WorldWideScience

Sample records for viable porphyromonas gingivalis

  1. Porphyromonas gingivalis fimbriae

    Directory of Open Access Journals (Sweden)

    Morten Enersen

    2013-05-01

    Full Text Available Marginal periodontitis is not a homogeneous disease but is rather influenced by an intricate set of host susceptibility differences as well as diversities in virulence among the harbored organisms. It is likely that clonal heterogeneity of subpopulations with both high and low levels of pathogenicity exists among organisms harbored by individuals with negligible, slight, or even severe periodontal destruction. Therefore, specific virulent clones of periodontal pathogens may cause advanced and/or aggressive periodontitis. Porphyromonas gingivalis is a predominant periodontal pathogen that expresses a number of potential virulence factors involved in the pathogenesis of periodontitis, and accumulated evidence shows that its expression of heterogenic virulence properties is dependent on clonal diversity. Fimbriae are considered to be critical factors that mediate bacterial interactions with and invasion of host tissues, with P. gingivalis shown to express two distinct fimbria-molecules, long and short fimbriae, on the cell surface, both of which seem to be involved in development of periodontitis. Long fimbriae are classified into six types (I to V and Ib based on the diversity of fimA genes encoding FimA (a subunit of long fimbriae. Studies of clones with type II fimA have revealed their significantly greater adhesive and invasive capabilities as compared to other fimA type clones. Long and short fimbriae induce various cytokine expressions such as IL-1α, IL-β, IL-6, and TNF-α, which result in alveolar bone resorption. Although the clonal diversity of short fimbriae is unclear, distinct short fimbria-molecules have been found in different strains. These fimbriae variations likely influence the development of periodontal disease.

  2. Porphyromonas gingivalis: a clonal pathogen?

    Directory of Open Access Journals (Sweden)

    Morten Enersen

    2011-11-01

    Full Text Available The introduction of multilocus sequence typing (MLST in infectious disease research has allowed standardized typing of bacterial clones. Through multiple markers around the genome, it is possible to determine the sequence type (ST of bacterial isolates to establish the population structure of a species. For the periodontal pathogen, Porphyromonas gingivalis, the MLST scheme has been established at www.pubmlst.org/pgingivalis, and data from the database indicate a high degree of genetic diversity and a weakly clonal population structure comparable with Neisseria menigitidis. The major fimbriae (FimA have been held responsible for the adhesive properties of P. gingivalis and represent an important virulence factor. The fimA genotyping method (PCR based indicate that fimA genotype II, IV and Ib are associated with diseased sites in periodontitis and tissue specimens from cardiovascular disease. fimA genotyping of the isolates in the MLST database supports the association of genotypes II and IV with periodontitis. As a result of multiple positive PCR reactions in the fimA genotyping, sequencing of the fimA gene revealed only minor nucleotide variation between isolates of the same and different genotypes, suggesting that the method should be redesigned or re-evaluated. Results from several investigations indicate a higher intraindividual heterogeneity of P. gingivalis than found earlier. Detection of multiple STs from one site in several patients with “refractory” periodontitis, showed allelic variation in two housekeeping genes indicating recombination between different clones within the periodontal pocket.

  3. Susceptibility of Porphyromonas gingivalis in biofilms to amoxicillin, doxycycline and metronidazole

    DEFF Research Database (Denmark)

    Larsen, T.

    2002-01-01

    Biofilm, Porphyromonas gingivalis, susceptibility testing, amoxicillin, doxycycline, metronidazole......Biofilm, Porphyromonas gingivalis, susceptibility testing, amoxicillin, doxycycline, metronidazole...

  4. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview

    Directory of Open Access Journals (Sweden)

    Jaroslav Mysak

    2014-01-01

    Full Text Available Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis and is a member of more than 500 bacterial species that live in the oral cavity. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont and proliferate to high cell numbers in periodontal lesions: this is attributed to its arsenal of specialized virulence factors. The purpose of this review is to provide an overview of one of the main periodontal pathogens—Porphyromonas gingivalis. This bacterium, along with Treponema denticola and Tannerella forsythia, constitute the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. This review outlines Porphyromonas gingivalis structure, its metabolism, its ability to colonize the epithelial cells, and its influence upon the host immunity.

  5. [Promotion of Porphyromonas gingivalis to viral disease].

    Science.gov (United States)

    Tiantian, Meng; Xin, Li

    2016-08-01

    Chronic periodontitis is one of the most common oral diseases in humans, the main recognized pathogenic bac-terium of which is the Porphyromonas gingivalis. Various types of viruses have been detected in periodontal disease in situ, and the joint action of viral and bacterial pathogens infection mechanism are complicated. Porphyromonas gingivalis has the characteristics resulting from the interaction with a variety of bacterium viruses, which may be the reason for chronic perio-dontitis being a protracted disease associated with a variety of systemic diseases. In this paper, we reviewed the relationship between Porphyromonas gingivalis and viral diseases to provide a new idea for the treatment of patients with periodontal disease and viral infections.

  6. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview

    Science.gov (United States)

    Mysak, Jaroslav; Podzimek, Stepan; Sommerova, Pavla; Lyuya-Mi, Yelena; Bartova, Jirina; Janatova, Tatjana; Prochazkova, Jarmila; Duskova, Jana

    2014-01-01

    Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis and is a member of more than 500 bacterial species that live in the oral cavity. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions: this is attributed to its arsenal of specialized virulence factors. The purpose of this review is to provide an overview of one of the main periodontal pathogens—Porphyromonas gingivalis. This bacterium, along with Treponema denticola and Tannerella forsythia, constitute the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. This review outlines Porphyromonas gingivalis structure, its metabolism, its ability to colonize the epithelial cells, and its influence upon the host immunity. PMID:24741603

  7. Effect of irradiation on the Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [School of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    2008-03-15

    The aim of this study was to observe a direct effect of irradiation on the periodontopathic Porphyromonas gingivalis (P. gingivalis). P. gingivalis 2561 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40 Gy. Changes in viability and antibiotic sensitivity, morphology, transcription, and protein profile of the bacterium after irradiation were examined by pour plating method, disc diffusion method, transmission electron microscopy, RT-PCR, and immunoblot, respectively. Viability of irradiated P. gingivalis drastically reduced as irradiation dose was increased. Irradiated P. gingivalis was found to have become more sensitive to antibiotics as radiation dose was increased. With observation under the transmission electron microscope, the number of morphologically abnormal cells was increased with increasing of irradiation dose. In RT-PCR, decrease in the expression of fim A and sod was observed in irradiated P. gingivalis. In immunoblot, change of profile in irradiated P. gingivalis was found in a number of proteins including 43-kDa fimbrillin. These results suggest that irradiation may affect the cell integrity of P. gingivalis, which is manifested by the change in cell morphology and antibiotic sensitivity, affecting viability of the bacterium.

  8. New approaches to combat Porphyromonas gingivalis biofilms

    Science.gov (United States)

    Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    ABSTRACT In nature, bacteria predominantly reside in structured, surface-attached communities embedded in a self-produced, extracellular matrix. These so-called biofilms play an important role in the development and pathogenesis of many infections, as they are difficult to eradicate due to their resistance to antimicrobials and host defense mechanisms. This review focusses on the biofilm-forming periodontal bacterium Porphyromonas gingivalis. Current knowledge on the virulence mechanisms underlying P. gingivalis biofilm formation is presented. In addition, oral infectious diseases in which P. gingivalis plays a key role are described, and an overview of conventional and new therapies for combating P. gingivalis biofilms is given. More insight into this intriguing pathogen might direct the development of better strategies to combat oral infections. PMID:28473880

  9. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2015-08-01

    Full Text Available Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells.

  10. Extracellular Proteome and Citrullinome of the Oral Pathogen Porphyromonas gingivalis

    NARCIS (Netherlands)

    Stobernack, Tim; Glasner, Corinna; Junker, Sabryna; Gabarrini, Giorgio; de Smit, Menke; de Jong, Anne; Otto, Andreas; Becher, Doerte; van Winkelhoff, Arie Jan; van Dijl, Jan Maarten

    2016-01-01

    Porphyromonas gingivalis is an oral pathogen associated with the inflammatory disease periodontitis. Periodontitis and P. gingivalis have been associated with rheumatoid arthritis. One of the hallmarks of rheumatoid arthritis is the loss of tolerance against citrullinated proteins. Citrullination is

  11. Porphyromonas gingivalis: predominant pathogen in chronic periodontitis

    OpenAIRE

    Ramos Perfecto, Donald; Dpto. de CC. Básicas. Laboratorio de Microbiología Facultad de Odontología Universidad Nacional Mayor de San Marcos.; Moromi Nakata, Hilda; Dpto. de CC. Básicas. Laboratorio de Microbiología Facultad de Odontología Universidad Nacional Mayor de San Marcos.; Martínez Cadillo, Elba; Dpto. de CC. Básicas. Laboratorio de Microbiología Facultad de Odontología Universidad Nacional Mayor de San Marcos.

    2014-01-01

    Porphyromonas gingivalis is a gram negative bacillus predominant in chronic periodontitis, multiple virulence factors make it extremely aggressive. In the gingival sulcus find the conditions for growth,interacting with the host produces a slow but steady destruction of periodontal tissue. Its dominance has been considered a risk factor for systemic inflammatory diseases such as myocardial infarction. Although its susceptibility to a variety of drugs makes possible its handling with antimicrob...

  12. Major neutrophil functions subverted by Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-03-01

    Full Text Available Polymorphonuclear leukocytes (neutrophils constitute an integrated component of the innate host defense in the gingival sulcus/periodontal pocket. However, the keystone periodontal pathogen Porphyromonas gingivalis has in the course of evolution developed a number of capacities to subvert this defense to its own advantage. The present review describes the major mechanisms that P. gingivalis uses to subvert neutrophil homeostasis, such as impaired recruitment and chemotaxis, resistance to granule-derived antimicrobial agents and to the oxidative burst, inhibition of phagocytic killing while promoting a nutritionally favorable inflammatory response, and delay of neutrophil apoptosis. Studies in animal models have shown that at least some of these mechanisms promote the dysbiotic transformation of the periodontal polymicrobial community, thereby leading to inflammation and bone loss. It is apparent that neutrophil–P. gingivalis interactions and subversion of innate immunity are key contributing factors to the pathogenesis of periodontal disease.

  13. Major neutrophil functions subverted by Porphyromonas gingivalis

    Science.gov (United States)

    Olsen, Ingar; Hajishengallis, George

    2016-01-01

    Polymorphonuclear leukocytes (neutrophils) constitute an integrated component of the innate host defense in the gingival sulcus/periodontal pocket. However, the keystone periodontal pathogen Porphyromonas gingivalis has in the course of evolution developed a number of capacities to subvert this defense to its own advantage. The present review describes the major mechanisms that P. gingivalis uses to subvert neutrophil homeostasis, such as impaired recruitment and chemotaxis, resistance to granule-derived antimicrobial agents and to the oxidative burst, inhibition of phagocytic killing while promoting a nutritionally favorable inflammatory response, and delay of neutrophil apoptosis. Studies in animal models have shown that at least some of these mechanisms promote the dysbiotic transformation of the periodontal polymicrobial community, thereby leading to inflammation and bone loss. It is apparent that neutrophil–P. gingivalis interactions and subversion of innate immunity are key contributing factors to the pathogenesis of periodontal disease. PMID:26993626

  14. Coaggregation between Prevotella oris and Porphyromonas gingivalis.

    Science.gov (United States)

    Sato, Toshiya; Nakazawa, Futoshi

    2014-06-01

    The coaggregation of bacteria has been defined as one of the most important processes in the oral infection such as periodontitis. Prevotella oris and Porphyromonas gingivalis, which are two of the periodontopathogens, are frequently detected in severe forms of periodontal diseases. However, the interaction between P. oris and P. gingivalis is still unknown. In this study, the coaggregation of P. oris with nine oral bacterial species including P. gingivalis was examined. All bacteria used in this study were cultured anaerobically and suspended in coaggregation buffer. Each cell suspension was mixed in a test tube and subjected to shaking at room temperature for 1 hour. Subsequently, the coaggregation values were scored. Furthermore, the effects of various chemical reagents, and heat, proteinase K, and serum treatment were examined. In this study, P. oris coaggregated only with P. gingivalis. A heat-stable, nonproteinous component of P. oris and a heat-labile, proteinous component of P. gingivalis play important roles in this coaggregation. In addition, this coaggregation was inhibited by l-arginine, l-lysine, and Nα-p-tosyl-l-lysine. Therefore, it was considered that a cell surface protein on P. gingivalis, such as gingipain, may be involved in the coaggregation. Furthermore, the coaggregation was not inhibited by serum treatment. This is the first report to describe the coaggregation of P. oris and P. gingivalis. Our study proposes the possibility that P. oris may promote the colonization of P. gingivalis in an early stage of biofilm formation. Furthermore, this coaggregation may contribute to the initiation and progression of periodontitis. Copyright © 2012. Published by Elsevier B.V.

  15. Adhesion of Porphyromonas gingivalis serotypes to pocket epithelium

    NARCIS (Netherlands)

    Dierickx, K; Pauwels, M; Laine, ML; Van Eldere, J; Cassiman, JJ; van Winkelhoff, AJ; van Steenberghe, D; Quirynen, M

    Background: Porphyromonas gingivalis, a key pathogen in periodontitis, is able to adhere to and invade the pocket epithelium. Different capsular antigens of P gingivalis have been identified (K-serotyping). These P gingivalis capsular types show differences in adhesion capacity to human cell lines

  16. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  17. Prevalence of Porphyromonas gingivalis Four rag Locus Genotypes in Patients of Orthodontic Gingivitis and Periodontitis

    OpenAIRE

    Liu, Yi; Zhang, Yujie; Wang, Lili; Guo, Yang; Xiao, Shuiqing

    2013-01-01

    Porphyromonas gingivalis is considered as a major etiological agent in periodontal diseases and implied to result in gingival inflammation under orthodontic appliance. rag locus is a pathogenicity island found in Porphyromonas gingivalis. Four rag locus variants are different in pathogenicity of Porphyromonas gingivalis. Moreover, there are different racial and geographic differences in distribution of rag locus genotypes. In this study, we assessed the prevalence of Porphyromonas gingivalis ...

  18. Porphyromonas gingivalis induces autophagy in THP-1-derived macrophages.

    Science.gov (United States)

    Park, M H; Jeong, S Y; Na, H S; Chung, J

    2017-02-01

    Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway and is a possible mechanism in inflammatory disease. Periodontitis is an inflammatory disease caused by periodontal pathogens. Porphyromonas gingivalis, an important periodontal pathogen, activates cellular autophagy to provide a replicative niche while suppressing apoptosis in endothelial cells. However, the molecular basis for a causal relationship between P. gingivalis and autophagy is unclear. This research examines the involvement of P. gingivalis in autophagy through light chain 3 (LC3) and autophagic proteins, and the role of P. gingivalis-induced autophagy in the clearance of P. gingivalis and inflammation. To investigate the molecular mechanism of autophagy induced by P. gingivalis, PMA-differentiated THP-1-derived macrophages were infected with live P. gingivalis. The P. gingivalis increased the formation of autophagosomes in a multiplicity of infection-dependent manner, as well as autophagolysosomes. Porphyromonas gingivalis activated LC3-I/LC3-II conversion and increased the conjugation of autophagy-related 5 (ATG5) -ATG12 and the expression of Beclin1. The expressions of Beclin1, ATG5-ATG12 conjugate, and LC3-II were significantly inhibited by the presence of 3-methyladenine, an autophagy inhibitor. Interestingly, 3-methyladenine increased the survival of P. gingivalis and proinflammatory cytokine interleukin-1β production. The data indicate that P. gingivalis induces autophagy in PMA-differentiated THP-1-derived macrophages and in turn, macrophages eliminate P. gingivalis through an autophagic response, which can lead to the restriction of an excessive inflammatory response by downregulating interleukin-1β production. The induction of autophagy by P. gingivalis may play an important role in the periodontal inflammatory process and serve as a target for the development of new therapies. © 2016 John Wiley

  19. Porphyromonas gingivalis causing brain abscess in patient with recurrent periodontitis.

    Science.gov (United States)

    Rae Yoo, Jeong; Taek Heo, Sang; Kim, Miyeon; Lee, Chang Sub; Kim, Young Ree

    2016-06-01

    We report an extremely rare case of Porphyromonas gingivalis causing brain abscess in a patient with recurrent periodontitis. The patient presented with right-sided homonymous hemianopsia and right hemiparesis. Emergent surgical drainage was performed and antibiotics were administered. P. gingivalis was identified from the anaerobic culture of the abscess. The clinical course of the patient improved with full recovery of the neurologic deficit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Adherence of Porphyromonas (Bacteroides) gingivalis to Streptococcus sanguis in vitro.

    OpenAIRE

    Stinson, M W; Safulko, K; LeVine, M. J.

    1991-01-01

    Intergeneric bacterial adherence is responsible for the complexity of the microbiota in human dental plaque and is believed to enable some extraneous bacteria to initially colonize the human oral cavity. Some current evidence indicates that Streptococcus sanguis, an early colonizer of teeth, enhances subsequent colonization by Porphyromonas (Bacteroides) gingivalis, a bacterium associated with advanced adult periodontitis. In this study, selected strains of P. gingivalis and S. sanguis were t...

  1. Noncanonical Activation of β-Catenin by Porphyromonas gingivalis

    Science.gov (United States)

    Zhou, Yun; Sztukowska, Maryta; Wang, Qian; Inaba, Hiroaki; Potempa, Jan; Scott, David A.; Wang, Huizhi

    2015-01-01

    Porphyromonas gingivalis is an established pathogen in periodontal disease and an emerging pathogen in serious systemic conditions, including some forms of cancer. We investigated the effect of P. gingivalis on β-catenin signaling, a major pathway in the control of cell proliferation and tumorigenesis. Infection of gingival epithelial cells with P. gingivalis did not influence the phosphorylation status of β-catenin but resulted in proteolytic processing. The use of mutants deficient in gingipain production, along with gingipain-specific inhibitors, revealed that gingipain proteolytic activity was required for β-catenin processing. The β-catenin destruction complex components Axin1, adenomatous polyposis coli (APC), and GSK3β were also proteolytically processed by P. gingivalis gingipains. Cell fractionation and Western blotting demonstrated that β-catenin fragments were translocated to the nucleus. The accumulation of β-catenin in the nucleus following P. gingivalis infection was confirmed by immunofluorescence microscopy. A luciferase reporter assay showed that P. gingivalis increased the activity of the β-catenin-dependent TCF/LEF promoter. P. gingivalis did not increase Wnt3a mRNA levels, a finding consistent with P. gingivalis-induced proteolytic processing causing the increase in TCF/LEF promoter activity. Thus, our data indicate that P. gingivalis can induce the noncanonical activation of β-catenin and disassociation of the β-catenin destruction complex by gingipain-dependent proteolytic processing. β-Catenin activation in epithelial cells by P. gingivalis may contribute to a proliferative phenotype. PMID:26034209

  2. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  3. Pyocyanina contributory factor in haem acquisition and virulence enhancement of Porphyromonas gingivalis in the lung [corrected].

    Directory of Open Access Journals (Sweden)

    Malgorzata Benedyk

    Full Text Available Several recent studies show that the lungs infected with Pseudomonas aeruginosa are often co-colonised by oral bacteria including black-pigmenting anaerobic (BPA Porphyromonas species. The BPAs have an absolute haem requirement and their presence in the infected lung indicates that sufficient haem, a virulence up-regulator in BPAs, must be present to support growth. Haemoglobin from micro-bleeds occurring during infection is the most likely source of haem in the lung. Porphyromonas gingivalis displays a novel haem acquisition paradigm whereby haemoglobin must be firstly oxidised to methaemoglobin, facilitating haem release, either by gingipain proteolysis or capture via the haem-binding haemophore HmuY. P. aeruginosa produces the blue phenazine redox compound, pyocyanin. Since phenazines can oxidise haemoglobin, it follows that pyocyanin may also facilitate haem acquisition by promoting methaemoglobin production. Here we show that pyocyanin at concentrations found in the CF lung during P. aeruginosa infections rapidly oxidises oxyhaemoglobin in a dose-dependent manner. We demonstrate that methaemoglobin formed by pyocyanin is also susceptible to proteolysis by P. gingivalis Kgp gingipain and neutrophil elastase, thus releasing haem. Importantly, co-incubation of oxyhaemoglobin with pyocyanin facilitates haem pickup from the resulting methemoglobin by the P. gingivalis HmuY haemophore. Mice intra-tracheally challenged with viable P. gingivalis cells plus pyocyanin displayed increased mortality compared to those administered P. gingivalis alone. Pyocyanin significantly elevated both methaemoglobin and total haem levels in homogenates of mouse lungs and increased the level of arginine-specific gingipain activity from mice inoculated with viable P. gingivalis cells plus pyocyanin compared with mice inoculated with P. gingivalis only. These findings indicate that pyocyanin, by promoting haem availability through methaemoglobin formation and

  4. Pyocyanina contributory factor in haem acquisition and virulence enhancement of Porphyromonas gingivalis in the lung [corrected].

    Science.gov (United States)

    Benedyk, Malgorzata; Byrne, Dominic P; Glowczyk, Izabela; Potempa, Jan; Olczak, Mariusz; Olczak, Teresa; Smalley, John W

    2015-01-01

    Several recent studies show that the lungs infected with Pseudomonas aeruginosa are often co-colonised by oral bacteria including black-pigmenting anaerobic (BPA) Porphyromonas species. The BPAs have an absolute haem requirement and their presence in the infected lung indicates that sufficient haem, a virulence up-regulator in BPAs, must be present to support growth. Haemoglobin from micro-bleeds occurring during infection is the most likely source of haem in the lung. Porphyromonas gingivalis displays a novel haem acquisition paradigm whereby haemoglobin must be firstly oxidised to methaemoglobin, facilitating haem release, either by gingipain proteolysis or capture via the haem-binding haemophore HmuY. P. aeruginosa produces the blue phenazine redox compound, pyocyanin. Since phenazines can oxidise haemoglobin, it follows that pyocyanin may also facilitate haem acquisition by promoting methaemoglobin production. Here we show that pyocyanin at concentrations found in the CF lung during P. aeruginosa infections rapidly oxidises oxyhaemoglobin in a dose-dependent manner. We demonstrate that methaemoglobin formed by pyocyanin is also susceptible to proteolysis by P. gingivalis Kgp gingipain and neutrophil elastase, thus releasing haem. Importantly, co-incubation of oxyhaemoglobin with pyocyanin facilitates haem pickup from the resulting methemoglobin by the P. gingivalis HmuY haemophore. Mice intra-tracheally challenged with viable P. gingivalis cells plus pyocyanin displayed increased mortality compared to those administered P. gingivalis alone. Pyocyanin significantly elevated both methaemoglobin and total haem levels in homogenates of mouse lungs and increased the level of arginine-specific gingipain activity from mice inoculated with viable P. gingivalis cells plus pyocyanin compared with mice inoculated with P. gingivalis only. These findings indicate that pyocyanin, by promoting haem availability through methaemoglobin formation and stimulating of gingipain

  5. Pyocycanin, a Contributory Factor in Haem Acquisition and Virulence Enhancement of Porphyromonas gingivalis in the Lung

    Science.gov (United States)

    Benedyk, Malgorzata; Byrne, Dominic P.; Glowczyk, Izabela; Potempa, Jan; Olczak, Mariusz; Olczak, Teresa; Smalley, John W.

    2015-01-01

    Several recent studies show that the lungs infected with Pseudomonas aeruginosa are often co-colonised by oral bacteria including black-pigmenting anaerobic (BPA) Porphyromonas species. The BPAs have an absolute haem requirement and their presence in the infected lung indicates that sufficient haem, a virulence up-regulator in BPAs, must be present to support growth. Haemoglobin from micro-bleeds occurring during infection is the most likely source of haem in the lung. Porphyromonas gingivalis displays a novel haem acquisition paradigm whereby haemoglobin must be firstly oxidised to methaemoglobin, facilitating haem release, either by gingipain proteolysis or capture via the haem-binding haemophore HmuY. P. aeruginosa produces the blue phenazine redox compound, pyocyanin. Since phenazines can oxidise haemoglobin, it follows that pyocyanin may also facilitate haem acquisition by promoting methaemoglobin production. Here we show that pyocyanin at concentrations found in the CF lung during P. aeruginosa infections rapidly oxidises oxyhaemoglobin in a dose-dependent manner. We demonstrate that methaemoglobin formed by pyocyanin is also susceptible to proteolysis by P. gingivalis Kgp gingipain and neutrophil elastase, thus releasing haem. Importantly, co-incubation of oxyhaemoglobin with pyocyanin facilitates haem pickup from the resulting methemoglobin by the P. gingivalis HmuY haemophore. Mice intra-tracheally challenged with viable P. gingivalis cells plus pyocyanin displayed increased mortality compared to those administered P. gingivalis alone. Pyocyanin significantly elevated both methaemoglobin and total haem levels in homogenates of mouse lungs and increased the level of arginine-specific gingipain activity from mice inoculated with viable P. gingivalis cells plus pyocyanin compared with mice inoculated with P. gingivalis only. These findings indicate that pyocyanin, by promoting haem availability through methaemoglobin formation and stimulating of gingipain

  6. The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation.

    Science.gov (United States)

    Klarström Engström, K; Khalaf, H; Kälvegren, H; Bengtsson, T

    2015-02-01

    Platelets are considered to have important functions in inflammatory processes and as actors in the innate immunity. Several studies have shown associations between cardiovascular disease and periodontitis, where the oral anaerobic pathogen Porphyromonas gingivalis has a prominent role in modulating the immune response. Porphyromonas gingivalis has been found in atherosclerotic plaques, indicating spreading of the pathogen via the circulation, with an ability to interact with and activate platelets via e.g. Toll-like receptors (TLR) and protease-activated receptors. We aimed to evaluate how the cysteine proteases, gingipains, of P. gingivalis affect platelets in terms of activation and chemokine secretion, and to further investigate the mechanisms of platelet-bacteria interaction. This study shows that primary features of platelet activation, i.e. changes in intracellular free calcium and aggregation, are affected by P. gingivalis and that arg-gingipains are of great importance for the ability of the bacterium to activate platelets. The P. gingivalis induced a release of the chemokine RANTES, however, to a much lower extent compared with the TLR2/1-agonist Pam3 CSK4 , which evoked a time-dependent release of the chemokine. Interestingly, the TLR2/1-evoked response was abolished by a following addition of viable P. gingivalis wild-types and gingipain mutants, showing that both Rgp and Kgp cleave the secreted chemokine. We also demonstrate that Pam3 CSK4 -stimulated platelets release migration inhibitory factor and plasminogen activator inhibitor-1, and that also these responses were antagonized by P. gingivalis. These results supports immune-modulatory activities of P. gingivalis and further clarify platelets as active players in innate immunity and in sensing bacterial infections, and as target cells in inflammatory reactions induced by P. gingivalis infection. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Porphyromonas gingivalis Fim-A genotype distribution among Colombians.

    Science.gov (United States)

    Moreno, Sandra; Jaramillo, Adriana; Parra, Beatriz; Botero, Javier Enrique; Contreras, Adolfo

    2015-09-30

    Porphyromonas gingivalis is associated with periodontitis and exhibit a wide array of virulence factors, including fimbriae which is encoded by the FimA gene representing six known genotypes. To identify FimA genotypes of P. gingivalis in subjects from Cali-Colombia, including the co-infection with Aggregatibacter actinomycetemcomitans, Treponema denticola, and Tannerella forsythia. Subgingival samples were collected from 151 people exhibiting diverse periodontal condition. The occurrence of P. gingivalis, FimA genotypes and other bacteria was determined by PCR. P. gingivalis was positive in 85 patients. Genotype FimA II was more prevalent without reach significant differences among study groups (54.3%), FimA IV was also prevalent in gingivitis (13.0%). A high correlation (p= 0.000) was found among P. gingivalis, T. denticola, and T. forsythia co-infection. The FimA II genotype correlated with concomitant detection of T. denticola and T. forsythia. Porphyromonas gingivalis was high even in the healthy group at the study population. A trend toward a greater frequency of FimA II genotype in patients with moderate and severe periodontitis was determined. The FimA II genotype was also associated with increased pocket depth, greater loss of attachment level, and patients co-infected with T. denticola and T. forsythia.

  8. Porphyromonas gingivalis Fim-A genotype distribution among Colombians

    Science.gov (United States)

    Jaramillo, Adriana; Parra, Beatriz; Botero, Javier Enrique; Contreras, Adolfo

    2015-01-01

    Introduction: Porphyromonas gingivalis is associated with periodontitis and exhibit a wide array of virulence factors, including fimbriae which is encoded by the FimA gene representing six known genotypes. Objetive: To identify FimA genotypes of P. gingivalis in subjects from Cali-Colombia, including the co-infection with Aggregatibacter actinomycetemcomitans, Treponema denticola, and Tannerella forsythia. Methods: Subgingival samples were collected from 151 people exhibiting diverse periodontal condition. The occurrence of P. gingivalis, FimA genotypes and other bacteria was determined by PCR. Results: P. gingivalis was positive in 85 patients. Genotype FimA II was more prevalent without reach significant differences among study groups (54.3%), FimA IV was also prevalent in gingivitis (13.0%). A high correlation (p= 0.000) was found among P. gingivalis, T. denticola, and T. forsythia co-infection. The FimA II genotype correlated with concomitant detection of T. denticola and T. forsythia. Conclusions: Porphyromonas gingivalis was high even in the healthy group at the study population. A trend toward a greater frequency of FimA II genotype in patients with moderate and severe periodontitis was determined. The FimA II genotype was also associated with increased pocket depth, greater loss of attachment level, and patients co-infected with T. denticola and T. forsythia. PMID:26600627

  9. Experimental model for Porphyromonas gingivalis infection in animals.

    Science.gov (United States)

    Eke, P I; Rotimi, V O; Laughon, B E

    1996-03-01

    A virulence model suitable for studying the dynamics of Porphyromonas gingivalis infection, including the pathogenicity of P. gingivalis in experimentally induced infections of multiple organs was developed using mouse and hamster. Virulence of P. gingivalis strains was expressed contrastingly in subcutaneous (sc) infection in the Murine abscess model (MAM) and the Hamsters abscess model (HAM). Subcutaneous infection in the MAM was characterized by a gravity abscess, spreading from the primary site of inoculation downwards, frequently erupting as a secondary lesion. In contract, s.c. P. gingivalis infection in HAM was characterized as a palpable localized abscess at the primary site of inoculation. When the Semi-Solid Agar (SSA) was added to the mono-culture of P. gingivalis, reproducibility of infection in both models was enhanced. P. gingivalis culture supplemented with haemin, or combined with oral Actinomyces viscosus had its virulence overtly enhanced and often fatal in the MAM. Menadione, Eh reducing agents and mixture with the Streptococcus or A. neaslundii did not potentiate virulence in either mode. Transtracheal challenge of the lungs of hamster with P. gingivalis initiated an early pneumonitis and later sequelae of necrosis and abscess formation. Also, abscess was induced by direct inoculation of P. gingivalis in the muscles, liver and testes, but did not induce intra-abdominal abscesses. In conclusion, the HAM applied with the SSA procedure caused a localized P. gingivalis tissue infection with practical advantages for quantitative and qualitative studies of P. gingivalis infections. This study also demonstrates the pathogenic potential of P. gingivalis by reproducing similar infections in multiple anatomical sites.

  10. Porphyromonas gingivalis in periodontal pockets and heart valves.

    Science.gov (United States)

    Radwan-Oczko, Małgorzata; Jaworski, Aleksander; Duś, Irena; Plonek, Tomasz; Szulc, Malgorzata; Kustrzycki, Wojciech

    2014-05-15

    There is evidence that advanced infectious chronic periodontal inflammatory disease may have an impact on general health including cardiovascular diseases. The aim of this clinical study was to evaluate the ability of Porphyromonas gingivalis to colonize heart valves and, subsequently, to assess whether there is an association between the presence of the DNA of Porphyromonas gingivalis in periodontal pockets and in degenerated heart valves. Thirty patients were enrolled in the study and 31 valve specimens harvested during cardiac surgery operations were examined. All patients underwent a periodontal examination. To evaluate the periodontal status of the patients the following clinical parameters were recorded: the pocket depth, bleeding on probing (BOP) and aproximal plaque index (API). The presence of P. gingivalis in heart valve specimens and samples from periodontal pockets was analyzed using a single-step PCR method. P. gingivalis DNA was detected in periodontal pockets of 15 patients (50%). However, the DNA of this periopathogen was found neither in the aortic nor in the mitral valve specimens. This study suggests that P. gingivalis may not have an influence on the development of the degeneration of aortic and mitral valves.

  11. Can Porphyromonas gingivalis be a novel aetiology for recurrent miscarriage?

    Science.gov (United States)

    Ibrahim, Moustafa I; Abdelhafeez, Mohamed A; Ellaithy, Mohamed I; Salama, Ahmed H; Amin, Adel S; Eldakrory, Hesham; Elhadad, Nagwa I

    2015-04-01

    To study the association between Porphyromonas gingivalis (P. gingivalis) infection and recurrent miscarriage. This case control study included women with early pregnancy failure admitted for surgical evacuation of retained products of conception. Cases (group 1) included 50 women with unexplained recurrent early miscarriage whereas the control group (group 2) consisted of 50 women with no such history. The evacuated products of conception, subgingival plaques, cervicovaginal secretions and saliva of all participants were examined to detect P. gingivalis deoxyribonucleic acid (DNA) using a polymerase chain reaction. The prevalence of P. gingivalis DNA in the chorionic villous tissue samples of group 1 was significantly higher than in group 2 (8 [16%] vs. 1 [2%], respectively; p = 0.036, odds ratio [OR]: 9.3, 95% confidence interval [CI]: 1.1-76.9). The prevalence of P. gingivalis DNA was significantly higher in cervicovaginal secretions of group 1 than in group 2 (9 [18%] vs. 1 [2%], respectively; p = 0.02, OR: 10.8, 95% CI: 1.3-88.5). On the contrary, P. gingivalis DNA could not be detected in subgingival plaques and saliva samples of either group. The current study found an association between P. gingivalis infection of the female genital tract and the occurrence of recurrent miscarriage.

  12. An unusual presentation of subdural empyema caused by Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Ahmed Rasheed

    2013-01-01

    Full Text Available Subdural empyema is an uncommon clinical entity. The first case of Porphyromonas gingivalis subdural empyema is reported. We report a case of 34-year-old male who presented with subdural empyema and sinusitis. Through the utilization of polymerase chain reaction (PCR tests on subdural pus, we were able to confirm the diagnosis and institute appropriate treatment. Early surgical intervention and intravenous antibiotics meant that the patient recovered fully. Infections caused by P. gingivalis should be considered in differential diagnoses of central nervous system (CNS abscesses or subdural empyema especially in patients with precedent periodontal diseases and sinusitis.

  13. The effect of Porphyromonas gingivalis lipopolysaccharide on pregnancy in the rat

    NARCIS (Netherlands)

    Kunnen, A; van Pampus, M G; Aarnoudse, J G; van der Schans, C P; Abbas, F; Faas, M M

    OBJECTIVE: Periodontitis, mostly associated with Porphyromonas gingivalis, has frequently been related to adverse pregnancy outcomes. We therefore investigated whether lipopolysaccharides of P. gingivalis (Pg-LPS) induced pregnancy complications in the rat. METHODS: Experiment 1: pregnant rats (day

  14. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows the bacter......A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...

  15. Porphyromonas gingivalis Lipids Inhibit Osteoblastic Differentiation and Function▿

    Science.gov (United States)

    Wang, Yu-Hsiung; Jiang, Jin; Zhu, Qiang; AlAnezi, Amer Z.; Clark, Robert B.; Jiang, Xi; Rowe, David W.; Nichols, Frank C.

    2010-01-01

    Porphyromonas gingivalis produces unusual sphingolipids that are known to promote inflammatory reactions in gingival fibroblasts and Toll-like receptor 2 (TLR2)-dependent secretion of interleukin-6 from dendritic cells. The aim of the present study was to examine whether P. gingivalis lipids inhibit osteoblastic function. Total lipids from P. gingivalis and two fractions, phosphoglycerol dihydroceramides and phosphoethanolamine dihydroceramides, were prepared free of lipid A. Primary calvarial osteoblast cultures derived from 5- to 7-day-old CD-1 mice were used to examine the effects of P. gingivalis lipids on mineralized nodule formation, cell viability, apoptosis, cell proliferation, and gene expression. P. gingivalis lipids inhibited osteoblast differentiation and fluorescence expression of pOBCol2.3GFP in a concentration-dependent manner. However, P. gingivalis lipids did not significantly alter osteoblast proliferation, viability, or apoptosis. When administered during specific intervals of osteoblast growth, P. gingivalis total lipids demonstrated inhibitory effects on osteoblast differentiation only after the proliferation stage of culture. Reverse transcription-PCR confirmed the downregulation of osteoblast marker genes, including Runx2, ALP, OC, BSP, OPG, and DMP-1, with concurrent upregulation of RANKL, tumor necrosis factor alpha, and MMP-3 genes. P. gingivalis total lipids and lipid fractions inhibited calvarial osteoblast gene expression and function in vivo, as determined by the loss of expression of another osteoblast differentiation reporter, pOBCol3.6GFPcyan, and reduced uptake of Alizarin complexone stain. Finally, lipid inhibition of mineral nodule formation in vitro was dependent on TLR2 expression. Our results indicate that inhibition of osteoblast function and gene expression by P. gingivalis lipids represents a novel mechanism for altering alveolar bone homeostasis at periodontal disease sites. PMID:20584977

  16. FOXO responses to Porphyromonas gingivalis in epithelial cells

    Science.gov (United States)

    Wang, Qian; Sztukowska, Maryta; Ojo, Akintunde; Scott, David A.; Wang, Huizhi; Lamont, Richard J.

    2015-01-01

    Summary Porphyromonas gingivalis is a prominent periodontal, and emerging systemic, pathogen that redirects host cell signalling pathways and modulates innate immune responses. In this study, we show that P. gingivalis infection induces the dephosphorylation and activation of forkhead box-O (FOXO)1, 3 and 4 in gingival epithelial cells. In addition, immunofluorescence showed that FOXO1 accumulated in the nucleus of P. gingivalis-infected cells. Quantitative reverse transcription PCR demonstrated that transcription of genes involved in protection against oxidative stress (Cat, Sod2, Prdx3), inflammatory responses (IL1β) and anti-apoptosis (Bcl-6) was induced by P. gingivalis, while small-interfering RNA (siRNA)-mediated knockdown of FOXO1 suppressed the transcriptional activation of these genes. P. gingivalis-induced secretion of interleukin (IL)-1β and inhibition of apoptosis were also impeded by FOXO1 knockdown. Neutralization of reactive oxygen species (ROS) by N-acetyl-l-cysteine blocked the activation of FOXO1 by P. gingivalis and concomitantly suppressed the activation of oxidative stress responses, anti-apoptosis programmes and IL-β production. Inhibition of c-Jun-N-terminal kinase (JNK) either pharmacologically or by siRNA, reduced FOXO1 activation and downstream FOXO1-dependent gene regulation in response to P. gingivalis. The results indicate that P. gingivalis-induced ROS activate FOXO transcription factors through JNK signalling, and that FOXO1 controls oxidative stress responses, inflammatory cytokine production and cell survival. These data position FOXO as an important signalling node in the epithelial cell–P. gingivalis interaction, with particular relevance to cell fate and dysbiotic host responses. PMID:25958948

  17. Tobacco smoke augments Porphyromonas gingivalis-Streptococcus gordonii biofilm formation.

    Directory of Open Access Journals (Sweden)

    Juhi Bagaitkar

    Full Text Available Smoking is responsible for the majority of periodontitis cases in the US and smokers are more susceptible than non-smokers to infection by the periodontal pathogen Porphyromonas gingivalis. P. gingivalis colonization of the oral cavity is dependent upon its interaction with other plaque bacteria, including Streptococcus gordonii. Microarray analysis suggested that exposure of P. gingivalis to cigarette smoke extract (CSE increased the expression of the major fimbrial antigen (FimA, but not the minor fimbrial antigen (Mfa1. Therefore, we hypothesized that CSE promotes P. gingivalis-S. gordonii biofilm formation in a FimA-dependent manner. FimA total protein and cell surface expression were increased upon exposure to CSE whereas Mfa1 was unaffected. CSE exposure did not induce P. gingivalis auto-aggregation but did promote dual species biofilm formation, monitored by microcolony numbers and depth (both, p<0.05. Interestingly, P. gingivalis biofilms grown in the presence of CSE exhibited a lower pro-inflammatory capacity (TNF-α, IL-6 than control biofilms (both, p<0.01. CSE-exposed P. gingivalis bound more strongly to immobilized rGAPDH, the cognate FimA ligand on S. gordonii, than control biofilms (p<0.001 and did so in a dose-dependent manner. Nevertheless, a peptide representing the Mfa1 binding site on S. gordonii, SspB, completely inhibited dual species biofilm formation. Thus, CSE likely augments P. gingivalis biofilm formation by increasing FimA avidity which, in turn, supports initial interspecies interactions and promotes subsequent high affinity Mfa1-SspB interactions driving biofilm growth. CSE induction of P. gingivalis biofilms of limited pro-inflammatory potential may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced infectious diseases and conditions.

  18. TRANSMISSION OF Porphyromonas gingivalis FROM CAREGIVERS TO CHILDREN.

    Directory of Open Access Journals (Sweden)

    Assya Krasteva

    2012-03-01

    Full Text Available Periodontal diseases are socially significant diseases, which occur in adults but in children and adolescents as well. Despite a low prevalence of aggressive periodontitis at a young age, its severity is a challenge for pediatric dentistry. The goal of this study is to find if the prevalence of Porphyromonas gingivalis among children whose parents suffer from periodontal diseases is greater than among children with healthy parents. Methods:- Polymerase chain reaction (PCR.- Culture method. When PCR was used P.gingivalis was found in 35.5% of parents with periodontitis and in 6,5% of their children, children with healthy parents and their parents. No statistically significant relation (P>0.05 between periodontal parents and their children was found. When culture method was used P.gingivalis was not detected.Studying such correlations and standardizing methods of detection could contribute the evaluation of periodontal disease risk in adolescents.

  19. Manipulation of necroptosis by Porphyromonas gingivalis in periodontitis development.

    Science.gov (United States)

    Ke, Xiaojing; Lei, Lang; Li, Huang; Li, Houxuan; Yan, Fuhua

    2016-09-01

    To eliminate invading pathogens and keep homeostasis, host employs multiple approaches such as the non-inflammation associated-apoptosis, inflammation associated-necroptosis and pyroptosis, etc. Necroptosis is known as a highly pro-inflammatory form of cell death due to the release of massive damage-associated molecular patterns (DAMPs). For the first time, we reported that Porphyromonas gingivalis induced cellular necroptosis through receptor-interacting protein 1 (RIP1)/RIP3/mixed lineage kinase domain-like (MLKL) signaling pathway in monocytes. Necroptosis in THP-1 cells was induced by MLKL phosphorylation in vitro. P. gingivalis treated-THP-1 cells exhibited lower cell death rate with pretreatment of inhibitors RIP1 and MLKL, accompanied with attenuated TNF-α and IL-6 expressions. Moreover, the necroptosis risk was also reduced via gene silencing by RIP3 or MLKL in the P. gingivalis treated-THP-1 cell lines. We further explored P. gingivalis-induced necroptosis in animal models in vivo. Firstly, C57BL/6 mice were injected with P. gingivalis in the subcutaneous chamber model. Animals pretreated with MLKL inhibitor exhibited significantly enhanced P. gingivalis clearance; in addition, levels of TNF-α and IL-6 were notably decreased by 60% via MLKL inhibition. Secondly, P. gingivalis-induced periodontitis was utilized to investigate necroptosis related-periodontopathogensis. Positive staining of phosphorylated MLKL in mice periodontitis biopsies was detected to a higher degree, while larger amount of alveolar bone loss was observed in MLKL (-) group comparing to those in the MLKL (+) group. These findings may suggest that P. gingivalis play essential roles in necroptosis process during periodontitis, and our research may shed light on the further work on the related periodontopathogenesis investigation. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Adherence of Porphyromonas (Bacteroides) gingivalis to Streptococcus sanguis in vitro.

    Science.gov (United States)

    Stinson, M W; Safulko, K; Levine, M J

    1991-01-01

    Intergeneric bacterial adherence is responsible for the complexity of the microbiota in human dental plaque and is believed to enable some extraneous bacteria to initially colonize the human oral cavity. Some current evidence indicates that Streptococcus sanguis, an early colonizer of teeth, enhances subsequent colonization by Porphyromonas (Bacteroides) gingivalis, a bacterium associated with advanced adult periodontitis. In this study, selected strains of P. gingivalis and S. sanguis were tested for their adherence activities in vitro. A differential filtration assay was devised in which one member of the test pair was radiolabeled. Heterogeneous aggregates that formed in mixed suspensions were collected on polycarbonate filters (8-microns pore size) and were washed free of individual bacteria and small homologous clumps. P. gingivalis 381, W50, JKG7, and 33277 adhered to S. sanguis G9B, M5, Challis 6, and 38. P. gingivalis A7A1-28 did not adhere well to S. sanguis under these conditions. More precise measurements of intergeneric adherence were obtained with an alternative assay with radiolabeled P. gingivalis and an artificial dental plaque composed of S. sanguis coupled to cyanogen bromide-activated agarose beads. CNBr-agarose was selected as the supporting matrix for the plaque because it was uniformly and permanently coated with S. sanguis and because P. gingivalis had negligible adherence activity for streptococcus-free beads. P. gingivalis W50 grown to the early stationary phase adhered to S. sanguis-coated beads in higher numbers than either midlogarithmic- or late-stationary-phase cells. Intergeneric adherence was not inhibited or reversed by the presence of lactose or other monosaccharides or disaccharides. Pretreatment of either bacterium with trypsin or proteinase K reduced subsequent adherence by 86 to 100%. Neuraminidase treatment of P. gingivalis caused 98% reduction of adherence, whereas similar treatment of S. sanguis caused only a 2% loss

  1. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis

    Science.gov (United States)

    2012-01-01

    Background Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with periodontal disease onset and progression. Genetic tools for the manipulation of bacterial genomes allow for in-depth mechanistic studies of metabolism, physiology, interspecies and host-pathogen interactions. Analysis of the essential genes, protein-coding sequences necessary for survival of P. gingivalis by transposon mutagenesis has not previously been attempted due to the limitations of available transposon systems for the organism. We adapted a Mariner transposon system for mutagenesis of P. gingivalis and created an insertion mutant library. By analyzing the location of insertions using massively-parallel sequencing technology we used this mutant library to define genes essential for P. gingivalis survival under in vitro conditions. Results In mutagenesis experiments we identified 463 genes in P. gingivalis strain ATCC 33277 that are putatively essential for viability in vitro. Comparing the 463 P. gingivalis essential genes with previous essential gene studies, 364 of the 463 are homologues to essential genes in other species; 339 are shared with more than one other species. Twenty-five genes are known to be essential in P. gingivalis and B. thetaiotaomicron only. Significant enrichment of essential genes within Cluster of Orthologous Groups ‘D’ (cell division), ‘I’ (lipid transport and metabolism) and ‘J’ (translation/ribosome) were identified. Previously, the P. gingivalis core genome was shown to encode 1,476 proteins out of a possible 1,909; 434 of 463 essential genes are contained within the core genome. Thus, for the species P. gingivalis twenty-two, seventy-seven and twenty-three percent of the genome respectively are devoted to essential, core and accessory functions. Conclusions A Mariner transposon system can be adapted to create mutant libraries in P. gingivalis amenable to analysis by next-generation sequencing technologies. In silico analysis

  2. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells.

    Science.gov (United States)

    Sakanaka, Akito; Takeuchi, Hiroki; Kuboniwa, Masae; Amano, Atsuo

    2016-05-01

    Porphyromonas gingivalis is deeply involved in the pathogenesis of marginal periodontitis, and recent findings have consolidated its role as an important and unique pathogen. This bacterium has a unique dual lifestyle in periodontal sites including subgingival dental plaque (biofilm) and gingival cells, as it has been clearly shown that P. gingivalis is able to exert virulence using completely different tactics in each environment. Inter-bacterial cross-feeding enhances the virulence of periodontal microflora, and such metabolic and adhesive interplay creates a supportive environment for P. gingivalis and other species. Human oral epithelial cells harbor a large intracellular bacterial load, resembling the polymicrobial nature of periodontal biofilm. P. gingivalis can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. Subsequently, from its intracellular position, the pathogen exploits cellular recycling pathways to exit invaded cells, by which it is able to control its population in infected tissues, allowing for persistent infection in gingival tissues. Here, we outline the dual lifestyle of P. gingivalis in subgingival areas and its effects on the pathogenesis of periodontitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Lineage variability in surface components expression within Porphyromonas gingivalis.

    Science.gov (United States)

    Teixeira, Silvia Regina Loureiro; D'Epiro, Talyta Thereza Soares; Pinheiro, Ericka Tavares; Simionato, Maria Regina L; Taniwaki, Noemi Nosomi; Kisielius, Jonas José; Mayer, Marcia Pinto Alves

    2014-12-01

    The periodontopathogen Porphyromonas gingivalis is represented by a spectrum of phenotypes ranging from commensals to pathogenic lineages. Capsule and fimbriae are considered key virulence factors in this specie, involved in colonization and host defenses evasion. Since these virulence traits may not be expressed by certain strains, we aimed to test the hypothesis that certain clusters or genotypes of P. gingivalis correlate with the production of capsule and fimbriae. Sixteen P. gingivalis isolates were evaluated. Capsule (K) was detected by optical microscopy of negatively stained cells. The presence of fimbriae (F) was determined by TEM. Genotypes were determined by NotI macrorestriction fragments analysis through Pulsed-Field Gel Electrophoresis (PFGE) and Multi-locus sequence typing (MLST) based on seven house-keeping genes. The phenotypes included F(+)K(+) (n = 4), F(-)K(+) (n = 5), F(+)K(-) (n = 5) and F(-)K(-) (n = 2). The analysis of whole genome macrorestriction fragments revealed 14 different clusters. MLST data also revealed extensive genetic diversity; however, PFGE and MLST profiles showed evident differences. There was no association between P. gingivalis clusters and encapsulated and/or fimbriated phenotypes. Genotyping methods were not able to discriminate isolates according to the production of virulence factors such as capsule and major fimbriae, indicating that recombination played a key role in the expression of capsule and fimbriae in P. gingivalis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Exposure of Porphyromonas gingivalis to cortisol increases bacterial growth.

    Science.gov (United States)

    Akcalı, Aliye; Huck, Olivier; Buduneli, Nurcan; Davideau, Jean-Luc; Köse, Timur; Tenenbaum, Henri

    2014-01-01

    Psychological stress is considered as a risk factor for periodontal diseases. The stress-related hormone, cortisol is one of the main molecules released during human stress response and is found in plasma and gingival crevicular fluid. This hormone has been suggested to modify composition of subgingival biofilms. The aim of this study was to investigate the effect of exposure to cortisol on Porphyromonas gingivalis (P. gingivalis) growth. P. gingivalis ATCC strain 33277 was cultured under strict anaerobic conditions at 37°C in Brain Heart Infusion medium supplemented with hemin (5μgml(-1)) and menadione (1μgml(-1)). Bacterial cultures were incubated with or without hydrocortisone (0.04-10μgml(-1)) at 37°C for 12, 24 and 48h and bacterial growth was evaluated by spectrophotometric method (OD600nm). Cortisol consumption has been followed by HPLC. Cortisol significantly increased P. gingivalis growth in the first 24h peaking at 12h but this increase was not related to the concentration used. During the time period, no consumption of cortisol was observed. This study provides further support for the idea that stress-induced hormone; cortisol may influence the growth of P. gingivalis. This specific effect may be involved in the relationship between stress and periodontal diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Prevalence of Porphyromonas gingivalis four rag locus genotypes in patients of orthodontic gingivitis and periodontitis.

    Science.gov (United States)

    Liu, Yi; Zhang, Yujie; Wang, Lili; Guo, Yang; Xiao, Shuiqing

    2013-01-01

    Porphyromonas gingivalis is considered as a major etiological agent in periodontal diseases and implied to result in gingival inflammation under orthodontic appliance. rag locus is a pathogenicity island found in Porphyromonas gingivalis. Four rag locus variants are different in pathogenicity of Porphyromonas gingivalis. Moreover, there are different racial and geographic differences in distribution of rag locus genotypes. In this study, we assessed the prevalence of Porphyromonas gingivalis and rag locus genotypes in 102 gingival crevicular fluid samples from 57 cases of gingivitis patients with orthodontic appliances, 25 cases of periodontitis patients and 20 cases of periodontally healthy people through a 16S rRNA-based PCR and a multiplex PCR. The correlations between Porphyromona.gingivalis/rag locus and clinical indices were analyzed. The prevalence of Porphyromonas gingivalis and rag locus genes in periodontitis group was the highest among three groups and higher in orthodontic gingivitis than healthy people (pPorphyromonas gingivalis/rag locus and gingival index. rag-3 and rag-4 were the predominant genotypes in the patients of orthodontic gingivitis and mild-to-moderate periodontitis in Shandong. Porphyromonas.gingivalis carrying rag-1 has the strong virulence and could be associated with severe periodontitis.

  6. Mechanisms by which Porphyromonas gingivalis evades innate immunity.

    Science.gov (United States)

    Abdi, Kaveh; Chen, Tsute; Klein, Brian A; Tai, Albert K; Coursen, Jill; Liu, Xiangdong; Skinner, Jeff; Periasamy, Saravanan; Choi, Youngnim; Kessler, Benedikt M; Palmer, Robert J; Gittis, Apostolos; Matzinger, Polly; Duncan, Margaret J; Singh, Nevil J

    2017-01-01

    The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum), on Dendritic Cell (DC) activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli). Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50) that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s) that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1) and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.

  7. LuxS signaling in Porphyromonas gingivalis-host interactions.

    Science.gov (United States)

    Scheres, Nina; Lamont, Richard J; Crielaard, Wim; Krom, Bastiaan P

    2015-10-01

    Dental plaque is a multispecies biofilm in the oral cavity that significantly influences oral health. The presence of the oral anaerobic pathogen Porphyromonas gingivalis is an important determinant in the development of periodontitis. Direct and indirect interactions between P. gingivalis and the host play a major role in disease development. Transcriptome analysis recently revealed that P. gingivalis gene-expression is regulated by LuxS in both an AI-2-dependent and an AI-2 independent manner. However, little is known about the role of LuxS-signaling in P. gingivalis-host interactions. Here, we investigated the effect of a luxS mutation on the ability of P. gingivalis to induce an inflammatory response in human oral cells in vitro. Primary periodontal ligament (PDL) fibroblasts were challenged with P. gingivalis ΔluxS or the wild-type parental strain and gene-expression of pro-inflammatory mediators IL-1β, IL-6 and MCP-1 was determined by real-time PCR. The ability of P. gingivalis ΔluxS to induce an inflammatory response was severely impaired in PDL-fibroblasts. This phenotype could be restored by providing of LuxS in trans, but not by addition of the AI-2 precursor DPD. A similar phenomenon was observed in a previous transcriptome study showing that expression of PGN_0482 was reduced in the luxS mutant independently of AI-2. We therefore also analyzed the effect of a mutation in PGN_0482, which encodes an immuno-reactive, putative outer-membrane protein. Similar to P. gingivalis ΔluxS, the P. gingivalis Δ0482 mutant had an impaired ability to induce an inflammatory response in PDL fibroblasts. LuxS thus appears to influence the pro-inflammatory responses of host cells to P. gingivalis, likely through regulation of PGN_0482. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Breaking bad: Manipulation of the host response by Porphyromonas gingivalis

    Science.gov (United States)

    Hajishengallis, George; Lamont, Richard J.

    2014-01-01

    Recent metagenomic and mechanistic studies are consistent with a new model of periodontal pathogenesis. This model proposes that periodontal disease is initiated by a synergistic and dysbiotic microbial community rather than by a select few bacteria traditionally known as “periopathogens”. Low abundance bacteria with community-wide effects that are critical for the development of dysbiosis are now known as keystone pathogens, the best-documented example of which is Porphyromonas gingivalis. Here we review established mechanisms by which P. gingivalis interferes with host immunity and enables the emergence of dysbiotic communities. We integrate the role of P. gingivalis with that of other bacteria acting upstream and downstream in pathogenesis. Accessory pathogens act upstream to facilitate P. gingivalis colonization and coordinate metabolic activities, whereas commensals-turned-pathobionts act downstream and contribute to destructive inflammation. The recent concepts of keystone pathogens, along with polymicrobial synergy and dysbiosis (PSD), have profound implications for the development of therapeutic options for periodontal disease. PMID:24338806

  9. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles.

    Science.gov (United States)

    Gui, M J; Dashper, S G; Slakeski, N; Chen, Y-Y; Reynolds, E C

    2016-10-01

    Outer membrane vesicles (OMVs) are asymmetrical single bilayer membranous nanostructures produced by Gram-negative bacteria important for bacterial interaction with the environment. Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces OMVs that act as a virulence factor secretion system contributing to its pathogenicity. Despite their biological importance, the mechanisms of OMV biogenesis have not been fully elucidated. The ~14 times more curvature of the OMV membrane than cell outer membrane (OM) indicates that OMV biogenesis requires energy expenditure for significant curvature of the OMV membrane. In P. gingivalis, we propose that this may be achieved by upregulating the production of certain inner or outer leaflet lipids, which causes localized outward curvature of the OM. This results in selection of anionic lipopolysaccharide (A-LPS) and associated C-terminal domain (CTD) -family proteins on the outer surface due to their ability to accommodate the curvature. Deacylation of A-LPS may further enable increased curvature leading to OMV formation. Porphyromonas gingivalis OMVs that are selectively enriched in CTD-family proteins, largely the gingipains, can support bacterial coaggregation, promote biofilm development and act as an intercessor for the transport of non-motile bacteria by motile bacteria. The P. gingivalis OMVs are also believed to contribute to host interaction and colonization, evasion of immune defense mechanisms, and destruction of periodontal tissues. They may be crucial for both micro- and macronutrient capture, especially heme and probably other assimilable compounds for its own benefit and that of the wider biofilm community. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Genetic analysis of Porphyromonas gingivalis (fimA), Aggregatibacter actinomycetemcomitans, and red complex in coronary plaque.

    Science.gov (United States)

    Mahendra, Jaideep; Mahendra, Little; Felix, John; Romanos, Georgios E

    2014-08-01

    The objective of the present study was to detect the presence of Porphyromonas gingivalis (fimA), Aggregatibacter actinomycetemcomitans, and red complex in the coronary plaque of patients with coronary artery disease. The study population consisted of 51 patients with chronic periodontitis undergoing coronary artery bypass grafting. DNA was extracted from subgingival and coronary atherosclerotic plaque samples. Polymerase chain reaction was used to amplify the part of 16S rRNA gene to detect the presence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis (fimA), Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis, Porphyromonas gingivalis (fimA), and Treponema denticola were detected in 0%, 31.4%, 45.1%, 39.2%, and 51% of the atherosclerotic plaque samples, respectively. In both subgingival and coronary atherosclerotic plaque samples, Tannerella forsythia was detected in 19.6%, Porphyromonas gingivalis in 39.2%, Porphyromonas gingivalis (fimA) in 33.3%, and Treponema denticola in 35.3% of the samples. The study confirmed the detection of red complex bacteria in coronary plaque samples. However Aggregatibacter actinomycetemcomitans could not be detected in these samples. © 2013 Wiley Publishing Asia Pty Ltd.

  11. Antimicrobial activity of stable hemiaminals against Porphyromonas gingivalis.

    Science.gov (United States)

    Olczak, Teresa; Śmiga, Michał; Kwiecień, Anna; Bielecki, Marcin; Wróbel, Robert; Olczak, Mariusz; Ciunik, Zbigniew

    2017-04-01

    Porphyromonas gingivalis is a major etiologic agent and a key pathogen responsible for the development and progression of chronic periodontitis. Controlling the number of periodontal pathogens is one of the primary actions for maintaining oral health; therefore, active compounds with a capacity to exert antimicrobial activity have received considerable attention as they may represent potential new therapeutic agents for the treatment of chronic periodontitis. Heterocyclic compounds possessing 1,2,4- or 1,2,3-triazoles are known for several biological activities, including antibacterial properties. Among them are stable hemiaminals which can be obtained in reaction between nitrobenzaldehyde derivatives and 4-amino-1,2,4-triazole or 4-amino-3,5-dimethyl-1,2,4-triazole. In this study, we selected two relatively stable hemiaminals: (2,4-dinitrophenyl)(4H-1,2,4-triazole-4-ylamino)methanol (24DNTAM) and (2,4-dinitrophenyl)(4H-3,5-dimethyl-1,2,4-triazole-4-ylamino)methanol (24DNDMTAM). Both compounds showed promising anti-P. gingivalis activity, higher against ATCC 33277 strain as compared to A7436 strain. The lowest hemiaminal concentration inhibiting visible planktonic bacterial growth under high-iron/heme conditions was ∼0.06 mg/ml, and the lowest hemiaminal concentration showing killing of bacteria was ∼0.25 mg/ml. Antimicrobial activity was also observed against P. gingivalis grown on blood agar plates. Slightly higher antimicrobial activity of both compounds was observed when P. gingivalis was grown in co-cultures with epithelial HeLa cells under low-iron/heme conditions, which mimic those occurring in vivo. 24DNTAM was more effective against P. gingivalis, but exhibited higher cytotoxic activity against epithelial and red blood cells, as compared with 24DNDMTAM. We conclude that both hemiaminals might originate a novel group of biologically important molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines.

    Directory of Open Access Journals (Sweden)

    Ga-Yeon Son

    Full Text Available Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs. ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis

  13. Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Irina M Velsko

    Full Text Available Atherosclerotic vascular disease is a leading cause of myocardial infarction and cerebrovascular accident, and independent associations with periodontal disease (PD are reported. PD is caused by polymicrobial infections and aggressive immune responses. Genomic DNA of Porphyromonas gingivalis, the best-studied bacterial pathogen associated with severe PD, is detected within atherosclerotic plaque. We examined causal relationships between chronic P. gingivalis oral infection, PD, and atherosclerosis in hyperlipidemic ApoEnull mice. ApoEnull mice (n = 24 were orally infected with P. gingivalis for 12 and 24 weeks. PD was assessed by standard clinical measurements while the aorta was examined for atherosclerotic lesions and inflammatory markers by array. Systemic inflammatory markers serum amyloid A, nitric oxide, and oxidized low-density lipoprotein were analyzed. P. gingivalis infection elicited specific antibodies and alveolar bone loss. Fluorescent in situ hybridization detected viable P. gingivalis within oral epithelium and aorta, and genomic DNA was detected within systemic organs. Aortic plaque area was significantly increased in P. gingivalis-infected mice at 24 weeks (P<0.01. Aortic RNA and protein arrays indicated a strong Th2 response. Chronic oral infection with P. gingivalis results in a specific immune response, significant increases in oral bone resorption, aortic inflammation, viable bacteria in oral epithelium and aorta, and plaque development.

  14. Adhesion of Porphyromonas gingivalis and Biofilm Formation on Different Types of Orthodontic Brackets

    Directory of Open Access Journals (Sweden)

    William Papaioannou

    2012-01-01

    Full Text Available Objectives. To examine the interaction between Porphyromonas gingivalis and 3 different orthodontic brackets in vitro, focusing on the effect of an early salivary pellicle and other bacteria on the formation of biofilms. Material and Methods. Mono- and multi-species P. gingivalis biofilms were allowed to form in vitro, on 3 different bracket types (stainless steel, ceramic and plastic with and without an early salivary pellicle. The brackets were anaerobically incubated for 3 days in Brain Heart Infusion Broth to form biofilms. Bacteria were quantified by trypsin treatment and enumeration of the total viable counts of bacteria recovered. Results. Saliva was found to significantly affect (<0.001 adhesion and biofilm formation of P. gingivalis, with higher numbers for the coated brackets. No significant effect was detected for the impact of the type of biofilm, although on stainless steel and plastic brackets there was a tendency for higher numbers of the pathogen in multi-species biofilms. Bracket material alone was not found to affect the number of bacteria. Conclusions. The salivary pellicle seems to facilitate the adhesion of P. gingivalis and biofilm formation on orthodontic brackets, while the material comprising the brackets does not significantly impact on the number of bacteria.

  15. Honey - a potential agent against Porphyromonas gingivalis: an in vitro study.

    Science.gov (United States)

    Eick, Sigrun; Schäfer, Gesine; Kwieciński, Jakub; Atrott, Julia; Henle, Thomas; Pfister, Wolfgang

    2014-03-25

    Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 - 20 mg/l, and for propolis 20 mg/l - 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component.

  16. Gingival fibroblast responsiveness is differentially affected by Porphyromonas gingivalis: implications for the pathogenesis of periodontitis

    NARCIS (Netherlands)

    Scheres, N.; Crielaard, W.

    2013-01-01

    In periodontitis, tissue damage results mainly from aberrant host responses to oral microorganisms. Fibroblasts can play an important role in this. Gingival fibroblasts do not develop tolerance against the lipopolysaccharide of Porphyromonas gingivalis, a keystone pathogen in periodontitis, which

  17. Varying hemin concentrations affect Porphyromonas gingivalis strains differently.

    Science.gov (United States)

    Ohya, Manabu; Cueno, Marni E; Tamura, Muneaki; Ochiai, Kuniyasu

    2016-05-01

    Porphyromonas gingivalis requires heme to grow, however, heme availability and concentration in the periodontal pockets vary. Fluctuations in heme concentration may affect each P. gingivalis strain differently, however, this was never fully demonstrated. Here, we elucidated the effects of varying hemin concentrations in representative P. gingivalis strains. Throughout this study, representative P. gingivalis strains [FDC381 (type I), MPWIb-01 (type Ib), TDC60 (type II), ATCC49417 (type III), W83 (type IV), and HNA99 (type V)] were used and grown for 24 h in growth media under varying hemin concentrations (5 × , 1 × , 0.5 × , 0.1 × ). Samples were lysed and protein standardized. Arg-gingipain (Rgp), H2O2, and superoxide dismutase (SOD) levels were subsequently measured. We focused our study on 24 h-grown strains which excluded MPWIb-01 and HNA99. Rgp activity among the 4 remaining strains varied with Rgp peaking at: 1 × for FDC381, 5 × for TDC60, 0.5 × for ATCC49417, 5 × and 0.5 × for W83. With regards to H2O2 and SOD amounts: FDC381 had similar H2O2 amounts in all hemin concentrations while SOD levels varied; TDC60 had the lowest H2O2 amount at 1 × while SOD levels became higher in relation to hemin concentration; ATCC49417 also had similar H2O2 amounts in all hemin concentrations while SOD levels were higher at 1 × and 0.5 × ; and W83 had statistically similar H2O2 and SOD amounts regardless of hemin concentration. Our results show that variations in hemin concentration affect each P. gingivalis strain differently. Published by Elsevier Ltd.

  18. The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts

    NARCIS (Netherlands)

    Brunner, Jorg; Scheres, Nina; El Idrissi, Nawal B.; Deng, Dong M.; Laine, Marja L.; van Winkelhoff, Arie J.; Crielaard, Wim; Udrussum Nawal, B.E.l.

    2010-01-01

    Background: Periodontitis is a bacterial infection of the periodontal tissues. The Gram-negative anaerobic bacterium Porphyromonas gingivalis is considered a major causative agent. One of the virulence factors of P. gingivalis is capsular polysaccharide (CPS). Non-encapsulated strains have been

  19. Highly specific protease-based approach for detection of Porphyromonas gingivalis in diagnosis of periodontitis

    NARCIS (Netherlands)

    Kaman, W.E.; Galassi, F.; de Soet, J.J.; Bizzarro, S.; Loos, B.G.; Veerman, E.C.I.; van Belkum, A.; Hays, J.P.; Bikker, F.J.

