger, S.; Perotin, L. [Electricite de France (EDF), 78 - Chatou (France)
1997-12-31
Maintaining the PWR components under reliable operating conditions requires a complex design to prevent various damaging processes, including fatigue and wear problems due to flow-induced vibration. In many practical situations, it is difficult, if not impossible, to perform direct measurements or calculations of the external forces acting on vibrating structures. Instead, vibrational responses can often be conveniently measured. This paper presents an inverse method for estimating a distributed random excitation from the measurement of the structural response at a number of discrete points. This paper is devoted to the presentation of the theoretical development. The force identification method is based on a modal model for the structure and a spatial orthonormal decomposition of the excitation field. The estimation of the Fourier coefficients of this orthonormal expansion is presented. As this problem turns out to be ill-posed, a regularization process is introduced. The minimization problem associated to this process is then formulated and its solutions is developed. (author) 17 refs.
Xie, Shangran; Zhang, Min; Li, Yanhe; Liao, Yanbiao
2011-05-01
Dual Mach-Zehnder interferometric vibration sensor is an appropriate solution for submarine cable security application. While in this application the detected vibration signal is always narrow-bandwidth and short-duration subject to environmental constraints, which makes correlation based vibration positioning algorithm a poor robustness to noise. A preprocessing method focusing on expanding signal 3dB bandwidth before correlation is proposed in purpose of reducing ultimate positioning mean square error. A high pass filter is imposed to enhance the weight of high frequency components by attenuating low frequency main lobe. Field test results indicate a significant positioning error reduction when using this novel method as long as the cutoff frequency of high pass filter is selected in a valid region where positive effect of bandwidth extension is larger than effect of SNR reduction, and MSE reduction value in valid region agrees well with theoretical prediction.
Horio, Takehiko; Yasuda, Masatoshi; Matsusaka, Shuji
2014-10-01
Powder flowability of microcrystalline cellulose particles having different particle shapes, whose aspect ratios ranged from 1.8 to 6.4, was measured using the vibration shear tube method. Particles lubricated with magnesium stearate were also investigated in order to evaluate the effect of surface modification on powder flowability. Particles were discharged through a narrow gap between a vibrating tube edge and a flat bottom surface, where each particle experienced high shear forces, thus, overcoming adhesion and friction forces. Vibration amplitude was increased at a constant rate during measurement and the masses of the discharged particles were measured at consistent time intervals. Flowability profiles, i.e., the relationships between the mass flow rates of the discharged particles and their vibration accelerations, were obtained from these measurements. Critical vibration accelerations and characteristic mass flow rates were then determined from flowability profiles in order to evaluate static and dynamic friction properties. The results were compared with those obtained using conventional methods. It was found that angle of repose and compressibility were related to static and dynamic friction properties. Furthermore, it was found that particle aspect ratio more significantly affects powder flowability than does lubrication with magnesium stearate. Copyright © 2014 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Anatoliy Alexandrovich Bogoyavlenskiy
2017-01-01
Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.
E. Yari; H. Ghassemi
2016-01-01
The main objective of this paper is to provide an applied algorithm for analyzing propeller-shaft vibrations in marine vessels. Firstly an underwater marine vehicle has been analyzed at different speed in unsteady condition using the finite volume method. Based on the results of this analysis, flow field of marine vehicle (wake of stern) and velocity inlet to the marine propeller is extracted at different times. Propeller inlet flow field is applied in the boundary element code and usin...
Svinkin, Mark R.
2016-12-01
The authors suggested a hybrid method for modeling the time history of structural vibrations triggered by impact dynamic loads from construction equipment and blasting, and they stated, "In this work, a hybrid method has been proposed to calculate the theoretical seismograms of structural vibrations. The word "hybrid" denotes a combination of field measurements and computer simulations. Then, based on nonlinear system theory, a novel method is proposed to predict the signal induced by impact loading".
A simple method for enhanced vibration-based structural health monitoring
Energy Technology Data Exchange (ETDEWEB)
Guechaichia, A; Trendafilova, I, E-mail: abdelhamid.guechaichia@strath.ac.uk [Department of Mechanical Engineering University of Strathclyde, James Weir Building, 75 Montrose street, Glasgow, G1 IXJ (United Kingdom)
2011-07-19
This study suggests a novel method for structural vibration-based health monitoring for beams which only utilises the first natural frequency of the beam in order to detect and localise a defect. The method is based on the application of a static force in different positions along the beam. It is shown that the application of a static force on a damaged beam induces stresses at the defect which in turn cause changes in the structural natural frequencies. A very simple procedure for damage detection is suggested which uses a static force applied in just one point, in the middle of the beam. Localisation is made using two additional application points of the static force. Damage is modelled as a small notch through the whole width of the beam. The method is demonstrated and validated numerically, using a finite element model of the beam, and experimentally for a simply supported beam. Our results show that the frequency variation with the change of the force application point can be used to detect and in the same time localize very precisely even a very small defect. The method can be extended for health monitoring of other more complicated structures.
Fuzzy norm method for evaluating random vibration of airborne platform from limited PSD data
Directory of Open Access Journals (Sweden)
Wang Zhongyu
2014-12-01
Full Text Available For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density (PSD data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method (FNM is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.
Vibration-Based Adaptive Novelty Detection Method for Monitoring Faults in a Kinematic Chain
Directory of Open Access Journals (Sweden)
Jesus Adolfo Cariño-Corrales
2016-01-01
Full Text Available This paper presents an adaptive novelty detection methodology applied to a kinematic chain for the monitoring of faults. The proposed approach has the premise that only information of the healthy operation of the machine is initially available and fault scenarios will eventually develop. This approach aims to cover some of the challenges presented when condition monitoring is applied under a continuous learning framework. The structure of the method is divided into two recursive stages: first, an offline stage for initialization and retraining of the feature reduction and novelty detection modules and, second, an online monitoring stage to continuously assess the condition of the machine. Contrary to classical static feature reduction approaches, the proposed method reformulates the features by employing first a Laplacian Score ranking and then the Fisher Score ranking for retraining. The proposed methodology is validated experimentally by monitoring the vibration measurements of a kinematic chain driven by an induction motor. Two faults are induced in the motor to validate the method performance to detect anomalies and adapt the feature reduction and novelty detection modules to the new information. The obtained results show the advantages of employing an adaptive approach for novelty detection and feature reduction making the proposed method suitable for industrial machinery diagnosis applications.
Directory of Open Access Journals (Sweden)
Dong Tang
2016-03-01
Full Text Available This article is concerned with free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. An analytical solution of the traveling wave form along the simply supported edges and the standing wave form along the remaining two edges is obtained based on the Flügge thin shell theory. With such a unidirectional traveling wave form solution, the method of reverberation-ray matrix is introduced to derive the equation of natural frequencies of the open circular cylindrical shell with various boundary conditions. Then, the golden section search algorithm is employed to obtain the natural frequencies of the open circular cylindrical shell. The calculation results are compared with those obtained by the finite element method and the method in available literature. Finally, the natural frequencies of the open circular cylindrical shell with various boundary conditions are calculated and the effects of boundary conditions on the natural frequencies are examined. The calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design thin structures with shell components.
Free-Vibration Analysis of Rotating Beams by a Variable-Order Finite-Element Method
Hodges, Dewey H.; Rutkowski, Michael J.
1981-01-01
The free vibration of rotating beams is analyzed by means of a finite-element method of variable order. This method entails displacement functions that are a complete power series of a variable number of terms. The terms are arranged so that the generalized coordinates are composed of displacements and slopes at the element extremities and, additionally, displacements at certain points within the element. The displacement is assumed to be analytic within an element and thus can be approximated to any degree of accuracy desired by a complete power series. Numerical results are presented for uniform beams with zero and nonzero hub radii, tapered beams, and a nonuniform beam with discontinuities. Since the present method reduces to a conventional beam finite-element method for a cubic displacement function, the results are compared and found to be superior to the conventional results in terms of accuracy for a given number of degrees of freedom. Indeed, essentially exact eigenvalues and eigenvectors are obtained with this technique, which is far more rapidly convergent than other approaches in the literature.
Directory of Open Access Journals (Sweden)
Hongrui Cao
2012-06-01
Full Text Available Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones’ bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko’s beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response.
Multi-sensor information fusion method for vibration fault diagnosis of rolling bearing
Jiao, Jing; Yue, Jianhai; Pei, Di
2017-10-01
Bearing is a key element in high-speed electric multiple unit (EMU) and any defect of it can cause huge malfunctioning of EMU under high operation speed. This paper presents a new method for bearing fault diagnosis based on least square support vector machine (LS-SVM) in feature-level fusion and Dempster-Shafer (D-S) evidence theory in decision-level fusion which were used to solve the problems about low detection accuracy, difficulty in extracting sensitive characteristics and unstable diagnosis system of single-sensor in rolling bearing fault diagnosis. Wavelet de-nosing technique was used for removing the signal noises. LS-SVM was used to make pattern recognition of the bearing vibration signal, and then fusion process was made according to the D-S evidence theory, so as to realize recognition of bearing fault. The results indicated that the data fusion method improved the performance of the intelligent approach in rolling bearing fault detection significantly. Moreover, the results showed that this method can efficiently improve the accuracy of fault diagnosis.
Directory of Open Access Journals (Sweden)
Wanyou Li
2016-01-01
Full Text Available An improved Fourier expansion-based differential quadrature (DQ algorithm is proposed to study the free vibration behavior of truncated conical shells with different boundary conditions. The original function is expressed as the Fourier cosine series combined with close-form auxiliary functions. Those auxiliary functions are introduced to ensure and accelerate the convergence of series expansion. The grid points are uniformly distributed along the space. The weighting coefficients in the DQ method are easily obtained by the inverse of the coefficient matrix. The derivatives in both the governing equations and the boundaries are discretized by the DQ method. Natural frequencies and modal shapes can be easily obtained by solving the numerical eigenvalue equations. The accuracy and stability of this proposed method are validated against the results in the literature and a very good agreement is observed. The centrosymmetric properties of these newly proposed weighting coefficients are also validated. Studies on the effects of semivertex angle and the ratio of length to radius are reported.
Free vibration characteristics of multiple load path blades by the transfer matrix method
Murthy, V. R.; Joshi, Arun M.
1986-01-01
The determination of free vibrational characteristics is basic to any dynamic design, and these characteristics can form the basis for aeroelastic stability analyses. Conventional helicopter blades are typically idealized as single-load-path blades, and the transfer matrix method is well suited to analyze such blades. Several current helicopter dynamic programs employ transfer matrices to analyze the rotor blades. In this paper, however, the transfer matrix method is extended to treat multiple-load-path blades, without resorting to an equivalent single-load-path approximation. With such an extension, these current rotor dynamic programs which employ the transfer matrix method can be modified with relative ease to account for the multiple load paths. Unlike the conventional blades, the multiple-load-path blades require the introduction of the axial degree-of-freedom into the solution process to account for the differential axial displacements of the different load paths. The transfer matrix formulation is validated through comparison with the finite-element solutions.
Bostic, Susan W.; Fulton, Robert E.
1987-01-01
Eigenvalue analyses of complex structures is a computationally intensive task which can benefit significantly from new and impending parallel computers. This study reports on a parallel computer implementation of the Lanczos method for free vibration analysis. The approach used here subdivides the major Lanczos calculation tasks into subtasks and introduces parallelism down to the subtask levels such as matrix decomposition and forward/backward substitution. The method was implemented on a commercial parallel computer and results were obtained for a long flexible space structure. While parallel computing efficiency is problem and computer dependent, the efficiency for the Lanczos method was good for a moderate number of processors for the test problem. The greatest reduction in time was realized for the decomposition of the stiffness matrix, a calculation which took 70 percent of the time in the sequential program and which took 25 percent of the time on eight processors. For a sample calculation of the twenty lowest frequencies of a 486 degree of freedom problem, the total sequential computing time was reduced by almost a factor of ten using 16 processors.
Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa
1993-01-01
This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.
Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh
2014-11-11
In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.
National Research Council Canada - National Science Library
Alfano, R. R
2000-01-01
.... The nonequilibrium population of a local mode of 765 cm(sup -1) in Cr(sup 4+):Mg2SiO4 was found to build up during the transition through an electronic bottleneck and decay by interaction with a restricted number of phonon modes...
New methods for trigger electronics development
Energy Technology Data Exchange (ETDEWEB)
Cleland, W.E.; Stern, E.G. [Univ. of Pittsburgh, PA (United States)
1991-12-31
The large and complex nature of RHIC experiments and the tight time schedule for their construction requires that new techniques for designing the electronics should be employed. This is particularly true of the trigger and data acquisition electronics which has to be ready for turn-on of the experiment. We describe the use of the Workview package from VIEWlogic Inc. for design, simulation, and verification of a flash ADC readout system. We also show how field-programmable gate arrays such as the Xilinx 4000 might be employed to construct or prototype circuits with a large number of gates while preserving flexibility.
Electronics design office organization, methods and tools
Van der Bij, E
2004-01-01
The group TS-DEM offers a global service for the design, manufacturing and assembly of electronics modules for several hundreds of electronics engineers at CERN and its collaborating institutes. The Design Office in DEM determines and controls an overall planning, defines the resources required, solves the technical aspects and invoices the whole project. This involves technical resources provided by service contracts and supply contracts, but also negotiations with clients to be able to provide realistic plannings while still being able to handle urgent cases and high-workload periods.
Energy Technology Data Exchange (ETDEWEB)
Hoffer, Saskia [Univ. of California, Berkeley, CA (United States)
2002-01-01
Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.
Acute Effect of Lower-Body Vibration as a Recovery Method After Fatiguing Exercise
Directory of Open Access Journals (Sweden)
Svetlana Nepocatych
2015-09-01
Full Text Available The purpose of this study was to compare three recovery methods: control (CON, lower-body vibration (LBV and LBV+ local muscle cooling (LBVC on lower-body performance, perceived recovery, and muscle soreness. Physically active male volunteers (n=8 in a repeated-measures, counterbalanced design, completed three sets of squats to fatigue, each recovery treatment, and two Wingate Anaerobic Tests. Rating of perceived exertion (RPE, and heart rate (HR were measured after fatiguing exercise, recovery treatment and Wingate Anaerobic tests. Peak and mean power, fatigue index, Delayed Onset Muscle Soreness (DOMS, and comfort levels were compared between each treatment. In Wingate 1, no significant differences (p=0.42 were found among CON, LBV, or LBVC regarding peak power (1119±239, 1097±225, and 1146±260 W, respectively, mean power (p=0.32, or fatigue index (p=0.47. In Wingate 2, no significant (p=0.17 differences were found among CON, LBV, or LBVC regarding peak power (1042±228, 1078±233, and 1110±268 W, respectively, mean power (p=0.38, or fatigue index (p=0.15. A significantly better (p=0.01 perceived recovery was observed after LBV (6±1 and LBVC (6±1 compared to CON (4±1. The study findings support psychological but not performance enhancing benefits after the use of LBV and LBVC as recovery methods.
A Large Span Crossbeam Vibration Frequencies Analysis Based on an Analogous Beam Method
Directory of Open Access Journals (Sweden)
Zhifeng Liu
2013-01-01
Full Text Available The novel method of an analogous beam is studied, which the flexural rigidity and mass per unit length correspond was described as the reciprocal of the mass per unit and the reciprocal of the flexural rigidity of the beam. It is shown that both beams possess the same natural frequencies of flexural vibration. In order to approximate calculation of these frequencies, the continuously distributed mass of the original beam is substituted for a number of concentrated masses. The analogous beam then becomes a chain of rigid links connected by pins and equipped with springs restraining the relative rotation of adjacent links. The equations of motion for the analogous beam can be solved by a procedure which consists of assuming a value for the natural frequency and calculating the deflections successively from one end of the beam to the other. Under normal circumstances, there will be a certain error, and one boundary condition will not be satisfied. The procedure is repeated with different values of the frequency until the error is removed. The method is illustrated by an example of a Crossbeam for which the fundamental frequency is found.
Shin, Hee Won; Ocola, Esther J; Kim, Sunghwan; Laane, Jaan
2014-01-21
The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π(*)) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π(*)) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π(*)) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π(*)) excited state.
Energy Technology Data Exchange (ETDEWEB)
Shin, Hee Won; Ocola, Esther J.; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, Maryland 20894 (United States)
2014-01-21
The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.
Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan
2014-01-01
The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377
Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan
2014-01-01
The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state.
Yang, Pan; Pang, Min; Li, Ming; Shen, Wei; He, Rongxing
2015-12-05
Geometrical optimizations of the ground and first excited states of benzimidazole and indene were performed using the density functional theory (DFT) and its time-dependent extension methods (TD-DFT), respectively. Their vibrationally resolved (1)Lb ((1)A')↔S0 ((1)A') absorption and fluorescence spectra were simulated within the Franck-Condon approximation including the Herzberg-Teller (HT) and Duschinsky effects. Calculated results revealed that, with the HT and Duschinsky effects getting involved, the simulated weak (1)Lb ((1)A')↔S0 ((1)A') electronic spectra of the two molecules excellently reproduce the experimental findings. Based on the experimental data and other theoretical results, we tentatively assigned most of the vibrational normal modes which emerged in the experimental spectra of the two molecules. The present theoretical insights are expected to help us understand the nature of electronic transitions in the vibrationally resolved absorption and fluorescence spectra of benzimidazole and its analogues. Copyright © 2015 Elsevier B.V. All rights reserved.
National Research Council Canada - National Science Library
Xue, Hongtao; Li, Zhongxing; Wang, Huaqing; Chen, Peng
2014-01-01
...), possibility theory, and Dempster-Shafer theory (DST) on the basis of the vibration signals, to diagnose frequent faults in the centrifugal pump at an early stage, such as cavitation, impeller unbalance, and shaft misalignment...
Vibration Reduction Methods and Techniques for Rotorcraft Utilizing On-Blade Active Control Project
National Aeronautics and Space Administration — Rotor blades adapted for vibration control have the added benefit of extended blade and rotor life, as well as improved passenger comfort. Approaches that have been...
Directory of Open Access Journals (Sweden)
Zhiping Zeng
2015-01-01
Full Text Available This paper investigates the random vibration and the dynamic reliability of operation stability of train moving over slab track on bridge under track irregularities and earthquakes by the pseudoexcitation method (PEM. Each vehicle is modeled by multibody dynamics. The track and bridge is simulated by a rail-slab-girder-pier interaction finite element model. The coupling equations of motion are established based on the wheel-rail interaction relationship. The random excitations of the track irregularities and seismic accelerations are transformed into a series of deterministic pseudoexcitations by PEM. The time-dependent power spectral densities (PSDs of the random vibration of the system are obtained by step-by-step integration method, and the corresponding dynamic reliability is estimated based on the first-passage failure criterion. A case study is then presented in which a high-speed train moves over a slab track resting on a simply supported girder bridge. The PSD characteristics of the random vibration of the bridge and train are analyzed, the influence of the wheel-rail-bridge interaction models on the random vibration of the bridge and train is discussed, and furthermore the influence of train speed, earthquake intensity, and pier height on the dynamic reliability of train operation stability is studied.
The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics
Energy Technology Data Exchange (ETDEWEB)
Borrelli, Raffaele, E-mail: raffaele.borrelli@unito.it [DISAFA, Università di Torino, I-10095 Grugliasco (Italy); Gelin, Maxim F. [Departement of Chemistry, Technische Universität München, D-85747 Garching (Germany)
2016-12-20
A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac–Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.
Tunable Passive Vibration Suppressor
Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)
2016-01-01
An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.
Cronkhite, James D.
1993-01-01
Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.
Parra, J.; Vicuña, Cristián Molina
2017-08-01
Planetary gearboxes are important components of many industrial applications. Vibration analysis can increase their lifetime and prevent expensive repair and safety concerns. However, an effective analysis is only possible if the vibration features of planetary gearboxes are properly understood. In this paper, models are used to study the frequency content of planetary gearbox vibrations under non-fault and different fault conditions. Two different models are considered: phenomenological model, which is an analytical-mathematical formulation based on observation, and lumped-parameter model, which is based on the solution of the equations of motion of the system. Results of both models are not directly comparable, because the phenomenological model provides the vibration on a fixed radial direction, such as the measurements of the vibration sensor mounted on the outer part of the ring gear. On the other hand, the lumped-parameter model provides the vibrations on the basis of a rotating reference frame fixed to the carrier. To overcome this situation, a function to decompose the lumped-parameter model solutions to a fixed reference frame is presented. Finally, comparisons of results from both model perspectives and experimental measurements are presented.
Grasseschi, D.; Bahamon, D. A.; Maia, F. C. B.; Castro Neto, A. H.; Freitas, R. O.; de Matos, C. J. S.
2017-09-01
Black phosphorus (BP) is a layered crystalline structure presenting a thickness-tunable direct bandgap and a high charge carrier mobility, with, therefore, enormous interest to photonics, optoelectronics and electronics. However, BP’s high susceptibility to oxidation when exposed to ambient conditions is a critical challenge for its implementation into functional systems. Here, we investigate the degradation of BP flakes exposed to various environmental conditions by synchrotron infrared nanospectroscopy (SINS). As a near-field based technique, SINS provides sub-diffractional mid-infrared images and spectra from nano-sized domains. Supported by density functional theory (DFT) calculations, our SINS spectra reveal the formation of nanoscale PO x domains, with x between 0.5 and 1, and a 100 meV red shift in the bandgap of flakes exposed to air for a few minutes. On the other hand, exposure to air for 24 h led to the preferential formation of H3PO4, with complete removal of the electronic transitions from the mid-infrared spectral window, while a long (1 month) exposure to low O2 levels mainly led to the formation of P4O8 and P4O9 species. The SINS analysis allows correlating the morphology of oxidized samples to the oxide type, thus, contributing to a comprehensive characterization of the BP degradation process.
Directory of Open Access Journals (Sweden)
V. A. Yankovsky
2006-11-01
Full Text Available The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v and O2(b1Σ+g, v, excited atomic oxygen O(1D, and the O2 molecules in the ground electronic state O2(X3Σg−, v. In contrast to the previous models of kinetics of O2(a1Δg and O2 (b1Σ+g, our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0 (at 762 nm and O2(a1Δg, v=0 (at 1.27 µm, but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1 and O2(b1Σ+g, v=2 (at 689 nm and 629 nm. The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0 and O2(b1Σg, v=0 concentrations, but also the profiles of [O2(a1Δg, v≤5], [O2 (b1Σ+g , v=1, 2] and O2(X3Σg−, v=1–35. In the altitude range 60–125 km, consideration of the electronic-vibrational kinetics significantly changes the calculated concentrations of the metastable oxygen molecules and reduces the discrepancy between the altitude profiles of ozone concentrations retrieved from the 762-nm and 1.27-µm emissions measured simultaneously.
Designing a hand rest tremor dynamic vibration absorber using H{sub 2} optimization method
Energy Technology Data Exchange (ETDEWEB)
Rahnavard, Mostafa; Dizaji, Ahmad F. [Tehran University, Tehran (Iran, Islamic Republic of); Hashemi, Mojtaba [Amirkabir University, Tehran (Iran, Islamic Republic of); Faramand, Farzam [Sharif University, Tehran (Iran, Islamic Republic of)
2014-05-15
An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H{sub 2} optimization criterion is probably more desirable than the popular H{sub ∞} optimization method and was implemented in this research. The objective of H{sub 2} optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ {sub 2}, tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ{sub 2} was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ{sub 1}. The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ{sub 1} and θ {sub 2} revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.
Energy Technology Data Exchange (ETDEWEB)
Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Ischenko, A. A. [Moscow Technological University, Institute of High Chemical Technologies (Russian Federation); Kochikov, I. V. [Moscow State University (Russian Federation); Misochko, O. V. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation); Chekalin, S. V.; Ryabov, E. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)
2017-03-15
The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinations of these phonon modes in the Sb sample have also been experimentally observed.
Energy Technology Data Exchange (ETDEWEB)
Ravi Kumar, Venkatraman; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in, E-mail: chandra@bii.a-star.edu.sg [Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012 (India); Verma, Chandra, E-mail: umapathy@ipc.iisc.ernet.in, E-mail: chandra@bii.a-star.edu.sg [Bioinformatics Institute - A*STAR, 30 Biopolis Street, # 07-01 Matrix, Singapore 138671 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)
2016-02-14
Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm{sup −1} blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 1{sup 1}nπ{sup ∗} (band I) and 1{sup 1}ππ{sup ∗} (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm{sup −1}), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to
Geometric reconstruction methods for electron tomography
Energy Technology Data Exchange (ETDEWEB)
Alpers, Andreas, E-mail: alpers@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Gardner, Richard J., E-mail: Richard.Gardner@wwu.edu [Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063 (United States); König, Stefan, E-mail: koenig@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Boothroyd, Chris B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Houben, Lothar, E-mail: l.houben@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dunin-Borkowski, Rafal E., E-mail: rdb@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Joost Batenburg, Kees, E-mail: Joost.Batenburg@cwi.nl [Centrum Wiskunde and Informatica, NL-1098XG, Amsterdam, The Netherlands and Vision Lab, Department of Physics, University of Antwerp, B-2610 Wilrijk (Belgium)
2013-05-15
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand.
A Mnemonic Method for Assigning the Electronic Configurations of Atoms
Iza, Nerea; Gil, Manuel
1995-11-01
A simple mnemonic method for predicting electronic configurations of the majority of the elements of the Periodic Table is shown. With this device it is necessary only to draw a linear diagram for "building up" the electronic configurations of atoms. The advantages and limitations of the method are considered.
Energy Technology Data Exchange (ETDEWEB)
Krewald, S.; Lallena, A.M.; Dehesa, J.S.