    2012-01-01

    Porphyromonas gingivalis is associated with the development of periodontitis. Here we describe the development of a highly specific protease-based diagnostic method for the detection of P. gingivalis in gingival crevicular fluid. Screening of a proteolytic peptide substrate library, including

  20. Highly specific protease-based approach for detection of porphyromonas gingivalis in diagnosis of periodontitis

    NARCIS (Netherlands)

    J.P. Hays (John); W.E. Kaman (Wendy); F. Galassi (Fabiano); J.J. de Soet (Johannes); S. Bizzarro (Sergio); B.G. Loos (Bruno G.); E.C.I. Veerman (Enno); A.F. van Belkum (Alex); F.J. Bikkerk

    2012-01-01

    textabstractPorphyromonas gingivalis is associated with the development of periodontitis. Here we describe the development of a highly specific protease-based diagnostic method for the detection of P. gingivalis in gingival crevicular fluid. Screening of a proteolytic peptide substrate library,

  1. Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples

    NARCIS (Netherlands)

    Boutaga, Khalil; van Winkelhoff, Arie Jan; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2003-01-01

    Porphyromonas gingivalis is a major pathogen in destructive periodontal disease in humans. Detection and quantification of this microorganism are relevant for diagnosis and treatment planning. The prevalence and quantity of P. gingivalis in subgingival plaque samples of periodontitis patients were

  2. Placental Trophoblast Responses to Porphyromonas gingivalis Mediated by Toll-like Receptor-2 and -4

    Directory of Open Access Journals (Sweden)

    Banun Kusumawardani

    2013-09-01

    Full Text Available Trophoblast participates in preventing allorecognition and controlling pathogens that compromise fetal wellbeing. Toll-like receptors recognize conserved sequences on the pathogens surface and trigger effector cell functions. Porphyromonas gingivalis is thought to spread to the umbilical cord and cause fetal growth restriction. Objective: To characterize expression and function of TLR-2 and TLR-4 in trophoblast cells from Porphyromonas gingivalisinfected pregnant rats. Methods: Live Porphyromonas gingivalis were challenged into the maxillary first molar subgingival sulcus of female rats before and/or during pregnancy and sacrified on gestational day (GD 14 and 20. Porphyromonas gingivalis was detected by API-ZYM system in the maternal blood of the retro-orbital venous plexus and the umbilical cord. TLR-2 and TLR-4 expressions in trophoblast cells was detected by immunohistochemistry. Results: Porphyromonas gingivalis was first detected in the maternal blood and finally spread to the umbilical cord. Syncytiotrophoblast, spongitrophoblast and trophoblastic giant cell in treated groups had significantly higher expression of TLR-2 and TLR-4 than control group (p<0.05. Conclusion: Syncytiotrophoblast, spongitrophoblast and trophoblastic giant cell are able to recognize Porphyromonas gingivalis through TLR-2 and TLR-4 expression. The ligation of TLR-2 and TLR-4 promoted cytokine production and induced trophoblast cell death. These findings strengthen links between periodontal disease and fetal growth restriction.DOI: 10.14693/jdi.v20i2.150

  3. Iron- and hemin-dependent gene expression of Porphyromonas gingivalis.

    Science.gov (United States)

    Anaya-Bergman, C; Rosato, A; Lewis, J P

    2015-02-01

    Although iron under anaerobic conditions is more accessible and highly reactive because of its reduced form, iron-dependent regulation is not well known in anaerobic bacteria. Here, we investigated iron- and hemin-dependent gene regulation in Porphyromonas gingivalis, an established periodontopathogen that primarily inhabits anaerobic pockets. Whole-genome microarrays of P. gingivalis genes were used to compare the levels of gene expression under iron-replete and iron-depleted conditions as well as under hemin-replete and hemin-depleted conditions. Under iron-depleted conditions, the expression of genes encoding proteins that participate in iron uptake and adhesion/invasion of host cells was increased, while that of genes encoding proteins involved in iron storage, energy metabolism, and electron transport was decreased. Interestingly, many of the genes with altered expression had no known function. Limiting the amount of hemin also resulted in a reduced expression of the genes encoding proteins involved in energy metabolism and electron transport. However, hemin also had a significant effect on many other biological processes such as oxidative stress protection and lipopolysaccharide synthesis. Overall, comparison of the data from iron-depleted conditions to those from hemin-depleted ones showed that although some regulation is through the iron derived from hemin, there also is significant distinct regulation through hemin only. Furthermore, our data showed that the molecular mechanisms of iron-dependent regulation are novel as the deletion of the putative Fur protein had no effect on the expression of iron-regulated genes. Finally, our functional studies demonstrated greater survivability of host cells in the presence of the iron-stressed bacterium than the iron-replete P. gingivalis cells. The major iron-regulated proteins encoded by PG1019-20 may play a role in this process as deletion of these sequences also resulted in reduced survival of the bacterium when

  4. Porphyromonas gingivalis facilitates the development and progression of destructive arthritis through its unique bacterial peptidylarginine deiminase (PAD.

    Directory of Open Access Journals (Sweden)

    Katarzyna J Maresz

    2013-09-01

    Full Text Available Rheumatoid arthritis and periodontitis are two prevalent chronic inflammatory diseases in humans and are associated with each other both clinically and epidemiologically. Recent findings suggest a causative link between periodontal infection and rheumatoid arthritis via bacteria-dependent induction of a pathogenic autoimmune response to citrullinated epitopes. Here we showed that infection with viable periodontal pathogen Porphyromonas gingivalis strain W83 exacerbated collagen-induced arthritis (CIA in a mouse model, as manifested by earlier onset, accelerated progression and enhanced severity of the disease, including significantly increased bone and cartilage destruction. The ability of P. gingivalis to augment CIA was dependent on the expression of a unique P. gingivalis peptidylarginine deiminase (PPAD, which converts arginine residues in proteins to citrulline. Infection with wild type P. gingivalis was responsible for significantly increased levels of autoantibodies to collagen type II and citrullinated epitopes as a PPAD-null mutant did not elicit similar host response. High level of citrullinated proteins was also detected at the site of infection with wild-type P. gingivalis. Together, these results suggest bacterial PAD as the mechanistic link between P. gingivalis periodontal infection and rheumatoid arthritis.

  5. Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD)

    Science.gov (United States)

    Maresz, Katarzyna J.; Hellvard, Annelie; Sroka, Aneta; Adamowicz, Karina; Bielecka, Ewa; Koziel, Joanna; Gawron, Katarzyna; Mizgalska, Danuta; Marcinska, Katarzyna A.; Benedyk, Malgorzata; Pyrc, Krzysztof; Quirke, Anne-Marie; Jonsson, Roland; Alzabin, Saba; Venables, Patrick J.; Nguyen, Ky-Anh

    2013-01-01

    Rheumatoid arthritis and periodontitis are two prevalent chronic inflammatory diseases in humans and are associated with each other both clinically and epidemiologically. Recent findings suggest a causative link between periodontal infection and rheumatoid arthritis via bacteria-dependent induction of a pathogenic autoimmune response to citrullinated epitopes. Here we showed that infection with viable periodontal pathogen Porphyromonas gingivalis strain W83 exacerbated collagen-induced arthritis (CIA) in a mouse model, as manifested by earlier onset, accelerated progression and enhanced severity of the disease, including significantly increased bone and cartilage destruction. The ability of P. gingivalis to augment CIA was dependent on the expression of a unique P. gingivalis peptidylarginine deiminase (PPAD), which converts arginine residues in proteins to citrulline. Infection with wild type P. gingivalis was responsible for significantly increased levels of autoantibodies to collagen type II and citrullinated epitopes as a PPAD-null mutant did not elicit similar host response. High level of citrullinated proteins was also detected at the site of infection with wild-type P. gingivalis. Together, these results suggest bacterial PAD as the mechanistic link between P. gingivalis periodontal infection and rheumatoid arthritis. PMID:24068934

  6. Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis

    Science.gov (United States)

    Zenobia, Camille; Hajishengallis, George

    2015-01-01

    The oral bacterium Porphyromonas gingivalis has special nutrient requirements due to its asaccharolytic nature subsisting on small peptides cleaved from host proteins. Using proteases and other virulence factors, P. gingivalis thrives as a component of a polymicrobial community in nutritionally favorable inflammatory environments. In this regard, P. gingivalis has a number of strategies that subvert the host immune response in ways that promote its colonization and facilitate the outgrowth of the surrounding microbial community. The focus of this review is to discuss at the molecular level how P. gingivalis subverts leukocytes to create a favorable environment for a select community of bacteria that, in turn, adversely affects the periodontal tissues. PMID:25654623

  7. Infection with Porphyromonas gingivalis exacerbates endothelial injury in obese mice.

    Directory of Open Access Journals (Sweden)

    Min Ao

    Full Text Available BACKGROUND: A number of studies have revealed a link between chronic periodontitis and cardiovascular disease in obese patients. However, there is little information about the influence of periodontitis-associated bacteria, Porphyromonas gingivalis (Pg, on pathogenesis of atherosclerosis in obesity. METHODS: In vivo experiment: C57BL/6J mice were fed with a high-fat diet (HFD or normal chow diet (CD, as a control. Pg was infected from the pulp chamber. At 6 weeks post-infection, histological and immunohistochemical analysis of aortal tissues was performed. In vitro experiment: hTERT-immortalized human umbilical vein endothelial cells (HuhT1 were used to assess the effect of Pg/Pg-LPS on free fatty acid (FFA induced endothelial cells apoptosis and regulation of cytokine gene expression. RESULTS: Weaker staining of CD31 and increased numbers of TUNEL positive cells in aortal tissue of HFD mice indicated endothelial injury. Pg infection exacerbated the endothelial injury. Immunohistochemically, Pg was detected deep in the smooth muscle of the aorta, and the number of Pg cells in the aortal wall was higher in HFD mice than in CD mice. Moreover, in vitro, FFA treatment induced apoptosis in HuhT1 cells and exposure to Pg-LPS increased this effect. In addition, Pg and Pg-LPS both attenuated cytokine production in HuhT1 cells stimulated by palmitate. CONCLUSIONS: Dental infection of Pg may contribute to pathogenesis of atherosclerosis by accelerating FFA-induced endothelial injury.

  8. Porphyromonas gulae Has Virulence and Immunological Characteristics Similar to Those of the Human Periodontal Pathogen Porphyromonas gingivalis.

    Science.gov (United States)

    Lenzo, Jason C; O'Brien-Simpson, Neil M; Orth, Rebecca K; Mitchell, Helen L; Dashper, Stuart G; Reynolds, Eric C

    2016-09-01

    Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals-P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa-for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Honey – a potential agent against Porphyromonas gingivalis: an in vitro study

    Science.gov (United States)

    2014-01-01

    Background Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. Methods One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. Results 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 – 20 mg/l, and for propolis 20 mg/l – 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. Conclusions Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component. PMID:24666777

  10. Inhibition of gingipains prevents Porphyromonas gingivalis-induced preterm birth and fetal death in pregnant mice.

    Science.gov (United States)

    Takii, Ryosuke; Kadowaki, Tomoko; Tsukuba, Takayuki; Yamamoto, Kenji

    2018-04-05

    Accumulating epidemiological evidence indicates that infection with Porphyromonas gingivalis which is a major periodontal pathogen, causes preterm birth and low birth weight. However, virulence factors of P. gingivalis responsible for preterm birth/low birth weight remain to be elucidated. In this study, using P. gingivalis-infected pregnant mice as an in vivo model, we investigated whether gingipains-cysteine proteinases produced by P. gingivalis-affect preterm birth and low birth weight. We found that intravenous infection of pregnant mice with P. gingivalis induced higher accumulation of the bacterium in the placenta than that in other organs. Compared to infection with P. gingivalis wild-type, infection with a gingipain-deficient P. gingivalis mutant KDP136 led to significant reduction in preterm birth and pregnancy loss. Although repetitive low-level infections of P. gingivalis failed to induce preterm birth and fetal death, it induced suppressive effects on IFN-γ production. Therapeutically, treatment with ginginpain inhibitors prevented fetal death and preterm birth caused by P. gingivalis infection and resulted in recovery of IFN-γ suppression caused by repetitive chronic P. gingivalis infection. These results indicate that gingipains are major virulence factors of P. gingivalis responsible for preterm birth/low birth, and gingipain inhibitors may be useful not only as a therapeutic agent for periodontal diseases, but also as a preventive medicine for preterm birth/low birth weight. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Diagnostic evaluation of a nanobody with picomolar affinity toward the protease RgpB from Porphyromonas gingivalis

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Leonard, Paul; Kaczmarek, Jakub

    2011-01-01

    Porphyromonas gingivalis is one of the major periodontitis-causing pathogens. P. gingivalis secretes a group of proteases termed gingipains, and in this study we have used the RgpB gingipain as a biomarker for P. gingivalis. We constructed a naive camel nanobody library and used phage display...

  12. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Science.gov (United States)

    Leclerc, Julia; Rosenfeld, Eric; Trainini, Mathieu; Martin, Bénédicte; Meuric, Vincent; Bonnaure-Mallet, Martine; Baysse, Christine

    2015-01-01

    Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  13. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  14. Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue.

    Directory of Open Access Journals (Sweden)

    Lianyi Zhang

    Full Text Available PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II per monomer with an overall dissociation constant Kd 2.0 x 10(-11 M at pH 7.5. PgMntR also bound two Fe(II with distinct binding affinities, Kd1 2.5 x 10(-10 M and Kd2 ≤ 6.0 x 10(-8 M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.

  15. Development and evaluation of a saliva-based chair-side diagnostic for the detection of Porphyromonas gingivalis.

    Science.gov (United States)

    O'Brien-Simpson, Neil M; Burgess, Kate; Brammar, Gail C; Darby, Ivan B; Reynolds, Eric C

    2015-01-01

    Porphyromonas gingivalis is a key pathogen in the polymicrobial biofilm that is associated with the oral disease chronic periodontitis. A number of studies have shown that in humans the level of P. gingivalis in the polymicrobial biofilm is positively correlated with disease progression. The aim of this study was to develop a P. gingivalis diagnostic that has high specificity and sensitivity for P. gingivalis using a range of laboratory and clinical isolates and then compare the efficacy of the diagnostic with RTPCR using samples from chronic periodontitis patients and age- and sex-matched healthy controls. Key parameters for the kit were to use saliva as the biological fluid as this is a most convenient medium for chair-side sampling and to give a positive reading for the reported threshold for detection of 5×10(5) P. gingivalis cells/mL that indicates disease progression. We initially screened a range of monoclonal antibodies for recognition of the P. gingivalis conserved virulence factor RgpA-Kgp complex and identified two mAbs that could be used in a capture and detection ELISA system. These mAbs were used to formulate and manufacture the GC P. gingivalis saliva diagnostic kit used in the study. To validate the saliva kit, saliva (P. gingivalis free) was spiked with known concentrations of viable P. gingivalis whole cells of W50, 381, A7A1-28, and ATCC 33277; P. gingivalis clinical isolates; P. gingivalis vesicles; and the secreted form of the RgpA-Kgp complex. Laboratory findings indicated that the kit was able to detect all laboratory and clinical isolate strains of P. gingivalis at 5×10(4)/mL to 5×10(5)/mL. It was also able to detect the RgpA-Kgp complex and vesicles at 5×10(4) and 5×10(5) cell equivalent doses, respectively. Saliva and plaque were then collected from 50 subjects with moderate-severe chronic periodontitis and 50 age- and sex-matched subjects with healthy periodontium. Real-time PCR was utilised to analyse levels of P. gingivalis in both

  16. Development and evaluation of a saliva-based chair-side diagnostic for the detection of Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Neil M. O'Brien-Simpson

    2015-09-01

    Full Text Available Porphyromonas gingivalis is a key pathogen in the polymicrobial biofilm that is associated with the oral disease chronic periodontitis. A number of studies have shown that in humans the level of P. gingivalis in the polymicrobial biofilm is positively correlated with disease progression. The aim of this study was to develop a P. gingivalis diagnostic that has high specificity and sensitivity for P. gingivalis using a range of laboratory and clinical isolates and then compare the efficacy of the diagnostic with RTPCR using samples from chronic periodontitis patients and age- and sex-matched healthy controls. Key parameters for the kit were to use saliva as the biological fluid as this is a most convenient medium for chair-side sampling and to give a positive reading for the reported threshold for detection of 5×105 P. gingivalis cells/mL that indicates disease progression. We initially screened a range of monoclonal antibodies for recognition of the P. gingivalis conserved virulence factor RgpA-Kgp complex and identified two mAbs that could be used in a capture and detection ELISA system. These mAbs were used to formulate and manufacture the GC P. gingivalis saliva diagnostic kit used in the study. To validate the saliva kit, saliva (P. gingivalis free was spiked with known concentrations of viable P. gingivalis whole cells of W50, 381, A7A1-28, and ATCC 33277; P. gingivalis clinical isolates; P. gingivalis vesicles; and the secreted form of the RgpA-Kgp complex. Laboratory findings indicated that the kit was able to detect all laboratory and clinical isolate strains of P. gingivalis at 5×104/mL to 5×105/mL. It was also able to detect the RgpA-Kgp complex and vesicles at 5×104 and 5×105 cell equivalent doses, respectively. Saliva and plaque were then collected from 50 subjects with moderate–severe chronic periodontitis and 50 age- and sex-matched subjects with healthy periodontium. Real-time PCR was utilised to analyse levels of P

  17. Effects of Aging on Endotoxin Tolerance Induced by Lipopolysaccharides Derived from Porphyromonas gingivalis and Escherichia coli

    OpenAIRE

    Ying Sun; Hui Li; Mi-Fang Yang; Wei Shu; Meng-Jun Sun; Yan Xu

    2012-01-01

    BACKGROUND: Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and Escherichia coli...

  18. Inhibitory Effect of Enterococcus faecium WB2000 on Volatile Sulfur Compound Production by Porphyromonas gingivalis

    OpenAIRE

    Suzuki, Nao; Higuchi, Takuya; Nakajima, Masato; Fujimoto, Akie; Morita, Hiromitsu; Yoneda, Masahiro; Hanioka, Takashi; Hirofuji, Takao

    2016-01-01

    Volatile sulfur compounds (VSCs) produced by oral anaerobes are the major compounds responsible for oral malodor. Enterococcus faecium WB2000 is recognized as an antiplaque probiotic bacterium. In this study, the effect of E. faecium WB2000 on VSC production by Porphyromonas gingivalis was evaluated, and the mechanism of inhibition of oral malodor was investigated. P. gingivalis ATCC 33277 was cultured in the presence of four lactic acid bacteria, including E. faecium WB2000. Subsequently, P....

  19. Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease.

    Science.gov (United States)

    Yamaguchi, Yohei; Kurita-Ochiai, Tomoko; Kobayashi, Ryoki; Suzuki, Toshihiko; Ando, Tomohiro

    2017-01-01

    Porphyromonas gingivalis is involved in the pathogenesis of chronic inflammatory periodontal disease. Recent studies have suggested that the NLRP3 inflammasome plays an important role in the development of chronic inflammation. We investigated a possible association between the inflammasome in gingival inflammation and bone loss induced by P. gingivalis infection using NLRP3-deficient mice. Wild-type and NLRP3-deficient mice were injected orally with P. gingivalis. We assessed alveolar bone loss, expression of pro-interleukin (IL)-1β, pro-IL-18, receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) in gingival tissue, as well as IL-1β, IL-18, and IL-6 production and caspase-1 activity in peritoneal macrophages. Porphyromonas gingivalis challenge significantly increased alveolar bone loss; gingival gene expression of pro-IL-1β, pro-IL-18, and RANKL; production of IL-1β, IL-18, and IL-6; and caspase-1 activity in peritoneal macrophages of wild-type mice, but did not affect NLRP3-deficient mice. Meanwhile, OPG mRNA expression in gingival tissue and peritoneal IL-6 production were significantly higher in NLRP3-knockout mice. Porphyromonas gingivalis activated innate immune cells via the NLRP3 inflammasome. These results suggest that the NLRP3 inflammasome, followed by a response from the IL-1 family, is critical in periodontal disease induced by wild-type P. gingivalis challenge via sustained inflammation.

  20. Porphyromonas gingivalis: keeping the pathos out of the biont

    Directory of Open Access Journals (Sweden)

    Carla Cugini

    2013-04-01

    Full Text Available The primary goal of the human microbiome initiative has been to increase our understanding of the structure and function of our indigenous microbiota and their effects on human health and predisposition to disease. Because of its clinical importance and accessibility for in vivo study, the oral biofilm is one of the best-understood microbial communities associated with the human body. Studies have shown that there is a succession of select microbial interactions that directs the maturation of a defined community structure, generating the formation of dental plaque. Although the initiating factors that lead to disease development are not clearly defined, in many individuals there is a fundamental shift from a health-associated biofilm community to one that is pathogenic in nature and a central player in the pathogenic potential of this community is the presence of Porphyromonas gingivalis. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont and proliferate to high cell numbers in periodontal lesions, which is attributed to its arsenal of specialized virulence factors. Hence, this organism is regarded as a primary etiologic agent of periodontal disease progression. In this review, we summarize some of the latest information regarding what is known about its role in periodontitis, including pathogenic potential as well as ecological and nutritional parameters that may shift this commensal to a virulent state. We also discuss parallels between the development of pathogenic biofilms and the human cellular communities that lead to cancer, specifically we frame our viewpoint in the context of ‘wounds that fail to heal’.

  1. Periodontitis and Porphyromonas gingivalis in preclinical stage of arthritis patients.

    Directory of Open Access Journals (Sweden)

    Motomu Hashimoto

    Full Text Available To determine whether the presence of periodontitis (PD and Porphyromonas gingivalis (Pg in the subgingival biofilm associates with the development of rheumatoid arthritis (RA in treatment naïve preclinical stage of arthritis patients.We conducted a prospective cohort study of 72 consecutive patients with arthralgia who had never been treated with any anti-rheumatic drugs or glucocorticoids. Periodontal status at baseline was assessed by dentists. PD was defined stringently by the maximal probing depth≧4 mm, or by the classification by the 5th European Workshop in Periodontology (EWP in 2005 using attachment loss. Up to eight plaque samples were obtained from each patient and the presence of Pg was determined by Taqman PCR. The patients were followed up for 2 years and introduction rate of methotrexate (MTX treatment on the diagnosis of RA was compared in patients with or without PD or Pg.Patients with PD (probing depth≧4mm had higher arthritis activity (p = 0.02 and higher risk for future introduction of MTX treatment on the diagnosis of RA during the follow up than patients without PD (Hazard ratio 2.68, p = 0.03. Arthritis activity and risk for MTX introduction increased with the severity of PD assessed by EWP, although not statistically significant. On the other hand, presence of Pg was not associated with arthritis activity (p = 0.72 or the risk for MTX introduction (p = 0.45.In treatment naïve arthralgia patients, PD, but not the presence of Pg, associates with arthritis activity and future requirement of MTX treatment on the diagnosis of RA.

  2. Effect of simulated high-altitude hypoxia on Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Jing-jing HUANG

    2012-04-01

    Full Text Available Objective To investigate the effects of simulated high-altitude hypoxia on the detection rate and endotoxin level of Porphyromonas gingivalis (Pg of subgingival bacterial plagues in rabbit periodontitis models. Methods Forty male rabbits were randomly divided into four groups, namely, normoxia control group (group A1, normoxia experimental group (group A2, hypoxia control group (group B1, and hypoxia experimental group (group B2. Each group included 10 rabbits. Periodontitis models was established in groups A2 and B2 combined by ligating both lower central incisors with steel ligature and feeding periodontitis diets, and then the animals were housed in a hypoxia chamber (simulating 5000m altitude, 23h per day. Groups A1 and A2 were raised normal diet in normoxia environment. After eight weeks, the rabbit periodontitis model was evaluated by observing radiographic features of the X-ray films and histopathologic changes under a light microscope. Subgingival plague sample from periodontal pockets on both lower central incisors were collected for isolation, culture and identification of Pg, and for detection of the endotoxin level. Results The histopathologic observation and X-ray examination results showed that the periodontitis of rabbits in group B2 was significantly more severe than that in group A2. The detection rates of Pg in group A1, A2, B1 and B2 was 0%, 50%, 55% and 95% (P < 0.05. Pg detection rate and endotoxin level were higher in group B2 (95%, 0.46±0.04EU/ml than in group A2 (50%, 0.38±0.02EU/ml, P < 0.05. Conclusions The process speed and damage degree of periodontitis in hypoxic environment is higher than that in normoxic environment. Moreover, the hypoxic environment is more suitable in the colonization of Pg with higher endotoxin level in subgingival plague.

  3. Structure of the lysine specific protease Kgp from Porphyromonas gingivalis, a target for improved oral health.

    Science.gov (United States)

    Gorman, Michael A; Seers, Christine A; Michell, Belinda J; Feil, Susanne C; Huq, N Laila; Cross, Keith J; Reynolds, Eric C; Parker, Michael W

    2015-01-01

    The oral pathogen Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Gingipains, the principle virulence factors of P. gingivalis are multidomain, cell-surface proteins containing a cysteine protease domain. The lysine specific gingipain, Kgp, is a critical virulence factor of P. gingivalis. We have determined the X-ray crystal structure of the lysine-specific protease domain of Kgp to 1.6 Å resolution. The structure provides insights into the mechanism of substrate specificity and catalysis. © 2014 The Protein Society.

  4. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences

    Science.gov (United States)

    Tribble, Gena D; Kerr, Jennifer E; Wang, Bing-Yan

    2013-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that colonizes the human oral cavity. It is implicated in the development of periodontitis, a chronic periodontal disease affecting half of the adult population in the USA. To survive in the oral cavity, these bacteria must colonize dental plaque biofilms in competition with other bacterial species. Long-term survival requires P. gingivalis to evade host immune responses, while simultaneously adapting to the changing physiology of the host and to alterations in the plaque biofilm. In reflection of this highly variable niche, P. gingivalis is a genetically diverse species and in this review the authors summarize genetic diversity as it relates to pathogenicity in P. gingivalis. Recent studies revealing a variety of mechanisms by which adaptive changes in genetic content can occur are also reviewed. Understanding the genetic plasticity of P. gingivalis will provide a better framework for understanding the host–microbe interactions associated with periodontal disease. PMID:23642116

  5. Suppression of inflammatory responses of human gingival fibroblasts by gingipains from Porphyromonas gingivalis.

    Science.gov (United States)

    Palm, E; Khalaf, H; Bengtsson, T

    2015-02-01

    The interaction between human gingival fibroblasts (HGFs) and Porphyromonas gingivalis plays an important role in the development and progression of periodontitis. Porphyromonas gingivalis possesses several virulence factors, including cysteine proteases, the arginine-specific (Rgp) and lysine-specific (Kgp) gingipains. Studying the mechanisms that P. gingivalis, and its derived virulence, use to propagate and interact with host cells will increase the understanding of the development and progression of periodontitis. In this study, we aimed to elucidate how P. gingivalis influences the inflammatory events in HGFs regarding transforming growth factor-β1 (TGF-β1 ), CXCL8, secretory leucocyte protease inhibitor (SLPI), c-Jun and indoleamine 2,3-dioxygenase (IDO). HGFs were inoculated for 6 and 24 h with the wild-type strains ATCC 33277 and W50, two gingipain-mutants of W50 and heat-killed ATCC 33277. The P. gingivalis regulated CXCL8 and TGF-β1 in HGFs, and the kgp mutant gave significantly higher immune response with increased CXCL8 (P gingivalis (P gingivalis contributes to the tissue destruction associated with periodontitis. Furthermore, we found that P. gingivalis inhibits the expression of the antimicrobial IDO, as well as upregulating c-Jun (P gingivalis both triggers and suppresses the immune response in HGFs. Consequently, we suggest that the pathogenic effects of P. gingivalis, and especially the activity of the gingipains on the inflammatory and immune response of HGFs, are crucial in periodontitis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains

    NARCIS (Netherlands)

    Kunnen, A.; Dekker, D.C.; van Pampus, M.G.; Harmsen, H.J.; Aarnoudse, J.G.; Abbas, F.; Faas, M.M.

    2012-01-01

    Objective: Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their

  7. Genotype variation and capsular serotypes of Porphyromonas gingivalis from chronic periodontitis and periodontal abscesses

    NARCIS (Netherlands)

    Yoshino, Takashi; Laine, Marja L.; van Winkelhoff, Arie Jan; Dahlen, Gunnar

    2007-01-01

    Porphyromonas gingivalis is considered an important pathogen in periodontal disease. While this organism expresses a number of virulence factors, no study combining different virulence polymorphisms has, so far, been conducted. The occurrence of combined virulence (Cv) genotypes in 62 isolates of P.

  8. Differential capacity for complement receptor-mediated immune evasion by Porphyromonas gingivalis depending on the type of innate leukocyte.

    Science.gov (United States)

    Hajishengallis, G; Krauss, J L; Jotwani, R; Lambris, J D

    2017-04-01

    The complement system plays a central role in immunity and inflammation, although certain pathogens can exploit complement to undermine protective immunity. In this context, the periodontal keystone pathogen Porphyromonas gingivalis was previously shown by our group to evade killing by neutrophils or macrophages through exploitation of complement C5a receptor 1 (C5aR1) and complement receptor 3 (CR3). Here, we examined whether P. gingivalis uses complement receptors to also subvert killing by dendritic cells. In line with earlier independent studies, intracellular viable P. gingivalis bacteria could be recovered from mouse bone-marrow-derived dendritic cells (BMDC) or human monocyte-derived dendritic cells (MDDC) exposed to the pathogen. However, in the presence of C5a, the intracellular survival of P. gingivalis was significantly decreased in a C5aR1-dependent way. Further work using wild-type and receptor-knockout BMDC showed that, in the presence of C3a, the C3a receptor (C3aR) similarly enhanced the intracellular killing of P. gingivalis. In contrast, C5aR2, an alternative receptor for C5a (G protein-coupled receptor 77), was associated with increased intracellular P. gingivalis viable counts, consistent with the notion that C5aR2 functions as a negative regulator of C5aR1 activity. Moreover, P. gingivalis failed to use CR3 as a phagocytic receptor in BMDC, in contrast to our earlier findings in macrophages where CR3-mediated uptake promotes P. gingivalis survival. Collectively, these data show that complement receptors mediate cell-type-specific effects on how innate leukocytes handle P. gingivalis, which appears to exploit complement to preferentially evade those cells (neutrophils and macrophages) that are most often encountered in its predominant niche, the periodontal pocket. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Comparative genomics and proteomics of 13 Porphyromonas gingivalis strains

    Directory of Open Access Journals (Sweden)

    Tsute Chen

    2015-09-01

    Full Text Available At the current time, genome sequences of a total of 13 Porphyromonas gingivalis strains are available, including five completed genomes (strains ATCC 33277, HG66, TDC60, JCVISC001, and W83 and eight high-coverage draft sequences (F0185, F0566, F0568, F0569, F0570, SJD2, W4087, and W50 that are assembled into fewer than 300 contigs. This study compared these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. There are four copies of 16S rRNA gene sequences in each of the strains of ATCC 33277, HG66, TDC60, and W83 and one copy in the other nine genomes. These 25 16S rRNA sequences represent only 13 unique sequences. The five copies in W83 and W50 are identical and the three copies in HG66 are identical to the four copies in ATCC 33277, suggesting close evolutionary lineage between W83 and W50, as well as HG66 and ATCC 33277. Genome-wide comparison based on “Rapid Annotation using Subsystem Technology” (RAST also showed that for the overall biological functions of the genomes, W83 is closer to W50, and HG66 to ATCC33277, than to other genomes. The comparison of the RAST subsystems identified biological functions that are unique to individual, shared by some, or by all genomes. Functions unique to individual genomes include: a tetracycline resistance protein TetQ, DNA metabolism gene YcfH, and DNA repair gene exonuclease SbcC (only in SJD2; very-short-patch mismatch repair endonuclease and a phage packaging terminase similar to Bacteroides phage B124-14 (in W4087; an internalin similar to a Listeria surface virulence protein (W83; a Type I restriction-modification system (F0569; an iron acquisition/heme transport protein (F0566; colicin I receptor and carbamoylputrescine amidase (W50; L-serine dehydratase (TDC60; and spermidine synthase and ribokinase (JCVISC001. The results also identified biological functions that are missing in individual or several genomes. For

  10. Porphyromonas gingivalis infection induced reproductive abnormalities in mice

    Directory of Open Access Journals (Sweden)

    Ke-min WEI

    2016-09-01

    Full Text Available Objective  To establish a pregnant mouse model infected with Porphyromonas gingivalis (P.g, and investigate the relationship of P.g infection to prematurity and associated birth abnormalities. Methods  Fifty two female mice were randomly divided into P.g infection group (n=26 and control group (n=26. Mice in P.g infection group were anesthetized, the pulp cavity of the first molar was opened and directly injected with W83 strain P.g, and the tooth was then filled. Six weeks after infection, the mice were mated with males and the formation of vagina plug was recorded as 0d. The P.g extracted from the granulation tissue in tooth root was cultivated. The pregnant days and the connatal body weight of infant mouse were recorded, the serum and placental tissue were collected to assess the systemic and local conditions during pregnancy. Results  After periodontal P.g infection, the TNF-α, IL-17, IL -6 and IL -1βlevels in peripheral blood sera increased significantly. The average gestation was shorter in P.g infection group (18.25d than in control group (20.45d, P<0.01, and the connatal body weight of infant mouse was also less in the former than in the latter (P<0.01. Immunohistochemistry and PCR revealed the existence of P.g in placenta tissue. P.g infection caused premature rupture of membranes, placental abruption, degeneration and necrosis of trophoblastic and endothelial cells; significantly increased the number of neutrophils and macrophages in placenta tissues, and increased the expression of local TNF-αand COX-2 inflammatory factors at the same time. In P.g infection group, the expressions of CD-31 in endothelial cells of placenta tissues and the apoptotic factor caspase-3 decreased, and the DNA oxidative damage index 8-OHdG increased. Conclusions  P.g infection in female mice may cause premature birth and lower connatal body weight of infant mouse, and increase the expression of serous and local inflammatory factors in the placenta

  11. The efficacy of sarang semut extract (Myrmecodia pendens Merr & Perry in inhibiting Porphyromonas gingivalis biofilm formation

    Directory of Open Access Journals (Sweden)

    Zulfan M. Alibasyah

    2017-06-01

    Full Text Available Background: Porphyromonas gingivalis (P. gingivalis is a pathogenic bacteria present in the oral cavity involved in the pathogenesis of chronic periodontitis and biofilm. This mass of microorganisms represents one of the virulent factors of P. gingivalis which plays an important role as an attachment initiator in host cells. Sarang semut is a natural material possessing the ability to inhibit the growth of P. gingivalis. Purpose: This study aims to analyze the effect of sarang semut extract on the formation of P. gingivalis biofilm. Methods: The study used methanol sarang semut extract and P. gingivalis ATCC 33277 and phosphomycin as a positive control. Treatment was initiated by means of culturing. Biofilm test and P. gingivalis biofilm formation observation were subsequently performed by means of a light microscope at a magnification of 400x. Results: The formation of P. gingivalis biofilms tended to increase at 3, 6, and 9 hours. Results of the violet crystal test showed that concentrations of 100% and 75% of the sarang semut extract successfully inhibited the formation of P. gingivalis biofilm according to the incubation time. Meanwhile, the sarang semut extracts at concentrations of 50%, 25%, 12.5%, and 6.125% resulted in weak inhibition of the formation of P. gingivalis biofilm. The biofilm mass profile observed by a microscope tended to decrease as an indicator of the effects of the sarang semut extract. Conclusion: Sarang semut extract can inhibit the formation of P. gingivalis biofilm, especially at concentrations of 100% and 75%. Nevertheless, phosphomycin has stronger antibiofilm of P. gingivalis effects than those of the sarang semut extract at all of the concentrations listed above.

  12. Activation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated atherosclerosis.

    Science.gov (United States)

    Yamaguchi, Yohei; Kurita-Ochiai, Tomoko; Kobayashi, Ryoki; Suzuki, Toshihiko; Ando, Tomohiro

    2015-06-01

    Porphyromonas gingivalis has been shown to accelerate atherosclerotic lesion development in hyperlipidemic animals. Atherosclerosis is a disease characterized by inflammation of the arterial wall. Recent studies have suggested that the NLRP3 inflammasome plays an important role in the development of vascular inflammation and atherosclerosis. Herein, we investigated a possible association between the inflammasome in atherosclerosis and periodontal disease induced by P. gingivalis infection using apolipoprotein E-deficient, spontaneously hyperlipidemic (Apoe(shl)) mice. Oral infection with wild-type (WT) P. gingivalis significantly increased the area of aortic sinus covered with atherosclerotic plaque and alveolar bone loss, compared with KDP136 (gingipain-null mutant) or KDP150 (FimA-deficient mutant) challenge. WT challenge also increased IL-1β, IL-18 and TNF-α production in peritoneal macrophages, and gingival or aortic gene expression of Nod-like receptor family, pyrin domain containing 3 (NLRP3), pro-IL-1β, pro-IL-18 and pro-caspase-1. Porphyromonas gingivalis genomic DNA was detected more in the aorta, gingival tissue, liver and spleen of WT-challenged mice than those in KDP136- or KDP150-challenged mice. We conclude that WT P. gingivalis activates innate immune cells through the NLRP3 inflammasome compared with KDP136 or KDP150. The NLRP3 inflammasome may play a critical role in periodontal disease and atherosclerosis induced by P. gingivalis challenge through sustained inflammation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Detection of Bacteroides forsythus and Porphyromonas gingivalis in ...

    African Journals Online (AJOL)

    ... detection method showed high sensitivity and high specificity to directly detect B. forsythus, P. gingivalis or other pulpal microorganisms from samples of root canal infections. The results indicated that B. forsythus or P. gingivalis might be a member of the microbiota associated with chronic periapical periodontitis and there ...

  14. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases

    Directory of Open Access Journals (Sweden)

    Masaaki Nakayama

    2017-11-01

    Full Text Available Porphyromonas gingivalis (P. gingivalis is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR, also called HGP15, has the function of induction of interleukin-8 (IL-8 expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.

  15. Porphyromonas gingivalis Gingipain-Dependently Enhances IL-33 Production in Human Gingival Epithelial Cells

    Science.gov (United States)

    Tada, Hiroyuki; Matsuyama, Takashi; Nishioka, Takashi; Hagiwara, Makoto; Kiyoura, Yusuke; Shimauchi, Hidetoshi; Matsushita, Kenji

    2016-01-01

    The cytokine IL-33 is constitutively expressed in epithelial cells and it augments Th2 cytokine-mediated inflammatory responses by regulating innate immune cells. We aimed to determine the role of the periodontal pathogen, Porphyromonas gingivalis, in the enhanced expression of IL-33 in human gingival epithelial cells. We detected IL-33 in inflamed gingival epithelium from patients with chronic periodontitis, and found that P. gingivalis increased IL-33 expression in the cytoplasm of human gingival epithelial cells in vitro. In contrast, lipopolysaccharide, lipopeptide, and fimbriae derived from P. gingivalis did not increase IL-33 expression. Specific inhibitors of P. gingivalis proteases (gingipains) suppressed IL-33 mRNA induction by P. gingivalis and the P. gingivalis gingipain-null mutant KDP136 did not induce IL-33 expression. A small interfering RNA for protease-activated receptor-2 (PAR-2) as well as inhibitors of phospholipase C, p38 and NF-κB inhibited the expression of IL-33 induced by P. gingivalis. These results indicate that the PAR-2/IL-33 axis is promoted by P. gingivalis infection in human gingival epithelial cells through a gingipain-dependent mechanism. PMID:27058037

  16. Association of the invasion ability of Porphyromonas gingivalis with the severity of periodontitis.

    Science.gov (United States)

    Baek, Keum Jin; Ji, Suk; Kim, Yong Chul; Choi, Youngnim

    2015-01-01

    Porphyromonas gingivalis is one of the well-characterized periodontal pathogens involved in periodontitis. The invasive and proteolytic activities of P. gingivalis clinical isolates have been shown to be associated with heterogenic virulence, as determined in a mouse abscess model. The aims of the present study were to identify a P. gingivalis strain with a low virulence among clinical isolates, based on its invasive ability and cytokine proteolytic activities, and to explore the preferential degradation of a certain cytokine by P. gingivalis. P. gingivalis ATCC 33277, W50, and 10 clinical isolates were used. After incubating bacteria with IL-4, IL-6, IL-10, IL-17A, TNFα, IFNγ, and IL-1α, the amounts of remaining cytokines were determined by ELISA. Invasion ability was measured by a flow cytometric invasion assay. There was inter-strain variability both in the cytokine proteolytic activities and invasion ability. In addition, differential degradation of cytokines by P. gingivalis was observed: while IFNγ and IL-17A were almost completely degraded, inflammatory cytokines TNFα and IL-1α were less susceptible to degradation. Interestingly, the invasion index, but not cytokine proteolytic activities, of P. gingivalis had strong positive correlations with clinical parameters of subjects who harbored the isolates. Therefore, the invasive ability of P. gingivalis is an important virulence factor, and the bacterial invasion step may be a good target for new therapeutics of periodontitis.

  17. Porphyromonas gingivalis suppresses invasion of Fusobacterium nucleatum into gingival epithelial cells

    Science.gov (United States)

    Jung, Young-Jung; Jun, Hye-Kyoung; Choi, Bong-Kyu

    2017-01-01

    ABSTRACT Invasion of periodontal pathogens into periodontal tissues is an important step that can cause tissue destruction in periodontal diseases. Porphyromonas gingivalis is a keystone pathogen and its gingipains are key virulence factors. Fusobacterium nucleatum is a bridge organism that mediates coadhesion of disease-causing late colonizers such as P. gingivalis and early colonizers during the development of dental biofilms. The aim of this study was to investigate how P. gingivalis, in particular its gingipains, influences the invasion of coinfecting F. nucleatum into gingival epithelial cells. When invasion of F. nucleatum was analyzed after 4 h of infection, invasion of F. nucleatum was suppressed in the presence of P. gingivalis compared with during monoinfection. However, coinfection with a gingipain-null mutant of P. gingivalis did not affect invasion of F. nucleatum. Inhibition of PI3K reduced invasion of F. nucleatum. P. gingivalis inactivated the PI3K/AKT pathway, which was also dependent on gingipains. Survival of intracellular F. nucleatum was promoted by P. gingivalis with Arg gingipain mutation. The results suggest that P. gingivalis, in particular its gingipains, can affect the invasion of coinfecting F. nucleatum through modulating intracellular signaling of the host cells. PMID:28748028

  18. Porphyromonas gingivalis Initiates a Mesenchymal-like Transition through ZEB1 in Gingival Epithelial Cells

    Science.gov (United States)

    Sztukowska, Maryta N.; Ojo, Akintunde; Ahmed, Saira; Carenbauer, Anne L.; Wang, Qian; Shumway, Brain; Jenkinson, Howard F.; Wang, Huizhi; Darling, Douglas S.; Lamont, Richard J.

    2016-01-01

    Summary The oral anaerobe Porphyromonas gingivalis is associated with the development of cancers including oral squamous cell carcinoma (OSCC). Here we show that infection of gingival epithelial cells with P. gingivalis induces expression and nuclear localization of the ZEB1 transcription factor which controls epithelial-mesenchymal transition (EMT). P. gingivalis also caused an increase in ZEB1 expression as a dual species community with Fusobacterium nucleatum or Streptococcus gordonii. Increased ZEB1 expression was associated with elevated ZEB1 promoter activity and did not require suppression of the miR-200 family of micro RNAs. P. gingivalis strains lacking the FimA fimbrial protein were attenuated in their ability to induce ZEB1 expression. ZEB1 levels correlated with an increase in expression of mesenchymal markers, including vimentin and MMP-9, and with enhanced migration of epithelial cells into matrigel. Knockdown of ZEB1 with siRNA prevented the P. gingivalis-induced increase in mesenchymal markers and epithelial cell migration. Oral infection of mice by P. gingivalis increased ZEB1 levels in gingival tissues, and intracellular P. gingivalis were detected by antibody staining in biopsy samples from OSCC. These findings indicate that FimA-driven ZEB1 expression could provide a mechanistic basis for a P. gingivalis contribution to OSCC. PMID:26639759

  19. Immunoglobulin G antibodies against Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans in cardiovascular disease and periodontitis

    DEFF Research Database (Denmark)

    Damgaard, Christian; Reinholdt, Jesper; Enevold, Christian

    2017-01-01

    Objectives: The aim was to elucidate whether levels of circulating antibodies to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis correlate to loss of attachment, as a marker for periodontitis and cardiovascular disease (CVD). Design: Sera were collected from 576 participants...... by disintegration of bacteria. Results: Levels of antibodies against P. gingivalis (OR = 1.48) and A. actinomycetemcomitans (1.31) associated with periodontitis, as determined by univariable logistic regression analysis. These antibody levels also associated with CVD (1.17 and 1.37), respectively, However, after....... Increased levels of antibodies against P. gingivalis (1.34) remained associated with periodontitis after adjusting for other risk factors. Conclusions: CVD and periodontitis were associated with levels of IgG antibodies to P. gingivalis or A. actinomycetemcomitans in univariable analyses, but only...

  20. Moderate effect of enamel matrix derivative (Emdogain Gel) on Porphyromonas gingivalis growth in vitro.

    Science.gov (United States)

    Walter, Clemens; Jawor, Przemyslaw; Bernimoulin, Jean-Pierre; Hägewald, Stefan

    2006-03-01

    The aim of this study was to analyse the antibacterial effects of Emdogain Gel or its constituents on the growth of the suspected periodontopathogen Porphyromonas gingivalis. The effects of the proteins of enamel matrix derivative (EMD), the commercial product Emdogain Gel or its vehicle propylene glycol alginate (PGA) (Straumann, Switzerland) on P. gingivalis growth were determined by two methods: broth dilution assay (BDA) and agar diffusion assay (ADA). BDA-Emdogain Gel inhibited moderately the growth of P. gingivalis, whereas EMD showed no effect. The PGA vehicle inhibited the growth completely. ADA-Emdogain Gel resulted in some inhibition in growth but was not significantly different from control. EMD revealed no zone of inhibition. PGA demonstrated statistically significant zones of inhibition. Emdogain Gel shows moderate antibacterial activities against P. gingivalis. These properties seem to be due to the PGA component of the gel preparation.

  1. Identification of Dipeptidyl-Peptidase (DPP5 and DPP7 in Porphyromonas endodontalis, Distinct from Those in Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Haruka Nishimata

    Full Text Available Dipeptidyl peptidases (DPPs that liberate dipeptides from the N-terminal end of oligopeptides are crucial for the growth of Porphyromonas species, anaerobic asaccharolytic gram negative rods that utilize amino acids as energy sources. Porphyromonas endodontalis is a causative agent of periapical lesions with acute symptoms and Asp/Glu-specific DPP11 has been solely characterized in this organism. In this study, we identified and characterized two P. endodontalis DPPs, DPP5 and DPP7. Cell-associated DPP activity toward Lys-Ala-4-methylcoumaryl-7-amide (MCA was prominent in P. endodontalis ATCC 35406 as compared with the Porphyromonas gingivalis strains ATCC 33277, 16-1, HW24D1, ATCC 49417, W83, W50, and HNA99. The level of hydrolysis of Leu-Asp-MCA by DPP11, Gly-Pro-MCA by DPP4, and Met-Leu-MCA was also higher than in the P. gingivalis strains. MER236725 and MER278904 are P. endodontalis proteins belong to the S9- and S46-family peptidases, respectively. Recombinant MER236725 exhibited enzymatic properties including substrate specificity, and salt- and pH-dependence similar to P. gingivalis DPP5 belonging to the S9 family. However, the kcat/Km figure (194 µM-1·sec-1 for the most potent substrate (Lys-Ala-MCA was 18.4-fold higher as compared to the P. gingivalis entity (10.5 µM-1·sec-1. In addition, P. endodontalis DPP5 mRNA and protein contents were increased several fold as compared with those in P. gingivalis. Recombinant MER278904 preferentially hydrolyzed Met-Leu-MCA and exhibited a substrate specificity similar to P. gingivalis DPP7 belonging to the S46 family. In accord with the deduced molecular mass of 818 amino acids, a 105-kDa band was immunologically detected, indicating that P. endodontalis DPP7 is an exceptionally large molecule in the DPP7/DPP11/S46 peptidase family. The enhancement of four DPP activities was conclusively demonstrated in P. endodontalis, and remarkable Lys-Ala-MCA-hydrolysis was achieved by qualitative and

  2. Identification of Dipeptidyl-Peptidase (DPP)5 and DPP7 in Porphyromonas endodontalis, Distinct from Those in Porphyromonas gingivalis.

    Science.gov (United States)

    Nishimata, Haruka; Ohara-Nemoto, Yuko; Baba, Tomomi T; Hoshino, Tomonori; Fujiwara, Taku; Shimoyama, Yu; Kimura, Shigenobu; Nemoto, Takayuki K

    2014-01-01

    Dipeptidyl peptidases (DPPs) that liberate dipeptides from the N-terminal end of oligopeptides are crucial for the growth of Porphyromonas species, anaerobic asaccharolytic gram negative rods that utilize amino acids as energy sources. Porphyromonas endodontalis is a causative agent of periapical lesions with acute symptoms and Asp/Glu-specific DPP11 has been solely characterized in this organism. In this study, we identified and characterized two P. endodontalis DPPs, DPP5 and DPP7. Cell-associated DPP activity toward Lys-Ala-4-methylcoumaryl-7-amide (MCA) was prominent in P. endodontalis ATCC 35406 as compared with the Porphyromonas gingivalis strains ATCC 33277, 16-1, HW24D1, ATCC 49417, W83, W50, and HNA99. The level of hydrolysis of Leu-Asp-MCA by DPP11, Gly-Pro-MCA by DPP4, and Met-Leu-MCA was also higher than in the P. gingivalis strains. MER236725 and MER278904 are P. endodontalis proteins belong to the S9- and S46-family peptidases, respectively. Recombinant MER236725 exhibited enzymatic properties including substrate specificity, and salt- and pH-dependence similar to P. gingivalis DPP5 belonging to the S9 family. However, the kcat/Km figure (194 µM-1·sec-1) for the most potent substrate (Lys-Ala-MCA) was 18.4-fold higher as compared to the P. gingivalis entity (10.5 µM-1·sec-1). In addition, P. endodontalis DPP5 mRNA and protein contents were increased several fold as compared with those in P. gingivalis. Recombinant MER278904 preferentially hydrolyzed Met-Leu-MCA and exhibited a substrate specificity similar to P. gingivalis DPP7 belonging to the S46 family. In accord with the deduced molecular mass of 818 amino acids, a 105-kDa band was immunologically detected, indicating that P. endodontalis DPP7 is an exceptionally large molecule in the DPP7/DPP11/S46 peptidase family. The enhancement of four DPP activities was conclusively demonstrated in P. endodontalis, and remarkable Lys-Ala-MCA-hydrolysis was achieved by qualitative and quantitative

  3. Cleavage of IgG1 in gingival crevicular fluid is associated with the presence of Porphyromonas gingivalis.

    Science.gov (United States)

    Guentsch, A; Hirsch, C; Pfister, W; Vincents, B; Abrahamson, M; Sroka, A; Potempa, J; Eick, S

    2013-08-01

    Immunoglobulin (Ig) G1 plays an important role in the adaptive immune response. Kgp, a lysine-specific cysteine protease from Porphyromonas gingivalis, specifically hydrolyses IgG1 heavy chains. The purpose of this study was to examine whether cleavage of IgG1 occurs in gingival crevicular fluid (GCF) in vivo, and whether there is any association with the presence of Porphyromonas gingivalis and other periodontopathogens. GCF was obtained from nine patients with aggressive periodontitis, nine with chronic periodontitis and five periodontally healthy individuals. The bacterial loads of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Treponema denticola, Prevotella intermedia and Tannerella forsythia were analysed by real-time polymerase chain reaction, and the presence and cleavage of IgG1 and IgG2 were determined using Western blotting. Kgp levels were measured by ELISA. Cleaved IgG1 was identified in the GCF from 67% of patients with aggressive periodontitis and in 44% of patients with chronic periodontitis. By contrast, no cleaved IgG1 was detectable in healthy controls. No degradation of IgG2 was detected in any of the samples, regardless of health status. Porphyromonas gingivalis was found in high numbers in all samples in which cleavage of IgG1 was detected (P Porphyromonas gingivalis (r = 0.425, P Porphyromonas gingivalis. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Dental Infection of Porphyromonas gingivalis Induces Preterm Birth in Mice.

    Directory of Open Access Journals (Sweden)

    Min Ao

    Full Text Available Epidemiological studies have revealed a link between dental infection and preterm birth or low birth weight (PTB/LBW, however, the underlying mechanisms remain unclear. Progress in understanding the associated mechanisms has been limited in part by lack of an animal model for chronic infection-induced PTB/LBW, mimicking pregnancy under conditions of periodontitis. We aimed to establish a mouse model of chronic periodontitis in order to investigate the link between periodontitis and PTB/LBW.To establish chronic inflammation beginning with dental infection, we surgically opened mouse (female, 8 weeks old 1st molar pulp chambers and directly infected with w83 strain Porphyromonas gingivalis (P.g., a keystone periodontal pathogen. Mating was initiated at 6 wks post-infection, by which time dental granuloma tissue had developed and live P.g. was cultured from extracted tooth root, which serves as a persistent source of P.g. The gestational day (gd and birth weight were recorded during for P.g.-infected and control mice, and serum and placental tissues were collected at gd 15 to evaluate the systemic and local conditions during pregnancy.Dental infection with P.g. significantly increased circulating TNF-α (2.5-fold, IL-17 (2-fold, IL-6 (2-fold and IL-1β (2-fold. The P.g.-infected group delivered at gd 18.25 vs. gd 20.45 in the non-infected control (NC group (p < 0.01, and pups exhibited LBW compared to controls (p < 0.01. P.g. was localized to placental tissues by immunohistochemistry and PCR, and defects in placental tissues of P.g. infected mice included premature rupture of membrane, placental detachment, degenerative changes in trophoblasts and endothelial cells, including necrotic areas. P.g. infection caused significantly increased numbers of polymorphonuclear leukocytes (PMNLs and macrophages in placental tissues, associated with increased local expression of pro-inflammatory mediators including TNF-α and COX-2. Further placental tissue

  5. Secreted gingipains from Porphyromonas gingivalis colonies exert potent immunomodulatory effects on human gingival fibroblasts.

    Science.gov (United States)

    Bengtsson, Torbjörn; Khalaf, Atika; Khalaf, Hazem

    2015-09-01

    Periodontal pathogens, including Porphyromonas gingivalis, can form biofilms in dental pockets and cause inflammation, which is one of the underlying mechanisms involved in the development of periodontal disease, ultimately leading to tooth loss. Although P. gingivalis is protected in the biofilm, it can still cause damage and modulate inflammatory responses from the host, through secretion of microvesicles containing proteinases. The aim of this study was to evaluate the role of cysteine proteinases in P. gingivalis colony growth and development, and subsequent immunomodulatory effects on human gingival fibroblast. By comparing the wild type W50 with its gingipain deficient strains we show that cysteine proteinases are required by P. gingivalis to form morphologically normal colonies. The lysine-specific proteinase (Kgp), but not arginine-specific proteinases (Rgps), was associated with immunomodulation. P. gingivalis with Kgp affected the viability of gingival fibroblasts and modulated host inflammatory responses, including induction of TGF-β1 and suppression of CXCL8 and IL-6 accumulation. These results suggest that secreted products from P. gingivalis, including proteinases, are able to cause damage and significantly modulate the levels of inflammatory mediators, independent of a physical host-bacterial interaction. This study provides new insight of the pathogenesis of P. gingivalis and suggests gingipains as targets for diagnosis and treatment of periodontitis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Different frequencies of Porphyromonas gingivalis infection in cancers of the upper digestive tract.

    Science.gov (United States)

    Yuan, Xiang; Liu, Yiwen; Kong, Jinyu; Gu, Bianli; Qi, Yijun; Wang, Xinshuai; Sun, Man; Chen, Pan; Sun, Wei; Wang, Huizhi; Zhou, Fuyou; Gao, Shegan

    2017-09-28

    The high incidence rate of multiple carcinomas in the upper digestive tract is often explained in terms of involvement of the same underlying risk factors. It has been reported that the oral bacterium Streptococcus anginosus is associated with esophageal, gastric, and pharyngeal cancers. We previously reported occurrence of Porphyromonas gingivalis (P. gingivalis) DNA in esophagus cancer. In this study, the presence of P. gingivalis in specimens of various types of cancer from the upper digestive tract was investigated. Here we report that P. gingivalis was preferentially and frequently present in specimens of esophageal cancer as well as in those from dysplasia of the esophagus but rarely in matched noncancerous portions and are quite low or absent in cancers from the cardia or stomach. Therefore, it led us to propose that, the microorganism does not survive in conditions of high acidity. We then investigate the pH dependence of survival of P. gingivalis as well as the acid tolerance of it. We found that, exposure to acidic buffers of a wide range of pH values led to a decline in colony forming units of P. gingivalis, thus, providing a possible explanation for variations in frequencies of P. gingivalis infection in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inflammatory response to Porphyromonas gingivalis partially requires interferon regulatory factor (IRF) 3.

    Science.gov (United States)

    Shaik-Dasthagirisaheb, Yazdani B; Huang, Nasi; Gibson, Frank C

    2014-04-01

    Innate immune activation with expression of pro-inflammatory molecules such as TNF-α is a hallmark of the chronic inflammation associated with periodontal disease (PD). Porphyromonas gingivalis, a bacterium associated with PD, engages TLRs and activates MyD88-dependent and TIR-domain-containing adapter-inducing IFN-β (TRIF)-dependent signaling pathways. IFN regulatory factor (IRF) 3 is activated in a TRIF-dependent manner and participates in production of cytokines such as TNF-α; however, little is known regarding IRF3 and the host response to PD pathogens. We speculated that IRF3 participates in the host inflammatory response to P. gingivalis. Our results show that bone marrow macrophages (MØ) from WT mice respond to P. gingivalis with activation and nuclear translocation of IRF3. Compared with WT, MØ from IRF3(-/-), TRIF(-/-), and TLR4(-/-) mice responded with reduced levels of TNF-α on P. gingivalis challenge. In addition, full expression of IL-6 and RANTES by MØ to P. gingivalis was dependent on IRF3. Lastly, employing MØ from IRF3(-/-) and IRF7(-/-) mice we observed a significant role for IRF3 and a modest role for IRF7 in the P. gingivalis-elicited TNF-α response. These studies identify a role for IRF3 in the inflammatory response by MØ to the periodontal pathogen P. gingivalis.

  8. Porphyromonas gingivalis decreases osteoblast proliferation through IL-6-RANKL/OPG and MMP-9/TIMPs pathways

    Directory of Open Access Journals (Sweden)

    Le Xuan

    2009-01-01

    Full Text Available Background: Porphyromonas gingivalis, an important periodontal pathogen, is closely associated with inflammatory alveolar bone resorption. This bacterium exerts its pathogenic effect indirectly through multiple virulence factors, such as lipopolysaccharides, fimbriae, and proteases. Another possible pathogenic path may be through a direct interaction with the host′s soft and hard tissues (e.g., alveolar bone, which could lead to periodontitis. Aims and Objectives: The aim of the present study was to investigate the direct effect of live and heat-inactivated P gingivalis on bone resorption, using an in vitro osteoblast culture model. Results: Optical microscopy and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide MTT assay revealed that live P gingivalis induced osteoblast detachment and reduced their proliferation. This effect was specific to live bacteria and was dependent on their concentration. Live P gingivalis increased IL-6 mRNA expression and protein production and downregulated RANKL and OPG mRNA expression. The effect of live P gingivalis on bone resorption was strengthened by an increase in MMP-9 expression and its activity. This increase was accompanied by an increase in TIMP-1 and TIMP-2 mRNA expression and protein production by osteoblasts infected with live P gingivalis. Conclusion: Overall, the results suggest that direct contact of P gingivalis with osteoblasts induces bone resorption through an inflammatory pathway that involves IL-6, RANKL/OPG, and MMP-9/TIMPs.

  9. Potent In Vitro and In Vivo Activity of Plantibody Specific for Porphyromonas gingivalis FimA

    Science.gov (United States)

    Choi, Young-Suk; Kim, Tae-Geum

    2016-01-01

    Fimbrial protein fimbrillin (FimA), a major structural subunit of Porphyromonas gingivalis, has been suggested as a vaccine candidate to control P. gingivalis-induced periodontal disease. Previously, cDNAs encoding IgG monoclonal antibodies (MAbs) against purified FimA from P. gingivalis 2561 have been cloned, and the MAbs have been produced in rice cell suspension. Here we examined the biological activities of the plant-produced MAb specific for FimA (anti-FimA plantibody) of P. gingivalis in vitro and in vivo. The anti-FimA plantibody recognized oligomeric/polymeric forms of native FimA in immunoblot analysis and showed high affinity for native FimA (KD = 0.11 nM). Binding of P. gingivalis (108 cells) to 2 mg of saliva-coated hydroxyapatite beads was reduced by 53.8% in the presence of 1 μg/ml plantibody. Anti-FimA plantibody (10 μg/ml) reduced invasion of periodontal ligament cells by P. gingivalis (multiplicity of infection, 100) by 68.3%. Intracellular killing of P. gingivalis opsonized with the anti-FimA plantibody by mouse macrophages was significantly increased (77.1%) compared to killing of bacterial cells with irrelevant IgG (36.7%). In a mouse subcutaneous chamber model, the number of recoverable P. gingivalis cells from the chamber fluid was significantly reduced when the numbers of bacterial cells opsonized with anti-FimA plantibody were compared with the numbers of bacterial cells with irrelevant IgG, 66.7% and 37.1%, respectively. These in vitro and in vivo effects of anti-FimA plantibody were comparable to those of the parental MAb. Further studies with P. gingivalis strains with different types of fimbriae are needed to investigate the usefulness of anti-FimA plantibody for passive immunization to control P. gingivalis-induced periodontal disease. PMID:26865596

  10. Prevotella intermedia and Porphyromonas gingivalis in dental caries with periapical granuloma

    Directory of Open Access Journals (Sweden)

    Risya Cilmiaty

    2013-12-01

    Full Text Available Background: Dental caries with necrotic pulp is a multifactorial disease that attacks enamel involving tooth pulp. The anaerobic bacteria infection in the pulp chamber could induce the formation of periapical granuloma. However, the presence of the most frequently anaerobic bacteria identified in apical periodontitis, Porphyromonas gingivalis and Prevotella intermedia, in periapical granuloma have not been confirmed. Purpose: The aims of study were to determine the presence of Porphyromonas gingivalis and Prevotella intermedia in dental caries with necrotic pulp and to determine its relation to periapical granuloma. Methods: Thirty-six patients of dental caries with necrotic pulp in Dr. Moewardi General Hospital in Surakarta, Indonesia were involved and classified into two groups, the group of patients with periapical granuloma and the group of patients without periapical granuloma. The caries tooth was extracted, and the chronic periapical tissue was swabbed and cultured on blood agar medium in anaerobic condition. The bacterial DNA was extracted from the positive cultures and subjected for Polymerase Chain Reaction (PCR. Results: Periapical granuloma was more likely found in women (OR 5.5, 95% CI=1.277-23.693; RR 2.5, 95% CI= 1.025-6.100. Black colonies bacteria were associated with periapical granuloma (OR 2.2, 95% CI=0.517-9.594; RR 1.5, 95% CI=0.655-3.623. Porphyromonas gingivalis and Prevotella intermedia were detected in group with or without periapical granuloma, however, only Prevotella intermedia was associated with periapical granuloma (OR 1.6, 95% CI=0.418-5.903; RR 1.3, 95% CI=0.653-2.393. Conclusion: The presence of Porphyromonas gingivalis and Prevotella intermedia in periapical granuloma were confirmed, however, only Prevotella intermedia were associated with periapical granuloma.Latar belakang: Karies gigi dengan pulpa nekrosis adalah penyakit multifaktorial yang menyerang enamel hingga ruang pulpa gigi. Infeksi bakteri anaerob

  11. Detection and comparison of specific hemin binding by Porphyromonas gingivalis and Prevotella intermedia.

    OpenAIRE

    Tompkins, G R; Wood, D P; Birchmeier, K R

    1997-01-01

    A radioligand assay was designed to detect and compare specific hemin binding by the periodontal anaerobic black-pigmenting bacteria (BPB) Porphyromonas gingivalis and Prevotella intermedia. The assay included physiological concentrations of the hemin-binding protein rabbit serum albumin (RSA) to prevent self-aggregation and nonspecific interaction of hemin with cellular components. Under these conditions, heme-starved P. intermedia cells (two strains) expressed a single binding site species ...

  12. Case of a cerebral abscess caused by Porphyromonas gingivalis in a subject with periodontitis

    OpenAIRE

    Van der Cruyssen, Frederic; Grisar, Koenraad; Maes, Honorine; Politis, Constantinus

    2017-01-01

    We report the case of a 65-year-old man presenting with generalised seizures after developing a right frontal brain abscess. Stereotactic aspiration and subsequent matrix assisted laser desorption/ionisation time-of-flight analyzer (MALDI-TOF) spectrometry revealed Porphyromonas gingivalis as the only causative anaerobe microorganism. Secondary incision and drainage was required due to neurological deterioration with increased dimensions of the abscess, intracranial pressure and formation of ...

  13. Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer’s Disease

    OpenAIRE

    Singhrao, Sim K.; Harding, Alice; Poole, Sophie; Kesavalu, Lakshmyya; Crean, StJohn

    2015-01-01

    Periodontal disease (PD) and Alzheimer’s disease (AD) are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema d...

  14. Altered antigenic profiling and infectivity of Porphyromonas gingivalis in smokers and non-smokers with periodontitis.

    Science.gov (United States)

    Zeller, Iris; Hutcherson, Justin A; Lamont, Richard J; Demuth, Donald R; Gumus, Pinar; Nizam, Nejat; Buduneli, Nurcan; Scott, David A

    2014-06-01

    Cigarette smokers are more susceptible to periodontal diseases and are more likely to be infected with Porphyromonas gingivalis than non-smokers. Furthermore, smoking is known to alter the expression of P. gingivalis surface components and compromise immunoglobulin (Ig)G generation. The aim of this study is to evaluate whether the overall IgG response to P. gingivalis is suppressed in smokers in vivo and whether previously established in vitro tobacco-induced phenotypic P. gingivalis changes would be reflected in vivo. The authors examined the humoral response to several P. gingivalis strains as well as specific tobacco-regulated outer membrane proteins (FimA and RagB) by enzyme-linked immunosorbent assay in biochemically validated (salivary cotinine) smokers and non-smokers with chronic periodontitis (CP: n = 13) or aggressive periodontitis (AgP: n = 20). The local and systemic presence of P. gingivalis DNA was also monitored by polymerase chain reaction. Smoking was associated with decreased total IgG responses against clinical (10512, 5607, and 10208C; all P Smoking did not influence IgG produced against specific cell-surface proteins, although a non-significant pattern toward increased total FimA-specific IgG in patients with CP, but not AgP, was observed. Seropositive smokers were more likely to be infected orally and systemically with P. gingivalis (P Smoking alters the humoral response against P. gingivalis and may increase P. gingivalis infectivity, strengthening the evidence that mechanisms of periodontal disease progression in smokers may differ from those of non-smokers with the same disease classification.

  15. Porphyromonas gingivalis Lipopolysaccharide Induces a Pro-inflammatory Human Gingival Fibroblast Phenotype.

    Science.gov (United States)

    Bozkurt, S Buket; Hakki, Sema S; Hakki, Erdogan E; Durak, Yusuf; Kantarci, Alpdogan

    2017-02-01

    Human gingival fibroblasts (HGFs) are the major constituents of the gingival tissues responsible for the synthesis and degradation of the connective tissue while actively participating in immune reactions and inflammation. The aim of this study was to test the impact of lipopolysaccharide (LPS) from Porphyromonas gingivalis (P. gingivalis) on human gingival fibroblasts. Human gingival fibroblasts were treated with different P. gingivalis LPS concentrations. Cell survival rate was evaluated with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) after 24 h. Cell proliferation was determined by counting cells on days 3 and 12. Expression of matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and pro-inflammatory cytokine transcripts in HGFs was determined by quantitative PCR (Q-PCR) analysis on days 3 and 8. P. gingivalis LPS decreased cell proliferation on day 3 (p  0.05).The experiments showed that P. gingivalis LPS dose-dependently and differentially modulated the expression of MMP-1, 2, and 3 and TIMP-1 and 2 on days 3 and 8. TIMP-1 expression was significantly induced in P. gingivalis LPS-treated cells while TIMP-2 was increased in response to 10 and 30 ng/ml of LPS on day 3. P. gingivalis LPS induced up-regulation of MMP-1/TIMP-1 ratio on day 3 and increased MMP-2/TIMP-2 ratio on day 8 dose-dependently. Expression of interleukin (IL)-6 and IL-8 was stimulated at higher concentrations (1000 and 3000 ng/ml) of LPS. These findings demonstrate that P. gingivalis LPS suppresses cell proliferation and leads to increased pro-inflammatory changes in HGFs, suggesting that P. gingivalis LPS-induced modification of phenotypic and inflammatory characteristics in HGF could potentially be a pathogenic mechanism underlying the tissue destruction.