1986-02-03
Inelastic electron-scattering form factors of magnetic states in closed-shell nuclei are calculated taking into account the combined effect of the mesonic degrees of freedom and the two-particle-two-hole components of the nuclear wave functions which come from the particle-core vibration coupling. The one-body nucleon- and two-body meson-exchange current contribution to the form factor are evaluated with the same realistic mean field. Application to various high-spin magnetic states of oxygen and lead is made. The comparison with experiment shows an excellent agreement for the states 14/sup -/(6.74 MeV) and 12/sup -/sub(t)(7.06 MeV) in lead, while such is not the case for the second 12/sup -//sub 2/(6.43 MeV) state in lead and the 4/sup -/(18.98 MeV) state in oxygen essentially due to mixing configuration effects and the non-consideration of 3p3h excitations, respectively. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Bhoyar, Priyanka D. [Department of Physics, R.T.M. Nagpur University, Nagpur, 440033 (India); Brik, M.G., E-mail: brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu, 50411 (Estonia); Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668, Warsaw (Poland); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200, Czestochowa (Poland); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur, 440033 (India)
2016-08-15
Electron-vibrational interaction (EVI) in interconfigurational 5d-4f transition of Ce{sup 3+}-doped alkaline-earth chlorophosphates, also known as apatites, is studied for the first time in this work. Using the configurational coordinate model, the main EVI parameters such as Huang-Rhys factor, effective phonon energy and the zero-phonon line (ZPL) position are determined for all samples studied. Photoluminescence characteristics of these compounds are utilized to estimate EVI parameters. As a reliable test validating the obtained results, the emission band shape of was modeled to yield good agreement with experimental emission spectra. The values of EVI parameters were systematically compared for all studied materials as well as with similar systems with halide ions. - Highlights: • EVI in Ce{sup 3+}-doped alkaline-earth halochlorophosphates is studied for the first time in this work. • The EVI parameters are estimated using the configurational coordinate model. • Estimated EVI parameters are validated by modeling emission spectra. • Parameters are systematically compared.
Energy Technology Data Exchange (ETDEWEB)
Gregson, Colin R., E-mail: colin.r.gregson@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom); Goddard, David T., E-mail: dave.t.goddard@nnl.co.uk [National Nuclear Laboratory, Preston Laboratory, Springfields, Salwick, Preston PR4 0XJ (United Kingdom); Sarsfield, Mark J., E-mail: mark.j.sarsfield@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG (United Kingdom)
2011-05-01
Graphical abstract: Spent Magnox fuel corroding in-situ in storage ponds forms sludges comprised of brucite and other Mg based phases with uranium oxide particles. Display Omitted Research highlights: > Caracterization study of highly radioactive corroded Magnox sludges. > Unique data from samples of actual corroded nuclear fuel. > Combined electron microscopy and vibrational spectroscopy study. > Analysis of particles from legacy spent fuel storage pond at Sellafield. > Supports major UK decommissioning and nuclear clean up challenge. - Abstract: Samples of filtered particulates and sludges, formed from corroding magnesium alloy clad uranium metal ('Magnox') fuel elements, collected from one of the legacy nuclear fuel storage ponds located at Sellafield (UK) were investigated by Environmental Scanning Electron Microscopy with Energy Dispersive X-Ray analysis (ESEM/EDX), micro-Raman spectroscopy and Fourier transform infra-red spectroscopy (FT-IR). ESEM imaging confirmed the dominant morphology to be clusters of interlocking platelets typical of brucite (Mg(OH){sub 2}). EDX analysis was suggestive of some conversion to the related phase, hydrotalcite (Mg{sub 6}Al{sub 2}(CO{sub 3})(OH){sub 16}.4H{sub 2}O), due to elevated levels of Al associated with Mg. Other apparent morphologies were less commonly observed including flaky sheets, consistent with earlier stages of Magnox alloy corrosion. In a few specific cases, rods were also observed suggestive of some conversion to Mg-hydroxycarbonate phases. Discrete phases rich in U were also identified. Fluorescence in the Raman spectroscopy also indicated surface coatings of organic macromolecules and iron sulphide on hematite containing particles, attributed to microbial activity within the open air pond. Some specific differences in the solid phases between pond areas with differing conditions were apparent.
Adaptive method for electron bunch profile prediction
Directory of Open Access Journals (Sweden)
Alexander Scheinker
2015-10-01
Full Text Available We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.
Jacobs, Michael H G; Schmid-Fetzer, Rainer; van den Berg, Arie P.
2017-01-01
In a previous paper, we showed a technique that simplifies Kieffer’s lattice vibrational method by representing the vibrational density of states with multiple Einstein frequencies. Here, we show that this technique can be applied to construct a thermodynamic database that accurately represents
Wang, Jie; Paszti, Zoltan; Clarke, Matthew L; Chen, Xiaoyun; Chen, Zhan
2007-05-31
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.
Directory of Open Access Journals (Sweden)
Muhammad Munawar
2012-01-01
Full Text Available Optimization of surface roughness has been one of the primary objectives in most of the machining operations. Poor control on the desired surface roughness generates non conforming parts and results into increase in cost and loss of productivity due to rework or scrap. Surface roughness value is a result of several process variables among which machine tool condition is one of the significant variables. In this study, experimentation was carried out to investigate the effect of machine tool condition on surface roughness. Variable used to represent machine tool\\'s condition was vibration amplitude. Input parameters used, besides vibration amplitude, were feed rate and insert nose radius. Cutting speed and depth of cut were kept constant. Based on Taguchi orthogonal array, a series of experimentation was designed and performed on AISI 1040 carbon steel bar at default and induced machine tool\\'s vibration amplitudes. ANOVA (Analysis of Variance, revealed that vibration amplitude and feed rate had moderate effect on the surface roughness and insert nose radius had the highest significant effect on the surface roughness. It was also found that a machine tool with low vibration amplitude produced better surface roughness. Insert with larger nose radius produced better surface roughness at low feed rate.
Pedestrian induced vertical vibrations: Response to running using the Response Spectrum Method
DEFF Research Database (Denmark)
Matteoni, Giulia; Georgakis, Christos
2010-01-01
Footbridges are increasingly prone to vibrations and designers are generally unable to predict pedestrian-induced vertical vibrations. Many aspects of human loading are infact not properly taken into account for in the load models employed by the international codes of practice, such as the rando...... into account variations in the structural characteristics, crowd morphology and return period. The correction factors, together with the reference acceleration, are used to determine the final response of the footbridge, for a given probability of load occurrence.......Footbridges are increasingly prone to vibrations and designers are generally unable to predict pedestrian-induced vertical vibrations. Many aspects of human loading are infact not properly taken into account for in the load models employed by the international codes of practice......, such as the randomness of crowds travelling across the footbridge. Moreover, the codes, for most of the part, do not deal with pedestrian loading other than walking, even though running and jumping can often produce larger loads and vibration amplitudes. In this paper, an investigation inot the response of footbridges...
Two methods for damping torsional vibrations in DFIG-based wind generators using power converters
Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping
2017-01-01
This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.
Wang, Zhi-Qiang; Wu, Cheng-Jun; Wang, Zhen-Hui; Huang, Chao; Huang, Jian; Wang, Jin-Hui; Sun, Tie-Min
2017-10-01
In this study, the stereochemistry of a new isopimarane-type diterpenoid isolated from the Callicarpa macrophylla Vahl, Callicapene M3, was studied by experimental electronic circular dichroism and vibrational circular dichroism with the aid of TDDFT theoretical calculations. The good consistence between the experimental and simulated circular dichroism has clearly confirmed the absolute configuration of the title compound as (4S, 5S, 9S, 10S, 13S, 14S)-14α-hydroxy-7,15-isopimaradien-18-oic acid.
Energy Technology Data Exchange (ETDEWEB)
Zui, H. [Setsunan University, Osaka (Japan). Faculty of Engineering; Shinke, T. [Kobe Technical College, Kobe, Kobe (Japan); Hamazaki, Y. [Kobe Steel, Ltd., Kobe (Japan)
1995-10-21
The vibration method is usually utilized on the measurement of cable tension during construction of cable bridge such as Nielsen bridges or cable stayed bridges. Practical formula for the vibration method previously proposed by authors is often used where bending rigidity is taken into account. These formula, however, have a certain limit of application and do not yield good results when the cable is not slender or not enough mentioned. The practical formula is modified to improve the accuracy and new formulas are made. The new practical formulas are applicable to any cables, regardless of its length and tension in it. The accuracy is confirmed through comparison of the value obtained by practical formulas with measured values and calculated value by F.E.M. 2 refs., 4 figs., 1 tab.
A Method to Assess Transverse Vibration Energy of Ship Propeller Shaft for Diagnostic Purposes
Directory of Open Access Journals (Sweden)
Korczewski Zbigniew
2017-12-01
Full Text Available The article discusses a key problem of ship propulsion system vibration diagnostics, which concerns assessing this part of mechanical energy transmitted from the main engine to the ship propeller which is dissipated due to propeller shaft vibration. A simplified calculation model is proposed which allows the total energy of the generated torsional vibration to be assessed from the shaft deflection amplitude measured at the mind-span point between the supports. To verify the developed model, pilot tests were performed on the laboratory rotational mechanical system test rig. In those tests, cyclic bending moment was applied to a unified (cylindrical material sample, which modelled, at an appropriate scale, structural and functional properties of a real propeller shaft.
Zeng, Zhiping; Zhu, Kunteng; He, Xianfeng; Xu, Wentao; Chen, Lingkun; Lou, Ping
2015-01-01
This paper investigates the random vibration and the dynamic reliability of operation stability of train moving over slab track on bridge under track irregularities and earthquakes by the pseudoexcitation method (PEM). Each vehicle is modeled by multibody dynamics. The track and bridge is simulated by a rail-slab-girder-pier interaction finite element model. The coupling equations of motion are established based on the wheel-rail interaction relationship. The random excitations of the track i...
Directory of Open Access Journals (Sweden)
mohammadali saadatnia
2015-11-01
Full Text Available In this investigation, the potential of flexural vibration method as nondestructive tool was studied in order to evaluate the acoustical and the mechanical properties of bagasse composites. For this purpose, more than 40 cubic samples (36×4×1.6 cm3 were taken from the given materials. The results showed that the acoustical behavior of particle board were better than that measured for medium density fiber board. In MDF samples, the resonance frequency, the sound velocity, the quality factor as well as the acoustic coefficients were significantly lower than those measured in PB samples. In contrast, the internal friction measured in MDF was greater than values of PB. But no significant difference was observed of ACE in both MDF and PB samples. The young's modulus of MDF and PB were obtained by conducting a flexural vibration method under the free- free condition based on Timoshenko's vibration theory. The results were also compared with the modulus of elasticity and rupture calculated by 3 point bending test. The modulus of elasticity values, measured by dynamic method were 15% and 6% higher than those achieved by static bending method for MDF and PB respectively. It was also illustrated that the modulus of elasticity and the sound velocity were significantly positively related to the density of MDF and PB while the other acoustical properties had negative relations with density. As good correlations were found between dynamic and static modulus of elasticity (0.71 and also static modulus of rupture and dynamic modulus of elasticity (0.44, it can be drawn that the flexural vibration is valuable tool in order to evaluate mechanical properties of MDF made by bagasse while the same results were not observed in PB composites.
Methods of Analysis of Electronic Money in Banks
Directory of Open Access Journals (Sweden)
Melnychenko Oleksandr V.
2014-03-01
Full Text Available The article identifies methods of analysis of electronic money, formalises its instruments and offers an integral indicator, which should be calculated by issuing banks and those banks, which carry out operations with electronic money, issued by other banks. Calculation of the integral indicator would allow complex assessment of activity of the studied bank with electronic money and would allow comparison of parameters of different banks by the aggregate of indicators for the study of the electronic money market, its level of development, etc. The article presents methods which envisage economic analysis of electronic money in banks by the following directions: solvency and liquidity, efficiency of electronic money issue, business activity of the bank and social responsibility. Moreover, the proposed indicators by each of the directions are offered to be taken into account when building integral indicators, with the help of which banks are studied: business activity, profitability, solvency, liquidity and so on.
Multilayer electronic component systems and methods of manufacture
Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)
2010-01-01
Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.
Mohammed, Omar F.
2014-05-01
We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.
Determination of the Electronics Charge--Electrolysis of Water Method.
Venkatachar, Arun C.
1985-01-01
Presents an alternative method for measuring the electronic charge using data from the electrolysis of acidified distilled water. The process (carried out in a commercially available electrolytic cell) has the advantage of short completion time so that students can determine electron charge and mass in one laboratory period. (DH)
Aragón, Fermin F. H.; Aquino, Juan C. R.; Ramos, Jesus E.; Coaquira, José A. H.; Gonzalez, Ismael; Macedo, Waldemar A. A.; da Silva, Sebastião W.; Morais, Paulo C.
2017-11-01
In this work, we report on a single-pot synthesis route based on a polymeric precursor method used for successfully producing undoped and iron-doped CeO2 nanoparticles with iron contents up to 10.0 mol. %. The formation of high-crystalline nanoparticles with a cubic fluorite structure is determined for all the studied samples. Meanwhile, the magnetic measurements of the undoped ceria nanoparticles revealed the occurrence of ferromagnetism of bound magnetic polarons of a fraction of Ce3+ at room temperature, and only a paramagnetic behavior of Fe3+ ions was determined for Fe-doped ceria nanoparticles. A monotonous reduction of the effective magnetic moment of the Fe3+ ions was determined. It suggests a change from a high-spin to low-spin state of Fe ions as the Fe content is increased. The 3+ valence state of the iron ions has been confirmed by the Fe K-edge X-ray absorption near-edge structure (XANES) and Mössbauer spectroscopy measurements. X-ray photoelectron spectroscopy data analysis evidenced a coexistence of Ce3+ and Ce4+ ions and a decreasing tendency of the relative fraction of Ce3+ ions in the surface region of the particles as the iron content is increased. Although the coexistence of Ce3+ and Ce4+ is confirmed by results obtained via Ce L3-edge XANES measurements, any clear dependence of the relative relation of Ce3+ ions on the iron content is determined, suggesting a homogeneous distribution of Ce3+ and Ce4+-ions in the whole volume of the particles. Ce L3-edge extended X-ray absorption fine structure revealed that the Ce-O bond distance shows a monotonous decrease as the Fe content is increased, which is in good agreement with the shrinking of the unit cell volume with the iron content determined from XRD data analysis, reinforcing the substitutional solution of Ce and Fe ions in the CeO2 matrix.