  16. Attenuation of Porphyromonas gingivalis oral infection by α-amylase and pentamidine.

    Science.gov (United States)

    Li, Ying; Miao, Yu-Song; Fu, Yun; Li, Xi-Ting; Yu, Shao-Jie

    2015-08-01

    The Porphyromonas gingivalis bacterium is one of the most influential pathogens in oral infections. In the current study, the antimicrobial activity of α-amylase and pentamidine against Porphyromonas gingivalis was evaluated. Their in vitro inhibitory activity was investigated with the agar overlay technique, and the minimal inhibitory and bactericidal concentrations were determined. Using the bactericidal concentration, the antimicrobial actions of the inhibitors were investigated. In the present study, multiple techniques were utilized, including scanning electron microscopy (SEM), general structural analysis and differential gene expression analysis. The results obtained from SEM and bactericidal analysis indicated a notable observation; the pentamidine and α-amylase treatment destroyed the structure of the bacterial cell membranes, which led to cell death. These results were used to further explore these inhibitors and the mechanisms by which they act. Downregulated expression levels were observed for a number of genes coding for hemagglutinins and gingipains, and various genes involved in hemin uptake, chromosome replication and energy production. However, the expression levels of genes associated with iron storage and oxidative stress were upregulated by α-amylase and pentamidine. A greater effect was noted in response to pentamidine treatment. The results of the present study demonstrate promising therapeutic potential for α-amylases and pentamidine. These molecules have the potential to be used to develop novel drugs and broaden the availability of pharmacological tools for the attenuation of oral infections caused by Porphyromonas gingivalis.

  17. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis.

    Science.gov (United States)

    Wang, Yue; Zhang, Yi; Shi, Yan-Qin; Pan, Xian-Hua; Lu, Yan-Hua; Cao, Ping

    2018-01-09

    The objective of this study was to investigate the antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil (CBEO) and its principal constituent cinnamaldehyde against Porphyromonas gingivalis and to elucidate the antibacterial mechanism. GC-MS analysis showed that cinnamaldehyde was the major constituent in CBEO (57.97%). The minimum inhibition concentrations (MICs) of CBEO and cinnamaldehyde were 6.25 μg/mL and 2.5 μM for P. gingivalis, respectively. Nucleic acid and protein leakage was observed with increasing concentrations of CBEO and cinnamaldehyde. Additionally, propidium iodide uptake assays revealed CBEO and cinnamaldehyde at 1 × MIC impaired P. gingivalis membrane integrity by enhancing cell permeability. Morphological changes in P. gingivalis cells were observed by scanning electron microscopy, which indicated cell membrane destruction. To further determine the anti-biofilm effect, relative biofilm formation and established biofilms were examined, which demonstrated that both CBEO and cinnamaldehyde at sub-MIC levels inhibited P. gingivalis biofilm formation by 74.5% and 67.3% separately, but only CBEO slightly decreased established biofilms by 33.5% at 4 × MIC. These results suggest the potential of CBEO as a natural antimicrobial agent against periodontal disease. Furthermore, cinnamaldehyde was confirmed to be the antibacterial substance of CBEO with inhibitory action against P. gingivalis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Gingipains: Critical Factors in the Development of Aspiration Pneumonia Caused by Porphyromonas gingivalis.

    Science.gov (United States)

    Benedyk, Małgorzata; Mydel, Piotr Mateusz; Delaleu, Nicolas; Płaza, Karolina; Gawron, Katarzyna; Milewska, Aleksandra; Maresz, Katarzyna; Koziel, Joanna; Pyrc, Krzysztof; Potempa, Jan

    2016-01-01

    Aspiration pneumonia is a life-threatening infectious disease often caused by oral anaerobic and periodontal pathogens such as Porphyromonas gingivalis. This organism produces proteolytic enzymes, known as gingipains, which manipulate innate immune responses and promote chronic inflammation. Here, we challenged mice with P. gingivalis W83 and examined the role of gingipains in bronchopneumonia, lung abscess formation, and inflammatory responses. Although gingipains were not required for P. gingivalis colonization and survival in the lungs, they were essential for manifestation of clinical symptoms and infection-related mortality. Pathologies caused by wild-type (WT) P. gingivalis W83, including hemorrhage, necrosis, and neutrophil infiltration, were absent from lungs infected with gingipain-null isogenic strains or WT bacteria preincubated with gingipain-specific inhibitors. Damage to lung tissue correlated with systemic inflammatory responses, as manifested by elevated levels of TNF, IL-6, IL-17, and C-reactive protein. These effects were unequivocally dependent on gingipain activity. Gingipain activity was also implicated in the observed increase in IL-17 in lung tissues. Furthermore, gingipains increased platelet counts in the blood and activated platelets in the lungs. Arginine-specific gingipains made a greater contribution to P. gingivalis-related morbidity and mortality than lysine-specific gingipains. Thus, inhibition of gingipain may be a useful adjunct treatment for P. gingivalis-mediated aspiration pneumonia. © 2015 S. Karger AG, Basel.

  19. Proteomic and transcriptional analysis of interaction between oral microbiota Porphyromonas gingivalis and Streptococcus oralis.

    Science.gov (United States)

    Maeda, Kazuhiko; Nagata, Hideki; Ojima, Miki; Amano, Atsuo

    2015-01-02

    Porphyromonas gingivalis, a major periodontal pathogen, forms biofilm with other oral bacteria such as streptococci. Here, by using shotgun proteomics, we examined the molecular basis of mixed-biofilm formation by P. gingivalis with Streptococcus oralis. We identified a total of 593 bacterial proteins in the biofilm. Compared to the expression profile in the P. gingivalis monobiofilm, the expression of three proteins was induced and that of 31 proteins was suppressed in the mixed biofilm. Additionally, the expression of two S. oralis proteins was increased, while that of two proteins was decreased in the mixed biofilm, as compared to its monotypic profile. mRNA expression analysis of selected genes using a quantitative reverse transcription polymerase chain reaction confirmed the proteomics data, which included overexpression of P. gingivalis FimA and S. oralis glyceraldehyde-3-phosphate dehydrogenase in association with the biofilm. The results also indicated that S. oralis regulates the transcriptional activity of P. gingivalis luxS to influence autoinducer-2-dependent signaling. These findings suggest that several functional molecules are involved in biofilm formation between P. gingivalis and S. oralis.

  20. Investigation on interaction between Streptococcus sanguis and Porphyromonas gingivalis in specific pathogen-free rats.

    Science.gov (United States)

    Zhang, J C; Zhou, C; Wu, B; Zhang, Y H

    2000-12-01

    To examine whether endogenous Streptococcus can prevent or reduce the colonization of the virulent Porphyromonas gingivalis strain. Successful implantation of the endogenous strain of S. sanguis and P. gingivalis 381 within 14 days was demonstrated in the study rats following administration of doxycycline for 7 days. Thirty specific pathogen-free (SPF) rats were divided into 6 groups. After administration of doxycycline for 7 days, groups A and B were inoculated orally once a day for 5 days with P. gingivalis. Group C and E were inoculated orally once a day for 5 days with S. sanguis. Then, group A was inoculated for 5 days with S. sanguis, and rats in group C and D were inoculated for 5 days with P. gingivalis. Group F served as a negative control. After inoculation, the levels of S. sanguis and P. gingivalis in the mouths of the rats were determined at 12 hours, 24 hours, 36 hours, 7 days, and 14 days. Both precolonization of S. sanguis and superinfection with S. sanguis reduced the level of P. gingivalis in experimental rats. However, the reduction was maintained for only 24 to 36 hours. The level of S. sanguis remained stable during the 14-days observation period. S. sanguis to function as the effector strain, the successful implantation of S. sanguis and the antagonistic action efficiently produced in vivo by S. sanguis is required.

  1. Porphyromonas gingivalis disturbs host–commensal homeostasis by changing complement function

    Science.gov (United States)

    Olsen, Ingar; Lambris, John D.; Hajishengallis, George

    2017-01-01

    ABSTRACT Porphyromonas gingivalis is a Gram-negative anaerobic rod that has been proposed as an orchestrator of complement-dependent dysbiotic inflammation. This notion was suggested from its capacities to manipulate the complement–Toll-like receptor crosstalk in ways that promote dysbiosis and periodontal disease in animal models. Specifically, while at low colonization levels, P. gingivalis interferes with innate immunity and leads to changes in the counts and composition of the oral commensal microbiota. The resulting dysbiotic microbial community causes disruption of host–microbial homeostasis, leading to inflammatory bone loss. These findings suggested that P. gingivalis can be considered as a keystone pathogen. The concept of keystone pathogens is one where their effects have community-wide significance and are disproportionate of their abundance. The present review summarizes the relevant literature and discusses whether the results from the animal models can be extrapolated to man. PMID:28748042

  2. The Porphyromonas gingivalis ferric uptake regulator orthologue does not regulate iron homeostasis

    Directory of Open Access Journals (Sweden)

    Catherine Butler

    2015-09-01

    Full Text Available Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that has an absolute requirement for iron which it transports from the host as heme and/or Fe2+. Iron transport must be regulated to prevent toxic effects from excess metal in the cell. P. gingivalis has one ferric uptake regulator (Fur orthologue encoded in its genome called Har, which would be expected to regulate the transport and usage of iron within this bacterium. As a gene regulator, inactivation of Har should result in changes in gene expression of several genes compared to the wild-type. This dataset (GEO accession number GSE37099 provides information on expression levels of genes in P. gingivalis in the absence of Har. Surprisingly, these genes do not relate to iron homeostasis.

  3. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana

    Directory of Open Access Journals (Sweden)

    Alejandra Herrera Herrera

    2014-01-01

    Full Text Available The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase. The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration. Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future.

  4. Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study.

    Science.gov (United States)

    Di Giulio, Mara; Traini, Tonino; Sinjari, Bruna; Nostro, Antonia; Caputi, Sergio; Cellini, Luigina

    2016-07-01

    The aim of this work was to evaluate the biofilm formation of Porphyromonas gingivalis on disks of titanium (Ti) grade 4 (G4) and Ti-6Al-4V alloy grade 5 (G5) with different surface topographies. Porphyromonas gingivalis ATCC 33277 was used to develop an in vitro mature biofilm on a total of 96 disk-shaped specimens of laser-treated (L), sandblasted (S), and machined (M) surfaces of Ti G4 and Ti G5. Surface roughness (Ra) and the wettability contact angle (WCA) were measured to characterize the surface of the specimens. The bacterial biofilm was evaluated by biomass quantification, bacterial viability, visualization of the biofilm extracellular matrix, and bacterial cell count. Data were analyzed using one-way ANOVA and Holm-Sidak tests and expressed as mean ± standard deviation. The Ra for the L group was 0.10 (±0.07) μm inside the craters and 0.40 (±0.08) μm in the area surrounding the craters resulting the smoothest (P gingivalis bacterial biomass (0.38 ± 0.01 for G4; 0.62 ± 0.02 for G5) that was significant in respect to G4-S (P gingivalis biofilm formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis-induced periodontitis in mice.

    Science.gov (United States)

    Cai, Yu; Chen, ZhiBin; Liu, Hao; Xuan, Yan; Wang, XiaoXuan; Luan, QingXian

    2015-12-01

    Porphyromonas gingivalis causes inflammation, and leads to the periodontitis in gingival tissue damage and bone resorption. Epigallocatechin-3-gallate (EGCG) is a major polyphenol extract from green tea with plenty of pharmacological functions. The aim of this study was to determine whether continuous oral intake of EGCG would alleviate P. gingivalis-induced periodontitis. Eight-week BALB/c mice were administered with EGCG (0.02%) or vehicle in drinking water. They were fed normal food and orally infected with P. gingivalis every 2days, up to a total of 20 times, and then sacrificed at 15weeks of age. The P. gingivalis-challenged group markedly increased alveolar bone resorption of the maxillae in BALB/c mice by Micro-CT detection, and administration of EGCG resulted in a significant reduction in bone loss. Inflammation cytokine antibody array and enzyme linked immunosorbent assay revealed that some inflammatory mediators in serum were increased by P. gingivalis infection, but were lowered after EGCG treatment. High positive areas of IL-17 and IL-1β in the gingival tissue were observed in the P. gingivalis-challenged mice, and were reduced by EGCG treatment. Real-time polymerase chain reaction (PCR) analyses also showed the expressions of IL-1β, IL-6, IL-17, IL-23, TNF-α and other mediators in gingival tissue were higher in P. gingivalis-challenged mice, and were down-regulated with EGCG treatment, except IL-23. Our results suggest that EGCG, as a natural healthy substance, probably alleviates P. gingivalis-induced periodontitis by anti-inflammatory effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Gingipain-dependent augmentation by Porphyromonas gingivalis of phagocytosis of Tannerella forsythia.

    Science.gov (United States)

    Jung, Y-J; Jun, H-K; Choi, B-K

    2016-12-01

    In the pathogenesis of periodontitis, Porphyromonas gingivalis plays a role as a keystone pathogen that manipulates host immune responses leading to dysbiotic oral microbial communities. Arg-gingipains (RgpA and RgpB) and Lys-gingipain (Kgp) are responsible for the majority of bacterial proteolytic activity and play essential roles in bacterial virulence. Therefore, gingipains are often considered as therapeutic targets. This study investigated the role of gingipains in the modulation by P. gingivalis of phagocytosis of Tannerella forsythia by macrophages. Phagocytosis of T. forsythia was significantly enhanced by coinfection with P. gingivalis in a multiplicity of infection-dependent and gingipain-dependent manner. Mutation of either Kgp or Rgp in the coinfecting P. gingivalis resulted in attenuated enhancement of T. forsythia phagocytosis. Inhibition of coaggregation between the two bacterial species reduced phagocytosis of T. forsythia in mixed infection, and this coaggregation was dependent on gingipains. Inhibition of gingipain protease activities in coinfecting P. gingivalis abated the coaggregation and the enhancement of T. forsythia phagocytosis. However, the direct effect of protease activities of gingipains on T. forsythia seemed to be minimal. Although most of the phagocytosed T. forsythia were cleared in infected macrophages, more T. forsythia remained in cells coinfected with gingipain-expressing P. gingivalis than in cells coinfected with the gingipain-null mutant or infected only with T. forsythia at 24 and 48 h post-infection. Collectively, these results suggest that P. gingivalis, mainly via its gingipains, alters the clearance of T. forsythia, and provide some insights into the role of P. gingivalis as a keystone pathogen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Fimbriae-mediated outer membrane vesicle production and invasion of Porphyromonas gingivalis

    Science.gov (United States)

    Mantri, Chinmay K; Chen, Chin-Ho; Dong, Xinhong; Goodwin, Jeffery Shawn; Pratap, Siddharth; Paromov, Victor; Xie, Hua

    2015-01-01

    Porphyromonas gingivalis is a keystone periopathogen that plays an essential role in the progress of periodontitis. Like other gram-negative bacteria, the ability of P. gingivalis to produce outer membrane vesicles is a strategy used to interact with, and survive within its biological niches. Here we compared the protein components associated with vesicles derived from a fimbriated strain (33277) and an afimbriated strain (W83) of P. gingivalis using proteomic analyses. Some well-known virulence factors were identified in vesicles from both strains, such as gingipains and hemagglutinin. In contrast, FimC, FimD, and FimE, minor components of long fimbriae were found exclusively in 33277 vesicles, while proteins with a tetratricopeptide repeat (TPR) domain were unique to W83 vesicles. We found that significantly more 33277 than W83 vesicles were internalized into human oral keratinocytes and gingival fibroblasts. Interestingly, FimA, a well-known adhesin responsible for the attachment and invasion of P. gingivalis into host cells, was not essential for the invasive capabilities of P. gingivalis vesicles. Rather minor components of long fimbriae were required for an efficient invasive activity of vesicles. The most striking finding was that P. gingivalis strains lacking or having a reduced FimA expression showed a significant reduction in vesiculation. These results suggest that production and pathogenicity of P. gingivalis vesicles may largely depend on expression of the fim locus, and that the integration of vesicle production and pathogenicity with fimbrial expression may allow P. gingivalis to confer upon itself certain functional advantages. PMID:25524808

  8. PPARγ affects nitric oxide in human umbilical vein endothelial cells exposed to Porphyromonas gingivalis.

    Science.gov (United States)

    Li, Peng; Zhang, Dakun; Wan, Meng; Liu, Jianru

    2016-08-01

    Porphyromonas gingivalis induces nitric oxide (NO) synthesis in human umbilical vein endothelial cells (HUVECs). Peroxisome proliferator-activated receptor (PPARγ) has an anti-inflammation function, and its involvement in this NO induction process requires elucidation. Here, we focused on PPARγ expression in HUVECs exposed to P. gingivalis, and investigated its effects on NO synthesis. HUVECs were time-dependently stimulated by P. gingivalis W83 for 0-24h. PPARγ expression was assessed at the mRNA and protein levels, and PPARγ activation was measured using dual-luciferase reporter assays. NO synthesis and NO synthase (NOS) expression in response to P. gingivalis were examined in HUVECs pretreated with representative PPARγ agonist (15-deoxy-Δ12,14-prostaglandin J2 10μM) or antagonist (GW9662 10μM). In addition, NO synthesis and NOS expression in the P. gingivalis infected and control groups were detected. The PPARγ mRNA level in HUVECs increased after exposure to P. gingivalis for 1h and its protein level increased at 2h. Luciferase-induced PPARγ increased in P. gingivalis-exposed HUVECs. NO synthesis in the infected group at 4h, and in the PPARγ-activated group at 8h, was higher than that in controls. Inducible NOS increased in the infected and PPARγ-activated groups at 4 and 8h. The total endothelial NOS (eNOS) and phospho-eNOS levels were lower in the infected group than controls, but did not change in the PPARγ-activated group. Activated PPARγ induces NO generation through the NOS pathway in HUVECs exposed to P. gingivalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fimbriae-mediated outer membrane vesicle production and invasion of Porphyromonas gingivalis.

    Science.gov (United States)

    Mantri, Chinmay K; Chen, Chin-Ho; Dong, Xinhong; Goodwin, Jeffery Shawn; Pratap, Siddharth; Paromov, Victor; Xie, Hua

    2015-02-01

    Porphyromonas gingivalis is a keystone periopathogen that plays an essential role in the progress of periodontitis. Like other gram-negative bacteria, the ability of P. gingivalis to produce outer membrane vesicles is a strategy used to interact with, and survive within its biological niches. Here we compared the protein components associated with vesicles derived from a fimbriated strain (33277) and an afimbriated strain (W83) of P. gingivalis using proteomic analyses. Some well-known virulence factors were identified in vesicles from both strains, such as gingipains and hemagglutinin. In contrast, FimC, FimD, and FimE, minor components of long fimbriae were found exclusively in 33277 vesicles, while proteins with a tetratricopeptide repeat (TPR) domain were unique to W83 vesicles. We found that significantly more 33277 than W83 vesicles were internalized into human oral keratinocytes and gingival fibroblasts. Interestingly, FimA, a well-known adhesin responsible for the attachment and invasion of P. gingivalis into host cells, was not essential for the invasive capabilities of P. gingivalis vesicles. Rather minor components of long fimbriae were required for an efficient invasive activity of vesicles. The most striking finding was that P. gingivalis strains lacking or having a reduced FimA expression showed a significant reduction in vesiculation. These results suggest that production and pathogenicity of P. gingivalis vesicles may largely depend on expression of the fim locus, and that the integration of vesicle production and pathogenicity with fimbrial expression may allow P. gingivalis to confer upon itself certain functional advantages. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Porphyromonas gingivalis and Treponema denticola Mixed Microbial Infection in a Rat Model of Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Raj K. Verma

    2010-01-01

    Full Text Available Porphyromonas gingivalis and Treponema denticola are periodontal pathogens that express virulence factors associated with the pathogenesis of periodontitis. In this paper we tested the hypothesis that P. gingivalis and T. denticola are synergistic in terms of virulence; using a model of mixed microbial infection in rats. Groups of rats were orally infected with either P. gingivalis or T. denticola or mixed microbial infections for 7 and 12 weeks. P. gingivalis genomic DNA was detected more frequently by PCR than T. denticola. Both bacteria induced significantly high IgG, IgG2b, IgG1, IgG2a antibody levels indicating a stimulation of Th1 and Th2 immune response. Radiographic and morphometric measurements demonstrated that rats infected with the mixed infection exhibited significantly more alveolar bone loss than shaminfected control rats. Histology revealed apical migration of junctional epithelium, rete ridge elongation, and crestal alveolar bone resorption; resembling periodontal disease lesion. These results showed that P. gingivalis and T. denticola exhibit no synergistic virulence in a rat model of periodontal disease.

  11. The anti-bacterial activity of titanium-copper sintered alloy against Porphyromonas gingivalis in vitro.

    Science.gov (United States)

    Bai, Bing; Zhang, Erlin; Liu, Junchao; Zhu, Jingtao

    2016-01-01

    This study investigates the anti-bacterial property of Ti-Cu sintered alloys against Porphyromonas gingivalis. The anti-anaerobic property of Ti-Cu sintered alloys against P. gingivalis was investigated by antibacterial activity test, DNA measurement, DAPI staining and morphology observation. The antibacterial rates of the Ti-5Cu against P. gingivalis after 18 and 24 h incubation were 36.04 and 54.39%, and those of Ti-10Cu were 68.69 and 75.39%, which were lower than their anti-aerobic abilities. The concentration of P. gingivalis DNA gradually decreased with the increasing Cu content, which was nearly 50% after 24 h incubation on Ti-10Cu. SEM results showed that the shape of P. gingivalis changed and the bacteria broke apart with the addition of Cu and the extension of the culture time. Ti-Cu sintered alloys could not only kill anaerobic bacteria but also reduce the activity of the survived bacteria. The anti-anaerobic mechanism was thought to be in associated with the Cu ion released from Ti-Cu alloy.

  12. Role of sodium in the RprY-dependent stress response in Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Karthik Krishnan

    Full Text Available Porphyromonas gingivalis is a Gram-negative oral anaerobe which is strongly associated with periodontal disease. Environmental changes in the gingival sulcus trigger the growth of P. gingivalis and a concurrent shift from periodontal health to disease. Bacteria adjust their physiology in response to environmental changes and gene regulation by two-component phospho-relay systems is one mechanism by which such adjustments are effected. In P. gingivalis RprY is an orphan response regulator and previously we showed that the RprY regulon included genes associated with oxidative stress and sodium metabolism. The goals of the present study were to identify environmental signals that induce rprY and clarify the role of the regulator in the stress response. In Escherichia coli an RprY-LacZ fusion protein was induced in sodium- depleted medium and a P. gingivalis rprY mutant was unable to grow in similar medium. By several approaches we established that sodium depletion induced up-regulation of genes involved in oxidative stress. In addition, we demonstrated that RprY interacted directly with the promoters of several molecular chaperones. Further, both genetic and transcription data suggest that the regulator acts as a repressor. We conclude that RprY is one of the regulators that controls stress responses in P. gingivalis, possibly by acting as a repressor since an rprY mutant showed a superstress reponse in sodium-depleted medium which we propose inhibited growth.

  13. Thrombospondin-1 production is enhanced by Porphyromonas gingivalis lipopolysaccharide in THP-1 cells.

    Directory of Open Access Journals (Sweden)

    Misa Gokyu

    Full Text Available Periodontitis is a chronic inflammatory disease caused by gram-negative anaerobic bacteria. Monocytes and macrophages stimulated by periodontopathic bacteria induce inflammatory mediators that cause tooth-supporting structure destruction and alveolar bone resorption. In this study, using a DNA microarray, we identified the enhanced gene expression of thrombospondin-1 (TSP-1 in human monocytic cells stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS. TSP-1 is a multifunctional extracellular matrix protein that is upregulated during the inflammatory process. Recent studies have suggested that TSP-1 is associated with rheumatoid arthritis, diabetes mellitus, and osteoclastogenesis. TSP-1 is secreted from neutrophils, monocytes, and macrophages, which mediate immune responses at inflammatory regions. However, TSP-1 expression in periodontitis and the mechanisms underlying TSP-1 expression in human monocytic cells remain unknown. Here using real-time RT-PCR, we demonstrated that TSP-1 mRNA expression level was significantly upregulated in inflamed periodontitis gingival tissues and in P. gingivalis LPS-stimulated human monocytic cell line THP-1 cells. TSP-1 was expressed via Toll-like receptor (TLR 2 and TLR4 pathways. In P. gingivalis LPS stimulation, TSP-1 expression was dependent upon TLR2 through the activation of NF-κB signaling. Furthermore, IL-17F synergistically enhanced P. gingivalis LPS-induced TSP-1 production. These results suggest that modulation of TSP-1 expression by P. gingivalis plays an important role in the progression and chronicity of periodontitis. It may also contribute a new target molecule for periodontal therapy.

  14. Electrical enhancement of chlorhexidine efficacy against the periodontal pathogen Porphyromonas gingivalis within a biofilm.

    Science.gov (United States)

    Lasserre, Jérôme F; Leprince, Julian G; Toma, Selena; Brecx, Michel C

    2015-10-01

    Electric currents have been shown to promote the antimicrobial effectiveness of several biocides against microbial biofilms. Therefore, the objective of this work was to test the null hypothesis that low electric direct currents (DC) do not influence chlorhexidine (CHX) efficacy against the periodontal pathogen Porphyromonas gingivalis within a biofilm. A brain heart infusion medium inoculated with Streptococcus gordonii and P. gingivalis was perfused for 7 days in anaerobiosis through two modified Robbins devices (MRD) assembled in parallel. Biofilms grew on hydroxyapatite discs placed at the bottom of the MRD plugs, and were then treated for 10 min with either CHX or CHX/DC (1.5 mA or 10 mA). The bactericidal effect against biofilms was then evaluated by comparing the mean proportions of P. gingivalis killed. In the first series of experiments (CHX ± 1.5mA), the proportions of P. gingivalis killed were 81.1% for biofilms undergoing CHX and 79.1% when they were additionally treated with 1.5mA (p>0.05). In the second series (CHX ± 10mA), the viability of P.gingivalis was reduced by 87.3% with CHX and 98.9% when CHX was supplemented with 10mA (pgingivalis was observed when applying 10mA currents.

  15. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states.

    Science.gov (United States)

    Romero-Lastra, P; Sánchez, M C; Ribeiro-Vidal, H; Llama-Palacios, A; Figuero, E; Herrera, D; Sanz, M

    2017-01-01

    Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression.

  16. A Major Fimbrilin Variant of Mfa1 Fimbriae in Porphyromonas gingivalis.

    Science.gov (United States)

    Nagano, K; Hasegawa, Y; Yoshida, Y; Yoshimura, F

    2015-08-01

    The periodontal pathogen Porphyromonas gingivalis is known to express 2 distinct types of fimbriae: FimA and Mfa1 fimbriae. However, we previously reported that fimbria-like structures were found in a P. gingivalis strain in which neither FimA nor Mfa1 fimbriae were detected. In this study, we identified a major protein in the bacterial lysates of the strain, which has been reported as the 53-kDa major outer membrane protein of P. gingivalis (53K protein) and subsequently reported as a major fimbrilin of a novel-type fimbria. Sequencing of the chromosomal DNA of the strain showed that the 53k gene (encoding the 53K protein) was located at a locus corresponding to the mfa1 gene (encoding the Mfa1 protein, which is a major fimbrilin of Mfa1 fimbriae) of the ATCC 33277 type strain. However, the 53K and Mfa1 proteins showed a low amino acid sequence homology and different antigenicity. The 53K protein was detected in 34 of 84 (41%) P. gingivalis strains, while the Mfa1 protein was detected in 44% of the strains. No strain expressed both 53K and Mfa1 proteins. Additionally, fimbriae were normally expressed in mutants in which the 53k and mfa1 genes were interchanged. These results indicate that the 53K protein is another major fimbrilin of Mfa1 fimbriae in P. gingivalis. © International & American Associations for Dental Research 2015.

  17. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments

    Science.gov (United States)

    Miller, Daniel P.; Hutcherson, Justin A.; Wang, Yan; Nowakowska, Zuzanna M.; Potempa, Jan; Yoder-Himes, Deborah R.; Scott, David A.; Whiteley, Marvin; Lamont, Richard J.

    2017-01-01

    Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism. PMID:28900609

  18. Effect of Porphyromonas gingivalis lipopolysaccharide on bone marrow mesenchymal stem cell osteogenesis on a titanium nanosurface.

    Science.gov (United States)

    Xing, Helin; Taguchi, Yoichiro; Komasa, Satoshi; Yamawaki, Isao; Sekino, Tohru; Umeda, Makoto; Okazaki, Joji

    2015-03-01

    Titanium (Ti) dental implants have been widely used for prosthetic reconstruction of dentition. Unfortunately, peri-implantitis can result in failure of dental implant osseointegration. Lipopolysaccharide (LPS) acts as a chronic inflammatory stimulus and maintains peri-implant inflammation, worsening the prognosis for implant osseointegration. The purpose of this study is to determine the effects of 10 M NaOH-modified Ti surface with nanonetwork structure on the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMMSCs) in the context of Porphyromonas gingivalis LPS exposure. Titanium disks treated with 10 M NaOH solution and control were incubated with BMMSCs and exposed to P. gingivalis LPS (0, 0.1, or 1 μg/mL). The effects of the modified nanonetwork structure on osteogenic differentiation of rat BMMSCs were evaluated in the context of different concentrations of P. gingivalis LPS exposure. Rat BMMSCs on the 10 M NaOH-modified Ti surface with nanonetwork structure had higher levels of osteogenesis-related gene expression and significantly greater cell proliferation, alkaline phosphatase activity, and extracellular matrix deposition and mineralization than cells on the untreated Ti surfaces, in all the groups with different doses of P. gingivalis LPS exposure. The 10 M NaOH-modified Ti surface with nanonetwork structure has better endotoxin tolerance under P. gingivalis LPS exposure than the non-modified surface.

  19. Role of the Porphyromonas gingivalis iron-binding protein PG1777 in oxidative stress resistance.

    Science.gov (United States)

    McKenzie, Rachelle M E; Henry, Leroy G; Boutrin, Marie-Claire; Ximinies, Alexia; Fletcher, Hansel M

    2016-02-01

    Whole genome sequencing of the response of Porphyromonas gingivalis W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in P. gingivalis, increased expression of a unique transcriptional unit carrying the grpE, dnaJ and three other hypothetical genes (PG1777, PG1778 and PG1779) was observed. The transcriptional start site of this operon appears to be located 91 bp upstream of the translational start, with a potential -10 region at -3 nt and a -35 region at -39 nt. Isogenic P. gingivalis mutants FLL273 (PG1777 : : ermF-ermAM) and FLL293 (PG1779 : : ermF-ermAM) showed increased sensitivity to and decreased survival after treatment with hydrogen peroxide. P. gingivalis FLL273 showed a fivefold increase in the formation of spontaneous mutants when compared with the parent strain after exposure to hydrogen peroxide. The recombinant PG1777 protein displayed iron-binding properties when incubated with FeSO4 and Fe(NH4)2(SO4).6H2O. The rPG1777 protein protected DNA from degradation when exposed to hydrogen peroxide in the presence of iron. Taken together, the data suggest that the grpE-dnaJ-PG1777-PG1778-PG1779 transcriptional unit may play an important role in oxidative stress resistance in P. gingivalis via its ability to protect against DNA damage.

  20. Studies of the extracytoplasmic function sigma factor PG0162 in Porphyromonas gingivalis.

    Science.gov (United States)

    Dou, Y; Aruni, W; Muthiah, A; Roy, F; Wang, C; Fletcher, H M

    2016-06-01

    PG0162, annotated as an extracytoplasmic function (ECF) sigma factor in Porphyromonas gingivalis, is composed of 193 amino acids. As previously reported, the PG0162-deficient mutant, P. gingivalis FLL350 showed significant reduction in gingipain activity compared with the parental strain. Because this ECF sigma factor could be involved in the virulence regulation in P. gingivalis, its genetic properties were further characterized. A 5'-RACE analysis showed that the start of transcription of the PG0162 gene occurred from a guanine (G) residue 69 nucleotides upstream of the ATG translation initiation codon. The function of PG0162 as a sigma factor was confirmed in a run-off in vitro transcription assay using the purified rPG0162 and RNAP core enzyme from Escherichia coli with the PG0162 promoter as template. As an appropriate PG0162 inducing environmental signal is unknown, a strain overexpressing the PG0162 gene designated P. gingivalis FLL391 was created. Compared with the wild-type strain, transcriptome analysis of P. gingivalis FLL391 showed that approximately 24% of the genome displayed altered gene expression (260 upregulated genes; 286 downregulated genes). Two other ECF sigma factors (PG0985 and PG1660) were upregulated more than two-fold. The autoregulation of PG0162 was confirmed with the binding of the rPG0162 protein to the PG0162 promoter in electrophoretic mobility shift assay. In addition, the rPG0162 protein also showed the ability to bind to the promoter region of two genes (PG0521 and PG1167) that were most upregulated in P. gingivalis FLL391. Taken together, our data suggest that PG0162 is a sigma factor that may play an important role in the virulence regulatory network in P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model

    Science.gov (United States)

    2014-01-01

    Background Porphyromonas gingivalis has been shown to invade osteoblasts and inhibit their differentiation and mineralization in vitro. However, it is unclear if P. gingivalis can invade osteoblasts in vivo and how this would affect alveolar osteoblast/osteoclast dynamics. This study aims to answer these questions using a periodontitis mouse model under repetitive P. gingivalis inoculations. Methods For 3-month-old BALB/cByJ female mice, 109 CFU of P. gingivalis were inoculated onto the gingival margin of maxillary molars 4 times at 2-day intervals. After 2 weeks, another 4 inoculations at 2-day intervals were applied. Calcein was injected 7 and 2 days before sacrificing animals to label the newly formed bone. Four weeks after final inoculation, mice were sacrificed and maxilla collected. Immunohistochemistry, micro-CT, and bone histomorphometry were performed on the specimens. Sham infection with only vehicle was the control. Results P. gingivalis was found to invade gingival epithelia, periodontal ligament fibroblasts, and alveolar osteoblasts. Micro-CT showed alveolar bone resorption and significant reduction of bone mineral density and content in the infected mice compared to the controls. Bone histomorphometry showed a decrease in osteoblasts, an increase in osteoclasts and bone resorption, and a surprisingly increased osteoblastic bone formation in the infected mice compared to the controls. Conclusions P. gingivalis invades alveolar osteoblasts in the periodontitis mouse model and cause alveolar bone loss. Although P. gingivalis appears to suppress osteoblast pool and enhance osteoclastic bone resorption, the bone formation capacity is temporarily elevated in the infected mice, possibly via some anti-microbial compensational mechanisms. PMID:25027664

  2. Cholesterol crystals enhance TLR2- and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis

    Science.gov (United States)

    Køllgaard, Tania; Enevold, Christian; Bendtzen, Klaus; Hansen, Peter R.; Givskov, Michael; Holmstrup, Palle; Nielsen, Claus H.

    2017-01-01

    Cholesterol deposits and pro-inflammatory cytokines play an essential role in the pathogenesis of atherosclerosis, a predominant cause of cardiovascular disease (CVD). Epidemiological evidence has linked periodontal disease (PD) with atherosclerotic CVD. Accordingly, viable periodontal pathogens, including Porphyromonas gingivalis, have been found in atherosclerotic plaques in humans and mice. We aimed to determine whether cholesterol crystals (CHCs) and oral bacteria synergize in the stimulation of human monocytes. Incubation of human monocytes with CHCs induced secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8. Moreover, CHCs markedly enhanced secretion of IL-1β by monocytes stimulated with the toll-like receptor (TLR) 4 agonist Escherichia coli lipopolysaccharide (LPS), and the TLR2 agonist Staphylococcus aureus lipoteichoic acid. Notably, CHCs also enhanced IL-1β secretion induced by P. gingivalis LPS and IL-1β secretion induced by whole P. gingivalis bacteria. This enhancement was abrogated by the NLRP3 inflammasome inhibitors Z-YVAD-FMK and glibenclamide. CHCs had no effect on cytokine production induced by P. gingivalis gingipains. Taken together, our findings support that CHCs, via stimulation of NLRP3 inflammasomes, act in synergy with the periodontal pathogen P. gingivalis to promote monocyte secretion of pro-atherogenic cytokines. PMID:28235036

  3. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response.

    Science.gov (United States)

    Zhou, Wei; Zhang, Xuan; Zhu, Cai-Lian; He, Zhi-Yan; Liang, Jing-Ping; Song, Zhong-Chen

    2016-01-01

    "Perioceutics" including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential "perioceutics" treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon) on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced inflammation. Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM). The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs) was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8) was measured by enzyme-linked immunosorbent assay (ELISA). Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC) concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence factors (kgp, rgpA, rgpB, hag

  4. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response.

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    Full Text Available "Perioceutics" including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential "perioceutics" treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS-induced inflammation.Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM. The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8 was measured by enzyme-linked immunosorbent assay (ELISA.Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence factors (kgp, rgp

  5. Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: disparate diseases with commonalities in pathogenesis through TLRs.

    Science.gov (United States)

    Gibson, Frank C; Genco, Caroline A

    2007-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. Furthermore hyperlipidemic mice deficient in TLR2, TLR4, and MyD88 signaling exhibit diminished inflammatory responses and decreased atherosclerosis. Accumulating evidence has implicated specific infectious agents including the periodontal disease pathogen Porphyromonas gingivalis in the progression of atherosclerosis. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen P. gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. We have established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate immune signaling in the context of local and distant chronic inflammation induced by this pathogen. We have demonstrated that P. gingivalis requires TLR2 to induce oral inflammatory bone lose in mice. Furthermore, we have demonstrated that P. gingivalis infection accelerates atherosclerosis in hyperlipidemic mice with an associated increase in expression of TLR2 and TLR4 in atherosclerotic lesions. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. Improved understanding of the mechanisms driving infection, and chronic inflammation during atherosclerosis may ultimately provide new targets for therapy.

  6. Phenotype and Function of Myeloid-Derived Suppressor Cells Induced by Porphyromonas gingivalis Infection.

    Science.gov (United States)

    Su, Lingkai; Xu, Qingan; Zhang, Ping; Michalek, Suzanne M; Katz, Jannet

    2017-08-01

    Porphyromonas gingivalis, a major etiologic agent of periodontitis, has been reported to induce the expansion of myeloid-derived suppressor cells (MDSC); however, little is known regarding the subpopulations of MDSC expanded by P. gingivalis infection. Flow cytometry was used to evaluate bone marrow and spleen cells from mice infected with P. gingivalis and controls for surface expression of CD11b, Ly6G, and Ly6C. To characterize the phenotype of MDSC subpopulations induced by infection, cells were sorted based on the differential expression of Ly6G and Ly6C. Moreover, since MDSC are suppressors of T cell immune activity, we determined the effect of the induced subpopulations of MDSC on the proliferative response of OVA-specific CD4(+) T cells. Lastly, the plasticity of MDSC to differentiate into osteoclasts was assessed by staining for tartrate-resistant acid phosphatase activity. P. gingivalis infection induced the expansion of three subpopulations of MDSC (Ly6G(++) Ly6C(+), Ly6G(+) Ly6C(++), and Ly6G(+) Ly6C(+)); however, only CD11b(+) Ly6G(+) Ly6C(++)-expressing cells exerted a significant suppressive effect on T cell proliferation. Inhibition of proliferative responses required T cell-MDSC contact and was mediated by inducible nitric oxide synthase and cationic amino acid transporter 2 via gamma interferon. Furthermore, only the CD11b(+) Ly6G(+) Ly6C(++) subpopulation of MDSC induced by P. gingivalis infection was able to differentiate into osteoclasts. Thus, the inflammatory response induced by P. gingivalis infection promotes the expansion of immune-suppressive cells and consequently the development of regulatory inhibitors that curtail the host response. Moreover, monocytic MDSC have the plasticity to differentiate into OC, thus perhaps contributing to the OC pool in states of periodontal disease. Copyright © 2017 American Society for Microbiology.

  7. Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors

    Science.gov (United States)

    Dashper, Stuart G.; Mitchell, Helen L.; Seers, Christine A.; Gladman, Simon L.; Seemann, Torsten; Bulach, Dieter M.; Chandry, P. Scott; Cross, Keith J.; Cleal, Steven M.; Reynolds, Eric C.

    2017-01-01

    Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (KgpcatI and KgpcatII) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors. PMID:28184216

  8. Subinhibitory concentrations of tetracyclines induce lipopolysaccharide shedding by Porphyromonas gingivalis and modulate the host inflammatory response.

    Science.gov (United States)

    Tanabe, S; Yoshioka, M; Hinode, D; Grenier, D

    2014-10-01

    Antibiotics at below minimal inhibitory concentrations (MICs) may induce various biological responses in bacteria. In this study, we hypothesized that subinhibitory concentrations (subICs) of tetracycline and doxycycline induce the shedding of lipopolysaccharide (LPS) by Porphyromonas gingivalis and, as a consequence, may contribute to enhancing the host inflammatory response associated with periodontitis. A polymyxin-based enzyme-linked immunosorbent assay was used to quantify LPS shedding by P. gingivalis grown in the presence of subICs of tetracycline and doxycycline. A macrophage model was used to show that tetracycline- and doxycycline-mediated LPS shedding by P. gingivalis can induce cytokine secretion. The secretion of interleukin (IL)-1β, IL-8, and tumor necrosis factor-α was quantified by enzyme-linked immunosorbent assay. LPS was shed spontaneously in a time-dependent way by P. gingivalis during growth. LPS shedding was significantly increased by growth in the presence of subICs of tetracycline and doxycycline corresponding to 1/20 of their MICs (0.025 μg/mL for tetracycline and 0.0125 μg/mL for doxycycline). This shedding was not associated with an increased rate of bacterial cell lysis. Stimulating macrophages with a P. gingivalis culture supernatant induced the secretion of IL-1β, IL-8 and tumor necrosis factor-α when the bacteria were grown in the presence of 1/20 MIC of the antibiotics. Our study showed that growing P. gingivalis in the presence of subICs of either tetracycline or doxycycline induces LPS shedding. Shed LPS may in turn increase cytokine secretion in a macrophage model. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Porphyromonas gingivalis displays a competitive advantage over Aggregatibacter actinomycetemcomitans in co-cultured biofilm.

    Science.gov (United States)

    Takasaki, K; Fujise, O; Miura, M; Hamachi, T; Maeda, K

    2013-06-01

    Biofilm formation occurs through the events of cooperative growth and competitive survival among multiple species. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are important periodontal pathogens. The aim of this study was to demonstrate competitive or cooperative interactions between these two species in co-cultured biofilm. P. gingivalis strains and gingipain mutants were cultured with or without A. actinomycetemcomitans. Biofilms formed on glass surfaces were analyzed by crystal violet staining and colony counting. Preformed A. actinomycetemcomitans biofilms were treated with P. gingivalis culture supernatants. Growth and proteolytic activities of gingipains were also determined. Monocultured P. gingivalis strains exhibited a range of biofilm-formation abilities and proteolytic activities. The ATCC33277 strain, noted for its high biofilm-formation ability and proteolytic activity, was found to be dominant in biofilm co-cultured with A. actinomycetemcomitans. In a time-resolved assay, A. actinomycetemcomitans was primarily the dominant colonizer on a glass surface and subsequently detached in the presence of increasing numbers of ATCC33277. Detachment of preformed A. actinomycetemcomitans biofilm was observed by incubation with culture supernatants from highly proteolytic strains. These results suggest that P. gingivalis possesses a competitive advantage over A. actinomycetemcomitans. As the required biofilm-formation abilities and proteolytic activities vary among P. gingivalis strains, the diversity of the competitive advantage is likely to affect disease recurrence during periodontal maintenance. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Case of a cerebral abscess caused by Porphyromonas gingivalis in a subject with periodontitis

    Science.gov (United States)

    Grisar, Koenraad; Maes, Honorine; Politis, Constantinus

    2017-01-01

    We report the case of a 65-year-old man presenting with generalised seizures after developing a right frontal brain abscess. Stereotactic aspiration and subsequent matrix assisted laser desorption/ionisation time-of-flight analyzer (MALDI-TOF) spectrometry revealed Porphyromonas gingivalis as the only causative anaerobe microorganism. Secondary incision and drainage was required due to neurological deterioration with increased dimensions of the abscess, intracranial pressure and formation of a subdural occipitoparietal empyema. Oral imaging was positive for apical periodontitis of multiple elements; therefore, the remaining dentition was removed. Targeted antibiotic treatment included intravenous ceftriaxone and ornidazole. The patient was discharged to our revalidation unit 59 days after admission to make a full recovery. To the best of our knowledge, this is the sixth reported case of P. gingivalis causing an intracranial abscess and the third case of a true intracerebral parenchymal abscess caused by this bacterium. PMID:28228396

  11. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line

    Science.gov (United States)

    How, Kah Yan; Song, Keang Peng; Chan, Kok Gan

    2016-01-01

    Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity. PMID:26903954

  12. Crystallization and preliminary X-ray characterization of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yoshitaka; Ito, Kiyoshi, E-mail: k-ito@net.nagasaki-u.ac.jp; Xu, Yue; Yamada, Nozomi; Onohara, Yuko; Ito, Takashi; Yoshimoto, Tadashi [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)

    2005-12-01

    P. gingivalis prolyl tripeptidyl aminopeptidase has been crystallized by the vapour-diffusion method. Diffraction data have been collected and processed to 2.1 Å resolution. A recombinant form of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis has been crystallized by the hanging-drop vapour-diffusion method using potassium sodium tartrate as a precipitating agent. The crystals belong to the hexagonal space group P6{sub 3}22, with unit-cell parameters a = b = 149.4, c = 159.7 Å. The crystals are most likely to contain one subunit of a dimer in the asymmetric unit, with a V{sub M} value of 3.14 Å{sup 3} Da{sup −1}. Diffraction data were collected to 2.1 Å resolution using synchrotron radiation at the BL5 station of the Photon Factory.

  13. Development of a simple chemically defined medium for Porphyromonas gingivalis: requirement for alpha-ketoglutarate.

    Science.gov (United States)

    Milner, P; Batten, J E; Curtis, M A

    1996-07-01

    The aim of this study was the development of a simple, defined medium for the growth of laboratory and clinical isolates of Porphyromonas gingivalis. A medium was designed in which the carbon and nitrogen requirements were provided by a single protein source--bovine serum albumin. High cell yields were achieved in this medium but growth was accompanied by a heavy blackening of the cells due to the deposition of metal sulfide(s), most probably iron(II) sulfide, at the cell surface. Good growth in the absence of blackening was achieved when the iron salt in the medium was substituted with alpha-ketoglutarate. The resultant alpha-ketoglutarate/BSA medium was able to support the growth of all laboratory and clinical P. gingivalis strains examined and should prove useful in the investigation of the physiology and nutritional regulation of virulence of this organism.

  14. Evaluation of Emdogain® antimicrobial effectiveness against biofilms containing the keystone pathogen Porphyromonas gingivalis.

    Science.gov (United States)

    Lasserre, Jérôme; Toma, Selena; Dos Santos-Gonçalvez, Ana-Maria; Leprince, Julian; Leloup, Gaëtane; Brecx, Michel

    2018-01-09

    This study aimed to evaluate the antimicrobial activity of Emdogain® (EMD) against biofilms containing the periopathogen Porphyromonas gingivalis. A brain-Heart infusion broth inoculated with S. gordonii and P. gingivalis was perfused (7-d, anaerobiosis) through a closed circuit containing two Robbins devices as to form biofilms. The latter were then treated for 2 min with various antimicrobials (Chlorhexidine (CHX) 0.2%, Povidone iodine (PVI) 5%, PVI 10%, essential oils (EO), EO Zero™ or EMD)(n=8) and cell densities were calculated and compared. In the present in vitro model, Emdogain® was not statistically effective (p>0.05) in killing biofilm bacteria unlike the other tested molecules.

  15. Detection of Porphyromonas gingivalis DNA in the synovial fluid of rheumatoid arthritis patients by real-time PCR

    OpenAIRE

    Reza Ghotaslou

    2016-01-01

    Microbial infections are believed to play an important role in the initiation and perpetuation of rheumatoid arthritis. This study aimed to investigate the relationship between the presence of Porphyromonas gingivalis DNA in the synovial fluid and rheumatoid arthritis. The synovial fluid samples were collected from 22 patients with rheumatoid arthritis and 20 patients with not suffering from rheumatism, overall 42 patients were investigated. The presence of P. gingivalis DNA was evaluated by ...

  16. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Science.gov (United States)

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. α-Amylase is a potential growth inhibitor of Porphyromonas gingivalis, a periodontal pathogenic bacterium.

    Science.gov (United States)

    Ochiai, A; Harada, K; Hashimoto, K; Shibata, K; Ishiyama, Y; Mitsui, T; Tanaka, T; Taniguchi, M

    2014-02-01

    Porphyromonas gingivalis is a major etiological agent in the development and progression of periodontal diseases. In this study, we isolated a cell growth inhibitor against P. gingivalis species from rice protein extract. The cell growth inhibitor active against P. gingivalis was purified from polished rice extract using a six-step column chromatography process. Its antimicrobial properties were investigated through microscope analysis, spectrum of activity and general structure. The inhibitor was identified as AmyI-1, an α-amylase, and showed significant cell growth inhibitory activity against P. gingivalis species. Scanning electron microscopy micrograph analysis and bactericidal assay indicated an intriguing possibility that the inhibitor compromises the cell membrane structure of the bacterial cells and leads to cell death. Moreover, α-amylases from human saliva and porcine pancreas showed inhibitory activity similar to that of AmyI-1. This is the first study to report that α-amylases cause cell death of periodontal pathogenic bacteria. This finding highlights the potential importance and therapeutic potential of α-amylases in treating periodontal diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli.

    Science.gov (United States)

    Sun, Ying; Li, Hui; Yang, Mi-Fang; Shu, Wei; Sun, Meng-Jun; Xu, Yan

    2012-01-01

    Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and Escherichia coli (E. coli) LPS in murine peritoneal macrophages. We studied the cytokine production (TNF-α and IL-10) and Toll-like receptor 2, 4 (TLR2, 4) gene and protein expressions in peritoneal macrophages from young (2-month-old) and middle-aged (12-month-old) ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (plead to the incontrollable periodontal inflammation in older adults.

  19. In Vitro Effect of Porphyromonas gingivalis Methionine Gamma Lyase on Biofilm Composition and Oral Inflammatory Response.

    Science.gov (United States)

    Stephen, Abish S; Millhouse, Emma; Sherry, Leighann; Aduse-Opoku, Joseph; Culshaw, Shauna; Ramage, Gordon; Bradshaw, David J; Burnett, Gary R; Allaker, Robert P

    2016-01-01

    Methanethiol (methyl mercaptan) is an important contributor to oral malodour and periodontal tissue destruction. Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum are key oral microbial species that produce methanethiol via methionine gamma lyase (mgl) activity. The aim of this study was to compare an mgl knockout strain of P. gingivalis with its wild type using a 10-species biofilm co-culture model with oral keratinocytes and its effect on biofilm composition and inflammatory cytokine production. A P. gingivalis mgl knockout strain was constructed using insertion mutagenesis from wild type W50 with gas chromatographic head space analysis confirming lack of methanethiol production. 10-species biofilms consisting of Streptococcus mitis, Streptococcus oralis, Streptococcus intermedius, Fusobacterium nucleatum ssp polymorphum, Fusobacterium nucleatum ssp vincentii, Veillonella dispar, Actinomyces naeslundii, Prevotella intermedia and Aggregatibacter actinomycetemcomitans with either the wild type or mutant P. gingivalis were grown on Thermanox cover slips and used to stimulate oral keratinocytes (OKF6-TERT2), under anaerobic conditions for 4 and 24 hours. Biofilms were analysed by quantitative PCR with SYBR Green for changes in microbial ecology. Keratinocyte culture supernatants were analysed using a multiplex bead immunoassay for cytokines. Significant population differences were observed between mutant and wild type biofilms; V. dispar proportions increased (pgingivalis has been shown to affect microbial ecology in vitro, giving rise to a markedly different biofilm composition, with a more pro-inflammatory cytokine response from the keratinocytes observed. A possible role for methanethiol in biofilm formation and cytokine response with subsequent effects on oral malodor and periodontitis is suggested.

  20. Comparison of inherently essential genes of Porphyromonas gingivalis identified in two transposon-sequencing libraries.

    Science.gov (United States)

    Hutcherson, J A; Gogeneni, H; Yoder-Himes, D; Hendrickson, E L; Hackett, M; Whiteley, M; Lamont, R J; Scott, D A

    2016-08-01

    Porphyromonas gingivalis is a Gram-negative anaerobe and keystone periodontal pathogen. A mariner transposon insertion mutant library has recently been used to define 463 genes as putatively essential for the in vitro growth of P. gingivalis ATCC 33277 in planktonic culture (Library 1). We have independently generated a transposon insertion mutant library (Library 2) for the same P. gingivalis strain and herein compare genes that are putatively essential for in vitro growth in complex media, as defined by both libraries. In all, 281 genes (61%) identified by Library 1 were common to Library 2. Many of these common genes are involved in fundamentally important metabolic pathways, notably pyrimidine cycling as well as lipopolysaccharide, peptidoglycan, pantothenate and coenzyme A biosynthesis, and nicotinate and nicotinamide metabolism. Also in common are genes encoding heat-shock protein homologues, sigma factors, enzymes with proteolytic activity, and the majority of sec-related protein export genes. In addition to facilitating a better understanding of critical physiological processes, transposon-sequencing technology has the potential to identify novel strategies for the control of P. gingivalis infections. Those genes defined as essential by two independently generated TnSeq mutant libraries are likely to represent particularly attractive therapeutic targets. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Svintradze, David V. [Virginia Commonwealth University, Richmond, VA 23298-0566 (United States); Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Peterson, Darrell L. [Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Virginia Commonwealth University, Richmond, VA 23298-0614 (United States); Collazo-Santiago, Evys A.; Lewis, Janina P. [Virginia Commonwealth University, Richmond, VA 23298-0566 (United States); Wright, H. Tonie, E-mail: xrdproc@vcu.edu [Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Virginia Commonwealth University, Richmond, VA 23298-0614 (United States); Virginia Commonwealth University, Richmond, VA 23298-0566 (United States)

    2013-10-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.

  2. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-11-01

    Full Text Available Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD. Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10 chemokine ligands [ITAC (CXCL11 and Mig (CXCL9] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1, and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of

  3. Human β-defensin-3 alleviates the progression of atherosclerosis accelerated by Porphyromonas gingivalis lipopolysaccharide.

    Science.gov (United States)

    Li, Lili; Bian, Tianying; Lyu, Jinglu; Cui, Di; Lei, Lang; Yan, Fuhua

    2016-09-01

    Porphyromonas gingivalis (P.gingivalis) lipopolysaccharide (LPS) is reported to be associated with the progression of atherosclerosis (AS). In this study, we explored the potential of human β-defensin-3 (hBD3), an antimicrobial peptide with immunomodulatory properties, to alleviate AS progression accelerated by P.gingivalis LPS and the mechanism underlying this effect. Apolipoprotein E-deficient mice were injected intraperitoneally with hBD3, P.gingivalis LPS, or hBD3+P.gingivalis LPS. The aorta was assessed immunohistologically and mRNA levels of inflammatory cytokines were determined by quantitative PCR. Macrophages and vascular endothelial cells were stimulated in vitro to investigate the hBD3 target cells. Inflammatory cytokines in serum and cell culture supernatants were detected using cytometric bead arrays. Signaling pathways were investigated by Western blotting. In P.gingivalis LPS-treated mice, hBD3 significantly reduced serum IL-6 and TNF-α levels and aortic expression of ICAM-1, IL-6, and MCP-1 (mRNA and protein). The area and severity of atherosclerotic lesions were also diminished, with less advanced plaque formation, more continuous and distinct elastic lamina, and more normal smooth muscle cells arranged along the tunica media layer. In vitro, hBD3 decreased TNF-α, IL-1β, IL-6 secretion and downregulated TNF-α, IL-1β, IL-6, IL-8, VCAM-1, and IL-10 mRNA levels in macrophages. hBD3 did not influence TNF-α, IL-6, and IL-8 levels in HUVECs culture supernatants. Furthermore, hBD3 suppressed P.gingivalis LPS-induced activation of the NF-κB, p38 and JNK pathways. hBD3 alleviates AS progression accelerated by P.gingivalis LPS in apolipoprotein E-deficient mice by downregulating the cytokine expression in macrophages via the MAPK and NF-κB signaling pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Immunomodulatory effect of photodynamic therapy in Galleria mellonella infected with Porphyromonas gingivalis.

    Science.gov (United States)

    Dos Santos, Jéssica Diane; de Alvarenga, Janaína Araújo; Rossoni, Rodnei Dennis; García, Maíra Terra; Moraes, Renata Mendonça; Anbinder, Ana Lia; Cardoso Jorge, Antonio Olavo; Junqueira, Juliana Campos

    2017-09-01

    Porphyromonas gingivalis is an important pathogen in the development of periodontal disease. Our study investigated if the treatment with antimicrobial photodynamic therapy (aPDT) that employs a nontoxic dye, followed by irradiation with harmless visible light can attenuate the experimental infection of P. gingivalis in Galleria mellonella. Firstly, different concentrations of P. gingivalis ranging from 10 2 to 10 6  cells/larva were injected into the animal to obtain a lethal concentration. Next, the following groups of G. mellonella infected with P. gingivalis were evaluated: inoculation of the photosensitizer and application of laser (P + L+), inoculation of physiologic solution and application of laser (P-L+), inoculation the photosensitizer without laser (P + L-) and inoculation of physiologic solution without Laser (P-L-). The effects of aPDT on infection by P. gingivalis were evaluated by survival curve analysis and hemocytes count. A lethal concentration of 10 6  cells/larva was adopted for evaluating the effects of aPDT on experimental infection with P. gingivalis. We found that after 120 s of PDT application, the death of G. mellonella was significantly lower compared to the control groups (p = 0.0010). Moreover, the hemocyte density in the P+L+ group was increased by 9.6 × 10 6  cells/mL (2.62-fold increase) compared to the infected larvae with no treatment (L-P- group) (p = 0.0175). Finally, we verified that the aPDT led to a significant reduction of the number of P. gingivalis cells in G. mellonella hemolymph. In conclusion, PDT application was effective against P. gingivalis infection by increasing the survival of G. mellonella and was able to increase the circulating hemocytes indicating that PDT activates the G. mellonella immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Strawberry Extract’s Effects on Enterococcus faecalis and Porphyromonas gingivalis Biofilms in vitro

    Directory of Open Access Journals (Sweden)

    Armelia Sari Widyarman

    2017-09-01

    Full Text Available Background: Enterococcus faecalis (E. faecalis and Porphyromonas gingivalis (P. gingivalis are oral bacteria related to root canal infection and periodontal disease pathogenesis. Strawberries (Fragaria x ananassa fruit are rich in vitamins and minerals, have antibacterial and antioxidant effects. Objective: This study investigated the inhibition effect of strawberry extract on monospecies and multispecies E. faecalis and P. gingivalis bacteria grown as biofilms in vitro. Methods: This study used E. faecalis ATCC 29212 and P. gingivalis ATCC 33277. It analyzed the effect of strawberry extract on bacteria biofilm formation using a biofilm assay on microplate wells. Five concentrations of strawberry extracts were used (100%, 50%, 25%, 12.5%, and 6.25%, and the inhibition effect was observed after a 1h, 3h, 6h, and 24h incubation period. Biofilms without the strawberry extract were used as the negative controls, and crystal violet and safranin (0.5%w/v were used to count the biofilm mass. The biofilms grown on microplates were counted using an ELISA reader at 450 nm after 200 mL of 90% ethanol was added to attract the absorbed stain. The strawberry extract inhibition effectiveness on the biofilm formation of each bacterium tested was analyzed using one-way Anova, where p<0.05 was defined as a significant difference. Result: The strawberry extract inhibited the tested monospecies and multispecies bacteria biofilm formation. The optimal strawberry extract concentration for the inhibition of either monospecies biofilms was 100%. However, the optimal incubation time for the strawberry extract to inhibit the multispecies biofilm formation was 24h, which was the study’s biofilm maturity phase. Conclusions: The 100% strawberry extract concentration inhibited the formation of both the monospecies and multispecies E. faecalis and P. gingivalis biofilms. Future studies are needed to evaluate the potential of strawberry extract as an alternative dental

  6. Corrosion behavior of titanium in response to sulfides produced by Porphyromonas gingivalis.

    Science.gov (United States)

    Harada, Rino; Kokubu, Eitoyo; Kinoshita, Hideaki; Yoshinari, Masao; Ishihara, Kazuyuki; Kawada, Eiji; Takemoto, Shinji

    2017-10-20

    To investigate the effects of sulfides produced by Porphyromonas gingivalis (P. gingivalis) on the corrosion behavior of titanium. Commercially pure titanium disks were mirror-polished and immersed in culture medium (BHI), spent medium after culturing P. gingivalis (BHI-S), and culture medium with P. gingivalis (BHI-P), and incubated aerobically at 37°C for 3-14 days. Titanium corrosion was evaluated through surface observation (using scanning electron microscope: SEM), color change (ΔE*ab), glossiness (Gs(20°)), chemical composition and state (using X-ray photoelectron spectroscopy: XPS), and titanium release. ΔE*ab and Gs(20°) did not significantly differ among specimens placed in test mediums for the study duration (p>0.05). SEM images of specimens showed no signs of localized or overall corrosion. XPS analysis indicated showed clear titanium metal state peaks on all specimens in addition to sulfide and sulfate on BHI-S and BHI-P specimens. Valency fraction of titanium decomposed from Ti2p spectrum of BHI-S and BHI-P specimens indicated no progression of oxidation. No significant levels of titanium release were found regardless of the mediums' sulfide content. Results suggested that sulfides produced by P. gingivalis attached on the surface of titanium specimens but did not cause titanium corrosion over the immersion period of 14 days. It is imperative for dental practitioners to be aware of any elements which may influence the clinical success of titanium implants. Copyright © 2017. Published by Elsevier Ltd.

  7. Cigarette smoke condensate modulates migration of human gingival epithelial cells and their interactions with Porphyromonas gingivalis.

    Science.gov (United States)

    Imamura, K; Kokubu, E; Kita, D; Ota, K; Ishihara, K; Saito, A

    2015-06-01

    Epithelial cells are recognized as the first line of defense against bacterial infection and environmental harmful stimuli such as cigarette smoke (CS). Although previous studies explored the effects of nicotine on host cells, mechanisms by which CS affects cellular functions remain uncertain. The present study investigated the effects of CS condensate (CSC) on in vitro wound closure of gingival epithelial cells and their potential interactions with a major periodontal pathogen, Porphyromonas gingivalis. Human gingival epithelial cells (Ca9-22) were treated with CSC for 24 h. Cell proliferation was determined using a WST-1 assay. Cell migration was assessed using a wound closure model. The expression of integrins was analyzed by confocal scanning laser microscopy and real-time PCR. Intracellular invasion of P. gingivalis was evaluated by confocal scanning laser microscopy and an antibiotic protection assay. Low concentrations (1-10 μg/mL) of CSC showed no significant effect on cell proliferation. CSC demonstrated dual effects on epithelial wound closure of Ca9-22 cells: high concentrations (i.e. 250 μg/mL) significantly inhibited the wound closure whereas low concentrations (i.e. 10 μg/mL) promoted it (p < 0.01). CSC induced distinct changes in cytoskeleton. When CSC-exposed cells were infected with P. gingivalis for 2 h, a significant inhibition of wound closure was observed concurrent with a decrease in integrin α3 expression near the wound area. A significantly increased P. gingivalis invasion into Ca9-22 was observed when exposed to low concentrations of CSC. Low concentrations of CSC increased invasion of human gingival epithelial cells by P. gingivalis and induced changes in cytoskeleton and integrin expression, thereby modulating the cell migration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. [Effects of Porphyromonas gingivalis on interleukin-33 expression in rabbit vascular endothelium tissues].

    Science.gov (United States)

    Weishan, Li; Dechao, Li; Rongrong, Qiu

    2016-08-01

    To investigate interleukin-33 (IL-33) in the arterial vascular endothelium of rabbits infected with Porphyromonas gingivalis (P. gingivalis), and to explore the relationship between P. gingivalis and atherosclerosis. A total of 24 rabbits were randomly divided into control and experimental groups. The experimental group received intravenous injection of P. gingivalis once a week for 12 weeks to establish a coronary atherosclerosis model. The rabbits in the control group were injected with equal volume of physiological saline. All the rabbits were killed after 13 weeks. The IL-33 expression levels in the arterial vascular endothelium of the rabbits were detected through immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot analysis. The effects of P. gingivalis on the IL-33 expression in the arterial vascular endothelium of the rabbits were analyzed. The relative expression levels of IL-33 mRNA in the vascular endothelium cells were 58.244±2.407, and the relative expression levels of IL-33 protein were 1.863±0.171 in the experimental group. The relative expression levels of IL-33 mRNA were 3.143±0.805, and the relative expression levels of IL-33 protein were 0.537±
0.028 in the control group. The expression levels of IL-33 mRNA and protein of vascular endothelium cells in the experimental group were significantly higher than those of the control group (Pgingivalis infection promotes IL-33 expression levels in vascular endothelial cells and may regulate the occurrence and development of atherosclerosis.
.

  9. Interferon Regulatory Factor 6 Promotes Keratinocyte Differentiation in Response to Porphyromonas gingivalis.

    Science.gov (United States)

    Huynh, Jennifer; Scholz, Glen M; Aw, Jiamin; Reynolds, Eric C

    2017-05-01

    We recently demonstrated that the expression of the interferon regulatory factor 6 (IRF6) transcription factor in oral keratinocytes was stimulated by the periodontal pathogen Porphyromonas gingivalis Here, we have established that IRF6 promotes the differentiation of oral keratinocytes in response to P. gingivalis This was evidenced by the IRF6-dependent upregulation of specific markers of keratinocyte terminal differentiation (e.g., involucrin [IVL] and keratin 13 [KRT13]), together with additional transcriptional regulators of keratinocyte differentiation, including Grainyhead-like 3 (GRHL3) and Ovo-like zinc finger 1 (OVOL1). We have previously established that the transactivator function of IRF6 is activated by receptor-interacting protein kinase 4 (RIPK4). Consistently, the silencing of RIPK4 inhibited the stimulation of IVL, KRT13, GRHL3, and OVOL1 gene expression. IRF6 was shown to also regulate the stimulation of transglutaminase-1 (TGM1) gene expression by P. gingivalis, as well as that of small proline-rich proteins (e.g., SPRR1), which are covalently cross-linked by TGM1 to other proteins, including IVL, during cornification. The expression of the tight junction protein occludin (OCLN) was found to also be upregulated in an IRF6-dependent manner. IRF6 was demonstrated to be important for the barrier function of oral keratinocytes; specifically, silencing of IRF6 increased P. gingivalis-induced intercellular permeability and cell invasion. Taken together, our findings potentially position IRF6 as an important mediator of barrier defense against P. gingivalis. Copyright © 2017 American Society for Microbiology.

  10. A putative TetR regulator is involved in nitric oxide stress resistance in Porphyromonas gingivalis.

    Science.gov (United States)

    Boutrin, M-C; Yu, Y; Wang, C; Aruni, W; Dou, Y; Shi, L; Fletcher, H M

    2016-08-01

    To survive in the periodontal pocket, Porphyromonas gingivalis, the main causative agent of periodontal disease, must overcome oxidative and nitric oxide (NO) stress. Previously, we reported that, in the presence of NO comparable to stress conditions, the transcriptome of P. gingivalis was differentially expressed, and genes belonging to the PG1178-81 cluster were significantly upregulated. To further evaluate their role(s) in NO stress resistance, these genes were inactivated by allelic exchange mutagenesis. Isogenic mutants P. gingivalis FLL460 (ΔPG1181::ermF) and FLL461 (ΔPG1178-81::ermF) were black-pigmented, with gingipain and hemolytic activities comparable to that of the wild-type strain. Whereas the recovery of these isogenic mutants from NO stress was comparable to the wild-type, there was increased sensitivity to hydrogen peroxide-induced stress. RNA-Seq analysis under conditions of NO stress showed that approximately 5 and 8% of the genome was modulated in P. gingivalis FLL460 and FLL461, respectively. The PG1178-81 gene cluster was shown to be part of the same transcriptional unit and is inducible in response to NO stress. In the presence of NO, PG1181, a putative transcriptional regulator, was shown to bind to its own promoter region and that of several other NO responsive genes including PG0214 an extracytoplasmic function σ factor, PG0893 and PG1236. Taken together, the data suggest that PG1181 is a NO responsive transcriptional regulator that may play an important role in the NO stress resistance regulatory network in P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Transcriptional Profiling of Bone Marrow Stromal Cells in Response to Porphyromonas gingivalis Secreted Products

    Science.gov (United States)

    Reddi, Durga; Belibasakis, Georgios N.