National Aeronautics and Space Administration — Structural damage to ball grid array interconnects incurred during vibration testing has been monitored in the prefailure space using resistance spectroscopy-based...
Directory of Open Access Journals (Sweden)
Xuanlin Peng
2017-11-01
Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.
Electron-molecule collision calculations using the R-matrix method
Energy Technology Data Exchange (ETDEWEB)
Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.u [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2010-06-15
The R-matrix method is an embedding procedure which is based on the division of space into an inner region where the physics is complicated and an outer region for which greatly simplified equations can be solved. The method developed out of nuclear physics, where the effects of the inner region were simply parametrized, into atomic and molecular physics, where the full problem can be formulated and hopefully solved ab initio. In atomic physics R-matrix based procedures are the method of choice for the ab initio calculation of electron collision parameters. There has been a number of R-matrix procedures developed to treat the low-energy electron-molecule collision problem or particular aspects of this problem. These methods have been extended to both positron physics and the R-matrix treatment of vibrational motion. The physical basis of the R-matrix method as well as its theoretical formulation are presented. Various electron scattering models within an R-matrix formulation including static exchange, static exchange plus polarization and close coupling are described with reference to various computational implementations of the method; these are compared to similar models used within other scattering methods. The need for a balanced treatment of the target and continuum wave functions is emphasised. Extensions of close-coupling based models into the intermediate energy regime using pseudo-states is discussed, as is the adaptation of R-matrix methods to problems involving photons. The numerical realisation of the R-matrix method is based on the adaptation of quantum chemistry codes in the inner region and asymptotic electron-atom scattering programs in the outer region. Use of bound state codes in scattering calculations raises issues involving continuum basis sets, appropriate orbitals, integral evaluation, orthogonalization, Hamiltonian construction and diagonalization which need to be addressed. The algorithms developed to resolve these issues are described as
Electron microscopy methods in studies of cultural heritage sites
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B. [National Research Centre “Kurchatov Institute” (Russian Federation)
2016-11-15
The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.
Methods of Analysis of Electronic Money in Banks
National Research Council Canada - National Science Library
Melnychenko Oleksandr V
2014-01-01
The article identifies methods of analysis of electronic money, formalises its instruments and offers an integral indicator, which should be calculated by issuing banks and those banks, which carry...
Rahman, Md. Saifur; Lee, Yiu-Yin
2017-10-01
In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.
Vibration of hydraulic machinery
Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong
2013-01-01
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...
Computation of electron energy loss spectra by an iterative method
Energy Technology Data Exchange (ETDEWEB)
Koval, Peter [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Ljungberg, Mathias Per [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Foerster, Dietrich [LOMA, Université de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence (France); Sánchez-Portal, Daniel [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián (Spain)
2015-07-01
A method is presented to compute the dielectric function for extended systems using linear response time-dependent density functional theory. Localized basis functions with finite support are used to expand both eigenstates and response functions. The electron-energy loss function is directly obtained by an iterative Krylov-subspace method. We apply our method to graphene and silicon and compare it to plane-wave based approaches. Finally, we compute electron-energy loss spectrum of C{sub 60} crystal to demonstrate the merits of the method for molecular crystals, where it will be most competitive.
Directory of Open Access Journals (Sweden)
Mahmoud Bayat
Full Text Available This review features a survey of some recent developments in asymptotic techniques and new developments, which are valid not only for weakly nonlinear equations, but also for strongly ones. Further, the achieved approximate analytical solutions are valid for the whole solution domain. The limitations of traditional perturbation methods are illustrated, various modified perturbation techniques are proposed, and some mathematical tools such as variational theory, homotopy technology, and iteration technique are introduced to over-come the shortcomings.In this review we have applied different powerful analytical methods to solve high nonlinear problems in engineering vibrations. Some patterns are given to illustrate the effectiveness and convenience of the methodologies.
Methods for recovering metals from electronic waste, and related systems
Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A; Clark, Gemma; Dufek, Eric J; Keller, Philip
2017-10-03
A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.
Directory of Open Access Journals (Sweden)
Xinwen Yang
2016-01-01
Full Text Available In order to reduce the ground-borne vibration caused by wheel/rail interaction in the ballastless track of high speed railways, viscoelastic asphalt concrete materials are filled between the track and the subgrade to attenuate wheel/rail force. A high speed train-track-subgrade vertical coupled dynamic model is developed in the frequency domain. In this model, coupling effects between the vehicle and the track and between the track and the subgrade are considered. The full vehicle is represented by some rigid body models of one body, two bogies, and four wheelsets connected to each other with springs and dampers. The track and subgrade system is considered as a multilayer beam model in which layers are connected to each other with springs and damping elements. The vertical receptance of the rail is discussed and the receptance contribution of the wheel/rail interaction is investigated. Combined with the pseudoexcitation method, a solution of the random dynamic response is presented. The random vibration responses and transfer characteristics of the ballastless track and subgrade system are obtained under track random irregularity when a high speed vehicle runs through. The influences of asphalt concrete layer’s stiffness and vehicle speed on track and subgrade coupling vibration are analyzed.
Gabel, R.; Lang, P.; Reed, D.
1993-01-01
Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.
Evaluation of the vehicle state with vibration-based diagnostics methods
Gai, V. E.; Polyakov, I. V.; Krasheninnikov, M. S.; Koshurina, A. A.; Dorofeev, R. A.
2017-02-01
Timely detection of a trouble in the mechanisms work is a guarantee of the stable operation of the entire machine complex. It allows minimizing unexpected losses, and avoiding any injuries inflicted on working people. The solution of the problem is the most important for vehicles and machines, working in remote areas of the infrastructure. All-terrain vehicles can be referred to such type of transport. The potential object of application of the described methodology is the multipurpose rotary-screw amphibious vehicle for rescue; reconnaissance; transport and technological operations. At the present time, there is no information on the use of these kinds of systems in ground-based vehicles. The present paper is devoted to the state estimation of a mechanism based on the analysis of vibration signals produced by the mechanism, in particular, the vibration signals of rolling bearings. The theory of active perception was used for the solution of the problem of the state estimation.
Vibration study of a vehicle suspension assembly with the finite element method
Cătălin Marinescu, Gabriel; Castravete, Ştefan-Cristian; Dumitru, Nicolae
2017-10-01
The main steps of the present work represent a methodology of analysing various vibration effects over suspension mechanical parts of a vehicle. A McPherson type suspension from an existing vehicle was created using CAD software. Using the CAD model as input, a finite element model of the suspension assembly was developed. Abaqus finite element analysis software was used to pre-process, solve, and post-process the results. Geometric nonlinearities are included in the model. Severe sources of nonlinearities such us friction and contact are also included in the model. The McPherson spring is modelled as linear spring. The analysis include several steps: preload, modal analysis, the reduction of the model to 200 generalized coordinates, a deterministic external excitation, a random excitation that comes from different types of roads. The vibration data used as an input for the simulation were previously obtained by experimental means. Mathematical expressions used for the simulation were also presented in the paper.
Directory of Open Access Journals (Sweden)
Wan-You Li
2014-01-01
Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.
Barszcz, Tomasz; JabŁoński, Adam
2011-01-01
The narrowband amplitude demodulation of a vibration signal enables the extraction of components carrying information about rotating machine faults. However, the quality of the demodulated signal depends on the frequency band selected for the demodulation. The spectral kurtosis (SK) was proved to be a very efficient method for detection of such faults, including defective rolling element bearings and gears [1]. Although there are conditions, under which SK yields valid results, there are also cases, when it fails, e.g. in the presence of a relatively strong, non-Gaussian noise containing high peaks or for a relatively high repetition rate of fault impulses. In this paper, a novel method for selection of the optimal frequency band, which attempts to overcome the aforementioned drawbacks, is presented. Subsequently, a new tool for presentation of results of the method, called the Protrugram, is proposed. The method is based on the kurtosis of the envelope spectrum amplitudes of the demodulated signal, rather than on the kurtosis of the filtered time signal. The advantage of the method is the ability to detect transients with smaller signal-to-noise ratio comparing to the SK-based Fast Kurtogram. The application of the proposed method is validated on simulated and real data, including a test rig, a simulated signal, and a jet engine vibration signal.
Cooperative Control Method of Active and Semiactive Control: New Framework for Vibration Control
Kazuhiko Hiramoto
2014-01-01
A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with th...
Performance testing of diesel engines using vibrational-acoustical diagnostic methods
Energy Technology Data Exchange (ETDEWEB)
Maack, H.H.; Neumann, G.
1982-01-01
Vibroacoustic condition monitoring is based on the measurement, processing and analysis of the solid-borne and airborne vibration signals emanating from a machine. Several assemblies belonging to diesel engines have a characteristic signal structure induced by impact excitation. The author proceeds from a generalised condition monitoring process to discuss the problem of the origin, transmission, measurement and analysis of vibroacoustic signals from diesel engines and presents a procedure based on a combination of frequency analysis in the temporary elimination of signal components.
METİN, Muzaffer; GÜÇLÜ, Rahmi
2014-01-01
In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...
Composition and method for removing photoresist materials from electronic components
Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.
2005-01-25
Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.
Directory of Open Access Journals (Sweden)
Kookhyun Kim
2012-09-01
Full Text Available An approximate method based on an assumed mode method has been presented for the free vibration analysis of a rectangular plate with arbitrary edge constraints. In the presented method, natural frequencies and their mode shapes of the plate are calculated by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. Characteristic orthogonal polynomials having the property of Timoshenko beam functions which satisfies edge constraints corresponding to those of the objective plate are used. In order to examine the accuracy of the proposed method, numerical examples of the rectangular plates with various thicknesses and edge constraints have been presented. The results have shown good agreement with those of other methods such as an analytic solution, an approximate solution, and a finite element analysis.
Rantaharju, Taneli; Mansfield, Neil J; Ala-Hiiro, Jussi M; Gunston, Thomas P
2015-01-01
In this paper, alternative assessment methods for whole-body vibration and shocks are compared by means of 70 vibration samples measured from 13 work vehicles, deliberately selected to represent periods containing shocks. Five methodologies (ISO 2631-1:1997, BS 6841:1987, ISO 2631-5:2004, DIN SPEC 45697:2012 and one specified by Gunston [2011], 'G-method') were applied to the vibration samples. In order to compare different evaluation metrics, limiting exposures were determined by calculating times to reach the upper limit thresholds given in the methods. Over 10-fold shorter times to exposure thresholds were obtained for the tri-axial VDV (BS 6841) than for the dominant r.m.s. (ISO 2631-1) when exposures were of high magnitude or contained substantial shocks. Under these exposure conditions, the sixth power approaches (ISO 2631-5, DIN SPEC, G-method) are more stringent than a fourth power VDV method. The r.m.s. method may lead to misleading outcomes especially if a lengthy measurement includes a small number of severe impacts. In conclusion, methodologies produce different evaluations of the vibration severity depending on the exposure characteristics, and the correct method must be selected. Health risks related to whole-body vibration and high acceleration events may be predicted by means of several different methods. This study compares five such methods giving emphasis on their applicability in the presence of shocks. The results showed significant discrepancies between the risk assessments, especially for the most extreme exposures.
Arib Rejab, M. N.; Shukor, S. A. Abdul; Sofian, M. R. Mohd; Inayat-Hussain, J. I.; Nazirah, A.; Asyraf, I.
2017-10-01
This paper presents the results of an experimental work to determine the dynamic stiffness and loss factor of elastomeric mounts. It also presents the results of theoretical analysis to determine the transmissibility and vibration power flow of these mounts, which are associated with their contribution to structure-borne noise. Four types of elastomeric mounts were considered, where three of them were made from green natural rubber material (SMR CV60, Ekoprena and Pureprena) and one made from petroleum based synthetic rubber (EPDM). In order to determine the dynamic stiffness and loss factor of these elastomeric mounts, dynamic tests were conducted using MTS 830 Elastomer Test System. Dynamic stiffness and loss factor of these mounts were measured for a range of frequency between 5 Hz and 150 Hz, and with a dynamic amplitude of 0.2 mm (p-p). The transmissibility and vibration power flow were determined based on a simple 2-Degree-of-Freedom model representing a vibration isolation system with a flexible receiver. This model reprsents the three main parts of a vehicle, which are the powertrain and engine mounting, the flexible structure and the floor of the vehicle. The results revealed that synthetic rubber (EPDM) was only effective at high frequency region. Natural rubber (Ekoprena), on the other hand, was found to be effective at both low and high frequency regions due to its low transmissibility at resonant frequency and its ability to damp the resonance. The estimated structure-borne noise emission showed that Ekoprena has a lower contribution to structure-borne noise as compared to the other types of elastomeric mounts.