    2012-01-01

    Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting (periodontal) tissues. Porphyromonas gingivalis is an oral pathogen highly implicated in the pathogenesis of this disease. It can exert its effects to a number of cells, including osteogenic bone marrow stromal cells which are important for homeostastic capacity of the tissues. By employing gene microarray technology, this study aimed to describe the overall transcriptional events (>2-fold regulation) elicited by P. gingivalis secreted products in bone marrow stromal cells, and to dissect further the categories of genes involved in bone metabolism, inflammatory and immune responses. After 6 h of challenge with P. gingivalis, 271 genes were up-regulated whereas 209 genes were down-regulated, whereas after 24 h, these numbers were 259 and 109, respectively. The early (6 h) response was characterised by regulation of genes associated with inhibition of cell cycle, induction of apoptosis and loss of structural integrity, whereas the late (24 h) response was characterised by induction of chemokines, cytokines and their associated intracellular pathways (such as NF-κB), mediators of connective tissue and bone destruction, and suppression of regulators of osteogenic differentiation. The most strongly up-regulated genes were lipocalin 2 (LCN2) and serum amyloid A3 (SAA3), both encoding for proteins of the acute phase inflammatory response. Collectively, these transcriptional changes elicited by P. gingivalis denote that the fundamental cellular functions are hindered, and that the cells acquire a phenotype commensurate with propagated innate immune response and inflammatory-mediated tissue destruction. In conclusion, the global transcriptional profile of bone marrow stromal cells in response to P. gingivalis is marked by deregulated homeostatic functions, with implications in the pathogenesis of periodontitis. PMID:22937121

  12. Distinct human T-lymphocyte responses triggered by Porphyromonas gingivalis capsular serotypes.

    Science.gov (United States)

    Vernal, Rolando; Diaz-Guerra, Eva; Silva, Augusto; Sanz, Mariano; Garcia-Sanz, Jose A

    2014-01-01

    Porphyromonas gingivalis can synthesize an extracellular capsule and different serotypes have been described based on capsular antigenicity. On dendritic cells (DCs), the type of capsule present plays a role on the strength of the developed immune response. This study aimed to investigate the T-lymphocyte responses when stimulated with autologous mature DCs exposed to different P. gingivalis K-serotypes. Naïve CD4(+) T-lymphocytes were obtained from healthy subjects and stimulated with autologous DCs primed with increasing multiplicity of infections of the different P. gingivalis K-serotypes. The Th1, Th2, Th17 and T-regulatory cytokines and transcription factor levels were quantified. Distinct types of response were detected when T-lymphocytes were stimulated by DCs primed with the different P. gingivalis K-serotypes. T-lymphocytes stimulated by K1 or K2-primed DCs elicited higher levels of Th1 and Th17-associated cytokines, T-bet and RORC2 than T-lymphocytes stimulated with DCs primed with the other serotypes. Conversely, the serotypes K3-K5 induced higher levels of Th2-associated cytokines and GATA-3 than the others. These results demonstrate that DCs primed with the different P. gingivalis K-serotypes elicited distinct T-cell responses. Strains K1 (W83) and K2 (HG184) induced a Th1/Th17 pattern of immune response and K3 (A7A1-28), K4 (ATCC(®49417™) ), and K5 (HG1690) a Th2 response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.

    Science.gov (United States)

    Burmistrz, Michał; Dudek, Bartosz; Staniec, Dominika; Rodriguez Martinez, Jose Ignacio; Bochtler, Matthias; Potempa, Jan; Pyrc, Krzysztof

    2015-08-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system provides prokaryotic cells with an adaptive and heritable immune response to foreign genetic elements, such as viruses, plasmids, and transposons. It is present in the majority of Archaea and almost half of species of Bacteria. Porphyromonas gingivalis is an important human pathogen that has been proven to be an etiological agent of periodontitis and has been linked to systemic conditions, such as rheumatoid arthritis and cardiovascular disease. At least 95% of clinical strains of P. gingivalis carry CRISPR arrays, suggesting that these arrays play an important function in vivo. Here we show that all four CRISPR arrays present in the P. gingivalis W83 genome are transcribed. For one of the arrays, we demonstrate in vivo activity against double-stranded DNA constructs containing protospacer sequences accompanied at the 3' end by an NGG protospacer-adjacent motif (PAM). Most of the 44 spacers present in the genome of P. gingivalis W83 share no significant similarity with any known sequences, although 4 spacers are similar to sequences from bacteria found in the oral cavity and the gastrointestinal tract. Four spacers match genomic sequences of the host; however, none of these is flanked at its 3' terminus by the appropriate PAM element. The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system is a unique system that provides prokaryotic cells with an adaptive and heritable immunity. In this report, we show that the CRISPR-Cas system of P. gingivalis, an important human pathogen associated with periodontitis and possibly also other conditions, such as rheumatoid arthritis and cardiovascular disease, is active and provides protection from foreign genetic elements. Importantly, the data presented here may be useful for better understanding the communication between cells in larger bacterial communities and

  14. Serum antibody to Porphyromonas gingivalis in metabolic syndrome among an older Japanese population.

    Science.gov (United States)

    Iwasaki, Masanori; Minagawa, Kumiko; Sato, Misuzu; Kaneko, Noboru; Imai, Susumu; Yoshihara, Akihiro; Miyazaki, Hideo

    2016-06-01

    Potentially significant associations between metabolic syndrome (MetS) and periodontal disease have been reported in recent studies; however, there is a dearth of literature regarding the relationship of MetS with serum antibody levels to periodontal pathogens. The aim of this cross-sectional study was to investigate the association between MetS and serum antibody to the periodontal pathogen Porphyromonas gingivalis (P. gingivalis) in 216 Japanese individuals aged 79 years. Serum antibody levels to P. gingivalis were measured by enzyme-linked immunosorbent assay. An elevated serum antibody response was defined as the upper quartile and was considered as the outcome variable. A multivariable logistic regression model was used to evaluate the association of MetS defined by the modified National Cholesterol Education Program Adult Treatment Panel III criteria with an elevated antibody status. Adjustments for gender, income, education, smoking status, dental-care utilisation patterns and brushing frequency were considered. The prevalence of MetS was 22.2% (n = 48). Study participants with MetS were 2.9 times more likely to have an elevated serum antibody to P. gingivalis (adjusted odds ratio = 2.91, 95% confidence interval = 1.24-6.85) after simultaneous adjustment for other covariates. Our findings suggest an independent relationship between MetS and serum antibody levels to P. gingivalis in the Japanese elderly. Additional longitudinal epidemiologic studies with larger, more diversified samples and more complete information are needed to substantiate our findings. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  15. PERIODONTAL DISEASE AND BONE PATHOGENESIS: THE CROSSTALK BETWEEN CYTOKINES AND PORPHYROMONAS GINGIVALIS.

    Science.gov (United States)

    Ballini, A; Cantore, S; Farronato, D; Cirulli, N; Inchingolo, F; Papa, F; Malcangi, G; Inchingolo, A D; Dipalma, G; Sardaro, N; Lippolis, R; Santacroce, L; Coscia, M F; Pettini, F; De Vito, D; Scacco, S

    2015-01-01

    Periodontal disease is the most frequent cause of tooth loss among adults. It is defined as a plaque-induced inflammation of the periodontal tissues that results in a loss of support of the affected teeth. This process is characterized by destruction of the periodontal attachment apparatus, increased bone resorption with loss of crestal alveolar bone, apical migration of the epithelial attachment, and formation of periodontal pockets. Although the presence of periodontal pathogens such as Porphyromonas gingivalis is a prerequisite, the progression of periodontal disease is dependent on the host response to pathogenic bacteria that colonize the tooth surface. Nowadays, a growing body of literature has accumulated to investigate the association between bone diseases, periodontal pathogens and periodontal diseases. The integration of pathogen-associated molecular patterns from microorganisms with their surface receptors in the immune cells, induces the production of several cytokines and chemokines that present either a pro- and/or anti-inflammatory role and the activation of mechanisms of controlling this and the related disease, such as osteoporosis and rheumatoid arthritis. This review focuses on the evidence and significance of bone host cell invasion by Porphyromonas gingivalis in the pathogenesis of bone disorders, as well as the different lines of evidence supporting the role of cytokines in bone diseases.

  16. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer.

    Science.gov (United States)

    Gao, Shegan; Li, Shuoguo; Ma, Zhikun; Liang, Shuo; Shan, Tanyou; Zhang, Mengxi; Zhu, Xiaojuan; Zhang, Pengfei; Liu, Gang; Zhou, Fuyou; Yuan, Xiang; Jia, Ruinuo; Potempa, Jan; Scott, David A; Lamont, Richard J; Wang, Huizhi; Feng, Xiaoshan

    2016-01-01

    Mounting evidence suggests a causal relationship between specific bacterial infections and the development of certain malignancies. However, the possible role of the keystone periodontal pathogen, Porphyromonas gingivalis, in esophageal squamous cell carcinoma (ESCC) remains unknown. Therefore, we examined the presence of P. gingivalis in esophageal mucosa, and the relationship between P. gingivalis infection and the diagnosis and prognosis of ESCC. The presence of P. gingivalis in the esophageal tissues from ESCC patients and normal controls was examined by immunohistochemistry using antibodies targeting whole bacteria and its unique secreted protease, the gingipain Kgp. qRT-PCR was used as a confirmatory approach to detect P. gingivalis 16S rDNA. Clinicopathologic characteristics were collected to analyze the relationship between P. gingivalis infection and development of ESCC. P. gingivalis was detected immunohistochemically in 61 % of cancerous tissues, 12 % of adjacent tissues and was undetected in normal esophageal mucosa. A similar distribution of lysine-specific gingipain, a catalytic endoprotease uniquely secreted by P. gingivalis, and P. gingivalis 16S rDNA was also observed. Moreover, statistic correlations showed P. gingivalis infection was positively associated with multiple clinicopathologic characteristics, including differentiation status, metastasis, and overall survival rate. These findings demonstrate for the first time that P. gingivalis infects the epithelium of the esophagus of ESCC patients, establish an association between infection with P. gingivalis and the progression of ESCC, and suggest P. gingivalis infection could be a biomarker for this disease. More importantly, these data, if confirmed, indicate that eradication of a common oral pathogen could potentially contribute to a reduction in the overall ESCC burden.

  17. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    OBJECTIVE: Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P.

  18. Impaired Porphyromonas gingivalis-Induced Tumor Necrosis Factor Production by Dendritic Cells Typifies Patients With Rheumatoid Arthritis

    NARCIS (Netherlands)

    Santegoets, K.C.M.; Wenink, M.H.; Braga, F.A.; Cossu, M.; Lamers-Karnebeek, F.B.G.; Riel, P.L.C.M. van; Sturm, P.D.J.; Berg, W.B. van den; Radstake, T.R.D.J.

    2016-01-01

    OBJECTIVE: The prevalence of periodontitis is increased in patients with rheumatoid arthritis (RA), and the severity of periodontitis can affect the level of arthritis. Porphyromonas gingivalis is one of the main bacteria involved in periodontitis. Our aim was to determine if there are differences

  19. Impaired Porphyromonas gingivalis-Induced Tumor Necrosis Factor Production by Dendritic Cells Typifies Patients with Rheumatoid Arthritis

    NARCIS (Netherlands)

    Santegoets, Kim C M; Wenink, Mark H.; Braga, Felipe A Vieira; Cossu, Marta; Lamers-Karnebeek, Femke B G; Van Riel, Piet L C M; Sturm, Patrick D J; Van Den Berg, Wim B.; Radstake, Timothy R D J

    2016-01-01

    Objective The prevalence of periodontitis is increased in patients with rheumatoid arthritis (RA), and the severity of periodontitis can affect the level of arthritis. Porphyromonas gingivalis is one of the main bacteria involved in periodontitis. Our aim was to determine if there are differences in

  20. In vitro cytokine responses to periodontal pathogens: generalized aggressive periodontitis is associated with increased IL-6 response to Porphyromonas gingivalis

    DEFF Research Database (Denmark)

    Borch, T S; Holmstrup, Palle; Bendtzen, K

    2010-01-01

    with GAgP and 10 controls stimulated with periodontal pathogens or a control antigen, tetanus toxoid (TT) in the presence of autologous serum. The pathogens used were Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum, either as type strains or bacteria isolated from...

  1. Mixed infection with Porphyromonas gingivalis and Fusobacterium nucleatum in a murine lesion model: potential synergistic effects on virulence.

    Science.gov (United States)

    Feuille, F; Ebersole, J L; Kesavalu, L; Stepfen, M J; Holt, S C

    1996-06-01

    These studies determined the characteristics of tissue destruction in a murine abscess model elicited by mixed infection with the periodontopathogens Fusobacterium nucleatum and Porphyromonas gingivalis. The interbacterial effects of this synergism, the kinetics of the relationship of the bacterial interaction, and the characteristics of the bacteria required for the tissue destruction were studied. Infection of mice with P. gingivalis and F. nucleatum strains elicited lesions of various sizes as a function of infective dose. Primary infection with F. nucleatum plus P. gingivalis at various ratios (i.e., or = 1:1, spreading lesion formation and progression were significantly (P < 0.001) decreased, suggesting that bacterial interaction (i.e., coaggregation) may have inhibited the spread of the P. gingivalis infection to a site distant from the initial injection. Infection with F. nucleatum and P. gingivalis simultaneously (at different sites) or F. nucleatum administered within 4 h prior to or 1 h following P. gingivalis infection significantly enhanced the ability of P. gingivalis to form large phlegmonous lesions. Chemical inhibition of the P. gingivalis trypsin-like protease activity or the use of a trypsin-negative P. gingivalis strain abrogated tissue destruction either alone or in combination with F. nucleatum. Therefore, it was possible to examine aspects of virulence of these pathogens in a murine lesion model by either altering bacterial ratios, manipulating the time of infection, or targeting vital bacterial virulence factors.

  2. Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis

    Directory of Open Access Journals (Sweden)

    Maja Sochalska

    2017-05-01

    Full Text Available The pathogenesis of the chronic periodontal disease is associated with a skewed host inflammatory response to periodontal pathogens, such as Porphyromonas gingivalis, that accounts for the majority of periodontal tissue damage. Neutrophils are the most abundant leukocytes in periodontal pockets and depending on the stage of the disease, also plentiful PMNs are present in the inflamed gingival tissue and the gingival crevice. They are the most efficient phagocytes and eliminate pathogens by a variety of means, which are either oxygen-dependent or -independent. However, these secretory lethal weapons do not strictly discriminate between pathogens and host tissue. Current studies describe conflicting findings about neutrophil involvement in periodontal disease. On one hand literature indicate that hyper-reactive neutrophils are the main immune cell type responsible for this observed tissue damage and disease progression. Deregulation of neutrophil survival and functions, such as chemotaxis, migration, secretion of antimicrobial peptides or enzymes, and production of reactive oxygen species, contribute to observed tissue injury and the clinical signs of periodontal disease. On the other hand neutrophils deficiencies in patients and mice also result in periodontal phenotype. Therefore, P. gingivalis represents a periodontal pathogen that manipulates the immune responses of PMNs, employing several virulence factors, such as gingipains, serine proteases, lipid phosphatases, or fimbriae. This review will sum up studies devoted to understanding different strategies utilized by P. gingivalis to manipulate PMNs survival and functions in order to inhibit killing by a granular content, prolong inflammation, and gain access to nutrient resources.

  3. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis

    Science.gov (United States)

    Maekawa, Tomoki; Krauss, Jennifer L.; Abe, Toshiharu; Jotwani, Ravi; Triantafilou, Martha; Triantafilou, Kathy; Hashim, Ahmed; Hoch, Shifra; Curtis, Michael A.; Nussbaum, Gabriel; Lambris, John D.; Hajishengallis, George

    2014-01-01

    SUMMARY Certain low-abundance bacterial species, such as the periodontitis-associated oral bacterium Porphyromonas gingivalis can subvert host immunity to remodel a normally symbiotic microbiota into a dysbiotic, disease-provoking state. However, such pathogens also exploit inflammation to thrive in dysbiotic conditions. How these bacteria evade immunity while maintaining inflammation is unclear. As previously reported, P. gingivalis remodels the oral microbiota into a dysbiotic state by exploiting complement. Now we show that in neutrophils P. gingivalis disarms a host-protective TLR2-MyD88 pathway via proteasomal degradation of MyD88, whereas it activates an alternate TLR2-Mal-PI3K pathway. This alternate TLR2-Mal-PI3K pathway blocks phagocytosis, provides ‘bystander’ protection to otherwise susceptible bacteria, and promotes dysbiotic inflammation in vivo. This mechanism to disengage bacterial clearance from inflammation required an intimate crosstalk between TLR2 and the complement receptor C5aR, and can contribute to the persistence of microbial communities that drive dysbiotic diseases. PMID:24922578

  4. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.; Yun, P.; Nadkarni, M.A.; Ghadikolaee, N.B.; Nguyen, K.A.; Lee, M.; Hunter, N.; Collyer, C.A. (Sydney)

    2010-08-27

    Porphyromonas gingivalis is an obligately anaerobic bacterium recognized as an aetiological agent of adult periodontitis. P. gingivalis produces cysteine proteinases, the gingipains. The crystal structure of a domain within the haemagglutinin region of the lysine gingipain (Kgp) is reported here. The domain was named K2 as it is the second of three homologous structural modules in Kgp. The K2 domain structure is a 'jelly-roll' fold with two anti-parallel {beta}-sheets. This fold topology is shared with adhesive domains from functionally diverse receptors such as MAM domains, ephrin receptor ligand binding domains and a number of carbohydrate binding modules. Possible functions of K2 were investigated. K2 induced haemolysis of erythrocytes in a dose-dependent manner that was augmented by the blocking of anion transport. Further, cysteine-activated arginine gingipain RgpB, which degrades glycophorin A, sensitized erythrocytes to the haemolytic effect of K2. Cleaved K2, similar to that found in extracted Kgp, lacks the haemolytic activity indicating that autolysis of Kgp may be a staged process which is artificially enhanced by extraction of the protein. The data indicate a functional role for K2 in the integrated capacity conferred by Kgp to enable the porphyrin auxotroph P. gingivalis to capture essential haem from erythrocytes.

  5. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis

    Science.gov (United States)

    Gomes-Filho, I. S.; Meyer, R.; Olczak, T.; Xavier, M. T.; Trindade, S. C.

    2016-01-01

    Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical “keystone pathogens,” affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy. PMID:27403039

  6. Sialylation of Porphyromonas gingivalis LPS and its effect on bacterial-host interactions.

    Science.gov (United States)

    Zaric, Svetislav S; Lappin, Mark J; Fulton, Catherine R; Lundy, Fionnuala T; Coulter, Wilson A; Irwin, Christopher R

    2017-04-01

    Porphyromonas gingivalis produces different LPS isoforms with significant structural variations of their lipid A and O-antigen moieties that can affect its pro-inflammatory and bone-resorbing potential. We show here, for the first time, that P. gingivalis LPS isolated from W83 strain is highly sialylated and possesses significantly reduced inflammatory potential compared with less sialylated ATCC 33277 strain LPS. Nevertheless, the reduction in the endotoxin activity is not mediated by the presence of sialic acid LPS moieties as the sialic acid-free LPS produced by the mutant W83 strain exhibits a similar inflammatory potential to the wild type strain. Furthermore, our findings suggest that the interaction between the sialic acid LPS moieties and the inhibitory CD33 receptor is prevented by endogenously expressed sialic acid on the surface of THP-1 cells that cannot be out-competed by sialic acid containing P. gingivalis LPS. The present study also highlights the importance of endogenous sialic acid as a 'self-associated molecular pattern' and CD33 receptors in modulation of innate immune response as human gingival fibroblasts, which do not express CD33 receptors, and desialylated THP-1 cells have both been found to have much higher spontaneous IL-8 production than naïve THP-1 cells.

  7. Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis

    Science.gov (United States)

    Sochalska, Maja; Potempa, Jan

    2017-01-01

    The pathogenesis of the chronic periodontal disease is associated with a skewed host inflammatory response to periodontal pathogens, such as Porphyromonas gingivalis, that accounts for the majority of periodontal tissue damage. Neutrophils are the most abundant leukocytes in periodontal pockets and depending on the stage of the disease, also plentiful PMNs are present in the inflamed gingival tissue and the gingival crevice. They are the most efficient phagocytes and eliminate pathogens by a variety of means, which are either oxygen-dependent or -independent. However, these secretory lethal weapons do not strictly discriminate between pathogens and host tissue. Current studies describe conflicting findings about neutrophil involvement in periodontal disease. On one hand literature indicate that hyper-reactive neutrophils are the main immune cell type responsible for this observed tissue damage and disease progression. Deregulation of neutrophil survival and functions, such as chemotaxis, migration, secretion of antimicrobial peptides or enzymes, and production of reactive oxygen species, contribute to observed tissue injury and the clinical signs of periodontal disease. On the other hand neutrophils deficiencies in patients and mice also result in periodontal phenotype. Therefore, P. gingivalis represents a periodontal pathogen that manipulates the immune responses of PMNs, employing several virulence factors, such as gingipains, serine proteases, lipid phosphatases, or fimbriae. This review will sum up studies devoted to understanding different strategies utilized by P. gingivalis to manipulate PMNs survival and functions in order to inhibit killing by a granular content, prolong inflammation, and gain access to nutrient resources. PMID:28589098

  8. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    P. C. Carvalho-Filho

    2016-01-01

    Full Text Available Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical “keystone pathogens,” affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy.

  9. High in vitro antibacterial activity of Pac-525 against Porphyromonas gingivalis biofilms cultured on titanium.

    Science.gov (United States)

    Li, Ji-yin; Wang, Xue-jin; Wang, Li-na; Ying, Xiao-xia; Ren, Xiang; Liu, Hui-ying; Xu, Li; Ma, Guo-wu

    2015-01-01

    In order to investigate the potential of short antimicrobial peptides (AMPs) as alternative antibacterial agents during the treatment of peri-implantitis, the cytotoxic activity of three short AMPs, that is, Pac-525, KSL-W, and KSL, was determined using the MTT assay. The antimicrobial activity of these AMPs, ranging in concentration from 0.0039 mg/mL to 0.5 mg/mL, against the predominant planktonic pathogens, including Streptococcus sanguis, Fusobacterium nucleatum, and Porphyromonas gingivalis, involved in peri-implantitis was investigated. Furthermore, 2-day-old P. gingivalis biofilms cultured on titanium surfaces were treated with Pac-525 and subsequently observed and analysed using confocal laser scanning microscopy (CLSM). The average cell proliferation curve indicated that there was no cytotoxicity due to the three short AMPs. The minimum inhibitory concentration and minimum bactericidal concentration values of Pac-525 were 0.0625 mg/mL and 0.125 mg/mL, respectively, for P. gingivalis and 0.0078 mg/mL and 0.0156 mg/mL, respectively, for F. nucleatum. Using CLSM, we confirmed that compared to 0.1% chlorhexidine, 0.5 mg/mL of Pac-525 caused a significant decrease in biofilm thickness and a decline in the percentage of live bacteria. These data indicate that Pac-525 has unique properties that might make it suitable for the inhibition the growth of pathogenic bacteria around dental implants.

  10. Identification of an O-antigen chain length regulator, WzzP, in Porphyromonas gingivalis

    Science.gov (United States)

    Shoji, Mikio; Yukitake, Hideharu; Sato, Keiko; Shibata, Yasuko; Naito, Mariko; Aduse-Opoku, Joseph; Abiko, Yoshimitsu; Curtis, Michael A; Nakayama, Koji

    2013-01-01

    The periodontal pathogen Porphyromonas gingivalis has two different lipopolysaccharides (LPSs) designated O-LPS and A-LPS, which are a conventional O-antigen polysaccharide and an anionic polysaccharide that are both linked to lipid A-cores, respectively. However, the precise mechanisms of LPS biosynthesis remain to be determined. In this study, we isolated a pigment-less mutant by transposon mutagenesis and identified that the transposon was inserted into the coding sequence PGN_2005, which encodes a hypothetical protein of P. gingivalis ATCC 33277. We found that (i) LPSs purified from the PGN_2005 mutant were shorter than those of the wild type; (ii) the PGN_2005 protein was located in the inner membrane fraction; and (iii) the PGN_2005 gene conferred Wzz activity upon an Escherichia coli wzz mutant. These results indicate that the PGN_2005 protein, which was designated WzzP, is a functional homolog of the Wzz protein in P. gingivalis. Comparison of amino acid sequences among WzzP and conventional Wzz proteins indicated that WzzP had an additional fragment at the C-terminal region. In addition, we determined that the PGN_1896 and PGN_1233 proteins and the PGN_1033 protein appear to be WbaP homolog proteins and a Wzx homolog protein involved in LPS biosynthesis, respectively. PMID:23509024

  11. The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    van Winkelhoff Arie J

    2010-01-01

    Full Text Available Abstract Background Periodontitis is a bacterial infection of the periodontal tissues. The Gram-negative anaerobic bacterium Porphyromonas gingivalis is considered a major causative agent. One of the virulence factors of P. gingivalis is capsular polysaccharide (CPS. Non-encapsulated strains have been shown to be less virulent in mouse models than encapsulated strains. Results To examine the role of the CPS in host-pathogen interactions we constructed an insertional isogenic P. gingivalis knockout in the epimerase-coding gene epsC that is located at the end of the CPS biosynthesis locus. This mutant was subsequently shown to be non-encapsulated. K1 capsule biosynthesis could be restored by in trans expression of an intact epsC gene. We used the epsC mutant, the W83 wild type strain and the complemented mutant to challenge human gingival fibroblasts to examine the immune response by quantification of IL-1β, IL-6 and IL-8 transcription levels. For each of the cytokines significantly higher expression levels were found when fibroblasts were challenged with the epsC mutant compared to those challenged with the W83 wild type, ranging from two times higher for IL-1β to five times higher for IL-8. Conclusions These experiments provide the first evidence that P. gingivalis CPS acts as an interface between the pathogen and the host that may reduce the host's pro-inflammatory immune response. The higher virulence of encapsulated strains may be caused by this phenomenon which enables the bacteria to evade the immune system.

  12. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available BACKGROUND: Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis lipopolysaccharide (LPS and Escherichia coli (E. coli LPS in murine peritoneal macrophages. METHODOLOGY/PRINCIPAL FINDINGS: We studied the cytokine production (TNF-α and IL-10 and Toll-like receptor 2, 4 (TLR2, 4 gene and protein expressions in peritoneal macrophages from young (2-month-old and middle-aged (12-month-old ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (p<0.05, and the markedly lower levels of TNF-α and higher levels of IL-10 were observed in macrophages from young mice compared with those from middle-aged mice (p<0.05. In addition, LPS restimulations also led to the significantly lower expression levels of TLR2, 4 mRNA and protein in macrophages from young mice (p<0.05. CONCLUSIONS/SIGNIFICANCE: Repeated LPS stimulations triggered endotoxin tolerance in peritoneal macrophages and the ability to develop tolerance in young mice was more excellent. The impaired ability to develop endotoxin tolerance resulted from aging might be related to TLR2, 4 and might lead to the incontrollable periodontal inflammation in older adults.

  13. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection.

    Science.gov (United States)

    Meresta, Anna; Folkert, Justyna; Gaber, Timo; Miksch, Korneliusz; Buttgereit, Frank; Detert, Jacqueline; Pischon, Nicole; Gurzawska, Katarzyna

    2017-01-01

    Bioengineered plant-derived Rhamnogalacturonan-Is (RG-Is) from pectins are potential candidates for surface nanocoating of medical devices. It has recently been reported that RG-I nanocoatings may prevent bacterial infection and improve the biocompatibility of implants. The aim of the study was to evaluate in vitro impact of bioengineered RG-I nanocoatings on osteogenic capacity and proinflammatory cytokine response of murine osteoblasts following Porphyromonas gingivalis infection. Murine MC3T3-E1 osteoblasts and isolated primary calvarial osteoblasts from C57BL/6J (B6J osteoblasts) mice were infected with P. gingivalis and incubated on tissue culture polystyrene plates with or without nanocoatings of unmodified RG-Is isolated from potato pulps (PU) or dearabinanated RG-Is (PA). To investigate a behavior of infected osteoblasts cultured on RG-Is cell morphology, proliferation, metabolic activity, mineralization and osteogenic and pro-inflammatory gene expression were examined. Following P. gingivalis infection, PA, but not PU, significantly promoted MC3T3-E1 and BJ6 osteoblasts proliferation, metabolic activity, and calcium deposition. Moreover, Il-1b, Il-6, TNF-α, and Rankl gene expressions were downregulated in cells cultured on PU and to a higher extent on PA as compared to the corresponding control, whereas Runx, Alpl, Col1a1, and Bglap gene expressions were upregulated vice versa. Our data clearly showed that pectin RG-Is nanocoating with high content of galactan (PA) reduces the osteoblastic response to P. gingivalis infection in vitro and may, therefore, reduce a risk of inflammation especially in immunocompromised patients with rheumatoid or periodontal disorders.

  14. Identification of amino acid residues involved in hemin binding in Porphyromonas gingivalis hemagglutinin 2.

    Science.gov (United States)

    Yang, Q B; Yu, F Y; Sun, L; Zhang, Q X; Lin, M; Geng, X Y; Sun, X N; Li, J L; Liu, Y

    2015-10-01

    Porphyromonas gingivalis (P. gingivalis) is a major etiological agent in the development and progression of chronic periodontitis. It produces cysteine proteases (gingipains), including a lysine-specific gingipain and two arginine-specific gingipains. Heme binding and uptake are fundamental to the growth and virulence of P. gingivalis. The recombinant hemagglutinin 2 domain (rHA2) of gingipain binds hemin with high affinity. The aim of the present work was to identify the key residues involved in its hemin-binding activity. A functional rHA2 was expressed and bound to hemin-agarose, and then digested with endopeptidases. The peptides bound to hemin-agarose were identified by mass spectrometry and the amino acids were assessed by mutation and peptide binding inhibition analysis. The DHYAVMISK sequence was identified in peptides derived from both Asp-N and Lys-C endopeptidase digestions of rHA2. A monoclonal antibody, mAb QB, was produced and its epitope was associated with the DGFPGDHYAVMISK peptide within the HA2 domain. Hemin was shown to competitively inhibit the immunoreactivity of rHA2 or the peptide to mAb QB. The peptide DHYAVMISK inhibited hemin-binding activity; although, this inhibition was not seen when the peptide contained the H1001E mutation (DEYAVMISK). Based on these results, we propose that residue His1001 is involved in the hemin-binding mechanism of the P. gingivalis rHA2 and the peptide containing this residue, DHYAVMISK, may be an inhibitor of hemin binding. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics.

    Science.gov (United States)

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/.

  16. Production of 4-hydroxybutyrate from succinate semialdehyde in butyrate biosynthesis in Porphyromonas gingivalis.

    Science.gov (United States)

    Yoshida, Yasuo; Sato, Mitsunari; Nagano, Keiji; Hasegawa, Yoshiaki; Okamoto, Takashi; Yoshimura, Fuminobu

    2015-12-01

    Despite evidence demonstrating the importance of butyrate-producing bacteria in host health and disease, the characterization of enzymes responsible for butyrate production has not been fully elucidated in the periodontopathogen, Porphyromonas gingivalis. LC-MS/MS and colorimetric analyses were employed to enzymatically characterize recombinant PGN_0724 in P. gingivalis as a succinate semialdehyde reductase. The concentration of short chain fatty acids in the culture supernatant of the wild-type bacteria and a mutant strain lacking the PGN_0724 gene were quantified using GC-MS. Incubation of recombinant PGN_0724 with succinate semialdehyde and NADH resulted in the production of 4-hydroxybutyrate as well as consumption of succinate semialdehyde. Double reciprocal plots showed that the reaction catalyzed by the PGN_0724 protein was associated with a ternary complex mechanism. The growth speed and final turbidity of the mutant strain were much lower than those of the wild-type cells. The capacity of the mutant strain to produce butyrate, isobutyrate, and isovalerate was 30%, 15%, and 45%, respectively, of that of the wild-type strain, while the mutant strain produced approximately 3.9-fold more propionate than the wild type. The pathway responsible for butyrate production is important for the growth of P. gingivalis and appears to be associated with production of the other short chain fatty acids. The aim of this study was to delineate the mechanisms involved in the production of 4-hydroxybutyrate, which is an intermediate in the biosynthetic pathway for production of butyrate, which is a virulence factor in P. gingivalis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The relationship between colonization and haemagglutination inhibiting and B cell epitopes of Porphyromonas gingivalis

    Science.gov (United States)

    KELLY, C G; BOOTH, V; KENDAL, H; SLANEY, J M; CURTIS, M A; LEHNER, T

    1997-01-01

    Passive immunization with the monoclonal antibody 61BG1.3 selectively prevents colonization by Porphyromonas gingivalis in humans (Booth V, Ashley FP, Lehner T. Infect Immun 1996; 64:422-7). The protective MoAb recognizes the j3 component of the RI protease of P. gingivalis which is formed by proteolytic processing of a polyprotein precursor termed PrpRl. This subunit is both a haemagglutinin and an antigen which is recognized by sera from patients with periodontitis. In this study the relationship was investigated between a colonization epitope which is recognized by the MoAb 61BG1.3, a haemagglutinating and B cell epitope which are recognized by sera from patients with periodontitis. B cell epitopes were mapped by Western blotting with a series of truncated recombinant polypeptides spanning the adhesion domain within residues 784–1130 of PrpRl and by ELISA using a panel of synthetic peptides spanning the same sequence. The epitope which is recognized by the protective MoAb was mapped within residues 907–931 of PrpRl, while serum responses of patients were directed predominantly to the adjacent carboxy-terminal sequence within residues 934–1042. The haemagglutinating epitope was mapped to residues 1073–1112. In view of our previous findings that the MoAb 61BG1.3 prevents colonization of P. gingivalis in vivo and inhibits haemagglutination, these two epitopes may be in proximity in the native protein. Active or passive immunization strategies which target the protective or haemagglutinating epitopes of the adhesion domain of PrpRl may provide a means of preventing infection with P. gingivalis. PMID:9367414

  18. ThePorphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases.

    Science.gov (United States)

    Carter, Chris J; France, James; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis . Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis /host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb ( P periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis /host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.

  19. Inhibitory Effect ofEnterococcus faeciumWB2000 on Volatile Sulfur Compound Production byPorphyromonas gingivalis.

    Science.gov (United States)

    Suzuki, Nao; Higuchi, Takuya; Nakajima, Masato; Fujimoto, Akie; Morita, Hiromitsu; Yoneda, Masahiro; Hanioka, Takashi; Hirofuji, Takao

    2016-01-01

    Volatile sulfur compounds (VSCs) produced by oral anaerobes are the major compounds responsible for oral malodor. Enterococcus faecium WB2000 is recognized as an antiplaque probiotic bacterium. In this study, the effect of E. faecium WB2000 on VSC production by Porphyromonas gingivalis was evaluated, and the mechanism of inhibition of oral malodor was investigated. P. gingivalis ATCC 33277 was cultured in the presence of four lactic acid bacteria, including E. faecium WB2000. Subsequently, P. gingivalis ATCC 33277, W50, W83, and two clinical isolates were cultured in the presence or absence of E. faecium WB2000, and the emission of VSCs from spent culture medium was measured by gas chromatography. The number of P. gingivalis ATCC 33277 in mixed culture with E. faecium WB2000 decreased at 6 h, and the rate of decrease was higher than that in mixed cultures with the other lactic acid bacteria. The numbers of five P. gingivalis strains decreased at similar rates in mixed culture with E. faecium WB2000. The concentration of methyl mercaptan was lower in spent culture medium from P. gingivalis and E. faecium WB2000 cultures compared with that from P. gingivalis alone. Therefore, E. faecium WB2000 may reduce oral malodor by inhibiting the growth of P. gingivalis and neutralizing methyl mercaptan.

  20. Catecholamines promote the expression of virulence and oxidative stress genes in Porphyromonas gingivalis.

    Science.gov (United States)

    Graziano, T S; Closs, P; Poppi, T; Franco, G C; Cortelli, J R; Groppo, F C; Cogo, K

    2014-10-01

    Stress has been identified as an important risk factor in the development of many infectious diseases, including periodontitis. Porphyromonas gingivalis, a gram-negative oral anaerobic bacterium, is considered an important pathogen in chronic periodontitis. Microorganisms, including P. gingivalis, that participate in infectious diseases have been shown to respond to catecholamines released during stress processes by modifying their growth and virulence. Therefore, the purpose of this study was to evaluate the effects of adrenaline and noradrenaline on the growth, antimicrobial susceptibility and gene expression in P. gingivalis. P. gingivalis was incubated in the presence of adrenaline and noradrenaline (100 μm) for different time-periods in rich (Tryptic soy broth supplemented with 0.2% yeast extract, 5 μg/mL of hemin and 1 μg/mL of menadione) and poor (serum-SAPI minimal medium and serum-SAPI minimal medium supplemented with 5 μg/mL of hemin and 1 μg/mL of menadione) media, and growth was evaluated based on absorbance at 660 nm. Bacterial susceptibility to metronidazole was examined after exposure to adrenaline and noradrenaline. The expression of genes involved in iron acquisition, stress oxidative protection and virulence were also evaluated using RT-quantitative PCR. Catecholamines did not interfere with the growth of P. gingivalis, regardless of nutritional or hemin conditions. In addition, bacterial susceptibility to metronidazole was not modified by exposure to adrenaline or noradrenaline. However, the expression of genes related to iron acquisition (hmuR), oxidative stress (tpx, oxyR, dps, sodB and aphC) and pathogenesis (hem, hagA and ragA) were stimulated upon exposure to adrenaline and/or noradrenaline. Adrenaline and noradrenaline can induce changes in gene expression related to oxidative stress and virulence factors in P. gingivalis. The present study is, in part, a step toward understanding the stress-pathogen interactions that may

  1. Prevalence of Porphyromonas gingivalis and Bacteroides forsythus in chronic Periodontitis by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    faranak Rezaei

    2009-01-01

    Full Text Available Rezaei F1, Chalabi M1, Moghim SH2, Moghareh Abed A3, Faghri J1 1. Instructor, Department of Microbiology, Faculty of Medicine, Lorestan University of Medical Sciences 2. MSc in Microbiology, Medical Biology Recearch Center, Kermanshah 3. Assistant Professor, Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences 4. Assistant Professor, Department of Periodontology, Faculty of Dentistry, Isfahan University of Medical Sciences, Abstract Background: Periodontitis is a common inflammatory and infectious disease which destroys the supporting structure of the teeth. Recent studies show that periodontal infection significantly increases the risk of some systemic diseases. It is generally accepted that bacterial species notably Porphyromonas gingivalis and Bacteroides forsythus are highly associated with periodontium. Molecular methods such as Multiplex PCR seem to be more sensitive and faster. Multiplex PCR alone can lower the limit of bacterial detection. Several pathogens can be detected simultaneously by this method. Materials and methods: The Subgingival plaque samples from 61 patients including 34 women and 27 men in the age range of 24-69 years and an average age of 43 suffering from chronic periodontitis with probing depth of PD³6, and from 40 periodontally healthy controls including 22 women and 18 men in the age range of 21-69 years and an average age of 41.35 were collected by sterile curette. In this study, two species-specific forward primers were used in combination with a single reverse primer. The samples DNA was extracted and Multiplex PCR was administered. Results: Porphyromonas gingivalis was detected in 51 samples (83.61% and 16 samples (40% of the chronic periodontitis patients and the healthy subjects respectively. Moreover, Bacteroides forsythus was detected in 32 samples (52.50% of the chronic periodontitis patients but it was not detected in any of the samples from the healthy group. Conclusion

  2. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, Halina [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Wojaczynski, Jacek [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Mariusz [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Kroliczewski, Jaroslaw [Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-148 Wroclaw (Poland); Latos-Grazynski, Lechoslaw [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Teresa, E-mail: Teresa.Olczak@biotech.uni.wroc.pl [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland)

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  3. A two-component system regulates hemin acquisition in Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Jodie C Scott

    Full Text Available Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with infection of the periodontia. The organism has a small number of two-component signal transduction systems, and after comparing genome sequences of strains W83 and ATCC 33277 we discovered that the latter was mutant in histidine kinase (PGN_0752, while the cognate response regulator (PGN_0753 remained intact. Microarray-based transcriptional profiling and ChIP-seq assays were carried out with an ATCC 33277 transconjugant containing the functional histidine kinase from strain W83 (PG0719. The data showed that the regulon of this signal transduction system contained genes that were involved in hemin acquisition, including gingipains, at least three transport systems, as well as being self-regulated. Direct regulation by the response regulator was confirmed by electrophoretic mobility shift assays. In addition, the system appears to be activated by hemin and the regulator acts as both an activator and repressor.

  4. The Porphyromonas gingivalis hemagglutinins HagB and HagC are major mediators of adhesion and biofilm formation.

    Science.gov (United States)

    Connolly, E; Millhouse, E; Doyle, R; Culshaw, S; Ramage, G; Moran, G P

    2017-02-01

    Porphyromonas gingivalis is a bacterium associated with chronic periodontitis that possesses a family of genes encoding hemagglutinins required for heme acquisition. In this study we generated ΔhagB and ΔhagC mutants in strain W83 and demonstrate that both hagB and hagC are required for adherence to oral epithelial cells. Unexpectedly, a double ΔhagB/ΔhagC mutant had less severe adherence defects than either of the single mutants, but was found to exhibit increased expression of the gingipain-encoding genes rgpA and kgp, suggesting that a ΔhagB/ΔhagC mutant is only viable in populations of cells that exhibit increased expression of genes involved in heme acquisition. Disruption of hagB in the fimbriated strain ATCC33277 demonstrated that HagB is also required for stable attachment of fimbriated bacteria to oral epithelial cells. Mutants of hagC were also found to form defective single and multi-species biofilms that had reduced biomass relative to biofilms formed by the wild-type strain. This study highlights the hitherto unappreciated importance of these genes in oral colonization and biofilm formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Recognition of Porphyromonas gingivalis gingipain epitopes by natural IgM binding to malondialdehyde modified low-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    S Pauliina Turunen

    Full Text Available OBJECTIVE: Increased risk for atherosclerosis is associated with infectious diseases including periodontitis. Natural IgM antibodies recognize pathogen-associated molecular patterns on bacteria, and oxidized lipid and protein epitopes on low-density lipoprotein (LDL and apoptotic cells. We aimed to identify epitopes on periodontal pathogen Porphyromonas gingivalis recognized by natural IgM binding to malondialdehyde (MDA modified LDL. METHODS AND RESULTS: Mouse monoclonal IgM (MDmAb specific for MDA-LDL recognized epitopes on P. gingivalis on flow cytometry and chemiluminescence immunoassays. Immunization of C57BL/6 mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and apoptotic cells. Immunization of LDLR(-/- mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and diminished aortic lipid deposition. On Western blot MDmAb bound to P. gingivalis fragments identified as arginine-specific gingipain (Rgp by mass spectrometry. Recombinant domains of Rgp produced in E. coli were devoid of phosphocholine epitopes but contained epitopes recognized by MDmAb and human serum IgM. Serum IgM levels to P. gingivalis were associated with anti-MDA-LDL levels in humans. CONCLUSION: Gingipain of P. gingivalis is recognized by natural IgM and shares molecular identity with epitopes on MDA-LDL. These findings suggest a role for natural antibodies in the pathogenesis of two related inflammatory diseases, atherosclerosis and periodontitis.

  6. Characterization of Innate Immune Responses of Human Endothelial Cells Induced by Porphyromonas gingivalis and Their Derived Outer Membrane Vesicles.

    Science.gov (United States)

    Ho, Meng-Hsuan; Guo, Zhong-Mao; Chunga, Julio; Goodwin, J Shawn; Xie, Hua

    2016-01-01

    Atherosclerosis, a chronic inflammatory disease of the blood vessels, is one of the most common causes of morbidity and mortality world-wide. Involvement of Porphyromonas gingivalis in atherosclerosis is supported by observations from epidemiological, clinical, immunological, and molecular studies. Previously we reported that P. gingivalis vesicles have a much higher invasive efficiency than their originating cells. Here, we further compare the role of P. gingivalis cells and their vesicles in expression of chemoattractant proteins including CXCL1, CXCL2, and CXCL8, and adhesive molecules such as E-selectin in human umbilical vein endothelial cells (HUVECs). Both P. gingivalis 33277 cells and vesicles were able to up-regulate expression of these molecules, while the vesicles acted as more potent inducers of the inflammatory response associated with the development of atherosclerosis, consequently resulting in significant monocyte adhesion to a monolayer of HUVECs. Interestingly, we found that elevated expression of CXCL8 and E-selectin in endothelial cells induced by P. gingivalis correlated with the invasive ability of P. gingivalis cells and vesicles. Non-invasive bacterial cells and vesicles had no effect on expression of these genes. This study highlights the potential risk of P. gingivalis cells and vesicles in initiation of atherosclerosis and provides a potential target for the development of novel therapeutics against bacteria-associated atherosclerosis.

  7. Identification of signaling pathways mediating cell cycle arrest and apoptosis induced by Porphyromonas gingivalis in human trophoblasts.

    Science.gov (United States)

    Inaba, Hiroaki; Kuboniwa, Masae; Sugita, Hideyuki; Lamont, Richard J; Amano, Atsuo

    2012-08-01

    Epidemiological and interventional studies of humans have revealed a close association between periodontal diseases and preterm delivery of low-birth-weight infants. Porphyromonas gingivalis, a periodontal pathogen, can translocate to gestational tissues following oral-hematogenous spread. We previously reported that P. gingivalis invades extravillous trophoblast cells (HTR-8) derived from the human placenta and inhibits proliferation through induction of arrest in the G(1) phase of the cell cycle. The purpose of the present study was to identify signaling pathways mediating cellular impairment caused by P. gingivalis. Following P. gingivalis infection, the expression of Fas was induced and p53 accumulated, responses consistent with response to DNA damage. Ataxia telangiectasia- and Rad3-related kinase (ATR), an essential regulator of DNA damage checkpoints, was shown to be activated together with its downstream signaling molecule Chk2, while the p53 degradation-related protein MDM2 was not induced. The inhibition of ATR prevented both G(1) arrest and apoptosis caused by P. gingivalis in HTR-8 cells. In addition, small interfering RNA (siRNA) knockdown of p53 abrogated both G(1) arrest and apoptosis. The regulation of apoptosis was associated with Ets1 activation. HTR-8 cells infected with P. gingivalis exhibited activation of Ets1, and knockdown of Ets1 with siRNA diminished both G(1) arrest and apoptosis. These results suggest that P. gingivalis activates cellular DNA damage signaling pathways that lead to G(1) arrest and apoptosis in trophoblasts.

  8. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: Implications for autoimmunity in rheumatoid arthritis

    Science.gov (United States)

    Wegner, Natalia; Wait, Robin; Sroka, Aneta; Eick, Sigrun; Nguyen, Ky-Anh; Lundberg, Karin; Kinloch, Andrew; Culshaw, Shauna; Potempa, Jan; Venables, Patrick J

    2010-01-01

    Objectives To investigate protein citrullination by the periodontal pathogen Porphyromonas gingivalis (P. gingivalis) as a potential mechanism for breaking tolerance to citrullinated proteins in rheumatoid arthritis (RA). Methods Expression of endogenous citrullinated proteins was analysed by immunoblotting of cell extracts from P. gingivalis and ten other oral bacteria. P. gingivalis knockout strains lacking the bacterial PAD or gingipains were created to assess the role of these enzymes in citrullination. Citrullination of human fibrinogen and α-enolase by P. gingivalis was studied by incubating live wild-type and knockouts with the proteins and analysing the products by immunoblotting and mass spectrometry. Results Endogenous protein citrullination was abundant in P. gingivalis but lacking in the other oral bacteria. Deletion of the bacterial PAD gene resulted in complete abrogation of protein citrullination. Inactivation of arginine-gingipains, but not lysine-gingipains, led to decreased citrullination. Incubation of wild-type P. gingivalis with fibrinogen or α-enolase caused degradation of the proteins and citrullination of the resulting peptides at carboxy-terminal arginine residues, which were identified by mass spectrometry. Conclusion We demonstrate that P. gingivalis is unique amongst the tested oral bacterial pathogens in its ability to citrullinate proteins. We further show that P. gingivalis rapidly generates citrullinated host peptides by proteolytic cleavage at arginine-X peptide bonds by arginine-gingipains followed by citrullination of carboxy-terminal arginines by bacterial PAD. Our results suggest a novel model where P. gingivalis-mediated citrullination of bacterial and host proteins provides a molecular mechanism for generating antigens driving the autoimmune response in RA. PMID:20506214

  9. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease.

    Science.gov (United States)

    Yoneda, Masato; Naka, Shuhei; Nakano, Kazuhiko; Wada, Koichiro; Endo, Hiroki; Mawatari, Hironori; Imajo, Kento; Nomura, Ryota; Hokamura, Kazuya; Ono, Masafumi; Murata, Shogo; Tohnai, Iwai; Sumida, Yoshio; Shima, Toshihide; Kuboniwa, Masae; Umemura, Kazuo; Kamisaki, Yoshinori; Amano, Atsuo; Okanoue, Takeshi; Ooshima, Takashi; Nakajima, Atsushi

    2012-02-16

    Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome that is closely associated with multiple factors such as obesity, hyperlipidemia and type 2 diabetes mellitus. However, other risk factors for the development of NAFLD are unclear. With the association between periodontal disease and the development of systemic diseases receiving increasing attention recently, we conducted this study to investigate the relationship between NAFLD and infection with Porphyromonas gingivalis (P. gingivalis), a major causative agent of periodontitis. The detection frequencies of periodontal bacteria in oral samples collected from 150 biopsy-proven NAFLD patients (102 with non-alcoholic steatohepatitis (NASH) and 48 with non-alcoholic fatty liver (NAFL) patients) and 60 non-NAFLD control subjects were determined. Detection of P. gingivalis and other periodontopathic bacteria were detected by PCR assay. In addition, effect of P. gingivalis-infection on mouse NAFLD model was investigated. To clarify the exact contribution of P. gingivalis-induced periodontitis, non-surgical periodontal treatments were also undertaken for 3 months in 10 NAFLD patients with periodontitis. The detection frequency of P. gingivalis in NAFLD patients was significantly higher than that in the non-NAFLD control subjects (46.7% vs. 21.7%, odds ratio: 3.16). In addition, the detection frequency of P. gingivalis in NASH patients was markedly higher than that in the non-NAFLD subjects (52.0%, odds ratio: 3.91). Most of the P. gingivalis fimbria detected in the NAFLD patients was of invasive genotypes, especially type II (50.0%). Infection of type II P. gingivalis on NAFLD model of mice accelerated the NAFLD progression. The non-surgical periodontal treatments on NAFLD patients carried out for 3 months ameliorated the liver function parameters, such as the serum levels of AST and ALT. Infection with high-virulence P. gingivalis might be an additional risk factor for the

  10. Identification and Characterization of Porphyromonas gingivalis Client Proteins That Bind to Streptococcus oralis Glyceraldehyde-3-Phosphate Dehydrogenase

    Science.gov (United States)

    Nagata, Hideki; Kuboniwa, Masae; Ojima, Miki; Osaki, Tsukasa; Minamino, Naoto; Amano, Atsuo

    2013-01-01

    Coaggregation of Porphyromonas gingivalis and oral streptococci is thought to play an important role in P. gingivalis colonization. Previously, we reported that P. gingivalis major fimbriae interacted with Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and that amino acid residues 166 to 183 of GAPDH exhibited strong binding activity toward P. gingivalis fimbriae (H. Nagata, M. Iwasaki, K. Maeda, M. Kuboniwa, E. Hashino, M. Toe, N. Minamino, H. Kuwahara, and S. Shizukuishi, Infect. Immun. 77:5130–5138, 2009). The present study aimed to identify and characterize P. gingivalis components other than fimbriae that interact with S. oralis GAPDH. A pulldown assay was performed to detect potential interactions between P. gingivalis client proteins and S. oralis recombinant GAPDH with amino acid residues 166 to 183 deleted by site-directed mutagenesis. Seven proteins, namely, tonB-dependent receptor protein (RagA4), arginine-specific proteinase B, 4-hydroxybutyryl-coenzyme A dehydratase (AbfD), lysine-specific proteinase, GAPDH, NAD-dependent glutamate dehydrogenase (GDH), and malate dehydrogenase (MDH), were identified by two-dimensional gel electrophoresis followed by proteomic analysis using tandem mass spectrometry. Interactions between these client proteins and S. oralis GAPDH were analyzed with a biomolecular interaction analysis system. S. oralis GAPDH showed high affinity for five of the seven client proteins (RagA4, AbfD, GAPDH, GDH, and MDH). Interactions between P. gingivalis and S. oralis were measured by a turbidimetric method and fluorescence microscopy. RagA4, AbfD, and GDH enhanced coaggregation, whereas GAPDH and MDH inhibited coaggregation. Furthermore, the expression of luxS in P. gingivalis was upregulated by RagA4, AbfD, and GDH but was downregulated by MDH. These results indicate that the five P. gingivalis client proteins function as regulators in P. gingivalis biofilm formation with oral streptococci. PMID:23264054

  11. Persistent Exposure to Porphyromonas gingivalis Promotes Proliferative and Invasion Capabilities, and Tumorigenic Properties of Human Immortalized Oral Epithelial Cells.

    Science.gov (United States)

    Geng, Fengxue; Liu, Junchao; Guo, Yan; Li, Chen; Wang, Hongyang; Wang, Hongyan; Zhao, Haijiao; Pan, Yaping

    2017-01-01

    Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low multiplicity of infection (MOI) for 5-23 weeks. The P. gingivalis infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with P. gingivalis for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to P. gingivalis caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of P. gingivalis. In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, P. gingivalis could promote tumorigenic properties of HIOECs, indicating that chronic P. gingivalis infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with

  12. Identification and Characterization of MicroRNA Differentially Expressed in Macrophages Exposed to Porphyromonas gingivalis Infection.

    Science.gov (United States)

    Huck, Olivier; Al-Hashemi, Jacob; Poidevin, Laetitia; Poch, Olivier; Davideau, Jean-Luc; Tenenbaum, Henri; Amar, Salomon

    2017-03-01

    MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-α] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-α secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-α secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P

  13. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    Science.gov (United States)

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  14. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors.

    Directory of Open Access Journals (Sweden)

    Graziela Murta Barbosa

    Full Text Available It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P

  15. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors.

    Science.gov (United States)

    Barbosa, Graziela Murta; Colombo, Andrea Vieira; Rodrigues, Paulo Henrique; Simionato, Maria Regina Lorenzetti

    2015-01-01

    It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P

  16. Modulation of inflammasome activity by Porphyromonas gingivalis in periodontitis and associated systemic diseases

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-02-01

    Full Text Available Inflammasomes are large multiprotein complexes localized in the cytoplasm of the cell. They are responsible for the maturation of pro-inflammatory cytokines such as interleukin-1β (IL-1β and IL-18 as well as for the activation of inflammatory cell death, the so-called pyroptosis. Inflammasomes assemble in response to cellular infection, cellular stress, or tissue damage; promote inflammatory responses and are of great importance in regulating the innate immune system in chronic inflammatory diseases such as periodontitis and several chronic systemic diseases. In addition to sensing cellular integrity, inflammasomes are involved in the homeostatic mutualism between the indigenous microbiota and the host. There are several types of inflammasomes of which NLRP3 is best characterized in microbial pathogenesis. Many opportunistic bacteria try to evade the innate immune system in order to survive in the host cells. One of these is the periodontopathogen Porphyromonas gingivalis which has been shown to have several mechanisms of modulating innate immunity by limiting the activation of the NLRP3 inflammasome. Among them, ATP-/P2X7- signaling is recently associated not only with periodontitis but also with development of several systemic diseases. The present paper reviews multiple mechanisms through which P. gingivalis can modify innate immunity by affecting inflammasome activity.

  17. CpG Motifs in Porphyromonas gingivalis DNA Stimulate Interleukin-6 Expression in Human Gingival Fibroblasts

    Science.gov (United States)

    Takeshita, Akira; Imai, Kenichi; Hanazawa, Shigemasa

    1999-01-01

    We suggest here that Porphyromonas gingivalis DNA may function as a virulence factor in periodontal disease through expression of inflammatory cytokine. The bacterial DNA markedly stimulated in a dose-dependent manner interleukin-6 (IL-6) production by human gingival fibroblasts. The stimulatory action was eliminated by treatment with DNase but not RNase. The stimulatory effect was not observed in the fibroblasts treated with eucaryotic DNAs. The bacterial DNA also stimulated in dose- and treatment time-dependent manners the expression of the IL-6 gene in the cells. In addition, the stimulatory effect was eliminated when the DNA was methylated with CpG motif methylase. Interestingly, a 30-base synthetic oligonucleotide containing the palindromic motif GACGTC could stimulate expression of the IL-6 gene and production of its protein in the cells. Furthermore, the synthetic oligonucleotide-induced expression of this cytokine gene was blocked by pyrrolidine dithiocarbamate and N-acetyl-l-cystine, potent inhibitors of transcriptional factor NF-κB. Gel mobility shift assay showed increased binding of NF-κB to its consensus sequence in the synthetic oligonucleotide-treated cells. Also, using specific antibody against p50 and p65, which compose NF-κB, we showed the consensus sequence-binding proteins to be NF-κB. These results are the first to demonstrate that the internal CpG motifs in P. gingivalis DNA stimulate IL-6 expression in human gingival fibroblasts via stimulation of NF-κB. PMID:10456872

  18. Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Sim K. Singhrao

    2015-01-01

    Full Text Available Periodontal disease (PD and Alzheimer’s disease (AD are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia which have an immune armoury that can circumvent host’s immune surveillance to create and maintain an inflammatory mediator rich and toxic environment to grow and survive. The neurodegenerative condition, AD, is characterised by poor memory and specific hallmark proteins; periodontal pathogens are increasingly being linked with this dementing condition. It is therefore becoming important to understand associations of periodontitis with relevance to late-onset AD. The aim of this review is to discuss the relevance of finding the keystone periodontal pathogen P. gingivalis in AD brains and its plausible contribution to the aetiological hypothesis of this dementing condition.

  19. Acute Toxicity and the Effect of Andrographolide on Porphyromonas gingivalis-Induced Hyperlipidemia in Rats

    Directory of Open Access Journals (Sweden)

    Rami Al Batran

    2013-01-01

    Full Text Available The aim of the current study is to evaluate the effect of andrographolide on hyperlipidemia induced by Porphyromonas gingivalis in rats. Thirty male Sprague Dawley (SD rats were divided into five groups as follows: group 1 (vehicle and four experimental groups (groups 2, 3, 4, and 5 were challenged orally with P. gingivalis ATCC 33277 (0.2 mL of bacterial cells/mL in 2% carboxymethylcellulose (CMC with phosphate-buffered saline (PBS five times a week for one month to induce hyperlipidemia. Then, group 3 received a standard oral treatment with simvastatin 100 mg/kg, and groups 4 and 5 received oral treatment with andrographolide 20 mg/kg and 10 mg/kg, respectively, for another month. The results showed that total cholesterol (TC, low-density lipoprotein (LDL-C, and triglycerides (TG were reduced significantly in groups treated with andrographolide. The malondialdehyde (MDA level was low in treated groups, while antioxidant enzymes, superoxide dismutase (SOD, and glutathione peroxidase (GPx were significantly increased in these groups (. Liver tissues of the groups treated with andrographolide reduce the accumulation of lipid droplets in hepatic tissue cells. An acute toxicity test did not show any toxicological symptoms in rats.

  20. Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer's Disease.

    Science.gov (United States)

    Singhrao, Sim K; Harding, Alice; Poole, Sophie; Kesavalu, Lakshmyya; Crean, StJohn

    2015-01-01

    Periodontal disease (PD) and Alzheimer's disease (AD) are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) which have an immune armoury that can circumvent host's immune surveillance to create and maintain an inflammatory mediator rich and toxic environment to grow and survive. The neurodegenerative condition, AD, is characterised by poor memory and specific hallmark proteins; periodontal pathogens are increasingly being linked with this dementing condition. It is therefore becoming important to understand associations of periodontitis with relevance to late-onset AD. The aim of this review is to discuss the relevance of finding the keystone periodontal pathogen P. gingivalis in AD brains and its plausible contribution to the aetiological hypothesis of this dementing condition.

  1. Efecto antibacteriano del extracto etanólico del botoncillo (ACMELLA REPENS) sobre Porphyromona gingivalis: Estudio in Vitro

    OpenAIRE

    Andrea Lizbeth Chamorro Benalcázar; Marina Alejandra Cabrera Árias; Mariela Cumandá Balseca Ibarra

    2016-01-01

    Objetivo: Determinar el efecto antibacteriano del extracto etanólico de Botoncillo (Acmella repens) en diferentes concentraciones sobre la cepa de Porphyromona gingivalis. Materiales y metodos: En el presente estudio experimental, fueron utilizadas 24 cajas Petri con agar sangre, se inoculó P. gingivalis, y se colocaron discos con diferentes concentraciones del extracto etanólico de Botoncillo (25%, 50% y 100%), como sustancias control Clorhexidina al 0,12% y suero fisiológico. A los 7 días ...

  2. Analysis of the capsular polysaccharide biosynthesis locus of Porphyromonas gingivalis and development of a K1-specific polymerase chain reaction-based serotyping assay

    NARCIS (Netherlands)

    Brunner, J.; Crielaard, W.; Winkelhoff A.J. van

    2008-01-01

    Background and Objective: Porphyromonas gingivalis is a gram-negative obligate anaerobe that is strongly associated with severe periodontitis. Previous reports showed an association of P. gingivalis capsular polysaccharide with virulence. The K1 capsular polysaccharide was found to be more

  3. The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence

    NARCIS (Netherlands)

    Singh, A.; Wyant, T.; Anaya-Bergman, C.; Aduse-Opoku, J.; Brunner, J.; Laine, M.L.; Curtis, M.A.; Lewis, J.P.

    2011-01-01

    Periodontal disease is a chronic oral inflammatory disease that is triggered by bacteria such as Porphyromonas gingivalis. P. gingivalis strains exhibit great heterogeneity, with some strains being encapsulated while others are nonencapsulated. Although the encapsulated strains have been shown to be

  4. The capsule of porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in Virulence

    NARCIS (Netherlands)

    Singh, A.; Wyant, T.; Anaya-Bergman, C.; Aduse-Opoku, J.; Brunner, J.; Laine, M.L.; Curtis, M.A.; Lewis, J.P.

    2011-01-01

    Periodontal disease is a chronic oral inflammatory disease that is triggered by bacteria such as Porphyromonas gingivalis. P. gingivalis strains exhibit great heterogeneity, with some strains being encapsulated while others are nonencapsulated. Although the encapsulated strains have been shown to be

  5. Distinct roles of long/short fimbriae and gingipains in homotypic biofilm development by Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Tribble Gena D

    2009-05-01

    Full Text Available Abstract Background Porphyromonas gingivalis, a periodontal pathogen, expresses a number of virulence factors, including long (FimA and short (Mfa fimbriae as well as gingipains comprised of arginine-specific (Rgp and lysine-specific (Kgp cysteine proteinases. The aim of this study was to examine the roles of these components in homotypic biofilm development by P. gingivalis, as well as in accumulation of exopolysaccharide in biofilms. Results Biofilms were formed on saliva-coated glass surfaces in PBS or diluted trypticase soy broth (dTSB. Microscopic observation showed that the wild type strain formed biofilms with a dense basal monolayer and dispersed microcolonies in both PBS and dTSB. A FimA deficient mutant formed patchy and small microcolonies in PBS, but the organisms proliferated and formed a cohesive biofilm with dense exopolysaccharides in dTSB. A Mfa mutant developed tall and large microcolonies in PBS as well as dTSB. A Kgp mutant formed markedly thick biofilms filled with large clumped colonies under both conditions. A RgpA/B double mutant developed channel-like biofilms with fibrillar and tall microcolonies in PBS. When this mutant was studied in dTSB, there was an increase in the number of peaks and the morphology changed to taller and loosely packed biofilms. In addition, deletion of FimA reduced the autoaggregation efficiency, whereas autoaggregation was significantly increased in the Kgp and Mfa mutants, with a clear association with alteration of biofilm structures under the non-proliferation condition. In contrast, this association was not observed in the Rgp-null mutants. Conclusion These results suggested that the FimA fimbriae promote initial biofilm formation but exert a restraining regulation on biofilm maturation, whereas Mfa and Kgp have suppressive and regulatory roles during biofilm development. Rgp controlled microcolony morphology and biovolume. Collectively, these molecules seem to act coordinately to regulate

  6. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Jennifer E Kerr

    Full Text Available Porphyromonas gingivalis is a gram-negative anaerobic bacterium, a member of the human oral microbiome, and a proposed "keystone" pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions.

  7. Expression, purification and characterization of enoyl-ACP reductase II, FabK, from Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Hevener, Kirk E.; Mehboob, Shahila; Boci, Teuta; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E. (UIC)

    2012-10-25

    The rapid rise in bacterial drug resistance coupled with the low number of novel antimicrobial compounds in the discovery pipeline has led to a critical situation requiring the expedient discovery and characterization of new antimicrobial drug targets. Enzymes in the bacterial fatty acid synthesis pathway, FAS-II, are distinct from their mammalian counterparts, FAS-I, in terms of both structure and mechanism. As such, they represent attractive targets for the design of novel antimicrobial compounds. Enoyl-acyl carrier protein reductase II, FabK, is a key, rate-limiting enzyme in the FAS-II pathway for several bacterial pathogens. The organism, Porphyromonas gingivalis, is a causative agent of chronic periodontitis that affects up to 25% of the US population and incurs a high national burden in terms of cost of treatment. P. gingivalis expresses FabK as the sole enoyl reductase enzyme in its FAS-II cycle, which makes this a particularly appealing target with potential for selective antimicrobial therapy. Herein we report the molecular cloning, expression, purification and characterization of the FabK enzyme from P. gingivalis, only the second organism from which this enzyme has been isolated. Characterization studies have shown that the enzyme is a flavoprotein, the reaction dependent upon FMN and NADPH and proceeding via a Ping-Pong Bi-Bi mechanism to reduce the enoyl substrate. A sensitive assay measuring the fluorescence decrease of NADPH as it is converted to NADP{sup +} during the reaction has been optimized for high-throughput screening. Finally, protein crystallization conditions have been identified which led to protein crystals that diffract x-rays to high resolution.

  8. Effect of extracytoplasmic function sigma factors on autoaggregation, hemagglutination, and cell surface properties of Porphyromonas gingivalis

    Science.gov (United States)

    Kokubu, Eitoyo; Okamoto-Shibayama, Kazuko; Ishihara, Kazuyuki

    2017-01-01

    Porphyromonas gingivalis is a bacterium frequently isolated from chronic periodontal lesions and is involved in the development of chronic periodontitis. To colonize the gingival crevice, P. gingivalis has to adapt to environmental stresses. Microbial gene expression is regulated by transcription factors such as those in two-component systems and extracytoplasmic function (ECF) sigma factors. ECF sigma factors are involved in the regulation of environmental stress response genes; however, the roles of individual ECF sigma factors are largely unknown. The purpose of this study was to investigate the functions, including autoaggregation, hemagglutination, gingipain activity, susceptibility to antimicrobial agents, and surface structure formation, of P. gingivalis ECF sigma factors encoded by SigP (PGN_0274), SigCH (PGN_0319), PGN_0450, PGN_0970, and SigH (PGN_1740). Various physiological aspects of the sigP mutant were affected; autoaggregation was significantly decreased at 60 min (p < 0.001), hemagglutination activity was markedly reduced, and enzymatic activities of Kgp and Rgps were significantly decreased (p < 0.001). The other mutants also showed approximately 50% reduction in Rgps activity. Kgp activity was significantly reduced in the sigH mutant (p < 0.001). No significant differences in susceptibilities to tetracycline and ofloxacin were observed in the mutants compared to those of the wild-type strain. However, the sigP mutant displayed an increased susceptibility to ampicillin, whereas the PGN_0450 and sigH mutants showed reduced susceptibility. Transmission electron microscopy images revealed increased levels of outer membrane vesicles formed at the cell surfaces of the sigP mutant. These results indicate that SigP is important for bacterial surface-associated activities, including gingipain activity, autoaggregation, hemagglutination, vesicle formation, and antimicrobial susceptibility. PMID:28931045

  9. High In Vitro Antibacterial Activity of Pac-525 against Porphyromonas gingivalis Biofilms Cultured on Titanium

    Directory of Open Access Journals (Sweden)

    Ji-yin Li

    2015-01-01

    Full Text Available In order to investigate the potential of short antimicrobial peptides (AMPs as alternative antibacterial agents during the treatment of peri-implantitis, the cytotoxic activity of three short AMPs, that is, Pac-525, KSL-W, and KSL, was determined using the MTT assay. The antimicrobial activity of these AMPs, ranging in concentration from 0.0039 mg/mL to 0.5 mg/mL, against the predominant planktonic pathogens, including Streptococcus sanguis, Fusobacterium nucleatum, and Porphyromonas gingivalis, involved in peri-implantitis was investigated. Furthermore, 2-day-old P. gingivalis biofilms cultured on titanium surfaces were treated with Pac-525 and subsequently observed and analysed using confocal laser scanning microscopy (CLSM. The average cell proliferation curve indicated that there was no cytotoxicity due to the three short AMPs. The minimum inhibitory concentration and minimum bactericidal concentration values of Pac-525 were 0.0625 mg/mL and 0.125 mg/mL, respectively, for P. gingivalis and 0.0078 mg/mL and 0.0156 mg/mL, respectively, for F. nucleatum. Using CLSM, we confirmed that compared to 0.1% chlorhexidine, 0.5 mg/mL of Pac-525 caused a significant decrease in biofilm thickness and a decline in the percentage of live bacteria. These data indicate that Pac-525 has unique properties that might make it suitable for the inhibition the growth of pathogenic bacteria around dental implants.