On a finite dynamic element method for free vibration analysis of structures
Gupta, K. K.
1976-01-01
This paper explores the concept of finite dynamic elements involving higher order dynamic correction terms in the associated stiffness and mass matrices. Such matrices are then developed for a rectangular prestressed membrane element. Next, efficient analysis techniques for the eigenproblem solution of the resulting quadratic matrix equations are described in detail. These are followed by suitable numerical examples which indicate that employment of such dynamic elements in conjunction with an efficient quadratic matric solution technique will result in a most significant economy in the free vibration analysis of structures.
Numerical methods for analysis of structure and ground vibration from moving loads
DEFF Research Database (Denmark)
Andersen, L.; Nielsen, S.R.K.; Krenk, Steen
2007-01-01
An overview of the main theoretical aspects of finite-element and boundary-element modelling of the response to moving loads is given. The moving loads represent sources of noise and vibration generated by moving vehicles, and the analysis describes the propagation of the disturbances generated...... in soil. A finite-element time-domain analysis in convected coordinates with a simple upwind scheme is presented, including a special set of boundary conditions permitting the passage of outgoing waves in the convected coordinate system. The modification of frequency-dependent damping to convected...
Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran
2010-03-04
Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Shui-Ting; Huang, Hong-Wu [Hunan University, Changsha (China); Chiu, Yi-Jui; Yu, Guo-Fei [Xiamen University of Technology, Xiamen (China); Yang, Chia-Hao [Taipei Chengshih University of Science and Technology, Taipei (China); Jian, Sheng-Rui [I-Shou University, Kaohsiung (China)
2017-02-15
The Assumed mode method (AMM) and Finite element method (FEM) were used. Their results were compared to investigate the coupled shaft-torsion, disk-transverse, and blade-bending vibrations in a flexible-disk rotor system. The blades were grouped with a spring. The flexible-disk rotor system was divided into three modes of coupled vibrations: Shaft-disk-blade, disk-blade, and blade-blade. Two new modes of coupled vibrations were introduced, namely, lacing wires-blade and lacing wires-disk-blade. The patterns of change of the natural frequencies and mode shapes of the system were discussed. The results showed the following: first, mode shapes and natural frequencies varied, and the results of the AMM and FEM differed; second, numerical calculation results showed three influencing factors on natural frequencies, namely, the lacing wire constant, the lacing wire location, and the flexible disk; lastly, the flexible disk could affect the stability of the system as reflected in the effect of the rotational speed.
Arjunan, V.; Anitha, R.; Durgadevi, G.; Marchewka, M. K.; Mohan, S.
2017-04-01
The conformational analysis of 1-(diaminomethylene)thiourea (MTU) has been done to find out the more stable conformer. The more stable geometry of MTU and 2-imino-4-thiobiuret (ITB) are optimised with B3LYP method using 6-311++G** and cc-pVTZ basis sets. The molecules are not planar. The complete molecular structural parameters and thermodynamic properties of the optimised geometry have been determined. The molecule of MTU is not a planar but twisted. The MEP of MTU lies in the region from +1.175e × 10-2 to -1.175e × 10-2 while the total electron density spread between +6.371e × 10-2 and -6.371e × 10-2. The MEP of ITB distributed between +1.179e × 10-2 and -1.179e × 10-2 while the total electron density of ITB lies in the region +7.729e × 10-2 and -7.729e × 10-2. The energies of important MOs of the compound were also evaluated from DFT method. The LUMO shows that the nitrogen and sulphur atoms are the most nucleophilic attacking sites whereas the HOMO reveals that nitrogen, sulphur and carbon atoms are for the electrophilic substitutions. The vibrational frequencies of the fundamental modes of the compounds have been precisely assigned, analysed and the theoretical results were compared with the experimental wavenumbers. 1H and 13C NMR isotropic chemical shifts were determined and the assignments are compared with the experimental values. In MTU molecule, the n → π* transitions such as n(N5) → π*C4-S6 and n(N1) → π*C2-N3 interactions are strongly stabilised by 66.60 and 41.24 kcal mol-1, respectively. In the case of ITB compound, the stabilisation energy of lone pair donor orbital, n(N5) → σ*C4-S6 is 46.03 kcal mol-1. The dual descriptors Δfk, Δsk and Δωk values clearly indicate that the order of nucleophilic attack in MTU is S6 > N11 > N1 > N5 > N3 while in ITB the order follows as N1 > N11 > N5>S6 > N3.
Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.
2017-10-01
A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.
Directory of Open Access Journals (Sweden)
S. P. Novoselov
2015-01-01
Full Text Available Periodic vibration in the form of distorted sine wave or other complex shapes are most common in the real moving objects, where the device can be exploited on the basis of flexible modules. This kind of exposure directly affects the reliability of the construction in general. The objective of the work was the creation of an experimental device for the study of mechanical vibrations and the dependencies of their impact on the operated device.Research of mechanical vibrations and the dependencies of their influence on the device will allow finding solutions to the problems of reliability of radio electronic devices. It developed an experimental device and automatic adaptive system for control own resonant frequency of the flexible module. As a result of the experiments has been identified according to mechanical influences on the output parameters of the devices. This will take into account and to apply this experience in the design and manufacture of devices with the use of flexible printed circuit boards.
Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia
2017-01-01
N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.
System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics
Energy Technology Data Exchange (ETDEWEB)
France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan
2017-11-21
The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.
Mielke, Steven L; Truhlar, Donald G
2009-04-23
We present two enhancements to our methods for calculating vibrational-rotational free energies by Feynman path integrals, namely, a sequential sectioning scheme for efficiently generating random free-particle paths and a stratified sampling scheme that uses the energy of the path centroids. These improved methods are used with three interaction potentials to calculate equilibrium constants for the fractionation behavior of Cl(-) hydration in the presence of a gas-phase mixture of H(2)O, D(2)O, and HDO. Ion cyclotron resonance experiments indicate that the equilibrium constant, K(eq), for the reaction Cl(H(2)O)(-) + D(2)O right harpoon over left harpoon Cl(D(2)O)(-) + H(2)O is 0.76, whereas the three theoretical predictions are 0.946, 0.979, and 1.20. Similarly, the experimental K(eq) for the Cl(H(2)O)(-) + HDO right harpoon over left harpoon Cl(HDO)(-) + H(2)O reaction is 0.64 as compared to theoretical values of 0.972, 0.998, and 1.10. Although Cl(H(2)O)(-) has a large degree of anharmonicity, K(eq) values calculated with the harmonic oscillator rigid rotator (HORR) approximation agree with the accurate treatment to within better than 2% in all cases. Results of a variety of electronic structure calculations, including coupled cluster and multireference configuration interaction calculations, with either the HORR approximation or with anharmonicity estimated via second-order vibrational perturbation theory, all agree well with the equilibrium constants obtained from the analytical surfaces.
System and method for damping vibration in a drill string using a magnetorheological damper
Wassell, Mark Ellsworth [Houston, TX; Burgess, Daniel E [Portland, CT; Barbely, Jason R [East Islip, NY
2012-01-03
A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil for inducing a magnetic field that alters the resistance of the magnetorheological fluid to flow between the first and second chambers, thereby increasing the damping provided by the valve. A remnant magnetic field is induced in one or more components of the magnetorheological fluid valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils during operation except temporarily when changing the amount of damping required, thereby eliminating the need for a turbine alternator power the magnetorheological fluid valve. A demagnetization cycle can be used to reduce the remnant magnetic field when necessary.
Directory of Open Access Journals (Sweden)
M. Sanbi
2015-01-01
Full Text Available Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element equations for the thermopiezoelastic medium are obtained by using the linear constitutive equations in Hamilton’s principle together with the finite element approximations. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG-Kalman filter is applied. By using this model, the study first gives the influences of the actuator/sensor pair placement and size on the response of the smart plate. Second, the effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. It is shown that the effectiveness of the control is not affected by the applied thermal gradient and can be applied with or without this gradient at any time of plate vibrations.
Energy Technology Data Exchange (ETDEWEB)
Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027 (Japan)
2015-12-31
To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.
Kalanoor, Basanth S; Ronen, Maria; Oren, Ziv; Gerber, Doron; Tischler, Yaakov R
2017-03-31
The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.
A Safrangian; L Naderloo; H Javadikia; M Mostafaei; S. S Mohtasebi
2017-01-01
Introduction Vibrations include a wide range of engineering sciences and discuss from different aspects. One of the aspects is related to various types of engines vibrations, which are often used as power sources in agriculture. The created vibrations can cause lack of comfort and reduce effective work and have bad influence on the health and safety. One of the important parameters of the diesel engine that has the ability to create vibration and knocking is the type of fuel. In this stud...
Kishor Kumar, J; Gunasekaran, S; Loganathan, S; Anand, G; Kumaresan, S
2013-11-01
Glycine is an important amino acid for building up protein synthesis. Single crystal of glycine dimer was grown from aqueous solution by slow evaporation method. Powder X-ray diffraction analysis confirms the crystalline nature of grown crystal. It is interesting to study the molecular structure of a dimer, having well-defined channels formed through amphoterism bonding between CO⋯H bonds with split-valence basis sets, and the conformer is mirror symmetrical, in which the protonated organic cation plays a significant role to have a dimer pattern. Amphiprotic molecules, like dimeric glycine which can either donate or accept a proton (H(+)) from each other. Optical absorption study reveals that the transparency of the crystal in the entire visible region and the cutoff wavelength was found to be 235nm. Powder SHG test and thermogravimetric analysis shows glycine dimer crystal is optically active and thermally stable. The molecular structure, geometry, stability and theoretical vibrational spectra were calculated for glycine as a monomer and as a dimer linked by the amphoterism hydrogen bonding. The theoretical studies were performed using the B3LYP density functional method with the 6-311G (d,p) basis set. The detailed interpretation of the vibrational spectra has been made on the basis of normal coordinate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Bin; Bian, Wensheng
2008-07-01
Full-dimensional quantum calculations of vibrational states of C2H2 and C2D2 are performed in the high-energy region (above 20400cm-1 relative to the acetylene minimum). The theoretical scheme is a combination of several methods. To exploit the full parity and permutation symmetry, the CC-HH diatom-diatom Jacobi coordinates are chosen; phase space optimization in combination with physical considerations is used to obtain an efficient radial discrete variable representation, whereas a basis contraction scheme is applied for angular coordinates. The preconditioned inexact spectral transform method combined with an efficient preconditioner is employed to compute eigenstates within a desired spectral window. The computation is efficient. More definite assignments on vinylidene states than previous studies are acquired using the normal mode projection; in particular, a consistent analysis of the ν1 (symmetric CH stretch) state is provided. The computed vinylidene vibrational energy levels are in general good agreement with experiment, and several vinylidene states are reported for the first time.
Application of the maximum entropy method to electron density determination
Energy Technology Data Exchange (ETDEWEB)
Wei Wendo
1985-12-01
The principle of maximum entropy is adopted to derive a procedure for obtaining the electron density distribution in crystals from incomplete X-ray diffraction data. This method was applied to cementite and the result proved to be better than the conventional Fourier inversion in resolution as well as in the absence of ripples. The potential advantages of this method are: (1) the amount of subjective judgment imposed on unavailable data is significantly limited, and (2) the result of this method is consistent with the known information and maximally noncommittal with regard to the unknowns. It is shown that the method is especially well suited to the problem of the determination of a high-resolution electron density map from insufficient experimental data. (orig.).
31 CFR 203.10 - Electronic payment methods.
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Electronic payment methods. 203.10 Section 203.10 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE PAYMENT OF FEDERAL TAXES AND THE TREASURY...
Application of maximum entropy method for the study of electron ...
Indian Academy of Sciences (India)
Application of maximum entropy method for the study of electron density distribution in ... the sulphide has been divided into 64 × 64 × 64 pixels), a supercomputing system is needed in most cases involving lower ..... predicting metallurgical behaviour of the elements in binary alloy systems, LA-2345. (Los Alamos Scientific ...
Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique
Wu, Zongfang; Płucienik, Agata; Feiten, Felix E.; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim
2017-09-01
Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V2O3(0 0 0 1 ) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.
Qing, Xinlin (Inventor); Beard, Shawn J. (Inventor); Li, Irene (Inventor)
2013-01-01
Sensors affixed to various such structures, where the sensors can withstand, remain affixed, and operate while undergoing both cryogenic temperatures and high vibrations. In particular, piezoelectric single crystal transducers are utilized, and these sensors are coupled to the structure via a low temperature, heat cured epoxy. This allows the transducers to monitor the structure while the engine is operating, even despite the harsh operating conditions. Aspects of the invention thus allow for real time monitoring and analysis of structures that operate in conditions that previously did not permit such analysis. A further aspect of the invention relates to use of piezoelectric single crystal transducers. In particular, use of such transducers allows the same elements to be used as both sensors and actuators.
Cui, Qiang; Karplus, Martin
2000-01-01
Analytical second derivatives for combined QM/MM calculations have been formulated and implemented in the CHARMM program interfaced with the ab initio quantum mechanical GAMESS and CADPAC programs. This makes possible evaluation of vibrational frequencies and infrared intensities in large systems that cannot be treated effectively by QM or MM alone; examples are polarizable molecules in solution and substrates or transition states in enzymes. Test calculations on a number of systems, including formamide in water, butanol, a model transition state structure for triosephosphate isomerase and the active site model of myoglobin, show that the MM description of the environment can capture much of its polarization effects on the QM region. Thus the implementation of analytical second derivatives within the QM/MM framework has considerable potential for the study of large systems.
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-07-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
Efficient electronic structure methods applied to metal nanoparticles
DEFF Research Database (Denmark)
Larsen, Ask Hjorth
Nano-scale structures are increasingly applied in the design of catalysts and electronic devices. A theoretical understanding of the basic properties of such systems is enabled through modern electronic structure methods such as density functional theory. This thesis describes the development of ...... the total energy through the creation of gaps. Clusters larger than 100 atoms can elongate systematically by up to 15 %. This demonstrates a complex interdependence between electronic and geometric structure in a size regime which in most cases has been studied semiempirically.......Nano-scale structures are increasingly applied in the design of catalysts and electronic devices. A theoretical understanding of the basic properties of such systems is enabled through modern electronic structure methods such as density functional theory. This thesis describes the development......Gene/P architecture. Real-space calculations are performed to investigate the convergence of chemical properties of Au and Pt clusters toward the bulk limit. Specically we study chemisorption of O and CO on cuboctahedral clusters up to 1415 atoms using up to 65536 CPU cores. Small clusters almost universally bind...
Variational methods in electron-atom scattering theory
Nesbet, Robert K
1980-01-01
The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...
Bagherian, Ali; Sheikhfathollahi, Mahmood
2016-01-01
Topical anesthesia has been widely advocated as an important component of atraumatic administration of intraoral local anesthesia. The aim of this study was to use direct observation of children's behavioral pain reactions during local anesthetic injection using cotton-roll vibration method compared with routine topical anesthesia. Forty-eight children participated in this randomized controlled clinical trial. They received two separate inferior alveolar nerve block or primary maxillary molar infiltration injections on contralateral sides of the jaws by both cotton-roll vibration (a combination of topical anesthesia gel, cotton roll, and vibration for physical distraction) and control (routine topical anesthesia) methods. Behavioral pain reactions of children were measured according to the author-developed face, head, foot, hand, trunk, and cry (FHFHTC) scale, resulting in total scores between 0 and 18. The total scores on the FHFHTC scale ranged between 0-5 and 0-10 in the cotton-roll vibration and control methods, respectively. The mean ± standard deviation values of total scores on FHFHTC scale were lower in the cotton-roll vibration method (1.21 ± 1.38) than in control method (2.44 ± 2.18), and this was statistically significant (P anesthesia in reducing behavioral pain reactions in children during local anesthesia administration.
Energy Technology Data Exchange (ETDEWEB)
Choi, Myung Soo; Yang, Kyong Uk [Chonnam National University, Yeosu (Korea, Republic of); Kondou, Takahiro [Kyushu University, Fukuoka (Japan); Bonkobara, Yasuhiro [University of Miyazaki, Miyazaki (Japan)
2016-03-15
We developed a method for analyzing the free vibration of a structure regarded as a distributed system, by combining the Wittrick-Williams algorithm and the transfer dynamic stiffness coefficient method. A computational algorithm was formulated for analyzing the free vibration of a straight-line beam regarded as a distributed system, to explain the concept of the developed method. To verify the effectiveness of the developed method, the natural frequencies of straight-line beams were computed using the finite element method, transfer matrix method, transfer dynamic stiffness coefficient method, the exact solution, and the developed method. By comparing the computational results of the developed method with those of the other methods, we confirmed that the developed method exhibited superior performance over the other methods in terms of computational accuracy, cost and user convenience.
Statistical Methods for Single-Particle Electron Cryomicroscopy
DEFF Research Database (Denmark)
Jensen, Katrine Hommelhoff
Electron cryomicroscopy (cryo-EM) is a form of transmission electron microscopy, aimed at reconstructing the 3D structure of a macromolecular complex from a large set of 2D projection images, as they exhibit a very low signal-to-noise ratio (SNR). In the single-particle reconstruction (SPR) problem...... in this thesis attempt to solve a specific part of the reconstruction problem in a statistically sound manner. Firstly, we propose two methods for solving the problems (1) and (2). They can ultimately be extended and combined into a statistically sound solution to the full SPR problem. We use Bayesian...
Lymperakis, L.; Neugebauer, J.; Himmerlich, M.; Krischok, S.; Rink, M.; Kröger, J.; Polyakov, V. M.
2017-05-01
The adsorption of hydrogen at nonpolar GaN (1 1 ¯00 ) surfaces and its impact on the electronic and vibrational properties is investigated using surface electron spectroscopy in combination with density functional theory (DFT) calculations. For the surface mediated dissociation of H2 and the subsequent adsorption of H, an energy barrier of 0.55 eV has to be overcome. The calculated kinetic surface phase diagram indicates that the reaction is kinetically hindered at low pressures and low temperatures. At higher temperatures ab initio thermodynamics show, that the H-free surface is energetically favored. To validate these theoretical predictions experiments at room temperature and under ultrahigh vacuum conditions were performed. They reveal that molecular hydrogen does not dissociatively adsorb at the GaN (1 1 ¯00 ) surface. Only activated atomic hydrogen atoms attach to the surface. At temperatures above 820 K, the attached hydrogen gets desorbed. The adsorbed hydrogen atoms saturate the dangling bonds of the gallium and nitrogen surface atoms and result in an inversion of the Ga-N surface dimer buckling. The signatures of the Ga-H and N-H vibrational modes on the H-covered surface have experimentally been identified and are in good agreement with the DFT calculations of the surface phonon modes. Both theory and experiment show that H adsorption results in a removal of occupied and unoccupied intragap electron states of the clean GaN (1 1 ¯00 ) surface and a reduction of the surface upward band bending by 0.4 eV. The latter mechanism largely reduces surface electron depletion.
Hunter, William F.
1967-01-01
A numerical method is Presented for determining the natural vibration frequencies, and the corresponding mode shapes, of a rotating cantilever beam which has a nonuniform, unsymmetrical cross section. Two coupled fourth-order differential equations of motion with variable coefficients are derived which govern the motion of such a beam having deformations in two directions. Through the development and utilization of the integrating matrix, the solution of the differential equations is obtained in the form of an eigenvalue problem. The solutions to the eigenvalue problem are determined by an iteration method based upon a special orthogonality relationship which is derived. Numerical examples, including an application to a twisted propeller blade, are presented with the results of the integrating matrix solutions being compared to exact solutions and experimental data.
Directory of Open Access Journals (Sweden)
Xudong Chen
2016-01-01
Full Text Available Comparison study on free vibration of circular cylindrical shells between thin and moderately thick shell theories when using the exact dynamic stiffness method (DSM formulation is presented. Firstly, both the thin and moderately thick dynamic stiffness formulations are examined. Based on the strain and kinetic energy, the vibration governing equations are expressed in the Hamilton form for both thin and moderately thick circular cylindrical shells. The dynamic stiffness is assembled in a similar way as that in classic skeletal theory. With the employment of the Wittrick-Williams algorithm, natural frequencies of circular cylindrical shells can be obtained. A FORTRAN code is written and used to compute the modal characteristics. Numerical examples are presented, verifying the proposed computational framework. Since the DSM is an exact approach, the advantages of high accuracy, no-missing frequencies, and good adaptability to various geometries and boundary conditions are demonstrated. Comprehensive parametric studies on the thickness to radius ratio (h/r and the length to radius ratio (L/r are performed. Applicable ranges of h/r are found for both thin and moderately thick DSM formulations, and influences of L/r on frequencies are also investigated. The following conclusions are reached: frequencies of moderately thick shells can be considered as alternatives to those of thin shells with high accuracy where h/r is small and L/r is large, without any observation of shear locking.
Powell, B J; Bernstein, N; Brake, K; McKenzie, Ross H; Meredith, P; Pederson, M R
2016-01-01
We report first principles density functional calculations for hydroquinone (HQ), indolequinone (IQ) and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of bio-macromolecules with important biological functions (including photoprotection) and with potential for certain bioengineering applications. We have used the DeltaSCF (difference of self consistent fields) method to study the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), Delta_HL. We show that Delta_HL is similar in IQ and SQ but approximately twice as large in HQ. This may have important implications for our understanding of the observed broad band optical absorption of the eumelanins. The possibility of using this difference in Delta_HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules ...
Adaptive multiresolution method for MAP reconstruction in electron tomography
Energy Technology Data Exchange (ETDEWEB)
Acar, Erman, E-mail: erman.acar@tut.fi [Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere (Finland); BioMediTech, Tampere University of Technology, Biokatu 10, 33520 Tampere (Finland); Peltonen, Sari; Ruotsalainen, Ulla [Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere (Finland); BioMediTech, Tampere University of Technology, Biokatu 10, 33520 Tampere (Finland)
2016-11-15
3D image reconstruction with electron tomography holds problems due to the severely limited range of projection angles and low signal to noise ratio of the acquired projection images. The maximum a posteriori (MAP) reconstruction methods have been successful in compensating for the missing information and suppressing noise with their intrinsic regularization techniques. There are two major problems in MAP reconstruction methods: (1) selection of the regularization parameter that controls the balance between the data fidelity and the prior information, and (2) long computation time. One aim of this study is to provide an adaptive solution to the regularization parameter selection problem without having additional knowledge about the imaging environment and the sample. The other aim is to realize the reconstruction using sequences of resolution levels to shorten the computation time. The reconstructions were analyzed in terms of accuracy and computational efficiency using a simulated biological phantom and publically available experimental datasets of electron tomography. The numerical and visual evaluations of the experiments show that the adaptive multiresolution method can provide more accurate results than the weighted back projection (WBP), simultaneous iterative reconstruction technique (SIRT), and sequential MAP expectation maximization (sMAPEM) method. The method is superior to sMAPEM also in terms of computation time and usability since it can reconstruct 3D images significantly faster without requiring any parameter to be set by the user. - Highlights: • An adaptive multiresolution reconstruction method is introduced for electron tomography. • The method provides more accurate results than the conventional reconstruction methods. • The missing wedge and noise problems can be compensated by the method efficiently.
Method for integrating microelectromechanical devices with electronic circuitry
Barron, Carole C.; Fleming, James G.; Montague, Stephen
1999-01-01
A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.
Vibrational dephasing in matter-wave interferometers
Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.
2017-03-01
Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.
The macro response Monte Carlo method for electron transport
Svatos, Michelle Marie
1998-10-01
This thesis proves the feasibility of basing depth dose calculations for electron radiotherapy on first- principles single scatter physics, in an amount of time that is comparable to or better than current electron Monte Carlo methods. The Macro Response Monte Carlo (MRMC) method achieves run times that have potential to be much faster than conventional electron transport methods such as condensed history. This is possible because MRMC is a Local-to- Global method, meaning the problem is broken down into two separate transport calculations. The first stage is a local, single scatter calculation, which generates probability distribution functions (PDFs) to describe the electron's energy, position and trajectory after leaving the local geometry, a small sphere or 'kugel'. A number of local kugel calculations were run for calcium and carbon, creating a library of kugel data sets over a range of incident energies (0.25 MeV-8 MeV) and sizes (0.025 cm to 0.1 cm in radius). The second transport stage is a global calculation, where steps that conform to the size of the kugels in the library are taken through the global geometry, which in this case is a CT (computed tomography) scan of a patient or phantom. For each step, the appropriate PDFs from the MRMC library are sampled to determine the electron's new energy, position and trajectory. The electron is immediately advanced to the end of the step and then chooses another kugel to sample, which continues until transport is completed. The MRMC global stepping code was benchmarked as a series of subroutines inside of the Peregrine Monte Carlo code against EGS4 and MCNP for depth dose in simple phantoms having density inhomogeneities. The energy deposition algorithms for spreading dose across 5-10 zones per kugel were tested. Most resulting depth dose calculations were within 2-3% of well-benchmarked codes, with one excursion to 4%. This thesis shows that the concept of using single scatter-based physics in clinical radiation
Pajot, Bernard
2013-01-01
This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.
Density-functional method for nonequilibrium electron transport
DEFF Research Database (Denmark)
Brandbyge, Mads; Mozos, J.L.; Ordejon, P.
2002-01-01
We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density-functional theory (DFT) as implemented...... the contact and the electrodes on the same footing. The effect of the finite bias (including self-consistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme...... wires connected to aluminum electrodes with extended or finite cross section, (ii) single atom gold wires, and finally (iii) large carbon nanotube systems with point defects....
Nondestructive testing method for a new generation of electronics
Directory of Open Access Journals (Sweden)
Azin Anton
2018-01-01
Full Text Available The implementation of the Smart City system needs reliable and smoothly operating electronic equipment. The study is aimed at developing a nondestructive testing method for electronic equipment and its components. This method can be used to identify critical design defects of printed circuit boards (PCB and to predict their service life, taking into account the nature of probable operating loads. The study uses an acoustic emission method to identify and localize critical design defects of printed circuit boards. Geometric dimensions of detected critical defects can be determined by the X-ray tomography method. Based on the results of the study, a method combining acoustic emission and X-ray tomography was developed for nondestructive testing of printed circuit boards. The stress-strain state of solder joints containing detected defects was analyzed. This paper gives an example of using the developed method for estimating the degree of damage to joints between PCB components and predicting the service life of the entire PCB.