  10. Porphyromonas gingivalis-stimulated macrophage subsets exhibit differential induction and responsiveness to interleukin-10.

    Science.gov (United States)

    Foey, Andrew D; Habil, Neama; Al-Shaghdali, Khalid; Crean, StJohn

    2017-01-01

    Oral mucosal macrophages (Mϕs) determine immune responses; maintaining tolerance whilst retaining the capacity to activate defences against pathogens. Mϕ responses are determined by two distinct subsets; pro-inflammatory M1- and anti-inflammatory/regulatory M2-Mϕs. Tolerance induction is driven by M2 Mϕs, whereas M1-like Mϕs predominate in inflammation, such as that exhibited in chronic Porphyromonas gingivalis (PG) periodontal infection. Mϕ responses can be suppressed to benefit either the host or the pathogen. Chronic stimulation by pathogen associated molecular patterns (PAMPs), such as LPS, is well established to induce tolerance. The aim of this study was to investigate the P. gingivalis-driven induction of and responsiveness to the suppressive, anti-inflammatory cytokine, IL-10, by Mϕ subsets. M1- and M2-like Mϕs were generated in vitro from the THP-1 monocyte cell line by differentiation with PMA and Vitamin D 3 , respectively. Mϕ subsets were stimulated by PG-LPS in the presence or absence of IL-10. PG-LPS differentially induced IL-10 secretion and endogenous IL-10 activity in M1- and M2-like subsets. In addition, these subsets exhibited differential sensitivity to IL-10-mediated suppression of TNFα, where M2 Mϕs where sensitive to IL-10 and M1 Mϕs were refractory to suppression. In addition, this differential responsiveness to IL-10 was independent of IL-10-binding and expression of the IL-10 receptor signal transducing subunit, IL-10Rβ, but was in fact dependent on activation of STAT-3. P.gingivalis selectively tolerises regulatory M2 Mϕs with little effect on pro-inflammatory M1 Mϕs; differential suppression facilitating immunopathology at the expense of immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Periodontitis, Porphyromonas gingivalis y su relación con la expresión de quorum sensing Periodontitis, Porphyromonas gingivalis and its relation to quorum sensing expression

    Directory of Open Access Journals (Sweden)

    Antonio Díaz Caballero

    2010-12-01

    Full Text Available Los mecanismos de señalización bacteriana desempeñan un papel fundamental en el establecimiento y progresión de la enfermedad periodontal. Dadas estas circunstancias es crucial profundizar en el entendimiento de estos mecanismos para intentar proveer estrategias terapéuticas novedosas. El presente artículo de revisión, de carácter narrativo, tiene como objetivo conducir un análisis crítico de la evidencia disponible sobre la influencia de Porphyromonas gingivalis (Pg y expresión de quorum sensing (Qs en enfermedad periodontal. Se realizó una búsqueda a través de bases de datos como Ovid (MEDLINE, ScienceDirect, Hinari. El conocimiento actual de estos mecanismos ofrece la posibilidad de desarrollar nuevos y profundos estudios (teóricos y experimentales sobre la expresión del QS en pacientes con enfermedad periodontal y permitirá un novedoso campo de investigación con el que no se cuenta en la actualidad. Desde su descubrimiento, el QS se vislumbra como un espacio de investigación valioso en el cual se debe insistir de manera permanente. La anterior evidencia permite concluir que a través de la regulación de la expresión de determinados genes en bacterias como la PG, se puede efectuar la inhibición de la formación de las biopelículas que tiene efectos directos e indirectos sobre el desarrollo de la enfermedad periodontal.The bacterial signaling mechanisms play a key role in the establishment and progression of periodontal disease. Due to these circumstances it is crucial to deepen in the understanding of these mechanisms to try to provide novel therapeutic strategies. The objective of present narrative literature review was to make a critical analyze of the available evidence on the influence of Porphyromonas gingivalis (PG and the quorum sensing expression in periodontal disease. Using the Ovid (MEDLINE ScienceDirect, Hinari database we made a search. The current knowledge of these mechanisms offers the possibility of

  12. Pengaruh Minyak Atsiri Kapulaga (Amomum cardamomum terhadap Kadar Metil Merkaptan yang Dihasilkan Bakteri Porphyromonas gingivalis (Kajian In Vitro

    Directory of Open Access Journals (Sweden)

    Nuning Wahyu Utami

    2012-07-01

    Full Text Available Latar Belakang: Helitosis disebabkan pembentukan senyawa-senyawa sulfur atau Volatile Sulfur Compound (VSC oleh bakteri. Metil merkaptan merupakan komponen VSC yang paling dominan menyebabkan bau pada halitosis. Agen antibakteri digunakan untuk mengatasi halitosis dengan cara menurunkan kadar metil merkaptan yang dihasilkan bakteri. Minyak atsiri kapulaga (Amomum cardamomum diduga memiliki khasiat anti bakteri. Tujuan penelitian ini adalah untuk mengetahui pengaruh minyak atsiri kapulaga (Amomum cardamomum terdapat kadar metil merkaptan yang dihasilkan porphyromonas gingivalis. Metode Penelitian: Setiap sumuran pada microplate ditetesi minyak atsiri kapulaga  (Amomum cardamomum konsentrasi minyak atsiri kapulaga 0% (control negatif, 6,25%, 12,5%, 25%, 50%. Selanjutnya setiap sumuran yang telah ditetesi minyak atsiri kapulaga berfbagai konsentrasi, kemudian ditetesi suspensi bakteri porphyromonas gingivalis pada media TSB dan diinkubasi anaerob selama 48 jam. Tiap perlakuan menggunakan sampel sebanyak 5 sehingga sumuran yang dibutuhkan sebanyak 25. Setelah itu, semua sumuran ditetesi metionin dan DTNB kemudian diinkubasi anaerob selama 12 jam. Hasil inkubasi tersebut kemudian dilihat absorbansi metil merkaptan dengan microplate reader. Hasil Penelitian: Absorbansi kadar metil merkaptan yang dihasilkan pada minyak atsiri kapulaga 0%, 6,25%, 12,5%, 25%, 50% secara berurutan adalah 1,38, 0,217, 0,215, 0,204, 0,196. Minyak atsiri kapulaga (Amomum cardamomum berpengaruh terhadap kadar metil merkaptan yang dihasilkan porphyromonas gingivalis. Terdapat perbedaan yang bermakna antara kelompok minyak atsiri kapilaga konsentrasi 0% sebagai kontrol negatif dengan minyak atsiri kapulaga 6,25%, 12,5%, 25%, 50% dan tidak ada perbedaan bermakna antara minyak atsiri kapulaga konsentrasi 6,25%, 12,5%, 25%, 50%. Kesimpulan: minyak atsiri kapulaga (Amomum cardamomum dapat menurunkan kadar metil merkaptan yang dihasilkan bakteri porphyromonas gingivalis. Background

  13. Gingipains of Porphyromonas gingivalis Modulate Leukocyte Adhesion Molecule Expression Induced in Human Endothelial Cells by Ligation of CD99

    OpenAIRE

    Yun, Peter L. W.; Decarlo, Arthur A.; Hunter, Neil

    2006-01-01

    Porphyromonas gingivalis has been implicated as a key etiologic agent in the pathogenesis of destructive chronic periodontitis. Among virulence factors of this organism are cysteine proteinases, or gingipains, that have the capacity to modulate host inflammatory defenses. Intercellular adhesion molecule expression by vascular endothelium represents a crucial process for leukocyte transendothelial migration into inflamed tissue. Ligation of CD99 on endothelial cells was shown to induce express...

  14. Deletion of a 77-Base-Pair Inverted Repeat Element Alters the Synthesis of Surface Polysaccharides in Porphyromonas gingivalis

    OpenAIRE

    Bainbridge, Brian W.; Hirano, Takanori; Grieshaber, Nicole; Davey, Mary E.

    2015-01-01

    Bacterial cell surface glycans, such as capsular polysaccharides and lipopolysaccharides (LPS), influence host recognition and are considered key virulence determinants. The periodontal pathogen Porphyromonas gingivalis is known to display at least three different types of surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown that PG0121 (in strain W83) encodes a DNABII histone-like protein and that this gene is transcriptionally linked to the K-antigen capsule synthesis genes, ...

  15. Assessment of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in Down's syndrome subjects and systemically healthy subjects: A comparative clinical trial

    OpenAIRE

    Ahmed, Nizar; Parthasarathy, Harinath; Arshad, Mohamed; Victor, Dhayanand John; Mathew, Danny; Sankari, Siva

    2014-01-01

    Objectives: To compare and quantify the presence of periodontal pathogens Aggregatibacter actinomycetemcomitans (Aac) and Porphyromonas gingivalis (Pg) in Down's syndrome (DS) and systemically healthy subjects with periodontitis and gingivitis. Materials and Methods: Fifty-nine age-matched subjects were categorized into four groups; Group I: DS subjects with gingivitis, Group II: DS subjects with periodontitis, Group III: Systemically healthy subjects with gingivitis and Group IV: Systemicall...

  16. Prevalence of Porphyromonas gingivalis and its relationship with herpesvirus in Indian subjects with chronic periodontitis: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Vinayak M Joshi

    2016-01-01

    Full Text Available Background: Porphyromonas gingivalis (P. gingivalis is a periodontal pathogen that is commonly harbored in the dental plaque of humans. The aim of this study was to look into the prevalence of P. gingivalis and its association with herpesvirus in Indian subjects. This is probably the first study on the association of this bacterium with herpesvirus in Indians. Materials and Methods: This cross-sectional study consists of 200 subjects, with 100 subjects each in the healthy group and the chronic periodontitis (CP group. Upon plaque collection, one portion of the samples was immediately plated, on culture media that is selective for P. gingivalis. Total colony-forming units (CFU/mL from each plate was recorded. The remaining plaque sample was subjected to DNA extraction and polymerase chain reaction (PCR was performed using specific primers for Cytomegalovirus (CMV and Epstein–Barr virus (EBV. The data are analyzed using the chi-square test, Spearman's rho correlation coefficient, and Mann–Whitney U test. Results: P. gingivalis was detected in 66% of the subjects with CP and in 40% in the healthy group, and this difference was statistically significant (P = 0.00023. The correlation of clinical parameters with P. gingivalis showed a significant positive correlation, indicating that higher levels of clinical parameters were associated with higher CFUs of P. gingivalis in culture. The comparison of the presence of P. gingivalis between herpesvirus-negative and -positive cases showed that CMV-positive cases had significantly higher levels of this bacterium. Conclusions: The results of this study confirmed the earlier finding of P. gingivalis presence in significantly higher levels in CP subjects and in CMV-positive sites. In addition, there was a positive association of the bacterium with clinical parameters.

  17. The Distribution of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and Aggregatibacter actinomycetemcomitans in Patients with Alcoholic Disease: A Pilot Study.

    Science.gov (United States)

    Sender-Janeczek, Aleksandra; Ziętek, Marek

    2016-01-01

    Both drinking and periodontal disease are serious health and social problems. Findings on the effect of alcohol consumption on periodontal disease are inconclusive. The aim of this study was to evaluate, in patients with alcoholic disease, the composition of the main periopathogens: Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and Aggregatibacter actinomycetemcomitans. The study was conducted on 25 alcoholics from the Department of Alcohol Addiction Closed Treatment and 25 non-alcoholic patients from the Department of Periodontology, Wroclaw Medical University. Subgingival biofilm samples were obtained from the 4 deepest sites (≥ 4 mm). The presence of 4 bacterial taxa was analysed using the PCR technique. The prevalence of bacterial species was significantly different between groups. Alcoholics showed significantly higher mean DNA counts for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Treponema denticola. In the qualitative analysis, no difference was observed between the groups. The study showed no statistically significant association between the amount of alcohol consumed and the composition of subgingival flora in patients suffering from alcoholism. Alcoholics demonstrated the presence of pathogenic bacteria in similar amounts to people diagnosed with chronic periodontal disease, but showed significantly higher mean DNA counts for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Treponema denticola but there is no correlation between the amount of alcohol consumption and the level of periopathogens.

  18. Pathway analysis for intracellular Porphyromonas gingivalis using a strain ATCC 33277 specific database

    Directory of Open Access Journals (Sweden)

    Wang Tiansong

    2009-09-01

    Full Text Available Abstract Background Porphyromonas gingivalis is a Gram-negative intracellular pathogen associated with periodontal disease. We have previously reported on whole-cell quantitative proteomic analyses to investigate the differential expression of virulence factors as the organism transitions from an extracellular to intracellular lifestyle. The original results with the invasive strain P. gingivalis ATCC 33277 were obtained using the genome sequence available at the time, strain W83 [GenBank: AE015924]. We present here a re-processed dataset using the recently published genome annotation specific for strain ATCC 33277 [GenBank: AP009380] and an analysis of differential abundance based on metabolic pathways rather than individual proteins. Results Qualitative detection was observed for 1266 proteins using the strain ATCC 33277 annotation for 18 hour internalized P. gingivalis within human gingival epithelial cells and controls exposed to gingival cell culture medium, an improvement of 7% over the W83 annotation. Internalized cells showed increased abundance of proteins in the energy pathway from asparagine/aspartate amino acids to ATP. The pathway producing one short chain fatty acid, propionate, showed increased abundance, while that of another, butyrate, trended towards decreased abundance. The translational machinery, including ribosomal proteins and tRNA synthetases, showed a significant increase in protein relative abundance, as did proteins responsible for transcription. Conclusion Use of the ATCC 33277 specific genome annotation resulted in improved proteome coverage with respect to the number of proteins observed both qualitatively in terms of protein identifications and quantitatively in terms of the number of calculated abundance ratios. Pathway analysis showed a significant increase in overall protein synthetic and transcriptional machinery in the absence of significant growth. These results suggest that the interior of host cells

  19. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study.

    Science.gov (United States)

    Kapadia, Suraj Premal; Pudakalkatti, Pushpa S; Shivanaikar, Sachin

    2015-01-01

    Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans.

  20. The profile of Porphyromonas gingivalis kgp biotype and fimA genotype mosaic in subgingival plaque samples.

    Science.gov (United States)

    Nadkarni, Mangala A; Chhour, Kim-Ly; Chapple, Cheryl C; Nguyen, Ky-Anh; Hunter, Neil

    2014-12-01

    Combined analysis of allelic variation of the virulence-associated, strain-specific lys-gingipain gene (kgp) and major fimbrial gene (fimA) of Porphyromonas gingivalis was undertaken in 116 subgingival plaque samples to understand the kgp biotype and fimA genotype profile in a subject-specific manner. Allelic variation in the polyadhesin domain of kgp from P. gingivalis strains 381 (ATCC 33277), HG66 and W83 generated four isoforms corresponding to four biotypes of P. gingivalis. Similarly, variation in the fimA subunit of the fimA gene cluster of P. gingivalis resulted in six fimA genotypes. Strain-specific differential PCR was performed for kgp and fimA using DNA isolated from subgingival plaque samples. Our findings demonstrate that all of the P. gingivalis kgp biotypes detected in this study were predominantly associated with the fimA II genotype. Dominance of kgp biotypes 381 or HG66 combined with fimA II fimbriae could imply an adaptive strategy by P. gingivalis to generate the fittest strains for survival in the host environment. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Gingipain-dependent degradation of mammalian target of rapamycin pathway proteins by the periodontal pathogen Porphyromonas gingivalis during invasion.

    Science.gov (United States)

    Stafford, P; Higham, J; Pinnock, A; Murdoch, C; Douglas, C W I; Stafford, G P; Lambert, D W

    2013-10-01

    Porphyromonas gingivalis and Tannerella forsythia are gram-negative pathogens strongly associated with periodontitis. Their abilities to interact, invade and persist within host cells are considered crucial to their pathogenicity, but the mechanisms by which they subvert host defences are not well understood. In this study, we set out to investigate whether P. gingivalis and T. forsythia directly target key signalling molecules that may modulate the host cell phenotype to favour invasion and persistence. Our data identify, for the first time, that P. gingivalis, but not T. forsythia, reduces levels of intracellular mammalian target of rapamycin (mTOR) in oral epithelial cells following invasion over a 4-h time course, via the action of gingipains. The ability of cytochalasin D to abrogate P. gingivalis-mediated mTOR degradation suggests that this effect is dependent upon cellular invasion. We also show that levels of several other proteins in the mTOR signalling pathway are modulated by gingipains, either directly or as a consequence of mTOR degradation including p-4E-BP1. Taken together, our data suggest that P. gingivalis manipulates the mTOR pathway, providing evidence for a potentially novel mechanism by which P. gingivalis mediates its effects on host cell responses to infection. 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

  2. Determination of the antibacterial activity of simvastatin against periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Shilpa Emani

    2014-01-01

    Full Text Available Context and Objective: Statin treatment, apart from its hypolipidemic action has proven its antimicrobial activity by improving the survival rate of patients with severe systemic bacterial infections. Periodontitis is an inflammatory disorder of tooth supporting structures caused by a group of specific microorganisms. The objective of the present study was to determine the antimicrobial activity of pure simvastatin drug against the primary periodontal pathogens. Materials and Methods: Minimum inhibitory concentration (MIC was determined against Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans using serial dilution method. Results: MIC of simvastatin against P. gingivalis was 2 μg/ml and A. actinomycetemcomitans was found to be <1 μg/ml which requires further dilutions to determine the exact value. Conclusions: Data suggests a potent antimicrobial activity of simvastatin against both A. actinomycetemcomitans and P gingivalis. Hence simvastatin can be prescribed as a dual action drug in patients with both hyperlipidemia and periodontal disease.

  3. Virulencia y variabilidad de Porphyromonas gingivalis y Aggregatibacter actinomycetemcomitans y su asociación a la periodontitis Virulence and variability on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and their association to periodontitis

    Directory of Open Access Journals (Sweden)

    J Díaz Zúñiga

    2012-04-01

    Full Text Available Las periodontitis son un conjunto de patologías de naturaleza inflamatoria y etiología infecciosa producidas por el biofilm patogénico subgingival. Porphyromonas gingivalis y Aggregatibacter actinomycetemcomitans son bacterias periodonto-patógenas que pueden causar daño directo a las estructuras periodontales a través de los diversos factores de virulencia que expresan. Sobre la base de estos factores de virulencia, distintos genotipos y serotipos bacterianos se han descrito, cada uno de ellos con una potencial variable patogenicidad. En esta revisión bibliográfica se describen diferentes factores de virulencia de P. gingivalis y A. actinomycetemcomitans y se discute la variable inmunogenicidad y patogenicidad de los distintos genotipos y serotipos descritos para ellos. Tanto P. gingivalis como A. actinomycetemcomitans poseen diversos factores de virulencia asociados al inicio, progresión y severidad de las periodontitis. En P. gingivalis, los factores de virulencia para los cuales se describen distintos genotipos y/o serotipos son fimbria, LPS y cápsula bacteriana, y en A. actinomycetemcomitans son leucotoxina A, Cdt y LPS. Cada uno de estos distintos genotipos y serotipos induce una respuesta inmuno-inflamatoria diferente en el hospedero y, por lo tanto, se podrían asociar a una variable patogenicidad y podrían determinar las características clínicas de la enfermedad.Periodontitis represents a heterogenic group of periodontal infections elicited by bacteria residing at the subgingival biofilm. Although this biofilm is constituted by a broad variety of bacterial species, only a limited number has been associated with the periodontitis aetiology, among them Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Both P. gingivalis and A. actinomycetemcomitans express a number of virulence factors that contribute to direct tissue damage and, based on them, distinct genotypes and serotypes have been described, each one

  4. Effect of Porphyromonas gingivalis infection on post-transcriptional regulation of the low-density lipoprotein receptor in mice

    Directory of Open Access Journals (Sweden)

    Miyazawa Haruna

    2012-09-01

    Full Text Available Abstract Background Periodontal disease is suggested to increase the risk of atherothrombotic disease by inducing dyslipidemia. Recently, we demonstrated that proprotein convertase subtilisin/kexin type 9 (PCSK9, which is known to play a critical role in the regulation of circulating low-density lipoprotein (LDL cholesterol levels, is elevated in periodontitis patients. However, the underlying mechanisms of elevation of PCSK9 in periodontitis patients are largely unknown. Here, we explored whether Porphyromonas gingivalis, a representative periodontopathic bacterium, -induced inflammatory response regulates serum PCSK9 and cholesterol levels using animal models. Methods We infected C57BL/6 mice intraperitoneally with Porphyromonas gingivalis, a representative strain of periodontopathic bacteria, and evaluated serum PCSK9 levels and the serum lipid profile. PCSK9 and LDL receptor (LDLR gene and protein expression, as well as liver X receptors (Lxrs, inducible degrader of the LDLR (Idol, and sterol regulatory element binding transcription factor (Srebf2 gene expression, were examined in the liver. Results P. gingivalis infection induced a significant elevation of serum PCSK9 levels and a concomitant elevation of total and LDL cholesterol compared with sham-infected mice. The LDL cholesterol levels were significantly correlated with PCSK9 levels. Expression of the Pcsk9, Ldlr, and Srebf2 genes was upregulated in the livers of the P. gingivalis-infected mice compared with the sham-infected mice. Although Pcsk9 gene expression is known to be positively regulated by sterol regulatory element binding protein (SREBP2 (human homologue of Srebf2, whereas Srebf2 is negatively regulated by cholesterol, the elevated expression of Srebf2 found in the infected mice is thought to be mediated by P. gingivalis infection. Conclusions P. gingivalis infection upregulates PCSK9 production via upregulation of Srebf2, independent of cholesterol levels. Further studies

  5. Impaired Porphyromonas gingivalis-Induced Tumor Necrosis Factor Production by Dendritic Cells Typifies Patients With Rheumatoid Arthritis.

    Science.gov (United States)

    Santegoets, Kim C M; Wenink, Mark H; Braga, Felipe A Vieira; Cossu, Marta; Lamers-Karnebeek, Femke B G; van Riel, Piet L C M; Sturm, Patrick D J; van den Berg, Wim B; Radstake, Timothy R D J

    2016-04-01

    The prevalence of periodontitis is increased in patients with rheumatoid arthritis (RA), and the severity of periodontitis can affect the level of arthritis. Porphyromonas gingivalis is one of the main bacteria involved in periodontitis. Our aim was to determine if there are differences in the innate immune response against P gingivalis between healthy controls and RA patients. Monocyte-derived dendritic cells (DCs) from healthy controls, RA patients, and patients with psoriatic arthritis (PsA) were stimulated with P gingivalis, a range of other bacteria, and Toll-like receptor agonists. Cytokine production was determined, and blocking studies were performed to determine which receptors were involved in differential recognition of P gingivalis. Effects on T cell cytokines were also determined in cultures of peripheral blood mononuclear cells (PBMCs). Upon stimulation with P gingivalis, RA patient DCs produced less tumor necrosis factor as compared to healthy control DCs, which was not observed in PsA patients or upon stimulation with other bacteria. In addition, P gingivalis-mediated activation of RA patient PBMCs showed a clear reduction of interferon-γ production. Among the various possible underlying mechanisms investigated, only blockade of CR3 abolished the difference between RA patients and healthy controls, suggesting the involvement of CR3 in this process. Immune cells from RA patients display a reduced response to P gingivalis, which has functional consequences for the immune response. This may result in prolonged survival of P gingivalis, possibly driving autoantibody formation and a self-perpetuating loop of chronic inflammation. The possible role of CR3 in this process warrants further investigation. © 2016, American College of Rheumatology.

  6. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis.

    Science.gov (United States)

    Gully, Neville; Bright, Richard; Marino, Victor; Marchant, Ceilidh; Cantley, Melissa; Haynes, David; Butler, Catherine; Dashper, Stuart; Reynolds, Eric; Bartold, Mark

    2014-01-01

    To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now needed to elucidate the mechanisms

  7. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Chris J. Carter

    2017-12-01

    Full Text Available Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD. Periodontal disease is a risk factor for cardiovascular disorders (CVD, type II diabetes mellitus (T2DM, AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS for the aforementioned conditions using data from GWASdb (P < 1E-03 and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05. Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.

  8. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk.

    Directory of Open Access Journals (Sweden)

    Ahmed R El-Awady

    2015-02-01

    Full Text Available Signaling via pattern recognition receptors (PRRs expressed on professional antigen presenting cells, such as dendritic cells (DCs, is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs. We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.

  9. NOX1/2 activation in human gingival fibroblasts by Fusobacterium nucleatum facilitates attachment of Porphyromonas gingivalis.

    Science.gov (United States)

    Ahn, Sun Hee; Song, Ji-Eun; Kim, Suhee; Cho, Sung-Hyun; Lim, Yun Kyong; Kook, Joong-Ki; Kook, Min-Suk; Lee, Tae-Hoon

    2016-08-01

    Periodontal diseases are infectious polymicrobial inflammatory diseases that lead to destruction of the periodontal ligament, gingiva, and alveolar bone. Sequential colonization of a broad range of bacteria, including Fusobacterium nucleatum and Porphyromonas gingivalis, is an important phenomenon in this disease model. F. nucleatum is a facultative anaerobic species thought to be a key mediator of dental plaque maturation due to its extensive coaggregation with other oral bacteria, while P. gingivalis is an obligate anaerobic species that induces gingival inflammation by secreting various virulence factors. The formation of a bacterial complex by these two species is central to the pathogenesis of periodontal disease. Reactive oxygen species (ROS) are produced during bacterial infections and are involved in intracellular signaling. However, the impact of oral bacteria-induced ROS on the ecology of F. nucleatum and P. gingivalis has yet to be clarified. In the present study, we investigated ROS production induced in primary human oral cells by F. nucleatum and P. gingivalis and its effect on the formation of their bacterial complexes and further host cell apoptosis. We found that in primary human gingival fibroblasts (GFs), two NADPH oxidase isoforms, NOX1 and NOX2, were activated in response to F. nucleatum infection but not P. gingivalis infection. Accordingly, increased NADPH oxidase activity and production of superoxide anion were observed in GFs after F. nucleatum infection, but not after P. gingivalis infection. Interestingly, in NOX1, NOX2, or NOX1/NOX2 knockdown cells, the number of P. gingivalis decreased when the cells were coinfected with F. nucleatum. A similar pattern of host cell apoptosis was observed. This implies that F. nucleatum contributes to attachment of P. gingivalis by triggering activation of NADPH oxidase in host cells, which may provide an environment more favorable to strict anaerobic bacteria and have a subsequent effect on apoptosis of

  10. [Effects of paeonol on the function of bone marrow-derived macrophage from Porphyromonas gingivalis-induced mice].

    Science.gov (United States)

    Zhu, Chen; Lingkai, Su

    2017-04-01

    This work aims to examine the effects of paeonol treatment on the ability of bone marrow-derived macrophage (BMM) to excrete inflammatory factors and to differentiate into osteoclasts upon induction with Porphyromonas gingivalis (P. gingivalis). This work also aims to investigate the underlying mechanisms of these abilities. BMM culture was treated with different paeonol concentrations at for 1 h and then stimulated with P. gingivalis for 24 h before programmed death-ligand 1 (PD-L1) was quantified with flow cytometry. Tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). The BMM culture was treated with the receptor activator for nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), and then with paeonol for 1 h prior to induction with P. gingivalis. Then, osteoclast formation was assessed using tartrate resistant acid phosphatase (TRAP) staining. The osteoclast-related proteins TRAP and receptor activator of nuclear factor-κB (RANK) were quantified by Western blotting. Paeonol was nontoxic to BMM within a range of 10-50 μmol·L⁻¹. Flow cytometry showed that paeonol inhibited PD-L1 expression in P. gingivalis-induced BMM in a dose-dependent manner. ELISA indicated that paeonol dose-dependently inhibited the excretion of TNF-α, IL-1β, and IL-6 by P. gingivalis-induced BMM (Pgingivalis-induced BMM into osteoclasts. Western blot results suggested that paeonol decreased the expression of TRAP and RANK in BMM. Paeonol dose-dependently inhibited the excretion of the inflammatory factors TNF-α, IL-1β, and IL-6 by P. gingivalis-induced BMM in a dose-dependent manner. Moreover, paenol treatment prevented the differentiation of P. gingivalis-induced BMM differentiation into osteoclasts.
.

  11. Novel Coating of Surgical Suture Confers Antimicrobial Activity Against Porphyromonas gingivalis and Enterococcus faecalis.

    Science.gov (United States)

    Meghil, Mohamed M; Rueggeberg, Frederick; El-Awady, Ahmed; Miles, Brodie; Tay, Franklin; Pashley, David; Cutler, Christopher W

    2015-06-01

    The oral cavity is colonized by >10(9) bacteria, many of which can increase heart disease risk when seeded into the bloodstream. Most dentoalveolar surgeries require the use of surgical sutures. Suture placement and removal can increase the risk of postoperative infection and bacteremia. The aim of this study is to evaluate the antimicrobial activity of a novel quaternary ammonium compound, K21, when coated on different suture materials. The periodontal pathogen Porphyromonas gingivalis and the endodontic species Enterococcus faecalis were grown to early log phase and inoculated on enriched Brucella blood agar, on which were placed identical lengths of surgical suture (chromic gut, polyester suture, silk, and nylon suture) and control unwaxed dental floss impregnated with K21 at 5%, 10%, 20%, and 25% volume/volume in ethanol vehicle. Controls included the following: 1) sutures treated with vehicle; 2) untreated sutures; and 3) unwaxed floss. Zones of inhibition in millimeters were measured at five randomized sites per suture/floss for each concentration and material used. Mean ± SD of zones of inhibition were calculated, and analysis of variance (P suture at concentrations ranging from 5% to 25%, depending on the type of suture, have antimicrobial activity for P. gingivalis and E. faecalis. Nylon suture coated with K21 at 5%, 10%, 20%, and 25% resulted in zones ranging from 3 to 11 mm. Polyester suture was more effective at lower K21 concentrations with 5% (P = 0.0031), 10% (P = 0.0011), and 20% (P = 0.0002), yielding 7.5, 8.3, and 10.5 mm zones of inhibition. K21-coated silk suture yielded significant zones of inhibition at 25% (P sutures have antimicrobial activity for bacterial species of direct relevance to postoperative infection and bacteremia.

  12. Influence of culture conditions on porphyrin production in Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis.

    Science.gov (United States)

    Fyrestam, Jonas; Bjurshammar, Nadja; Paulsson, Elin; Mansouri, Nesrine; Johannsen, Annsofi; Östman, Conny

    2017-03-01

    Increasing antibiotic resistance among pathogens has raised the demands for new treatment methods such as antimicrobial photodynamic therapy (aPDT) and phototherapy (PT). Experiments for investigating the effects of these methods are often performed in vitro, but the procedures for cultivation of microbes vary between different studies. The aim of this study has been to elucidate how the profile of endogenously produced porphyrins differs by changing the variables of bacteria culturing conditions. Two oral pathogens, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, were selected as model organisms. The contents of porphyrins and heme in the bacteria were analysed with liquid chromatography-tandem mass spectrometry when bacteria was cultivated for different lengths of time (3-9 days), upon passaging as well as when growth medium were supplemented with or without horse blood. Both porphyrin and heme content in A. actinomycetemcomitans are highly affected by the age of the culture, and that the porphyrin profiles changes during cultivation. When cultivated colonies of A. actinomycetemcomitans were passaged onto a new, fresh growth medium a large change in porphyrin content occurred. Additional porphyrins were detected; uroporphyrin and 7-carboxylporphyrin, and the total porphyrin content increased up to 28 times. When P. gingivalis was grown on blood containing medium higher concentrations of protoporphyrin IX (2.5 times) and heme (5.4 times) were quantified compared to bacteria grown without blood. This study demonstrate that there is a need for more standardized culturing protocols when performing aPDT and PT experiments in vitro to avoid large variations in porphyrin profiles and concentrations, the aPDT/PT target compounds, depending on the culturing conditions. Copyright © 2016. Published by Elsevier B.V.

  13. Purification and characterization of three types of proteases from culture supernatants of Porphyromonas gingivalis.

    Science.gov (United States)

    Hinode, D; Hayashi, H; Nakamura, R

    1991-01-01

    Three types of caseinolytic proteases (Pase-A, Pase-B, and Pase-C) were isolated and purified from culture supernatants of Porphyromonas gingivalis 381 by the combined procedures of acetone precipitation, gel filtration, solubilization with octylthioglucoside followed by affinity chromatography on arginine-Sepharose 4B, high-performance liquid chromatography (HPLC) on Biofine IEC-DEAE, and HPLC on TSK-G4000SW. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Pase-A and -B showed diffuse protein bands of 105 to 110 and 72 to 80 kDa, respectively, and Pase-C showed a clear band of about 44 kDa. Pase-B and -C hydrolyzed some synthetic substrates for trypsin, but Pase-B did not act on the carboxyl side of lysine in insulin chain B or on a synthetic substrate which trypsin and Pase-C acted on. Pase-A did not act on the synthetic substrates but cleaved the peptide bonds Glu-Ala and Ala-Leu of insulin. Leupeptin inhibition of the caseinolytic activity of both Pase-A and -B was similar to its inhibition of Pase-C. Phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate strongly inhibited Pase-A, but no significant effect on the other enzymes was observed, suggesting that only Pase-A is a serine protease. The inhibitory characteristics of Pase-B and -C were very similar. Pase-A was not thiol dependent for enzyme activity, but Pase-B was strongly dependent, i.e., even more so than Pase-C. Pase-A inactivated the inhibitory activity of plasma alpha-1-antitrypsin, but the other two did not. These results show that P. gingivalis produces different types of proteases other than the trypsinlike protease generally reported. Images PMID:1879930

  14. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    2016-05-01

    Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P. gingivalis in human subgingival plaque biofilms. A total of 314 fresh cultivable subgingival isolates from 38 adults with chronic periodontitis were presumptively identified on anaerobically-incubated enriched Brucella blood agar primary isolation plates as P. gingivalis based on dark-pigmented colony morphology, lack of a brick-red autofluorescence reaction under long-wave ultraviolet light, and a positive CAAM fluorescence test for trypsin-like enzyme activity. Each presumptive P. gingivalis isolate, and a panel of other human subgingival bacterial species, were subjected to MALDI-TOF mass spectrometry analysis using a benchtop mass spectrometer equipped with software containing mass spectra for P. gingivalis in its reference library of bacterial protein profiles. A MALDI-TOF mass spectrometry log score of ≥1.7 was required for species identification of the subgingival isolates. All 314 (100%) presumptive P. gingivalis subgingival isolates were confirmed as P. gingivalis with MALDI-TOF mass spectrometry analysis (Cohen's kappa coefficient = 1.0). MALDI-TOF mass spectrometry log scores between 1.7 and 1.9, and ≥2.0, were found for 92 (29.3%) and 222 (70.7%), respectively, of the presumptive P. gingivalis clinical isolates. No other tested bacterial species was identified as P. gingivalis by MALDI-TOF mass spectrometry. Rapid phenotypic identification of cultivable P. gingivalis in human subgingival biofilm specimens was found to be 100% accurate with MALDI-TOF mass spectrometry. These findings provide validation for the continued use of P. gingivalis research data based on this species identification methodology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The role of coaggregation between Porphyromonas gingivalis and Fusobacterium nucleatum on the host response to mixed infection.

    Science.gov (United States)

    Polak, David; Shapira, Lior; Weiss, Ervin I; Houri-Haddad, Yael

    2012-07-01

    To evaluate the role of coaggregation between Porphyromonas gingivalis and Fusobacterium nucleatum on the virulence of the mixed infection in mice. Inhibition of coaggregation was carried out using lactose. In vitro, inhibition of coaggregation was verified using a coaggregation assay. In vivo, the virulence of the mixed infection, with and without coaggregation, was examined in a model of experimental periodontitis in mice. The local host response to the mixed infection, with or without coaggregation, was examined using the subcutaneous chamber model of infection. Lactose inhibited the coaggregation between P. gingivalis and F. nucleatum at all the tested concentrations (1-0.0625 M). Surprisingly, the addition of lactose to the mixed infection increased the severity of experimental periodontitis (as measured by alveolar bone loss) compared with mixed infection with coaggregating bacteria. The addition of lactose to the mixed infection resulted in mild attenuation of TNFα and IL-1β levels. In addition, inhibition of coaggregation resulted in inhibition of the phagocytosis of F. nucleatum and augmentation of the phagocytosis of P. gingivalis. The ability of P. gingivalis and F. nucleatum to coaggregate may limit their ability to induce experimental periodontitis in a mixed infection model. Moreover, there is a shift in the phagocytosis pattern of the bacteria with the annulment of coaggregeaiton, with a reduction in F. nucleatum phagocytosis and amplification of P. gingivalis phagocytosis. The increased virulence of the mixed infection without coaggregation may surprisingly lay in the sustention of F. nucleatum in the infected sites. © 2012 John Wiley & Sons A/S.

  16. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K

    Directory of Open Access Journals (Sweden)

    Marwan Mansoor Ali Mohammed

    2013-01-01

    Full Text Available Background: Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM, often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I and proteinase K. Methods: F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Results: Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. Conclusion: DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions.

  17. The GroEL protein of Porphyromonas gingivalis accelerates tumor growth by enhancing endothelial progenitor cell function and neovascularization.

    Science.gov (United States)

    Lin, F-Y; Huang, C-Y; Lu, H-Y; Shih, C-M; Tsao, N-W; Shyue, S-K; Lin, C-Y; Chang, Y-J; Tsai, C-S; Lin, Y-W; Lin, S-J

    2015-06-01

    Porphyromonas gingivalis is a bacterial species that causes destruction of periodontal tissues. Additionally, previous evidence indicates that GroEL from P. gingivalis may possess biological activities involved in systemic inflammation, especially inflammation involved in the progression of periodontal diseases. The literature has established a relationship between periodontal disease and cancer. However, it is unclear whether P. gingivalis GroEL enhances tumor growth. Here, we investigated the effects of P. gingivalis GroEL on neovasculogenesis in C26 carcinoma cell-carrying BALB/c mice and chick eggs in vivo as well as its effect on human endothelial progenitor cells (EPC) in vitro. We found that GroEL treatment accelerated tumor growth (tumor volume and weight) and increased the mortality rate in C26 cell-carrying BALB/c mice. GroEL promoted neovasculogenesis in chicken embryonic allantois and increased the circulating EPC level in BALB/c mice. Furthermore, GroEL effectively stimulated EPC migration and tube formation and increased E-selectin expression, which is mediated by eNOS production and p38 mitogen-activated protein kinase activation. Additionally, GroEL may enhance resistance against paclitaxel-induced cell cytotoxicity and senescence in EPC. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to the neovasculogenesis of tumor cells and resulting in accelerated tumor growth. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Porphyromonas gingivalis modulates Pseudomonas aeruginosa-induced apoptosis of respiratory epithelial cells through the STAT3 signaling pathway.

    Science.gov (United States)

    Li, Qian; Pan, Chunling; Teng, Di; Lin, Li; Kou, Yurong; Haase, Elaine M; Scannapieco, Frank A; Pan, Yaping

    2014-01-01

    Pseudomonas aeruginosa is an important opportunistic bacterial pathogen, causing infections of respiratory and other organ systems in immunocompromised hosts that may invade and proliferate in mucosal epithelial cells to induce apoptosis. Previous studies suggest that oral bacteria, especially gram-negative periodontal pathogens, may enhance P. aeruginosa invasion into respiratory epithelial cells to augment tissue destruction. In this study, we investigated the effect of the periodontopathogen Porphyromonas gingivalis on P. aeruginosa-induced epithelial cell apoptosis. P. gingivalis invasion transiently inhibited P. aeruginosa-induced apoptosis in respiratory epithelial cells via the signal transducer and activator of transcription 3 (STAT3) signaling pathway. The activated STAT3 up-regulated the downstream anti-apoptotic moleculars survivin and B-cell leukemia-2 (bcl-2). This process was accompanied by down-regulation of pro-apoptosis molecular Bcl-2-associated death promoter (bad) and caspase-3 activity inhibition. In addition, the activation of the STAT3 pathway was affected by P. gingivalis in a dose-dependent manner. Finally, co-invasion of P. aeruginosa and P. gingivalis led to greater cell death compared with P. aeruginosa challenge alone. These results suggest that regulation of P. aeruginosa-induced apoptosis by P. gingivalis contributes to the pathogenesis of respiratory disease. Interference with this process may provide a potential therapeutic strategy for the treatment and prevention of respiratory disease. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Porphyromonas gingivalis and Epstein-Barr Virus Are Associated With Increased Levels of Visfatin in Gingival Crevicular Fluid.

    Science.gov (United States)

    Özcan, Erkan; Saygun, N Işıl; Serdar, Muhittin A; Kubar, Ayhan; Bengi, V Umut

    2016-04-01

    There is little clinical information on the relationship between periodontopathogens and visfatin. The purpose of this study is to determine visfatin levels in the gingival crevicular fluid (GCF) of healthy individuals and patients with periodontitis and to investigate the possible relationship between this adipokine and the presence and levels of Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescense, and Epstein-Barr virus (EBV). Eighteen healthy individuals and 27 patients with periodontitis were included in this study. GCF and plaque samples were obtained from all individuals. Visfatin levels were analyzed by enzyme-linked immunosorbent assay, and the bacterial numbers were evaluated by the reverse transcription-polymerase chain reaction method. In patients with periodontitis, the visfatin levels in the GCF (mean: 84.29 ng/mL; range: 63.8 to 108.9 ng/mL) were significantly higher compared with those of the healthy individuals (mean: 38.06 ng/mL; range: 13.8 to 89.02 ng/mL) (P gingivalis (r = 0.266, P gingivalis was detected than for those without P. gingivalis (P gingivalis colonization of the periodontal pockets may increase visfatin secretion. Furthermore, the presence of EBV in the plaque may be another factor that causes an increase in visfatin levels.

  20. Evaluation of the Effect of Andrographolide on Atherosclerotic Rabbits Induced by Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Rami Al Batran

    2014-01-01

    Full Text Available Epidemiologic evidence has demonstrated significant associations between atherosclerosis and Porphyromonas gingivalis (Pg. We had investigated the effect of andrographolide (AND on atherosclerosis induced by Pg in rabbits. For experimental purpose, we separated thirty male white New Zealand rabbits into 5 groups. Group 1 received standard food pellets; Groups 2–5 were orally challenged with Pg; Group 3 received atorvastatin (AV, 5 mg/kg, and Groups 4-5 received 10 and 20 mg/kg of AND, respectively, over 12 weeks. Groups treated with AND showed significant decrease in TC, TG, and LDL levels (P<0.05 and significant increase in HDL level in the serum of rabbits. Furthermore, the treated groups (G3–G5 exhibited reductions in interleukins (IL-1β and IL-6 and C-reactive protein (CRP as compared to atherogenicgroup (G2. The histological results showed that the thickening of atherosclerotic plaques were less significant in treated groups (G3–G5 compared with atherogenicgroup (G2. Also, alpha-smooth muscle actin (α-SMA staining decreased within the plaques of atherogenicgroup (G2, while it was increased in treated groups (G3–G5. Lastly, groups treated with AV and AND (G3–G5 showed significant reduction of CD36 expression (P<0.05 compared to atherogenicgroup (G2. These results substantially proved that AND contain antiatherogenic activity.

  1. Comparison of Experimental Diabetic Periodontitis Induced by Porphyromonas gingivalis in Mice

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-01-01

    Full Text Available Periodontitis is one of the severe complications in diabetic patients and gingival epithelium plays an initial role on the onset and progression of this disease. However the potential mechanism is yet sufficiently understood. Meanwhile, the research on the correlational experimental animal models was also insufficient. Here, we established periodontitis with type 2 diabetes in db/db and Tallyho/JngJ (TH mice and periodontitis with type 1 diabetes in streptozotocin induced diabetes C57BL/6J (STZ-C57 mice by oral infection of periodontal pathogen Porphyromonas gingivalis W50. We demonstrated that periodontal infected mice with high blood glucose levels showed dramatically more alveolar bone loss than their counterparts, in which infected db/db mice exhibited the most bone defects. No contrary impact could be observed between this periodontal infection and onset and severity of diabetes. The expressions of PTPN2 were inhibited whereas the expression of JAK1, STAT1, and STAT3 increased dramatically in gingival epithelia and the serum TNF-α also significantly increased in the mice with diabetic periodontitis. Our results indicated that the variations of inflammation-related protein expressions in gingival epithelia might lead to the phenotype differences in the mice with diabetic periodontitis.

  2. Effects of Cinnamoyloxy-mammeisin from Geopropolis on Osteoclast Differentiation and Porphyromonas gingivalis-Induced Periodontitis.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Ramos-Junior, Erivan Schnaider; Franchin, Marcelo; Taira, Thaise Mayumi; Beutler, John A; Franco, Gilson Cesar Nobre; Ikegaki, Masaharu; de Alencar, Severino Matias; Fukada, Sandra Yasuyo; Rosalen, Pedro Luiz

    2017-06-23

    Bone-loss-related diseases such as rheumatoid arthritis, osteomyelitis, osteoporosis, and periodontitis are associated with high rates of morbidity worldwide. These disorders are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. In this context, we evaluated the effect of cinnamoyloxy-mammeisin (CNM), an anti-inflammatory coumarin found in Melipona scutellaris geopropolis, on key targets related to bone remodeling. In the present study we investigated the in vitro effects of CNM on osteoclast differentiation and M-CSF+RANKL-induced osteoclastogenic marker expression. Additionally, the interference of CNM treatment on osteoclast activity was evaluated by zymography and resorption area. Finally, we assessed the capacity of the compound to mitigate alveolar bone loss in vivo in experimental murine periodontitis induced by Porphyromonas gingivalis. We observed that treatment with CNM impaired osteoclast differentiation, as evidenced by a reduced number of tartrate-resistant acid-phosphatase-positive multinucleated cells (TRAP+) as well as the expression of osteoclastogenic markers upon M-CSF+RANKL-induced stimulation. Similarly, we observed reduced gelatinolytic and resorption capacity in M-CSF+RANKL-induced cells in vitro. Lastly, CNM attenuated alveolar bone loss in an experimental murine periodontitis model. These findings indicate that CNM may be considered a promising treatment for bone loss diseases.

  3. Rapid detection of Actinobacillus actinomycetemcomitans, Prevotella intermedia and Porphyromona gingivalis by multiplex PCR.

    Science.gov (United States)

    García, L; Tercero, J C; Legido, B; Ramos, J A; Alemany, J; Sanz, M

    1998-01-01

    The identification of specific periodontal pathogens by conventional methods, mainly anaerobic cultivation, is difficult, time consuming and even sometimes unreliable. Therefore, a multiplex PCR method for simultaneous detection of Actinobacillus actinomycetemcomitans (A.a.), Porphyromona gingivalis (P.g.) and Prevotella intermedia (P.i.) was developed for rapid and easy identification of these specific bacterial pathogens in subgingival plaque samples. In this paper, there is a detailed description of the oligonucleotide primer selection, DNA extraction and PCR conditions and the sequencing of the amplified products. The locus chosen to be amplified is a highly variable region in the 16S ribosomal DNA. For the development of this technique ATCC cultures and pure cultures from subgingival plaque samples taken from periodontitis patients were used. As an internal positive control a recombinant plasmid was developed. This simple DNA extraction procedure and the DNA amplification and visualization of the amplified product permits the detection of the bacteria in a working day. Thus, this multiplex PCR method is a rapid and effective detection method for specific periodontal pathogens.

  4. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation

    Directory of Open Access Journals (Sweden)

    Tzung-Hsun Tsai

    2016-04-01

    Full Text Available Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser. leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1 and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2 by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF-α, and cyclooxygenase (COX-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.

  5. CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice.

    Science.gov (United States)

    Nagashima, Hidekazu; Shinoda, Masamichi; Honda, Kuniya; Kamio, Noriaki; Watanabe, Masahiro; Suzuki, Tatsuro; Sugano, Naoyuki; Sato, Shuichi; Iwata, Koichi

    2017-01-01

    Background Periodontitis is an inflammatory disease accompanied by alveolar bone loss and progressive inflammation without pain. However, the potential contributors eliminating pain associated with gingival inflammation are unknown. Results we examined the involvement of CXC chemokine receptor type 4 (CXCR4) on the mechanical sensitivity of inflamed periodontal tissue, using a mouse model of periodontitis established by the ligation of the tooth cervix of a maxillary second molar and inoculation with Porphyromonas gingivalis (P. gingivalis). Infiltration of inflammatory cells into gingival tissue was not observed following the inoculation. Under light anesthesia, the mechanical head withdrawal threshold (MHWT) on the buccal gingiva was measured using an electronic von Frey anesthesiometer. No significant changes in MHWT were observed in the mice with P. gingivalis-induced periodontitis during the experimental period. Continuous administration of CXCR4 neutralizing antibody to the gingival tissue significantly decreased MHWT and increased the number of gingival CXCR4 immunoreactive macrophages in the periodontitis group. Nitric oxide metabolites in the gingival tissue were significantly increased after the inoculation of P. gingivalis and were reduced by gingival CXCR4 neutralization. Gingival L-arginine administration induced gingival mechanical allodynia in naive animals. Moreover, the decrease in MHWT after treatment with P. gingivalis and CXCR4 neutralization was partially reversed by nitric oxide synthase inhibition in the gingival tissue. Nuclear factor-kappa B was expressed in infiltrating macrophages after inoculation of P. gingivalis and administration of the nuclear factor-kappa B activator betulinic acid induced gingival mechanical allodynia in naive mice. Conclusions These findings suggest that CXCR4 signaling inhibits nitric oxide release from infiltrating macrophages and is involved in modulation of the mechanical sensitivity in the periodontal tissue

  6. Porphyromonas gingivalis attenuates ATP-mediated inflammasome activation and HMGB1 release through expression of a nucleoside-diphosphate kinase.

    Science.gov (United States)

    Johnson, Larry; Atanasova, Kalina R; Bui, Phuong Q; Lee, Jungnam; Hung, Shu-Chen; Yilmaz, Özlem; Ojcius, David M

    2015-05-01

    Many intracellular pathogens evade the innate immune response in order to survive and proliferate within infected cells. We show that Porphyromonas gingivalis, an intracellular opportunistic pathogen, uses a nucleoside-diphosphate kinase (NDK) homolog to inhibit innate immune responses due to stimulation by extracellular ATP, which acts as a danger signal that binds to P2X7 receptors and induces activation of an inflammasome and caspase-1. Thus, infection of gingival epithelial cells (GECs) with wild-type P. gingivalis results in inhibition of ATP-induced caspase-1 activation. However, ndk-deficient P. gingivalis is less effective than wild-type P. gingivalis in reducing ATP-mediated caspase-1 activation and secretion of the pro-inflammatory cytokine, IL-1β, from infected GECs. Furthermore, P. gingivalis NDK modulates release of high-mobility group protein B1 (HMGB1), a pro-inflammatory danger signal, which remains associated with chromatin in healthy cells. Unexpectedly, infection with either wild-type or ndk-deficient P. gingivalis causes release of HMGB1 from the nucleus to the cytosol. But HMGB1 is released to the extracellular space when uninfected GECs are further stimulated with ATP, and there is more HMGB1 released from the cells when ATP-treated cells are infected with ndk-deficient mutant than wild-type P. gingivalis. Our results reveal that NDK plays a significant role in inhibiting P2X7-dependent inflammasome activation and HMGB1 release from infected GECs. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles

    Science.gov (United States)

    Fleetwood, Andrew J.; Lee, Man K.S.; Singleton, William; Achuthan, Adrian; Lee, Ming-Chin; O'Brien-Simpson, Neil M.; Cook, Andrew D.; Murphy, Andrew J.; Dashper, Stuart G.; Reynolds, Eric C.; Hamilton, John A.

    2017-01-01

    Porphyromonas gingivalis is one of the bacterial species most closely associated with periodontitis and can shed large numbers of outer membrane vesicles (OMVs), which are increasingly thought to play a significant role in bacterial virulence and pathogenicity. Macrophages are amongst the first immune cells to respond to bacteria and their products, so we sought to directly compare the response of macrophages to P. gingivalis or its purified OMVs. Macrophages stimulated with OMVs produced large amounts of TNFα, IL-12p70, IL-6, IL-10, IFNβ, and nitric oxide compared to cells infected with P. gingivalis, which produced very low levels of these mediators. Both P. gingivalis and OMVs induced a shift in macrophage metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, which was supported by enhanced lactate release, decreased mitochondrial oxygen consumption with reduced spare respiratory capacity, as well as increased mitochondrial reactive oxygen species (ROS) production. Corresponding to this metabolic shift, gene expression analysis of macrophages infected with P. gingivalis or stimulated with OMVs revealed a broad transcriptional upregulation of genes critical to glycolysis and a downregulation of genes associated with the TCA cycle. Upon examination of inflammasome signaling and pyroptosis it was found that P. gingivalis did not activate the inflammasome in macrophages as the mature forms of caspase-1, IL-1β, and IL-18 were not detected and there was no extracellular release of lactate dehydrogenase (LDH) or 7-AAD staining. In comparison, macrophages stimulated with OMVs potently activated caspase-1, produced large amounts of IL-1β, IL-18, released LDH, and were positive for 7-AAD indicative of pyroptotic cell death. These data directly quantitate the distinct effects of P. gingivalis and its OMVs on macrophage inflammatory phenotype, mitochondrial function, inflammasome activation, and pyroptotic cell death that may have potential implications for

  8. Innate immune-stimulatory activity of Porphyromonas gingivalis fimbriae is eliminated by phase separation using Triton X-114.

    Science.gov (United States)

    Nozoe, Kohji; Sanui, Terukazu; Takeshita, Masaaki; Fukuda, Takao; Haraguchi, Akira; Aida, Yoshitomi; Nishimura, Fusanori

    2017-02-01

    Fimbriae are virulence factors of Porphyromonas gingivalis (P. gingivalis). In this study, the action of fimbriae on neutrophil respiratory burst and cytokine production by mononuclear cells (MNC) were investigated. Native or denatured form of purified P. gingivalis fimbriae contained endotoxin at an equivalence of 1-3μglipopolysaccharides(LPS)/mg protein. The endotoxin could be reduced to the equivalent of 1ng-LPS/mg protein by phase separation using Triton X-114. Unfractionated fimbriae caused serum-dependent priming of neutrophils for enhanced respiratory burst, but both native and denatured forms of Triton X-114-fractionated fimbriae were not active at 100μg/mL. Unfractionated fimbriae induced serum-dependent production of IL-1β by MNC. Triton X-114-fractionated fimbriae (10μg/mL)-induced production of IL-1β, IL-8 or TNF-α was much lower than that induced by unfractionated fimbriae or 10ng/mL P. gingivalis-LPS preparation. Triton X-114-fractionated fimbriae immobilized on polystyrene tubes induced adhesion-stimulated superoxide release by LPS-primed neutrophils in a β2 integrin-dependent manner. P. gingivalis cells caused priming of neutrophils; however, Toll-like receptor (TLR) 4 antagonists did not affect this response. Thus, P. gingivalis fimbriae were ineffective in inducing innate immune response in leukocytes; however, they induced β2 integrin-mediated response by neutrophils. Immune-stimulatory components of P. gingivalis might be recognized by receptors other than TLR4. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation.

    Science.gov (United States)

    Tsai, Tzung-Hsun; Huang, Wen-Cheng; Ying, How-Ting; Kuo, Yueh-Hsiung; Shen, Chien-Chang; Lin, Yin-Ku; Tsai, Po-Jung

    2016-04-06

    Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL)-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2) by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK) in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.

  10. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs in the Porphyromonas gingivalis CRISPR-Cas I-C System.

    Science.gov (United States)

    Burmistrz, Michal; Rodriguez Martinez, Jose Ignacio; Krochmal, Daniel; Staniec, Dominika; Pyrc, Krzysztof

    2017-12-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein) system is unique to prokaryotes and provides the majority of bacteria and archaea with immunity against nucleic acids of foreign origin. CRISPR RNAs (crRNAs) are the key element of this system, since they are responsible for its selectivity and effectiveness. Typical crRNAs consist of a spacer sequence flanked with 5' and 3' handles originating from repeat sequences that are important for recognition of these small RNAs by the Cas machinery. In this investigation, we studied the type I-C CRISPR-Cas system in Porphyromonas gingivalis , a human pathogen associated with periodontitis, rheumatoid arthritis, cardiovascular disease, and aspiration pneumonia. We demonstrated the importance of the 5' handle for crRNA recognition by the effector complex and consequently activity, as well as secondary trimming of the 3' handle, which was not affected by modifications of the repeat sequence. IMPORTANCE Porphyromonas gingivalis , a clinically relevant Gram-negative, anaerobic bacterium, is one of the major etiologic agents of periodontitis and has been linked with the development of other clinical conditions, including rheumatoid arthritis, cardiovascular disease, and aspiration pneumonia. The presented results on the biogenesis and functions of crRNAs expand our understanding of CRISPR-Cas cellular defenses in P. gingivalis and of horizontal gene transfer in bacteria. Copyright © 2017 American Society for Microbiology.

  11. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Yoneda Masato

    2012-02-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD is a hepatic manifestation of metabolic syndrome that is closely associated with multiple factors such as obesity, hyperlipidemia and type 2 diabetes mellitus. However, other risk factors for the development of NAFLD are unclear. With the association between periodontal disease and the development of systemic diseases receiving increasing attention recently, we conducted this study to investigate the relationship between NAFLD and infection with Porphyromonas gingivalis (P. gingivalis, a major causative agent of periodontitis. Methods The detection frequencies of periodontal bacteria in oral samples collected from 150 biopsy-proven NAFLD patients (102 with non-alcoholic steatohepatitis (NASH and 48 with non-alcoholic fatty liver (NAFL patients and 60 non-NAFLD control subjects were determined. Detection of P. gingivalis and other periodontopathic bacteria were detected by PCR assay. In addition, effect of P. gingivalis-infection on mouse NAFLD model was investigated. To clarify the exact contribution of P. gingivalis-induced periodontitis, non-surgical periodontal treatments were also undertaken for 3 months in 10 NAFLD patients with periodontitis. Results The detection frequency of P. gingivalis in NAFLD patients was significantly higher than that in the non-NAFLD control subjects (46.7% vs. 21.7%, odds ratio: 3.16. In addition, the detection frequency of P. gingivalis in NASH patients was markedly higher than that in the non-NAFLD subjects (52.0%, odds ratio: 3.91. Most of the P. gingivalis fimbria detected in the NAFLD patients was of invasive genotypes, especially type II (50.0%. Infection of type II P. gingivalis on NAFLD model of mice accelerated the NAFLD progression. The non-surgical periodontal treatments on NAFLD patients carried out for 3 months ameliorated the liver function parameters, such as the serum levels of AST and ALT. Conclusions Infection with high-virulence P

  12. Melatonin Receptor Agonists as the “Perioceutics” Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response

    Science.gov (United States)

    Zhu, Cai-Lian; He, Zhi-Yan; Liang, Jing-Ping; Song, Zhong-Chen

    2016-01-01

    Aim “Perioceutics” including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential “perioceutics” treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon) on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced inflammation. Methods Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM). The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs) was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8) was measured by enzyme-linked immunosorbent assay (ELISA). Results Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC) concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence

  13. Assessing the Antimicrobial Effect of the Essential Oil of Myrtus communis on the Clinical Isolates of Porphyromonas gingivalis: An in vitro Study.

    Science.gov (United States)

    Hedayati, Azita; Khosropanah, Hengameh; Bazargani, Abdollah; Abed, Molud; Emami, Amir

    2013-11-01

    One of the major diseases affecting the oral health is periodontal disease. Various therapeutic methods have been introduced to eliminate the periodonto-pathic subgingival microflora. Among these, Porphyromonas gingivalis (P. gingivalis) has a major role in the pathogenesis of different forms of periodontal diseases. The present study investigated the antimicrobial effect of the essential oil of Myrtus communis on Porphyromonas gingivalis (P. gingivalis) as the most destructive periodontal pathogens. The subjects included 27 male and 3 female patients with advanced chronic periodontitis. The mean age of the patients was 47.6 ± 2.0 years old. P. gingivalis was isolated from the samples and identified by various diagnostic tests, including Gram staining, Indol test, and fluorescent test. Minimum inhibitory concentration (MIC) of the essential oil against isolated P. gingivalis was determined by broth micro-dilution method. In this study, 0.12 - 64 μL/mL Myrtus communis essence were used for 30 P. gingivalis isolates and the MIC50 and MIC90 concentration of Myrtus communis essence against the isolates was equal to 1 and 8 μL/mL respectively. The results showed that Myrtus communis has antimicrobial effects against P. gingivalis. Further studies are suggested to include this essence in therapeutic protocols of periodontal disease.

  14. Efficiency of Nanotube Surface-Treated Dental Implants Loaded with Doxycycline on Growth Reduction of Porphyromonas gingivalis.

    Science.gov (United States)

    Ferreira, Cimara Fortes; Babu, Jegdish; Hamlekhan, Azhang; Patel, Sweetu; Shokuhfar, Tolou

    The prevalence of peri-implant infection in patients with dental implants has been shown to range from 28% to 56%. A nanotube-modified implant surface can deliver antibiotics locally and suppress periodontal pathogenic bacterial growth. The aim of this study was to evaluate the deliverability of antibiotics via a nanotube-modified implant. Dental implants with a nanotube surface were fabricated and loaded with doxycycline. Afterward, each dental implant with a nanotube surface was placed into 2-mL tubes, removed from solution, and placed in a fresh solution daily for 28 days. Experimental samples from 1, 2, 4, 16, 24, and 28 days were used for this evaluation. The concentration of doxycycline was measured using spectrophotometric analysis at 273-nm absorbance. The antibacterial effect of doxycycline was evaluated by supplementing Porphyromonas gingivalis (P gingivalis) growth media with the solution collected from the dental implants at the aforementioned time intervals for a period of 48 hours under anaerobic conditions. A bacterial viability assay was used to evaluate P gingivalis growth at 550-nm absorbance. Doxycycline concentration varied from 0.33 to 1.22 μg/mL from day 1 to day 28, respectively. A bacterial viability assay showed the highest P gingivalis growth at day 1 (2 nm) and the lowest at day 4 (0.17 nm), with a gradual reduction from day 1 to day 4 of approximately 87.5%. The subsequent growth pattern was maintained and slightly increased from baseline in approximately 48.3% from day 1 to day 24. The final P gingivalis growth measured at day 28 was 29.4% less than the baseline growth. P gingivalis growth was suppressed in media supplemented with solution collected from dental implants with a nanotube surface loaded with doxycycline during a 28-day time interval.

  15. The Periodontal Pathogen Porphyromonas gingivalis Preferentially Interacts with Oral Epithelial Cells in S Phase of the Cell Cycle.

    Science.gov (United States)

    Al-Taweel, Firas B; Douglas, C W Ian; Whawell, Simon A

    2016-07-01

    Porphyromonas gingivalis, a key periodontal pathogen, is capable of invading a variety of cells, including oral keratinocytes, by exploiting host cell receptors, including alpha-5 beta-1 (α5β1) integrin. Previous studies have shown that P. gingivalis accelerates the cell cycle and prevents apoptosis of host cells, but it is not known whether the cell cycle phases influence bacterium-cell interactions. The cell cycle distribution of oral keratinocytes was characterized by flow cytometry and BrdU (5-bromo-2-deoxyuridine) staining following synchronization of cultures by serum starvation. The effect of cell cycle phases on P. gingivalis invasion was measured by using antibiotic protection assays and flow cytometry, and these results were correlated with gene and surface expression levels of α5 integrin and urokinase plasminogen activator receptor (uPAR). There was a positive correlation (R = 0.98) between the number of cells in S phase and P. gingivalis invasion, the organism was more highly associated with cells in S phase than with cells in G2 and G1 phases, and S-phase cells contained 10 times more bacteria than did cells that were not in S phase. Our findings also show that α5 integrin, but not uPAR, was positively correlated with cells in S phase, which is consistent with previous reports indicating that P. gingivalis invasion of cells is mediated by α5 integrin. This study shows for the first time that P. gingivalis preferentially associates with and invades cells in the S phase of the cell cycle. The mechanism of targeting stable dividing cells may have implications for the treatment of periodontal diseases and may partly explain the persistence of this organism at subgingival sites. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Influence of periodontal disease, Porphyromonas gingivalis and cigarette smoking on systemic anti-citrullinated peptide antibody titres.

    Science.gov (United States)

    Lappin, David F; Apatzidou, Danae; Quirke, Anne-Marie; Oliver-Bell, Jessica; Butcher, John P; Kinane, Denis F; Riggio, Marcello P; Venables, Patrick; McInnes, Iain B; Culshaw, Shauna

    2013-10-01

    Anti-citrullinated protein antibody (ACPA) responses may precede clinical onset of rheumatoid arthritis. Porphyromonas gingivalis peptidylarginine deiminase can citrullinate proteins possibly inducing autoimmunity in susceptible individuals. To determine whether periodontitis, carriage of P. gingivalis, smoking and periodontal therapy influence ACPA titres. Serum and plaque samples were collected from 39 periodontitis patients before and after non-surgical periodontal treatment, and from 36 healthy subjects. Carriage of P. gingivalis was determined by PCR of plaque DNA. ACPA was determined by anti-cyclic citrullinated peptide (CCP) enzyme-linked immunosorbent assay (ELISA). Anti-P. gingivalis titres were determined by ELISA. Untreated periodontitis patients had higher anti-CCP antibody titres than healthy controls [three patients (8%) greater than manufacturer suggested assay diagnostic threshold (5 Assay Units/AU) versus none (0%); mean ± SEM: 1.37 ± 0.23 versus 0.40 ± 0.10 AU, p Periodontitis patients who smoked demonstrated lower anti-P. gingivalis (15956 ± 4385 versus 2512 ± 1290 Units/ml, p smoking periodontitis patients (smokers: 1.31 ± 0.35; non-smokers: 1.41 ± 0.32 AU). Healthy smokers demonstrated elevated anti-CCP titres (0.75 ± 0.19 AU), at levels between healthy non-smokers (0.15 ± 0.05 AU) and non-smoker periodontitis patients. Six months after periodontal treatment, there were significant reductions in anti-CCP (non-smokers p periodontitis, P. gingivalis infection may be responsible for inducing autoimmune responses that characterize rheumatoid arthritis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Inhibitory effects of sword bean extract on alveolar bone resorption induced in rats by Porphyromonas gingivalis infection.

    Science.gov (United States)

    Nakatsuka, Y; Nagasawa, T; Yumoto, Y; Nakazawa, F; Furuichi, Y

    2014-12-01

    The domesticated legume, Canavalia gladiata (commonly called the sword bean), is known to contain canavanine. The fruit is used in Chinese and Japanese herbal medicine for treating the discharge of pus, but its pharmacological mechanisms are still unclear. This study examined the effect of sword bean extract (SBE) on (i) oral bacteria and human oral epithelial cells in vitro, and (ii) the initiation and progression of experimental Porphyromonas gingivalis-induced alveolar bone resorption in rats. A high-performance liquid chromatography/ultraviolet method was applied to quantitate canavanine in SBE. By assessing oral bacterial growth, we estimated the minimum inhibitory concentration and minimum bactericidal concentration of SBE, canavanine, chlorhexidine gluconate (CHX) solution. The cytotoxicity of SBE, canavanine, CHX, leupeptin and cystatin for KB cells was determined using a trypan blue assay. The effects of SBE, canavanine, leupeptin and cystatin on Arg-gingipain (Rgp) and Lys-gingipain (Kgp) were evaluated by colorimetric assay using synthetic substrates. To examine its effects on P. gingivalis-associated periodontal tissue breakdown, SBE was orally administered to P. gingivalis-infected rats. Sword bean extract contained 6.4% canavanine. SBE and canavanine inhibited the growth of P. gingivalis and Fusobacterium nucleatum. The cytotoxicity of SBE, canavanine and cystatin on KB cells was significantly lower than that of CHX. Inhibition of Rgp with SBE was comparable to that with leupeptin, a known Rgp inhibitor, and inhibition of Kgp with SBE was significantly higher than that with leupeptin at 500 μg/mL ( p < 0.05). P. gingivalis-induced alveolar bone resorption was significantly suppressed by administration of SBE, with bone levels remaining comparable to non-infected animals ( p < 0.05). The present study suggests that SBE might be effective against P. gingivalis-associated alveolar bone resorption. © 2014 John Wiley & Sons A/S. Published by

  18. Porphyromonas gingivalis induces CCR5-dependent transfer of infectious HIV-1 from oral keratinocytes to permissive cells

    Directory of Open Access Journals (Sweden)

    Dietrich Elizabeth A

    2008-03-01

    Full Text Available Abstract Background Systemic infection with HIV occurs infrequently through the oral route. The frequency of occurrence may be increased by concomitant bacterial infection of the oral tissues, since co-infection and inflammation of some cell types increases HIV-1 replication. A putative periodontal pathogen, Porphyromonas gingivalis selectively up-regulates expression of the HIV-1 coreceptor CCR5 on oral keratinocytes. We, therefore, hypothesized that P. gingivalis modulates the outcome of HIV infection in oral epithelial cells. Results Oral and tonsil epithelial cells were pre-incubated with P. gingivalis, and inoculated with either an X4- or R5-type HIV-1. Between 6 and 48 hours post-inoculation, P. gingivalis selectively increased the infectivity of R5-tropic HIV-1 from oral and tonsil keratinocytes; infectivity of X4-tropic HIV-1 remained unchanged. Oral keratinocytes appeared to harbor infectious HIV-1, with no evidence of productive infection. HIV-1 was harbored at highest levels during the first 6 hours after HIV exposure and decreased to barely detectable levels at 48 hours. HIV did not appear to co-localize with P. gingivalis, which increased selective R5-tropic HIV-1 trans infection from keratinocytes to permissive cells. When CCR5 was selectively blocked, HIV-1 trans infection was reduced. Conclusion P. gingivalis up-regulation of CCR5 increases trans infection of harbored R5-tropic HIV-1 from oral keratinocytes to permissive cells. Oral infections such as periodontitis may, therefore, increase risk for oral infection and dissemination of R5-tropic HIV-1.

  19. Prevalence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in Japanese patients with generalized chronic and aggressive periodontitis.

    Science.gov (United States)

    Tomita, Sachiyo; Komiya-Ito, Akiyo; Imamura, Kentaro; Kita, Daichi; Ota, Koki; Takayama, Saori; Makino-Oi, Asako; Kinumatsu, Takashi; Ota, Mikio; Saito, Atsushi

    2013-01-01

    This study aimed to investigate the prevalence and levels of major periodontal pathogens, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in subgingival plaque samples of a group of Japanese patients with aggressive periodontitis (AgP) and chronic periodontitis (CP). A total of 40 patients with clinical diagnosis of AgP or CP and 10 periodontally healthy volunteers were subjected to clinical and microbiological analysis. Subgingival plaque samples were analyzed for A. actinomycetemcomitans, P. gingivalis and T. forsythia with a real-time polymerase chain reaction (PCR) technique. The prevalence of P. gingivalis and T. forsythia was relatively high in patients with periodontitis: over 60% of AgP or CP patients harbored these pathogens whereas they were not detected in the subgingival plaque samples from periodontally healthy individuals. P. gingivalis and T. forsythia were relatively frequently detected together in AgP and CP patients. No significant differences in the prevalence or level of the 3 pathogens were found between periodontitis groups. The proportion of T. forsythia was approximately 4-fold higher in CP group than in AgP group (P = 0.02). In periodontitis patients, a significant positive correlation was found between periodontal parameters (probing depth and clinical attachment level) and the numbers of total bacteria, P. gingivalis and T. forsythia. No distinct pattern of the subgingival profile of these pathogens was discerned between the two disease entities, except for the difference in the proportion of T. forsythia. The red complex bacteria, P. gingivalis and T. forsythia were highly prevalent in this population of Japanese AgP and CP patients, collaborating their roles in periodontitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Quantification of Porphyromonas gingivalis in chronic periodontitis patients associated with diabetes mellitus using real-time polymerase chain reaction.

    Science.gov (United States)

    Padmalatha, G V; Bavle, Radhika M; Satyakiran, Gadavalli Vera Venkata; Paremala, K; Sudhakara, M; Makarla, Soumya

    2016-01-01

    Periodontal diseases, if left untreated, can lead to tooth loss and affect at least one tooth in 80% of adults worldwide, with the main cause being a bacterial plaque. Among subgingival plaque bacterial species, Porphyromonas gingivalis has been implicated as a major etiological agent causing tooth loss. Diabetics and smokers are two patient groups at high risk for periodontal disease. The increase in the number of this organism with the coexistence of other pathogenic microbes leads to rapid destruction of the periodontium, premature loss of teeth and also because of its virulence has implications in systemic pathology. Our aim was to observe the involvement of P. gingivalis in diabetes mellitus (DM) patients associated with periodontitis with and without tobacco-associated habits and to compare them with periodontitis patients having no other systemic pathologies. Subgingival plaque samples from a total of seventy subjects were included in the study. DNA was isolated from the collected sample and was quantified using spectrophotometer for standardizing the polymerase chain reaction. The quantity of the isolated DNA was checked in a ultraviolet-visible spectrophotomer. One-way ANOVA and Tukey's multiple post hoc procedures were carried out. The maximum score of P. gingivalis was seen in periodontitis patients having DM, whereas the least score was seen in periodontitis patients having DM with tobacco smoking habit compared to the other groups. P. gingivalis count is significantly reduced in periodontitis patients having DM with smoking habit; it is concluded that P. gingivalis might not be a key causative organism responsible for the periodontal destruction in case of smokers despite the DM condition. The decrease in counts may be attributed to change in the local environment like chemical (tobacco nitrosamines) and physical changes preventing the growth of P. gingivalis.

  1. Detection of antimicrobial activity of banana peel (Musa paradisiaca L. on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Suraj Premal Kapadia

    2015-01-01

    Full Text Available Introduction and Aim: Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans. Material and Methods: Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. Results: In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. Conclusion: From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans.

  2. Variants of Porphyromonas gingivalis lipopolysaccharide alter lipidation of autophagic protein, microtubule-associated protein 1 light chain 3, LC3.

    Science.gov (United States)

    Blasi, I; Korostoff, J; Dhingra, A; Reyes-Reveles, J; Shenker, B J; Shahabuddin, N; Alexander, D; Lally, E T; Bragin, A; Boesze-Battaglia, K

    2016-12-01

    Porphyromonas gingivalis often subverts host cell autophagic processes for its own survival. Our previous studies document the association of the cargo sorting protein, melanoregulin (MREG), with its binding partner, the autophagic protein, microtubule-associated protein 1 light chain 3 (LC3) in macrophages incubated with P. gingivalis (strain 33277). Differences in the lipid A moiety of lipopolysaccharide (LPS) affect the virulence of P. gingivalis; penta-acylated LPS1690 is a weak Toll-like receptor 4 agonist compared with Escherichia coli LPS, whereas tetra-acylated LPS1435/1449 acts as an LPS1690 antagonist. To determine how P. gingivalis LPS1690 affects autophagy we assessed LC3-dependent and MREG-dependent processes in green fluorescent protein (GFP)-LC3-expressing Saos-2 cells. LPS1690 stimulated the formation of very large LC3-positive vacuoles and MREG puncta. This LPS1690 -mediated LC3 lipidation decreased in the presence of LPS1435/1449 . When Saos-2 cells were incubated with P. gingivalis the bacteria internalized but did not traffic to GFP-LC3-positive structures. Nevertheless, increases in LC3 lipidation and MREG puncta were observed. Collectively, these results suggest that P. gingivalis internalization is not necessary for LC3 lipidation. Primary human gingival epithelial cells isolated from patients with periodontitis showed both LC3II and MREG puncta whereas cells from disease-free individuals exhibited little co-localization of these two proteins. These results suggest that the prevalence of a particular LPS moiety may modulate the degradative capacity of host cells, so influencing bacterial survival. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Differential response of Porphyromonas gingivalis to varying levels and duration of hydrogen peroxide-induced oxidative stress

    Science.gov (United States)

    Johnson, Neal A.; Aruni, Wilson; Dou, Yuetan; Masinde, Godfred; Fletcher, Hansel M.

    2012-01-01

    Porphyromonas gingivalis, an anaerobic oral pathogen implicated in adult periodontitis, can exist in an environment of oxidative stress. To evaluate its adaptation to this environment, we have assessed the response of P. gingivalis W83 to varying levels and durations of hydrogen peroxide (H2O2)-induced stress. When P. gingivalis was initially exposed to a subinhibitory concentration of H2O2 (0.1 mM), an adaptive response to higher concentrations could be induced. Transcriptome analysis demonstrated that oxidative stress can modulate several functional classes of genes depending on the severity and duration of the exposure. A 10 min exposure to H2O2 revealed increased expression of genes involved in DNA damage and repair, while after 15 min, genes involved in protein fate, protein folding and stabilization were upregulated. Approximately 9 and 2.8 % of the P. gingivalis genome displayed altered expression in response to H2O2 exposure at 10 and 15 min, respectively. Substantially more genes were upregulated (109 at 10 min; 47 at 15 min) than downregulated (76 at 10 min; 11 at 15 min) by twofold or higher in response to H2O2 exposure. The majority of these modulated genes were hypothetical or of unknown function. One of those genes (pg1372) with DNA-binding properties that was upregulated during prolonged oxidative stress was inactivated by allelic exchange mutagenesis. The isogenic mutant P. gingivalis FLL363 (pg1372 : : ermF) showed increased sensitivity to H2O2 compared with the parent strain. Collectively, our data indicate the adaptive ability of P. gingivalis to oxidative stress and further underscore the complex nature of its resistance strategy under those conditions. PMID:22745271

  4. Detection of Porphyromonas gingivalis DNA in the synovial fluid of rheumatoid arthritis patients by real-time PCR

    Directory of Open Access Journals (Sweden)

    Reza Ghotaslou

    2016-11-01

    Full Text Available Microbial infections are believed to play an important role in the initiation and perpetuation of rheumatoid arthritis. This study aimed to investigate the relationship between the presence of Porphyromonas gingivalis DNA in the synovial fluid and rheumatoid arthritis. The synovial fluid samples were collected from 22 patients with rheumatoid arthritis and 20 patients with not suffering from rheumatism, overall 42 patients were investigated. The presence of P. gingivalis DNA was evaluated by the real-time PCR method. There was a significant relationship between rheumatoid arthritis and non-rheumatoid arthritis with the DNA number (Pv 0.05. DNA of periodontal pathogens can be found in the synovial fluid of rheumatoid arthritis patients. It shows oral bacteria may play a role in the pathogenesis of rheumatoid arthritis.

  5. The Hemoglobin Receptor Protein of Porphyromonas gingivalis Inhibits Receptor Activator NF-κB Ligand-Induced Osteoclastogenesis from Bone Marrow Macrophages

    OpenAIRE

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-01-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent f...

  6. Similar physiological effects in Porphyromonas gingivalis ATCC 33277 under hemin-excess and hemin-limited concentrations are putatively associated to different hydrogen peroxide function.

    Science.gov (United States)

    Cueno, Marni E; Tamura, Muneaki; Ohya, Manabu; Ochiai, Kuniyasu

    2014-08-01

    Porphyromonas gingivalis requires optimal hemin to grow while non-optimal hemin hampers growth. Hemin induces H2O2 production while H2O2 has a dual function. In P. gingivalis ATCC 33277, we found similar physiological effects under hemin-excess and hemin-limited concentrations which we propose is related to two different functions of the H2O2 molecule. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Virulencia y variabilidad de Porphyromonas gingivalis y Aggregatibacter actinomycetemcomitans y su asociación a la periodontitis

    OpenAIRE

    J Díaz Zúñiga; Yáñez Figueroa,J; Melgar Rodríguez, S.; C Álvarez Rivas; Rojas Lagos,C; Vernal Astudillo,R

    2012-01-01

    Las periodontitis son un conjunto de patologías de naturaleza inflamatoria y etiología infecciosa producidas por el biofilm patogénico subgingival. Porphyromonas gingivalis y Aggregatibacter actinomycetemcomitans son bacterias periodonto-patógenas que pueden causar daño directo a las estructuras periodontales a través de los diversos factores de virulencia que expresan. Sobre la base de estos factores de virulencia, distintos genotipos y serotipos bacterianos se han descrito, cada uno de ello...

  8. [Cloning of the fimA gene of Porphyromonas gingivalis and its expression and purification in Escherichia coli].

    Science.gov (United States)

    Liu, Wei; Yu, Fei; Chen, Wei-Min; He, Wei

    2009-12-01

    OBJECTIVE; To clone the fimA gene of Porphyromonas gingivalis (P. gingivalis) and detect its expression in Escherichia coli (E. coli). The fimA gene was obtained by PCR from the genome of P. gingivalis to construct a prokaryotic expression plasmid pT-BAD/fimA. pT-BAD/fimA was transformed into E. coli BL21 (DE3) competent cells and the recombination protein was characterized by means of matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. The bound protein was eluted with different concentrations of imidazole (250, 200, 150, 100, 50 micromol x L(-1)) respectively. DNA sequencing showed that the fragment was 99.9% consistent with that of the published. After induction with L-arabinose, a new 3.8 x 10(4) protein appeared on SDS-PAGE gel. The protein was further identified by MALDI-TOF-MS. Purity of 95% of the target protein was purified by Ni-NTA Purification System after eluted with 100 micromol x L(-1) imidazole. The fimA gene of P. gingivalis was cloned successfully and its protein was expressed correctly in E. coli. A high purity of protein FimA was obtained and it could be applied for follow-up researches.

  9. Role of OmpA2 surface regions of Porphyromonas gingivalis in host-pathogen interactions with oral epithelial cells.

    Science.gov (United States)

    Naylor, Kathryn L; Widziolek, Magdalena; Hunt, Stuart; Conolly, Mary; Hicks, Matthew; Stafford, Prachi; Potempa, Jan; Murdoch, Craig; Douglas, C W Ian; Stafford, Graham P

    2017-02-01

    Outer membrane protein A (OmpA) is a key outer membrane protein found in Gram-negative bacteria that contributes to several crucial processes in bacterial virulence. In Porphyromonas gingivalis, OmpA is predicted as a heterotrimer of OmpA1 and OmpA2 subunits encoded by adjacent genes. Here we describe the role of OmpA and its individual subunits in the interaction of P. gingivalis with oral cells. Using knockout mutagenesis, we show that OmpA2 plays a significant role in biofilm formation and interaction with human epithelial cells. We used protein structure prediction software to identify extracellular loops of OmpA2, and determined these are involved in interactions with epithelial cells as evidenced by inhibition of adherence and invasion of P. gingivalis by synthetic extracellular loop peptides and the ability of the peptides to mediate interaction of latex beads with human cells. In particular, we observe that OmpA2-loop 4 plays an important role in the interaction with host cells. These data demonstrate for the first time the important role of P. gingivalis OmpA2 extracellular loops in interaction with epithelial cells, which may help design novel peptide-based antimicrobial therapies for periodontal disease. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility

    Science.gov (United States)

    Nakayama, K

    2015-01-01

    Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria. PMID:25546073

  11. Crystal structure of Porphyromonas gingivalis dipeptidyl peptidase 4 and structure-activity relationships based on inhibitor profiling.

    Science.gov (United States)

    Rea, Dean; Van Elzen, Roos; De Winter, Hans; Van Goethem, Sebastiaan; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Van Der Veken, Pieter; Augustyns, Koen; De Meester, Ingrid; Fülöp, Vilmos; Lambeir, Anne-Marie

    2017-10-20

    The Gram-negative anaerobe Porphyromonas gingivalis is associated with chronic periodontitis. Clinical isolates of P. gingivalis strains with high dipeptidyl peptidase 4 (DPP4) expression also had a high capacity for biofilm formation and were more infective. The X-ray crystal structure of P. gingivalis DPP4 was solved at 2.2 Å resolution. Despite a sequence identity of 32%, the overall structure of the dimer was conserved between P. gingivalis DPP4 and mammalian orthologues. The structures of the substrate binding sites were also conserved, except for the region called S2-extensive, which is exploited by specific human DPP4 inhibitors currently used as antidiabetic drugs. Screening of a collection of 450 compounds as inhibitors revealed a structure-activity relationship that mimics in part that of mammalian DPP9. The functional similarity between human and bacterial DPP4 was confirmed using 124 potential peptide substrates. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Evaluation of a novel immunochromatographic device for rapid and accurate clinical detection of Porphyromonas gingivalis in subgingival plaque.

    Science.gov (United States)

    Imamura, K; Takayama, S; Saito, A; Inoue, E; Nakayama, Y; Ogata, Y; Shirakawa, S; Nagano, T; Gomi, K; Morozumi, T; Akiishi, K; Watanabe, K; Yoshie, H

    2015-10-01

    An important goal for the improved diagnosis and management of infectious and inflammatory diseases, such as periodontitis, is the development of rapid and accurate technologies for the decentralized detection of bacterial pathogens. The aim of this prospective multicenter study was to evaluate the clinical use of a novel immunochromatographic device with monoclonal antibodies for the rapid point-of-care detection and semi-quantification of Porphyromonas gingivalis in subgingival plaque. Sixty-three patients with chronic periodontitis and 28 periodontally healthy volunteers were subjected to clinical and microbiological examinations. Subgingival plaque samples were analyzed for the presence of P. gingivalis using a novel immunochromatography based device DK13-PG-001, designed to detect the 40k-outer membrane protein of P. gingivalis, and compared with a PCR-Invader method. In the periodontitis group, a significant strong positive correlation in detection results was found between the test device score and the PCR-Invader method (Spearman rank correlation, r=0.737, pgingivalis, whereas 76% (n=48) of periodontitis subjects were tested positive. There was a significant positive correlation between device scores for P. gingivalis and periodontal parameters including probing pocket depth and clinical attachment level (r=0.317 and 0.281, respectively, pgingivalis in subgingival plaque. UMIN Clinical Trials Registry (UMIN-CTR) UMIN000011943. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility.

    Science.gov (United States)

    Nakayama, K

    2015-02-01

    Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria. © 2014 The Authors Journal of Periodontal Research Published by John Wiley & Sons Ltd.

  14. Effect of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune responses.

    Science.gov (United States)

    Nakao, Ryoma; Takashiba, Shogo; Kosono, Saori; Yoshida, Minoru; Watanabe, Haruo; Ohnishi, Makoto; Senpuku, Hidenobu

    2014-01-01

    Porphyromonas gingivalis is a major etiological agent of periodontal diseases and the outer membrane vesicles (OMVs) contain virulence factors such as LPS and gingipains. In this study, we investigated the potential role of the OMVs in host immune response and tissue destruction during P. gingivalis infection. Firstly, we found that sera from periodontitis patients had significantly stronger reactivity against an OMV-producing wild type strain than the isogenic OMV-depleted strain. OMVs were found to be highly antigenic, as absorption of patient sera with OMVs greatly reduced reactivity with whole cells of P. gingivalis. LC-MS/MS analysis of OMVs revealed multiple forms of gingipains and several gingipain-related proteins. Western blots of OMVs using patient sera revealed a conserved immunoreactive antigen profile resembling the profile of OMV antigens that were recognized by gingipain antiserum, suggesting a potential role of OMV-associated gingipains in triggering antibody-mediated immune responses to P. gingivalis infection. When OMVs were added to a monolayer of an oral squamous epithelial cell line, OMVs caused cell detachment, which was inhibited by preincubating OMVs with anti-gingipain antiserum. These data suggest that gingipain-laden OMVs may contribute to tissue destruction in periodontal diseases by serving as a vehicle for the antigens and active proteases. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. The association of two recombinant proteinases of a feline strain of Porphyromonas gingivalis with periodontal disease in cats.

    Science.gov (United States)

    Norris, J M; Love, D N

    2000-01-01

    Serum from 40 domestic cats with various grades of periodontal disease was used to probe two recombinant functional proteinases from feline strain VPB 3457 of Porphyromonas gingivalis expressed in E. coli. One recombinant proteinase (VPB 2856) was constructed using polymerase chain reaction and had 91% DNA identity with the prtC collagenase gene of the human type strain of P. gingivalis, while the other proteinase (VPB 2814) was isolated from a size selected genomic library and had an amino-terminal sequence with no significant identity with deposited sequences. Thirteen of 40 cats showed a serum antibody response to VPB 2856 using Western immunoblot detection. All the 13 cats had an overall periodontal grade of 3 or greater and greater than 1.68x10(5) cfu P. gingivalis at the canine and premolar periodontium sample sites. Fourteen of 40 cats showed a serum antibody response to VPB 2814. Thirteen of these 14 cats had an overall periodontal grade of 3 or greater. Regression analysis of overall periodontal grade against the serum antibody response showed significant positive relationships for both VPB 2856 (r2 = 0.351; pgrade of serum antibody response showed a positive relationship for both VPB 2856 (r2 = 0.662; p<0.001) and VPB 2814 (r2 = 0.531; p<0.001). These data provide strong evidence that the recombinant proteinases of feline P. gingivalis expressed in E. coli clones VPB 2856 and VPB 2814 are associated with periodontal disease in cats.

  16. Deteriorated clinical outcome in coronary artery disease patients with a high prevalence of Porphyromonas gingivalis infection

    Directory of Open Access Journals (Sweden)

    Daisuke Tezuka

    2016-06-01

    Conclusions: P. gingivalis was identified by sensitive detection in patients with CAD, diagnosed by coronary CTA. P. gingivalis in oral saliva can be a potential marker which is associated with clinical outcomes in patients with CAD.

  17. Porphyromonas Gingivalis and E-coli induce different cytokine production patterns in pregnant women.

    Directory of Open Access Journals (Sweden)

    Marijke M Faas

    Full Text Available OBJECTIVE: Pregnant individuals of many species, including humans, are more sensitive to various bacteria or their products as compared with non-pregnant individuals. Pregnant individuals also respond differently to different bacteria or their products. Therefore, in the present study, we evaluated whether the increased sensitivity of pregnant women to bacterial products and their heterogeneous response to different bacteria was associated with differences in whole blood cytokine production upon stimulation with bacteria or their products. METHODS: Blood samples were taken from healthy pregnant and age-matched non-pregnant women and ex vivo stimulated with bacteria or LPS from Porphyromonas Gingivalis (Pg or E-coli for 24 hrs. TNFα, IL-1ß, IL-6, IL-12 and IL-10 were measured using a multiplex Luminex system. RESULTS: We observed a generally lower cytokine production after stimulation with Pg bacteria or it's LPS as compared with E-coli bacteria. However, there was also an effect of pregnancy upon cytokine production: in pregnant women the production of IL-6 upon Pg stimulation was decreased as compared with non-pregnant women. After stimulation with E-coli, the production of IL-12 and TNFα was decreased in pregnant women as compared with non-pregnant women. CONCLUSION: Our results showed that cytokine production upon bacterial stimulation of whole blood differed between pregnant and non-pregnant women, showing that the increased sensitivity of pregnant women may be due to differences in cytokine production. Moreover, pregnancy also affected whole blood cytokine production upon Pg or E-coli stimulation differently. Thus, the different responses of pregnant women to different bacteria or their products may result from variations in cytokine production.

  18. Regulon Controlled by the GppX Hybrid Two Component system in Porphyromonas gingivalis

    Science.gov (United States)

    Hirano, Takanori; Beck, David A. C.; Wright, Chris J.; Demuth, Donald R.; Hackett, Murray; Lamont, Richard J.

    2012-01-01

    Summary The periodontal pathogen Porphyromonas gingivalis experiences a number of environmental conditions in the oral cavity and must monitor and respond to a variety of environmental cues. However the organism possesses only five full two-component systems, one of which is the hybrid system GppX. To investigate the regulon controlled by GppX we performed RNA-Seq on a ΔgppX mutant. Fifty three genes were up-regulated and 37 genes were down-regulated in the ΔgppX mutant. Pathway analyses revealed no systemic function for GppX under nutrient replete conditions; however, over 40% of the differentially abundant genes were annotated as encoding hypothetical proteins indicating a novel role for GppX. Abundance of small (s)RNA was, in general, not affected by the absence of GppX. To further define the role of GppX with respect to regulation of a hypothetical protein observed with the greatest significant relative abundance change relative to a wild-type control, PGN_0151, we constructed a series of strains in which a ΔgppX mutation was complemented with GppX protein containing specific domain and phosphotransfer mutations. The transmembrane domains, the DNA binding domain and the phosphotransfer residues were all required for regulation of PGN_0151. In addition, binding of GppX to the PGN_0151 promoter regions was confirmed by an electrophoretic mobility shift assay (EMSA). Both the ΔgppX mutant and a ΔPGN_0151 mutant were deficient in monospecies biofilm formation, suggesting a role for the GppX-PGN_0151 regulon in colonization and survival of the organism. PMID:23194602

  19. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    Directory of Open Access Journals (Sweden)

    Yicong Liu

    2013-01-01

    Full Text Available We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g. LPS. The expression of Toll-like receptor 2 (TLR2, TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.

  20. A novel Porphyromonas gingivalis enzyme: An atypical dipeptidyl peptidase III with an ARM repeat domain.

    Directory of Open Access Journals (Sweden)

    Altijana Hromić-Jahjefendić

    Full Text Available Porphyromonas gingivalis, an asaccharolytic Gram-negative oral anaerobe, is a major pathogen associated with adult periodontitis, a chronic infective disease that a significant percentage of the human population suffers from. It preferentially utilizes dipeptides as its carbon source, suggesting the importance of dipeptidyl peptidase (DPP types of enzyme for its growth. Until now DPP IV, DPP5, 7 and 11 have been extensively investigated. Here, we report the characterization of DPP III using molecular biology, biochemical, biophysical and computational chemistry methods. In addition to the expected evolutionarily conserved regions of all DPP III family members, PgDPP III possesses a C-terminal extension containing an Armadillo (ARM type fold similar to the AlkD family of bacterial DNA glycosylases, implicating it in alkylation repair functions. However, complementation assays in a DNA repair-deficient Escherichia coli strain indicated the absence of alkylation repair function for PgDPP III. Biochemical analyses of recombinant PgDPP III revealed activity similar to that of DPP III from Bacteroides thetaiotaomicron, and in the range between activities of human and yeast counterparts. However, the catalytic efficiency of the separately expressed DPP III domain is ~1000-fold weaker. The structure and dynamics of the ligand-free enzyme and its complex with two different diarginyl arylamide substrates was investigated using small angle X-ray scattering, homology modeling, MD simulations and hydrogen/deuterium exchange (HDX. The correlation between the experimental HDX and MD data improved with simulation time, suggesting that the DPP III domain adopts a semi-closed or closed form in solution, similar to that reported for human DPP III. The obtained results reveal an atypical DPP III with increased structural complexity: its superhelical C-terminal domain contributes to peptidase activity and influences DPP III interdomain dynamics. Overall, this

  1. Identification of genes encoding glycosyltransferases involved in lipopolysaccharide synthesis in Porphyromonas gingivalis.

    Science.gov (United States)

    Shoji, Mikio; Sato, Keiko; Yukitake, Hideharu; Kamaguchi, Arihide; Sasaki, Yuko; Naito, Mariko; Nakayama, Koji

    2017-10-03

    Porphyromonas gingivalis can synthesize both A-LPS and O-LPS, which contain anionic O-polysaccharides and conventional O-polysaccharides, respectively. A-LPS can anchor virulence proteins to the cell surface, and elucidating the mechanism of A-LPS synthesis is therefore important for understanding the pathogenicity of this bacterium. To identify the genes involved in LPS synthesis, we focused on uncharacterized genes encoding the glycosyltransferases, PGN_0361, PGN_ 1239, PGN_1240, and PGN_1668, which were tentatively named gtfC, gtfD, gtfE, and gtfF, respectively, and characterized their mutants. We found that disruption of gtfC and gtfF resulted in A-LPS deficiency. In addition, a gtfD mutant had abnormal A-LPS synthesis, and a gtfE mutant exhibited a rough-type LPS which possesses a short oligosaccharide with lipid A-core. We then constructed a gtfC and gtfD double mutant, since their amino acid sequences are very similar, and this mutant similarly possessed a rough-type LPS. Cross-complementation analysis revealed that the GtfD protein is a functional homolog of the Escherichia coli WbbL protein, which is a rhamnosyltransferase. These results suggested that the GtfE protein is essential for the synthesis of both O-LPS and A-LPS, and that GtfC and GtfD proteins may work together to synthesize the two kinds of LPS. In addition, the GtfF protein was essential for A-LPS synthesis, although this may be achieved in a strain-specific manner. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Inactivation of membrane tumor necrosis factor alpha by gingipains from Porphyromonas gingivalis.

    Science.gov (United States)

    Mezyk-Kopec, Renata; Bzowska, Malgorzata; Potempa, Jan; Bzowska, Monika; Jura, Natalia; Sroka, Aneta; Black, Roy A; Bereta, Joanna

    2005-03-01

    Gingipains are cysteine proteinases produced by Porphyromonas gingivalis, a major causative bacterium of adult periodontitis. They consist of arginine-specific (HRgpA and RgpB) and lysine-specific (Kgp) proteinases. Gingipains strongly affect the host defense system by degrading some cytokines, components of the complement system, and several immune cell receptors. In an in vitro model, gingipains were shown to degrade soluble tumor necrosis factor alpha (TNF-alpha). However, since membrane TNF-alpha shows strong biological activity, especially in local inflammatory lesions, it was worth investigating whether gingipains might also destroy membrane TNF-alpha and limit its biological activities. To avoid a possible influence of gingipains on ADAM17, the secretase of TNF-alpha, the majority of experiments were performed using ADAM17-/- fibroblasts stably transfected with cDNA of human pro-TNF-alpha (ADAM17-/- TNF+). Arginine-specific gingipains (Rgp's) strongly diminished the level of TNF-alpha on the cell surface as measured by flow cytometry, and this process was not accompanied by an increased concentration of soluble TNF-alpha in the culture medium. Degradation of membrane TNF-alpha by Rgp's correlated with a strong decrease in TNF-alpha-mediated biological activities of ADAM17-/- TNF+ cells. First, the activation state of transcription factor NF-kappaB was suppressed; second, the cells were no longer able to induce apoptosis in HL-60 cells. Kgp was also able to cleave membrane TNF-alpha, but its effect was much weaker than that of Rgp's. Gingipains also limited the binding of native TNF-alpha to the target cells. Thus, gingipains are able not only to cleave soluble TNF-alpha but also to destroy the membrane form of the cytokine, which may additionally dysregulate the cytokine network.

  3. [Studies on periodontal pathogenic proteinases from Porphyromonas gingivalis and host cells].

    Science.gov (United States)

    Yamamoto, K

    1995-05-01

    Progressive periodontal disease is characterized by acute progressive lesions of gingival connective tissues, excessive leukocyte infiltration, and occurrence of a characteristic microflora. A variety of proteolytic enzymes derived from oral bacteria and host cells are found in gingival crevices and thought to play an important role in the onset and development of progressive periodontal disease. The anaerobic bacterium Porphyromonas gingivalis has been implicated in the etiology of the disease. Recently, we have purified a novel arginine-specific cysteine proteinase, termed "argingipain", from the culture supernatant of the organism. The enzyme was shown to have two important abilities related to the virulence of the organism. One is direct association with periodontal tissue breakdown through its abilities to degrade physiologically important proteins such as human collagens (type I and IV) and to evade inactivation by internal protease inhibitors. The other is associated with disruption of the normal host defense mechanisms through its abilities to degrade immunoglobulins and to inhibit the bactericidal activity of polymorphonuclear leukocytes. The virulence of argingipain was further substantiated by disruption of argingipain-encoding genes on the chromosome by use of suicide plasmid systems. On the other hand, we have studied roles of host cell-derived proteinases in the periodontal tissue breakdown. Levels of lysosomal proteinases such as cathepsins B, H, L, G and medullasin were determined in gingival crevicular fluid from periodontitis patients and experimental gingivitis subjects by activity measurement and sensitive immunoassay. The results suggested that all of these enzymes would be involved in the development of both gingivitis and periodontitis.

  4. Porphyromonas Gingivalis Elevated High-Mobility Group Box 1 Levels After Myocardial Infarction in Mice.

    Science.gov (United States)

    Srisuwantha, Rungtiwa; Shiheido, Yuka; Aoyama, Norio; Sato, Hiroki; Kure, Keitetsu; Laosrisin, Narongsak; Izumi, Yuichi; Suzuki, Jun-Ichi

    2017-10-21

    High mobility group box 1 (HMGB1) is a nuclear protein released from necrotic cells, inducing inflammatory responses. Epidemiological studies suggested a possible association between periodontitis and cardiovascular diseases (CVDs). Due to tissue damage and necrosis of cardiac cells following myocardial infarction (MI), HMGB1 is released, activating an inflammatory reaction. However, it remains unclear whether periodontitis is also involved in myocardial damage. The purpose of this study was to determine the effect of the periodontal pathogen Porphyromonas gingivalis (P.g.) after MI in mice.C57BL/6J wild type mice in post-MI were inoculated with P.g. in the infected group (P.g.-inoculated MI group) and with phosphate buffer saline (PBS) in the control group (PBS-injected MI group). Plasma samples and twelve tissue samples from mice hearts after MI were obtained. We determined the expression of HMGB1 by ELISA and immunohistochemistry.The level of HMGB1 protein in the P.g.-inoculated MI group was significantly higher than in the PBS-injected MI group on day 5, but not on day 14. Immunohistochemistry analysis revealed that HMGB1 was mainly expressed in cardiomyocytes, immune cells, and vascular endothelial cells in the PBS-injected MI group, while HMGB1 was seen broadly in degenerated cardiomyocytes, extracellular fields, immune cells, and vascular endothelial cells in the P.g.-inoculated MI group. A significant increase in the number of HMGB1 positive cells was observed in the P.g.-inoculated MI group compared to the PBS-injected MI group.Infection with P.g. after MI enhanced myocardial HMGB1 expression. There is a possible relationship between periodontitis and post-infarction myocardial inflammation through HMGB-1.

  5. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis.

    Science.gov (United States)

    Fournier-Larente, Jade; Morin, Marie-Pierre; Grenier, Daniel

    2016-05-01

    A number of studies have brought evidence that green tea catechins may contribute to periodontal health. The objective of this study was to investigate the ability of a green tea extract and its principal constituent epigallocatechin-3-gallate (EGCG) to potentiate the antibacterial effects of antibiotics (metronidazole, tetracycline) against Porphyromonas gingivalis, and to modulate the adherence to oral epithelial cells and expression of genes coding for virulence factors and the high temperature requirement A (HtrA) stress protein in P. gingivalis. A broth microdilution assay was used to determine the antibacterial activity of the green tea extract and EGCG. The synergistic effects of either compounds in association with metronidazole or tetracycline were evaluated using the checkerboard technique. A fluorescent assay was used to determine bacterial adherence to oral epithelial cells. The modulation of gene expression in P. gingivalis was evaluated by quantitative RT-PCR. The Vibrio harveyi bioassay was used for monitoring quorum sensing inhibitory activity. The MIC values of the green tea extract on P. gingivalis ranged from 250 to 1000 μg/ml, while those of EGCG ranged from 125 to 500 μg/ml. A marked synergistic effect on P. gingivalis growth was observed for the green tea extract or EGCG in combination with metronidazole. Both the green tea extract and EGCG caused a dose-dependent inhibition of P. gingivalis adherence to oral epithelial cells. On the one hand, green tea extract and EGCG dose-dependently inhibited the expression of several P. gingivalis genes involved in host colonization (fimA, hagA, hagB), tissue destruction (rgpA, kgp), and heme acquisition (hem). On the other hand, both compounds increased the expression of the stress protein htrA gene. The ability of the green tea extract and EGCG to inhibit quorum sensing may contribute to the modulation of gene expression. This study explored the preventive and therapeutic potential of green tea

  6. Peptidylarginine deiminase from Porphyromonas gingivalis contributes to infection of gingival fibroblasts and induction of prostaglandin E2 -signaling pathway.

    Science.gov (United States)

    Gawron, K; Bereta, G; Nowakowska, Z; Lazarz-Bartyzel, K; Lazarz, M; Szmigielski, B; Mizgalska, D; Buda, A; Koziel, J; Oruba, Z; Chomyszyn-Gajewska, M; Potempa, J

    2014-12-01

    Porphyromonas gingivalis (P. gingivalis) expres-ses the enzyme peptidylarginine deiminase (PPAD), which has a strong preference for C-terminal arginines. Due to the combined activity of PPAD and Arg-specific gingipains, P. gingivalis on the cell surface is highly citrullinated. To investigate the contribution of PPAD to the interaction of P. gingivalis with primary human gingival fibroblasts (PHGF) and P. gingivalis-induced synthesis of prostaglandin E2 (PGE2 ), PHGF were infected with wild-type P. gingivalis ATCC 33277, an isogenic PPAD-knockout strain (∆ppad) or a mutated strain (C351A) expressing an inactive enzyme in which the catalytic cysteine has been mutated to alanine (PPAD(C351A) ). Cells were infected in medium containing the mutants alone or in medium supplemented with purified, active PPAD. PHGF infection was assessed by colony-forming assay, microscopic analysis and flow cytometry. Expression of cyclo-oxygenase 2 (COX-2) and microsomal PGE synthase-1 (mPGES-1), key factors in the prostaglandin synthesis pathway, was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), while PGE2 synthesis was evaluated by enzyme immunoassay. PHGF were infected more efficiently by wild-type P. gingivalis than by the ∆ppad strain, which correlated with strong induction of COX-2 and mPGES-1 expression by wild-type P. gingivalis, but not by the PPAD activity-null mutant strains (Δppad and C351A). The impaired ability of the Δppad strain to adhere to and/or invade PHGF and both Δppad and C351A to stimulate the PGE2 -synthesis pathway was fully restored by the addition of purified PPAD. The latter effect was strongly inhibited by aspirin. Collectively, our results implicate PPAD activity, but not PPAD itself, as an important factor for gingival fibroblast infection and activation of PGE2 synthesis, the latter of which may strongly contribute to bone resorption and eventual tooth loss. © 2014 John Wiley & Sons A/S. Published by John

  7. Opportunistic Pathogen Porphyromonas gingivalis Modulates Danger Signal ATP-Mediated Antibacterial NOX2 Pathways in Primary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    JoAnn S. Roberts

    2017-07-01

    Full Text Available Porphyromonas gingivalis, a major opportunistic pathogen in the etiology of chronic periodontitis, successfully survives in human gingival epithelial cells (GECs. P. gingivalis abrogates the effects of a host danger molecule, extracellular ATP (eATP/P2X7 signaling, such as the generation of reactive oxygen species (ROS via the mitochondria and NADPH oxidases (NOX from primary GECs. However, antimicrobial functions of ROS production are thoroughly investigated in myeloid-lineage immune cells and have not been well-understood in epithelial cells. Therefore, this study characterizes antibacterial NOX2 generated ROS and host downstream effects in P. gingivalis infected human primary GECs. We examined the expression of NOX isoforms in the GECs and demonstrate eATP stimulation increased the mRNA expression of NOX2 (p < 0.05. Specific peptide inhibition of NOX2 significantly reduced eATP-mediated ROS as detected by DCFDA probe. The results also showed P. gingivalis infection can temporally modulate NOX2 pathway by reorganizing the localization and activation of cytosolic molecules (p47phox, p67phox, and Rac1 during 24 h of infection. Investigation into downstream biocidal factors of NOX2 revealed an eATP-induced increase in hypochlorous acid (HOCl in GECs detected by R19-S fluorescent probe, which is significantly reduced by a myeloperoxidase (MPO inhibitor. MPO activity of the host cells was assayed and found to be positively affected by eATP treatment and/or infection. However, P. gingivalis significantly reduced the MPO product, bactericidal HOCl, in early times of infection upon eATP stimulation. Analysis of the intracellular levels of a major host-antioxidant, glutathione during early infection revealed a substantial decrease (p < 0.05 in reduced glutathione indicative of scavenging of HOCl by P. gingivalis infection and eATP treatment. Examination of the mRNA expression of key enzymes in the glutathione synthesis pathway displayed a marked

  8. Association of serum immunoglobulin-G to Porphyromonas gingivalis with acute cerebral infarction in the Chinese population

    Directory of Open Access Journals (Sweden)

    Zhang Zheng

    2015-01-01

    Full Text Available Background/Purpose: There is evidence supporting an association between ischemic stroke and periodontitis in western countries. Differing genetic backgrounds and lifestyles among populations may affect this association. The aim of our study was to determine whether antibody titers to Porphyromonas gingivalis are associated with acute cerebral infarction in the Chinese population. Materials and Methods: This case-control study was conducted on 88 acute cerebral infarction patients and 40 healthy control subjects. Serum immunoglobulin-G (IgG antibody to P. gingivalis was analyzed by enzyme-linked immune sorbent assay. Serum lipids were determined with the automatic biochemical analyzer. Fibrinogen was measured using automated coagulation analyzer. High-sensitivity C-reactive protein (hs-CRP and interleukin-6 (IL-6 were quantified using commercial ELISA kits. The intima-media thickness of the common carotid arteries (IMT-CCA was measured by ultrasonography. Results: The results showed that P. gingivalis IgG antibody levels were significantly higher in acute cerebral infarction cases than in healthy controls (mean ± standard deviation, 11.06 ± 1.49 vs. 9.15 ± 1.70, P < 0.001. There were significant correlations of P. gingivalis IgG titer with total cholesterol (r = 0.34, P = 0.001, low-density lipoprotein (r = 0.39, P < 0.001, apolipoprotein-B (r = 0.30, P = 0.004, hs-CRP (r = 0.35, P = 0.001, IL-6 (r = 0.27, P = 0.011, and IMT-CCA (left: r = 0.306, P = 0.004; right: r = 0.241, P = 0.024. Conclusion: Antibody titers to P. gingivalis are associated with acute cerebral infarction in the Chinese population.

  9. Inhibitory effect of 1,25-dihydroxyvitamin D3 on Porphyromonas gingivalis-induced inflammation and bone resorption in vivo.

    Science.gov (United States)

    Li, Zhao-Fei; Cao, Li-Hua; Wang, Ying; Zhang, Zhou; Fan, Ming-Wen; Xu, Qing-An

    2016-12-01

    To investigate whether intragastric administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) could inhibit the bone resorption and inflammation in a mouse calvarial model infected by Porphyromonas gingivalis (P. gingivalis). Live P. gingivalis ATCC 33277 was injected once daily for 6days into the subcutaneous tissue overlying the calvaria in mice. At the same time, 1,25(OH)2D3 (50μg/kg per day) was administered by gavage for 9days, starting 3d before the infection. Mice were killed under ether anesthesia 8h after the last injection of P. gingivalis. Micro-computed tomography scanning was used to evaluate calvarial bone loss. Tartrate-resistant acid phosphatase was used to detect osteoclast activity. Real-time PCR was used to assess the mRNA expressions of OPG, RANKL, c-Fos, NFATc1, CTSK and TRAP in calvarial bone and IL-6, IL-10, IL-1β, IL-12p40 and TNF-α in soft tissue. The levels of serum IL-6, IL-10 were determined by ELISA. 1,25(OH)2D3 treatment apparently attenuated bone resorption in P. gingivalis-induced mouse calvarial model and markedly reduced the number of osteoclasts. The expression levels of RANKL and osteoclast-related genes such as c-Fos, NFATc1, CTSK and TRAP were also decreased by 1,25(OH)2D3. Besides, 1,25(OH)2D3 inhibited the expression of pro-inflammatory cytokines IL-6, IL-12p40 and TNF-α and enormously elevated the expression of anti-inflammatory cytokine IL-10. 1,25(OH)2D3 may decrease bone resorption in vivo via suppressing the expression of osteoclast-related genes and its anti-inflammatory properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Porphyromonas gingivalis attenuates the insulin-induced phosphorylation and translocation of forkhead box protein O1 in human hepatocytes.

    Science.gov (United States)

    Takamura, Haruna; Yoshida, Kaya; Okamura, Hirohiko; Fujiwara, Natsumi; Ozaki, Kazumi

    2016-09-01

    Porphyromonas gingivalis (P. gingivalis) is a pathogen involved in periodontal disease. Recently, periodontal disease has been demonstrated to increase the risk of developing diabetes mellitus, although the molecular mechanism is not fully understood. Forkhead box protein O1 (FoxO1) is a transcriptional factor that regulates gluconeogenesis in the liver. Gluconeogenesis is a key process in the induction of diabetes mellitus; however, little is known regarding the relationship between periodontal disease and gluconeogenesis. In this study, to investigate whether periodontal disease influences hepatic gluconeogenesis, we examined the effects of P. gingivalis on the phosphorylation and translocation of FoxO1 in insulin-induced human hepatocytes. The human hepatocyte HepG2 was treated with insulin and Akt and FoxO1 phosphorylation was detected by western blot analysis. The localization of phosphorylated FoxO1 was detected by immunocytochemistry and western blot analysis. HepG2 cells were treated with SNAP26b-tagged P. gingivalis (SNAP-P.g.) before insulin stimulation, and then the changes in Akt and FoxO1 were determined by western blot analysis and immunocytochemistry. Insulin (100nM) induced FoxO1 phosphorylation 60min after treatment in HepG2 cells. Phosphorylated FoxO1 translocated to the cytoplasm. SNAP-P.g. internalized into HepG2 cells and decreased Akt and FoxO1 phosphorylation induced by insulin. The effect of insulin on FoxO1 translocation was also attenuated by SNAP-P.g. Our study shows that P. gingivalis decreases the phosphorylation and translocation of FoxO induced by insulin in HepG2 cells. Our results suggest that periodontal disease may increase hepatic gluconeogenesis by reducing the effects of insulin on FoxO1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Expression of toll-like receptor 2 in glomerular endothelial cells and promotion of diabetic nephropathy by Porphyromonas gingivalis lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Yoshihiko Sawa

    Full Text Available The toll-like receptor (TLR has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium. The TLR2 mRNA was detected in diabetic mouse glomeruli by in situ hybridization and in real-time PCR of the renal cortex, the TLR2 mRNA amounts were larger in diabetic mice than in non-diabetic mice. All diabetic mice subjected to repeated LPS administrations died within the survival period of all of the diabetic mice not administered LPS and of all of the non-diabetic LPS-administered mice. The LPS administration promoted the production of urinary protein, the accumulation of type I collagen in the glomeruli, and the increases in IL-6, TNF-α, and TGF-β in the renal cortex of the glomeruli of the diabetic mice. It is thought that blood TLR ligands like Porphyromonas gingivalis LPS induce the glomerular endothelium to produce cytokines which aid glomerulosclerosis. Periodontitis may promote diabetic nephropathy.

  12. A challenge with Porphyromonas gingivalis differentially affects the osteoclastogenesis potential of periodontal ligament fibroblasts from periodontitis patients and non-periodontitis donors

    NARCIS (Netherlands)

    Sokos, D.; Scheres, N.; Schoenmaker, T.; Everts, V.; de Vries, T.J.

    2014-01-01

    Aim Porphyromonas gingivalis (Pg) may cause an immune-inflammatory response in host cells leading to bone degradation by osteoclasts. We investigated the osteoclast-inducing capacity of periodontal ligament fibroblasts from periodontitis patients and non-periodontitis donors after a challenge with

  13. LPS from Porphyromonas gingivalis increases the sensitivity of contractile response mediated by endothelin-B (ET(B)) receptors in cultured endothelium-intact rat coronary arteries

    DEFF Research Database (Denmark)

    Ghorbani, Bahareh; Holmstrup, Palle; Edvinsson, Lars

    2010-01-01

    The purpose of our study was to examine if lipopolysaccharide (LPS) from Porphyromonas gingivalis (P.g.) modifies the vasomotor responses to Endothelin-1 (ET-1) and Sarafotoxin 6c (S6c) in rat coronary arteries. The arteries were studied directly or following organ culture for 24h in absence...

  14. Modelación por homología de la proteína Luxs de Porphyromonas gingivalis cepa W83 Modelling by homology of Luxs protein in Porphyromonas gingivalis strain W83

    Directory of Open Access Journals (Sweden)

    A Díaz Caballero

    2012-12-01

    Full Text Available Antecedentes: En las proteínas no se logra siempre su cristalización, de buen tamaño y de buena calidad para someterla a difracción de rayos X. De tal manera que se abre un campo para el desarrollo de estudios teóricos moleculares y proteínicos, que permiten la representación de las moléculas en tres dimensiones, proporcionando una información espacial para estudiar la interacción entre ligandos y receptores macromoleculares. Materialesy Métodos: Estudio In silico, a partir del análisis de secuencias primarias de seis diferentes proteínas LuxS cristalizadas de diversas bacterias, se seleccionó la proteína 1J6X del Helicobacter pylori, por su similaridad con la secuencia de la proteína LuxS en Porphyromonas gingivalis (P. gingivalis cepa W83, para producir un modelo por homología de esta proteína, utilizando los programas Sybyl y MOE. Se realizó un acoplamiento con el ligando natural para evaluar la reproducibilidad del modelo en un ambiente biológico. Resultados: Se desarrolló el modelado de la proteína LuxS de P. gingivalis cepa W83, que permite el acercamiento a una estructura que se propone, por la interacción entre la proteína y su ligando natural. El modelo generado con recursos computacionales logró una correcta estructura molecular que aceptó la realización de diversos cálculos. El acoplamiento demostró una cavidad donde se logran diversas posiciones del ligando con buenos resultados. Conclusiones: Se obtuvo un modelo 3D para la proteína LuxS en la P. gingivalis cepa W83 validado por diferentes métodos computacionales con una adecuada reproducibilidad biológica por medio del acoplamiento molecular.Background: Crystallization is not always achieved for all proteins in a good size and a good quality for X-ray diffraction. So that condition opens a field for the development of theoretical molecular and protein studies allowing the representation of the molecules in 3D, providing spatial information to study

  15. Experimental periodontitis induced by Porphyromonas gingivalis does not alter the onset or severity of diabetes in mice.

    Science.gov (United States)

    Li, H; Yang, H; Ding, Y; Aprecio, R; Zhang, W; Wang, Q; Li, Y

    2013-10-01

    Diabetes mellitus is believed to increase the risk and severity of periodontitis. However, less evidence is available on the converse effects of periodontitis on diabetes. The objective of the study was to investigate to what degree experimental periodontitis induced by Porphyromonas gingivalis might influence the onset and severity of diabetes in different mouse models. Twenty-eight male Tallyho/JngJ mice (type 2 diabetes), 20 male streptozotocin-induced diabetes C57BL/6J mice (type 1 diabetes) and 20 male C57BL/6J mice at 4 wks of age were evenly divided into two groups: periodontal infection and sham infection. Periodontitis was induced by Porphyromonas gingivalis W50 (P. gingivalis) oral inoculation before the development of diabetes. Sham-infected mice received vehicle as control. P. gingivalis in the oral cavity were identified by quantitative polymerase chain reaction. Fasting glucose, body weight and food intake levels were monitored and glucose tolerance tests were performed to assess glucose homeostasis for the onset and progression of diabetes. The level of alveolar bone loss and tumor necrosis factor-alpha were determined in week 20 when mice were killed. Mice in the infection groups developed more alveolar bone loss than those in sham-infection groups (Tallyho p = 0.021; C57-STZ p = 0.014; C57 p = 0.035). Hyperglycemic mice exhibited significantly more bone loss compared to those normal glucose mice (Tallyho vs. C57 p = 0.029; C57-STZ vs. C57 p = 0.024). The level of tumor necrosis factor-alpha was consistent with that of periodontal bone loss and hyperglycemia. There was no significant effect of mouse species on the amount of bone loss at the same level of blood glucose. No statistically significant difference or trend in glucose metabolism was found between the infection and sham-infection group. Diabetes enhanced the risk for periodontal disease induced by P. gingivalis. However, no converse impact was found between this periodontal

  16. Efecto antibacteriano del extracto etanólico del botoncillo (ACMELLA REPENS sobre Porphyromona gingivalis: Estudio in Vitro

    Directory of Open Access Journals (Sweden)

    Andrea Lizbeth Chamorro Benalcázar

    2016-09-01

    Full Text Available Objetivo: Determinar el efecto antibacteriano del extracto etanólico de Botoncillo (Acmella repens en diferentes concentraciones sobre la cepa de Porphyromona gingivalis. Materiales y metodos: En el presente estudio experimental, fueron utilizadas 24 cajas Petri con agar sangre, se inoculó P. gingivalis, y se colocaron discos con diferentes concentraciones del extracto etanólico de Botoncillo (25%, 50% y 100%, como sustancias control Clorhexidina al 0,12% y suero fisiológico. A los 7 días de incubación se midieron con una regla milimetrada los halos de inhibición formados alrededor de los respectivos discos. Resultados: el extracto de Botoncillo al 100% mostró diferencias significativas en comparación con la concentración del 25% y 50% (0 < 0.05. Al comparar el extracto de Botoncillo al 100% con la Clorhexidina 0,12% se observó valores de inhibición más altos para Clorhexidina 0,12%. Conclusión: El extracto etanólico de Botoncillo presentó un efecto antibacteriano sobre P. gingivalis.

  17. Inhibitory effect of gels loaded with a low concentration of antibiotics against biofilm formation by Enterococcus faecalis and Porphyromonas gingivalis.

    Science.gov (United States)

    A Algarni, Amnah; H Yassen, Ghaeth; L Gregory, Richard

    2015-09-01

    We explored longitudinally the inhibitory effect of gels loaded with 1 mg/mL modified triple antibiotic paste (MTAP) or double antibiotic paste (DAP) against biofilm formation by Enterococcus faecalis and Porphyromonas gingivalis. Methylcellulose-based antibiotic gels of MTAP (ciprofloxacin, metronidazole and clindamycin) and DAP (ciprofloxacin and metronidazole) were prepared at a concentration of 1 mg/mL. Individually cultured E. faecalis and P. gingivalis bacterial suspensions were treated with MTAP, DAP, or placebo (vehicle only) gels at different dilutions and allowed to grow in 96-well microtiter plates. Untreated bacterial suspensions served as a negative control. Crystal violet assays were used to evaluate biofilm formation after 48 h. The ability of the gels to inhibit biofilm formation was determined immediately, and at 1 month and 3 months after the gels had been prepared. Data were analyzed using a mixed-model ANOVA. The MTAP and DAP gels significantly reduced biofilm formation by both bacterial species at all time points, regardless of the tested dilution. No-significant differences in biofilm-inhibitory effects between MTAP and DAP gels were observed at the majority of the tested dilutions through various time points. Gels loaded with 1 mg/mL MTAP and DAP demonstrated a significant antibiofilm effect against E.faecalis and P. gingivalis.

  18. [Effect of sonicated extracts of Porphyromonas gingivalis on osteogenic differentiation of mouse osteoblasts].

    Science.gov (United States)

    Zhang, Jian-ying; Yu, Shao-jie; Fu, Yun

    2013-07-01

    To investigate the effects of sonicated extracts of Porphyromonas gingivalis (Pg) on osteogenic differentiation of mouse osteoblast cell line MC3T3-E1. PgW83 was cultured under standard anaerobic conditions and extracted by sonication. Mouse osteoblast cell line MC3T3-E1 was cultured with various concentrations of the extraction (0, 10, 100, 1000 mg/L). Western blotting was applied to investigate the expression of osteocalcin (OC), bone sialoprotein (BSP), osteopontin (OPN) and osteonectin (ON). The activity of alkaline phosphatase (ALP) was detected by microplate reader after 14 days. Mineralization nodule formation was measured by alizarin red staining after 21 days. Compared with the control group, the extracts of Pg decreased OC and ON expression in a dose-dependent manner (OC relative expression:1.000 ± 0.000,0.852 ± 0.110,0.625 ± 0.451,0.213 ± 0.053), (ON relative expression: 1.000 ± 0.000, 1.035 ± 0.133,0.141 ± 0.023,0.020 ± 0.003) (P extraction (0.572 ± 0.162) compared with control group, 10 and 100 mg/L (1.000 ± 0.000, 1.029 ± 0.135, 1.199 ± 0.337) (P extraction (BSP relative expression:1.000 ± 0.000,0.831 ± 0.182,0.897 ± 0.115,0.778 ± 0.235) (P > 0.05). Meanwhile, the extracts of Pg decreased ALP activity [control group:(0.0275 ± 0.0014) U/gprot, 10 mg/L: (0.0140 ± 0.0011) U/gprot, 100 mg/L: (0.0057 ± 0.0013) U/gprot, 1000 mg/L: (0.0020 ± 0.0008) U/gprot] (P < 0.05) and reduced mineralization nodule formation. The results suggest that Pg may inhibit osteoblasts'osteogenic function by down-regulation of osteogenic differentiation related proteins.

  19. Increased levels of Porphyromonas gingivalis are associated with ischemic and hemorrhagic cerebrovascular disease in humans: an in vivo study

    Directory of Open Access Journals (Sweden)

    Janaina Salomon Ghizoni

    2012-02-01

    Full Text Available OBJECTIVE: This study investigated the role of periodontal disease in the development of stroke or cerebral infarction in patients by evaluating the clinical periodontal conditions and the subgingival levels of periodontopathogens. MATERIAL AND METHODS: Twenty patients with ischemic (I-CVA or hemorrhagic (H-CVA cerebrovascular episodes (test group and 60 systemically healthy patients (control group were evaluated for: probing depth, clinical attachment level, bleeding on probing and plaque index. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were both identified and quantified in subgingival plaque samples by conventional and real-time PCR, respectively. RESULTS: The test group showed a significant increase in each of the following parameters: pocket depth, clinical attachment loss, bleeding on probing, plaque index and number of missing teeth when compared to control values (p<0.05, unpaired t-test. Likewise, the test group had increased numbers of sites that were contaminated with P. gingivalis (60%x10%; p<0.001; chi-squared test and displayed greater prevalence of periodontal disease, with an odds ratio of 48.06 (95% CI: 5.96-387.72; p<0.001. Notably, a positive correlation between probing depth and the levels of P. gingivalis in ischemic stroke was found (r=0.60; p=0.03; Spearman's rank correlation coefficient test. A. actinomycetemcomitans DNA was not detected in any of the groups by conventional or real-time PCR. CONCLUSIONS: Stroke patients had deeper pockets, more severe attachment loss, increased bleeding on probing, increased plaque indexes, and in their pockets harbored increased levels of P. gingivalis. These findings suggest that periodontal disease is a risk factor for the development of cerebral hemorrhage or infarction. Early treatment of periodontitis may counteract the development of cerebrovascular episodes.

  20. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis.

    Science.gov (United States)

    Mohammed, Marwan Mansoor Ali; Pettersen, Veronika Kuchařová; Nerland, Audun H; Wiker, Harald G; Bakken, Vidar

    2017-04-01

    The Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis are members of a complex dental biofilm associated with periodontal disease. In this study, we cultured F. nucleatum and P. gingivalis as mono- and dual-species biofilms, and analyzed the protein composition of the biofilms extracellular polymeric matrix (EPM) by high-resolution liquid chromatography-tandem mass spectrometry. Label-free quantitative proteomic analysis was used for identification of proteins and sequence-based functional characterization for their classification and prediction of possible roles in EPM. We identified 542, 93 and 280 proteins in the matrix of F. nucleatum, P. gingivalis, and the dual-species biofilm, respectively. Nearly 70% of all EPM proteins in the dual-species biofilm originated from F. nucleatum, and a majority of these were cytoplasmic proteins, suggesting an enhanced lysis of F. nucleatum cells. The proteomic analysis also indicated an interaction between the two species: 22 F. nucleatum proteins showed differential levels between the mono and dual-species EPMs, and 11 proteins (8 and 3 from F. nucleatum and P. gingivalis, respectively) were exclusively detected in the dual-species EPM. Oxidoreductases and chaperones were among the most abundant proteins identified in all three EPMs. The biofilm matrices in addition contained several known and hypothetical virulence proteins, which can mediate adhesion to the host cells and disintegration of the periodontal tissues. This study demonstrated that the biofilm matrix of two important periodontal pathogens consists of a multitude of proteins whose amounts and functionalities vary largely. Relatively high levels of several of the detected proteins might facilitate their potential use as targets for the inhibition of biofilm development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Qualitative analysis of bis-(3'-5')-cyclic dimeric adenosine monophosphate of Porphyromonas gingivalis by high performance liquid chromatography coupled with mass spectrometry].

    Science.gov (United States)

    Yongmei, Tan; Xiaojun, Yang; Juan, Du; Wanghong, Zhao; Xiaodan, Chen; Jin, Hou

    2016-06-01

    To test whether Porphyromonas gingivalis (P. gingivalis) could produce bacterial signal molecule, bis-(3'-5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and lay the foundation for explorations of its roles in life metabolism and periodontitis immunity of P. gingivalis. P. gingivalis standard strain ATCC33277 was used as the experimental strain to extract nucleic acids from the bacteria. Then, c-di-AMP was detected using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Subsequently, HPLC was used to validate the sample further. Based on the signal/noise (S/N) for 3 : 1, the limit of determination of HPLC-MS/MS for peak time of c-di-AMP standard substances was 7.49 min and nucleic acid extractions from P. gingivalis was 8.82 min (S/N > 3). Further confirmation of HPLC showed that nucleic acid extractions from both P. gingivalis and c-di-AMP standard substances pre- sented goal absorbent peaks at 15.7 min, with the same ultraviolet absorbent spectrum. The nucleic acid extrac- tions from P. gingivalis contained c-di-AMP, which shows that P. gingivalis could produce c-di-AMP.

  2. Variabilidad de la síntesis de RANKL por linfocitos T frente a distintos serotipos capsulares de Porphyromonas gingivalis Variability in the RANKL synthesis by T lymphocytes in response to different Porphyromonas gingivalis capsular serotypes

    Directory of Open Access Journals (Sweden)

    M Navarrete

    2010-04-01

    Full Text Available Propósito: Las periodontitis representan un grupo heterogéneo de infecciones periodontales cuya etiología son las bacterias residentes en el biofilm subgingival. Aunque este biofilm está constituido por una amplia variedad de especies bacterianas, sólo un número limitado de especies, como Porphyromonas gingivalis, se ha asociado a la etiología de la enfermedad. P. gingivalis expresa diversos factores de virulencia que pueden causar daño directo a los tejidos del hospedero; sin embargo, su mayor patogenicidad involucra la inducción de una respuesta inmuno-inflamatoria, durante la cual se secretan una amplia variedad de citoquinas, quimioquinas y mediadores inflamatorios que pueden inducir la destrucción de los tejidos de soporte de los dientes y la pérdida de ellos. Método: En esta investigación, se evaluó si los distintos serotipos capsulares (K de P. gingivalis pueden determinar los niveles de síntesis de RANKL, citoquina clave en la destrucción del hueso alveolar durante la periodontitis. Para ello, se cuantificaron los niveles de expresión de RANKL mediante PCR cuantitativa y los niveles de secreción mediante ELISA en linfocitos T activados en presencia de los serotipos capsulares K1-K6 de P. gingivalis, y estos se correlacionaron a los niveles de expresión de los factores de transcripción asociados a cada uno de los fenotipos de linfocitos efectores: Th1 (T-bet, Th2 (GATA-3, Th17 (RORC2 y Treg (Foxp3. Resultados: Mayores niveles de expresión y secreción de RANKL fueron detectados en linfocitos T activados en presencia de los serotipos K1 y K2 de P. gingivalis, en comparación a los detectados ante los otros serotipos. Además, estos mayores niveles de RANKL se correlacionaron positivamente con los niveles de expresión de RORC2. Conclusión: Estos datos demuestran que la síntesis de RANKL por linfocitos T se restringe a ciertos serotipos capsulares de P. gingivalis (K1 y K2 y permiten sugerir que los serotipos K1 y K2

  3. Attenuation of the phosphatidylinositol 3-kinase/Akt signaling pathway by Porphyromonas gingivalis gingipains RgpA, RgpB, and Kgp.

    Science.gov (United States)

    Nakayama, Masaaki; Inoue, Tetsuyoshi; Naito, Mariko; Nakayama, Koji; Ohara, Naoya

    2015-02-20

    Porphyromonas gingivalis is a major pathogen of periodontal diseases, including periodontitis. We have investigated the effect of P. gingivalis infection on the PI3K/Akt (protein kinase B) signaling pathway in gingival epithelial cells. Here, we found that live P. gingivalis, but not heat-killed P. gingivalis, reduced Akt phosphorylation at both Thr-308 and Ser-473, which implies a decrease in Akt activity. Actually, PI3K, which is upstream of Akt, was also inactivated by P. gingivalis. Furthermore, glycogen synthase kinase 3α/β, mammalian target of rapamycin, and Bad, which are downstream proteins in the PI3K/Akt cascade, were also dephosphorylated, a phenomenon consistent with Akt inactivation by P. gingivalis. However, these events did not require direct interaction between bacteria and host cells and were independent of P. gingivalis invasion into the cells. The use of gingipain-specific inhibitors and a gingipain-deficient P. gingivalis mutant KDP136 revealed that the gingipains and their protease activities were essential for the inactivation of PI3K and Akt. The associations between the PI3K regulatory subunit p85α and membrane proteins were disrupted by wild-type P. gingivalis. Moreover, PDK1 translocation to the plasma membrane was reduced by wild-type P. gingivalis, but not KDP136, indicating little production of phosphatidylinositol 3,4,5-triphosphate by PI3K. Therefore, it is likely that PI3K failed to transmit homeostatic extracellular stimuli to intracellular signaling pathways by gingipains. Taken together, our findings indicate that P. gingivalis attenuates the PI3K/Akt signaling pathway via the proteolytic effects of gingipains, resulting in the dysregulation of PI3K/Akt-dependent cellular functions and the destruction of epithelial barriers. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Attenuation of the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway by Porphyromonas gingivalis Gingipains RgpA, RgpB, and Kgp*

    Science.gov (United States)

    Nakayama, Masaaki; Inoue, Tetsuyoshi; Naito, Mariko; Nakayama, Koji; Ohara, Naoya

    2015-01-01

    Porphyromonas gingivalis is a major pathogen of periodontal diseases, including periodontitis. We have investigated the effect of P. gingivalis infection on the PI3K/Akt (protein kinase B) signaling pathway in gingival epithelial cells. Here, we found that live P. gingivalis, but not heat-killed P. gingivalis, reduced Akt phosphorylation at both Thr-308 and Ser-473, which implies a decrease in Akt activity. Actually, PI3K, which is upstream of Akt, was also inactivated by P. gingivalis. Furthermore, glycogen synthase kinase 3α/β, mammalian target of rapamycin, and Bad, which are downstream proteins in the PI3K/Akt cascade, were also dephosphorylated, a phenomenon consistent with Akt inactivation by P. gingivalis. However, these events did not require direct interaction between bacteria and host cells and were independent of P. gingivalis invasion into the cells. The use of gingipain-specific inhibitors and a gingipain-deficient P. gingivalis mutant KDP136 revealed that the gingipains and their protease activities were essential for the inactivation of PI3K and Akt. The associations between the PI3K regulatory subunit p85α and membrane proteins were disrupted by wild-type P. gingivalis. Moreover, PDK1 translocation to the plasma membrane was reduced by wild-type P. gingivalis, but not KDP136, indicating little production of phosphatidylinositol 3,4,5-triphosphate by PI3K. Therefore, it is likely that PI3K failed to transmit homeostatic extracellular stimuli to intracellular signaling pathways by gingipains. Taken together, our findings indicate that P. gingivalis attenuates the PI3K/Akt signaling pathway via the proteolytic effects of gingipains, resulting in the dysregulation of PI3K/Akt-dependent cellular functions and the destruction of epithelial barriers. PMID:25564612

  5. Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200 Purification of Porphyromonas gingivalis polysaccharide free lipopolysaccharide using Sephacryl S-200 high resolution chromatography

    Directory of Open Access Journals (Sweden)

    DIEGO GUALTERO

    Full Text Available El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa se separó el extracto por filtración por gel con Sephacryl S-200. La muestra purificada se caracterizó por electroforesis en gel de acrilamida con tinción de plata y por el método Purpald se detecto el ácido 2-ceto-3-desoxioctu-losónico (KDO. Se obtuvo una preparación libre de ácidos nucleicos, proteínas y polisacáridos. La separación por cromatografía fue de alta resolución al permitir la obtención de dos picos con diferentes componentes. El protocolo de purificación nos permitió obtener LPS de P. gingivalis con alto grado de pureza, el cual podría ser usado en próximos ensayos para evaluar su función en ensayos in vitro e in vivo; así como iniciar la obtención de LPS de otras bacterias periodontopáticas, con el fin de investigar la asociación de enfermedad periodontal con enfermedades cardiovasculares.The aim of this work was to improve a standard methodology to purify Porphyromonas gingivalis lipopolysaccharide (LPS using a protocol of extraction, enzymatic digestion and high resolution chromatography. P. gingivalis bacteria was cultured in anaerobiosis, their membranes were extracted using the phenol-water method, then subjected to DNAse, RNAse and protease digestion and finally, the extract was separated by chromatography using Sephacryl S-200. The purified extract was characterized by silver staining after polyacrylamide gel electrophoresis and 2-keto-3-deoxioctanoic acid (KDO was detected using the Purpald’s method. A preparation free of nucleic acid-, protein

  6. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    Science.gov (United States)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  7. E-selectin expression induced by Porphyromonas gingivalis in human endothelial cells via nucleotide-binding oligomerization domain-like receptors and Toll-like receptors.

    Science.gov (United States)

    Wan, M; Liu, J R; Wu, D; Chi, X P; Ouyang, X Y

    2015-10-01

    Porphyromonas gingivalis, an important periodontal pathogen, has been proved to actively invade cells, induce endothelial cell activation, and promote development of atherosclerosis. Innate immune surveillance, which includes the activity of nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and Toll-like receptors (TLRs), are essential for the control of microbial infections; however, the roles of receptor families in P. gingivalis infections remain unclear. Here, we examined the roles of NLRs and TLRs in endothelial cell activation caused by P. gingivalis. Live P. gingivalis and whole cell sonicates were used to stimulate endothelial cells, and both showed upregulation of E-selectin as well as NOD1, NOD2, and TLR2. In addition, silencing of these genes in endothelial cells infected with P. gingivalis led to a reduction in E-selectin expression. Porphyromonas gingivalis also induced nuclear factor-κB (NF-κB) and P38 mitogen-activated protein kinase (MAPK) activity in endothelial cells, whereas small interfering RNA targeting NOD1 significantly reduced these signals. Moreover, inhibition of either NOD2 or TLR2 inhibited NF-κB significantly, but had only a weak inhibitory effect on P38 MAPK signaling. Direct inhibition of NF-κB and P38 MAPK significantly attenuated E-selectin expression induced by P. gingivalis in endothelial cells. Taken together, these findings suggest that NOD1, NOD2, and TLR2 play important, non-redundant roles in endothelial cell activation following P. gingivalis infection. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Integrin α5β1-fimbriae binding and actin rearrangement are essential for Porphyromonas gingivalis invasion of osteoblasts and subsequent activation of the JNK pathway

    Directory of Open Access Journals (Sweden)

    Zhang Wenjian

    2013-01-01

    Full Text Available Abstract Background Chronic periodontitis is an infectious disease of the periodontium, which includes the gingival epithelium, periodontal ligament and alveolar bone. The signature clinical feature of periodontitis is resorption of alveolar bone and subsequent tooth loss. The Gram-negative oral anaerobe, Porphyromonas gingivalis, is strongly associated with periodontitis, and it has been shown previously that P. gingivalis is capable of invading osteoblasts in a dose- and time-dependent manner resulting in inhibition of osteoblast differentiation and mineralization in vitro. It is not yet clear which receptors and cytoskeletal components mediate the invasive process, nor how the signaling pathways and viability of osteoblasts are affected by bacterial internalization. This study aimed to investigate these issues using an in vitro model system involving the inoculation of P. gingivalis ATCC 33277 into primary osteoblast cultures. Results It was found that binding between P. gingivalis fimbriae and integrin α5β1 on osteoblasts, and subsequent peripheral condensation of actin, are essential for entry of P. gingivalis into osteoblasts. The JNK pathway was activated in invaded osteoblasts, and apoptosis was induced by repeated infections. Conclusions These observations indicate that P. gingivalis manipulates osteoblast function to promote its initial intracellular persistence by prolonging the host cell life span prior to its intercellular dissemination via host cell lysis. The identification of molecules critical to the interaction between P. gingivalis and osteoblasts will facilitate the development of new therapeutic strategies for the prevention of periodontal bone loss.

  9. Porphyromonas gingivalis Induced Fragmentation of Type IV Collagen Through Macrophage-Activated MMP-9: (In Vitro Study of Collagenolytic Mechanism in Pathogenesis of Atherosclerotic Plaque Rupture

    Directory of Open Access Journals (Sweden)

    Siti Nurul Mubarokah

    2009-12-01

    Full Text Available BACKGROUND: Periodontitis is caused mostly by Porphyromonas gingivalis (P.gingivalis and it is related to acute coronary syndrome. P.gingivalis  readily invades blood circulation and potentially induces collagenolytic activity of inflammatory cells that results in collagen vascular degradation leading to atherosclerotic plague rupture (APR. APR is responsible for the occurence of fatal cardiovascular events such as acute myocardial infraction (AMI. AIMS: To show that P.gingivalis potentially induces fragmentation of the type IV vascular collagen due to macrophage-activated MMP-9. METHODS: The ability of P.gingivalis to induce the type IV collagen fragmentation, shown by digesting type IV collagen with the supernatant of monocyte-derived macrophage activated by exposure to P.gingivalis suspension for 18 hours, 37oC, 5% CO2. The type IV collagen fragments were analyzed by SDS-PAGE and confirmed by Western-blotting. Antibody of type IV collagen produced and confirmed by dot-blotting prior to its being used as primary antibody of Western-blotting. The existence of MMP-9 was detected by Dot-blot and Western-blot technique, while the MMP-9 activity was assessed by SDS-PAGE and zymograms. RESULTS: Our data showed that P.gingivalis induced macrophage to produce MMP-9 as one of collagenolytic components, and interaction with P.gingivalis proteases enhanced the proteolytic activity and resulted in degradation of type IV collagen with molecular weight of 88 kDa into two smaller fragments with molecular weight of 80 kDa and 60 kDa. CONCLUSIONS: P.gingivalis induced macrophage to activate its MMP-9 that led to fragmentation of vascular type IV collagen in the pathogenesis of atherosclerotic plaque rupture. KEYWORDS: P.gingivalis, macrophage, type IV collagen fragmentation, atherosclerotic plaque rupture, AMI.

  10. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains.

    Science.gov (United States)

    Poole, Sophie; Singhrao, Sim K; Chukkapalli, Sasanka; Rivera, Mercedes; Velsko, Irina; Kesavalu, Lakshmyya; Crean, StJohn

    2015-01-01

    Periodontal disease is a polymicrobial inflammatory disease that leads to chronic systemic inflammation and direct infiltration of bacteria/bacterial components, which may contribute to the development of Alzheimer's disease. ApoE-/- mice were orally infected (n = 12) with Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum as mono- and polymicrobial infections. ApoE-/- mice were sacrificed following 12 and 24 weeks of chronic infection. Bacterial genomic DNA was isolated from all brain tissues except for the F. nucleatum mono-infected group. Polymerase chain reaction was performed using universal 16 s rDNA primers and species-specific primer sets for each organism to determine whether the infecting pathogens accessed the brain. Sequencing amplification products confirmed the invasion of bacteria into the brain during infection. The innate immune responses were detected using antibodies against complement activation products of C3 convertase stage and the membrane attack complex. Molecular methods demonstrated that 6 out of 12 ApoE-/- mice brains contained P. gingivalis genomic DNA at 12 weeks (p = 0.006), and 9 out of 12 at 24 weeks of infection (p = 0.0001). Microglia in both infected and control groups demonstrated strong intracellular labeling with C3 and C9, due to on-going biosynthesis. The pyramidal neurons of the hippocampus in 4 out of 12 infected mice brains demonstrated characteristic opsonization with C3 activation fragments (p = 0.032). These results show that the oral pathogen P. gingivalis was able to access the ApoE-/- mice brain and thereby contributed to complement activation with bystander neuronal injury.

  11. Fur homolog regulates Porphyromonas gingivalis virulence under low-iron/heme conditions through a complex regulatory network.

    Science.gov (United States)

    Ciuraszkiewicz, J; Smiga, M; Mackiewicz, P; Gmiterek, A; Bielecki, M; Olczak, M; Olczak, T

    2014-12-01

    Porphyromonas gingivalis is a key pathogen responsible for initiation and progression of chronic periodontitis. Little is known about the regulatory mechanisms of iron and heme uptake that allow P. gingivalis to express virulence factors and survive in the hostile environment of the oral cavity, so we initiated characterization of a P. gingivalis Fur homolog (PgFur). Many Fur paralogs found in microbial genomes, including Bacteroidetes, confirm that Fur proteins have a tendency to be subjected to a sub- or even neofunctionalization process. PgFur revealed extremely high sequence divergence, which could be associated with its functional dissimilarity in comparison with other Fur homologs. A fur mutant strain constructed by insertional inactivation exhibited retarded growth during the early growth phase and a significantly lower tendency to form a homotypic biofilm on abiotic surfaces. The mutant also showed significantly weaker adherence and invasion to epithelial cells and macrophages. Transcripts of many differentially regulated genes identified in the fur mutant strain were annotated as hypothetical proteins, suggesting that PgFur can play a novel role in the regulation of gene expression. Inactivation of the fur gene resulted in decreased hmuY gene expression, increased expression of other hmu components and changes in the expression of genes encoding hemagglutinins and proteases (mainly gingipains), HtrA, some extracytoplasmic sigma factors and two-component systems. Our data suggest that PgFur can influence in vivo growth and virulence, at least in part by affecting iron/heme acquisition, allowing efficient infection through a complex regulatory network. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Inhibitory and bactericidal power of mangosteen rind extract towards Porphyromonas Gingivalis and Actinobacillus Actinomycetemcomitans (Laboratory test

    Directory of Open Access Journals (Sweden)

    Ina Hendiani

    2017-08-01

    Full Text Available Introduction: The bacteria that cause the occurrence of pathogens of periodontal disease are gram negative anaerobes. These bacteria include Pophyromonas Gingivalis and Actinobacillus Actinomycetemcomitans. Mangosteen skin extract is known to have anti-inflammatory, anti microbial, and anti oxidant properties. The extract of the mangosteen peel is altered in gel preparation in order to streamline its clinical application in periodontal disease. The purpose of this study was to examine the antibacterial power of the ginger mangosteen tree extract gel against Pophyromonas gingivalis and Actinobacillus Actinomycetemcomitans (Aggregatibacter Actinomycetemcomitans. Methods: This research was conducted by experimental laboratory. Mangosteen fruit extract gel with concentration of 100%, 50%, 25%, 12,5%, 6,25%, 3,125% and 0,78% were tested against Pophyromonas Gingivalis and Aggregatibacter Actinomycetemcomitans with agar diffusion method. Results and Discussion: The results of this study indicate that for Actinobacilus Aggregatibacter bacteria minimal inhibitory concentration at a concentration of 6.25% with a diameter of 13,5mm inhibition. Minimal bactericidal concentration at 12,5% concentration with 14,7mm inhibitory diameter. In the test of Pophyromonas Gingivalis bacteria, minimal inhibitory concentrations were obtained at a concentration of 1.56% and a minimum bactericidal concentration was obtained at a concentration of 3.125%. Conclusion: The conclusion that mangosteen peel skin gel extract can inhibit bacterial growth and is bactericidal against Pophyromonas Gingivalis and Actinobacillus Actinomycetemcomitans (Aggregatibacter Actinomycetecomitans.

  13. Induction of antibody response in the oral cavity of dogs following intraocular (eye drop) immunization with Porphyromonas gingivalis cell lysate incorporated in pH-sensitive fusogenic polymer-modified liposomes.

    Science.gov (United States)

    Shimizu, Yosuke; Iwasaki, Tadashi; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji; Watarai, Shinobu

    2017-02-14

    Induction of mucosal immune responses against Porphyromonas gingivalis within the oral cavity of dogs was studied by immunizing with pH-sensitive fusogenic polymer (MGluPG)-modified liposome-associated cell lysate. Dogs immunized with P. gingivalis cell lysate-containing MGluPG-modified liposomes by intraocular (eye drop) route displayed significant levels of P. gingivalis cell lysate-specific serum IgG and IgA as well as mucosal IgA antibodies in saliva secretion. Serum and salivary antibodies generated by intraocularly immunized with MGluPG-modified liposome-associated P. gingivalis cell lysate revealed a significant aggregation activity against P. gingivalis, whereas serum and saliva from dogs receiving MGluPG-modified liposomes unentrapping P. gingivalis cell lysate did not show the aggregation activity against P. gingivalis. Furthermore, P. gingivalis-specific antibodies in saliva of immunized dogs inhibited the adherence of P. gingivalis to cultured HeLa cells. More importantly, salivary antibodies induced by intraocular immunization with P. gingivalis cell lysate-containing MGluPG-modified liposomes significantly inhibited the coaggregation of P. gingivalis with Actinomyces naeslundii and the cell damage activity of P. gingivalis against FaDu cells, an oral epithelial cell. These results suggest that intraocularly administered P. gingivalis cell lysate-containing MGluPG-modified liposomes should be an effective mucosal vaccine against P. gingivalis infection in dogs and may be an important tool for the prevention of periodontitis.

  14. Effect of Citrus aurantifolia swingle essential oils on methyl mercaptan production of Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Anindya Prima Yusinta

    2013-03-01

    Full Text Available Background: Halitosis is a term used to describe an unpleasant odors emanating timely from oral cavity. The unpleasant smell of breath most common caused from volatile sulphure compound (VSC. Methyl mercaptan is the major component of VSC. P. gingivalis produced large amount of methyl mercaptan. The essential oils of Citrus aurantifolia swingle contain antibacterial component. Purpose: The purpose of this study was to determine the effect of essential oil of Citrus aurantifolia swingle on the production of methyl mercaptan compounds in P. gingivalis. Methods: Bacterial suspension of P. gingivalis in TSB medium with 108 CFU/ml concentration cultured in a microplate and added by the essential oils of Citrus aurantifolia swingle with 1%, 2%, 3% and 4% concentration. Distilled water was used as negative control and 0.2% Chlorhexidine mouthwash was used as a positive control. Microplate was incubated anaerobically for 48 hours. After the periode of incubation, 0.6% methionine as the exogenous substrate and 0.06% DTNB as a reagen for determining methyl mercaptan concentration were added to each wells. The microplate was futher incubated for 12 hours. Concentration of methyl mercaptan produced by the P. gingivalis was measured spectrophotometrically using microplate reader at 415 nm. Results: One-way ANOVA showed that the essential oil of Citrus aurantifolia swingle take effect on the concentration of methyl mercaptan produced by P. gingivalis. LSD test results indicated that there was a significant difference of methyl mercaptan concentration between treatment groups of the essential oils of Citrus aurantifolia swingle and distilled water that used as negative control. Conclusion: The essential oil of Citrus aurantifolia swingle has decreased the production of methyl mercaptan produced by P. gingivalis.Latar belakang: Halitosis adalah istilah yang digunakan untuk menggambarkan bau tidak sedap yang berasal dari rongga mulut. Penyebab utama halitosis

  15. KINETIC PARAMETERS AND CYTOTOXIC ACTIVITY OF RECOMBINANT METHIONINE γ-LYASE FROM CLOSTRIDIUM TETANI, CLOSTRIDIUM SPOROGENES, PORPHYROMONAS GINGIVALIS AND CITROBACTER FREUNDII

    OpenAIRE

    Morozova, E.; Kulikova, V.; Yashin, D.; Anufrieva, N.; Anisimova, N.; Revtovich, S.; Kotlov, M.; Belyi, Y.; Pokrovsky, V.; Demidkina, T.

    2013-01-01

    The steady-state kinetic parameters of pyridoxal 5?-phosphate-dependent recombinant methionine ? -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in ?- and ?-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the ?-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-his...

  16. [Investigation on interaction between Streptococcus sanguis and Porphyromonas gingivalis in specific pathogen-free rats].

    Science.gov (United States)

    Zhou, C; Zhang, J; Wu, B; Xiao, B; Zhang, Y

    1999-11-01

    To examine whether endogenous S. sanguis could prevent, or reduce the colonization of the virulent P. gingivalis strain. First, 10 specific pathogen-free Wistar rats were divided into 2 groups. Doxycycline was administered in the drinking water for 7 days. Successful implantation of the endogenous strain of S. sanguis, isolated from one of the rats before doxycycline administration, and P. gingivalis 381 within 14 days of observation were demonstrated in the rats of each group respectively. Then, 30 SPF rats were divided into 6 groups. Doxycycline was administered in the drinking water for 7 days to all the rats. Afterwards, the rats in group A and B were inoculated orally once a day for 5 days with P. gingivalis, the rats in group C and E were inoculated orally once a day for 5 days with S. sanguis. Then, the rats in group A were inoculated for 5 days with S. sanguis, and rats in group C and D were inoculated for 5 days with P. gingivalis. The rats in group F served as negative control. After inoculation, the levels of S. sanguis and P. gingivalis in the mouths of the rats were determined after 12, 24, 36 hours, 7 days and 14 days. Both pre-colonization of S. sanguis and superinfection with S. sanguis did reduce the level of P. gingivalis in experimental rats. However, the reduction only maintained quite short time, about 36 hours. It was not caused by the decreased level of S. sanguis after 36 hours because the level of S. sanguis kept stable during the observation period of 14 days. That S. sanguis function as the effector strain requires the successful implantation of S. sanguis as well as S. sanguis producing antagonistic action efficiently in vivo.

  17. LptO (PG0027) Is Required for Lipid A 1-Phosphatase Activity in Porphyromonas gingivalis W50.

    Science.gov (United States)

    Rangarajan, Minnie; Aduse-Opoku, Joseph; Hashim, Ahmed; McPhail, Graham; Luklinska, Zofia; Haurat, M Florencia; Feldman, Mario F; Curtis, Michael A

    2017-06-01

    Porphyromonas gingivalis produces outer membrane vesicles (OMVs) rich in virulence factors, including cysteine proteases and A-LPS, one of the two lipopolysaccharides (LPSs) produced by this organism. Previous studies had suggested that A-LPS and PG0027, an outer membrane (OM) protein, may be involved in OMV formation. Their roles in this process were examined by using W50 parent and the ΔPG0027 mutant strains. Inactivation of PG0027 caused a reduction in the yield of OMVs. Lipid A from cells and OMVs of P. gingivalis W50 and the ΔPG0027 mutant strains were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lipid A from W50 cells contained bis-P-pentaacyl, mono-P-pentaacyl, mono-P-tetraacyl, non-P-pentaacyl, and non-P-tetraacyl species, whereas lipid A from ΔPG0027 mutant cells contained only phosphorylated species; nonphosphorylated species were absent. MALDI-TOF/TOF tandem MS of mono-P-pentaacyl (m/z 1,688) and mono-P-tetraacyl (m/z 1,448) lipid A from ΔPG0027 showed that both contained lipid A 1-phosphate, suggesting that the ΔPG0027 mutant strain lacked lipid A 1-phosphatase activity. The total phosphatase activities in the W50 and the ΔPG0027 mutant strains were similar, whereas the phosphatase activity in the periplasm of the ΔPG0027 mutant was lower than that in W50, supporting a role for PG0027 in lipid A dephosphorylation. W50 OMVs were enriched in A-LPS, and its lipid A did not contain nonphosphorylated species, whereas lipid A from the ΔPG0027 mutant (OMVs and cells) contained similar species. Thus, OMVs in P. gingivalis are apparently formed in regions of the OM enriched in A-LPS devoid of nonphosphorylated lipid A. Conversely, dephosphorylation of lipid A through a PG0027-dependent process is required for optimal formation of OMVs. Hence, the relative proportions of nonphosphorylated and phosphorylated lipid A appear to be crucial for OMV formation in this organism.IMPORTANCE Gram

  18. Antibodies to Porphyromonas gingivalis Indicate Interaction Between Oral Infection, Smoking, and Risk Genes in Rheumatoid Arthritis Etiology.

    Science.gov (United States)

    Kharlamova, Nastya; Jiang, Xia; Sherina, Natalia; Potempa, Barbara; Israelsson, Lena; Quirke, Anne-Marie; Eriksson, Kaja; Yucel-Lindberg, Tülay; Venables, Patrick J; Potempa, Jan; Alfredsson, Lars; Lundberg, Karin

    2016-03-01

    To investigate the role of the periodontal pathogen Porphyromonas gingivalis in the etiology of rheumatoid arthritis (RA) by analyzing the antibody response to the P gingivalis virulence factor arginine gingipain type B (RgpB) in relation to anti-citrullinated protein antibodies (ACPAs), smoking, and HLA-DRB1 shared epitope (SE) alleles in patients with periodontitis, patients with RA, and controls. Anti-RgpB IgG was measured by enzyme-linked immunosorbent assay in 65 periodontitis patients and 59 controls without periodontitis, and in 1,974 RA patients and 377 controls without RA from the Swedish population-based case-control Epidemiological Investigation of Rheumatoid Arthritis (EIRA) study. Autoantibody status, smoking habits, and genetic data were retrieved from the EIRA database. Differences in antibody levels were examined using the Mann-Whitney U test. Unconditional logistic regression was used to calculate odds ratios (ORs) with 95% confidence intervals (95% CIs) for the association of anti-RgpB IgG with different subsets of RA patients. Anti-RgpB antibody levels were significantly elevated in periodontitis patients compared to controls without periodontitis, in RA patients compared to controls without RA, and in ACPA-positive RA patients compared to ACPA-negative RA patients. There was a significant association between anti-RgpB IgG and RA (OR 2.96 [95% CI 2.00, 4.37]), which was even stronger than the association between smoking and RA (OR 1.37 [95% CI 1.07, 1.74]), and in ACPA-positive RA there were interactions between anti-RgpB antibodies and both smoking and the HLA-DRB1 SE. Our study suggests that the previously reported link between periodontitis and RA could be accounted for by P gingivalis infection, and we conclude that P gingivalis is a credible candidate for triggering and/or driving autoimmunity and autoimmune disease in a subset of RA patients. © 2016, American College of Rheumatology.

  19. Effects of the antimicrobial peptide cathelicidin (LL-37) on immortalized gingival fibroblasts infected with Porphyromonas gingivalis and irradiated with 625-nm LED light.

    Science.gov (United States)

    Kim, JiSun; Kim, SangWoo; Lim, WonBong; Choi, HongRan; Kim, OkJoon

    2015-11-01

    Porphyromonas gingivalis causes chronic inflammatory diseases (periodontal diseases) that destroy the periodontal ligament and alveolar bone. Antimicrobial peptides are crucial components of the host defense response required to maintain cellular homeostasis during microbial invasion. Because light-emitting diode (LED) irradiation influences the host defense response against bacterial infections, we investigated its effect on immortalized gingival fibroblasts (IGFs) infected with P. gingivalis. IGFs were incubated with P. gingivalis following LED irradiation at 425, 525, and 625 nm. The dark 1 group comprised noninfected, nonirradiated IGFs, and the dark 2 group comprised nonirradiated IGFs infected with P. gingivalis. These groups served as controls. Infected cells and controls were assayed for reactive oxygen species (ROS) and were subjected to RT-PCR and Western blotting analyses to determine the levels of expression of antimicrobial peptides. LED irradiation enhanced the bactericidal effects of the antimicrobial peptide LL-37 in cells infected with P. gingivalis. Irradiation at 625 nm decreased inflammatory responses involving the release of prostaglandin E2 induced by ROS in P. gingivalis-infected IGFs. LED irradiation at 625 nm induces an anti-inflammatory response that elicits the production of antimicrobial peptides, providing an efficacious method of treatment for periodontal diseases.

  20. The effect of systemic anti-tumor necrosis factor-alpha treatment on Porphyromonas gingivalis infection in type 2 diabetic mice.

    Science.gov (United States)

    Takano, Mayuko; Nishihara, Rieko; Sugano, Naoyuki; Matsumoto, Kazuma; Yamada, Yutaka; Takane, Masatoshi; Fujisaki, Yoshiaki; Ito, Koichi

    2010-05-01

    Diabetes mellitus and periodontal disease are two common chronic diseases that have long been thought to be biologically linked. Overexpression of tumor necrosis factor alpha (TNF-alpha) is thought to contribute to this bidirectional inter-relationship. This study examined the effect of anti-TNF-alpha antibody treatment on Porphyromonas gingivalis infection in diabetic mice. In C57BL/6 (normal) and KKAy (diabetic) mice, the area adjacent to the periosteum at a point on the skull midway between the ears was inoculated with P. gingivalis. At 24h after the inoculation, the mice in the test group were treated with rat anti-murine TNF-alpha intravenously, while the control group received non-immunized rat IgG. TNF-alpha, IL-6, and fasting blood glucose levels in the mice were measured on day 3. Anti-TNF-alpha antibody treatment improved the host response to P. gingivalis and was associated with reduced serum TNF-alpha, IL-6, and fasting blood glucose levels in the KKAy mice. Anti-TNF-alpha antibody treatment also decreased the lesion size at the P. gingivalis inoculation. Our results suggest that TNF-alpha plays a role in the two-way relationship between P. gingivalis infection and diabetes mellitus. Anti-TNF-alpha antibody treatment may improve the host response to P. gingivalis infection and glycemic control in diabetes mellitus. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Porphyromonas gingivalis Stimulates TLR2-PI3K Signaling to Escape Immune Clearance and Induce Bone Resorption Independently of MyD88

    Directory of Open Access Journals (Sweden)

    Hasnaa Makkawi

    2017-08-01

    Full Text Available Porphyromonas gingivalis is a gram-negative anaerobic periodontal pathogen that persists in dysbiotic mixed-species biofilms alongside a dense inflammatory infiltrate of neutrophils and other leukocytes in the subgingival areas of the periodontium. Toll-like receptor 2 (TLR2 mediates the inflammatory response to P. gingivalis and TLR2-deficient mice resist alveolar bone resorption following oral challenge with this organism. Although, MyD88 is an adaptor protein considered necessary for TLR2-induced inflammation, we now report for the first time that oral challenge with P. gingivalis leads to alveolar bone resorption in the absence of MyD88. Indeed, in contrast to prototypical TLR2 agonists, such as the lipopeptide Pam3CSK4 that activates TLR2 in a strictly MyD88-dependent manner, P. gingivalis strikingly induced TLR2 signaling in neutrophils and macrophages regardless of the presence or absence of MyD88. Moreover, genetic or antibody-mediated inactivation of TLR2 completely reduced cytokine production in P. gingivalis-stimulated neutrophils or macrophages, suggesting that TLR2 plays a non-redundant role in the host response to P. gingivalis. In the absence of MyD88, inflammatory TLR2 signaling in P. gingivalis-stimulated neutrophils or macrophages depended upon PI3K. Intriguingly, TLR2-PI3K signaling was also critical to P. gingivalis evasion of killing by macrophages, since their ability to phagocytose this pathogen was reduced in a TLR2 and PI3K-dependent manner. Moreover, within those cells that did phagocytose bacteria, TLR2-PI3K signaling blocked phago-lysosomal maturation, thereby revealing a novel mechanism whereby P. gingivalis can enhance its intracellular survival. Therefore, P. gingivalis uncouples inflammation from bactericidal activity by substituting TLR2-PI3K in place of TLR2-MyD88 signaling. These findings further support the role of P. gingivalis as a keystone pathogen, which manipulates the host inflammatory response in a way

  2. Deletion of a 77-base-pair inverted repeat element alters the synthesis of surface polysaccharides in Porphyromonas gingivalis.

    Science.gov (United States)

    Bainbridge, Brian W; Hirano, Takanori; Grieshaber, Nicole; Davey, Mary E

    2015-04-01

    Bacterial cell surface glycans, such as capsular polysaccharides and lipopolysaccharides (LPS), influence host recognition and are considered key virulence determinants. The periodontal pathogen Porphyromonas gingivalis is known to display at least three different types of surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown that PG0121 (in strain W83) encodes a DNABII histone-like protein and that this gene is transcriptionally linked to the K-antigen capsule synthesis genes, generating a large ∼19.4-kb transcript (PG0104-PG0121). Furthermore, production of capsule is deficient in a PG0121 mutant strain. In this study, we report on the identification of an antisense RNA (asRNA) molecule located within a 77-bp inverted repeat (77bpIR) element located near the 5' end of the locus. We show that overexpression of this asRNA decreases the amount of capsule produced, indicating that this asRNA can impact capsule synthesis in trans. We also demonstrate that deletion of the 77bpIR element and thereby synthesis of the large 19.4-kb transcript also diminishes, but does not eliminate, capsule synthesis. Surprisingly, LPS structures were also altered by deletion of the 77bpIR element, and reactivity to monoclonal antibodies specific to both O-LPS and A-LPS was eliminated. Additionally, reduced reactivity to these antibodies was also observed in a PG0106 mutant, indicating that this putative glycosyltransferase, which is required for capsule synthesis, is also involved in LPS synthesis in strain W83. We discuss our finding in the context of how DNABII proteins, an antisense RNA molecule, and the 77bpIR element may modulate expression of surface polysaccharides in P. gingivalis. The periodontal pathogen Porphyromonas gingivalis displays at least three different types of cell surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown using Northern analysis that the K-antigen capsule locus encodes a large transcript (∼19.4 kb), encompassing a 77-bp

  3. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Halina Wójtowicz

    2009-05-01

    Full Text Available Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-beta fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.

  4. Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Jungnam Lee

    2017-12-01

    Full Text Available Porphyromonas gingivalis is a host-adapted oral pathogen associated with chronic periodontitis that successfully survives and persists in the oral epithelium. Recent studies have positively correlated periodontitis with increased risk and severity of oral squamous cell carcinoma (OSCC. Intriguingly, the presence of P. gingivalis enhances tumorigenic properties independently of periodontitis and has therefore been proposed as a potential etiological agent for OSCC. However, the initial host molecular changes induced by P. gingivalis infection which promote predisposition to cancerous transformation through EMT (epithelial-mesenchymal-transition, has never been studied in human primary cells which more closely mimic the physiological state of cells in vivo. In this study, we examine for the first time in primary oral epithelial cells (OECs the expression and activation of key EMT mediators during long-term P. gingivalis infection in vitro. We examined the inactive phosphorylated state of glycogen synthase kinase-3 beta (p-GSK3β over 120 h P. gingivalis infection and found p-GSK3β, an important EMT regulator, significantly increases over the course of infection (p < 0.01. Furthermore, we examined the expression of EMT-associated transcription factors, Slug, Snail, and Zeb1 and found significant increases (p < 0.01 over long-term P. gingivalis infection in protein and mRNA expression. Additionally, the protein expression of mesenchymal intermediate filament, Vimentin, was substantially increased over 120 h of P. gingivalis infection. Analysis of adhesion molecule E-cadherin showed a significant decrease (p < 0.05 in expression and a loss of membrane localization along with β-catenin in OECs. Matrix metalloproteinases (MMPs 2, 7, and 9 are all markedly increased with long-term P. gingivalis infection. Finally, migration of P. gingivalis infected cells was evaluated using scratch assay in which primary OEC monolayers were wounded and treated with

  5. The role of toll-like and protease-activated receptors and associated intracellular signaling in Porphyromonas gingivalis-infected gingival fibroblasts.

    Science.gov (United States)

    Palm, Eleonor; Demirel, Isak; Bengtsson, Torbjörn; Khalaf, Hazem

    2017-02-01

    Porphyromonas gingivalis, which is considered a keystone agent in periodontitis, has evolved elaborate mechanisms to grow and survive in a hostile milieu. The gingival fibroblast is the major cell type in the gingiva and is considered to be important in the periodontitis-associated inflammation. As a part of the innate immune response, they produce cytokines such as CXCL8 and interleukin (IL)-6 which are believed to contribute to the destruction of the tooth-supporting tissues. This study investigates how the expression of protease-activated receptors (PAR1, PAR2) and toll-like receptors (TLR2, TLR4) changes with P. gingivalis exposure and how silencing of one receptor affects the expression of the other receptors. The importance of protein kinase C (PKC) and p38 in the regulation of CXCL8 and IL-6 was also examined. Receptors were knockdown with small-interfering RNA. PKC or p38 was blocked prior to stimulation with P. gingivalis. Fibroblasts were able to compensate for PAR1 knockdown with increased expression of PAR2. PKC and p38 were involved in the regulation of P. gingivalis-induced CXCL8 and IL-6. Our results indicate that PAR1 and PAR2 could be implicated in periodontitis and that PKC and P38 play a role in the inflammatory response in P. gingivalis-infected gingival fibroblasts. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  6. Flavan-3-ols and proanthocyanidins from Limonium brasiliense inhibit the adhesion of Porphyromonas gingivalis to epithelial host cells by interaction with gingipains.

    Science.gov (United States)

    de Oliveira Caleare, Angelo; Hensel, Andreas; Mello, João Carlos Palazzo; Pinha, Andressa Blainski; Panizzon, Gean Pier; Lechtenberg, Matthias; Petereit, Frank; Nakamura, Celso Vataru

    2017-04-01

    Porphyromonas gingivalis is a pathogen strongly involved in chronic and aggressive forms of periodontitis. Natural products, mainly polyphenols, have been described for advanced treatment of periodontitis by inhibition of the bacterial adhesion of P. gingivalis to the epithelial host cells. An acetone:water extract (LBE) from the rhizomes of Limonium brasiliense (Boiss.) Kuntze was tested under in vitro conditions for potential antiadhesive effects against P. gingivalis to human KB cells and for inhibition of the proteolytic activity of gingipains, the main virulence factor of P. gingivalis. LBE≤100μg/mL had no cytotoxicity against the bacteria and did not influence the cell physiology of human epithelial KB cells. At 100μg/mL LBE reduced the adhesion of P. gingivalis to KB cells significantly by about 80%. LBE at 20μg/mL reduced the proteolytic activity of the arginin-specific Rgp gingipain by about 75%. Chemical profiling of LBE indicated the presence of gallic acid, epigallocatechin-3-O-gallate and samarangenins A and B as lead compounds. UHPLC by using MS and UV detection displays a suitable method for quality control of the extract for identification and quantification of the lead compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Subchronic Infection of Porphyromonas gingivalis and Tannerella forsythia Stimulates an Immune Response but Not Arthritis in Experimental Murine Model

    Directory of Open Access Journals (Sweden)

    Jorday Hernández-Aguas

    2017-01-01

    Full Text Available Studies have proposed that Porphyromonas gingivalis (Pg and Tannerella forsythia (Tf promote a nonspecific inflammatory response that could produce systemic disease. Oral inoculation of Pg and Tf on the immune and arthritis response was evaluated in BALB/C mice divided into four groups: (1 sham; (2 food contaminated with Pg/Tf; (3 complete Freund’s adjuvant (CFA + Pg/Tf; and (4 CFA alone. CFA was administered subcutaneously on days 1 and 14. The arthritis response was monitored for 21 days after day 14 of CFA administration. IL-1β and IL-6 were determined in serum. T cell activation was evaluated by CD25 in salivary lymph nodes or mouse spleen. Pad inflammation appeared by day 19 in the CFA group, but animals with bacteria inoculation presented a delay. A significant increase in IL-6 was found in Groups 3 and 4, but not with respect to IL-1β. We observed an increase in CD25 in cells derived from cervical nodes and in animals with bacteria inoculation and CFA. A local immune response was observed in mice inoculated with Pg and Tf (T cell activation; a systemic response was observed with CFA. Since pad inflammation was delayed by bacterial inoculation this suggests that local T cell activation could decrease pad inflammation.

  8. Porphyromonas gingivalis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. Proof of concept in rats.

    Directory of Open Access Journals (Sweden)

    Sandrine Delbosc

    Full Text Available BACKGROUND: Abdominal Aortic Aneurysms (AAAs represent a particular form of atherothrombosis where neutrophil proteolytic activity plays a major role. We postulated that neutrophil recruitment and activation participating in AAA growth may originate in part from repeated episodes of periodontal bacteremia. METHODS AND FINDINGS: Our results show that neutrophil activation in human AAA was associated with Neutrophil Extracellular Trap (NET formation in the IntraLuminal Thrombus, leading to the release of cell-free DNA. Human AAA samples were shown to contain bacterial DNA with high frequency (11/16, and in particular that of Porphyromonas gingivalis (Pg, the most prevalent pathogen involved in chronic periodontitis, a common form of periodontal disease. Both DNA reflecting the presence of NETs and antibodies to Pg were found to be increased in plasma of patients with AAA. Using a rat model of AAA, we demonstrated that repeated injection of Pg fostered aneurysm development, associated with pathological characteristics similar to those observed in humans, such as the persistence of a neutrophil-rich luminal thrombus, not observed in saline-injected rats in which a healing process was observed. CONCLUSIONS: Thus, the control of periodontal disease may represent a therapeutic target to limit human AAA progression.

  9. In-Vivo Effect of Andrographolide on Alveolar Bone Resorption Induced by Porphyromonas gingivalis and Its Relation with Antioxidant Enzymes

    Science.gov (United States)

    Al Batran, Rami; Al-Bayaty, Fouad H.; Al-Obaidi, Mazen M. Jamil

    2013-01-01

    Alveolar bone resorption is one of the most important facts in denture construction. Porphyromonas gingivalis (Pg) causes alveolar bone resorption, and morphologic measurements are the most frequent methods to identify bone resorption in periodontal studies. This study has aimed at evaluating the effect of Andrographolide (AND) on alveolar bone resorption in rats induced by Pg. 24 healthy male Sprague Dawley rats were divided into four groups as follows: normal control group and three experimental groups challenged orally with Pg ATCC 33277 five times a week supplemented with 20 mg/kg and 10 mg/kg of AND for twelve weeks. Alveolar bones of the left and right sides of the mandible were assessed by a morphometric method. The bone level, that is, the distance from the alveolar bone crest to cementumenamel junction (CEJ), was measured using 6.1 : 1 zoom stereomicroscope and software. AND reduced the effect of Pg on alveolar bone resorption and decreased the serum levels of Hexanoyl-Lysine (HEL); furthermore the reduced glutathione/oxidised glutathione (GSH/GSSG) ratio in AND treated groups (10 and 20 mg/kg) significantly increased when compared with the Pg group (P < 0.05). We can conclude that AND suppresses alveolar bone resorption caused by Pg in rats. PMID:24151590

  10. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response

    Science.gov (United States)

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-01-01

    Objective To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. Design We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Results Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. Conclusions We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. PMID:26838600

  11. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses

    Science.gov (United States)

    Borgwardt, Derek S.; Martin, Aaron D.; van Hemert, Jonathan R.; Yang, Jianyi; Fischer, Carol L.; Recker, Erica N.; Nair, Prashant R.; Vidva, Robinson; Chandrashekaraiah, Shwetha; Progulske-Fox, Ann; Drake, David; Cavanaugh, Joseph E.; Vali, Shireen; Zhang, Yang; Brogden, Kim A.

    2014-01-01

    Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.

  12. Baicalin downregulates Porphyromonas gingivalis lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available Periodontal (gum disease is one of the main global oral health burdens and severe periodontal disease (periodontitis is a leading cause of tooth loss in adults globally. It also increases the risk of cardiovascular disease and diabetes mellitus. Porphyromonas gingivalis lipopolysaccharide (LPS is a key virulent attribute that significantly contributes to periodontal pathogenesis. Baicalin is a flavonoid from Scutellaria radix, an herb commonly used in traditional Chinese medicine for treating inflammatory diseases. The present study examined the modulatory effect of baicalin on P. gingivalis LPS-induced expression of IL-6 and IL-8 in human oral keratinocytes (HOKs. Cells were pre-treated with baicalin (0-80 µM for 24 h, and subsequently treated with P. gingivalis LPS at 10 µg/ml with or without baicalin for 3 h. IL-6 and IL-8 transcripts and proteins were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The expression of nuclear factor-κB (NF-κB, p38 mitogen-activated protein kinase (MAPK and c-Jun N-terminal kinase (JNK proteins was analyzed by western blot. A panel of genes related to toll-like receptor (TLR signaling was examined by PCR array. We found that baicalin significantly downregulated P. gingivalis LPS-stimulated expression of IL-6 and IL-8, and inhibited P. gingivalis LPS-activated NF-κB, p38 MAPK and JNK. Furthermore, baicalin markedly downregulated P. gingivalis LPS-induced expression of genes associated with TLR signaling. In conclusion, the present study shows that baicalin may significantly downregulate P. gingivalis LPS-upregulated expression of IL-6 and IL-8 in HOKs via negative regulation of TLR signaling.

  13. Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells

    Science.gov (United States)

    Khalaf, Hazem; Sirsjö, Allan; Bengtsson, Torbjörn

    2015-01-01

    Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease. PMID:26283334

  14. The ethanol extract of Osmanthus fragrans attenuates Porphyromonas gingivalis lipopolysaccharide-stimulated inflammatory effect through the nuclear factor erythroid 2-related factor-mediated antioxidant signalling pathway.

    Science.gov (United States)

    Bin, Huang; Huangqin, Chen; Longquan, Shao

    2015-07-01

    In the present study, we explored the effect of the ethanol extract of Osmanthus fragrans (EOF) on the growth and collagenase activity of Porphyromonas gingivalis (P. gingivalis). We also investigated the capacity of EOF to attenuate P. gingivalis lipopolysaccharide (LPS)-induced inflammatory responses and the possible signalling pathway. EOF was obtained by soaking the O. fragrans powder in the ethanol and concentrating the extracts under reduced pressure. Microplate dilution assays were used to determine the effect of EOF on P. gingivalis growth. Collagenase inhibition was detected using fluorometric and colorimetric assays. The effects of EOF on the production of the cytokines interleukin-6 (IL-6) and IL-8 were assessed using enzyme-linked immunosorbent assays (ELISAs). The oxidative stress biomarkers were assayed using commercial kits. The effects of EOF on the expression of cytoprotective enzymes and nucleoprotein nuclear factor erythroid 2-related factor (Nrf2) were tested by Western blot analysis. EOF significantly inhibited the growth of P. gingivalis, especially in the iron-limited culture medium. The inhibitory effect of EOF on P. gingivalis collagenase activity was time- and concentration-dependent. The P. gingivalis LPS-stimulated production of IL-6 and IL-8 was attenuated by EOF. LPS significantly induced the production of nitric oxide (NO) and malondialdehyde (MDA), and decreased the expression of superoxide dismutase (SOD) while pretreatment with EOF alleviated these effects. The presence of EOF markedly upregulated the expression levels of the cytoprotective enzymes and nucleoprotein Nrf2. This study suggests that the potent Nrf2 activation capacity of O. fragrans may be useful in the adjunctive treatment of periodontal disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Infection of RANKL-Primed RAW-D Macrophages with Porphyromonas gingivalis Promotes Osteoclastogenesis in a TNF-α-Independent Manner

    Science.gov (United States)

    Kukita, Akiko; Ichigi, Yuka; Takigawa, Ippei; Watanabe, Toshiyuki; Kukita, Toshio; Miyamoto, Hiroshi

    2012-01-01

    Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in

  16. Aging and contribution of MyD88 and TRIF to expression of TLR pathway-associated genes following stimulation with Porphyromonas gingivalis.

    Science.gov (United States)

    Shaik-Dasthagirisaheb, Y B; Huang, N; Weinberg, E O; Shen, S S; Genco, C A; Gibson, F C

    2015-02-01

    Periodontal disease is a highly complex chronic inflammatory disease of the oral cavity. Multiple factors influence periodontal disease, including socio-economic status, genetics and age; however, inflammation elicited by the presence of specific bacteria in the subgingival space is thought to drive the majority of soft- and hard-tissue destruction. Porphyromonas gingivalis is closely associated with periodontal disease. Toll-like receptors (TLRs) and their intracellular signaling pathways play roles in the host response to P. gingivalis. The focus of the current study was to use microarray analysis to define the contributions of the TLR adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/interleukin-1 receptor domain-containing adaptor inducing interferon-beta (TRIF), and aging, on the expression of TLR pathway-associated mRNAs in response to P. gingivalis. Bone marrow-derived macrophages (BMØ) from wild-type (Wt), MyD88 knockout (MyD88-KO) and Trif(Lps2) [i.e. containing a point mutation in the lipopolysaccharide 2 (Lps2) gene rendering the Toll/interleukin (IL)-1 receptor domain-containing adaptor inducing interferon-beta (TRIF) protein nonfunctional] mice, at 2-and 12-mo of age, were cultured with P. gingivalis. Expression of genes in BMØ cultured with P. gingivalis was determined in comparison with expression of genes in BMØ cultured in medium only. Using, as criteria, a twofold increase or decrease in mRNA expression, differential expression of 32 genes was observed when Wt BMØ from 2-mo-old mice were cultured with P. gingivalis compared with the medium-only control. When compared with 2-mo-old Wt mice, 21 and 12 genes were differentially expressed (p gingivalis. Age also influenced the expression of genes in MyD88-KO and Trif(Lps2) mice challenged with P. gingivalis. Our results indicate that P. gingivalis induces differential expression of TLR pathway-associated genes, and both MyD88 and TRIF play roles in the expression of these genes

  17. Presencia de Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola y Aggregatibacter actinomycetemcomitans en el biofilm subgingival de pacientes diabéticos tipo 2: estudio transversal Presence of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and Aggregatibacter actinomycetemcomitans in the subgingival biofilm of diabetic mellitus 2 patients: a cross sectional study

    OpenAIRE

    AJ Quintero; P Prada; CM Inostroza; Chaparro,A; AF Sanz; VL Ramírez; HC Morales

    2011-01-01

    Antecedentes: La investigación de la microflora subgingival en pacientes diabéticos tipo 2 con periodontitis ha presentado resultados contradictorios. Objetivo: Determinar la presencia de Porphyromonas gingivalis, Tannerella forshytia, Treponema denticola y Aggregatibacter actinomycetemcomitans, en el biofilm subgingival de pacientes diabéticos tipo 2 y relacionarlo con el grado de control metabólico. Método: Estudio descriptivo transversal, en el cual se analizaron 23 pacientes diabéticos de...

  18. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System

    Science.gov (United States)

    Gorasia, Dhana G.; Veith, Paul D.; Hanssen, Eric G.; Glew, Michelle D.; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C.

    2016-01-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32–36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component. PMID:27509186

  19. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    Science.gov (United States)

    Gorasia, Dhana G; Veith, Paul D; Hanssen, Eric G; Glew, Michelle D; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C

    2016-08-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  20. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    Directory of Open Access Journals (Sweden)

    Dhana G Gorasia

    2016-08-01

    Full Text Available The type IX secretion system (T9SS has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  1. Bactericidal Effect of Extracts and Metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis Causing Dental Plaque and Periodontal Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar Patra

    2015-04-01

    Full Text Available The mouth cavity hosts many types of anaerobic bacteria, including Streptococcus mutans and Porphyromonas gingivalis, which cause periodontal inflammatory diseases and dental caries. The present study was conducted to evaluate the antibacterial potential of extracts of Robinia pseudoacacia and its different fractions, as well as some of its natural compounds against oral pathogens and a nonpathogenic reference bacteria, Escherichia coli. The antibacterial activity of the crude extract and the solvent fractions (hexane, chloroform, ethyl acetate and butanol of R. pseudoacacia were evaluated against S. mutans, P. gingivalis and E. coli DH5α by standard micro-assay procedure using conventional sterile polystyrene microplates. The results showed that the crude extract was more active against P. gingivalis (100% growth inhibition than against S. mutans (73% growth inhibition at 1.8 mg/mL. The chloroform and hexane fractions were active against P. gingivalis, with 91 and 97% growth inhibition, respectively, at 0.2 mg/mL. None of seven natural compounds found in R. pseudoacacia exerted an antibacterial effect on P. gingivalis; however, fisetin and myricetin at 8 µg/mL inhibited the growth of S. mutans by 81% and 86%, respectively. The crude extract of R. pseudoacacia possesses bioactive compounds that could completely control the growth of P. gingivalis. The antibiotic activities of the hexane and chloroform fractions suggest that the active compounds are hydrophobic in nature. The results indicate the effectiveness of the plant in clinical applications for the treatment of dental plaque and periodontal inflammatory diseases and its potential use as disinfectant for various surgical and orthodontic appliances.

  2. PURIFICACIÓN DE LIPOPOLISACÁRIDO DE Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200

    OpenAIRE

    Lafaurie Gloria; Perez Gerardo; Gualtero Diego; Castellanos Jaime

    2008-01-01

    El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS) de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa) se separó el extracto por filtración por gel con Se...

  3. Porphyromonas gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors

    DEFF Research Database (Denmark)

    Damgaard, C; Kantarci, A; Holmstrup, P

    2017-01-01

    BACKGROUND AND OBJECTIVES: Porphyromonas gingivalis is regarded as a significant contributor in the pathogenesis of periodontitis and certain systemic diseases, including atherosclerosis. P. gingivalis occasionally translocates from periodontal pockets into the circulation, where it adheres to red...... blood cells (RBCs). This may protect the bacterium from contact with circulating phagocytes without affecting its viability. MATERIAL AND METHODS: In this in vitro study, we investigated whether human peripheral blood neutrophils from 10 subjects with localized aggressive periodontitis (LAgP) and 10...

  4. Effects of sub-lethal doses of photo-activated disinfection against Porphyromonas gingivalis for pharmaceutical treatment of periodontal-endodontic lesions.

    Science.gov (United States)

    Pourhajibagher, Maryam; Chiniforush, Nasim; Raoofian, Reza; Ghorbanzadeh, Roghayeh; Shahabi, Sima; Bahador, Abbas

    2016-12-01

    Microorganisms treated by photo-activated disinfection (PAD) in combined periodontal-endodontic (perio-endo) lesions would be exposed to sub-lethal doses of PAD (sPAD). This study evaluated the effect of sPAD using toluidine blue O (TBO) in combination with diode laser irradiation on the growth and biofilm-formation ability of Porphyromonas gingivalis as an endo-periodontal pathogen. The antibacterial and antibiofilm potential of sPAD against P. gingivalis was analyzed at sub-lethal doses of TBO and irradiation time of diode laser on a colony-forming unit and crystal violet assays, respectively. TBO-mediated PAD, using 6.25-100μg/mL at a fluency of 171.87J/cm(2) and 12.5-100μg/mL at a fluency of 137.5J/cm(2), showed a significant dose-dependent reduction in P. gingivalis growth when compared to the control. TBO-mediated PAD showed a significantly inhibitory effect on biofilm formation in P. gingivalis than TBO-PAD at sub-lethal levels. High doses of sPAD revealed antibacterial and antibiofilm potential activity, whereas lower doses of sPAD had conflicting results. Therefore, when PAD is prescribed in combined perio-endo lesions treatment, the dose of PAD used in vivo should be taken into account. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. HmuY is an important virulence factor for Porphyromonas gingivalis growth in the heme-limited host environment and infection of macrophages.

    Science.gov (United States)

    Olczak, Teresa; Sosicka, Paulina; Olczak, Mariusz

    2015-11-27

    Porphyromonas gingivalis, the main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis, is a haem auxotroph, and the uptake of this compound is essential for its survival and the ability to establish an infection. The aim of this study was to examine the role of a hemophore-like HmuY protein in P. gingivalis growth and infection of macrophages. Inactivation of the hmuY gene caused reduced P. gingivalis growth in vitro in the presence of serum as a heme sole source, as well as in vivo co-cultures with THP-1-derived macrophages. This resulted in diminished invasion efficiency of macrophages by live bacteria lacking functional hmuY gene. Both features were partially restored after addition of the purified HmuY protein, which was internalized when added either together with the hmuY mutant strain or alone to macrophage cultures. We conclude that HmuY is an important virulence factor of P. gingivalis for infection of macrophages in a heme-limited host environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Inhibition of polysaccharide synthesis by the sinR orthologue PGN_0088 is indirectly associated with the penetration of Porphyromonas gingivalis biofilms by macrolide antibiotics.

    Science.gov (United States)

    Yamamoto, Reiko; Noiri, Yuichiro; Yamaguchi, Mikiyo; Asahi, Yoko; Maezono, Hazuki; Ebisu, Shigeyuki; Hayashi, Mikako

    2015-02-01

    Microbes commonly adhere to surfaces, aggregate in self-produced extracellular polymeric substances (EPS) and live in biofilms. Periodontitis is a serious oral infection that is initiated by the formation of biofilms by Porphyromonas gingivalis. EPS act as a barrier that protects biofilm-forming cells against sources of stress, including those induced by host immune cells and antimicrobial agents. Therefore, drugs intended to kill such micro-organisms cannot be used for the treatment of biofilm infections. Our previous studies revealed that subminimal inhibitory concentrations (subMIC) of two macrolide antibiotics (azithromycin, AZM and erythromycin, ERY) reduced P. gingivalis biofilms. Furthermore, we demonstrated that the Bacillus subtilis sinR orthologue (PGN_0088) inhibits the synthesis of carbohydrates that are components of EPS in P. gingivalis biofilms. Here, we constructed a novel sinR mutant from P. gingivalis ATCC 33277 and reveal that the increased abundance of carbohydrate in EPS of the mutant led to a reduced infiltration rate of AZM and ERY through EPS, and consequently elevated biofilm resistance to these macrolides. Detailed elucidation of the interaction between the product of the sinR gene and EPS will assist in the development of novel approaches that target EPS to prevent and inhibit the formation of biofilms. © 2015 The Authors.

  7. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis.

    Science.gov (United States)

    Jayaprakash, K; Demirel, I; Khalaf, H; Bengtsson, T

    2015-10-01

    Neutrophils are regarded as the sentinel cells of innate immunity and are found in abundance within the gingival crevice. Discovery of neutrophil extracellular traps (NETs) within the gingival pockets prompted us to probe the nature of the interactions of neutrophils with the prominent periopathogen Porphyromonas gingivalis. Some of the noted virulence factors of this Gram-negative anaerobe are gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). The aim of this study was to evaluate the role of gingipains in phagocytosis, formation of reactive oxygen species, NETs and CXCL8 modulation by using wild-type strains and isogenic gingipain mutants. Confocal imaging showed that gingipain mutants K1A (Kgp) and E8 (RgpA/B) induced extracellular traps in neutrophils, whereas ATCC33277 and W50 were phagocytosed. The viability of both ATCC33277 and W50 dwindled as the result of phagocytosis and could be salvaged by cytochalasin D, and the bacteria released high levels of lipopolysaccharide in the culture supernatant. Porphyromonas gingivalis induced reactive oxygen species and CXCL8 with the most prominent effect being that of the wild-type strain ATCC33277, whereas the other wild-type strain W50 was less effective. Quantitative real-time polymerase chain reaction revealed a significant CXCL8 expression by E8. All the tested P. gingivalis strains increased cytosolic free calcium. In conclusion, phagocytosis is the primary neutrophil response to P. gingivalis, although NETs could play an accessory role in infection control. Although gingipains do not seem to directly regulate phagocytosis, NETs or oxidative burst in neutrophils, their proteolytic properties could modulate the subsequent outcomes such as nutrition acquisition and survival by the bacteria. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Association between clinical parameters and the presence of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in patients with progressive periodontal lesions

    Directory of Open Access Journals (Sweden)

    Rakić Mia

    2010-01-01

    Full Text Available Background/Aim. Periodontitis is a chronic inflammatory disease of periodontal tissues with consequential is bone loss as a result of host immunological reactions caused by periopathogens. The aim of the study was to investigate if there is a correlation between clinical parameters and the presence of two most aggressive periopathogens (Aggregatibacter actinomycetemcomitans - Aa and Porphyromonas gingivalis - Pg in patients with progressive periodontal lesions. Methods. A total of 34 systemic healthy people, 23 to 70 years old, were included in the study. The patients were clinically and radiologically examined, and after that, the representative pocket with greatest pocket depth was chosen and the sample was collected from that place. The measured clinic parameters were: gingival index, index of gingival bleeding, pocket depth and plaque indices. The multiplex Polymerase Chain Reaction (PCR method was used for detection of periopathogens. After obtaining results, appropriate statistical tests were used to correlate the clinical and microbiological results. Results. Aa and Pg were detected in the same percentage of samples. Aa and Pg were detected in 35.29% samples alone, and in 29.41% both were detected. The values of measured clinical parameters did not show a statistical significance between the groups. In analysis of correlations among clinical parameters inside the groups, a statistical significance was found only between gingival and plaque index in the group with Aa. Conclusion. Clinical course of periodontitis in the developed stage does not differ in relation to the presence of different periopathogens as the major inductors of immunologically guided destructive processes.

  9. Evaluation of chemical composition and efficacy of Chinese propolis extract on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Garima Agarwal

    2012-01-01

    Full Text Available Background: Propolis as a natural remedy has maintained its popularity over long periods of time. The aim of this study was to determine the chemical composition in terms of total phenolic compounds and flavonoids present in Chinese propolis and to carry out an in vitro evaluation of its antimicrobial activity and the minimal inhibitory concentrations for Porphyromonas gingivalis (Pg and Aggregatibacter actinomycetemcomitans (Aa. Materials and Methods: From the ethanolic extract of propolis (EEP, total phenol content was determined by the Folin-Ciocalteau method, flavones and flavonols by the modified aluminum chloride colorimetric method, and flavanones by the 2.4-dinitrophenylhydrazine (2,4-DNP method. Agar well diffusion assay was used to evaluate the antimicrobial potential of propolis against Pg and Aa. The minimum inhibitory concentration of propolis against the two bacteria was determined using serial tube dilution technique. Results: The total concentration of phenol in the EEP was 19.44%, flavones and flavonols 2.616%, and flavanones 16.176%. The inhibitory zone depicting antimicrobial activity ranged from 18 to 25 mm for Pg and from 12 to 14 mm for Aa. The concentration range of Chinese propolis that is sensitive to inhibit the growth of Pg was 0.1-0.0125 μg/ml and for Aa it was 0.1-0.025 μg/ml. Conclusion: These data suggest that Chinese propolis has potent antimicrobial activity against the two periodontopathogens, suggesting its possible use as a natural alternative to the widely used synthetic antibiotics for periodontal therapy.

  10. Effect of alendronate on the progression of periodontitis induced by Porphyromonas gingivalis and Fusobacterium nucleatum: a study in rats.

    Science.gov (United States)

    Storrer, Carmen L Mueller; Deliberador, Tatiana Miranda; Giovanini, Allan Fernando; Crivellaro, Viviane; Zielak, João Cesar; Romito, Giuseppe Alexandre

    2016-12-01

    The study aimed to investigate the effect of alendronate (ALN) on the inhibition of alveolar bone loss in experimental periodontitis in Wistar rats. Periodontitis was induced by oral inoculation of Porphyromonas gingivalis with Fusobacterium nucleatum. The rats (n = 80) were randomized as follows: negative control (n = 10); positive control (n = 10); ALN groups: test 8 (n = 10), test 12 (n = 10), and test 16 (n = 10); and placebo groups: control 8 (n = 10), control 12 (n = 10), and control 16 (n = 10). Two milligrams per kilogram of ALN or placebo was administered twice weekly for 8, 12, and 16 weeks. Bone loss was determined by morphological and histological analyses. One independent, blinded examiner (ICC, 0.91) performed the measurements. The distance from the cement enamel junction to the alveolar bone crest of the second lower molar was measured: distal-vestibular (d), furca (f), mesial-vestibular (h), and area. Histometry was performed on the second contralateral molar. Sections (6 μm) were used to determine the furcation bone area (A-FB). The following statistical analyses were conducted: Mann-Whitney and Kruskal-Wallis. PC group developed periodontitis (p  0.05). ALN was effective against bone loss in relation to A-FB after 12 weeks (p periodontitis. ALN could be a potential therapeutic approach when associated with periodontal treatment.

  11. Periodontitis, Porphyromonas gingivalis y su relación con la expresión de quorum sensing

    Directory of Open Access Journals (Sweden)

    Antonio Díaz Caballero

    2010-12-01

    Full Text Available Los mecanismos de señalización bacteriana desempeñan un papel fundamental en el establecimiento y progresión de la enfermedad periodontal. Dadas estas circunstancias es crucial profundizar en el entendimiento de estos mecanismos para intentar proveer estrategias terapéuticas novedosas. El presente artículo de revisión, de carácter narrativo, tiene como objetivo conducir un análisis crítico de la evidencia disponible sobre la influencia de Porphyromonas gingivalis (Pg y expresión de quorum sensing (Qs en enfermedad periodontal. Se realizó una búsqueda a través de bases de datos como Ovid (MEDLINE, ScienceDirect, Hinari. El conocimiento actual de estos mecanismos ofrece la posibilidad de desarrollar nuevos y profundos estudios (teóricos y experimentales sobre la expresión del QS en pacientes con enfermedad periodontal y permitirá un novedoso campo de investigación con el que no se cuenta en la actualidad. Desde su descubrimiento, el QS se vislumbra como un espacio de investigación valioso en el cual se debe insistir de manera permanente. La anterior evidencia permite concluir que a través de la regulación de la expresión de determinados genes en bacterias como la PG, se puede efectuar la inhibición de la formación de las biopelículas que tiene efectos directos e indirectos sobre el desarrollo de la enfermedad periodontal.

  12. Peptidylarginine deiminase from Porphyromonas gingivalis (PPAD) contributes to infection of gingival fibroblasts and induction of PGE2-signaling pathway

    Science.gov (United States)

    Gawron, K.; Bereta, G.; Nowakowska, Z.; Łazarz–Bartyzel, K.; Łazarz, M.; Szmigielski, B.; Mizgalska, D.; Buda, A.; Koziel, J.; Oruba, Z.; Chomyszyn–Gajewska, M.; Potempa, J.

    2015-01-01

    SUMMARY Porphyromonas gingivalis (Pg) expresses the enzyme peptidylarginine deiminase (PPAD), which has a strong preference for C-terminal arginines. Due to the combined activity of PPAD and Arg-specific gingipains, Pg on the cell surface is highly citrullinated. To investigate the contribution of PPAD to the interaction of Pg with primary human gingival fibroblasts (PHGF) and Pg-induced synthesis of prostaglandin E2 (PGE2), PHGF were infected with wild-type Pg ATCC 33277, an isogenic PPAD-knockout strain (Δppad) or a mutated strain (C351A) expressing an inactive enzyme in which the catalytic cysteine has been mutated to alanine (PPADC351A). Cells were infected in medium containing the mutants alone or in medium supplemented with purified, active PPAD. PHGF infection was assessed by colony-forming assay, microscopic analysis and flow cytometry. Expression of COX-2 and mPGES-1, key factors in the prostaglandin synthesis pathway, was examined by qRT-PCR, while PGE2 synthesis was evaluated by EIA. PHGF were infected more efficiently by wt-Pg than the Δppad strain, which correlated with strong induction of COX-2 and mPGES-1 expression by wt-Pg, but not by the PPAD activity-null mutant strains (ΔPPAD and C351A). The impaired ability of the ΔPPAD strain to adhere to and/or invade PHGF and both ΔPPAD and C351A to stimulate the PGE2-synthesis pathway was fully restored by the addition of purified PPAD. The latter effect was strongly inhibited by aspirin. Collectively, our results implicate PPAD activity, but not PPAD itself, as an important factor for gingival fibroblast infection and activation of PGE2 synthesis, the latter of which may strongly contribute to bone resorption and eventual tooth loss. PMID:25176110

  13. Relationship between quantitative measurement of Porphyromonas gingivalis on dental plaque with periodontal status of patients with coronary heart disease

    Science.gov (United States)

    Dwiyanti, Stephani; Soeroso, Yuniarti; Sunarto, Hari; Radi, Basuni

    2017-02-01

    Coronary heart disease is a narrowing of coronary artery due to plaque build-up. [1] Chronic periodontitis increases risk of cardiovascular disease. P.gingivalis is linked to both diseases. Objective: to analyse quantitative difference of P.gingivalis on dental plaque and its relationship with periodontal status of CHD patient and control. Methods: Periodontal status of 66 CHD patient and 40 control was checked. Subgingival plaque was isolated and P.gingivalis was measured using real-time PCR. Result: P.gingivalis of CHD patient differs from control. P.gingivalis is linked to pocket depth of CHD patient. Conclusion: P.gingivalis count of CHD patient is higher than control. P.gingivalis count is not linked to any periodontal status, except for pocket depth of CHD patient.

  14. SEM imaging of the stimulatory response of RAW264.7 cells against Porphyromonas gingivalis using a simple technique employing new conductive materials.

    Science.gov (United States)

    Takahashi, Chisato; Umemura, Yoshiki; Naka, Ayako; Yamamoto, Hiromitsu

    2017-06-21

    In the medical biology, it is essential to understand not only biological morphology but also the interaction between biological materials and agents. To study these, electron microscopy (EM) is often utilized. However, sample preparation techniques for EM require a high level of skill and a considerable time. Here, we conducted EM using a simple technique employing a conductive liquid, BEL-1, and compared the results with another simple technique employing an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4 ]). BEL-1 was used for sample pretreatment, and the morphologies of the mouse RAW 264.7 cell line, Porphyromonas gingivalis, and the RAW 264.7 cell line were stimulated via co-incubation with P. gingivalis and observed using field emission scanning EM (FE-SEM). In the present study, the inflammation-induced system of P. gingivalis was successfully established. FE-SEM results revealed the fine morphology of the RAW 264.7 cell line and P. gingivalis and confirmed a morphological change in the RAW 264.7 cell line caused by P. gingivalis stimulation. Using the developed sample preparation technique employing BEL-1, high-contrast and high-resolution observations of deformable biological materials were conducted without any difficulty or the necessity for complicated technique. This morphological information and the developed techniques can contribute to reveal the interaction between biological materials and agents and thereby accelerate drug formulation and disease treatment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  15. Role of gallium and silver from phosphate-based glasses on in vitro dual species oral biofilm models of Porphyromonas gingivalis and Streptococcus gordonii.

    Science.gov (United States)

    Valappil, Sabeel P; Coombes, Marc; Wright, Lucy; Owens, Gareth J; Lynch, Richard J M; Hope, Christopher K; Higham, Susan M

    2012-05-01

    Phosphate-based glasses (PBGs) are excellent controlled delivery agents for antibacterial ions such as silver and gallium. The aim of this study was to assess the potential utility of novel PBGs combining both gallium and silver for use in periodontal therapy. To this end, an in vitro biofilm model with the putative periodontal pathogen, Porphyromonas gingivalis, and an initial colonizer, Streptococcus gordonii, was established. The effect of increasing calcium content in gallium-silver-doped PBG on the susceptibility of P. gingivalis was examined. A decrease in degradation rates (30.34, 25.19, 21.40 μg mm(-2) h(-1)) with increasing PBG calciumcontent (10, 11, 12 mol.% respectively) was observed, correlating well with gallium and silver ion release and antimicrobial activity against planktonic P. gingivalis (approximately 5.4log(10) colony-forming units (CFU) reduction after 24h by the C10 glass compared with controls) and S. gordonii (total growth inhibition after 32h by C10, C11 and C12 glasses compared with controls). The most potent PBG (C10) was evaluated for its ability to inhibit the biofilm growth of P. gingivalis in a newly established constant-depth film fermentor model. The simultaneous release of silver and gallium from the glass reduced P. gingivalis biofilm growth with a maximum effect (1.92log(10) CFU reduction) after 168 h. Given the emergence of antibiotic-resistant bacteria and dearth of new antibiotics in development, the glasses, especially C10, would offer effective alternatives to antibiotics or may complement current therapies through controlled, localized delivery of gallium and silver ions at infected sites in the oral cavity. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. PKR induces the expression of NLRP3 by regulating the NF-κB pathway in Porphyromonas gingivalis-infected osteoblasts.

    Science.gov (United States)

    Yoshida, Kaya; Okamura, Hirohiko; Hiroshima, Yuka; Abe, Kaori; Kido, Jun-Ichi; Shinohara, Yasuo; Ozaki, Kazumi

    2017-05-01

    The double-stranded RNA-dependent kinase (PKR), which is activated by double stranded RNA, induces inflammation by regulating NF-κB signaling. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome also modulates inflammation in response to infection. Porphyromonas gingivalis (P.gingivalis) is an oral bacterium which is implicated in the pathogenesis of periodontal diseases. We previously reported that PKR is a key modulator of bone metabolism and inflammation in the periodontal tissue. PKR was also reported to induce inflammation in response to microbes by regulating the NLRP3 inflammasome, suggesting that PKR could affect inflammation along with NLRP3 in periodontal diseases. In this study, we investigated the effects of PKR on NLRP3 expression and NF-κB activity in P. gingivalis infected osteoblasts. We first constructed a SNAP26b-tagged P.gingivalis (SNAP-P. g.) and traced its internalization into the cell. SNAP-P. g. increased the activity of PKR and NF-κB and also induced NLRP3 expression in osteoblasts. Inhibition of NF-κB attenuated SNAP-P. g.-induced NLRP3 expression. The knockdown of PKR using shRNA decreased both the activity of NF-κB and the expression of NLRP3 induced by SNAP-P.g.. We therefore concluded that in osteoblasts, P. gingivalis activated PKR, which in turn increased NLRP3 expression by activating NF-κB. Our results suggest that PKR modulates inflammation by regulating the expression of the NLRP3 inflammasome through the NF-κB pathway in periodontal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sterol Regulatory Element-Binding Protein-1c Regulates Inflammasome Activation in Gingival Fibroblasts Infected with High-Glucose-Treated Porphyromonas gingivalis.

    Science.gov (United States)

    Kuo, Hsing-Chun; Chang, Li-Ching; Chen, Te-Chuan; Lee, Ko-Chao; Lee, Kam-Fai; Chen, Cheng-Nan; Yu, Hong-Ren

    2016-01-01

    Background:Porphyromonas gingivalis is a major bacterial species implicated in the progression of periodontal disease, which is recognized as a common complication of diabetes. The interleukin (IL)-1β, processed by the NLR family pyrin domain containing 3 (NLRP3) inflammasome, has been identified as a target for pathogenic infection of the inflammatory response. However, the effect of P. gingivalis in a high-glucose situation in the modulation of inflammasome activation in human gingival fibroblasts (HGFs) is not well-understood. Methods:P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the regulation of HGF NLRP3 expression by the infection of high-glucose-treated P. gingivalis (HGPg). Results: HGF infection with HGPg increases the expression of IL-1β and NLRP3. We further demonstrated that the upregulation of sterol regulatory element-binding protein (SREBP)-1c by activation of the Akt and p70S6K pathways is critical for HGPg-induced NLRP3 expression. We showed that the inhibition of Janus kinase 2 (JAK2) blocks the Akt- and p70S6K-mediated SREBP-1c, NLRP3, and IL-1β expression. The effect of HGPg on HGF signaling and NLRP3 expression is mediated by β1 integrin. In addition, gingival tissues from diabetic patients with periodontal disease exhibited higher NLRP3 and SREBP-1c expression. Conclusions: Our findings identify the molecular pathways underlying HGPg-dependent NLRP3 inflammasome expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs.

  18. Irsogladine maleate inhibits Porphyromonas gingivalis-mediated expression of toll-like receptor 2 and interleukin-8 in human gingival epithelial cells.

    Science.gov (United States)

    Savitri, I J; Ouhara, K; Fujita, T; Kajiya, M; Miyagawa, T; Kittaka, M; Yamakawa, M; Shiba, H; Kurihara, H

    2015-08-01

    Periodontitis is an infectious disease caused by an interaction between the host and periodontopathogenic bacteria. Regulating the immune response in human gingival epithelial cells (HGEC) may contribute to the prevention of periodontitis. Irsogladine maleate (IM) has previously been shown to regulate inflammation and the cell-cell junctional barrier in HGEC. In addition to these functions, control of bacterial recognition is important for preventing inflammation in periodontal tissue. Innate immunity in gingival epithelium is the first line of defense and plays a crucial role against bacterial challenge. Therefore, the effect of IM on regulating toll-like receptor 2 (TLR2), which is part of the innate immunity, was determined in this study. OBA-9, an immortalized human gingival epithelial cell line, and primary cultured HGEC were used in this study. Real-time PCR and western blotting were performed in OBA-9 or HGEC stimulated with whole cells of Porphyromonas gingivalis or with lipopolysaccharide (LPS) derived from P. gingivalis (PgLPS) in the presence or absence of IM to determine expression of TLR2 mRNA and production of TLR2 protein. Small interfering RNA (siRNA) against TLR2 was transfected into OBA-9 to clarify the association between the induction of TLR2 and interleukin-8 (IL-8) production. The addition of IM into P. gingivalis or PgLPS-induced OBA-9 suppressed IL-8 production (p gingivalis or PgLPS in OBA-9 and primary cultured HGEC (p gingivalis or PgLPS-stimulated OBA-9. These results suggest that IM suppresses the induction of IL-8 production by regulating increased levels of TLR2. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Lethal effect of blue light-activated hydrogen peroxide, curcumin and erythrosine as potential oral photosensitizers on the viability of Porphyromonas gingivalis and Fusobacterium nucleatum.

    Science.gov (United States)

    Mahdi, Zakeri; Habiboallh, Ghanbari; Mahbobeh, Naderi Nasab; Mina, Zareian Jahromi; Majid, Zakeri; Nooshin, Arjmand

    2015-03-31

    Recently, photodynamic therapy (PDT) has been introduced as a new modality in oral bacterial decontamination. Current research aims to evaluate the effect of photodynamic killing of visible blue light in the presence of hydrogen peroxide, curcumin and erythrosine as potential oral photosensitizers on Porphyromonas gingivalis associated with periodontal bone loss and Fusobacterium nucleatum associated with soft tissue inflammation. Standard suspension of P. gingivalis and F. nucleatum were exposed to Light Emitting Diode (LED) (440-480 nm) in combination with erythrosine (22 µm), curcumin (60 µM) and hydrogen peroxide (0.3 mM) for 5 min. Bacterial samples from each treatment groups (radiation-only group, photosensitizer-only group and blue light-activated photosensitizer group) were subcultured onto the surface of agar plates. Survival of these bacteria was determined by counting the number of colony forming units (CFU) after incubation. RESULTS for antibacterial assays on P. gingivalis confirmed that curcumin, Hydrogen peroxide and erythrosine alone exerted a moderate bactericidal effect which enhanced noticeably in conjugation with visible light. The survival rate of P. gingivalis reached zero present when the suspension exposed to blue light-activated curcumin and hydrogen peroxide for 2 min. Besides, curcumin exerted a remarkable antibacterial activity against F. nucleatum in comparison with erythrosine and hydrogen peroxide (P=0.00). Furthermore, the bactericidal effect of visible light alone on P. gingivalis as black-pigmented bacteria was significant. Our result suggested that visible blue light in the presence of erythrosine, curcumin and hydrogen peroxide would be consider as a potential approach of PDT to kill the main gramnegative periodontal pathogens. From a clinical standpoint, this regimen could be established as an additional minimally invasive antibacterial treatment of plaque induced periodontal pathologies.

  20. Gestational Day-Dependent Expression of Interleukin-10 and Tumor Necrosis Factor-alpha in Porphyromonas gingivalis-infected Pregnant Rats

    Directory of Open Access Journals (Sweden)

    Banun Kusumawardani

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Fetal growth restriction remains a major cause of neonatal morbidity and mortality. Porphyromonas gingivaliscan induce placental inflammatory response resulting in fetal growth restriction. Objective: This study aimed to evaluate the potential utility of the pro-inflammatory cytokine TNF-α and anti-inflammatory cytokine IL-10 in rat placental tissues to understand whether these events were causally related. Methods: Female rats were infected with live-Porphyromonas gingivalis at concentration of 2x109 cells/ml into subgingival sulcus area of the maxillary first molar before and/or during pregnancy. They were sacrificed on gestational day (GD-14 and GD20. The expression of TNF-α and IL-10 in macrophages and trophoblast cells were detected by immunohistochemistry. Results: A higher expression of TNF-α was found in spongiotrophoblast of the Pg-BD group on GD14 (6.30±1.16, and in trophoblastic giant cells of Pg-D group on GD20 (5.50±1.35. Furthermore, a higher expression of IL-10 was found in trophoblastic giant cells of the Pg-BD group on GD14 (4.50±1.51 and in syncytiotrophoblasts of Pg-BD group on GD20 (8.70±2.67. Conclusion: The expression of TNF-α on GD14 and GD20 were accompanied by increased expression of IL-10. The placental pathologic conditions induced by Porphyromonas gingivalis can be inhibited by elevated expression of IL-10 in macrophages and trophoblast cells.DOI: 10.14693/jdi.v20i3.199

  1. Specific in situ visualization of plasma cells producing antibodies against Porphyromonas gingivalis in gingival radicular cyst: application of the enzyme-labeled antigen method.

    Science.gov (United States)

    Tsuge, Shinya; Mizutani, Yasuyoshi; Matsuoka, Kazuhiro; Sawasaki, Tatsuya; Endo, Yaeta; Naruishi, Koji; Maeda, Hiroshi; Takashiba, Shogo; Shiogama, Kazuya; Inada, Ken-Ichi; Tsutsumi, Yutaka

    2011-07-01

    The enzyme-labeled antigen method was applied to visualize plasma cells producing antibodies to Porphyromonas gingivalis, flora of the human oral cavity. Antibodies to P. gingivalis have reportedly been detected in sera of patients with periodontitis. Biotinylated bacterial antigens, Ag53, and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro, and Lys-hgp) were prepared by the cell-free protein synthesis system using the wheat germ extract. In paraformaldehyde-fixed frozen sections of rat lymph nodes experimentally immunized with Ag53-positive and Ag53-negative P. gingivalis, plasma cells were labeled with biotinylated Arg-hgp and Lys-hgp. Antibodies to Ag53 were detected only in the nodes immunized with Ag53-positive bacteria. In two of eight lesions of gingival radicular cyst with inflammatory infiltration, CD138-positive plasma cells in frozen sections were signalized for Arg-hgp and Lys-hgp. An absorption study using unlabeled antigens confirmed the specificity of staining. The AlphaScreen method identified the same-type antibodies in tissue extracts but not in sera. Antibodies to Ag53, Arg-pro, and Lys-pro were undetectable. In two cases, serum antibodies to Arg-hgp and Lys-hgp were AlphaScreen positive, whereas plasma cells were scarcely observed within the lesions. These findings indicate the validity of the enzyme-labeled antigen method. This is the very first application of this novel histochemical technique to human clinical samples.

  2. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis.

    Science.gov (United States)

    Zhang, Yi; Wang, Yue; Zhu, Xiaojing; Cao, Ping; Wei, Shaomin; Lu, Yanhua

    2017-12-01

    The antibacterial effect and mechanism of eugenol from Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf essential oil (CLEO) against oral anaerobe Porphyromonas gingivalis were investigated. The results showed that eugenol, with content of 90.84% in CLEO, exhibited antibacterial activity against P. gingivalis at a concentration of 31.25 μM. Cell shrink and lysis caused by eugenol were observed with Scanning Electron Microscopy (SEM). The release of macromolecules and uptake of fluorescent dye indicated that the antibacterial activity was due to the ability of eugenol to permeabilize the cell membrane and destroy the integrity of plasmatic membrane irreversibly. In addition, eugenol inhibited biofilm formation and reduced preformed biofilm of P. gingivalis at different concentrations. The down-regulation of virulence factor genes related to biofilm (fimA, hagA, hagB, rgpA, rgpB, kgp) explained that eugenol suppressed biofilm formation at the initial stage. These findings suggest that eugenol and CLEO may be potential additives in food and personal healthcare products as a prophylactic approach to periodontitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-α Pre-Treated Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Isaac Maximiliano Bugueno

    Full Text Available Clinical studies demonstrated a potential link between atherosclerosis and periodontitis. Porphyromonas gingivalis (Pg, one of the main periodontal pathogen, has been associated to atheromatous plaque worsening. However, synergism between infection and other endothelial stressors such as oxidized-LDL or TNF-α especially on endothelial cell (EC death has not been investigated. This study aims to assess the role of Pg on EC death in an inflammatory context and to determine potential molecular pathways involved.Human umbilical vein ECs (HUVECs were infected with Pg (MOI 100 or stimulated by its lipopolysaccharide (Pg-LPS (1μg/ml for 24 to 48 hours. Cell viability was measured with AlamarBlue test, type of cell death induced was assessed using Annexin V/propidium iodide staining. mRNA expression regarding caspase-1, -3, -9, Bcl-2, Bax-1 and Apaf-1 has been evaluated with RT-qPCR. Caspases enzymatic activity and concentration of APAF-1 protein were evaluated to confirm mRNA results.Pg infection and Pg-LPS stimulation induced EC death. A cumulative effect has been observed in Ox-LDL pre-treated ECs infected or stimulated. This effect was not observed in TNF-α pre-treated cells. Pg infection promotes EC necrosis, however, in infected Ox-LDL pre-treated ECs, apoptosis was promoted. This effect was not observed in TNF-α pre-treated cells highlighting specificity of molecular pathways activated. Regarding mRNA expression, Pg increased expression of pro-apoptotic genes including caspases-1,-3,-9, Bax-1 and decreased expression of anti-apoptotic Bcl-2. In Ox-LDL pre-treated ECs, Pg increased significantly the expression of Apaf-1. These results were confirmed at the protein level.This study contributes to demonstrate that Pg and its Pg-LPS could exacerbate Ox-LDL and TNF-α induced endothelial injury through increase of EC death. Interestingly, molecular pathways are differentially modulated by the infection in function of the pre-stimulation.

  4. Presencia de Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola y Aggregatibacter actinomycetemcomitans en el biofilm subgingival de pacientes diabéticos tipo 2: estudio transversal Presence of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and Aggregatibacter actinomycetemcomitans in the subgingival biofilm of diabetic mellitus 2 patients: a cross sectional study

    Directory of Open Access Journals (Sweden)

    AJ Quintero

    2011-08-01

    Full Text Available Antecedentes: La investigación de la microflora subgingival en pacientes diabéticos tipo 2 con periodontitis ha presentado resultados contradictorios. Objetivo: Determinar la presencia de Porphyromonas gingivalis, Tannerella forshytia, Treponema denticola y Aggregatibacter actinomycetemcomitans, en el biofilm subgingival de pacientes diabéticos tipo 2 y relacionarlo con el grado de control metabólico. Método: Estudio descriptivo transversal, en el cual se analizaron 23 pacientes diabéticos derivados consecutivamente del Policlínico de Especialidades de la Universidad de los Andes. Previo consentimiento informado, se realizó un examen clínico periodontal que incluyó mediciones de profundidad al sondaje, nivel de inserción clínica y sangrado gingival. Fueron clasificados según severidad de periodontitis y control metabólico de la diabetes determinado por un promedio de 3 exámenes de hemoglobina glicosilada. La detección microbiológica se realizó mediante la técnica de reacción en cadena de la polimerasa. Resultados: En el grupo de pacientes estudiados, Treponema denticola y Tannerella forsythia fueron las bacterias más prevalentes (65.2%, seguida por Porphyromonas gingivalis (17.3% y Aggregatibacter actinomycetemcomitans (13%. Los pacientes con peor control glicémico tuvieron una mayor presencia de Treponema denticola, Tannerella forsythia, Porphyromonas gingivalis y Agreggatibacter actinomycetemcomitans y un aumento en el índice de sangrado al sondaje. Conclusiones: En el grupo de pacientes diabéticos estudiado, las bacterias más prevalentes fueron Treponema denticola y Tannerella forsythia. Los pacientes diabéticos tipo 2 con moderado y mal control glicémico presentaron mayor presencia de los microorganismos estudiados, comparado con los grupos con mejores niveles de control glicémico.Background: The investigation of subgingival microflora in type 2 diabetic patients with periodontitis presented conflicting results

  5. Prevalence of Enterococcus faecalis and Porphyromonas gingivalis in infected root canals and their susceptibility to endodontic treatment procedures: A molecular study

    Directory of Open Access Journals (Sweden)

    Stojanović Nikola

    2014-01-01

    Full Text Available Introduction. Because apical periodontitis is recognizably an infectious disease, elimination or reduction of intracanal bacteria is of utmost importance for optimum treatment outcome. Objective. The prevalence of Enterococcus faecalis and Porphyromonas gingivalis in infected root canals was studied Also, the effect of endodontic therapy by using intracanal medicaments, calcium hydroxide paste (CH or gutta-percha points containing calcium hydroxide (CH-GP or chlorhexidine (CHX-GP on these microorganisms was assessed by polymerase chain reaction (PCR assay. Methods. Fifty-one patients with chronic apical periodontitis were randomly allocated in one of the following groups according to the intracanal medicament used: CH, CH-GP and CHX-GP group. Bacterial samples were taken upon access (S1, after chemomechanical instrumentation (S2 and after 15-day medication (S3. PCR assay was used to detect the presence of selected bacteria. Results. E. faecalis was detected in 49% (25/51 and P. gingivalis in 17.6% (9/51 of the samples. Samples which showed no bacterial presence at S1 were excluded from further analysis. Overall analysis of all 29 samples revealed significant differences between S1 and S2 (p<0.001, S2 and S3 (p<0.05, and S1 and S3 (p<0.001. When distinction was made between the intracanal medications, there was a significant difference in the number of PCR positive samples between S1 and S2, S1 and S3, but not between S2 and S3 samples. Conclusion. E. faecalis is more prevalent than P. gingivalis in primary endodontic infection. Intracanal medication in conduction with instrumentation and irrigation efficiently eliminates E. faecalis and P. gingivalis from infected root canals.

  6. SigCH, an extracytoplasmic function sigma factor of Porphyromonas gingivalis regulates the expression of cdhR and hmuYR.

    Science.gov (United States)

    Ota, Koki; Kikuchi, Yuichiro; Imamura, Kentaro; Kita, Daichi; Yoshikawa, Kouki; Saito, Atsushi; Ishihara, Kazuyuki

    2017-02-01

    Extracytoplasmic function (ECF) sigma factors play an important role in the bacterial response to various environmental stresses. Porphyromonas gingivalis, a prominent etiological agent in human periodontitis, possesses six putative ECF sigma factors. So far, information is limited on the ECF sigma factor, PGN_0319. The aim of this study was to investigate the role of PGN_0319 (SigCH) of P. gingivalis, focusing on the regulation of hmuY and hmuR, which encode outer-membrane proteins involved in hemin utilization, and cdhR, a transcriptional regulator of hmuYR. First, we evaluated the gene expression profile of the sigCH mutant by DNA microarray. Among the genes with altered expression levels, those involved in hemin utilization were downregulated in the sigCH mutant. To verify the microarray data, quantitative reverse transcription PCR analysis was performed. The RNA samples used were obtained from bacterial cells grown to early-log phase, in which sigCH expression in the wild type was significantly higher than that in mid-log and late-log phases. The expression levels of hmuY, hmuR, and cdhR were significantly decreased in the sigCH mutant compared to wild type. Transcription of these genes was restored in a sigCH complemented strain. Compared to the wild type, the sigCH mutant showed reduced growth in log phase under hemin-limiting conditions. Electrophoretic mobility shift assays showed that recombinant SigCH protein bound to the promoter region of hmuY and cdhR. These results suggest that SigCH plays an important role in the early growth of P. gingivalis, and directly regulates cdhR and hmuYR, thereby playing a potential role in the mechanisms of hemin utilization by P. gingivalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cerebral Oxidative Stress and Microvasculature Defects in TNF-α Expressing Transgenic and Porphyromonas gingivalis-Infected ApoE-/- Mice.

    Science.gov (United States)

    Rokad, Farheen; Moseley, Ryan; Hardy, Rowan S; Chukkapalli, Sasanka; Crean, StJohn; Kesavalu, Lakshmyya; Singhrao, Sim K

    2017-01-01

    The polymicrobial dysbiotic subgingival biofilm microbes associated with periodontal disease appear to contribute to developing pathologies in distal body sites, including the brain. This study examined oxidative stress, in the form of increased protein carbonylation and oxidative protein damage, in the tumor necrosis factor-α (TNF-α) transgenic mouse that models inflammatory TNF-α excess during bacterial infection; and in the apolipoprotein knockout (ApoE-/-) mouse brains, following Porphyromonas gingivalis gingival monoinfection. Following 2,4-dinitrophenylhydrazine derivatization, carbonyl groups were detected in frontal lobe brain tissue lysates by immunoblotting and immunohistochemical analysis of fixed tissue sections from the frontotemporal lobe and the hippocampus. Immunoblot analysis confirmed the presence of variable carbonyl content and oxidative protein damage in all lysates, with TNF-α transgenic blots exhibiting increased protein carbonyl content, with consistently prominent bands at 25 kDa (p = 0.0001), 43 kDa, and 68 kDa, over wild-type mice. Compared to sham-infected ApoE-/- mouse blots, P. gingivalis-infected brain tissue blots demonstrated the greatest detectable protein carbonyl content overall, with numerous prominent bands at 25 kDa (p = 0.001) and 43 kDa (p = 0.0001) and an exclusive band to this group between 30-43 kDa* (p = 0.0001). In addition, marked immunostaining was detected exclusively in the microvasculature in P. gingivalis-infected hippocampal tissue sections, compared to sham-infected, wild-type, and TNF-α transgenic mice. This study revealed that the hippocampal microvascular structure of P. gingivalis-infected ApoE-/- mice possesses elevated oxidative stress levels, resulting in the associated tight junction proteins being susceptible to increased oxidative/proteolytic degradation, leading to a loss of functional integrity.

  8. The anthraquinone rhein exhibits synergistic antibacterial activity in association with metronidazole or natural compounds and attenuates virulence gene expression in Porphyromonas gingivalis.

    Science.gov (United States)

    Azelmat, Jabrane; Larente, Jade Fournier; Grenier, Daniel

    2015-02-01

    Rhein is a major anthraquinone found in rhubarb root. As a continuation of our ongoing studies aimed to identify beneficial properties of this anthraquinone for periodontal disease, in this study, we investigated the ability of rhein to (i) exhibit antibacterial synergy towards the periodontopathogen Porphyromonas gingivalis when used in combination with metronidazole or polyphenols belonging to different families, and (ii) attenuate virulence factor gene expression in P. gingivalis. The minimal inhibitory concentrations (MIC) of compounds under investigation were determined by a broth microdilution assay. The synergistic effects of rhein in association with either metronidazole or polyphenols of various families were evaluated using the chequerboard technique to determine the fractional inhibitory concentration index (FICI). The effect of rhein on virulence factor gene expression in P. gingivalis was determined by quantitative RT-PCR. Rhein showed a MIC of 2.5 μg/mL, which was similar to that of metronidazole. Except for the association with epigallocatechin-3-gallate that gave an additive effect, all the other combinations (licochalcone A, glabridin, myricetin, and metronidazole) resulted in synergistic effects. The strongest synergy was observed when rhein was used in association with myricetin (FICI=0.12) and licochalcone A (FICI=0.19). At a sub-MIC of rhein (0.5 μg/mL), a significant decrease in the expression of fimA, hagA, and hagB genes, which are involved in host colonization, was observed. Moreover, the expression of rgpA and kgp, two protease genes related to inactivation of host defense mechanisms, tissue destruction, and nutrient acquisition, was also down-regulated. The data presented in our study indicate that rhein possessed antibacterial activity, which can be potentiated in combination with metronidazole or other polyphenols. In addition, rhein can impair the pathogenicity of P. gingivalis by reducing transcription of genes coding for important

  9. Evaluation of photo-activated disinfection effectiveness with methylene blue against Porphyromonas gingivalis involved in endodontic infection: An in vitro study.

    Science.gov (United States)

    Pourhajibagher, Maryam; Chiniforush, Nasim; Raoofian, Reza; Pourakbari, Babak; Ghorbanzadeh, Roghayeh; Bazarjani, Farzaneh; Bahador, Abbas

    2016-12-01

    Eradication or suppression of microbial pathogens is a major goal in endodontic infection therapy. Sub-lethal doses of photo-activated disinfection (sPAD) as a new treatment method might be able to control the microorganisms involved in endodontic infections normally treated with PAD. This study evaluated the effect of sPAD using methylene blue (MB) in combination with diode laser irradiation on the growth and biofilm formation ability of Porphyromonas gingivalis as an endodontic pathogen. The anti-microbial and anti-biofilm potential of sPAD against P. gingivalis were assessed at sub-lethal doses of MB and irradiation by diode laser on colony forming unit and crystal violet assays, respectively. MB-sPAD using 25μg/mL at a fluency of 117.18J/cm(2) and 50-100μg/mL at a fluency of 93.75J/cm(2) significantly P. gingivalis growth when compared to the control. MB at 100μg/mL at a fluency of 117.18J/cm(2) in MB-mediated PAD showed a significant inhibitory effect on biofilm formation in P. gingivalis compared with MB-sPAD. High doses of MB-mediated sPAD exhibited anti-microbial and anti-biofilm potential activity, whereas lower doses of MB-mediated sPAD did not display this ability. Therefore, the dose of PAD used in vivo should be taken into account for endodontic treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Adhesion of Porphyromonas gingivalis and Tannerella forsythia to dentin and titanium with sandblasted and acid etched surface coated with serum and serum proteins - An in vitro study.

    Science.gov (United States)

    Eick, Sigrun; Kindblom, Christian; Mizgalska, Danuta; Magdoń, Anna; Jurczyk, Karolina; Sculean, Anton; Stavropoulos, Andreas

    2017-03-01

    To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Myxomavirus anti-inflammatory chemokine binding protein reduces the increased plaque growth induced by chronic Porphyromonas gingivalis oral infection after balloon angioplasty aortic injury in mice.

    Directory of Open Access Journals (Sweden)

    Alexandra R Lucas

    Full Text Available Thrombotic occlusion of inflammatory plaque in coronary arteries causes myocardial infarction. Treatment with emergent balloon angioplasty (BA and stent implant improves survival, but restenosis (regrowth can occur. Periodontal bacteremia is closely associated with inflammation and native arterial atherosclerosis, with potential to increase restenosis. Two virus-derived anti-inflammatory proteins, M-T7 and Serp-1, reduce inflammation and plaque growth after BA and transplant in animal models through separate pathways. M-T7 is a broad spectrum C, CC and CXC chemokine-binding protein. Serp-1 is a serine protease inhibitor (serpin inhibiting thrombotic and thrombolytic pathways. Serp-1 also reduces arterial inflammation and improves survival in a mouse herpes virus (MHV68 model of lethal vasculitis. In addition, Serp-1 demonstrated safety and efficacy in patients with unstable coronary disease and stent implant, reducing markers of myocardial damage. We investigate here the effects of Porphyromonas gingivalis, a periodontal pathogen, on restenosis after BA and the effects of blocking chemokine and protease pathways with M-T7 and Serp-1. ApoE-/- mice had aortic BA and oral P. gingivalis infection. Arterial plaque growth was examined at 24 weeks with and without anti-inflammatory protein treatment. Dental plaques from mice infected with P. gingivalis tested positive for infection. Neither Serp-1 nor M-T7 treatment reduced infection, but IgG antibody levels in mice treated with Serp-1 and M-T7 were reduced. P. gingivalis significantly increased monocyte invasion and arterial plaque growth after BA (P<0.025. Monocyte invasion and plaque growth were blocked by M-T7 treatment (P<0.023, whereas Serp-1 produced only a trend toward reductions. Both proteins modified expression of TLR4 and MyD88. In conclusion, aortic plaque growth in ApoE-/- mice increased after angioplasty in mice with chronic oral P. gingivalis infection. Blockade of chemokines, but not

  12. Antimicrobial effect of photodynamic therapy using high-power blue light-emitting diode and red-dye agent on Porphyromonas gingivalis.

    Science.gov (United States)

    Chui, C; Aoki, A; Takeuchi, Y; Sasaki, Y; Hiratsuka, K; Abiko, Y; Izumi, Y

    2013-12-01

    Antimicrobial photodynamic therapy (a-PDT) using a combination of red-colored laser/light-emitting diode (LED) and blue dye has been employed for periodontal therapy and the antimicrobial effect seems promising. Blue light, which has favorable wavelength properties, would be more effective as a light source for a-PDT because blue light itself possesses an antimicrobial effect. This study aimed to investigate the effect of a-PDT using a novel combination of high-power blue LED and red-dye agent on Porphyromonas gingivalis in vitro. Porphyromonas gingivalis ATCC 33277 suspension was irradiated with blue LED (BL) (425-470 nm) or red LED (RL) (625-635 nm) at 30-90 J/cm(2) , or was mixed with erythrosine (ER), phloxine B (PB) or rose bengal (RB) with or without BL irradiation (30 J/cm(2) ). RL (30 J/cm(2) ) in combination with toluidine blue was employed as positive control. All the suspensions of P. gingivalis were serially diluted, plated and incubated anaerobically, and the numbers of colony-forming units (CFUs) were counted on day 7. BL irradiation at 60 and 90 J/cm(2) demonstrated a significant reduction in the numbers of CFUs. ER, PB and RB solutions at 160 μg/mL showed almost no or only a minimal reduction in the numbers of CFUs. BL at 30 J/cm(2) combined with ER, PB or RB at 160 μg/mL resulted in a log reduction of 0.9, 1.0 and 7.1, respectively, in the numbers of CFUs; 30 J/cm(2) BL with RB at 1.6, 16 and 160 μg/mL demonstrated a log reduction of 6.3, 8.0 and 5.5, respectively; and a log reduction of 5.2 was obtained after 30 J/cm(2) RL with 16 μg/mL TB. Within the limits of this study, BL was found to have an antimicrobial/growth-inhibiting effect on P. gingivalis, and a-PDT using a combination of BL and RB shows promise as a new technical modality for bacterial elimination in periodontal therapy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Cholesterol crystals enhance TLR2-and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis

    DEFF Research Database (Denmark)

    Køllgaard, Tania Maria Simonsen; Enevold, Christian; Bendtzen, Klaus

    2017-01-01

    Cholesterol deposits and pro-inflammatory cytokines play an essential role in the pathogenesis of atherosclerosis, a predominant cause of cardiovascular disease (CVD). Epidemiological evidence has linked periodontal disease (PD) with atherosclerotic CVD. Accordingly, viable periodontal pathogens...... findings support that CHCs, via stimulation of NLRP3 inflammasomes, act in synergy with the periodontal pathogen P. gingivalis to promote monocyte secretion of pro-atherogenic cytokines....

  14. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study.

    Science.gov (United States)

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.

  15. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitrostudy

    Directory of Open Access Journals (Sweden)

    Nagaraj Bharath

    2015-01-01

    Full Text Available Background: The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg, Prevotella intermedia (Pi, Fusobacterium nucleatum (Fn and Aggregatibacter actinomycetemcomitans (Aa. Materials and Methods: Minimum inhibitory concentrations (MICs and minimum bactericidal concentrations (MBC were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. Results: MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Conclusion: Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.

  16. Antimicrobial test of Roselle (Hibiscus sabdariffa L. ethanol extract againts Porphyromonas gingivalis and Streptococcus sanguis using agar method (In vitro study

    Directory of Open Access Journals (Sweden)

    Lenni Indriani

    2016-08-01

    Full Text Available The use of natural materials in the world of health tends to increase every single year, including  in dentistry. Due to the increased of resistance to antibiotics, the development and new innovations to obtain a new antimicrobial agent. Some potential sources of plants have been studied. One of the natural plants is used as drinks, food, medicine and antimicrobial agent is Hibiscus sabdariffa Linn commonly known as Roselle. Several major Gram-negative bacteria are related to periodontal disease such as Porphyromonas gingivalis (P.gingivalis, The dominant species of Gram-positive including Streptococcus sanguis(S.sanguis. The purpose of this in vitro study is to evaluate the Roselle ethanol extract against P.gingivalis bacteria (Gram negative bacteria and S. sanguis (Gram positive bacteria with a concentration of 2.5%, 5%, 7.5% and 10%. The in vitro study of antibacterial effectiveness of Roselle (Hibiscus sabdariffa L. ethanol extract on P.gingivalis and S. sanguis. Natrium Agar (NA solution was poured into a glass plate which had previously been sterilized and then left in place until the medium solidified. P.gingivalis and S.sanguis bacterial cultures were inoculated with inscribed which had solidified. Then put paper disk which had previously been saturated with Roselle extract samples with a concentration of 2.5%, 5%, 7.5% and 10%, and the negative control at the surface of the medium (Ampicillin and incubated for 1 day. Clear zone is formed then observed and measured. There are 24 samples, consisting of 12 samples  P.gingivalis and S.sanguis 12 samples, given intervention roselle flower extract with four types of concentrations to determine the minimum inhibitory consentration (MIC. The observations show that the extensive zone of inhibition concentration of 2.5% a broad zone of inhibition is the smallest among other concentration, both of S.sanguins and P.gingivalis. Meanwhile, the average increases the

  17. Using Tn-seq To Identify Pigmentation-Related Genes of Porphyromonas gingivalis: Characterization of the Role of a Putative Glycosyltransferase.

    Science.gov (United States)

    Klein, Brian A; Cornacchione, Louis P; Collins, Marisha; Malamy, Michael H; Duncan, Margaret J; Hu, Linden T

    2017-07-15

    Cellular pigmentation is an important virulence factor of the oral pathogen Porphyromonas gingivalis Pigmentation has been associated with many bacterial functions, including but not limited to colonization, maintaining a local anaerobic environment by binding oxygen molecules, and defense against reactive oxygen species (ROS) produced by immune cells. Pigmentation-associated loci identified to date have involved lipopolysaccharide, fimbriae, and heme acquisition and processing. We utilized a transposon mutant library of P. gingivalis strain ATCC 33277 and screened for pigmentation-defective colonies using massively parallel sequencing of the transposon junctions (Tn-seq) to identify genes involved in pigmentation. Transposon insertions at 235 separate sites, located in 67 genes and 15 intergenic regions, resulted in altered pigmentation: 7 of the genes had previously been shown to be involved in pigmentation, while 75 genes and intergenic regions had not. To further confirm identification, we generated a smaller transposon mutant library in P. gingivalis strain W83 and identified pigment mutations in several of the same loci as those identified in the screen in ATCC 33277 but also eight that were not identified in the ATCC 33277 screen. PGN_0361/PG_0264, a putative glycosyltransferase gene located between two tRNA synthetase genes and adjacent to a miniature inverted-repeat transposable element, was identified in the Tn-seq screen and then verified through targeted deletion and complementation. Deletion mutations in PGN_0361/PG_0264 glycosyltransferase abolish pigmentation, modulate gingipain protease activity, and alter lipopolysaccharide. The mechanisms of involvement in pigmentation for other loci identified in this study remain to be determined, but our screen provides the most complete survey of genes involved in pigmentation to date.IMPORTANCEP. gingivalis has been implicated in the onset and progression of periodontal disease. One important virulence factor

  18. Identification of the linkage between A-polysaccharide and the core in the A-lipopolysaccharide of Porphyromonas gingivalis W50.

    Science.gov (United States)

    Paramonov, Nikolay; Aduse-Opoku, Joseph; Hashim, Ahmed; Rangarajan, Minnie; Curtis, Michael A

    2015-05-01

    Porphyromonas gingivalis synthesizes two lipopolysaccharides (LPSs), O-LPS and A-LPS. The structure of the core oligosaccharide (OS) of O-LPS and the attachment site of the O-polysaccharide (O-PS) repeating unit [ → 3)-α-D-Galp-(1 → 6)-α-D-Glcp-(1 → 4)-α-L-Rhap-(1 → 3)-β-D-GalNAcp-(1 → ] to the core have been elucidated using the ΔPG1051 (WaaL, O-antigen ligase) and ΔPG1142 (Wzy, O-antigen polymerase) mutant strains, respectively. The core OS occurs as an "uncapped" glycoform devoid of O-PS and a "capped" glycoform that contains the attachment site of O-PS via β-d-GalNAc at position O-3 of the terminal α-(1 → 3)-linked mannose (Man) residue. In this study, the attachment site of A-PS to the core OS was determined based on structural analysis of SR-type LPS (O-LPS and A-LPS) isolated from a P. gingivalis ΔPG1142 mutant strain by extraction with aqueous hot phenol to minimize the destruction of A-LPS. Application of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy in combination with methylation analysis showed that the A-PS repeating unit is linked to a nonterminal α-(1 → 3)-linked Man of the "capped core" glycoform of outer core OS at position O-4 via a → 6)-[α-D-Man-α-(1 → 2)-α-D-Man-1-phosphate → 2]-α-D-Man-(1 → motif. In order to verify that O-PS and A-PS are attached to almost identical core glycoforms, we identified a putative α-mannosyltransferase (PG0129) in P. gingivalis W50 that may be involved in the formation of core OS. Inactivation of PG0129 led to the synthesis of deep-R-type LPS with a truncated core that lacks α-(1 → 3)-linked mannoses and is devoid of either O-PS or A-PS. This indicated that PG0129 is an α-1,3-mannosyltransferase required for synthesis of the outer core regions of both O-LPS and A-LPS in P. gingivalis. Porphyromonas gingivalis, a Gram-negative anaerobe, is considered to be an important etiologic agent in periodontal disease, and among the virulence factors produced by

  19. Mfa4, an Accessory Protein of Mfa1 Fimbriae, Modulates Fimbrial Biogenesis, Cell Auto-Aggregation, and Biofilm Formation in Porphyromonas gingivalis.

    Science.gov (United States)

    Ikai, Ryota; Hasegawa, Yoshiaki; Izumigawa, Masashi; Nagano, Keiji; Yoshida, Yasuo; Kitai, Noriyuki; Lamont, Richard J; Yoshimura, Fuminobu; Murakami, Yukitaka

    2015-01-01

    Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is considered to be a key pathogen in periodontal disease. The bacterium expresses Mfa1 fimbriae, which are composed of polymers of Mfa1. The minor accessory components Mfa3, Mfa4, and Mfa5 are incorporated into these fimbriae. In this study, we characterized Mfa4 using genetically modified strains. Deficiency in the mfa4 gene decreased, but did not eliminate, expression of Mfa1 fimbriae. However, Mfa3 and Mfa5 were not incorporated because of defects in posttranslational processing and leakage into the culture supernatant, respectively. Furthermore, the mfa4-deficient mutant had an increased tendency to auto-aggregate and form biofilms, reminiscent of a mutant completely lacking Mfa1. Notably, complementation of mfa4 restored expression of structurally intact and functional Mfa1 fimbriae. Taken together, these results indicate that the accessory proteins Mfa3, Mfa4, and Mfa5 are necessary for assembly of Mfa1 fimbriae and regulation of auto-aggregation and biofilm formation of P. gingivalis. In addition, we found that Mfa3 and Mfa4 are processed to maturity by the same RgpA/B protease that processes Mfa1 subunits prior to polymerization.

  20. Bactericidal effect of visible light in the presence of erythrosine on Porphyromonas gingivalis and Fusobacterium nucleatum compared with diode laser, an in vitro study.

    Science.gov (United States)

    Habiboallah, Ghanbari; Mahdi, Zakeri; Mahbobeh, Naderi Nasab; Mina, Zareian Jahromi; Sina, Faghihi; Majid, Zakeri

    2014-12-27

    Recently, photodynamic therapy (PDT) has been introduced as a new modality in oral bacterial decontamination. Besides, the ability of laser irradiation in the presence of photosensitizing agent to lethal effect on oral bacteria is well documented. Current research aims to evaluate the effect of photodynamic killing of visible blue light in the presence of plaque disclosing agent erythrosine as photosensitizer on Porphyromonas gingivalis associated with periodontal bone loss and Fusobacterium nucleatum associated with soft tissue inflammation, comparing with the near-infrared diode laser. Standard suspension of P. gingivalis and F. nucleatum were exposed to Light Emitting Diode (LED) (440-480 nm) used to photopolymerize composite resine dental restoration in combination with erythrosine (22 µm) up to 5 minutes. Bacterial sample were also exposed to a near-infrared diode laser (wavelength, 830 nm), using identical irradiation parameters for comparison. Bacterial samples from each treatment groups (radiation-only group, erythrosine-only group and light or laser with erythrosine group) were subcultured onto the surface of agar plates. Survival of these bacteria was determined by counting the number of colony forming units (CFU) after incubation. Exposure to visible blue light and diode laser in conjugation with erythrosine significantly reduced both species examined viability, whereas erythrosine-treated samples exposed to visible light suggested a statically meaningful differences comparing to diode laser. In addition, bactericidal effect of visible light or diode laser alone on P. gingivalis as black-pigmented bacteria possess endogenous porphyrins was noticeably. Our result suggested that visible blue light source in the presence of plaque disclosing agent erythrosine could can be consider as potential approach of PDT to kill the main gram-negative periodontal pathogens. From a clinical standpoint, this regimen could be established as an additional minimally

  1. Age-dependent changes in Porphyromonas gingivalis and Prevotella species/phylotypes in healthy gingiva and inflamed/diseased sub-gingival sites.

    Science.gov (United States)

    Nadkarni, Mangala A; Chhour, Kim-Ly; Browne, Gina V; Byun, Roy; Nguyen, Ky-Anh; Chapple, Cheryl C; Jacques, Nicholas A; Hunter, Neil

    2015-05-01

    Early colonisation of oral surfaces by periodontal pathogens presents a significant risk factor for subsequent development of destructive disease affecting tissues that support the dentition. The aims of the present study were to establish the age-dependent relationship between sub-gingival profiles of 22 Prevotella species/phylotypes in children, adolescents and adults from an isolated Aboriginal community and, further, to use this information to identify Prevotella species that could serve as microbial risk indicators. DNA isolated from sub-gingival plaque samples (three healthy sites and three inflamed/diseased sites) from adults, adolescents and children was screened for Porphyromonas gingivalis load and 22 Prevotella species/phylotypes by species-specific PCR. A noticeable feature in adolescents was the marked increase in colonisation by P. gingivalis across all test sites. The mean number of Prevotella species/phylotypes colonising inflamed/diseased sub-gingival sites increased with age. Progressive partitioning of selected Prevotella species/phylotypes to healthy or inflamed/diseased sites was evident. Prevalence of Prevotella intermedia, Prevotella oral clone P4PB_24 and Prevotella oris increased significantly with age in diseased sites. Similarly, significant age-dependent increase in colonisation of healthy as well as inflamed/diseased sub-gingival sites was apparent for Prevotella oralis, Prevotella multiformis, Prevotella denticola, Prevotella strain P4P_53 and Prevotella oral clone BR014. Early colonisation of children by P. gingivalis, P. intermedia and Prevotella oral clone P4PB_24 provides indication of risk for subsequent development of periodontal disease. In the present study, the complexity of Prevotella species within gingival sites is explored as a basis for evaluating contribution of Prevotella species to disease.

  2. Progression of periodontal inflammation in adolescents is associated with increased number of Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, and Fusobacterium nucleatum.

    Science.gov (United States)

    Yang, Ning-Yan; Zhang, Quan; Li, Jin-Lu; Yang, Sheng-Hui; Shi, Qing

    2014-05-01

    The study aims to evaluate the change of related subgingival periodontopathogens among different stage of gingivitis in adolescent and assess the relationship between periodontopathogens and the progression of periodontal inflammation. A total of 77 subgingival plaque samples from 35 adolescent individuals were divided into three groups including gingivitis group (mild, 15 samples; moderate, 16 samples; severe, 15 samples), chronic periodontitis group (15 samples) and healthy group (15 samples). Real-time PCR was used to quantitate Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, and Fusobacterium nucleatum in subgingival plaque samples. All species, except for F. nucleatum, were detected in samples from gingivitis and periodontitis groups in significantly greater number than in those from healthy group (P < 0.05). In gingivitis groups, the number of P. gingivalis, T. forsythensis, and F. nucleatum in moderate and severe gingivitis groups was significantly higher than in mild gingivitis group (P < 0.05). After merging moderate gingivitis and severe gingivitis groups into moderate-to-severe gingivitis group, the four periodontopathogens were detected in samples from periodontitis group in significantly greater number than in those from moderate-to-severe gingivitis group (P < 0.05). The number of P. gingivalis, P. intermedia, T. forsythensis, and F. nucleatum in subgingival plaque increases with progression of periodontal inflammation in adolescents. Examination of periodontopathogens number in adolescents may be of some value for monitoring of periodontal disease development. © 2013 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. PURIFICACIÓN DE LIPOPOLISACÁRIDO DE Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200

    Directory of Open Access Journals (Sweden)

    DIEGO GUALTERO

    2008-01-01

    Full Text Available El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa se separó el extracto por filtración por gel con Sephacryl S-200. La muestra purificada se caracterizó por electroforesis en gel de acrilamida con tinción de plata y por el método Purpald se detecto el ácido 2-ceto-3-desoxioctu-losónico (KDO. Se obtuvo una preparación libre de ácidos nucleicos, proteínas y polisacáridos. La separación por cromatografía fue de alta resolución al permitir la obtención de dos picos con diferentes componentes. El protocolo de purificación nos permitió obtener LPS de P. gingivalis con alto grado de pureza, el cual podría ser usado en próximos ensayos para evaluar su función en ensayos in vitro e in vivo; así como iniciar la obtención de LPS de otras bacterias períodontopáticas, con el fin de investigar la asociación de enfermedad períodontal con enfermedades cardiovasculares.

  4. PURIFICACIÓN DE LIPOPOLISACÁRIDO DE Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200

    Directory of Open Access Journals (Sweden)

    Lafaurie Gloria

    2008-12-01

    Full Text Available El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa se separó el extracto por filtración por gel con Sephacryl S-200. La muestra purificada se caracterizó por electroforesis en gel de acrilamida con tinción de plata y por el método Purpald se detecto el ácido 2-ceto-3-desoxioctulosónico (KDO. Se obtuvo una preparación libre de ácidos nucleicos, proteínas y polisacáridos. La separación por cromatografía fue de alta resolución al permitir la obtención de dos picos con diferentes componentes. El protocolo de purificación nos permitió obtener LPS de P. gingivalis con alto grado de pureza, el cual podría ser usado en próximos ensayos para evaluar su función en ensayos in vitro e in vivo; así como iniciar la obtención de LPS de otras bacterias períodontopáticas, con el fin de investigar la asociación de enfermedad períodontal con enfermedades cardiovasculares.

  5. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants.

    Science.gov (United States)

    Arjunan, P; El-Awady, A; Dannebaum, R O; Kunde-Ramamoorthy, G; Cutler, C W

    2016-02-01

    The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Antibacterial Activities of Glycyrrhiza gabra Linn. (Licorice Root Extract against Porphyromonas gingivalis rand Its Inhibitory Effects on Cysteine Proteases and Biofilms

    Directory of Open Access Journals (Sweden)

    Suttipalin Suwannakul

    2017-12-01

    Full Text Available Little is known about the antibacterial activity of licorice root extract. Objective: To investigate the antimicrobial and anti-proteolytic activities of root extract on Porphyromonas gingivalis in both planktonics and bioflm cells. Methods: Glycyrrhiza glabra (G. glabra roots were extracted by 95% ethanol freeze dried and kept at -20˚C prior experiments. P.gingvalis (ATCC 33277 were cultured and used for experiments. Determination of antibacterial activities of G.glabra extracts (lico rice against P.gingvalis planktonic the MIC and MBC were evaluated by agar well diffusion, broth microdilution, and time-killing methods. The crystal violet assay was used to assess the bioflm growth inhibition and the disruption of established bioflm. The Arg - specifc proteolytic activities were analyzed using the chromogenic substrates assays using N-benzoyl-DL-arginine-4-nitroanilide hydrochloride and N-(p-tosyl-Gly Pro-Lys 4-nitroanilide acetate salt to assess the enzymatic inhibition effects of the extracts compared with the controls. Results: The licorice root extract had antimicrobial activities on P.gingivalis with MIC and MBC of 62.5µg/ml and 25 µg/ml respectively. The assay showed that Licorice root extronidazole. Licorice root extract also had effect on P.gingivalis bioflms. Quantifcation by crystal violate staining showed the reduction of bioflm mass in the presence of Licorice root extract. The Arg-and Kgp- proteases activities were also inhibited by the extract in dose dependent manner. Conclusion: The results suggested that licorice root extract may has potential therapeutics values as a candidate for periodontal disease

  7. Anti-HmuY antibodies specifically recognize Porphyromonas gingivalis HmuY protein but not homologous proteins in other periodontopathogens.

    Directory of Open Access Journals (Sweden)

    Michał Śmiga

    Full Text Available Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins and T. forsythia (Tfo protein and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.

  8. Detection of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans after systemic administration of Amoxicillin plus Metronidazole as an adjunct to non-surgical periodontal therapy: A Systematic Review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Aleksandar Dakic

    2016-08-01

    Full Text Available Objective: To evaluate the variations in the detection of Porphyromonas gingivalis and/or Aggregatibacter actinomycetemcomitans before and after systemic administration of amoxicillin plus metronidazole in association with non-surgical periodontal therapy.Background: The adjunctive use of antibiotics has been advocated to improve the clinical outcomes of non-surgical periodontal therapy. However, no systematic review has investigated the microbiological benefit of this combination. Material and Methods: An electronic search was conducted up to December 2015. Randomized clinical trials comparing the number of patients testing positive for Porphyromonas gingivalis and/or Aggregatibacter actinomycetemcomitans before and after non-surgical periodontal therapy with (test group or without (control group amoxicillin plus metronidazole were included. The difference between groups in the variation of positive patients was calculated using the inverse variance method with a random effects model.Results: The frequency of patients positive for Aggregatibacter actinomycetemcomitans was decreased by 30 % (p=0.002 and by 25 % (p=0.01 in the test group compared to the control group at 3-month and 6-month follow-up, respectively. Similar findings were observed when considering the frequency of patients positive for Porphyromonas gingivalis, with a reduction by 28 % (p<0.0001, 32% (p<0.0001 and 34% (p=0.03 in the test group compared to the control group at 3-month, 6-month and 12-month follow-up, respectively. Conclusion: The systemic administration of amoxicillin plus metronidazole as an adjunct to non-surgical periodontal therapy significantly decreased the number of patients positive for Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans compared with periodontal therapy alone or with a placebo.

  9. [Effects of oral interventions on carotid artery in rats with chronic periodontitis for the detection of Porphyromonas gingivalis and the expression of C-reactive protein].

    Science.gov (United States)

    Xiuyun, Ren; Chong, Wang; Xin, Liu; Hao, Li; Qianhui, Ma; Mu, Lin; Xuexue, Shi; Jinhua, Gao

    2017-04-01

    This study aimed to establish a SD rat model of chronic periodontitis (CP) merged with hyperlipidemia (HL), perform periodontal treatment, detect the expression of partial C-reactive protein (CRP) and Porphyromonas gingivalis (P. gingivalis) in the rat carotid artery, and explore the relationship between periodontitis and atherosclerosis. SD rats were randomly divided into three groups: control group (A), HL group (B), and CP+HL group (C). Group C rats were divided into natural process group (C1), scaling and root planning group (C2), and tooth extraction group (C3). Group C2 rats were randomly divided into C2-1 (scaling and root planning group) and C2-2 (scaling and root planning+minocyline+systemic antibiotics group). Group C3 rats were randomly divided into C3-1 (tooth extraction group) and C3-2 (tooth extraction+systemic antibiotic group). One rat from group B was randomly selected and sacrificed after 15 weeks. Subsequently, the carotid vascular tissue was collected for oil red O staining. Modeling was successful when foam cell formation was observed. Periodontal treatments were conducted twice, and euthanasia was performed after the experiment. Moreover, double-carotid artery bifurcation was carried out to detect the expression of CRP and P. gingivalis. Immunohistochemical and 16sRNA semiquantitative methods were used to detect the CRP expression and the relative contents of P. gingivalis, respectively. Immunohistochemical results showed that the CRP-positive expression in groups B and C was significantly higher than that in group A (Pgingivalis in group C1 was the highest and significantly higher than that in groups A and B (Pgingivalis in groups C2-1, C2-2, C3-1, and C3-2 were significantly lower than that in group C1 (P<0.05), and the quantity in group C3-2 was the lowest (P<0.05). Rats with CP associated with HL will increase the CRP expression and oral bacteria quantity on carotid artery, and lesions will gradually aggravate. Interventions, such as

  10. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark.

    Science.gov (United States)

    Mohieldin, Ebtihal Abdalla M; Muddathir, Ali Mahmoud; Mitsunaga, Tohru

    2017-04-20

    Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at

  11. Green tea extract and its major constituent, epigallocatechin-3-gallate, induce epithelial beta-defensin secretion and prevent beta-defensin degradation by Porphyromonas gingivalis.

    Science.gov (United States)

    Lombardo Bedran, T B; Feghali, K; Zhao, L; Palomari Spolidorio, D M; Grenier, D

    2014-10-01

    Antimicrobial peptides, such as beta-defensins, secreted by gingival epithelial cells, are thought to play a major role in preventing periodontal diseases. In the present study, we investigated the ability of green tea polyphenols to induce human beta-defensin (hBD) secretion in gingival epithelial cells and to protect hBDs from proteolytic degradation by Porphyromonas gingivalis. Gingival epithelial cells were treated with various amounts (25-200 μg/mL) of green tea extract or epigallocatechin-3-gallate (EGCG). The secretion of hBD1 and hBD2 was measured using ELISAs, and gene expression was quantified by real-time PCR. The treatments were also carried out in the presence of specific kinase inhibitors to identify the signaling pathways involved in hBD secretion. The ability of green tea extract and EGCG to prevent hBD degradation by proteases of P. gingivalis present in a bacterial culture supernatant was evaluated by ELISA. The secretion of hBD1 and hBD2 was up-regulated, in a dose-dependent manner, following the stimulation of gingival epithelial cells with a green tea extract or EGCG. Expression of the hBD gene in gingival epithelial cells treated with green tea polyphenols was also increased. EGCG-induced secretion of hBD1 and hBD2 appeared to involve extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Lastly, green tea extract and EGCG prevented the degradation of recombinant hBD1 and hBD2 by a culture supernatant of P. gingivalis. Green tea extract and EGCG, through their ability to induce hBD secretion by epithelial cells and to protect hBDs from proteolytic degradation by P. gingivalis, have the potential to strengthen the epithelial antimicrobial barrier. Future clinical studies will indicate whether these polyphenols represent a valuable therapeutic agent for treating/preventing periodontal diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Biochemical characterization of recombinant β-carbonic anhydrase (PgiCAb) identified in the genome of the oral pathogenic bacterium Porphyromonas gingivalis.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; AlOthman, Zeid; Osman, Sameh M; Supuran, Claudiu T; Capasso, Clemente

    2015-06-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ-, δ- and ζ-CAs are ubiquitous metalloenzymes present in prokaryotes and eukaryotes. CAs started to be investigated in detail only recently in pathogenic bacteria, in the search for antibiotics with a novel mechanism of action, since it has been demonstrated that in many such organisms they are essential for the life cycle of the organism. CA inhibition leads to growth impairment or growth defects in several pathogenic bacteria. The microbiota of the human oral mucosa consists of a myriad of bacterial species, Porphyromonas gingivalis being one of them and the major pathogen responsible for the development of chronic periodontitis. The genome of P. gingivalis encodes for a β- and a γ-CAs. Recently, our group purified the recombinant γ-CA (named PgiCA) which was shown to possess a significant catalytic activity for the reaction that converts CO2 to bicarbonate and protons, with a kcat of 4.1 × 10(5 )s(-1) and a kcat/Km of 5.4 × 10(7 )M(-1 )× s(-1). We have also investigated its inhibition profile with a range of inorganic anions such as thiocyanate, cyanide, azide, hydrogen sulfide, sulfamate and trithiocarbonate. Here, we describe the cloning, purification and kinetic parameters of the other class of CA identified in the genome of P. gingivalis, the β-CA, named PgiCAb. This enzyme has a good catalytic activity, with a kcat of 2.8 × 10(5 )s(-1) and a kcat/Km of 1.5 × 10(7 )M(-1 )× s(-1). PgiCAb was also inhibited by the clinically used sulfonamide acetazolamide, with an inhibition constant of 214 nM. The role of CAs as possible virulence factors of P. gingivalis is poorly understood at the moment but their good catalytic activity and the fact that they might be inhibited by a large number of compounds, which may pave the way for finding inhibitors with antibacterial activity that may elucidate these phenomena and lead to novel antibiotics.

  13. Genotipificación de los genes rgpA y kgp que codifican para las gingipaínas de Porphyromonas gingivalis Genotyping of rgpA and kgp genes encoding Pophyromonas gingivalis gingipains

    Directory of Open Access Journals (Sweden)

    L Abusleme

    2012-12-01

    Full Text Available Porphyromonas gingivalis es un microorganismo fuertemente asociado con la etiología de la periodontitis. Esta bacteria posee varios factores de virulencia, dentro de los que destacan las gingipaínas, debido a sus múltiples acciones relacionadas con la destrucción de la matriz extracelular del tejido conectivo periodontal, la modulación del sistema inmune del hospedero y la estimulación de la expresión de citoquinas pro-inflamatorias. Estas proteinasas tienen afinidades específicas siendo Arg-gingipaínas (RgpA y RgpB, codificadas por los genes rgpA y rgpB, respectivamente y Lys-gingipaínas (Kgp, codificada por el gen kgp. Se ha descrito que existen polimorfismos en los genes que codifican para esta proteinasas. El objetivo del presente estudio fue describir la frecuencia de los genotipos identificados para los genes rgpA y kgp en aislados clínicos de P. gingivalis, obtenidos desde pacientes con periodontitis. Para ello se utilizó amplificación por PCR de los genes rgpA y kgp, seguido de análisis de restricción. De un total de 47 aislados provenientes de 4 individuos con periodontitis crónica y 2 con periodontitis agresiva, se genotipificaron 38 aislados para el gen rgpA, exhibiendo la totalidad de éstos el patrón electroforético A (100%. Para el gen kgp se genotipificaron 43 aislados, presentando 28 de ellos (65.2% el perfil electroforético kgp-I y 15 aislados (34.8% el perfil kgp-II. En los aislados provenientes de un individuo fue posible apreciar ambos genotipos descritos para el gen kgp. Los resultados indican un predominio del patrón electroforético A (rgpA y que el genotipo kgp-I fue el más frecuentemente encontrado de los genotipos kgp.Porphyromonas gingivalis is a microorganism strongly associated with the etiology of periodontitis. This periodontal bacterium possesses an array of virulence factors, among which gingipains have a key importance, being involved with extracellular matrix destruction of periodontal

  14. Porphyromonas gingivalis C-terminal signal peptidase PG0026 and HagA interact with outer membrane protein PG27/LptO.

    Science.gov (United States)

    Saiki, K; Konishi, K

    2014-02-01

    Outer membrane protein PG27 is essential for secretion/maturation of conserved C-terminal domain (CTD) proteins such as gingipains, HagA, and PG0026. To determine the binding partner(s) of PG27, we used a Porphyromonas gingivalis mutant strain, 83K48, which expressed functional histidine-tagged PG27. Purification of histidine-tagged PG27 from 83K48 found that 136-kDa and 264-kDa proteins accompanied histidine-tagged PG27. Mass spectrometry revealed the 136-kDa protein and 264-kDa protein to be PG0026 and PG1837 (HagA), respectively. PG0026 is a C-terminal signal peptidase which cleaves the CTDs of other CTD proteins. A cross-linking and a native electrophoresis studies suggested the interaction between histidine-tagged PG27 and HagA and the interaction between histidine-tagged PG27 and PG0026. We constructed Porphyromonas gingivalis gene disrupting mutants, and characterized them. PG0026 was required for the full activities of gingipains, whereas HagA was not. A mutation disrupting PG0026 affected localization of PG27, but a mutation disrupting PG1837 showed little effect on the expression and localizations of PG27 and PG0026. To determine the functional role of HagA, we used PG1837-disruptant 83K54 which expressed functional histidine-tagged PG27. Histidine-tagged PG27 in 83K54 was co-purified with not only PG0026 but also several contaminated proteins. These results suggest that PG0026 interacts with PG27 in the absence of HagA, and that the binding state of a PG27-PG0026 complex was affected and stabilized by HagA. Taken together, these data suggest that secreted PG0026 anchors to the cell by interacting with PG27, is stabilized by HagA, and functions in processing of other CTD proteins such as gingipains. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Porphyromonas gingivalis FimA fimbriae: fimbrial assembly by fimA alone in the fim gene cluster and differential antigenicity among fimA genotypes.

    Directory of Open Access Journals (Sweden)

    Keiji Nagano

    Full Text Available The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster, which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.

  16. Anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides.

    Science.gov (United States)

    Le Sage, Fanny; Meilhac, Olivier; Gonthier, Marie-Paule

    2017-05-01

    In obesity, gut microbiota LPS may translocate into the blood stream and then contribute to adipose tissue inflammation and oxidative stress, leading to insulin resistance. A causal link between periodontal infection, obesity and type 2 diabetes has also been suggested. We evaluated the ability of polyphenols from Antirhea borbonica medicinal plant to improve the inflammatory and redox status of 3T3-L1 adipocytes exposed to LPS of Porphyromonas gingivalis periodontopathogen or Escherichia coli enterobacteria. Our results show that LPS enhanced the production of Toll-like receptor-dependent MyD88 and NFκB signaling factors as well as IL-6, MCP-1, PAI-1 and resistin. Plant polyphenols reduced LPS pro-inflammatory action. Concomitantly, polyphenols increased the production of adiponectin and PPARγ, known as key anti-inflammatory and insulin-sensitizing mediators. Moreover, both LPS increased intracellular ROS levels and the expression of genes encoding ROS-producing enzymes including NOX2, NOX4 and iNOS. Plant polyphenols reversed these effects and up-regulated MnSOD and catalase antioxidant enzyme gene expression. Noticeably, preconditioning of cells with caffeic acid, chlorogenic acid or kaempferol identified among A. borbonica major polyphenols, led to similar protective properties. Altogether, these findings demonstrate the anti-inflammatory and antioxidant effects of A. borbonica polyphenols on adipocytes, in response to P. gingivalis or E. coli LPS. It will be of major interest to assess A. borbonica polyphenol benefits against obesity-related metabolic disorders such as insulin resistance in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Differential Regulation of Mas-Related G Protein-Coupled Receptor X2-Mediated Mast Cell Degranulation by Antimicrobial Host Defense Peptides and Porphyromonas gingivalis Lipopolysaccharide.

    Science.gov (United States)

    Gupta, Kshitij; Idahosa, Chizobam; Roy, Saptarshi; Lee, Donguk; Subramanian, Hariharan; Dhingra, Anuradha; Boesze-Battaglia, Kathleen; Korostoff, Jonathan; Ali, Hydar

    2017-10-01

    Porphyromonas gingivalis is a keystone pathogen that contributes to periodontal pathogenesis by disrupting host-microbe homeostasis and promoting dysbiosis. The virulence of P. gingivalis likely reflects an alteration in the lipid A composition of its lipopolysaccharide (LPS) from the penta-acylated (PgLPS1690) to the tetra-acylated (PgLPS1435/1449) form. Mast cells play an important role in periodontitis, but the mechanisms of their activation and regulation remain unknown. The expression of epithelium- and neutrophil-derived host defense peptides (HDPs) (LL-37 and human β-defensin-3), which activate mast cells via Mas-related G protein-coupled receptor X2 (MRGPRX2), is increased in periodontitis. We found that MRGPRX2-expressing mast cells are present in normal gingiva and that their numbers are elevated in patients with chronic periodontitis. Furthermore, HDPs stimulated degranulation in a human mast cell line (LAD2) and in RBL-2H3 cells stably expressing MRGPRX2 (RBL-MRGPRX2). PgLPS1690 caused substantial inhibition of HDP-induced mast cell degranulation, but PgLPS1435/1449 had no effect. A fluorescently labeled HDP (FAM-LL-37) bound to RBL-MRGPRX2 cells, and PgLPS1690 inhibited this binding, but PgLPS1435/1449 had no effect. These findings suggest that low-level inflammation induced by HDP/MRGPRX2-mediated mast cell degranulation contributes to gingival homeostasis but that sustained inflammation due to elevated levels of both HDPs and MRGPRX2-expressing mast cells promotes periodontal disease. Furthermore, differential regulation of HDP-induced mast cell degranulation by PgLPS1690 and PgLPS1435/1449 may contribute to the modulation of disease progression. Copyright © 2017 American Society for Microbiology.

  18. In vitro cytokine responses to periodontal pathogens: generalized aggressive periodontitis is associated with increased IL-6 response to Porphyromonas gingivalis

    DEFF Research Database (Denmark)

    Borch, T S; Holmstrup, Palle; Bendtzen, K

    2010-01-01

    the participants' inherent oral flora. The P. gingivalis -induced production of IL-6 was approximately 2.5-fold higher in patients with GAgP than in healthy controls (P alpha production was non-significantly elevated. IL-1beta production induced by P. gingivalis, as all cytokine......Generalized aggressive periodontitis (GAgP) is an inflammatory condition resulting in destruction of tooth-supporting tissues. We examined the production of IL-1beta, IL-6, tumour necrosis factor (TNF)-alpha, IL-12 and IL-10 in cultures of peripheral mononuclear cells (MNC) from 10 patients...... from two donors free of disease were stimulated with this bacterium in the presence of the various patient and control sera. An elevated IL-6 and TNF-alpha response was observed in the presence of patient sera (P

  19. Smoking, Porphyromonas gingivalis and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a Southern European nested case-control study.

    Science.gov (United States)

    Fisher, Benjamin A; Cartwright, Alison J; Quirke, Anne-Marie; de Pablo, Paola; Romaguera, Dora; Panico, Salvatore; Mattiello, Amalia; Gavrila, Diana; Navarro, Carmen; Sacerdote, Carlotta; Vineis, Paolo; Tumino, Rosario; Lappin, David F; Apatzidou, Danae; Apazidou, Danae; Culshaw, Shauna; Potempa, Jan; Michaud, Dominique S; Riboli, Elio; Venables, Patrick J

    2015-11-04

    Antibodies to citrullinated proteins (ACPA) occur years before RA diagnosis. Porphyromonas gingivalis expresses its own peptidylarginine deiminase (PPAD), and is a proposed aetiological factor for the ACPA response. Smoking is a risk factor for both ACPA-positive RA and periodontitis. We aimed to study the relation of these factors to the risk of RA in a prospective cohort. We performed a nested case-control study by identifying pre-RA cases in four populations from the European Prospective Investigation into Cancer and nutrition, matched with three controls. Data on smoking and other covariates were obtained from baseline questionnaires. Antibodies to CCP2 and citrullinated peptides from α-enolase, fibrinogen, vimentin and PPAD were measured. Antibodies to arginine gingipain (RgpB) were used as a marker for P.gingivalis infection and validated in a separate cohort of healthy controls and subjects with periodontitis. We studied 103 pre-RA cases. RA development was associated with several ACPA specificities, but not with antibodies to citrullinated PPAD peptides. Antibody levels to RgpB and PPAD peptides were higher in smokers but were not associated with risk of RA or with pre-RA autoimmunity. Former but not current smoking was associated with antibodies to α-enolase (OR 4.06; 95 % CI 1.02, 16.2 versus 0.54; 0.09-3.73) and fibrinogen peptides (OR 4.24; 95 % CI 1.2-14.96 versus 0.58; 0.13-2.70), and later development of RA (OR 2.48; 95 % CI 1.27-4.84 versus 1.57; 0.85-2.93), independent of smoking intensity. Smoking remains a risk factor for RA well before the clinical onset of disease. In this cohort, P.gingivalis is not associated with pre-RA autoimmunity or risk of RA in an early phase before disease-onset. Antibodies to PPAD peptides are not an early feature of ACPA ontogeny.

  20. Daya antibakteri obat kumur chlorhexidine, povidone iodine, fluoride suplementasi zinc terhadap, Streptococcus mutans dan Porphyromonas gingivalis (Antibacterial effect of mouth washes containing chlorhexidine, povidone iodine, fluoride plus zinc on Strep

    Directory of Open Access Journals (Sweden)

    Betadion Rizki Sinaredi

    2014-12-01

    Full Text Available Background: Dental Caries and periodontal disease prevalence in Indonesian children are still high. Some efforts can be done to overcome the problem; one of them is the use of mouthwash to decrease pathogen microorganisms. The mouthwashes that commercially available in market are chlorhexidine, povidone Iodine and Fluoride with Zinc supplementation. Purpose: The purpose of this study was to examine the anti bacterial effect of the mouthwashes chlorhexidine, povidone iodine and fluoride with zinc supplementation against mix bacteria that found in the plaque, Streptococcus mutans and Porphyromonas gingivalis. Methods: The antibacterial effect was measured using disk diffusion test. The bacteria samples (plaque polybacteria, S.mutans and P. gingivalis were inoculated and spread in the petridish containing MHA. Paper discs containing the mouthwashes were placed in the petridish and incubated for 24 hours at 37oC (anaerobe for P. gingivalis, aerobe for S. mutans and polybacteria. The diameter of inhibition zone surrounding the paper discs were measured and compared between each active ingredient contained in mouthwash. Results: Chlorhexidine had the strongest antibacterial effect than povidone iodine and fluoride. Chlorhexidine was more effective to inhibited the growth of S. mutans than to polybacteria or P.Gingivalis, while Povidone iodine and fluoride were more effective to inhibited the growth of polybacteria. Conclusion: The mouthwash chlorhexidine was more effective to inhibit the growth of plaque polybacteria, Streptoccous mutans and Porphyromonas gingivalis compared with povidone iodine and fluoride with zinc supplementation.Latar belakang: Prevalensi karies gigi dan penyakit periodontal masih tinggi pada anak Indonesia. Usaha mengatasi hal tersebut antara lain melalui melalui penggunaan obat kumur untuk mengurangi jumlah kuman pathogen. Kandungan obat kumur yang beredar di pasar diantaranya adalah chlorhexidine, povidone iodine dan fluoride

  1. Effect of a calcium hydroxide/chlorhexidine paste as intracanal dressing in human primary teeth with necrotic pulp against Porphyromonas gingivalis and Enterococcus faecalis.

    Science.gov (United States)

    Gondim, Juliana O; Avaca-Crusca, Juliana S; Valentini, Sandro R; Zanelli, Cleslei F; Spolidorio, Denise M P; Giro, Elisa M A

    2012-03-01

    Intracanal medication is important for endodontic treatment success as it eliminates microorganisms that persist after biomechanical preparation. Aim.  To evaluate the effect of two intracanal medications against Porphyromonas gingivalis and Enterococcus faecalis in the root canals of human primary teeth with necrotic pulp with and without furcal/periapical lesion, using quantitative real-time polymerase chain reaction (qRT-PCR). Thirty-two teeth with necrotic pulp were used. Twelve teeth did not present lesion, and 20 teeth presented radiographically visible furca/periapical lesion. Microbiological samples were collected after coronal access and biomechanical preparation. The teeth were medicated with calcium hydroxide pastes prepared with either polyethylene glycol or chlorhexidine. After 30days, the medication was removed and a third collection was performed. Microbiological samples were processed using qRT-PCR. Data were analysed by Wilcoxon and Mann-Whitney tests (α=0.05). There was no significant diffe