METHODICAL BASES OF TEACHING HIGHER MATHEMATICS BY THE ELECTRONIC TEXTBOOK
Directory of Open Access Journals (Sweden)
E. Sidorenko-Nickolashina
2011-11-01
Full Text Available This work examines principle of systematization, structurization and visualization of the academic material in the higher mathematics by means of structurally-logical charts. Bases of teaching method of students is offered by the electronic textbook, which contains the text of the academic material, package of proper it structurally-logical charts of different level of working out in detail, and also some tasks of the professional orientation.
Nanobiotechnology in energy, environment and electronics methods and applications
Nicolini, Claudio
2015-01-01
Introduction: Present Challenges and Future Solutions via Nanotechnology for Electronics, Environment and Energy; Claudio NicoliniPart A: MethodsInfluence of Chromosome Translocation on Yeast Life Span: Implications for Long-Term Industrial Biofermentation; Jason Sims, Dmitri Nikitin, and Carlo V. BruschiPulsed Power Nanotechnologies for Disintegration and Breaking Up of Refractory Precious Metals Ores; Valentin A. Chanturiya and Igor Zh. BuninModeling of Software Sensors in Bioprocess; Luca Belmonte and Claudio NicoliniN
Askerov, Bahram M
2010-01-01
This book deals with theoretical thermodynamics and the statistical physics of electron and particle gases. While treating the laws of thermodynamics from both classical and quantum theoretical viewpoints, it posits that the basis of the statistical theory of macroscopic properties of a system is the microcanonical distribution of isolated systems, from which all canonical distributions stem. To calculate the free energy, the Gibbs method is applied to ideal and non-ideal gases, and also to a crystalline solid. Considerable attention is paid to the Fermi-Dirac and Bose-Einstein quantum statistics and its application to different quantum gases, and electron gas in both metals and semiconductors is considered in a nonequilibrium state. A separate chapter treats the statistical theory of thermodynamic properties of an electron gas in a quantizing magnetic field.
Method of electron emission control in RF guns
Khodak, I V
2001-01-01
The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.
Energy Technology Data Exchange (ETDEWEB)
Teng, C. [Carrier Corp., Indianapolis, IN (United States); Reynolds, D.D. [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Mechanical Engineering
1998-10-01
Vibration modes associated with a fan impeller, motor, and motor mounting assembly in small air-conditioning units can be excited by motor torque pulsations in single-phase motors. Experimental procedures were developed that can be used to measure the torsional resonance frequencies of the stationary parts (motor stator and motor mounting assembly) and the rotating parts (fan impeller and motor rotor and shaft assembly) of a propeller fan assembly. Impact test procedures, test procedures in which the fan motor is set up to act as a torsional shaker, and procedures that employ the use of a microphone in an anechoic room are presented in this paper.
Directory of Open Access Journals (Sweden)
You-Liang Ding
2015-01-01
Full Text Available Making use of long-term transverse vibration monitoring data of DaShengGuan Bridge, the early-warning method of train running safety of the high-speed railway bridge is established by adopting principal component analysis (PCA method. Firstly, the root mean square (RMS of the transverse acceleration of the main girder is used as the monitoring parameter for the train running safety. The correlation model between the RMS values measured from different positions is further adopted as the evaluating model for the train running safety. Finally, the effects of the environmental changes on the evaluating model are eliminated using the PCA method and the warning index for the train running safety is further constructed. The analysis results show that the correlation between the RMS values of the accelerations from different measuring positions on the main girder can be analyzed by a quadratic polynomial fitting model. The PCA method can effectively remove the environmental effects on the quadratic polynomial fitting model. The proposed warning method provides a good capability for detecting the abnormal changes of the measured transverse accelerations and hence it is suitable for early-warning of the train running safety.
Wong, Bryan M; Steeves, Adam H; Field, Robert W
2006-09-28
A one-dimensional local bend model is used to describe the variation of electronic properties of acetylene in vibrational levels that embody large amplitude local motions on the S0 potential energy surface. Calculations performed at the CCSD(T) and MR-AQCC levels of theory predict an approximately linear dependence of the dipole moment on the number of quanta in either the local bending or local stretching excitation. In the local mode limit, one quantum of stretching excitation in one CH bond leads to an increase of 0.025 D in the dipole moment, and one quantum of bending vibration in the CCH angle leads to an increase of 0.068 D. The use of a one-dimensional model for the local bend is justified by comparison to the well-established polyad model which reveals a decoupling of the large amplitude bending from other degrees of freedom in the range of Nbend = 14-22. We find that the same one-dimensional large amplitude bending motion emerges from two profoundly different representations, a one-dimensional cut through an ab initio, seven-dimensional Hamiltonian and the three-dimensional (l = 0) pure-bending experimentally parametrized spectroscopic Hamiltonian.
Prabavathi, N; Nilufer, A; Krishnakumar, V
2014-01-01
The FTIR and FT-Raman spectra of 1-(m-(trifluoromethyl)phenyl)piperazine [TFMPP] have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of the compound was obtained by the density functional theory using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. A detailed interpretation of the infrared and Raman spectra were also reported based on potential energy distribution (PED). UV-Vis spectrum of the compound was recorded and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. Furthermore, molecular electrostatic potential is performed and also the calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
C. Mızrak
2015-01-01
Full Text Available Vibrations are vital for derailment safety and passenger comfort which may occur on rail vehicles due to the truck and nearby conditions. In particular, while traversing a bridge, dynamic interaction forces due to moving loads increase the vibrations even further. In this study, the vertical vibrations of a rail vehicle at the midpoint of a bridge, where the amount of deflection is expected to be maximum, were determined by means of a 1 : 5 scaled roller rig and Newmark-β numerical method. Simulations for different wagon masses and vehicle velocities were performed using both techniques. The results obtained from the numerical and experimental methods were compared and it was demonstrated that the former was accurate with an 8.9% error margin. Numerical simulations were performed by identifying different test combinations with Taguchi experiment design. After evaluating the obtained results by means of an ANOVA analysis, it was determined that the wagon mass had a decreasing effect on the vertical vibrations of the rail vehicle by 2.087%, while rail vehicle velocity had an increasing effect on the vibrations by 96.384%.
Directory of Open Access Journals (Sweden)
E Ghasemikhah
2012-03-01
Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.
Investigation of Tension Forces in A Stay Cable System of A Road Bridge Using Vibration Methods
Directory of Open Access Journals (Sweden)
Hawryszków Paweł
2015-01-01
Full Text Available In the article author presents method of investigation of tension forces in stay cable systems using dynamical methods. Research was carried out during stay cable system installation on WN-24 viaduct near Poznań, that is way it was possible to compare tension forces indicated directly by devices using for tensioning of cable-stayed bridges with results achieved indirectly by means of dynamical methods. Discussion of results was presented. Advantages of dynamical methods and possible fields of application was described. This method, which has been rarely used before, may occur interesting alternative in diagnostics of bridges in comparison to traditional methods.
Simple method for generating adjustable trains of picosecond electron bunches
Directory of Open Access Journals (Sweden)
P. Muggli
2010-05-01
Full Text Available A simple, passive method for producing an adjustable train of picosecond electron bunches is demonstrated. The key component of this method is an electron beam mask consisting of an array of parallel wires that selectively spoils the beam emittance. This mask is positioned in a high magnetic dispersion, low beta-function region of the beam line. The incoming electron beam striking the mask has a time/energy correlation that corresponds to a time/position correlation at the mask location. The mask pattern is transformed into a time pattern or train of bunches when the dispersion is brought back to zero downstream of the mask. Results are presented of a proof-of-principle experiment demonstrating this novel technique that was performed at the Brookhaven National Laboratory Accelerator Test Facility. This technique allows for easy tailoring of the bunch train for a particular application, including varying the bunch width and spacing, and enabling the generation of a trailing witness bunch.
Scherrer, Arne; Sebastiani, Daniel; Gross, E K U; Vuilleumier, Rodolphe
2015-01-01
The nuclear velocity perturbation current-density theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similarly to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strength, related to the intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.
National Research Council Canada - National Science Library
Filippi, P
2008-01-01
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 General Considerations on Thin Structures . . . . . . . 1.1.2 Overview of the Energy Method . . . . . . . . . . . . . 1.2 Thin Plates...
Directory of Open Access Journals (Sweden)
Munusamy Govindarajan
2015-10-01
Full Text Available In the current investigation, the molecular structure of the anticonvulsant agent (2E-2-[3-(1H-imidazol-1-yl-1-phenylpropylidene]-N-phenylhydrazinecarboxamide ((2E-HIPC was theoretically modelled using ab initio Hartree-Fock (HF and density functional theory (DFT/B3LYP calculations. The Fourier transform (FT infrared and FT-Raman spectra of (2E-HIPC were also recorded, and the observed bands were assigned to the vibrational normal modes. The main functional groups were identified via vibrational analysis, and their absorption bands were assigned. A comparative analysis was performed for the computed and experimental results. Subtle differences were observed between the calculated and experimental UV-Vis spectra. Time-dependent density functional theory (TD-DFT excitation energies were calculated for five excited electronic states. The calculations were applied to simulate the spectra of (2E-HIPC, and these simulated spectra exhibited excellent agreement with the experimental spectra. The DFT/B3LYP/6-311++G(d,p method, after scaling, exhibited better agreement with the experimental values than the results obtained by the HF method. The energy, oscillator strength, and wavelength computed by TD-DFT (IEFPCM are consistent with the experimental results. The molecular electrostatic potential (MEP and frontier molecular orbitals (HOMO-LUMO were also determined to enable prediction of the structural changes and reactive sites. Mulliken population charges of the title molecule were also calculated in the gas phase. The NMR chemical shifts (13C and 1H were calculated using the gauge-including atomic orbital method and the B3LYP/6-311++G(d,p approach and were compared with the experimental values.
Akbari, M. R.; Ganji, D. D.; Ahmadi, A. R.; Kachapi, Sayyid H. Hashemi
2014-03-01
In the current paper, a simplified model of Tower Cranes has been presented in order to investigate and analyze the nonlinear differential equation governing on the presented system in three different cases by Algebraic Method (AGM). Comparisons have been made between AGM and Numerical Solution, and these results have been indicated that this approach is very efficient and easy so it can be applied for other nonlinear equations. It is citable that there are some valuable advantages in this way of solving differential equations and also the answer of various sets of complicated differential equations can be achieved in this manner which in the other methods, so far, they have not had acceptable solutions. The simplification of the solution procedure in Algebraic Method and its application for solving a wide variety of differential equations not only in Vibrations but also in different fields of study such as fluid mechanics, chemical engineering, etc. make AGM be a powerful and useful role model for researchers in order to solve complicated nonlinear differential equations.
49 CFR 178.819 - Vibration test.
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...
CSIR Research Space (South Africa)
Shatalov, M
2011-07-01
Full Text Available New exact solutions of equations of longitudinal vibration of conical and exponential rod are obtained for the Rayleigh-Love model. These solutions are used as reference results for checking accuracy of the method of lines. It is shown...
Rapid method to estimate temperature changes in electronics elements
Directory of Open Access Journals (Sweden)
Oborskii G. A., Savel’eva O. S., Shikhireva Yu. V.
2014-06-01
Full Text Available Thermal behavior of electronic equipment is the determining factor for performing rapid assessment of the effectiveness of design and operation of the equipment. The assessment method proposed in this article consists in fixation of an infrared video stream from the surface of the device and converting it into a visible flow by means of a thermal imager, splitting it into component colors and their further processing using parabolic transformation. The result of the transformation is the number used as a rapid criterion for estimation of distribution stability of heat in the equipment.
Quantitative methods for the analysis of electron microscope images
DEFF Research Database (Denmark)
Skands, Peter Ulrik Vallø
1996-01-01
The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...
Can Electron Propagator Methods Be Used To Improve Polarization Propagator Methods?
DEFF Research Database (Denmark)
Jensen, Hans Jørgen Aagaard
2008-01-01
at the RPA level. On the other hand, valence excitation energies behave as expected, and they are systematically improved in SOPPA compared to RPA. Note that a Rydberg series is related to one of the ionization thresholds of the molecule, and it is thus obvious that a good description of the ionization...... limits is necessary in order to calculate good values for the Rydberg excitations. From perturbative electron propagator methods it is well-known that the second-order level is inadequate to obtain good ionization energies. It is also known from electron propagator methods that partial inclusion...... of higher-order terms can greatly improve the ionization energies. In this work it will be investigated if the lessons from electron propagator models can be used to improve to the calculation of Rydberg excitations in perturbative polarization propagator methods....
Lehtonen, Petri; Miettinen, Jari; Keränen, Heimo; Vaarala, Tapio
2008-04-01
Dimension measurements in metal production are getting increasingly important to improve quality and yield. One important measurement is thickness profile, in this case of copper strip. Knowing the strip profile in entrance and exit side of milling line helps optimizing the milling depth and give information about tool wearing. In this study a comparative measurement method was traversing point measurement system. It gives profile as a series of points which take a relatively long time to measure. Now presented method is based on two-side optical triangulation formed by line illuminators and CMOS-cameras and enables instantaneous thickness profile measurement. Results from both sides are fixed together using reference plates on both ends of the measurement area. From 1.3 m stand-off distance, 1.4 m wide measurement area is achieved. This paper presents the measurement method and results of laboratory and on-line tests. Using laser line illumination the accuracy of thickness was 150 μm when measuring 9 mm thick test plate. Accuracy was limited by laser speckle during static calibration. Other illumination method based on white light was therefore tested and the accuracy was 12 μm correspondingly. Measurement time for one profile was 1 second and resolution in cross machine direction 50 mm after averaging. Now presented method enables thickness profile measurement of copper and other metal sheets. Using white light the accuracy is at same level as the present traversing point measurement. Method has also continuous reference measurement to compensate errors caused by vibration; therefore the system can be realized at reasonable cost.
Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure
Directory of Open Access Journals (Sweden)
Hesheng Zhang
2016-01-01
Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.
Electron microscopy of flatworms standard and cryo-preparation methods.
Salvenmoser, Willi; Egger, Bernhard; Achatz, Johannes G; Ladurner, Peter; Hess, Michael W
2010-01-01
Electron microscopy (EM) has long been indispensable for flatworm research, as most of these worms are microscopic in dimension and provide only a handful of characters recognizable by eye or light microscopy. Therefore, major progress in understanding the histology, systematics, and evolution of this animal group relied on methods capable of visualizing ultrastructure. The rise of molecular and cellular biology renewed interest in such ultrastructural research. In the light of recent developments, we offer a best-practice guide for users of transmission EM and provide a comparison of well-established chemical fixation protocols with cryo-processing methods (high-pressure freezing/freeze-substitution, HPF/FS). The organisms used in this study include the rhabditophorans Macrostomum lignano, Polycelis nigra and Dugesia gonocephala, as well as the acoel species Isodiametra pulchra. Copyright © 2010 Elsevier Inc. All rights reserved.
Evaluation on Electronic Securities Settlements Systems by AHP Methods
Fukaya, Kiyoyuki; Komoda, Norihisa
Accompanying the spread of Internet and the change of business models, electronic commerce expands buisness areas. Electronic finance commerce becomes popular and especially online security tradings becoome very popular in this area. This online securitiy tradings have some good points such as less mistakes than telephone calls. In order to expand this online security tradings, the transfer of the security paper is one the largest problems to be solved. Because it takes a few days to transfer the security paper from a seller to a buyer. So the dematerialization of security papers is one of the solutions. The demterilization needs the information systems for setteling security. Some countries such as France, German, United Kingdom and U.S.A. have been strating the dematerialization projects. The legacy assesments on these projects focus from the viewpoint of the legal schemes only and there is no assessment from system architectures. This paper focuses on the information system scheme and valuates these dematerlization projects by AHP methods from the viewpoints of “dematerializaion of security papers", “speed of transfer", “usefulness on the system" and “accumulation of risks". This is the first case of valuations on security settlements systems by AHP methods, especially four counties’ systems.
A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems
Liu, X.; Banerjee, J. R.
2017-03-01
A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.
Calculation of exact vibration modes for plane grillages by the dynamic stiffness method
Hallauer, W. L., Jr.; Liu, R. Y. L.
1982-01-01
A dynamic stiffness method is developed for the calculation of the exact modal parameters for plane grillages which consist of straight and uniform beams with coincident elastic and inertial axes. Elementary bending-torsion beam theory is utilized, and bending translation is restricted to one direction. The exact bending-torsion dynamic stiffness matrix is obtained for a straight and uniform beam element with coincident elastic and inertial axes. The element stiffness matrices are assembled using the standard procedure of the static stiffness method to form the dynamic stiffness matrix of the complete grillage. The exact natural frequencies, mode shapes, and generalized masses of the grillage are then calculated by solving a nonlinear eigenvalue problem based on the dynamic stiffness matrix. The exact modal solutions for an example grillage are calculated and compared with the approximate solutions obtained by using the finite element method.
Directory of Open Access Journals (Sweden)
FENG HE
2017-03-01
Full Text Available In this paper, an effective tool based on harmonic balance method to assess the forced response of these systems under parametric changes is developed. A flexible rotor with multiple masses supported on a squeeze film damper at one end is investigated and modeled using finite element method. The forced response of this asymmetrically supported system is calculated using the harmonic balance method with a predictor-corrector procedure by changing unidirectional loads, stiffness of centering spring of the damper and the gyroscopic effects of the disks. It is observed that under large unbalance forces, jump phenomenon occurs due to the nonlinear forces of SFD which indicates the presence of multiple harmonics within the response of the SFD operating at high eccentricity ratios and shows the insensitivity of the damper to surrounding gyroscopic variation.
Application of Story-wise Shear Building Identification Method to Actual Ambient Vibration
Directory of Open Access Journals (Sweden)
Kohei eFujita
2015-02-01
Full Text Available A sophisticated and smart story stiffness System Identification (SI method for a shear building model is applied to a full-scale building frame subjected to micro-tremors. The advantageous and novel feature is that not only the modal parameters, such as natural frequencies and damping ratios, but also the physical model parameters, such as story stiffnesses and damping coefficients, can be identified using micro-tremors. While the building responses to earthquake ground motions are necessary in the previous SI method, it is shown in this paper that the micro-tremor measurements in a full-scale 5 story building frame can be used for identification within the same framework. The SI using micro-tremor measurements leads to the enhanced usability of the previously proposed story-wise shear building identification method. The degree of ARX models and cut-off frequencies of band-pass filter are determined to derive reliable results.
Slepian modeling as a computational method in random vibration analysis of hysteretic structures
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob
1999-01-01
white noise. The computation time for obtaining estimates of relevant statistics on a given accuracy level is decreased by factors of one ormore orders of size as compared to the computation time needed for direct elasto-plastic displacementresponse simulations by vectorial Markov sequence techniques....... Moreover the Slepian method gives valuablephysical insight about the details of the plastic displacement development by time.The paper gives a general self-contained mathematical description of the Slepian method based plasticdisplacement analysis of Gaussian white noise excited EPOs. Experiences...
Planellas, Marc; Sacristán, Matías; Rey, Lorena; Olmo, Cristian; Aymamí, Joan; Casas, María T; del Valle, Luis J; Franco, Lourdes; Puiggalí, Jordi
2014-07-01
Ultrasound technology was proved as an efficient processing technique to obtain micro-molded specimens of polylactide (PLA) and polybutylene succinate (PBS), which were selected as examples of biodegradable polyesters widely employed in commodity and specialty applications. Operational parameters such as amplitude, molding force and processing time were successfully optimized to prepare samples with a decrease in the number average molecular weight lower than 6%. Ultrasonic waves also seemed an ideal energy source to provide effective disaggregation of clay silicate layers, and therefore exfoliated nanocomposites. X-ray diffraction patterns of nanocomposites prepared by direct micro-molding of PLA or PBS powder mixtures with natural montmorillonite or different organo-modified clays showed the disappearance of the 001 silicate reflection for specimens having up to 6 wt.% clay content. All electron micrographs revealed relatively homogeneous dispersion and sheet nanostructures oriented in the direction of the melt flow. Incorporation of clay particles during processing had practically no influence on PLA characteristics but enhanced PBS degradation when an organo-modifier was employed. This was in agreement with thermal stability data deduced from thermogravimetric analysis. Cold crystallization experiments directly performed on micro-molded PLA specimens pointed to a complex influence of clay particles reflected by the increase or decrease of the overall non-isothermal crystallization rate when compared to the neat polymer. In all cases, the addition of clay led to a clear decrease in the Avrami exponent. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessment of floor vibration using the OS-RMS90 method
Galanti, F.; Heinemeyer, C.; Feldmann, M.; Lentzen, S.
2011-01-01
To achieve flexibility with regard to space-arrangement and occupancy, multi-storey buildings require large span floor structures with a minimum of internal columns and walls. Modern materials and methods of construction are becoming more and more suitable to fulfill these requirements. It is common
A study of online plant modelling methods for active control of sound and vibration
DEFF Research Database (Denmark)
Laugesen, Søren
1996-01-01
Active control systems using the filtered-x algorithm require plant models to describe the relations between the secondary sources and the error sensors. For practical applications online plant modelling may be required if the environment changes significantly. In this study, two dominant methods...
Vibration activity and mobility of structure-borne sound sources by a reception plate method.
Gibbs, B M; Cookson, R; Qi, N
2008-06-01
This paper considers a practical structure-borne sound source characterization for mechanical installations, which are connected to plate-like structures. It describes a laboratory-based measurement procedure, which will yield single values of source strength in a form transferable to a prediction of the structure-borne sound power generated in the installed condition. It is confirmed that two source quantities are required, corresponding to the source activity and mobility. For the source activity, a high-mobility reception plate method is proposed which yields a single value in the form of the sum of the squared free velocities, over the contact points. A low-mobility reception plate method also is proposed which, in conjunction with the above, yields the source mobility in the form of the average magnitude of the effective mobility, again over the contact points. Experimental case studies are described and the applicability of the laboratory data for prediction and limitations of the approach are discussed.
Directory of Open Access Journals (Sweden)
Tamer Ahmed El-Sayed
2017-01-01
Full Text Available The exact solution for multistepped Timoshenko beam is derived using a set of fundamental solutions. This set of solutions is derived to normalize the solution at the origin of the coordinates. The start, end, and intermediate boundary conditions involve concentrated masses and linear and rotational elastic supports. The beam start, end, and intermediate equations are assembled using the present normalized transfer matrix (NTM. The advantage of this method is that it is quicker than the standard method because the size of the complete system coefficient matrix is 4 × 4. In addition, during the assembly of this matrix, there are no inverse matrix steps required. The validity of this method is tested by comparing the results of the current method with the literature. Then the validity of the exact stepped analysis is checked using experimental and FE(3D methods. The experimental results for stepped beams with single step and two steps, for sixteen different test samples, are in excellent agreement with those of the three-dimensional finite element FE(3D. The comparison between the NTM method and the finite element method results shows that the modal percentage deviation is increased when a beam step location coincides with a peak point in the mode shape. Meanwhile, the deviation decreases when a beam step location coincides with a straight portion in the mode shape.
Ramos, J. M.; de M. Cruz, M. T.; Costa, A. C., Jr.; Ondar, G. F.; Ferreira, Glaucio B.; Raniero, L.; Martin, A. A.; Versiane, O.; Téllez Soto, C. A.
2012-11-01
The aspartateguanidoacetatenickel (II) complex, [Ni(Asp)(GAA)], was synthesized and structural analysis was performed by means of the experimental methods: determination of the C, H, N and O contents, thermogravimetry, infrared and Raman spectroscopy. DFT:B3LYP/6-311G(d, p) calculations have been performed giving optimized structure and harmonic vibrational wavenumbers. Second derivative of the FT-infrared, FT-Raman and Surface Raman Enhanced Scattering (SERS) spectra, and band deconvolution analysis were also performed. Features of the FT-infrared, FT-Raman and SERS confirmed theoretical structure prediction. Full assignment of the vibrational spectrum was also supported by a carefully analysis of the distorted geometries generated by the normal modes. The Natural Bond Orbital analysis (NBO) was also carried out as a way to study the Ni (II) hybridization leading to the pseudo planar geometry of the framework, and the extension of the atomic N and O hybrid orbital of the different amino acids in the bond formation. Bands of charge transfer and d-d transitions were assigned in the UV-Vis spectrum.
A Practical Method to Increase the Frequency Readability for Vibration Signals
Directory of Open Access Journals (Sweden)
Jean Loius Ntakpe
2016-10-01
Full Text Available Damage detection and nondestructive evaluation of mechanical and civil engineering structures are nowadays very important to assess the integrity and ensure the reliability of structures. Thus, frequency evaluation becomes a crucial issue, since this modal parameter is mainly used in structural integrity assessment. The herein presented study highligts the possibility of increasing the frequency readability by involving a simple and cost-effective method.
Energy Technology Data Exchange (ETDEWEB)
Trendafilova, I, E-mail: Irina.Trendafilova@strath.ac.uk [Department of Mechanical Engineering, University of Strathclyde, 75 Montrose street, Glasgow, G1 1XJ (United Kingdom)
2011-07-19
Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.
Bogush, Igor; Ciobu, Victor; Paladi, Florentin
2017-10-01
A computational method for studying molecular vibrations and spectra for symmetrical systems with many degrees of freedom was developed. The algorithm allows overcoming difficulties on the automation of calculus related to the symmetry determination of such oscillations in complex systems with many degrees of freedom. One can find symmetrized displacements and, consequently, obtain and classify normal oscillations and their frequencies. The problem is therefore reduced to the determination of eigenvectors by common numerical methods, and the algorithm simplifies the procedure of symmetry determination for normal oscillations. The proposed method was applied to studying molecular vibrations and spectra of the fullerene molecule C60, and the comparison of theoretical results with experimental data is drawn. The computational method can be further extended to other problems of group theory in physics with applications in clusters and nanostructured materials.
Supharat, Suthep
2016-01-01
Permanent magnet synchronous motor has been widely used in variable speed drive system for various fields, such as industry, household applications, etc., The merits of PMSM are rugged construction, high efficiency, high torque to current ratio, low inertia, etc. Recently, PMSM driven air-conditioners and refrigerators are obviously increased. However, the compressors used in the air-conditioners have the problem that vibration occurs due to the torque pulsation. The frame vibration results i...
Vibration-free stirling cryocooler for high definition microscopy
Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.
2009-12-01
The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi