WorldWideScience

Sample records for viable airborne microbes

  1. [Development of a microenvironment test chamber for airborne microbe research].

    Science.gov (United States)

    Zhan, Ningbo; Chen, Feng; Du, Yaohua; Cheng, Zhi; Li, Chenyu; Wu, Jinlong; Wu, Taihu

    2017-10-01

    One of the most important environmental cleanliness indicators is airborne microbe. However, the particularity of clean operating environment and controlled experimental environment often leads to the limitation of the airborne microbe research. This paper designed and implemented a microenvironment test chamber for airborne microbe research in normal test conditions. Numerical simulation by Fluent showed that airborne microbes were evenly dispersed in the upper part of test chamber, and had a bottom-up concentration growth distribution. According to the simulation results, the verification experiment was carried out by selecting 5 sampling points in different space positions in the test chamber. Experimental results showed that average particle concentrations of all sampling points reached 10 7 counts/m 3 after 5 minutes' distributing of Staphylococcus aureus , and all sampling points showed the accordant mapping of concentration distribution. The concentration of airborne microbe in the upper chamber was slightly higher than that in the middle chamber, and that was also slightly higher than that in the bottom chamber. It is consistent with the results of numerical simulation, and it proves that the system can be well used for airborne microbe research.

  2. Do airborne microbes matter for atmospheric chemistry and cloud formation?

    Science.gov (United States)

    Konstantinidis, Konstantinos T

    2014-06-01

    The role of airborne microbial cells in the chemistry of the atmosphere and cloud formation remains essentially speculative. Recent studies have indicated that microbes might be more important than previously anticipated for atmospheric processes. However, more work and direct communication between microbiologists and atmospheric scientists and modellers are necessary to better understand and model bioaerosol-cloud-precipitation-climate interactions. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Monitoring of viable airborne SARS virus in ambient air

    Science.gov (United States)

    Agranovski, Igor E.; Safatov, Alexander S.; Pyankov, Oleg V.; Sergeev, Alexander N.; Agafonov, Alexander P.; Ignatiev, Georgy M.; Ryabchikova, Elena I.; Borodulin, Alexander I.; Sergeev, Artemii A.; Doerr, Hans W.; Rabenau, Holger F.; Agranovski, Victoria

    Due to recent SARS related issues (Science 300 (5624) 1394; Nature 423 (2003) 240; Science 300 (5627) 1966), the development of reliable airborne virus monitoring procedures has become galvanized by an exceptional sense of urgency and is presently in a high demand (In: Cox, C.S., Wathers, C.M. (Eds.), Bioaerosols Handbook, Lewis Publishers, Boca Raton, FL, 1995, pp. 247-267). Based on engineering control method (Aerosol Science and Technology 31 (1999) 249; 35 (2001) 852), which was previously applied to the removal of particles from gas carriers, a new personal bioaerosol sampler has been developed. Contaminated air is bubbled through porous medium submerged into liquid and subsequently split into multitude of very small bubbles. The particulates are scavenged by these bubbles, and, thus, effectively removed. The current study explores its feasibility for monitoring of viable airborne SARS virus. It was found that the natural decay of such virus in the collection fluid was around 0.75 and 1.76 lg during 2 and 4 h of continuous operation, respectively. Theoretical microbial recovery rates of higher than 55 and 19% were calculated for 1 and 2 h of operation, respectively. Thus, the new sampling method of direct non-violent collection of viable airborne SARS virus into the appropriate liquid environment was found suitable for monitoring of such stress sensitive virus.

  4. Long-range transport of airborne microbes over the global tropical and subtropical ocean

    KAUST Repository

    Mayol, Eva; Arrieta, J M; Jimé nez, Maria A.; Martí nez-Asensio, Adriá n; Garcias Bonet, Neus; Dachs, Jordi; Gonzá lez-Gaya, Belé n; Royer, Sarah-J.; Bení tez-Barrios, Veró nica M.; Fraile-Nuez, Eugenio; Duarte, Carlos M.

    2017-01-01

    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..

  5. Long-range transport of airborne microbes over the global tropical and subtropical ocean

    KAUST Repository

    Mayol, Eva

    2017-07-28

    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth\\'s surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..

  6. Real-time monitoring of non-viable airborne particles correlates with airborne colonies and represents an acceptable surrogate for daily assessment of cell-processing cleanroom performance.

    Science.gov (United States)

    Raval, Jay S; Koch, Eileen; Donnenberg, Albert D

    2012-10-01

    Airborne particulate monitoring is mandated as a component of good manufacturing practice. We present a procedure developed to monitor and interpret airborne particulates in an International Organization for Standardization (ISO) class 7 cleanroom used for the cell processing of Section 351 and Section 361 products. We collected paired viable and non-viable airborne particle data over a period of 1 year in locations chosen to provide a range of air quality. We used receiver operator characteristic (ROC) analysis to determine empirically the relationship between non-viable and viable airborne particle counts. Viable and non-viable particles were well-correlated (r(2) = 0.78), with outlier observations at the low end of the scale (non-viable particles without detectable airborne colonies). ROC analysis predicted viable counts ≥ 0.5/feet(3) (a limit set by the United States Pharmacopeia) at an action limit of ≥ 32 000 particles (≥ 0.5 µ)/feet(3), with 95.6% sensitivity and 50% specificity. This limit was exceeded 2.6 times during 18 months of retrospective daily cleanroom data (an expected false alarm rate of 1.3 times/year). After implementing this action limit, we were alerted in real time to an air-handling failure undetected by our hospital facilities management. A rational action limit for non-viable particles was determined based on the correlation with airborne colonies. Reaching or exceeding the action limit of 32 000 non-viable particles/feet(3) triggers suspension of cleanroom cell-processing activities, deep cleaning, investigation of air handling, and a deviation management process. Our full procedure for particle monitoring is available as an online supplement.

  7. Investigation of Removal Capacities of Biofilters for Airborne Viable Micro-Organisms

    Science.gov (United States)

    Soret, Rémi; Fanlo, Jean-Louis; Malhautier, Luc; Geiger, Philippe; Bayle, Sandrine

    2018-01-01

    New emerging issues appears regarding the possible aerosolization of micro-organisms from biofilters to the ambient air. Traditional bioaerosol sampling and cultural methods used in literature offer relative efficiencies. In this study, a new method revolving around a particle counter capable of detecting total and viable particles in real time was used. This counter (BioTrak 9510-BD) uses laser-induced fluorescence (LIF) technology to determine the biological nature of the particle. The concentration of viable particles was measured on two semi-industrial pilot scale biofilters in order to estimate the Removal Efficiency in viable particles (REvp) in stable conditions and to examine the influence of pollutant feeding and relative humidification of the gaseous effluent on the REvp. The REvp of biofilters reached near 80% and highlighted both the stability of that removal and the statistical equivalence between two identical biofilters. Pollutant deprivation periods of 12 h, 48 h and 30 days were shown to have no influence on the biofilters’ removal capacity, demonstrating the robustness and adaptation capacities of the flora. In contrast, a 90-day famine period turned the biofilters into emitters of viable particles. Finally, the humidification of the effluent was shown to negatively influence the removal capacity for viable particles, as drying off the air was shown to increase the REvp from 60 to 85%. PMID:29562709

  8. Control of airborne microbes in a poultry setting using Dioxy MP 14

    Directory of Open Access Journals (Sweden)

    O Mbamalu

    2015-03-01

    Full Text Available In this study, Dioxy MP 14, a locally developed form of chlorine dioxide, was tested in a commercial chicken pen to determine its effectiveness as an airborne environmental sanitizing agent. The biocide was introduced via an overhead misting system with a variable dosing pump. The extent of airborne microbial control was determined with settle plates. Performance and mortality rate of the chickens in the experimental pen was compared to that in the control pen. Results show a decrease in airborne microbial load and a significantly higher egg productivity rate at a 5% level in the treated pen. However, no significant difference in mortality rates between the two pens was observed.

  9. Is there an association between airborne and surface microbes in the critical care environment?

    Science.gov (United States)

    Smith, J; Adams, C E; King, M F; Noakes, C J; Robertson, C; Dancer, S J

    2018-04-09

    There are few data and no accepted standards for air quality in the intensive care unit (ICU). Any relationship between airborne pathogens and hospital-acquired infection (HAI) risk in the ICU remains unknown. First, to correlate environmental contamination of air and surfaces in the ICU; second, to examine any association between environmental contamination and ICU-acquired staphylococcal infection. Patients, air, and surfaces were screened on 10 sampling days in a mechanically ventilated 10-bed ICU for a 10-month period. Near-patient hand-touch sites (N = 500) and air (N = 80) were screened for total colony count and Staphylococcus aureus. Air counts were compared with surface counts according to proposed standards for air and surface bioburden. Patients were monitored for ICU-acquired staphylococcal infection throughout. Overall, 235 of 500 (47%) surfaces failed the standard for aerobic counts (≤2.5 cfu/cm 2 ). Half of passive air samples (20/40: 50%) failed the 'index of microbial air' contamination (2 cfu/9 cm plate/h), and 15/40 (37.5%) active air samples failed the clean air standard (<10 cfu/m 3 ). Settle plate data were closer to the pass/fail proportion from surfaces and provided the best agreement between air parameters and surfaces when evaluating surface benchmark values of 0-20 cfu/cm 2 . The surface standard most likely to reflect hygiene pass/fail results compared with air was 5 cfu/cm 2 . Rates of ICU-acquired staphylococcal infection were associated with surface counts per bed during 72h encompassing sampling days (P = 0.012). Passive air sampling provides quantitative data analogous to that obtained from surfaces. Settle plates could serve as a proxy for routine environmental screening to determine the infection risk in ICU. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. MEMS and the microbe

    NARCIS (Netherlands)

    Ingham, C.J.; Vlieg, J.E.T.V.H.

    2008-01-01

    In recent years, relatively simple MEMS fabrications have helped accelerate our knowledge of the microbial cell. Current progress and challenges in the application of lab-on-a-chip devices to the viable microbe are reviewed. Furthermore, the degree to which microbiologists are becoming the engineers

  11. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    Science.gov (United States)

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  12. Managing Viable Knowledge

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.; Vriens, D.J.

    2002-01-01

    In this paper, Beer's Viable System Model (VSM) is applied to knowledge management. Based on the VSM, domains of knowledge are identified that an organization should possess to maintain its viability. The logic of the VSM is also used to support the diagnosis, design and implementation of the

  13. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  14. Meet the Microbes through the Microbe World Activities with Microbe the Magnificent and Mighty Microbe.

    Science.gov (United States)

    Frame, Kathy, Ed.; Ryan, Karen, Ed.

    The activities presented in this book are the product of the Community Outreach Initiative of the Microbial Literacy Collaborative (MLC). This activity book presents a balanced view of microbes, their benefits, and the diseases they cause. Each activity starts with an interesting introductory statement and includes goals, activity time, time to…

  15. Coal liquefaction becomes viable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    In 2003 the May/June issue of CoalTrans International speculated that coal liquefaction would become viable due to falling coal prices. This has not proved the case but the sustained high oil price is sparking new interest. A survey by Energy Intelligence and Marketing Research during November 2005 revealed a growth in the number of projects under development or at the feasibility stage. The article reports projects in China, the USA, Australia, New Zealand, the Philippines and India. China is commissioning the first wave of large liquefaction plants. The key question is whether other countries, particularly the USA, will follow.

  16. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  17. Textiles and Microbes

    Science.gov (United States)

    Freney, Jean; Renaud, François N. R.

    Microbes can be carried by and even multiply on textiles. The first real, premeditated, microbiological warfare happened in 1763, during the Anglo-French wars in North America, when Native American emissaries were given blankets or handkerchiefs contaminated with smallpox. Thus, a small epidemic started and spread rapidly, causing considerable damage to the rank and file of the Native Americans. Nowadays, it could be said that textiles could be vectors of infections in hospitals or communities. The making of antimicrobial textiles could prevent them from becoming a reservoir of microbes in the transmission of infections and in cases of voluntary contamination in a terrorist threat for example. However, methods have to show that textiles are really active and do not attack the cutaneous flora they are in contact with. In this chapter, the role of textiles in the transmission of infections is summarized and the main characteristics of antimicrobial textiles are described.

  18. The high life: Transport of microbes in the atmosphere

    Science.gov (United States)

    Smith, David J.; Griffin, Dale W.; Jaffe, Daniel A.

    2011-07-01

    Microbes (bacteria, fungi, algae, and viruses) are the most successful types of life on Earth because of their ability to adapt to new environments, reproduce quickly, and disperse globally. Dispersal occurs through a number of vectors, such as migrating animals or the hydrological cycle, but transport by wind may be the most common way microbes spread. General awareness of airborne microbes predates the science of microbiology. People took advantage of wild airborne yeasts to cultivate lighter, more desirable bread as far back as ancient Egypt by simply leaving a mixture of grain and liquids near an open window. In 1862, Louis Pasteur's quest to disprove spontaneous generation resulted in the discovery that microbes were actually single-celled, living creatures, prevalent in the environment and easily killed with heat (pasteurization). His rudimentary experiments determined that any nutrient medium left open to the air would eventually teem with microbial life because of free-floating, colonizing cells. The same can happen in a kitchen: Opportunistic fungal and bacterial cells cause food items exposed to the air to eventually spoil.

  19. Ecological suicide in microbes.

    Science.gov (United States)

    Ratzke, Christoph; Denk, Jonas; Gore, Jeff

    2018-05-01

    The growth and survival of organisms often depend on interactions between them. In many cases, these interactions are positive and caused by a cooperative modification of the environment. Examples are the cooperative breakdown of complex nutrients in microbes or the construction of elaborate architectures in social insects, in which the individual profits from the collective actions of her peers. However, organisms can similarly display negative interactions by changing the environment in ways that are detrimental for them, for example by resource depletion or the production of toxic byproducts. Here we find an extreme type of negative interactions, in which Paenibacillus sp. bacteria modify the environmental pH to such a degree that it leads to a rapid extinction of the whole population, a phenomenon that we call ecological suicide. Modification of the pH is more pronounced at higher population densities, and thus ecological suicide is more likely to occur with increasing bacterial density. Correspondingly, promoting bacterial growth can drive populations extinct whereas inhibiting bacterial growth by the addition of harmful substances-such as antibiotics-can rescue them. Moreover, ecological suicide can cause oscillatory dynamics, even in single-species populations. We found ecological suicide in a wide variety of microbes, suggesting that it could have an important role in microbial ecology and evolution.

  20. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  1. Microbe-microbe interactions in mixed culture food fermentations

    NARCIS (Netherlands)

    Smid, E.J.; Lacroix, C.

    2013-01-01

    Most known natural and industrial food fermentation processes are driven by either simple or complex communities of microorganisms. Obviously, these fermenting microbes will not only interact with the fermentable substrate but also with each other. These microbe–microbe interactions are complex but

  2. Microbial electrosynthesis: understanding and strengthening microbe-electrode interactions

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Ammam, Fariza

    2014-01-01

    in the last decade that could significantly change the current ways of synthesizing chemicals. MES is a process in which electroautotrophic microbes reduce CO2 to multicarbon organics using electrical current as a source of electron. Electricity necessary for MES can be harvested from renewable resources...... relying on co-cultures and investigating extracellular electron transfer from the cathode to the microbes are some of the strategies that we are implementing to transform MES into a commercially viable technology....... such as solar energy, wind turbine or wastewater treatment processes. The net outcome is that renewable energy get store in the covalent bonds of valuable chemicals synthesized from greenhouse gas. However, low electron transferrates from the electrode to microbes, poor adherence of cells on the electrode...

  3. Mining with microbes

    International Nuclear Information System (INIS)

    Rawlings., D.E.; Silver, S.

    1995-01-01

    Microbes are playing increasingly important roles in commercial mining operations, where they are being used in the open-quotes bioleachingclose quotes of copper, uranium, and gold ores. Direct leaching is when microbial metabolism changes the redox state of the metal being harvested, rendering it more soluble. Indirect leaching includes redox chemistry of other metal cations that are then coupled in chemical oxidation or reduction of the harvested metal ion and microbial attack upon and solubilization of the mineral matrix in which the metal is physically embedded. In addition, bacterial cells are used to detoxify the waste cyanide solution from gold-mining operations and as open-quotes absorbantsclose quotes of the mineral cations. Bacterial cells may replace activated carbon or alternative biomass. With an increasing understanding of microbial physiology, biochemistry and molecular genetics, rational approaches to improving these microbial activities become possible. 40 refs., 3 figs

  4. Radiation induced pesticidal microbes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  5. Radiation induced pesticidal microbes

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants

  6. Microbe Phobia and Kitchen Microbiology.

    Science.gov (United States)

    Williams, Robert P.; Gillen, Alan L.

    1991-01-01

    The authors present an exercise designed to help students overcome the misconception that most microbes make people sick. The activity helps students of all ages understand the important benefits of microbes such as in making bread, soy sauce, cheese, and wine. The role of microorganisms in processing cocoa and coffee and growing plants is also…

  7. Challenges and opportunities of airborne metagenomics.

    Science.gov (United States)

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. The Microbe Directory: An annotated, searchable inventory of microbes' characteristics.

    Science.gov (United States)

    Shaaban, Heba; Westfall, David A; Mohammad, Rawhi; Danko, David; Bezdan, Daniela; Afshinnekoo, Ebrahim; Segata, Nicola; Mason, Christopher E

    2018-01-05

    The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes' characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY-Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism's taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart ( https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe.

  9. Biofuels from microbes

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Inst. of Resource and Energy Technology; Zverlov, V.V.; Schwarz, W.H. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Dept. of Microbiology

    2007-11-15

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. (orig.)

  10. Challenges and Opportunities of Airborne Metagenomics

    OpenAIRE

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events su...

  11. Advanced Analysis to Distinguish between Physical Decrease and Inactivation of Viable Phages in Aerosol by Quantitating Phage-Specific Particles.

    Science.gov (United States)

    Shimasaki, Noriko; Nojima, Yasuhiro; Sakakibara, Masaya; Kikuno, Ritsuko; Iizuka, Chiori; Okaue, Akira; Okuda, Shunji; Shinohara, Katsuaki

    2018-01-01

     Recent studies have investigated the efficacy of air-cleaning products against pathogens in the air. A standard method to evaluate the reduction in airborne viruses caused by an air cleaner has been established using a safe bacteriophage instead of pathogenic viruses; the reduction in airborne viruses is determined by counting the number of viable airborne phages by culture, after operating the air cleaner. The reduction in the number of viable airborne phages could be because of "physical decrease" or "inactivation". Therefore, to understand the mechanism of reduction correctly, an analysis is required to distinguish between physical decrease and inactivation. The purpose of this study was to design an analysis to distinguish between the physical decrease and inactivation of viable phi-X174 phages in aerosols. We established a suitable polymerase chain reaction (PCR) system by selecting an appropriate primer-probe set for PCR and validating the sensitivity, linearity, and specificity of the primer-probe set to robustly quantify phi-X174-specific airborne particles. Using this quantitative PCR system and culture assay, we performed a behavior analysis of the phage aerosol in a small chamber (1 m 3 ) at different levels of humidity, as humidity is known to affect the number of viable airborne phages. The results revealed that the reduction in the number of viable airborne phages was caused not only by physical decrease but also by inactivation under particular levels of humidity. Our study could provide an advanced analysis to differentiate between the physical decrease and inactivation of viable airborne phages.

  12. Airborne Video Surveillance

    National Research Council Canada - National Science Library

    Blask, Steven

    2002-01-01

    The DARPA Airborne Video Surveillance (AVS) program was established to develop and promote technologies to make airborne video more useful, providing capabilities that achieve a UAV force multiplier...

  13. Principles of Plant-Microbe Interactions - Microbes for Sustainable Agriculture

    Science.gov (United States)

    Crops lack resistance to many soilborne pathogens and rely on antagonistic microbes recruited from the soil microbiome to protect their roots. Disease-suppressive soils, the best examples of microbial-based defense, are soils in which a pathogen does not establish or persist, establishes but causes ...

  14. Filthy lucre: A metagenomic pilot study of microbes found on circulating currency in New York City.

    Directory of Open Access Journals (Sweden)

    Julia M Maritz

    Full Text Available Paper currency by its very nature is frequently transferred from one person to another and represents an important medium for human contact with-and potential exchange of-microbes. In this pilot study, we swabbed circulating $1 bills obtained from a New York City bank in February (Winter and June (Summer 2013 and used shotgun metagenomic sequencing to profile the communities found on their surface. Using basic culture conditions, we also tested whether viable microbes could be recovered from bills.Shotgun metagenomics identified eukaryotes as the most abundant sequences on money, followed by bacteria, viruses and archaea. Eukaryotic assemblages were dominated by human, other metazoan and fungal taxa. The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus. Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation. Culturing results indicated that viable microbes can be isolated from paper currency.We conducted the first metagenomic characterization of the surface of paper money in the United States, establishing a baseline for microbes found on $1 bills circulating in New York City. Our results suggest that money amalgamates DNA from sources inhabiting the human microbiome, food, and other environmental inputs, some of which can be recovered as viable organisms. These monetary communities may be maintained through contact with human skin, and DNA obtained from money may provide a record of human behavior and health. Understanding these microbial profiles is especially relevant to public health as money could potentially mediate interpersonal transfer of microbes.

  15. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  16. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation

    OpenAIRE

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-01-01

    Background Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host...

  17. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.

    Science.gov (United States)

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-05-17

    Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.

  18. Viable Syntax: Rethinking Minimalist Architecture

    Directory of Open Access Journals (Sweden)

    Ken Safir

    2010-03-01

    Full Text Available Hauser et al. (2002 suggest that the human language faculty emerged as a genetic innovation in the form of what is called here a ‘keystone factor’—a single, simple, formal mental capability that, interacting with the pre-existing faculties of hominid ancestors, caused a cascade of effects resulting in the language faculty in modern humans. They take Merge to be the keystone factor, but instead it is posited here that Merge is the pre-existing mechanism of thought made viable by a principle that permits relations interpretable at the interfaces to be mapped onto c-command. The simplified minimalist architecture proposed here respects the keystone factor as closely as possible, but is justified on the basis of linguistic analyses it makes available, including a relativized intervention theory applicable across Case, scope, agreement, selection and linearization, a derivation of the A/A’-distinction from Case theory, and predictions such as why in situ wh-interpretation is island-insensitive, but susceptible to intervention effects.

  19. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...... relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5-10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well......-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys...

  20. Fluorogenic Cell-Based Biosensors for Monitoring Microbes

    Science.gov (United States)

    Curtis, Theresa; Salazar, Noe; Tabb, Joel; Chase, Chris

    2010-01-01

    Fluorogenic cell-based sensor systems for detecting microbes (especially pathogenic ones) and some toxins and allergens are undergoing development. These systems harness the natural signaltransduction and amplification cascades that occur in mast cells upon activation with antigens. These systems include (1) fluidic biochips for automated containment of samples, reagents, and wastes and (2) sensitive, compact fluorometers for monitoring the fluorescent responses of mast cells engineered to contain fluorescent dyes. It should be possible to observe responses within minutes of adding immune complexes. The systems have been shown to work when utilizing either immunoglobulin E (IgE) antibodies or traditionally generated rat antibodies - a promising result in that it indicates that the systems could be developed to detect many target microbes. Chimeric IgE antibodies and rat immunoglobulin G (IgG) antibodies could be genetically engineered for recognizing biological and chemical warfare agents and airborne and food-borne allergens. Genetic engineering efforts thus far have yielded (1) CD14 chimeric antibodies that recognize both Grampositive and Gram-negative bacteria and bind to the surfaces of mast cells, eliciting a degranulation response and (2) rat IgG2a antibodies that act similarly in response to low levels of canine parvovirus.

  1. Host-microbe and microbe-microbe interactions in the evolution of obligate plant parasitism.

    Science.gov (United States)

    Kemen, Ariane C; Agler, Matthew T; Kemen, Eric

    2015-06-01

    Research on obligate biotrophic plant parasites, which reproduce only on living hosts, has revealed a broad diversity of filamentous microbes that have independently acquired complex morphological structures, such as haustoria. Genome studies have also demonstrated a concerted loss of genes for metabolism and lytic enzymes, and gain of diversity of genes coding for effectors involved in host defense suppression. So far, these traits converge in all known obligate biotrophic parasites, but unexpected genome plasticity remains. This plasticity is manifested as transposable element (TE)-driven increases in genome size, observed to be associated with the diversification of virulence genes under selection pressure. Genome expansion could result from the governing of the pathogen response to ecological selection pressures, such as host or nutrient availability, or to microbial interactions, such as competition, hyperparasitism and beneficial cooperations. Expansion is balanced by alternating sexual and asexual cycles, as well as selfing and outcrossing, which operate to control transposon activity in populations. In turn, the prevalence of these balancing mechanisms seems to be correlated with external biotic factors, suggesting a complex, interconnected evolutionary network in host-pathogen-microbe interactions. Therefore, the next phase of obligate biotrophic pathogen research will need to uncover how this network, including multitrophic interactions, shapes the evolution and diversity of pathogens. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Cooperation and cheating in microbes

    Science.gov (United States)

    Gore, Jeff

    2011-03-01

    Understanding the cooperative and competitive dynamics within and between species is a central challenge in evolutionary biology. Microbial model systems represent a unique opportunity to experimentally test fundamental theories regarding the evolution of cooperative behaviors. In this talk I will describe our experiments probing cooperation in microbes. In particular, I will compare the cooperative growth of yeast in sucrose and the cooperative inactivation of antibiotics by bacteria. In both cases we find that cheater strains---which don't contribute to the public welfare---are able to take advantage of the cooperator strains. However, this ability of cheaters to out-compete cooperators occurs only when cheaters are present at low frequency, thus leading to steady-state coexistence. These microbial experiments provide fresh insight into the evolutionary origin of cooperation.

  3. Airborne Compositae dermatitis

    DEFF Research Database (Denmark)

    Christensen, Lars Porskjær; Jakobsen, Henrik Byrial; Paulsen, E.

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted f...... for airborne Compositae dermatitis. Potential allergens were found among the emitted monoterpenes and their importance in airborne Compositae dermatitis is discussed....

  4. On-Chip Dielectrophoretic Separation and Concentration of Viable, Non-Viable and Viable but Not Culturable (VBNC) Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Packard, M M; Shusteff, M; Alocilja, E C

    2012-04-12

    Although bacterial culture remains the gold standard for detection of viable bacteria in environmental specimens, the typical time requirement of twenty-four hours can delay and even jeopardize appropriate public health intervention. In addition, culture is incapable of detecting viable but not culturable (VBNC) species. Conversely, nucleic acid and antibody-based methods greatly decrease time to detection but rarely characterize viability of the bacteria detected. Through selection by membrane permeability, the method described in this work employs positive dielectrophoresis (pDEP) for separation and purification of viable and VBNC species from water and allows concentration of bacteria for downstream applications.

  5. Airborne Tactical Crossload Planner

    Science.gov (United States)

    2017-12-01

    Regiment AGL above ground level AO area of operation APA American psychological association ASOP airborne standard operating procedure A/C aircraft...awarded a research contract to develop a tactical crossload tool. [C]omputer assisted Airborne Planning Application ( APA ) that provides a

  6. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    Science.gov (United States)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated

  7. Strengthening Agricultural Research Capacity for Viable Extension ...

    African Journals Online (AJOL)

    Strengthening Agricultural Research Capacity for Viable Extension Policies in Nigeria: An Exploration of Ricoeur's Hermeneutic Theory for Analysing Extension Research. ... Progressively more, researchers use hermeneutic philosophy to inform the conduct of interpretive research. Analogy between the philosophical ...

  8. Effects of microbes on the immune system

    National Research Council Canada - National Science Library

    Fujinami, Robert S; Cunningham, Madeleine W

    2000-01-01

    .... The book synthesizes recent discoveries on the various mechanisms by which microbes subvert the immune response and on the role of these immunologic mechanisms in the pathogenesis of infectious diseases...

  9. A global census of marine microbes

    Digital Repository Service at National Institute of Oceanography (India)

    Amaral-Zettler, L.; Artigas, L.F.; Baross, J.; LokaBharathi, P.A; Boetius, A; Chandramohan, D.; Herndl, G.; Kogure, K.; Neal, P.; Pedros-Alio, C.; Ramette, A; Schouten, S.; Stal, L.; Thessen, A; De Leeuw, J.; Sogin, M.

    In this chapter we provide a brief history of what is known about marine microbial diversity, summarize our achievements in performing a global census of marine microbes, and reflect on the questions and priorities for the future of the marine...

  10. Microbes safely, effectively bioremediate oil field pits

    International Nuclear Information System (INIS)

    Shaw, B.; Block, C.S.; Mills, C.H.

    1995-01-01

    Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated

  11. Airborne Magnetic Trackline Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receive airborne magnetic survey data from US and non-US...

  12. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  13. Airborne Test Bed Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory operates the main hangar on the Hanscom Air Force Base flight line. This very large building (~93,000sqft) accommodates the Laboratory's airborne test...

  14. MicrobeWorld Radio and Communications Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Hyde

    2006-11-22

    MicrobeWorld is a 90-second feature broadcast daily on more than 90 public radio stations and available from several sources as a podcast, including www.microbeworld.org. The feature has a strong focus on the use and adapatbility of microbes as alternative sources of energy, in bioremediation, their role in climate, and especially the many benefits and scientific advances that have resulting from decoding microbial genomes. These audio features are permanantly archived on an educational outreach site, microbeworld.org, where they are linked to the National Science Education Standards. They are also being used by instructors at all levels to introduce students to the multiple roles and potential of microbes, including a pilot curriculum program for middle-school students in New York.

  15. Sycamore produces viable seed after six years

    Science.gov (United States)

    A. F. Ike

    1966-01-01

    In the early stages of any tree improvement program it is desirable to know how soon progenies of selected parents can themselves be included in a breeding program. How soon will they produce viable pollen and seed? In the case of sycamore (Platanus occidentalis L.), the information is meager: the Woody- Plant Seed Manual lists the minimum commercial seedbearing age...

  16. Natural products from microbes associated with insects

    DEFF Research Database (Denmark)

    Beemelmanns, Christine; Guo, Huijuan; Rischer, Maja

    2016-01-01

    Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We...

  17. MVP: a microbe-phage interaction database.

    Science.gov (United States)

    Gao, Na L; Zhang, Chengwei; Zhang, Zhanbing; Hu, Songnian; Lercher, Martin J; Zhao, Xing-Ming; Bork, Peer; Liu, Zhi; Chen, Wei-Hua

    2018-01-04

    Phages invade microbes, accomplish host lysis and are of vital importance in shaping the community structure of environmental microbiota. More importantly, most phages have very specific hosts; they are thus ideal tools to manipulate environmental microbiota at species-resolution. The main purpose of MVP (Microbe Versus Phage) is to provide a comprehensive catalog of phage-microbe interactions and assist users to select phage(s) that can target (and potentially to manipulate) specific microbes of interest. We first collected 50 782 viral sequences from various sources and clustered them into 33 097 unique viral clusters based on sequence similarity. We then identified 26 572 interactions between 18 608 viral clusters and 9245 prokaryotes (i.e. bacteria and archaea); we established these interactions based on 30 321 evidence entries that we collected from published datasets, public databases and re-analysis of genomic and metagenomic sequences. Based on these interactions, we calculated the host range for each of the phage clusters and accordingly grouped them into subgroups such as 'species-', 'genus-' and 'family-' specific phage clusters. MVP is equipped with a modern, responsive and intuitive interface, and is freely available at: http://mvp.medgenius.info. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. The mucosal firewalls against commensal intestinal microbes.

    Science.gov (United States)

    Macpherson, Andrew J; Slack, Emma; Geuking, Markus B; McCoy, Kathy D

    2009-07-01

    Mammals coexist with an extremely dense microbiota in the lower intestine. Despite the constant challenge of small numbers of microbes penetrating the intestinal surface epithelium, it is very unusual for these organisms to cause disease. In this review article, we present the different mucosal firewalls that contain and allow mutualism with the intestinal microbiota.

  19. Monotone viable trajectories for functional differential inclusions

    Science.gov (United States)

    Haddad, Georges

    This paper is a study on functional differential inclusions with memory which represent the multivalued version of retarded functional differential equations. The main result gives a necessary and sufficient equations. The main result gives a necessary and sufficient condition ensuring the existence of viable trajectories; that means trajectories remaining in a given nonempty closed convex set defined by given constraints the system must satisfy to be viable. Some motivations for this paper can be found in control theory where F( t, φ) = { f( t, φ, u)} uɛU is the set of possible velocities of the system at time t, depending on the past history represented by the function φ and on a control u ranging over a set U of controls. Other motivations can be found in planning procedures in microeconomics and in biological evolutions where problems with memory do effectively appear in a multivalued version. All these models require viability constraints represented by a closed convex set.

  20. Regulation of Viable and Optimal Cohorts

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, Jean-Pierre, E-mail: aubin.jp@gmail.com [VIMADES (Viabilité, Marchés, Automatique, Décisions) (France)

    2015-10-15

    This study deals with the evolution of (scalar) attributes (resources or income in evolutionary demography or economics, position in traffic management, etc.) of a population of “mobiles” (economic agents, vehicles, etc.). The set of mobiles sharing the same attributes is regarded as an instantaneous cohort described by the number of its elements. The union of instantaneous cohorts during a mobile window between two attributes is a cohort. Given a measure defining the number of instantaneous cohorts, the accumulation of the mobile attributes on a evolving mobile window is the measure of the cohort on this temporal mobile window. Imposing accumulation constraints and departure conditions, this study is devoted to the regulation of the evolutions of the attributes which are1.viable in the sense that the accumulations constraints are satisfied at each instant;2.and, among them, optimal, in the sense that both the duration of the temporal mobile window is maximum and that the accumulation on this temporal mobile window is the largest viable one. This value is the “accumulation valuation” function. Viable and optimal evolutions under accumulation constraints are regulated by an “implicit Volterra integro-differential inclusion” built from the accumulation valuation function, solution to an Hamilton–Jacobi–Bellman partial differential equation under constraints which is constructed for this purpose.

  1. South African Airborne Operations

    African Journals Online (AJOL)

    South Africa carried out numerous airborne operations during the latter part .... It was a lesson the French had learned and were learning in Indo-China and ..... South African government, concerned that the conflict would spill across their northern border, ...... the Super Frelon and it was an outstanding helicopter at sea level.

  2. Honey Bee Health: The Potential Role of Microbes

    Science.gov (United States)

    Microbes, are a diverse group of unicellular organisms that include bacteria, fungi, archaea, protists, and sometimes viruses. Bees carry a diverse assemblage of microbes (mostly bacteria and fungi). Very few are pathogenic; most microbes are likely commensal or even beneficial to the colony. Mic...

  3. The Study of the Microbes Degraded Polystyrene

    Directory of Open Access Journals (Sweden)

    Zhi-Long Tang

    2017-01-01

    Full Text Available Under the observation that Tenebrio molitor and Zophobas morio could eat polystyrene (PS, we setup the platform to screen the gut microbes of these two worms. To take advantage of that Tenebrio molitor and Zophobas morio can eat and digest polystyrene as its diet, we analyzed these special microbes with PS plate and PS turbidity system with time courses. There were two strains TM1 and ZM1 which isolated from Tenebrio molitor and Zophobas morio, and were identified by 16S rDNA sequencing. The results showed that TM1 and ZM1 were cocci-like and short rod shape Gram-negative bacteria under microscope. The PS plate and turbidity assay showed that TM1 and ZM1 could utilize polystyrene as their carbon sources. The further study of PS degraded enzyme and cloning warrants our attention that this platform will be an excellent tools to explore and solve this problem.

  4. Engineering tailored nanoparticles with microbes: quo vadis?

    Science.gov (United States)

    Prasad, Ram; Pandey, Rishikesh; Barman, Ishan

    2016-01-01

    In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies. © 2015 Wiley Periodicals, Inc.

  5. Electrifying microbes for the production of chemicals

    Directory of Open Access Journals (Sweden)

    Pier-Luc eTremblay

    2015-03-01

    Full Text Available Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES is one of the bioelectrochemical approaches developed in the last decade that could have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind turbine or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

  6. Electrifying microbes for the production of chemicals

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Zhang, Tian

    2015-01-01

    have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind......Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES) is one of the bioelectrochemical approaches developed in the last decade that could...... turbine, or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology....

  7. Visualizing conserved gene location across microbe genomes

    Science.gov (United States)

    Shaw, Chris D.

    2009-01-01

    This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.

  8. Axenic isolation of viable Giardia muris trophozoites.

    Science.gov (United States)

    Tillotson, K D; Buret, A; Olson, M E

    1991-06-01

    Large numbers of viable Giardia muris trophozoites were isolated from the duodenum of experimentally infected mice 6 days after inoculation with 1,000 G. muris cysts. A series of shaking, incubation, and washing steps in the presence of the broad-spectrum antibiotic piperacillin readily provided 4.9 +/- 1.5 x 10(5) G. muris trophozoites per mouse, free of detectable contaminant organisms. Anaerobic and microaerophilic culturing and scanning electron microscopy demonstrated axenic status and high purity of the isolates. The viability of trophozoites was 98 +/- 2%. Application of this technique should permit novel immunological and epidemiological analyses of G. muris infection and biochemical investigations of this protozoan parasite.

  9. An Astrobiology Microbes Exhibit and Education Module

    Science.gov (United States)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  10. Engineered microbes and methods for microbial oil production

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2018-01-09

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  11. Engineered microbes and methods for microbial oil production

    Science.gov (United States)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  12. Distribution of airborne microbes and antibiotic susceptibility pattern of bacteria during Gwalior trade fair, Central India

    Directory of Open Access Journals (Sweden)

    Jayprakash Yadav

    2015-07-01

    Conclusion: The study indicates significantly higher bacterial and fungal bioaerosols during the fair event. Therefore, further research is needed to explore the health aspects and guidelines to control microbial load during such types of events.

  13. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  14. Senior health clinics: are they financially viable?

    Science.gov (United States)

    McAtee, Robin E; Crandall, Debra; Wright, Larry D; Beverly, Claudia J

    2009-07-01

    Are hospital-based outpatient interdisciplinary clinics a financially viable alternative for caring for our burgeoning population of older adults in America? Although highly popular, with high patient satisfaction rates among older adults and their families, senior health clinics (SHCs) can be expensive to operate, with limited quantifiable health outcomes. This study analyzed three geriatric hospital-based interdisciplinary clinics in rural Arkansas by examining their patient profiles, revenues, and expenses. It closely examined the effects of the downstream revenue using the multiplier effect and acknowledged other factors that weigh heavily on the success of SHCs and the care of older adults. The findings highlight the similarities and differences in the three clinics' operating and financial structures in addition to the clinics' and providers' productivity. The analysis presents an evidence-based illustration that SHCs can break even or lose large amounts of money.

  15. Roots of success: cultivating viable community forestry

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Duncan

    2009-05-15

    Is community forestry emerging from the shadows? The evidence shows that locally controlled enterprises can be economically viable, and often build on stronger social and environmental foundations than the big private-sector players. Certainly this is an industry in need of a shakeup. Many forests have become flashpoints where agro-industry, large-scale logging concerns and conservation interests clash, while forest-dependent communities are left out in the cold. Meanwhile, governments – driven by concerns over the climate impacts of deforestation – are having to gear up for legal, sustainable forestry production. Community forestry could be crucial to solving many of these challenges. By building on local core capabilities and developing strategic partnerships, they are forging key new business models that could transform the sector.

  16. Introduce of Viable But Nonculturable Bacteria

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshahian

    2008-03-01

    Full Text Available Viable-But-Nonculturable-State (VBNC is the condition in which bacteria fail to grow on their routine bacteriological media where they would normally grow and develop into colonies, but are still alive and capable of renewed metabolic activity. VBNC state is useful for evaluating public health and for ascertaining the sterility of drinking water, pharmaceuticals, and foodstuff. A number of bacteria, mostly pathogenic to humans, have been proved to enter into this state in response to natural stresses such as starvation, incubation out of optimum growth temperature, increased osmotic pressure, etc. Once in the VBNC state, they undergo various physiological, structural, and genetic alterations. These alterations result in reduced cell size, conversion from bacilli to coccid, thickened cell walls, and peptidoglycan gaining many cross links. Metabolic changes also occur that include reductions in growth, nutrient transport, and respiratory rate; biosynthesis of new protein, and ATP remaining at a constant level. It has been shown that in the VBNC state, some pathogens conserve their virulence properties. Gene expression continues in the VBNC cell. Nucleic acids remain intact in the early VBNC phase but they gradually undergo degradation with prolonged VBNC. Cytological methods such as direct viable count and reduction of tetrazolium salts, and molecular methods such as reverse transcription polymerase chain reaction and green fluorescent protein have been used for the study of VBNC. Resuscitation from VBNC state starts when the inducing factor(s is/are lifted. Factors that help the resuscitation of VBNC bacteria include addition of certain nutrients and chemicals, introduction of a few culturable cells into the VBNC cell population, and passage through the animal host. As virulence properties are sustained during the VBNC phase, special care must be paid when evaluating sterility of drinking water.

  17. Polymerase chain reaction-based discrimination of viable from non-viable Mycoplasma gallisepticum

    Directory of Open Access Journals (Sweden)

    Ching Giap Tan

    2014-09-01

    Full Text Available The present study was based on the reverse transcription polymerase chain reaction (RT-PCR of the 16S ribosomal nucleic acid (rRNA of Mycoplasma for detection of viable Mycoplasma gallisepticum. To determine the stability of M. gallisepticum 16S rRNA in vitro, three inactivation methods were used and the suspensions were stored at different temperatures. The 16S rRNA of M. gallisepticum was detected up to approximately 20–25 h at 37 °C, 22–25 h at 16 °C, and 23–27 h at 4 °C. The test, therefore, could detect viable or recently dead M. gallisepticum (< 20 h. The RT-PCR method was applied during an in vivo study of drug efficacy under experimental conditions, where commercial broiler-breeder eggs were inoculated with M. gallisepticum into the yolk. Hatched chicks that had been inoculated in ovo were treated with Macrolide 1. The method was then applied in a flock of day 0 chicks with naturally acquired vertical transmission of M. gallisepticum, treated with Macrolide 2. Swabs of the respiratory tract were obtained for PCR and RT-PCR evaluations to determine the viability of M. gallisepticum. This study proved that the combination of both PCR and RT-PCR enables detection and differentiation of viable from non-viable M. gallisepticum.

  18. Enumeration of viable and non-viable larvated Ascaris eggs with quantitative PCR

    Science.gov (United States)

    Aims: The goal of the study was to further develop an incubation-qPCR method for quantifying viable Ascaris eggs. The specific objectives were to characterize the detection limit and number of template copies per egg, determine the specificity of the method, and test the method w...

  19. Roles and Importance of Microbes in the Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Roh, Yeol

    2009-01-01

    Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

  20. The microbe capture experiment in space: Fluorescence microscopic detection of microbes captured by aerogel

    Science.gov (United States)

    Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko

    Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and

  1. Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes

    Science.gov (United States)

    Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.

    2014-12-01

    Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.

  2. Endogenous System Microbes as Treatment Process ...

    Science.gov (United States)

    Monitoring the efficacy of treatment strategies to remove pathogens in decentralized systems remains a challenge. Evaluating log reduction targets by measuring pathogen levels is hampered by their sporadic and low occurrence rates. Fecal indicator bacteria are used in centralized systems to indicate the presence of fecal pathogens, but are ineffective decentralized treatment process indicators as they generally occur at levels too low to assess log reduction targets. System challenge testing by spiking with high loads of fecal indicator organisms, like MS2 coliphage, has limitations, especially for large systems. Microbes that are endogenous to the decentralized system, occur in high abundances and mimic removal rates of bacterial, viral and/or parasitic protozoan pathogens during treatment could serve as alternative treatment process indicators to verify log reduction targets. To identify abundant microbes in wastewater, the bacterial and viral communities were examined using deep sequencing. Building infrastructure-associated bacteria, like Zoogloea, were observed as dominant members of the bacterial community in graywater. In blackwater, bacteriophage of the order Caudovirales constituted the majority of contiguous sequences from the viral community. This study identifies candidate treatment process indicators in decentralized systems that could be used to verify log removal during treatment. The association of the presence of treatment process indic

  3. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    Science.gov (United States)

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  4. An economically viable space power relay system

    Science.gov (United States)

    Bekey, Ivan; Boudreault, Richard

    1999-09-01

    This paper describes and analyzes the economics of a power relay system that takes advantage of recent technological advances to implement a system that is economically viable. A series of power relay systems are described and analyzed which transport power ranging from 1,250 megawatts to 5,000 megawatts, and distribute it to receiving sites at transcontinental distances. Two classes of systems are discussed—those with a single reflector and delivering all the power to a single rectenna, and a second type which has multiple reflectors and distributes it to 10 rectenna sites, sharing power among them. It is shown that when offering electricity at prices competitive to those prevalent in developed cities in the US that a low IRR is inevitable, and economic feasibility of a business is unlikely. However, when the target market is Japan where the prevalent electricity prices are much greater, that an IRR exceeding 65% is readily attainable. This is extremely attractive to potential investors, making capitalization of a venture likely. The paper shows that the capital investment required for the system can be less than 1 per installed watt, contributing less than 0.02 /KW-hr to the cost of energy provision. Since selling prices in feasible regions range from 0.18 to over 030 $/kW-hr, these costs are but a small fraction of the operating expenses. Thus a very large IRR is possible for such a business.

  5. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  6. Developing Viable Financing Models for Space Tourism

    Science.gov (United States)

    Eilingsfeld, F.; Schaetzler, D.

    2002-01-01

    Increasing commercialization of space services and the impending release of government's control of space access promise to make space ventures more attractive. Still, many investors shy away from going into the space tourism market as long as they do not feel secure that their return expectations will be met. First and foremost, attracting investors from the capital markets requires qualifying financing models. Based on earlier research on the cost of capital for space tourism, this paper gives a brief run-through of commercial, technical and financial due diligence aspects. After that, a closer look is taken at different valuation techniques as well as alternative ways of streamlining financials. Experience from earlier ventures has shown that the high cost of capital represents a significant challenge. Thus, the sophistication and professionalism of business plans and financial models needs to be very high. Special emphasis is given to the optimization of the debt-to-equity ratio over time. The different roles of equity and debt over a venture's life cycle are explained. Based on the latter, guidelines for the design of an optimized loan structure are given. These are then applied to simulating the financial performance of a typical space tourism venture over time, including the calculation of Weighted Average Cost of Capital (WACC) and Net Present Value (NPV). Based on a concluding sensitivity analysis, the lessons learned are presented. If applied properly, these will help to make space tourism economically viable.

  7. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  8. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  9. Airborne monitoring system

    International Nuclear Information System (INIS)

    Kadmon, Y.; Gabovitch, A.; Tirosh, D.; Ellenbogen, M.; Mazor, T.; Barak, D.

    1997-01-01

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  10. Parejas viables que perduran en el tiempo

    Directory of Open Access Journals (Sweden)

    Juan José Cuervo Rodríguez

    2013-01-01

    Full Text Available El presente artículo científico presenta resultados del proceso llevado a cabo en el proyecto de investigación docente "Mecanismos de autorregulación en parejas viables que perduran en el tiempo". Se soporta en una mirada compleja de la psicología basada en una epistemología de la construcción. En el ámbito metodológico, se inscribe en los estudios de terapia familiar desde una perspectiva de la comunicación humana como un todo integrado. Participaron nueve parejas. Los criterios de inclusión fueron: cinco o más años de convivencia, participación voluntaria, no presentar (ni haber presentado problemáticas especiales que ameriten intervención psicoterapéutica y la obtención de un porcentaje significativo en el uso de estrategias de comunicación asertiva en la resolución de conflictos. El método general utilizado fue el análisis de la comunicación en tarea de conversación. Los principales hallazgos señalan una estrecha relación entre el contexto de desarrollo de las parejas, la emergencia de códigos comunicacionales propios y la posibilidad de perdurar en el tiempo; también, se resalta el tipo de comunicación asertiva o constructiva, la construcción de valores como el respeto y la aceptación de las diferencias, y el deseo por vivir y construir bienestar común, como elementos constitutivos de su identidad como pareja.

  11. Separation of viable and non-viable tomato (Solanum lycopersicum L.) seeds using single seed near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Shrestha, Santosh; Deleuran, Lise Christina; Gislum, René

    2017-01-01

    Single seed near-infrared (NIR) spectroscopy is a non-destructive technology commonly used for predicting lipids, proteins, carbohydrates and water content of agricultural products. The aim of the current study is to investigate the prospects of NIR spectroscopy in classifying viable and non...... identified as important for classification of viable and non-viable tomato seeds by iPLS-DA. The sensitivity i.e. ability to correctly identify the positive samples and specificity i.e. ability to reject the negative samples of the (iPLS-DA) model on identified spectral regions for prediction of viable......-viable tomato seeds of two cultivars using chemometrics. The data exploration were performed by principal component analysis (PCA). Subsequently, viable and non-viable seeds were classified by partial least squares-discriminant analysis (PLS-DA) and interval PLS-DA (iPLS-DA). The indication of clustering...

  12. Growth Rates of Microbes in the Oceans.

    Science.gov (United States)

    Kirchman, David L

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  13. Life Redefined: Microbes Built with Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Sam (SLAC and Felisa Wolfe-Simon, NASA and U.S. Geological Survey)

    2011-03-22

    Life can survive in many harsh environments, from extreme heat to the presence of deadly chemicals. However, life as we know it has always been based on the same six elements -- carbon, oxygen, nitrogen, hydrogen, sulfur and phosphorus. Now it appears that even this rule has an exception. In the saline and poisonous environment of Mono Lake, researchers have found a bacterium that can grow by incorporating arsenic into its structure in place of phosphorus. X-ray images taken at SLAC's synchrotron light source reveal that this microbe may even use arsenic as a building block for DNA. Please join us as we describe this discovery, which rewrites the textbook description of how living cells work.

  14. Indoor Air '93. Particles, microbes, radon

    International Nuclear Information System (INIS)

    Kalliokoski, P.; Jantunen, M.; Seppaenen, O.

    1993-01-01

    The conference was held in Helsinki, Finland, July 4-8, 1993. The proceedings of the conference were published in 6 volumes. The main topics of the volume 5 are: (1) particles, fibers and dust - their concentrations and sources in buildings, (2) Health effects of particles, (3) Need of asbestos replacement and encapsulation, (4) Seasonal and temporal variation of fungal and bacterial concentration, (5) The evaluation of microbial contamination of buildings, (6) New methods and comparison of different methods for microbial sampling and evaluation, (7) Microbes in building materials and HVAC-systems, (8) Prevention of microbial contamination in buildings, (9) Dealing with house dust mites, (10) Radon measurements and surveys in different countries, (11) The identification of homes with high radon levels, (12) The measurement methods and prediction of radon levels in buildings, and (13) Prevention of radon penetration from the soil

  15. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    Science.gov (United States)

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. © The Author 2015

  16. Modeling for Airborne Contamination

    International Nuclear Information System (INIS)

    F.R. Faillace; Y. Yuan

    2000-01-01

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  17. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    International Nuclear Information System (INIS)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-01-01

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10 3 and 6 x 10 4 rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10 4 rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10 5 rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance

  18. Why microbes will rule the world – and our industries

    DEFF Research Database (Denmark)

    Lykke, Anne Wärme; Palsson, Bernhard; Nielsen, Jens

    2017-01-01

    Microbes have ruled the world for approximately 4 billion years. But the future actually depends on their dominance, some would argue. Why? Because microbes, as well as mammalian cells, can be engineered into producing high-value chemicals and medicine. Therefore, scientists at The Novo Nordisk...... Foundation Center for Biosustainability are hard at work developing cell factories to benefit us all....

  19. Microbes as interesting source of novel insecticides: A review ...

    African Journals Online (AJOL)

    ... strains with good insecticidal properties can be identified, evaluated and utilized for pest control. This paper reviews the insecticidal properties of microbes and their potential utility in pest management. Keywords: Microbes, insecticides, metabolites, pest management. African Journal of Biotechnology, Vol 13(26) 2582- ...

  20. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J. [INEEL (US); Brey, R.F. [ISU (US); Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  1. Towards a General Equation for the Survival of Microbes Transferred between Solar System Bodies

    Science.gov (United States)

    Fries, M.; Steele, A.

    2014-01-01

    It should be possible to construct a general equation describing the survival of microbes transferred between Solar System bodies. Such an equation will be useful for constraining the likelihood of transfer of viable organisms between bodies throughout the lifetime of the Solar System, and for refining Planetary Protection constraints placed on future missions. We will discuss the construction of such an equation, present a plan for definition of pertinent factors, and will describe what research will be necessary to quantify those factors. Description: We will examine the case of microbes transferred between Solar System bodies as residents in meteorite material ejected from one body (the "intial body") and deposited on another (the "target body"). Any microbes transferred in this fashion will experience four distinct phases between their initial state on the initial body, up to the point where they colonize the target body. Each of these phases features phenomena capable of reducing or exterminating the initial microbial population. They are: 1) Ejection: Material is ejected from the initial body, imparting shock followed by rapid desiccation and cooling. 2) Transport: Material travels through interplanetary space to the target body, exposing a hypothetical microbial population to extended desiccation, irradiation, and temperature extremes. 3) Infall: Material is deposited on the target body, diminishing the microbial population through shock, mass loss, and heating. 4) Adaptation: Any microbes which survive the previous three phases must then adapt to new chemophysical conditions of the target body. Differences in habitability between the initial and target bodies dominate this phase. A suitable general-form equation can be assembled from the above factors by defining the initial number of microbes in an ejected mass and applying multiplicitive factors based on the physical phenomena inherent to each phase. It should be possible to present the resulting equation

  2. Sorption and precipitation of Mn2+ by viable and autoclaved Shewanella putrefaciens: Effect of contact time

    KAUST Repository

    Chubar, Natalia

    2013-01-01

    The sorption of Mn(II) by viable and inactivated cells of Shewanella putrefaciens, a non-pathogenic, facultative anaerobic, gram-negative bacterium characterised as a Mn(IV) and Fe(III) reducer, was studied under aerobic conditions, as a function of pH, bacterial density and metal loading. During a short contact time (3-24h), the adsorptive behaviour of live and dead bacteria toward Mn(II) was sufficiently similar, an observation that was reflected in the studies on adsorption kinetics at various metal loadings, effects of pH, bacteria density, isotherms and drifting of pH during adsorption. Continuing the experiment for an additional 2-30days demonstrated that the Mn(II) sorption by suspensions of viable and autoclaved cells differed significantly from one another. The sorption to dead cells was characterised by a rapid equilibration and was described by an isotherm. In contrast, the sorption (uptake) to live bacteria exhibited a complex time-dependent uptake. This uptake began as adsorption and ion exchange processes followed by bioprecipitation, and it was accompanied by the formation of polymeric sugars (EPS) and the release of dissolved organic substances. FTIR, EXAFS/XANES and XPS demonstrated that manganese(II) phosphate was the main precipitate formed in 125ml batches, which is the first evidence of the ability of microbes to synthesise manganese phosphates. XPS and XANES spectra did not detect Mn(II) oxidation. Although the release of protein-like compounds by the viable bacteria increased in the presence of Mn2+ (and, by contrast, the release of carbohydrates did not change), electrochemical analyses did not indicate any aqueous complexation of Mn(II) by the organic ligands. © 2012 Elsevier Ltd.

  3. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  4. Natural antifouling compound production by microbes associated with marine macroorganisms — A review

    Directory of Open Access Journals (Sweden)

    Sathianeson Satheesh

    2016-05-01

    Full Text Available In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.

  5. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    International Nuclear Information System (INIS)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  6. Life in Darwin's dust: intercontinental transport and survival of microbes in the nineteenth century.

    Science.gov (United States)

    Gorbushina, Anna A; Kort, Renate; Schulte, Anette; Lazarus, David; Schnetger, Bernhard; Brumsack, Hans-Jürgen; Broughton, William J; Favet, Jocelyne

    2007-12-01

    Charles Darwin, like others before him, collected aeolian dust over the Atlantic Ocean and sent it to Christian Gottfried Ehrenberg in Berlin. Ehrenberg's collection is now housed in the Museum of Natural History and contains specimens that were gathered at the onset of the Industrial Revolution. Geochemical analyses of this resource indicated that dust collected over the Atlantic in 1838 originated from the Western Sahara, while molecular-microbiological methods demonstrated the presence of many viable microbes. Older samples sent to Ehrenberg from Barbados almost two centuries ago also contained numbers of cultivable bacteria and fungi. Many diverse ascomycetes, and eubacteria were found. Scanning electron microscopy and cultivation suggested that Bacillus megaterium, a common soil bacterium, was attached to historic sand grains, and it was inoculated onto dry sand along with a non-spore-forming control, the Gram-negative soil bacterium Rhizobium sp. NGR234. On sand B. megaterium quickly developed spores, which survived for extended periods and even though the numbers of NGR234 steadily declined, they were still considerable after months of incubation. Thus, microbes that adhere to Saharan dust can live for centuries and easily survive transport across the Atlantic.

  7. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Leong, Susanna Su Jan [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Singapore Institute of Technology, Singapore (Singapore); Chang, Matthew Wook, E-mail: bchcmw@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore)

    2014-12-23

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  8. Gut-associated microbes of Drosophila melanogaster

    Science.gov (United States)

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  9. Acetaldehyde production by major oral microbes.

    Science.gov (United States)

    Moritani, K; Takeshita, T; Shibata, Y; Ninomiya, T; Kiyohara, Y; Yamashita, Y

    2015-09-01

    To assess acetaldehyde (ACH) production by bacteria constituting the oral microbiota and the inhibitory effects of sugar alcohols on ACH production. The predominant bacterial components of the salivary microbiota of 166 orally healthy subjects were determined by barcoded pyrosequencing analysis of the 16S rRNA gene. Bacterial ACH production from ethanol or glucose was measured using gas chromatography. In addition, inhibition by four sugars and five sugar alcohols of ACH production was assayed. Forty-one species from 16 genera were selected as predominant and prevalent bacteria based on the following criteria: identification in ≥95% of the subjects, ≥1% of mean relative abundance or ≥5% of maximum relative abundance. All Neisseria species tested produced conspicuous amounts of ACH from ethanol, as did Rothia mucilaginosa, Streptococcus mitis and Prevotella histicola exhibited the ability to produce ACH. In addition, xylitol and sorbitol inhibited ACH production by Neisseria mucosa by more than 90%. The oral microbiota of orally healthy subjects comprises considerable amounts of bacteria possessing the ability to produce ACH, an oral carcinogen. Consumption of sugar alcohols may regulate ACH production by oral microbes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Flowers and Wild Megachilid Bees Share Microbes.

    Science.gov (United States)

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  11. Asouzu's Complementary Ontology as a Foundation for a Viable ...

    African Journals Online (AJOL)

    This paper on “Asouzu's Complementary Ontology as a foundation for a viable Ethic of the Environment”, posits that an ethic of the environment can be seen as viable if it considers the whole of reality as ontologically relevant. This point of view would free environmental ethics of anthropocentric bias and its attendant ...

  12. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  13. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  14. Chemical signaling involved in plant-microbe interactions.

    Science.gov (United States)

    Chagas, Fernanda Oliveira; Pessotti, Rita de Cassia; Caraballo-Rodríguez, Andrés Mauricio; Pupo, Mônica Tallarico

    2018-03-05

    Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.

  15. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches

    International Nuclear Information System (INIS)

    Asner, Gregory P

    2009-01-01

    Large-scale carbon mapping is needed to support the UNFCCC program to reduce deforestation and forest degradation (REDD). Managers of forested land can potentially increase their carbon credits via detailed monitoring of forest cover, loss and gain (hectares), and periodic estimates of changes in forest carbon density (tons ha -1 ). Satellites provide an opportunity to monitor changes in forest carbon caused by deforestation and degradation, but only after initial carbon densities have been assessed. New airborne approaches, especially light detection and ranging (LiDAR), provide a means to estimate forest carbon density over large areas, which greatly assists in the development of practical baselines. Here I present an integrated satellite-airborne mapping approach that supports high-resolution carbon stock assessment and monitoring in tropical forest regions. The approach yields a spatially resolved, regional state-of-the-forest carbon baseline, followed by high-resolution monitoring of forest cover and disturbance to estimate carbon emissions. Rapid advances and decreasing costs in the satellite and airborne mapping sectors are already making high-resolution carbon stock and emissions assessments viable anywhere in the world.

  16. Karoo airborne geophysical survey

    International Nuclear Information System (INIS)

    Cole, D.J.; Stettler, E.H.

    1984-01-01

    Thirty four uranium anomalies were selected for ground follow-up from the analogue spectrometer records of Block 4 of the Karoo Airborne Geophysical Survey. The anomalies were plotted on 1:50 000 scale topographic maps and to 1:250 000 scale maps which are included in this report. The anomaly co-ordinates are tabulated together with the farms on which they occur. Results of the ground follow-up of the aerial anomalies are described. Twenty two anomalies are related to uranium mineralisation of which seventeen occur over baked mudstone adjacent to a dolerite intrusion. Five are located over fluvial channel sandstone of the Beaufort Group and subsurface mineralised sandstone may be present. The other twelve anomalies are spurious. Of the anomalies located over baked mudstone, fifteen emanate from ferruginous mudstone of the Whitehill Formation west of longitude 21 degrees 15 minutes. One of the two remaining anomalies over baked mudstone occurs over the Prince Albert Formation and the other anomaly is over baked mudstone and calcareous nodules of the Beaufort Group. The general low uranium values (less than 355 ppm eU3O8) render the occurrences uneconomic

  17. Environmental restoration using plant-microbe bioaugmentation

    International Nuclear Information System (INIS)

    Kingsley, M.T.; Fredrickson, J.K.; Metting, F.B.; Seidler, R.J.

    1993-04-01

    Land farming, for the purpose of bioremediation, refers traditionally to the spreading of contaminated soil, sediments, or other material over land; mechanically mixing it; incorporating various amendments, such as fertilizer or mulch; and sometimes inoculating with degradative microorganisms. Populations of bacteria added to soils often decline rapidly and become metabolically inactive. To efficiently degrade contaminants, microorganisms must be metabolically active. Thus, a significant obstacle to the successful use of microorganisms for environmental applications is their long-term survival and the expression of their degradative genes in situ. Rhizosphere microorganisms are known to be more metabolically active than those in bulk soil, because they obtain carbon and energy from root exudates and decaying root matter. Rhizosphere populations are also more abundant, often containing 10 8 or more culturable bacteria per gram of soil, and bacterial populations on the rhizoplane can exceed 10 9 /g root. Many of the critical parameters that influence the competitive ability of rhizosphere bacteria have not been identified, but microorganisms have frequently been introduced into soil (bioaugmentation) as part of routine or novel agronomic practices. However, the use of rhizosphere bacteria and their in situ stimulation by plant roots for degrading organic contaminants has received little attention. Published studies have demonstrated the feasibility of using rhizobacteria (Pseudomonas putida) for the rapid removal of chlorinated pesticides from contaminated soil, and to promote germination of radish seeds in the presence of otherwise phytotoxic levels of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), and phenoxyacetic acid (PAA). The present investigation was undertaken to determine if these strains (Pseudomonas putida PPO301/pRO101 and PPO301/pRO103) could be used to bioremediate 2,4-D-amended soil via plant-microbe bioaugmentation

  18. A method to quantify infectious airborne pathogens at concentrations below the threshold of quantification by culture

    Science.gov (United States)

    Cutler, Timothy D.; Wang, Chong; Hoff, Steven J.; Zimmerman, Jeffrey J.

    2013-01-01

    In aerobiology, dose-response studies are used to estimate the risk of infection to a susceptible host presented by exposure to a specific dose of an airborne pathogen. In the research setting, host- and pathogen-specific factors that affect the dose-response continuum can be accounted for by experimental design, but the requirement to precisely determine the dose of infectious pathogen to which the host was exposed is often challenging. By definition, quantification of viable airborne pathogens is based on the culture of micro-organisms, but some airborne pathogens are transmissible at concentrations below the threshold of quantification by culture. In this paper we present an approach to the calculation of exposure dose at microbiologically unquantifiable levels using an application of the “continuous-stirred tank reactor (CSTR) model” and the validation of this approach using rhodamine B dye as a surrogate for aerosolized microbial pathogens in a dynamic aerosol toroid (DAT). PMID:24082399

  19. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution.

    Science.gov (United States)

    Gatheru Waigi, Michael; Sun, Kai; Gao, Yanzheng

    2017-09-01

    Soil pollution has become a major concern in various terrestrial ecosystems worldwide. One in situ soil bioremediation strategy that has gained popularity recently is microbe-assisted phytoremediation, which is promising for remediating pollutants. Sphingomonads, a versatile bacteria group comprising four well-known genera, are ubiquitous in vegetation grown in contaminated soils. These Gram-negative microbes have been investigated for their ability to induce innate plant growth-promoting (PGP) traits, including the formation of phytohormones, siderophores, and chelators, in addition to their evolutionary adaptations enabling biodegradation and microbe-assisted removal of contaminants. However, their capacity for bacterial-assisted phytoremediation has to date been undervalued. Here, we highlight the specific features, roles, advantages, and challenges associated with using sphingomonads in plant-microbe interactions, from the perspective of future phytotechnologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Scientists discover how deadly fungal microbes enter host cells

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    A research team led by scientists at the Virginia Bioinformatics Institute at Virginia Tech has discovered a fundamental entry mechanism that allows dangerous fungal microbes to infect plants and cause disease.

  1. Volume 10 No. 11 November 2010 4340 SOIL MICROBE ...

    African Journals Online (AJOL)

    user

    2010-11-11

    Nov 11, 2010 ... SOIL MICROBE MEDIATED ZINC UPTAKE IN SOY BEAN: A REVIEW. Jefwa JM. 1* .... Porg, lipid Plp, high-energetic~P, sugar. Psuc and .... encouragement to prepare this presentation. ... Enviroquest Ltd Ontario, Canada.

  2. Anti-radiation microbe separated from traditional Chinese medicine

    International Nuclear Information System (INIS)

    Zou Zhaohui; Zhao Junqi; Deng Gangqiao; Wang Qian; Li Wenge; Peng Ling; Luo Zhiping

    2007-01-01

    One batch of Jinsuo pills, a kind of Chinese herbal medicine, treated by standardized irradiation process but failed to meet the sanitation requirement. Radiation resistant microbe was separated from the pills sample and the Gram stain showed positive, the colony of the microbe is milky white and concentric circle shape. It is observed as one of bacillus by microscope, its D 10 values in physiological saline and filter paper are 6.75 and 7.18 kGy, respectively. (authors)

  3. A Molecular Study of Microbe Transfer between Distant Environments

    OpenAIRE

    Hooper, Sean D.; Raes, Jeroen; Foerstner, Konrad U.; Harrington, Eoghan D.; Dalevi, Daniel; Bork, Peer

    2008-01-01

    BACKGROUND: Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecu...

  4. The Microbe Directory: An annotated, searchable inventory of microbes’ characteristics

    Science.gov (United States)

    Mohammad, Rawhi; Danko, David; Bezdan, Daniela; Afshinnekoo, Ebrahim; Segata, Nicola; Mason, Christopher E.

    2018-01-01

    The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes’ characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY—Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism’s taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart ( https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe. PMID:29630066

  5. Recent Research Status on the Microbes in the Radioactive Waste Disposal and Identification of Aerobic Microbes in a Groundwater Sampled from the KAERI Underground Research Tunnel(KURT)

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Cho, Won Jin

    2006-11-01

    In this report, a comprehensive review on the research results and status for the various effects of microbes in the radioactive waste disposal including definition and classification of microbes, and researches related with the waste containers, engineered barriers, natural barriers, natural analogue studies, and radionuclide migration and retardation. Cultivation, isolation, and classification of aerobic microbes found in a groundwater sampled from the KAERI Underground Research Tunnel (KURT) located in the KAERI site have carried out and over 20 microbes were found to be present in the groundwater. Microbial identification by a 16S rDNA genetic analysis of the selected major 10 aerobic microbes was performed and the identified microbes were characterized

  6. Minimizing Sources of Airborne, Aerosolized, and Contact Contaminants in the OR Environment.

    Science.gov (United States)

    Armellino, Donna

    2017-12-01

    Surgical site infections are unintended consequences of surgery that can cause harm to patients and place financial burdens on health care organizations. Extrinsic factors in the OR-including health care providers' behavior and practices that modify air movement, the physical environment, equipment, or surgical instruments-can increase microbial contamination. Microbes can be transported into the surgical incision by airborne or contact routes and contribute to a surgical site infection. Simple practices to prevent infection-such as minimizing airborne particles and contaminants, maintaining equipment according to the manufacturer's recommendations, cleaning and disinfecting the environment and surgical instruments, and performing proper hand hygiene-can reduce the degree of microbial contamination. Perioperative leaders and health care providers can help decrease the patient's risk of surgical site infection with proactive preventive practices that break the chain of infection. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  7. Talons and beaks are viable but underutilized samples for detecting ...

    African Journals Online (AJOL)

    Talons and beaks are viable but underutilized samples for detecting organophosphorus and carbamate pesticide poisoning in raptors. Ngaio Richards, Irene Zorrilla, Joseph Lalah, Peter Otieno, Isabel Fernandez, Monica Calvino, Joaquin Garcia ...

  8. Promoting Women Participation in Aquaculture as a Viable Tool for ...

    African Journals Online (AJOL)

    Promoting Women Participation in Aquaculture as a Viable Tool for Poverty Alleviation in the Rural Areas of Nigeria. ... Open Access DOWNLOAD FULL TEXT ... a source of income, also the paper focus on the roles of women in aquaculture, ...

  9. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review.

    Science.gov (United States)

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  10. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review

    Directory of Open Access Journals (Sweden)

    So Fujiyoshi

    2017-11-01

    Full Text Available Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%. It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i outdoor environments, and (ii the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne

  11. On regulation of radioactive airborne discharge

    International Nuclear Information System (INIS)

    Stroganov, A.A.; Kuryndin, A.V.; Shapovalov, A.S.; Orlov, M.Yu.

    2013-01-01

    Authors present the Russian regulatory basis of radioactive airborne discharges which was updated after enactment of the Methodology for airborne discharge limits development. Criteria for establishing of airborne discharge limits, scope and other features of methodology are also considered in the article [ru

  12. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  13. Explorative analysis of microbes, colloids and gases

    International Nuclear Information System (INIS)

    Hallbeck, Lotta; Pedersen, Karsten

    2008-08-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H 2 O/O 2 , NO 3 - /N 2 , Mn 2+ /Mn(IV), Fe 2+ /Fe(III), S 2- /SO 4 2- , CH 4 /CO 2 , CH 3 COOH/CO 2 , and H 2 /H + . The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10 -3 μm are regarded as colloids. Their small size prohibits them from settling, which gives them the potential to transport

  14. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    OpenAIRE

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of systems, including plant- and arthropod-associated microbes, and symbionts as well as antagonists, that selection and adaptation in seemingly two-way interactions between plants and microbes, plants a...

  15. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development.

    Science.gov (United States)

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory; Buchon, Nicolas

    2018-03-20

    Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. IMPORTANCE Animals are commonly associated with specific microbes, which play important roles in host development and fitness. However, little information about the function of microbes has been available for the important invasive pest Drosophila suzukii , also known as Spotted

  16. A molecular study of microbe transfer between distant environments.

    Science.gov (United States)

    Hooper, Sean D; Raes, Jeroen; Foerstner, Konrad U; Harrington, Eoghan D; Dalevi, Daniel; Bork, Peer

    2008-07-09

    Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecular evidence of transfer of microbes over vast geographical distances. By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of planetary wind and water. Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic material from distant environments is a possible font of novel gene functions for lateral gene transfer.

  17. A molecular study of microbe transfer between distant environments.

    Directory of Open Access Journals (Sweden)

    Sean D Hooper

    Full Text Available BACKGROUND: Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecular evidence of transfer of microbes over vast geographical distances. METHODOLOGY: By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of planetary wind and water. CONCLUSIONS: Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic material from distant environments is a possible font of novel gene functions for lateral gene transfer.

  18. TANPOPO: Microbe and micrometeoroid capture experiments on International Space Station.

    Science.gov (United States)

    Yamagishi, Akihiko; Kobayashi, Kensei; Yano, Hajime; Yokobori, Shinichi; Hashimoto, Hirofumi; Kawai, Hideyuki; Yamashita, Masamichi

    There is a long history of the microbe-collection experiments at high altitude. Microbes have been collected using balloons, aircraft and meteorological rockets from 1936 to 1976. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments. It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. TANPOPO, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. The Tanpopo mission was accepted as a candidate experiments on Exposed Facility of ISS-JEM.

  19. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.

    Directory of Open Access Journals (Sweden)

    Huijie Hou

    Full Text Available Microbial fuel cells (MFCs are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.

  20. Routing architecture and security for airborne networks

    Science.gov (United States)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  1. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  2. The microbes we eat: abundance and taxonomy of microbes consumed in a day's worth of meals for three diet types.

    Science.gov (United States)

    Lang, Jenna M; Eisen, Jonathan A; Zivkovic, Angela M

    2014-01-01

    Far more attention has been paid to the microbes in our feces than the microbes in our food. Research efforts dedicated to the microbes that we eat have historically been focused on a fairly narrow range of species, namely those which cause disease and those which are thought to confer some "probiotic" health benefit. Little is known about the effects of ingested microbial communities that are present in typical American diets, and even the basic questions of which microbes, how many of them, and how much they vary from diet to diet and meal to meal, have not been answered. We characterized the microbiota of three different dietary patterns in order to estimate: the average total amount of daily microbes ingested via food and beverages, and their composition in three daily meal plans representing three different dietary patterns. The three dietary patterns analyzed were: (1) the Average American (AMERICAN): focused on convenience foods, (2) USDA recommended (USDA): emphasizing fruits and vegetables, lean meat, dairy, and whole grains, and (3) Vegan (VEGAN): excluding all animal products. Meals were prepared in a home kitchen or purchased at restaurants and blended, followed by microbial analysis including aerobic, anaerobic, yeast and mold plate counts as well as 16S rRNA PCR survey analysis. Based on plate counts, the USDA meal plan had the highest total amount of microbes at 1.3 × 10(9) CFU per day, followed by the VEGAN meal plan and the AMERICAN meal plan at 6 × 10(6) and 1.4 × 10(6) CFU per day respectively. There was no significant difference in diversity among the three dietary patterns. Individual meals clustered based on taxonomic composition independent of dietary pattern. For example, meals that were abundant in Lactic Acid Bacteria were from all three dietary patterns. Some taxonomic groups were correlated with the nutritional content of the meals. Predictive metagenome analysis using PICRUSt indicated differences in some functional KEGG categories

  3. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  4. Biodiversity and Concentration of Airborne Fungi of Suburban Weekly Market Associated Environment

    Directory of Open Access Journals (Sweden)

    Apurva K. Pathak

    2012-04-01

    Full Text Available It is supposed that the vegetable markets of tropical countries are the significant source of airborne fungal spores, which are generated during transportation, handling and putrefaction. The aim of this work was to monitor the prevalence of the airborne cultivable fungi in the air of weekly market associated environments to evaluate whether the vegetable trading zone of market is a source of airborne cultivable fungal spores of weekly market environment or not. Airborne cultivable fungal spore levels were monitored by using Andersen two-stage viable (microbial particle sampler. The Spearman correlation coefficients and stepwise linear regression analysis test was used to analyze the influence of meteorological factors on spore concentration and paired Student’s t-test was used to compare the bioload of total viable cultivable fungi of vegetable trading area and general item trading area of weekly market extramural environment, the percentage frequency and the percentage contribution of the individual genus was also reported. In both areas, Aspergillus, Cladosporium, Alternaria, and Penicillium, were the most abundant fungal types observed. The spp. of Candida was reported only at the vegetable trading area. The bioload of fungal spore presented maximum values during the Monsoon and lowest in the season of summer. There is no significant difference in quantity between the mean values of the bioload of total viable cultivable fungi of vegetable trading area and general item trading area of weekly market extramural environment were observed. For present environment, activities of animals and humans were supposed to be the key factor governing aerosolization of microorganism.

  5. The microbe-free plant: fact or artefact?

    Directory of Open Access Journals (Sweden)

    Laila P. Pamela Partida-Martinez

    2011-12-01

    Full Text Available Plant-microbe interactions are ubiquitous. Plants are often colonized by pathogens but even more commonly engaged in neutral or mutualistic interactions with microbes: below-ground microbial plant associates are mycorrhizal fungi, Rhizobia and rhizosphere bacteria, above-ground plant parts are colonized by bacterial and fungal endophytes and by microbes in the phyllosphere. We emphasize here that a completely microbe-free plant is an exotic exception rather than the biologically relevant rule. The complex interplay of such microbial communities with the host plant affects plant nutrition, growth rate, resistance to biotic and abiotic stress, and plant survival and distribution. The mechanisms involved reach from nutrient acquisition, the production of plant hormones or direct antibiosis to effects on host resistance genes or interactions at higher trophic levels. Plant-associated microbes are heterotrophic and cause costs to their host plant, whereas the benefits depend on the environment. Thus, the outcome of the interaction is highly context-dependent. Considering the microbe-free plant as the ‘normal’ or control stage significantly impairs research into important phenomena such as (1 phenotypic and epigenetic plasticity, (2 the ‘normal’ ecological outcome of a given interaction and (3 the evolution of plants. For the future, we suggest cultivation-independent screening methods using direct PCR from plant tissue of more than one fungal and bacterial gene to collect data on the true microbial diversity in wild plants. The patterns found could be correlated to host species and environmental conditions, in order to formulate testable hypotheses on the biological roles of plant endophytes in nature. Experimental approaches should compare different host-endophyte combinations under various environmental conditions and study at the genetic, transcriptional and physiological level the parameters that shift the interaction along the mutualism

  6. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available The decline of circulating testosterone levels in aging men is associated with adverse health effects. During studies of probiotic bacteria and obesity, we discovered that male mice routinely consuming purified lactic acid bacteria originally isolated from human milk had larger testicles and increased serum testosterone levels compared to their age-matched controls. Further investigation using microscopy-assisted histomorphometry of testicular tissue showed that mice consuming Lactobacillus reuteri in their drinking water had significantly increased seminiferous tubule cross-sectional profiles and increased spermatogenesis and Leydig cell numbers per testis when compared with matched diet counterparts This showed that criteria of gonadal aging were reduced after routinely consuming a purified microbe such as L. reuteri. We tested whether these features typical of sustained reproductive fitness may be due to anti-inflammatory properties of L. reuteri, and found that testicular mass and other indicators typical of old age were similarly restored to youthful levels using systemic administration of antibodies blocking pro-inflammatory cytokine interleukin-17A. This indicated that uncontrolled host inflammatory responses contributed to the testicular atrophy phenotype in aged mice. Reduced circulating testosterone levels have been implicated in many adverse effects; dietary L. reuteri or other probiotic supplementation may provide a viable natural approach to prevention of male hypogonadism, absent the controversy and side-effects of traditional therapies, and yield practical options for management of disorders typically associated with normal aging. These novel findings suggest a potential high impact for microbe therapy in public health by imparting hormonal and gonad features of reproductive fitness typical of much younger healthy individuals.

  7. Musing over Microbes in Microgravity: Microbial Physiology Flight Experiment

    Science.gov (United States)

    Schweickart, Randolph; McGinnis, Michael; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    New York City, the most populated city in the United States, is home to over 8 million humans. This means over 26,000 people per square mile! Imagine, though, what the view would be if you peeked into the world of microscopic organisms. Scientists estimate that a gram of soil may contain up to 1 billion of these microbes, which is as much as the entire human population of China! Scientists also know that the world of microbes is incredibly diverse-possibly 10,000 different species in one gram of soil - more than all the different types of mammals in the world. Microbes fill every niche in the world - from 20 miles below the Earth's surface to 20 miles above, and at temperatures from less than -20 C to hotter than water's boiling point. These organisms are ubiquitous because they can adapt quickly to changing environments, an effective strategy for survival. Although we may not realize it, microbes impact every aspect of our lives. Bacteria and fungi help us break down the food in our bodies, and they help clean the air and water around us. They can also cause the dark, filmy buildup on the shower curtain as well as, more seriously, illness and disease. Since humans and microbes share space on Earth, we can benefit tremendously from a better understanding of the workings and physiology of the microbes. This insight can help prevent any harmful effects on humans, on Earth and in space, as well as reap the benefits they provide. Space flight is a unique environment to study how microbes adapt to changing environmental conditions. To advance ground-based research in the field of microbiology, this STS-107 experiment will investigate how microgravity affects bacteria and fungi. Of particular interest are the growth rates and how they respond to certain antimicrobial substances that will be tested; the same tests will be conducted on Earth at the same times. Comparing the results obtained in flight to those on Earth, we will be able to examine how microgravity induces

  8. Host-microbe interactions in the gut of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Takayuki eKuraishi

    2013-12-01

    Full Text Available Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent.

  9. Forced-air warming: a source of airborne contamination in the operating room?

    Science.gov (United States)

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  10. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    Science.gov (United States)

    2015-06-01

    9 Kenneth Macksey, Guderian: Panzer General-revised EDITION (South Yorkshire, England: Greenhill Books, 2003), 1–20. 10 Dr. John Arquilla...Airborne Operations: Field Manual 90=26, 1–5. 14 The 1st Special Forces Regiment has five active Special Forces Groups (1st, 3rd, 5th , 7th, 10th...Oxford University Press, 1981). Headrick, in his book, describes the interplay between technology and imperialism. For the purposes of this research

  11. The search for viable local government system in Nigeria: an ...

    African Journals Online (AJOL)

    The history of the Nigerian local government system has been one long episode of trails and errors aimed at achieving viable local government institution without much success. Local government in the country began its long series of reforms from the colonial period when the colonial government attempted to ...

  12. Skills training workshops as a viable strategy for improving ...

    African Journals Online (AJOL)

    Skills training workshops as a viable strategy for improving smallholder and cooperative agribusiness management: A case study of Vhembe District, Limpopo Province, South Africa. ... South African Journal of Agricultural Extension ... Empirical evidence from this study shows that six months after attending the workshops, ...

  13. A viable real estate economy with disruption and blockchain

    NARCIS (Netherlands)

    Veuger, Jan

    2017-01-01

    Two titles in one cover. On page 56-112 there's the English version of the book: 'A viable real estate economy with disruption and blockchain. Does real estate still have the value that it had, or is the valuation of real estate going to change due to surprising products and services, innovative

  14. Terrestrial microbes in martian and chondritic meteorites

    Science.gov (United States)

    Airieau, S.; Picenco, Y.; Andersen, G.

    2007-08-01

    Bank sequences using the BLAST program. The closest matches were in the genus Microbacterium. Soil and plant isolates were close relatives by sequence comparison. Los Angeles. After 11 months of incubation in a fridge, a yellow colony grew at the center of a culture plate of Los Angeles dust grains (1:1000 R2A). There was no cell activity in the other agars. A DNA extraction yielded no usable results [7]. Sequencing was not performed because the culture plate became contaminated with outside organisms that overtook the colony of interest. Conclusions: The sequences for EET 87770 and Leoville were of a good quality and the sequence reads were long, so the data are clear that these are typical soil and/or plant-related bacteria commonly found in Earth habitats. Microbial species present in a dozen chondritic samples from isolates are not yet identified, and the contaminant in Los Angeles needs to be recovered. In addition, isotopic analyses of samples with various amounts of microbial contamination could help quantified isotopic impact of microbes on protoplanetary chemistry in these rocks. References : [1] Gounelle, M. and Zolensky M. LPS, (2001) LPS XXXII, Abstract #999. [2] Fries, M. et al. (2005) Meteoritical Society Meeting 68, Abstract # 5201. [3] Burckle, L. H. and Delaney, J. S (1999) Meteoritics & Planet. Sci., 32, 475-478. [4] Whitby, C. et al. (2000) ) LPS XXXI, Abstract #1732. [5] Airieau, S. A. et al (2005) Geochim. Cosmochim. Acta, 69, 4166-4171. [6] Unpublished data, with H. J. Cleaves, A. Aubrey, J. Bada (Scripps Institution of Oceanography), M. Thiemens (UC San Diego) and M. Fogel (Carnegie Institution of Washington). [7] Unpublished data, with A. Steele (CIW), and N. Wainwright (Marine Biological Laboratory). Acknowledgements: Lisa Welleberger for access to SNC samples at USNM; Ralph Harvey for organizing ANSMET; Denise C. Thiry and Andrew Steele for long term storage of samples, NormWainwright for LAL measurements. A small portion of this work was funded with a

  15. Efficacy of antimicrobial 405 nm blue-light for inactivation of airborne bacteria

    Science.gov (United States)

    Dougall, Laura R.; Anderson, John G.; Timoshkin, Igor V.; MacGregor, Scott J.; Maclean, Michelle

    2018-02-01

    Airborne transmission of infectious organisms is a considerable concern within the healthcare environment. A number of novel methods for `whole room' decontamination, including antimicrobial 405 nm blue light, are being developed. To date, research has focused on its effects against surface-deposited contamination; however, it is important to also establish its efficacy against airborne bacteria. This study demonstrates evidence of the dose-response kinetics of airborne bacterial contamination when exposed to 405 nm light and compares bacterial susceptibility when exposed in three different media: air, liquid and surfaces. Bacterial aerosols of Staphylococcus epidermidis, generated using a 6-Jet Collison nebulizer, were introduced into an aerosol suspension chamber. Aerosolized bacteria were exposed to increasing doses of 405 nm light, and air samples were extracted from the chamber using a BioSampler liquid impinger, with viability analysed using pour-plate culture. Results have demonstrated successful aerosol inactivation, with a 99.1% reduction achieved with a 30 minute exposure to high irradiance (22 mWcm-2) 405 nm light (P=0.001). Comparison to liquid and surface exposures proved bacteria to be 3-4 times more susceptible to 405 nm light inactivation when in aerosol form. Overall, results have provided fundamental evidence of the susceptibility of bacterial aerosols to antimicrobial 405 nm light treatment, which offers benefits in terms of increased safety for human exposure, and eradication of microbes regardless of antibiotic resistance. Such benefits provide advantages for a number of applications including `whole room' environmental decontamination, in which reducing levels of airborne bacteria should reduce the number of infections arising from airborne contamination.

  16. Population dynamics of soil microbes and diversity of Bacillus ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Population dynamics of soil microbes and diversity of ... 25.78, 25.78, 86.26, 24.73, 68.0, 26.8 and 26.8 kDa proteins and equivalent to Cyt, Cry5 and Cry2 toxins ..... Molecular weight (kDa) of protein fractions of the BT isolates.

  17. Comparative gut physiology symposium: The microbe-gut-brain axis

    Science.gov (United States)

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  18. Microbes, molecules, maladies and man | Duse | South African ...

    African Journals Online (AJOL)

    South African Medical Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 92, No 3 (2002) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Microbes, molecules, maladies and man. AG Duse. Abstract.

  19. Host-Microbe Interactions in Microgravity: Assessment and Implications

    Directory of Open Access Journals (Sweden)

    Jamie S. Foster

    2014-05-01

    Full Text Available Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  20. Host-microbe interactions in microgravity: assessment and implications.

    Science.gov (United States)

    Foster, Jamie S; Wheeler, Raymond M; Pamphile, Regine

    2014-05-26

    Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  1. Preliminary biological screening of microbes isolated from cow dung ...

    African Journals Online (AJOL)

    Preliminary biological screening of microbes isolated from cow dung in Kampar. KC Teo, SM Teoh. Abstract. Five distinct morphologically and physiologically isolates were isolated from cow dung at Kampar, Perak, Malaysia and cultured on nutrient agar (NA) plates. Morphological studies including microscopic examination ...

  2. Microbes from raw milk for fermented dairy products

    NARCIS (Netherlands)

    Wouters, J.T.M.; Ayad, E.H.E.; Hugenholtz, J.; Smit, G.

    2002-01-01

    Milk has a high nutritive value, not only For the new-born mammal and for the human consumer, but also for microbes. Raw milk kept at roam temperature will be liable to microbial spoilage. After some days, the milk will spontaneously become sour. This is generally due to the activity of lactic acid

  3. A microbent fiber optic pH sensor

    NARCIS (Netherlands)

    Thomas Lee, S.; Aneeshkumar, B.N.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.

    2002-01-01

    Optical fiber sensors developed for measuring pH values usually employ an unclad and unstrained section of the fiber. In this paper, we describe the design and fabrication of a microbent fiber optic sensor that can be used for pH sensing. In order to obtain the desired performance, a permanently

  4. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  5. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  6. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Yihua, Xia [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  7. Monitoring and evaluation techniques for airborne contamination

    International Nuclear Information System (INIS)

    Xia Yihua

    1997-01-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  8. ZPR-9 airborne plutonium monitoring system

    International Nuclear Information System (INIS)

    Rusch, G.K.; McDowell, W.P.; Knapp, W.G.

    1975-01-01

    An airborne plutonium monitoring system which is installed in the ZPR-9 (Zero Power Reactor No. 9) facility at Argonne National Laboratory is described. The design and operational experience are discussed. This monitoring system utilizes particle size and density discrimination, alpha particle energy discrimination, and a background-subtraction techique operating in cascade to separate airborne-plutonium activity from other, naturally occurring, airborne activity. Relatively high sensitivity and reliability are achieved

  9. Electrospray Collection of Airborne Contaminants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  10. Recent developments in airborne gamma ray surveying

    International Nuclear Information System (INIS)

    Grasty, Robert L.

    1999-01-01

    Standardized procedures have been developed for converting airborne gamma ray measurements to ground concentrations of potassium, uranium and thorium. These procedures make use of an airborne calibration range whose ground concentrations should be measured with a calibrated portable spectrometer rather than by taking geochemical samples. Airborne sensitivities and height attenuation coefficients are normally determined from flights over the calibration range but may not be applicable in mountainous areas. Mathematical techniques have been now developed to reduce statistical noise in the airborne measurements by utilizing up to 256 channels of spectral information. (author)

  11. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.; Gojobori, Takashi; Mineta, K.

    2015-01-01

    microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  12. Assessment of indoor and outdoor airborne fungi in an Educational, Research and Treatment Center

    Directory of Open Access Journals (Sweden)

    Nasrin Rostami

    2016-06-01

    Full Text Available Hospital environments contain different types of microorganisms. Airborne fungi are one of these microbes and the major source of hospital indoor contamination that will be able to cause airborne fungal diseases. In the current study, the total count and diversity of the airborne filamentous and yeasts fungi were investigated in indoor and outdoor air of selective wards of Emam Reza Educational, Research and Treatment Center. This cross-sectional study was performed during the fall season. One hundred and ninety-two environmental samples of indoor and outdoor air from hematology, infectious diseases, Ear, Nose and Throat (ENT and Neonatal Intensive Care Unit (NICU wards were collected by open plate technique (on Sabouraud dextrose agar media once a week. The cultures were then examined and evaluated according to macroscopic and microscopic examination criteria. In this study, 67 (62.03% of indoor samples and 81 (96.42% of outdoor samples were positive for fungi. The most isolated fungi were yeast species (17.12%, Penicillium spp. (16.34%, Alternaria spp. (14.39%, Aspergillus niger (11.28%, A. flavus (8.95%, respectively. Almost all of the wards showed high rates of contamination by various fungi. However, the analysis of the data showed that indoor air of hematology ward had the highest fungal pollution. In contrast, the outdoor air of ENT had the highest fungal pollution. Thus, these results demonstrated that the cleansing and disinfection procedures in the hospital wards should be improved yet.

  13. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    Directory of Open Access Journals (Sweden)

    Karen C Abbott

    Full Text Available Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical

  14. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    Science.gov (United States)

    Abbott, Karen C; Karst, Justine; Biederman, Lori A; Borrett, Stuart R; Hastings, Alan; Walsh, Vonda; Bever, James D

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an

  15. Acupuntura un tratamiento viable para las adicciones en Colombia

    Directory of Open Access Journals (Sweden)

    Hernán López Seuscún

    2013-07-01

    Los tratamientos con auriculoterapia, como el protocolo NADA (National Acupuncture Detoxification Association, son los métodos más usados para las adicciones en el mundo, y aunque no se ha logrado evidenciar su efectividad, por su costo, facilidad y el poco riesgo de efectos adversos se hace viable en un país con pocos recursos económicos como Colombia.

  16. Evaluation of respiratory route as a viable portal of entry for Salmonella in poultry

    Directory of Open Access Journals (Sweden)

    Kallapura G

    2014-08-01

    Full Text Available Gopala Kallapura,1 Xochitl Hernandez-Velasco,2 Neil R Pumford,1 Lisa R Bielke,1 Billy M Hargis,1 Guillermo Tellez1 1Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA; 2College of Veterinary Medicine and Animal Husbandry, The National Autonomous University of Mexico, Mexico Abstract: With increasing reports of Salmonella infection, we are forced to question whether the fecal–oral route is the major route of infection and consider the possibility that airborne Salmonella infections might have a major unappreciated role. Today's large-scale poultry production, with densely stocked and enclosed production buildings, is often accompanied by very high concentrations of airborne microorganisms. Considering that the upper and lower respiratory lymphoid tissue requires up to 6 weeks to be fully developed, these immune structures seem to have a very minor role in preventing pathogen infection. In addition, the avian respiratory system in commercial poultry has anatomic and physiologic properties that present no challenge to the highly adapted Salmonella. The present review evaluates the hypothesis that transmission by the fecal–respiratory route may theoretically be a viable portal of entry for Salmonella in poultry. First, we update the current knowledge on generation of Salmonella bioaerosols, and the transport and fate of Salmonella at various stages of commercial poultry production. Further, emphasis is placed on survivability of Salmonella in these bioaerosols, as a means to assess the transport and subsequent risk of exposure and infection of poultry. Additionally, the main anatomic structures, physiologic functions, and immunologic defense in the avian respiratory system are discussed to understand the potential entry points inherent in each component that could potentially lead to infection and subsequent systemic infection of poultry by Salmonella. In this context, we also evaluate the role of the mucosal immune

  17. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    NARCIS (Netherlands)

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of

  18. Composition of extracts of airborne grain dusts: lectins and lymphocyte mitogens.

    Science.gov (United States)

    Olenchock, S A; Lewis, D M; Mull, J C

    1986-01-01

    Airborne grain dusts are heterogeneous materials that can elicit acute and chronic respiratory pathophysiology in exposed workers. Previous characterizations of the dusts include the identification of viable microbial contaminants, mycotoxins, and endotoxins. We provide information on the lectin-like activity of grain dust extracts and its possible biological relationship. Hemagglutination of erythrocytes and immunochemical modulation by antibody to specific lectins showed the presence of these substances in extracts of airborne dusts from barley, corn, and rye. Proliferation of normal rat splenic lymphocytes in vitro provided evidence for direct biological effects on the cells of the immune system. These data expand the knowledge of the composition of grain dusts (extracts), and suggest possible mechanisms that may contribute to respiratory disease in grain workers. PMID:3709474

  19. Airborne Research Experience for Educators

    Science.gov (United States)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  20. Cyberinfrastructure for Airborne Sensor Webs

    Science.gov (United States)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  1. Geophex airborne unmanned survey system

    International Nuclear Information System (INIS)

    Won, I.J.; Taylor, D.W.A.

    1995-01-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide open-quotes stand-offclose quotes capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected

  2. Geophex airborne unmanned survey system

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  3. Source terms for airborne effluents

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Perona, J.J.

    1976-01-01

    The origin and nature of fuel cycle wastes are discussed with regard to high-level wastes, cladding, noble gases, iodine, tritium, 14 C, low-level and intermediate-level transuranic wastes, non-transuranic wastes, and ore tailings. The current practice for gaseous effluent treatment is described for light water reactors and high-temperature gas-cooled reactors. Other topics discussed are projections of nuclear power generation; projected accumulation of gaseous wastes; the impact of nuclear fuel cycle centers; and global buildup of airborne effluents

  4. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components....... By knowing the spectral components and their amplitudes in each of the measured spectra one is able to extract more information from the data than possible with the methods used otherwise....

  5. Viable Mycobacterium avium ssp. paratuberculosis isolated from calf milk replacer.

    Science.gov (United States)

    Grant, Irene R; Foddai, Antonio C G; Tarrant, James C; Kunkel, Brenna; Hartmann, Faye A; McGuirk, Sheila; Hansen, Chungyi; Talaat, Adel M; Collins, Michael T

    2017-12-01

    When advising farmers on how to control Johne's disease in an infected herd, one of the main recommendations is to avoid feeding waste milk to calves and instead feed calf milk replacer (CMR). This advice is based on the assumption that CMR is free of viable Mycobacterium avium ssp. paratuberculosis (MAP) cells, an assumption that has not previously been challenged. We tested commercial CMR products (n = 83) obtained from dairy farms around the United States by the peptide-mediated magnetic separation (PMS)-phage assay, PMS followed by liquid culture (PMS-culture), and direct IS900 quantitative PCR (qPCR). Conventional microbiological analyses for total mesophilic bacterial counts, coliforms, Salmonella, coagulase-negative staphylococci, streptococci, nonhemolytic Corynebacterium spp., and Bacillus spp. were also performed to assess the overall microbiological quality of the CMR. Twenty-six (31.3%) of the 83 CMR samples showed evidence of the presence of MAP. Seventeen (20.5%) tested positive for viable MAP by the PMS-phage assay, with plaque counts ranging from 6 to 1,212 pfu/50 mL of reconstituted CMR (average 248.5 pfu/50 mL). Twelve (14.5%) CMR samples tested positive for viable MAP by PMS-culture; isolates from all 12 of these samples were subsequently confirmed by whole-genome sequencing to be different cattle strains of MAP. Seven (8.4%) CMR samples tested positive for MAP DNA by IS900 qPCR. Four CMR samples tested positive by both PMS-based tests and 5 CMR samples tested positive by IS900 qPCR plus one or other of the PMS-based tests, but only one CMR sample tested positive by all 3 MAP detection tests applied. All conventional microbiology results were within current standards for whole milk powders. A significant association existed between higher total bacterial counts and presence of viable MAP indicated by either of the PMS-based assays. This represents the first published report of the isolation of viable MAP from CMR. Our findings raise concerns

  6. Dual oxidase in mucosal immunity and host-microbe homeostasis.

    Science.gov (United States)

    Bae, Yun Soo; Choi, Myoung Kwon; Lee, Won-Jae

    2010-07-01

    Mucosal epithelia are in direct contact with microbes, which range from beneficial symbionts to pathogens. Accordingly, hosts must have a conflicting strategy to combat pathogens efficiently while tolerating symbionts. Recent progress has revealed that dual oxidase (DUOX) plays a key role in mucosal immunity in organisms that range from flies to humans. Information from the genetic model of Drosophila has advanced our understanding of the regulatory mechanism of DUOX and its role in mucosal immunity. Further investigations of DUOX regulation in response to symbiotic or non-symbiotic bacteria and the in vivo consequences in host physiology will give a novel insight into the microbe-controlling system of the mucosa. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Macrophage–Microbe Interactions: Lessons from the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Nagisa Yoshida

    2017-12-01

    Full Text Available Macrophages provide front line defense against infections. The study of macrophage–microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio larvae provide a unique platform to study macrophage–microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans.

  8. Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches

    Science.gov (United States)

    Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.

    2016-02-01

    Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.

  9. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  10. Characteristics of the repair - deficient mutants 1435 plague microbe strain

    International Nuclear Information System (INIS)

    Temiralieva, G.A.

    1977-01-01

    Repair-deficient mutants 1435 A uvr - hcr - , 1435-17 uvr - hcr + and 1435-35 lon have been obtained from 1435 plague microbe strain, isolated from a large gerbil living in the Central Asian desert region. The mutants have the same cultural-morphological and enzymatic characteristics, the same need in growth factors and similar virulence determinants as the original strain, but they do not cause death of the experimental animals

  11. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation

    OpenAIRE

    Krajmalnik-Brown, Rosa; Ilhan, Zehra-Esra; Kang, Dae-Wook; DiBaise, John K.

    2012-01-01

    Malnutrition may manifest as either obesity or undernutrition. Accumulating evidence suggests that the gut microbiota plays an important role in the harvest, storage, and expenditure of energy obtained from the diet. The composition of the gut microbiota has been shown to differ between lean and obese humans and mice; however, the specific roles that individual gut microbes play in energy harvest remain uncertain. The gut microbiota may also influence the development of conditions characteriz...

  12. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  13. Three-dimensional optofluidic device for isolating microbes

    Science.gov (United States)

    Keloth, A.; Paterson, L.; Markx, G. H.; Kar, A. K.

    2015-03-01

    Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.

  14. Airborne Lidar Surface Topography (LIST) Simulator

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  15. Digital airborne camera introduction and technology

    CERN Document Server

    Sandau, Rainer

    2014-01-01

    The last decade has seen great innovations on the airborne camera. This book is the first ever written on the topic and describes all components of a digital airborne camera ranging from the object to be imaged to the mass memory device.

  16. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B T; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  17. Airborne relay-based regional positioning system.

    Science.gov (United States)

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  18. Sterilization of microbes by using various plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Han S.; Choi, Eun H.; Cho, Guang S. [Kwangwoon University, Seoul (Korea, Republic of); Hong, Yong C. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Sterilization of various microbes was carried out by using several plasma jets. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes including spores. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological agents. The key element of the sterilization is oxygen radicals. The penciltype configuration produces a long, cold plasma jet capable of reaching 3.5 cm and having various excited plasma species shown through the optical emission spectrum. Operation of an air plasma jet at 2 W in a pencil-type electrode provides an excellent opportunity for sterilization of microbes. An electron microscope was used to observe the effects of the plasma on bacterial cell morphology. Transmission electron micrographs showed morphological changes in E. coli cells treated with an atmospheric plasma at 75 W for 2 min. The treated cells had severe cytoplasmic deformations and leakage of bacterial chromosome. The chromosomal DNA was either attached to the bacterial cells or released freely into the surrounding medium. The results clearly explain the loss of viability of bacterial cells after plasma treatment.

  19. Rarity in aquatic microbes: placing protists on the map.

    Science.gov (United States)

    Logares, Ramiro; Mangot, Jean-François; Massana, Ramon

    2015-12-01

    Most microbial richness at any given time tends to be represented by low-abundance (rare) taxa, which are collectively referred to as the "rare biosphere". Here we review works on the rare biosphere using high-throughput sequencing (HTS), with a particular focus on unicellular eukaryotes or protists. Evidence thus far indicates that the rare biosphere encompasses dormant as well as metabolically active microbes that could potentially play key roles in ecosystem functioning. Rare microbes appear to have biogeography, and sometimes the observed patterns can be similar to what is observed among abundant taxa, suggesting similar community-structuring mechanisms. There is limited evidence indicating that the rare biosphere contains taxa that are phylogenetically distantly related to abundant counterparts; therefore, the rare biosphere may act as a reservoir of deep-branching phylogenetic diversity. The potential role of the rare biosphere as a bank of redundant functions that can help to maintain continuous ecosystem function following oscillations in taxonomic abundances is hypothesized as its main ecological role. Future studies focusing on rare microbes are crucial for advancing our knowledge of microbial ecology and evolution and unveiling their links with ecosystem function. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Airborne iodine-125 arising from surface contamination

    International Nuclear Information System (INIS)

    Kwok, C.S.; Hilditch, T.E.

    1982-01-01

    Measurements of airborne 125 I were made during the subdivision of 740 MBq stocks of 125 I iodide solution in a hospital dispensary. Within the fume cupboard the mean airborne 125 I concentration was 3.5 +- 2.9 kBqm -3 . No airborne concentration contamination was found outside the fume cupboard during these dispensing sessions. The airborne 125 I concentration arising from deliberate surface contamination (50 μl, 3.7-6.3 MBq) of the top of a lead pot was measured at a height simulating face level at an open work bench. There was a progressive fall in airborne concentration over seven days but even then the level was still significantly above background. Measurements made with the extraction system of the fume cupboard in operation were 2-3 times lower. (U.K.)

  1. Geophex Airborne Unmanned Survey System

    International Nuclear Information System (INIS)

    Won, I.L.; Keiswetter, D.

    1995-01-01

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results

  2. Geophex Airborne Unmanned Survey System

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  3. Airborne metals in Spanish moss

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J.J.; Shacklette, H.T.

    1973-01-01

    One hundred twenty-three samples of Spanish moss (Tillandsia usneoides L.) were collected throughout the southern United States to assess the potential use of the plant as a natural long-term integrator of local atmospheric metal burdens. R-mode components analysis of the ash chemistry strongly suggests that at least five nearly uncorrelated factors are contributing to the observed chemical variation. Four of these factors are thought to reflect chemical properties of the atmosphere or airborne particulates; the fifth appears to be related in some way to metabolic activity in the living plant. The atmospheric factors are interpreted to be a) the ratio of terrestrial dust to ocean-derived salt in the local atmosphere, b) the regional variation in trace-element content of the terrestrial dust, c) the local concentration of automotive or technology-related lead-rich emissions, and d) higher concentrations of airborne vanadium east of the Mississippi River. If the intensity of the lead-rich factor in each sample is used as an index of general atmospheric pollution, sets of most polluted and least polluted samples may be defined. The estimates of abundance (arithmetic mean) are given for ash (Pb, Cu, Zn, Cd, Ni, and Cr) based on the 20 most polluted (MP) and 17 least polluted (LP) samples.

  4. Isolation and identification of microbes associated with mobile phones in Dammam in eastern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Amira H.A Al-Abdalall

    2010-01-01

    Full Text Available Objective: This study was conducted to determine microbial contamination of mobile phones in the city of Dammam, in the eastern region of Saudi Arabia, and identify the most important microbial species associated with these phones in order to take the necessary remedial measures. Materials and Methods: The analysis of a total of 202 samples was done to identify fungal and pathogenic bacteria isolates. Sterile swabs were firmly passed on the handset, the buttons and the screens of mobile phones, then inoculated into media of bacteria and fungi. Frequency distribution of isolates were calculated. Results: There were 737 isolated of the following bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Neisseria sicca, Micrococcus luteus, Proteus mirabilis, Bacillus subtilis, and Enterobacter aerogenes at the rate of 56.58, 13.57, 8.01, 7.73, 6.51, 3.66, 2.85 and 1.09% respectively. There were fungal isolates as follows: Alternaria alternata, Aspergillus niger, Cladosporium sp., Penicillium spp., Aspergillus flavus, Aspergillus fumigatus, Rhizopus stolonifer, Aspergillus ochraceus at the rate of 29.07, 26.74, 20.93, 10.47, 6.98, 2.33, 2.33, 1.16%, respectively. Conclusions: The study showed that all mobile phones under consideration were infected by several microbes, most of which belonged to the natural flora of the human body as well as airborne fungi and soil. This means that it is necessary to sterilize hands after contact with a phone since it is a source of disease transmission.

  5. Food microbe tracker: a web-based tool for storage and comparison of food-associated microbes.

    Science.gov (United States)

    Vangay, Pajau; Fugett, Eric B; Sun, Qi; Wiedmann, Martin

    2013-02-01

    Large amounts of molecular subtyping information are generated by the private sector, academia, and government agencies. However, use of subtype data is limited by a lack of effective data storage and sharing mechanisms that allow comparison of subtype data from multiple sources. Currently available subtype databases are generally limited in scope to a few data types (e.g., MLST. net) or are not publicly available (e.g., PulseNet). We describe the development and initial implementation of Food Microbe Tracker, a public Web-based database that allows archiving and exchange of a variety of molecular subtype data that can be cross-referenced with isolate source data, genetic data, and phenotypic characteristics. Data can be queried with a variety of search criteria, including DNA sequences and banding pattern data (e.g., ribotype or pulsed-field gel electrophoresis type). Food Microbe Tracker allows the deposition of data on any bacterial genus and species, bacteriophages, and other viruses. The bacterial genera and species that currently have the most entries in this database are Listeria monocytogenes, Salmonella, Streptococcus spp., Pseudomonas spp., Bacillus spp., and Paenibacillus spp., with over 40,000 isolates. The combination of pathogen and spoilage microorganism data in the database will facilitate source tracking and outbreak detection, improve discovery of emerging subtypes, and increase our understanding of transmission and ecology of these microbes. Continued addition of subtyping, genetic or phenotypic data for a variety of microbial species will broaden the database and facilitate large-scale studies on the diversity of food-associated microbes.

  6. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris

    OpenAIRE

    Carter, Dee A.; Oberbeckmann, Sonja; Osborn, A. Mark; Duhaime, Melissa B.

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial com...

  7. A metasystem of framework model organisms to study emergence of new host-microbe adaptations.

    Science.gov (United States)

    Gopalan, Suresh; Ausubel, Frederick M

    2008-01-01

    An unintended consequence of global industrialization and associated societal rearrangements is new interactions of microbes and potential hosts (especially mammals and plants), providing an opportunity for the rapid emergence of host-microbe adaptation and eventual establishment of new microbe-related diseases. We describe a new model system comprising the model plant Arabidopsis thaliana and several microbes, each representing different modes of interaction, to study such "maladaptations". The model microbes include human and agricultural pathogens and microbes that are commonly considered innocuous. The system has a large knowledge base corresponding to each component organism and is amenable to high-throughput automation assisted perturbation screens for identifying components that modulate host-pathogen interactions. This would aid in the study of emergence and progression of host-microbe maladaptations in a controlled environment.

  8. Contracting of energy services: often a viable alternative

    International Nuclear Information System (INIS)

    Milic, M.; Bruendler, M.

    2001-01-01

    This article discusses the outsourcing of energy services as a viable alternative to the operation of own energy facilities. The advantages of contracting for enterprises wanting to focus on their core competencies and have their energy infrastructure financed, built, maintained and operated by a third party are discussed. Financial aspects are looked at and examples in connection with the calculation of actual energy costs are given. The article is concluded with tips on the evaluation of offers for contracting services and on the definition of ownership aspects and property boundaries

  9. Formas cocoides de Helicobacter pylori: viables o degenerativas

    Directory of Open Access Journals (Sweden)

    Felipe Cava

    2003-06-01

    Full Text Available De los trabajos presentados acerca de las formas cocoides de Helicobacter pylori se deduce una controversia mucho mayor que la resultante del mero estudio clínico de este microorganismo. Parece claro que existe una conversión tanto in vivo como in vitro de las formas espirales a las formas cocoides inducida por varios motivos, como cultivos prolongados, estrés físico y químico, y agentes antimicrobianos. En esta revisión repasamos los puntos de vista que han dividido a investigadores de esta área en dos grupos bien definidos: Los que consideran a estas formas cocoides como un producto no viable de degeneración celular y los que piensan que estas formas son estructuras viables,durmientes o de resistencia frente a condiciones ambientales adversas. Esta discrepancia conlleva a que interrogantes sobre la relación entre la transmisión de la enfermedad y estas formas cocoides permanezcan sin respuesta todavía.

  10. Separation of viable lactic acid bacteria from fermented milk

    Directory of Open Access Journals (Sweden)

    Tomohiko Nishino

    2018-04-01

    Full Text Available Probiotics are live microorganisms that provide health benefits to humans. Some lactic acid bacteria (LAB are probiotic organisms used in the production of fermented foods, such as yogurt, cheese, and pickles. Given their widespread consumption, it is important to understand the physiological state of LAB in foods such as yogurt. However, this analysis is complicated, as it is difficult to separate the LAB from milk components such as solid curds, which prevent cell separation by dilution or centrifugation. In this study, we successfully separated viable LAB from yogurt by density gradient centrifugation. The recovery rate was >90 %, and separation was performed until the stationary phase. Recovered cells were observable by microscopy, meaning that morphological changes and cell viability could be directly detected at the single-cell level. The results indicate that viable LAB can be easily purified from fermented milk. We expect that this method will be a useful tool for the analysis of various aspects of probiotic cells, including their enzyme activity and protein expression. Keywords: Food analysis, Microbiology

  11. Application of RNA-seq and Bioimaging Methods to Study Microbe-Microbe Interactions and Their Effects on Biofilm Formation and Gene Expression

    DEFF Research Database (Denmark)

    Amador Hierro, Cristina Isabel; Sternberg, Claus; Jelsbak, Lars

    2017-01-01

    Complex interactions between pathogenic bacteria, the microbiota, and the host can modify pathogen physiology and behavior. We describe two different experimental approaches to study microbe-microbe interactions in in vitro systems containing surface-associated microbial populations. One method i...

  12. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    1991-01-01

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  13. Global deposition of airborne dioxin.

    Science.gov (United States)

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Microbe participation in aroma production during soy sauce fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2018-06-01

    Soy sauce is a traditional Japanese fermented seasoning that contains various constituents such as amino acids, organic acids, and volatiles that are produced during the long fermentation process. Although studies regarding the correlation between microbes and aroma constituents have been performed, there are no reports about the influences of the microbial products, such as lactic acid, acetic acid, and ethanol, during fermentation. Because it is known that these compounds contribute to microbial growth and to changes in the constituent profile by altering the moromi environment, understanding the influence of these compounds is important. Metabolomics, the comprehensive study of low molecular weight metabolites, is a promising strategy for the deep understanding of constituent contributions to food characteristics. Therefore, the influences of microbes and their products such as lactic acid, acetic acid, and ethanol on aroma profiles were investigated using gas chromatography/mass spectrometry (GC/MS)-based metabolic profiling. The presence of aroma constituents influenced by microbes and chemically influenced by lactic acid, acetic acid, and ethanol were proposed. Most of the aroma constituents were not produced by adding ethanol alone, confirming the participation of yeast in aroma production. It was suggested that lactic acid bacterium relates to a key aromatic compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone. However, most of the measured aroma constituents changed similarly in both samples with lactic acid bacterium and acids. Thus, it was clear that the effect of lactic acid and acetic acid on the aroma profile was significant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Big Data Approaches To Coral-Microbe Symbiosis

    Science.gov (United States)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  16. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development

    Directory of Open Access Journals (Sweden)

    XiaoLi Bing

    2018-03-01

    Full Text Available Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR and germ-free (GF flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions.

  17. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development

    Science.gov (United States)

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory

    2018-01-01

    ABSTRACT Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. PMID:29559576

  18. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  19. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    Science.gov (United States)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the

  20. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  1. Drone Transport of Microbes in Blood and Sputum Laboratory Specimens.

    Science.gov (United States)

    Amukele, Timothy K; Street, Jeff; Carroll, Karen; Miller, Heather; Zhang, Sean X

    2016-10-01

    Unmanned aerial vehicles (UAVs) could potentially be used to transport microbiological specimens. To examine the impact of UAVs on microbiological specimens, blood and sputum culture specimens were seeded with usual pathogens and flown in a UAV for 30 ± 2 min. Times to recovery, colony counts, morphologies, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identifications of the flown and stationary specimens were similar for all microbes studied. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Social Networking and Smart Technology: Viable Environmental Communication Tools…?

    Science.gov (United States)

    Montain, J.; Byrne, J. M.

    2010-12-01

    To what extent do popular social networking channels represent a viable means for disseminating information regarding environmental change to the general public? Are new forms of communication such as YouTube™, Facebook™, MySpace™ and Twitter™ and smart devices such as iPhone™ and BlackBerry™ useful and effective in terms motivating people into social action and behavioural modification; or do they simply pay ‘lip service’ to these pressing environmental issues? This project will explore the background connections between social networking and environmental communication and education; and outline why such tools might be an appropriate way to connect to a broad audience in an efficient and unconventional manner. Further, research will survey the current prevalence of reliable environmental change information on social networking Internet-based media; and finally, suggestions for improved strategies and new directions will be provided.

  3. Dissolvable tattoo sensors: from science fiction to a viable technology

    Science.gov (United States)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.

  4. Selection of viable cell subpopulations from murine tumours using FACS

    International Nuclear Information System (INIS)

    Chaplin, D.J.; Durand, R.E.; Olive, P.L.

    1985-01-01

    The authors developed a technique which enables isolation of viable tumour cells subpopulation as a function of their distance from the blood supply. The basis for this separation procedure is that the fluorochrome, Hoechst 33342, as a result of its high avidity for cellular DNA, exhibits a marked diffusion/consumption gradient when it has to pass through several cell layers. As a result intravenous injection of Hoechst 33342 into tumour bearing animals, results in a heterogeneous straining pattern within the tumour with cells close to blood vessels being brightly fluorescent while those more distant are less intensely stained. Since these differences in staining intensity persist after tumour disaggregation, cells can be sorted into subpopulations on the basis of their fluorescence intensity using a fluorescence activated cell sorter. This technique offers the unique possibility of identifying the location of those cell subpopulations resistant to treatment with either radiation or chemotherapeutic drugs

  5. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    Science.gov (United States)

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  6. Cummins L10G in Kenworth truck 'viable today'

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    As the culmination of five years of developmental work by Cummins Engines, BC Research Inc., and BC Gas Utility Ltd., a T800 Kenworth truck was outfitted with a new Cummins L10G natural gas engine, and two lightweight fully -wrapped Dynetek cylinders; it was pronounced to be 'a viable clean truck today'. The L10G spark-ignited engine operates at a relatively high peak efficiency of 37 per cent and is commercially available to meet the current California Air Resources Board heavy duty vehicle emission standards without the use of a catalytic converter. The L10G engine produces no particulate emissions, a very significant advantage, in view of the fact that particulate emissions have been identified as major contributors to respiratory ailments

  7. Dissolvable tattoo sensors: from science fiction to a viable technology

    International Nuclear Information System (INIS)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond. (invited comment)

  8. A viable logarithmic f(R) model for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M.; Khalil, S. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Giza (Egypt); Salah, M. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Giza (Egypt); Department of Mathematics, Faculty of Science, Cairo University,Giza (Egypt)

    2016-08-18

    Inflation in the framework of f(R) modified gravity is revisited. We study the conditions that f(R) should satisfy in order to lead to a viable inflationary model in the original form and in the Einstein frame. Based on these criteria we propose a new logarithmic model as a potential candidate for f(R) theories aiming to describe inflation consistent with observations from Planck satellite (2015). The model predicts scalar spectral index 0.9615

  9. Biocatalytically active silCoat-composites entrapping viable Escherichia coli.

    Science.gov (United States)

    Findeisen, A; Thum, O; Ansorge-Schumacher, M B

    2014-02-01

    Application of whole cells in industrial processes requires high catalytic activity, manageability, and viability under technical conditions, which can in principle be accomplished by appropriate immobilization. Here, we report the identification of carrier material allowing exceptionally efficient adsorptive binding of Escherichia coli whole cells hosting catalytically active carbonyl reductase from Candida parapsilosis (CPCR2). With the immobilizates, composite formation with both hydrophobic and hydrophilized silicone was achieved, yielding advanced silCoat-material and HYsilCoat-material, respectively. HYsilCoat-whole cells were viable preparations with a cell loading up to 400 mg(E. coli) · g(-1)(carrier) and considerably lower leaching than native immobilizates. SilCoat-whole cells performed particularly well in neat substrate exhibiting distinctly increased catalytic activity.

  10. MODEL OF CHANNEL AIRBORN ELECTRICAL POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    A. G. Demchenko

    2014-01-01

    Full Text Available This article is devoted to math modeling of channel of alternate current airborne electrical power-supply system. Considered to modeling of synchronous generator that runs on three-phase static load.

  11. Airborne Radar Search for Diesel Submarines (ARSDS)

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of an airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  12. Airborne Radar Search for Diesel Submarines

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  13. Airborne radioactive contamination following aerosol ventilation studies

    International Nuclear Information System (INIS)

    Mackie, A.; Hart, G.C.; Ibbett, D.A.; Whitehead, R.J.S.

    1994-01-01

    Lung aerosol ventilation studies may be accompanied by airborne contamination, with subsequent surface contamination. Airborne contamination has been measured prior to, during and following 59 consecutive 99 Tc m -diethylenetriamine pentaacetate (DTPA) aerosol studies using a personal air sampler. Airborne contamination ranging between 0 and 20 330 kBq m -3 has been measured. Airborne contamination increases with degree of patient breathing difficulty. The effective dose equivalent (EDE) to staff from ingested activity has been calculated to be 0.3 μSv per study. This figure is supported by data from gamma camera images of a contaminated staff member. However, surface contamination measurements reveal that 60% of studies exceed maximum permissible contamination limits for the hands; 16% of studies exceed limits for controlled area surfaces. (author)

  14. Software for airborne radiation monitoring system

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Kadmon, Y.; Tirosh, D.; Elhanany, I.; Gabovitch, A.; Barak, D.

    1997-01-01

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)

  15. Saharan dust - a carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Directory of Open Access Journals (Sweden)

    V.H Garrison

    2006-12-01

    Full Text Available An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI, Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs, trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde and the Caribbean (USVI and Trinidad & Tobago. Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs and polycyclic aromatic hydrocarbons (PAHs and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions. Rev. Biol. Trop. 54 (Suppl. 3: 9-21. Epub 2007 Jan. 15.

  16. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    Science.gov (United States)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  17. Evolution, human-microbe interactions, and life history plasticity.

    Science.gov (United States)

    Rook, Graham; Bäckhed, Fredrik; Levin, Bruce R; McFall-Ngai, Margaret J; McLean, Angela R

    2017-07-29

    A bacterium was once a component of the ancestor of all eukaryotic cells, and much of the human genome originated in microorganisms. Today, all vertebrates harbour large communities of microorganisms (microbiota), particularly in the gut, and at least 20% of the small molecules in human blood are products of the microbiota. Changing human lifestyles and medical practices are disturbing the content and diversity of the microbiota, while simultaneously reducing our exposures to the so-called old infections and to organisms from the natural environment with which human beings co-evolved. Meanwhile, population growth is increasing the exposure of human beings to novel pathogens, particularly the crowd infections that were not part of our evolutionary history. Thus some microbes have co-evolved with human beings and play crucial roles in our physiology and metabolism, whereas others are entirely intrusive. Human metabolism is therefore a tug-of-war between managing beneficial microbes, excluding detrimental ones, and channelling as much energy as is available into other essential functions (eg, growth, maintenance, reproduction). This tug-of-war shapes the passage of each individual through life history decision nodes (eg, how fast to grow, when to mature, and how long to live). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  19. Nitrilase enzymes and their role in plant–microbe interactions

    Science.gov (United States)

    Howden, Andrew J. M.; Preston, Gail M.

    2009-01-01

    Summary Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant–microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth‐promoting microorganisms, and their activities may have a significant impact on the outcome of plant–microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant‐associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. PMID:21255276

  20. Environmental bacteriophages : viruses of microbes in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2014-07-01

    Full Text Available Since the discovery 2-3 decades ago that viruses of microbes are abundant in marine ecosystems, viral ecology has grown increasingly to reach the status of a full scientific discipline in environmental sciences. A dedicated ISVM society, the International Society for Viruses of Microorganisms (http://www.isvm.org/, was recently launched. Increasing studies in viral ecology are sources of novel knowledge related to the biodiversity of living things, the functioning of ecosystems, and the evolution of the cellular world. This is because viruses are perhaps the most diverse, abundant, and ubiquitous biological entities in the biosphere, although local environmental conditions enrich for certain viral types through selective pressure. They exhibit various lifestyles that intimately depend on the deep-cellular mechanisms, and are ultimately replicated by members of all three domains of cellular life (Bacteria, Eukarya, Archaea, as well as by giant viruses of some eukaryotic cells. This establishes viral parasites as microbial killers but also as cell partners or metabolic manipulators in microbial ecology. The present chapter sought to review the literature on the diversity and functional roles of viruses of microbes in environmental microbiology, focusing primarily on prokaryotic viruses (i.e. phages in aquatic ecosystems, which form the bulk of our knowledge in modern environmental viral ecology.

  1. Induction of abiotic stress tolerance in plants by endophytic microbes.

    Science.gov (United States)

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  2. Utilizing thermophilic microbe in lignocelluloses based bioethanol production: Review

    Science.gov (United States)

    Sriharti, Agustina, Wawan; Ratnawati, Lia; Rahman, Taufik; Salim, Takiyah

    2017-01-01

    The utilization of thermophilic microbe has attracted many parties, particularly in producing an alternative fuel like ethanol. Bioethanol is one of the alternative energy sources substituting for earth oil in the future. The advantage of using bioethanol is that it can reduce pollution levels and global warming because the result of bioethanol burning doesn't bring in a net addition of CO2 into environment. Moreover, decrease in the reserves of earth oil globally has also contributed to the notion on searching renewable energy resources such as bioethanol. Indonesia has a high biomass potential and can be used as raw material for bioethanol. The utilization of these raw materials will reduce fears of competition foodstuffs for energy production. The enzymes that play a role in degrading lignocelluloses are cellulolytic, hemicellulolytic, and lignolytic in nature. The main enzyme with an important role in bioethanol production is a complex enzyme capable of degrading lignocelluloses. The enzyme can be produced by the thermophilik microbes of the groups of bacteria and fungi such as Trichoderma viride, Clostridium thermocellum, Bacillus sp. Bioethanol production is heavily affected by raw material composition, microorganism type, and the condition of fermentation used.

  3. Nitrilase enzymes and their role in plant-microbe interactions.

    Science.gov (United States)

    Howden, Andrew J M; Preston, Gail M

    2009-07-01

    Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant-microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth-promoting microorganisms, and their activities may have a significant impact on the outcome of plant-microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant-associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases.

    Science.gov (United States)

    Dolan, Kyle T; Chang, Eugene B

    2017-01-01

    The rising incidence of inflammatory bowel diseases in recent decades has notably paralleled changing lifestyle habits in Western nations, which are now making their way into more traditional societies. Diet plays a key role in IBD pathogenesis, and there is a growing appreciation that the interaction between diet and microbes in a susceptible person contributes significantly to the onset of disease. In this review, we examine what is known about dietary and microbial factors that promote IBD. We summarize recent findings regarding the effects of diet in IBD epidemiology from prospective population cohort studies, as well as new insights into IBD-associated dysbiosis. Microbial metabolism of dietary components can influence the epithelial barrier and the mucosal immune system, and understanding how these interactions generate or suppress inflammation will be a significant focus of IBD research. Our knowledge of dietary and microbial risk factors for IBD provides important considerations for developing therapeutic approaches through dietary modification or re-shaping the microbiota. We conclude by calling for increased sophistication in designing studies on the role of diet and microbes in IBD pathogenesis and disease resolution in order to accelerate progress in response to the growing challenge posed by these complex disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Uncharted Microbial World: Microbes and Their Activities in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline; Buckley, Merry

    2007-12-31

    Microbes are the foundation for all of life. From the air we breathe to the soil we rely on for farming to the water we drink, everything humans need to survive is intimately coupled with the activities of microbes. Major advances have been made in the understanding of disease and the use of microorganisms in the industrial production of drugs, food products and wastewater treatment. However, our understanding of many complicated microbial environments (the gut and teeth), soil fertility, and biogeochemical cycles of the elements is lagging behind due to their enormous complexity. Inadequate technology and limited resources have stymied many lines of investigation. Today, most environmental microorganisms have yet to be isolated and identified, let alone rigorously studied. The American Academy of Microbiology convened a colloquium in Seattle, Washington, in February 2007, to deliberate the way forward in the study of microorganisms and microbial activities in the environment. Researchers in microbiology, marine science, pathobiology, evolutionary biology, medicine, engineering, and other fields discussed ways to build on and extend recent successes in microbiology. The participants made specific recommendations for targeting future research, improving methodologies and techniques, and enhancing training and collaboration in the field. Microbiology has made a great deal of progress in the past 100 years, and the useful applications for these new discoveries are numerous. Microorganisms and microbial products are now used in industrial capacities ranging from bioremediation of toxic chemicals to probiotic therapies for humans and livestock. On the medical front, studies of microbial communities have revealed, among other things, new ways for controlling human pathogens. The immediate future for research in this field is extremely promising. In order to optimize the effectiveness of community research efforts in the future, scientists should include manageable

  6. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila

    Directory of Open Access Journals (Sweden)

    Patrice D. Cani

    2017-09-01

    Full Text Available Metabolic disorders associated with obesity and cardiometabolic disorders are worldwide epidemic. Among the different environmental factors, the gut microbiota is now considered as a key player interfering with energy metabolism and host susceptibility to several non-communicable diseases. Among the next-generation beneficial microbes that have been identified, Akkermansia muciniphila is a promising candidate. Indeed, A. muciniphila is inversely associated with obesity, diabetes, cardiometabolic diseases and low-grade inflammation. Besides the numerous correlations observed, a large body of evidence has demonstrated the causal beneficial impact of this bacterium in a variety of preclinical models. Translating these exciting observations to human would be the next logic step and it now appears that several obstacles that would prevent the use of A. muciniphila administration in humans have been overcome. Moreover, several lines of evidence indicate that pasteurization of A. muciniphila not only increases its stability but more importantly increases its efficacy. This strongly positions A. muciniphila in the forefront of next-generation candidates for developing novel food or pharma supplements with beneficial effects. Finally, a specific protein present on the outer membrane of A. muciniphila, termed Amuc_1100, could be strong candidate for future drug development. In conclusion, as plants and its related knowledge, known as pharmacognosy, have been the source for designing drugs over the last century, we propose that microbes and microbiomegnosy, or knowledge of our gut microbiome, can become a novel source of future therapies.

  7. Clinical laboratory evaluation of the Auto-Microbic system for rapid identification of Enterobacteriaceae.

    OpenAIRE

    Hasyn, J J; Cundy, K R; Dietz, C C; Wong, W

    1981-01-01

    The capability of the Auto-Microbic system (Vitek Systems, Inc., Hazelwood, Mo.) has been expanded to identify members of the family Enterobacteriaceae with the use of a sealed, disposable accessory card (the Enterobacteriaceae Biochemical Card) containing 26 biochemical tests. To judge the accuracy of the AutoMicrobic system's identification in a hospital laboratory, 933 Enterobacteriaceae isolates were studied. The AutoMicrobic system provided the correct identification for 905 of the isola...

  8. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    International Nuclear Information System (INIS)

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2005-01-01

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  9. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of viable bacteria and fungi... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.26 Detection of viable bacteria and fungi except... required to be free of viable bacteria and fungi, they shall also be tested as prescribed in this section...

  10. FEASIBILITY OF THE AEROSOL-TO-LIQUID PARTICLE EXTRACTION SYSTEM (ALPES) FOR COLLECTION OF VIABLE FRANCISELLA SP.

    Energy Technology Data Exchange (ETDEWEB)

    Heitkamp, M

    2006-08-07

    the final trial runs with F. tularensis LVS to further reduce the levels of microbial background. Results from trials with F. tularensis LVS showed about a 1-log loss decrease in CFUs after 24 h, but maintained final cell concentrations in the range of 10{sup 3}-10{sup 4} CFU/L. These results indicate that the ALPES maintains acceptable viability of Francisella sp. in PBS buffer for up to 24 h and is a promising technology for the collection of viable airborne Francisella or Francisella-related cultures which may be observed at Biowatch monitoring sites in the Houston area and elsewhere.

  11. Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials.

    Science.gov (United States)

    Gosálbez, J; Wright, W M D; Jiang, W; Carrión, A; Genovés, V; Bosch, I

    2018-08-01

    In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen. Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Zn(II)-cyclam based chromogenic sensors for recognition of ATP in aqueous solution under physiological conditions and their application as viable staining agents for microorganism.

    Science.gov (United States)

    Mahato, Prasenjit; Ghosh, Amrita; Mishra, Sanjiv K; Shrivastav, Anupama; Mishra, Sandhya; Das, Amitava

    2011-05-02

    Two chromogenic complexes, L.Zn (where L is (E)-4-((4-(1,4,8,11-tetraazacyclotetradecan-1-ylsulfonyl)phenyl)diazenyl)-N,N-dimethylaniline) and its [2]pseudorotaxane form (α-CD.L.Zn), were found to bind preferentially to adenosine triphosphate (ATP), among all other common anions and biologically important phosphate (AMP, ADP, pyrophosphate, and phosphate) ions in aqueous HEPES buffer medium of pH 7.2. Studies with live cell cultures of prokaryotic microbes revealed that binding of these two reagents to intercellular ATP, produced in situ, could be used in delineating the gram-positive and the gram-negative bacteria. More importantly, these dyes were found to be nontoxic to living microbes (eukaryotes and prokaryotes) and could be used for studying the cell growth dynamics. Binding to these two viable staining agents to intercellular ATP was also confirmed by spectroscopic studies on cell growth in the presence of different respiratory inhibitors that influence the intercellular ATP generation. © 2011 American Chemical Society

  14. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki

    2002-01-01

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  15. Inactivation of viable Ascaris eggs by reagents during enumeration.

    Science.gov (United States)

    Nelson, K L; Darby, J L

    2001-12-01

    Various reagents commonly used to enumerate viable helminth eggs from wastewater and sludge were evaluated for their potential to inactivate Ascaris eggs under typical laboratory conditions. Two methods were used to enumerate indigenous Ascaris eggs from sludge samples. All steps in the methods were the same except that in method I a phase extraction step with acid-alcohol (35% ethanol in 0.1 N H(2)SO(4)) and diethyl ether was used whereas in method II the extraction step was avoided by pouring the sample through a 38-microm-mesh stainless steel sieve that retained the eggs. The concentration of eggs and their viability were lower in the samples processed by method I than in the samples processed by method II by an average of 48 and 70%, respectively. A second set of experiments was performed using pure solutions of Ascaris suum eggs to elucidate the effect of the individual reagents and relevant combination of reagents on the eggs. The percentages of viable eggs in samples treated with acid-alcohol alone and in combination with diethyl ether or ethyl acetate were 52, 27, and 4%, respectively, whereas in the rest of the samples the viability was about 80%. Neither the acid nor the diethyl ether alone caused any decrease in egg viability. Thus, the observed inactivation was attributed primarily to the 35% ethanol content of the acid-alcohol solution. Inactivation of the eggs was prevented by limiting the direct exposure to the extraction reagents to 30 min and diluting the residual concentration of acid-alcohol in the sample by a factor of 100 before incubation. Also, the viability of the eggs was maintained if the acid-alcohol solution was replaced with an acetoacetic buffer. None of the reagents used for the flotation step of the sample cleaning procedure (ZnSO(4), MgSO(4), and NaCl) or during incubation (0.1 N H(2)SO(4) and 0.5% formalin) inactivated the Ascaris eggs under the conditions studied.

  16. An economically viable alternative to coastal discharge of produced water

    International Nuclear Information System (INIS)

    D'Unger, C.V.; Carr, R.S.; Chapman, D.C.

    1993-01-01

    The discharge of produced waters to coastal estuaries has been common practice on the Texas coast for many years as these discharges are currently exempt from NPDES permitting. A study of the active produced water discharges in Nueces Bay, Texas revealed that all eight effluents were highly toxic as determined by the sea urchin (Arbacia punctulata) fertilization and embryological development assays. An alternative to discharging produced water into coastal estuaries is the use of disposal wells. Inactive wells can be converted to produced water disposal wells. Production records for the Nueces Bay, Texas area reveal that 52% of the gas wells produce less than 100 mcf/d and 50% of the oil wells produce less than 10 b/d. Using conservative estimates, the cost of converting an inactive well to a disposal well was calculated to be $31,500 which could be paid out by a gas well producing as little as 100 mcf/d in 26 months using only 50% of the well's profit. Combining multiple leases to a single disposal well would reduce proportionately the cost to each operation. This study has demonstrated that economically viable disposal options could be achieved in the Nueces Bay area through the imaginative and cooperative formation of produced water disposal ventures. This same model could be applied to produced water discharges in other coastal areas

  17. Radiation disinfestation: A viable technology for developing countries

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1985-01-01

    Increasing food production in many countries is often offset by spoilage losses that occur at different stages after harvesting, slaughtering, or catching. The situation becomes critical in developing countries as more food is needed to feed the ever-increasing population. One of the major problems of losses of food and agricultural products during storage is insect infestation. This paper reviews some insect infestation problems of valuable crops in developing countries such as cereals, pulses, dried fish and meat, fresh and dried fruits, coffee and cocoa beans, spices, and cured tobacco leaves. Present practices of chemical fumigation to eliminate insect problems in these crops give rise to concern from the points of view of both public health and occupational safety. Irradiation technology has been shown to be as effective as other insect disinfestation methods and could provide a viable alternative for this purpose. Insects do not develop resistance to physical techniques such as heat or irradiation as they do to chemical treatments. Applications of radiation for disinfestation of food and agricultural products of importance to developing countries are discussed. The economics of radiation disinfestation of cereals and pulses, dried fish, and fresh fruits are also discussed

  18. Keeping checkpoint/restart viable for exascale systems.

    Energy Technology Data Exchange (ETDEWEB)

    Riesen, Rolf E.; Bridges, Patrick G. (IBM Research, Ireland, Mulhuddart, Dublin); Stearley, Jon R.; Laros, James H., III; Oldfield, Ron A.; Arnold, Dorian (University of New Mexico, Albuquerque, NM); Pedretti, Kevin Thomas Tauke; Ferreira, Kurt Brian; Brightwell, Ronald Brian

    2011-09-01

    Next-generation exascale systems, those capable of performing a quintillion (10{sup 18}) operations per second, are expected to be delivered in the next 8-10 years. These systems, which will be 1,000 times faster than current systems, will be of unprecedented scale. As these systems continue to grow in size, faults will become increasingly common, even over the course of small calculations. Therefore, issues such as fault tolerance and reliability will limit application scalability. Current techniques to ensure progress across faults like checkpoint/restart, the dominant fault tolerance mechanism for the last 25 years, are increasingly problematic at the scales of future systems due to their excessive overheads. In this work, we evaluate a number of techniques to decrease the overhead of checkpoint/restart and keep this method viable for future exascale systems. More specifically, this work evaluates state-machine replication to dramatically increase the checkpoint interval (the time between successive checkpoint) and hash-based, probabilistic incremental checkpointing using graphics processing units to decrease the checkpoint commit time (the time to save one checkpoint). Using a combination of empirical analysis, modeling, and simulation, we study the costs and benefits of these approaches on a wide range of parameters. These results, which cover of number of high-performance computing capability workloads, different failure distributions, hardware mean time to failures, and I/O bandwidths, show the potential benefits of these techniques for meeting the reliability demands of future exascale platforms.

  19. Physiology limits commercially viable photoautotrophic production of microalgal biofuels.

    Science.gov (United States)

    Kenny, Philip; Flynn, Kevin J

    2017-01-01

    Algal biofuels have been offered as an alternative to fossil fuels, based on claims that microalgae can provide a highly productive source of compounds as feedstocks for sustainable transport fuels. Life cycle analyses identify algal productivity as a critical factor affecting commercial and environmental viability. Here, we use mechanistic modelling of the biological processes driving microalgal growth to explore optimal production scenarios in an industrial setting, enabling us to quantify limits to algal biofuels potential. We demonstrate how physiological and operational trade-offs combine to restrict the potential for solar-powered algal-biodiesel production in open ponds to a ceiling of ca. 8000 L ha -1 year -1 . For industrial-scale operations, practical considerations limit production to ca. 6000 L ha -1 year -1 . According to published economic models and life cycle analyses, such production rates cannot support long-term viable commercialisation of solar-powered cultivation of natural microalgae strains exclusively as feedstock for biofuels. The commercial viability of microalgal biofuels depends critically upon limitations in microalgal physiology (primarily in rates of C-fixation); we discuss the scope for addressing this bottleneck concluding that even deployment of genetically modified microalgae with radically enhanced characteristics would leave a very significant logistical if not financial burden.

  20. Towards a viable and just global nursing ethics.

    Science.gov (United States)

    Crigger, Nancy J

    2008-01-01

    Globalization, an outgrowth of technology, while informing us about people throughout the world, also raises our awareness of the extreme economic and social disparities that exist among nations. As part of a global discipline, nurses are vitally interested in reducing and eliminating disparities so that better health is achieved for all people. Recent literature in nursing encourages our discipline to engage more actively with social justice issues. Justice in health care is a major commitment of nursing; thus questions in the larger sphere of globalization, justice and ethics, are our discipline's questions also. Global justice, or fairness, is not an issue for some groups or institutions, but a deeper human rights issue that is a responsibility for everyone. What can we do to help reduce or eliminate the social and economic disparities that are so evident? What kind of ethical milieu is needed to address the threat that globalization imposes on justice and fairness? This article enriches the conceptualization of globalization by investigating recent work by Schweiker and Twiss. In addition, I discuss five qualities or characteristics that will facilitate the development of a viable and just global ethic. A global ethic guides all people in their response to human rights and poverty. Technology and business, two major forces in globalization that are generally considered beneficial, are critiqued as barriers to social justice and the common good.

  1. Design and development of an airborne multispectral imaging system

    Science.gov (United States)

    Kulkarni, Rahul R.; Bachnak, Rafic; Lyle, Stacey; Steidley, Carl W.

    2002-08-01

    Advances in imaging technology and sensors have made airborne remote sensing systems viable for many applications that require reasonably good resolution at low cost. Digital cameras are making their mark on the market by providing high resolution at very high rates. This paper describes an aircraft-mounted imaging system (AMIS) that is being designed and developed at Texas A&M University-Corpus Christi (A&M-CC) with the support of a grant from NASA. The approach is to first develop and test a one-camera system that will be upgraded into a five-camera system that offers multi-spectral capabilities. AMIS will be low cost, rugged, portable and has its own battery power source. Its immediate use will be to acquire images of the Coastal area in the Gulf of Mexico for a variety of studies covering vast spectra from near ultraviolet region to near infrared region. This paper describes AMIS and its characteristics, discusses the process for selecting the major components, and presents the progress.

  2. Toward design-based engineering of industrial microbes.

    Science.gov (United States)

    Tyo, Keith E J; Kocharin, Kanokarn; Nielsen, Jens

    2010-06-01

    Engineering industrial microbes has been hampered by incomplete knowledge of cell biology. Thus an iterative engineering cycle of modeling, implementation, and analysis has been used to increase knowledge of the underlying biology while achieving engineering goals. Recent advances in Systems Biology technologies have drastically improved the amount of information that can be collected in each iteration. As well, Synthetic Biology tools are melding modeling and molecular implementation. These advances promise to move microbial engineering from the iterative approach to a design-oriented paradigm, similar to electrical circuits and architectural design. Genome-scale metabolic models, new tools for controlling expression, and integrated -omics analysis are described as key contributors in moving the field toward Design-based Engineering. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Lung Homeostasis: Influence of Age, Microbes, and the Immune System.

    Science.gov (United States)

    Lloyd, Clare M; Marsland, Benjamin J

    2017-04-18

    Pulmonary immune homeostasis is maintained by a network of tissue-resident cells that continually monitor the external environment, and in health, instruct tolerance to innocuous inhaled particles while ensuring that efficient and rapid immune responses can be mounted against invading pathogens. Here we review the multiple pathways that underlie effective lung immunity in health, and discuss how these may be affected by external environmental factors and contribute to chronic inflammation during disease. In this context, we examine the current understanding of the impact of the microbiota in immune development and function and in the setting of the threshold for immune responses that maintains the balance between tolerance and chronic inflammation in the lung. We propose that host interactions with microbes are critical for establishing the immune landscape of the lungs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  5. Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2013-10-01

    Full Text Available The toxic element arsenic (As occurs widely in solid and liquid mine wastes. Aqueous forms of arsenic are taken up in As-bearing sulfides, arsenides, sulfosalts, oxides, oxyhydroxides, Fe-oxides, -hydroxides, -oxyhydroxides and -sulfates, and Fe-, Ca-Fe- and other arsenates. Although a considerable body of research has demonstrated that microbes play a significant role in the precipitation and dissolution of these As-bearing minerals, and in the alteration of the redox state of As, in natural and simulated mining environments, the molecular-scale mechanisms of these interactions are still not well understood. Further research is required using traditional and novel mineralogical, spectroscopic and microbiological techniques to further advance this field, and to help design remediation schemes.

  6. Busting dust: from cosmic grains to terrestrial microbes

    International Nuclear Information System (INIS)

    Mendis, D.A.

    2001-01-01

    Electrostatic charging can have important consequences for both the growth and disruption of microparticulates immersed in a plasma. In this topical review, my emphasis is on the latter process, while I extend the term microparticulates not only to include ordinary inanimate cosmic or terrestrial dust but also to include terrestrial microbes whose sizes range from tens of nanometers (viruses) to tens of micrometers (bacteria). Following a description of the basic mechanism of electrostatic disruption of a solid body, I will discuss the role of size, shape and surface irregularity on the process. I will also consider the mitigating role of electric field emission of electrons on the disruption process of a negatively charged grain as its size falls below a critical size. I will conclude by reviewing some early evidence for the electrostatic disruption of cosmic grains, and the very recent evidence for the electrostatic disruption of the bacterial cell membranes in terrestrial sterilization experiments. (orig.)

  7. Aminoacid composition of wheat grain gluten under microbe impact

    Directory of Open Access Journals (Sweden)

    Sokolova М. G.

    2012-11-01

    Full Text Available The study was focused on characteristics of gluten, protein and aminoacids content in wheat grain under the impact of microbe preparations including bacteria of Azotobacter and Bacillus geni, which inhabit plant rhizosphere. The increase of aminoacids leveland particularly the level of essential aminoacids in wheat grain under bacterization was demonstrated, this fact accounting for the quality of grain as an important protein source. Increase of aminoacids content with the use of biopreparations on low-fertile soil ensures acquisition of biologically valuable grain with the decrease of mineral fertilizers dosage and emphasizes the role of biopreparations in the production of ecologically pure high quality products. The latter is due to introdcution of environmentally safe agricultural methods.

  8. New CRISPR-Cas systems from uncultivated microbes

    Science.gov (United States)

    Burstein, David; Harrington, Lucas B.; Strutt, Steven C.; Probst, Alexander J.; Anantharaman, Karthik; Thomas, Brian C.; Doudna, Jennifer A.; Banfield, Jillian F.

    2017-02-01

    CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

  9. Functional metagenomics to decipher food-microbe-host crosstalk.

    Science.gov (United States)

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  10. Exploring the Optimal Strategy to Predict Essential Genes in Microbes

    Directory of Open Access Journals (Sweden)

    Yao Lu

    2011-12-01

    Full Text Available Accurately predicting essential genes is important in many aspects of biology, medicine and bioengineering. In previous research, we have developed a machine learning based integrative algorithm to predict essential genes in bacterial species. This algorithm lends itself to two approaches for predicting essential genes: learning the traits from known essential genes in the target organism, or transferring essential gene annotations from a closely related model organism. However, for an understudied microbe, each approach has its potential limitations. The first is constricted by the often small number of known essential genes. The second is limited by the availability of model organisms and by evolutionary distance. In this study, we aim to determine the optimal strategy for predicting essential genes by examining four microbes with well-characterized essential genes. Our results suggest that, unless the known essential genes are few, learning from the known essential genes in the target organism usually outperforms transferring essential gene annotations from a related model organism. In fact, the required number of known essential genes is surprisingly small to make accurate predictions. In prokaryotes, when the number of known essential genes is greater than 2% of total genes, this approach already comes close to its optimal performance. In eukaryotes, achieving the same best performance requires over 4% of total genes, reflecting the increased complexity of eukaryotic organisms. Combining the two approaches resulted in an increased performance when the known essential genes are few. Our investigation thus provides key information on accurately predicting essential genes and will greatly facilitate annotations of microbial genomes.

  11. Planetary protection protecting earth and planets against alien microbes

    International Nuclear Information System (INIS)

    Leys, N.

    2006-01-01

    Protecting Earth and planets against the invasion of 'alien life forms' is not military science fiction, but it is the peaceful daily job of engineers and scientists of space agencies. 'Planetary Protection' is preventing microbial contamination of both the target planet and the Earth when sending robots on interplanetary space mission. It is important to preserve the 'natural' conditions of other planets and to not bring with robots 'earthly microbes' (forward contamination) when looking for 'spores of extra terrestrial life'. The Earth and its biosphere must be protected from potential extraterrestrial biological contamination when returning samples of other planets to the Earth (backward contamination). The NASA-Caltech Laboratory for Planetary Protection of Dr. Kasthuri Venkateswaran at the Jet Propulsion Laboratory (JPL) (California, USA) routinely monitors and characterizes the microbes of NASA spacecraft assembly rooms and space robots prior to flight. They have repeatedly isolated Cupriavidus and Ralstonia strains pre-flight from spacecraft assembly rooms (floor and air) and surfaces of space robots such as the Mars Odyssey Orbiter (La Duc et al., 2003). Cupriavidus and Ralstonia strains have also been found in-flight, in ISS cooling water and Shuttle drinking water (Venkateswaran et al., Pyle et al., Ott et al., all unpublished). The main objective of this study is to characterise the Cupriavidus and Ralstonia strains isolated at JPL and compare them to the Cupriavidus metallidurans CH34T model strain, isolated from a Belgian contaminated soil and studied since 25 years at SCK-CEN and to enhance our knowledge by performing additional tests at JPL and gathering information regarding the environmental conditions and the cleaning and isolation methods used in such spacecraft assembling facilities

  12. Climate change driven plant-metal-microbe interactions.

    Science.gov (United States)

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  14. Active airborne contamination control using electrophoresis

    International Nuclear Information System (INIS)

    Veatch, B.D.

    1994-01-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ''cold,'' or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications

  15. Airborne gravimetry for geoid and GOCE

    DEFF Research Database (Denmark)

    Forsberg, R.; Olesen, A. V.; Nielsen, E.

    2014-01-01

    DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability and redun......DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability...... in Antarctica and Tanzania based on DTU-Space aerogravity and GOCE. In both cases the airborne data validate GOCE to very high degrees, and confirms the synergy of airborne gravity and GOCE. For Antarctica, the deep interior Antarctic survey (continued in 2013 from a remote field camp), shows...... that it is possible efficiently to cover even the most remote regions on the planet with good aerogravity. With the recent termination of the GOCE mission, it is therefore timely to initiate a coordinated, preferably international, airborne gravity effort to cover the polar gap south of 83° S; such a survey can...

  16. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    García-Hernández, J; Moreno, Y; Amorocho, C M; Hernández, M

    2012-03-01

    We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. This technique was successfully applied to detect viable cells in inoculated faeces. Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  17. Ortholog - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us MicrobeDB.jp Ortholog Data detail Data name Ortholog DOI 10.18908/lsdba.nbdc01181-010.V002 V...814 triples - About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Ortholog - MicrobeDB.jp | LSDB Archive ...

  18. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge

    DEFF Research Database (Denmark)

    Aslam, Shazia N.; Erbs, Gitte; Morrissey, Kate L.

    2009-01-01

    Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidops...

  19. Plant-microbe and plant-insect interactions meet common grounds

    NARCIS (Netherlands)

    Schenk, P.; McGrath, K.C.; Lorito, M.; Pieterse, C.M.J.

    2008-01-01

    Plant–microbe and plant–insect interactions are of global importance for agriculture and of high interest to many plant scientists, microbiologists and entomologists. Traditionally, plant–microbe and plant–insect interactions have been looked at as two separate issues, but in recent years it has

  20. Life under the Microscope: Children's Ideas about Microbes

    Science.gov (United States)

    Allen, Michael; Bridle, Georgina; Briten, Elizabeth

    2015-01-01

    Microbes (by definition) are tiny living things that are only visible through a microscope and include bacteria, viruses, fungi, and protoctists (mainly single-celled life forms such as amoebae and algae). Although people are familiar with the effects of microbes, such as infectious disease and food spoilage, because of their lack of visibility,…

  1. Biogeographical diversity of plant associated microbes in arcto-alpine plants

    NARCIS (Netherlands)

    Kumar, Manoj Gopala Krishnan

    2016-01-01

    Terrestrial plants and microbes have co-evolved since the emergence of the former on Earth. Associations with microorganisms can be either beneficial or detrimental for plants. Microbes can be found in the soil surrounding the plant roots, but also in all plant tissues, including seeds. In

  2. Expanding Single Particle Mass Spectrometer Analyses for the Identification of Microbe Signatures in Sea Spray Aerosol.

    Science.gov (United States)

    Sultana, Camille M; Al-Mashat, Hashim; Prather, Kimberly A

    2017-10-03

    Ocean-derived microbes in sea spray aersosol (SSA) have the potential to influence climate and weather by acting as ice nucleating particles in clouds. Single particle mass spectrometers (SPMSs), which generate in situ single particle composition data, are excellent tools for characterizing aerosols under changing environmental conditions as they can provide high temporal resolution and require no sample preparation. While SPMSs have proven capable of detecting microbes, these instruments have never been utilized to definitively identify aerosolized microbes in ambient sea spray aersosol. In this study, an aerosol time-of-flight mass spectrometer was used to analyze laboratory generated SSA produced from natural seawater in a marine aerosol reference tank. We present the first description of a population of biological SSA mass spectra (BioSS), which closely match the ion signatures observed in previous terrestrial microbe studies. The fraction of BioSS dramatically increased in the largest supermicron particles, consistent with field and laboratory measurements of microbes ejected by bubble bursting, further supporting the assignment of BioSS mass spectra as microbes. Finally, as supported by analysis of inorganic ion signals, we propose that dry BioSS particles have heterogeneous structures, with microbes adhered to sodium chloride nodules surrounded by magnesium-enriched coatings. Consistent with this structure, chlorine-containing ion markers were ubiquitous in BioSS spectra and identified as possible tracers for distinguishing recently aerosolized marine from terrestrial microbes.

  3. Biofilms for Babies: Introducing Microbes and Biofilms to Preschool-Aged Children

    Directory of Open Access Journals (Sweden)

    Jillian M. Couto

    2017-05-01

    Full Text Available Microbes are beneficial to life on our planet as they facilitate natural processes such as global nutrient cycling in our environment. This article details a 30-minute activity to introduce pre-school children ranging from 3 to 5 years of age to microbes and biofilms in the natural environment.

  4. Coercion in the Evolution of Plant-Microbe Communication: A Perspective.

    Science.gov (United States)

    Rowe, S L; Norman, J S; Friesen, M L

    2018-06-06

    Plants and microbes are dependent on chemical signals as a means of interkingdom communication. There are two predicted paths for the evolution of these signals. Ritualization is the oft-assumed pathway for the evolution of plant-microbe communication systems. In this process, chemical signals, which benefit both receiver and sender, evolve from chemical cues, which benefit only the receiver. However, plant-microbe signaling may evolve from coercive interactions as well, a process known as sensory manipulation. Here, we aim to highlight the prevalence of coercive interactions and discuss sensory manipulation in the context of plant-microbe interactions. We present two examples of stabilized coercion: microbial coercion of plants via the release of phytohormones and plant coercion of microbes via manipulation of quorum-sensing compounds. Furthermore, we provide an evolutionary framework for the emergence of signaling from coercive plant-microbe interactions through the process of sensory manipulation. We hope that researchers will recognize the relevance of coercive interactions in plant-microbe systems and consider sensory manipulation as a plausible evolutionary trajectory for the emergence of plant-microbe signaling.

  5. Earthworms, Microbes and the Release of C and N in Biochar Amended Soil

    Science.gov (United States)

    Land application of biochar has the potential to increase soil fertility and sequester carbon. It is unclear how soil microbes and earthworms interact with biochar and affect release or retention of nutrients. In order to determine the effects and interactions among soil microbes, earthworms, and bi...

  6. Vaccines against drugs of abuse: a viable treatment option?

    Science.gov (United States)

    Kantak, Kathleen M

    2003-01-01

    Drug addiction is a chronically relapsing brain disorder. There is an urgent need for new treatment options for this disease because the relapse rate among drug abusers seeking treatment is quite high. During the past decade, many groups have explored the feasibility of using vaccines directed against drugs of abuse as a means of eliminating illicit drug use as well as drug overdose and neurotoxicity. Vaccines work by inducing drug-specific antibodies in the bloodstream that bind to the drug of abuse and prevent its entry into the brain. The majority of work in this area has been conducted with vaccines and antibodies directed against cocaine and nicotine. On the basis of preclinical work, vaccines for cocaine and nicotine are now in clinical trials because they can offer long-term protection with minimal treatment compliance. In addition, vaccines and antibodies for phencyclidine, methamphetamine and heroin abuse are currently under development. An underlying theme in this research is the need for high concentrations of circulating drug-specific antibodies to reduce drug-seeking and drug-taking behaviour when the drug is repeatedly available, especially in high doses. Although vaccines against drugs of abuse may become a viable treatment option, there are several drawbacks that need to be considered. These include: a lack of protection against a structurally dissimilar drug that produces the same effects as the drug of choice;a lack of an effect on drug craving that predisposes an addict to relapse; and tremendous individual variability in antibody formation. Forced or coerced vaccination is not likely to work from a scientific perspective, and also carries serious legal and ethical concerns. All things considered, vaccination against a drug of abuse is likely to work best with individuals who are highly motivated to quit using drugs altogether and as part of a comprehensive treatment programme. As such, the medical treatment of drug abuse will not be radically

  7. Coronectomy - A viable alternative to prevent inferior alveolar nerve injury

    Directory of Open Access Journals (Sweden)

    Alok Sagtani

    2015-12-01

    Full Text Available Background and Objectives: Coronectomy is a relatively new method to prevent the risk of Inferior Alveolar Nerve (IAN injury during removal of lower third molars with limited scientific literature among Nepalese patients. Thus, a study was designed to evaluate coronectomy regarding its use, outcomes and complications.Materials and Methods: A descriptive study was conducted from December 2012 to December 2013 among patients attending Department of Oral and Maxillofacial Surgery, College of Dental Sciences, BP Koirala Institute of Health Sciences, Dharan, Nepal for removal of mandibular third molars. After reviewing the radiograph for proximity of third molar to the IAN, coronectomy was advised. A written informed consent was obtained from the patients and coronectomy was performed. Patients were recalled after one week. The outcome measures in the follow-up visit were primary healing, pain, infection, dry socket, root exposure and IAN injury. The prevalence of IAN proximity of lower third molars and incidence of complications were calculated.Results: A total 300 mandibular third molars were extracted in 278 patients during the study period. Out of 300 impacted mandibular third molar, 41 (13.7% showed close proximity to inferior alveolar nerve . The incidence of complications and failed procedure was 7.4% among the patients who underwent coronectomy. During the follow up visit, persistent pain and root exposure was reported while other complications like inferior alveolar nerve injury, dry socket and infection was not experienced by the study patients.Conclusion: With a success rate of 92.6% among the 41 patients, coronectomy is a viable alternative to conventional total extraction for mandibular third molars who have a higher risk for damage to the inferior alveolar nerve.JCMS Nepal. 2015;11(3:1-5.

  8. Appendix : airborne incidents : an econometric analysis of severity

    Science.gov (United States)

    2014-12-19

    This is the Appendix for Airborne Incidents: An Econometric Analysis of Severity Report. : Airborne loss of separation incidents occur when an aircraft breaches the defined separation limit (vertical and/or horizontal) with another aircraft or terrai...

  9. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  10. An Airborne Capability for South Africa from a Special Operations ...

    African Journals Online (AJOL)

    term strategy, and airborne forces form an important component in its envisioned Contingency Brigade. This article examines the utility of contemporary airborne forces despite the decline in major parachute assaults. It also explains the ...

  11. CAMEX-4 ER-2 MODIS AIRBORNE SIMULATOR (MAS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Airborne Simulator (MAS) is an airborne scanning spectrometer that acquires high spatial resolution imagery of cloud and surface features from its vantage...

  12. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground......-based geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited...

  13. Airborne Microalgae: Insights, Opportunities, and Challenges

    Science.gov (United States)

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  14. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan

    1996-01-01

    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation...... and perturbations of the surface of the Earth. The Danish Center for Remote Sensing (DCRS) has experimented with airborne INSAR since 1993. Multiple track data are collected in a special mode in which the radar directly steers the aircraft which allows for very precise control of the flight path. Such data sets......) the status of the airborne interferometry activities at DCRS, including the present system configuration, recent results, and some scientific applications of the system....

  15. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    Science.gov (United States)

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  16. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Morewitz, H.A.; Johnson, R.P.; Nelson, C.T.; Vaughan, E.U.; Guderjahn, C.A.; Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1978-01-01

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m 3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approximately 1,000 g/m 3 ), high turbulence, and high temperature (approximately 2000 0 C); and aerosol transport through various leak paths. These studies have shown that tittle, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building. (author)

  17. Geoid of Nepal from airborne gravity survey

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði

    2011-01-01

    An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....

  18. Modelling airborne dispersion of coarse particulate material

    International Nuclear Information System (INIS)

    Apsley, D.D.

    1989-03-01

    Methods of modelling the airborne dispersion and deposition of coarse particulates are presented, with the emphasis on the heavy particles identified as possible constituents of releases from damaged AGR fuel. The first part of this report establishes the physical characteristics of the irradiated particulate in airborne emissions from AGR stations. The second part is less specific and describes procedures for extending current dispersion/deposition models to incorporate a coarse particulate component: the adjustment to plume spread parameters, dispersion from elevated sources and dispersion in conjunction with building effects and plume rise. (author)

  19. NASA Airborne Astronomy Ambassadors (AAA)

    Science.gov (United States)

    Backman, D. E.; Harman, P. K.; Clark, C.

    2016-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) is a three-part professional development (PD) program for high school physics and astronomy teachers. The AAA experience consists of: (1) blended-learning professional development composed of webinars, asynchronous content learning, and a series of hands-on workshops (2) a STEM immersion experience at NASA Armstrong Flight Research Center's B703 science research aircraft facility in Palmdale, California, and (3) ongoing participation in the AAA community of practice (CoP) connecting participants with astrophysics and planetary science Subject Matter Experts (SMEs). The SETI Institute (SI) is partnering with school districts in Santa Clara and Los Angeles Counties during the AAA program's "incubation" period, calendar years 2016 through 2018. AAAs will be selected by the school districts based on criteria developed during spring 2016 focus group meetings led by the program's external evaluator, WestEd.. Teachers with 3+ years teaching experience who are assigned to teach at least 2 sections in any combination of the high school courses Physics (non-AP), Physics of the Universe (California integrated model), Astronomy, or Earth & Space Sciences are eligible. Partner districts will select at least 48 eligible applicants with SI oversight. WestEd will randomly assign selected AAAs to group A or group B. Group A will complete PD in January - June of 2017 and then participate in SOFIA science flights during fall 2017 (SOFIA Cycle 5). Group B will act as a control during the 2017-18 school year. Group B will then complete PD in January - June of 2018 and participate in SOFIA science flights in fall 2018 (Cycle 6). Under the current plan, opportunities for additional districts to seek AAA partnerships with SI will be offered in 2018 or 2019. A nominal two-week AAA curriculum component will be developed by SI for classroom delivery that will be aligned with selected California Draft Science Framework Disciplinary Core Ideas

  20. 30 CFR 57.5001 - Exposure limits for airborne contaminants.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exposure limits for airborne contaminants. 57... Underground § 57.5001 Exposure limits for airborne contaminants. Except as permitted by § 57.5005— (a) Except as provided in paragraph (b), the exposure to airborne contaminants shall not exceed, on the basis of...

  1. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  2. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  3. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  4. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved airborne...

  5. Kaluza-Klein models: Can we construct a viable example?

    International Nuclear Information System (INIS)

    Eingorn, Maxim; Zhuk, Alexander

    2011-01-01

    candidates for a viable model of astrophysical objects (e.g., Sun) if we can provide a satisfactory explanation of negative tension for particles constituting these objects.

  6. Microbes versus microbes

    DEFF Research Database (Denmark)

    Jordan, Kieran; Dalmasso, Marion; Zentek, Juergen

    2014-01-01

    been used in food processing to improve food safety. An understanding of the mode of action of this microbial antagonism has been gained in recent years and potential applications in food and feed safety are now being explored. This review focuses on the potential opportunities presented......Foodborne illness continues as a considerable threat to public health. Despite improved hygiene management systems and increased regulation, pathogenic bacteria still contaminate food, causing sporadic cases of illness and disease outbreaks worldwide. For many centuries, microbial antagonism has......, and the limitations, of using microbial antagonism as a biocontrol mechanism to reduce contamination along the food chain; including animal feed as its first link. © 2014 Society of Chemical Industry....

  7. Microbes Characteristics in Groundwater Flow System in Mountainous Area

    Science.gov (United States)

    Yamamoto, Chisato; Tsujimura, Maki; Kato, Kenji; Sakakibara, Koichi; Ogawa, Mahiro; Sugiyama, Ayumi; Nagaosa, Kazuyo

    2017-04-01

    We focus on a possibility of microbes as a tracer for groundwater flow investigation. Some previous papers showed that the total number of prokaryotes in groundwater has correlation with depth and geology (Parkes et al., 1994; Griebler et al., 2009; Kato et al., 2012). However, there are few studies investigating both microbe characteristics and groundwater flow system. Therefore, we investigated a relationship between the total number of prokaryotes and age of spring water and groundwater. Intensive field survey was conducted at four mountainous areas, namely Mt. Fuji (volcano), a headwater at Mt. Setohachi, a headwater at River Oi and a headwater at River Nagano underlain by volcanic lava at Mt. Fuji, granite at Mt. Setohachi and sedimentary rock at River Oi and River Nagano. We collected totally 40 spring water/ groundwater samples in these mountainous areas in October 2015, August, October and November 2016 and analyzed concentration of inorganic ions, the stable isotopes of oxygen - 18, deuterium, CFCs and SF6. Also, we counted prokaryotic cells under the epifluorescence microscopy after fixation and filteration. The total number of prokaryotes in the spring water/ groundwater ranged from 1.0×102 to 7.0×103cells mL-1 at the Mt. Fuji, 1.3×104 to 2.7×105cells mL-1 at Mt. Setohachi, 3.1×104cells mL-1 at River Oi and 1.8×105 to 3.2×106cells mL-1 at River Nagano. The SF6 age of the spring water/ groundwater ranged from 8 to 64 years at Mt. Fuji, 2 to 32.5 years at Mt. Setohachi, 2.5 years at River Oi and 15 to 16 years at River Nagano. The total number of prokaryotes showed a clear negative correlation with residence time of spring water/ groundwater in all regions. Especially the prokaryotes number increased in the order of 102 cells mL-1 with decreasing of residence time in approximately 10 years in the groundwater and spring water with the age less than 15 years.

  8. Predictors of viable germ cell tumor in postchemotherapeutic residual retroperitoneal masses

    Directory of Open Access Journals (Sweden)

    Khalid Al Othman

    2014-01-01

    Full Text Available Objective: The aim of this study was to identify predictors of viable germ cell tumor (GCT in postchemotherapeutic residual retroperitoneal masses. Materials and Methods: The pertinent clinical and pathologic data of 16 male patients who underwent postchemotherapeutic retroperitoneal lymph node dissection (PC-RPLND at King Faisal Specialist Hospital and Research Centre between 1994 and 2005 were reviewed retrospectively. It was found that all patients received cisplatin-based chemotherapy for advanced testicular GCT. Results: Out of the 16 male patients, 2 (13%, 8 (50%, and 6 (37% had viable GCT, fibrosis, and teratoma, respectively. Ten (10 of the patients with prechemotherapeutic S1 tumor markers did not have viable GCT, and two of the six patients who had prechemotherapeutic S2 tumor markers have viable GCT. All tumor marker levels normalized after chemotherapy even in patients with viable GCT. Four patients had vascular invasion without viable GCT. Furthermore, four patients had more than 60% embryonal elements in the original pathology, but only 1 had viable GCT at PC-RPLND. Four of the five patients with immature teratoma had teratoma at PC-RPLND but no viable GCT; however, out of the four patients with mature teratoma, one had viable GCT and two had teratoma at PC-RPLND. Of the two patients with viable GCT, one had 100% embryonal cancer in the original pathology, prechemotherapeutic S2 tumor markers, history of orchiopexy, and no vascular invasion; the other patient had yolk sac tumor with 25% embryonal elements and 40% teratoma in the original pathology, and prechemotherapeutic S2 tumor markers. Conclusion: None of the clinical or pathological parameters showed a strong correlation with the presence of viable GCT in PC-RPLND. However, patients with ≥S2 may be at higher risk to have viable GCT. Further studies are needed to clarify this.

  9. Airborne Gravity: NGS' Airborne Gravity Data for AN01 (2009-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2009-2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  10. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diet types

    Directory of Open Access Journals (Sweden)

    Jenna M. Lang

    2014-12-01

    Full Text Available Far more attention has been paid to the microbes in our feces than the microbes in our food. Research efforts dedicated to the microbes that we eat have historically been focused on a fairly narrow range of species, namely those which cause disease and those which are thought to confer some “probiotic” health benefit. Little is known about the effects of ingested microbial communities that are present in typical American diets, and even the basic questions of which microbes, how many of them, and how much they vary from diet to diet and meal to meal, have not been answered.We characterized the microbiota of three different dietary patterns in order to estimate: the average total amount of daily microbes ingested via food and beverages, and their composition in three daily meal plans representing three different dietary patterns. The three dietary patterns analyzed were: (1 the Average American (AMERICAN: focused on convenience foods, (2 USDA recommended (USDA: emphasizing fruits and vegetables, lean meat, dairy, and whole grains, and (3 Vegan (VEGAN: excluding all animal products. Meals were prepared in a home kitchen or purchased at restaurants and blended, followed by microbial analysis including aerobic, anaerobic, yeast and mold plate counts as well as 16S rRNA PCR survey analysis.Based on plate counts, the USDA meal plan had the highest total amount of microbes at 1.3 × 109 CFU per day, followed by the VEGAN meal plan and the AMERICAN meal plan at 6 × 106 and 1.4 × 106 CFU per day respectively. There was no significant difference in diversity among the three dietary patterns. Individual meals clustered based on taxonomic composition independent of dietary pattern. For example, meals that were abundant in Lactic Acid Bacteria were from all three dietary patterns. Some taxonomic groups were correlated with the nutritional content of the meals. Predictive metagenome analysis using PICRUSt indicated differences in some functional KEGG

  11. Linking plant nutritional status to plant-microbe interactions.

    Science.gov (United States)

    Carvalhais, Lilia C; Dennis, Paul G; Fan, Ben; Fedoseyenko, Dmitri; Kierul, Kinga; Becker, Anke; von Wiren, Nicolaus; Borriss, Rainer

    2013-01-01

    Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N), phosphate (P), iron (Fe) and potassium (K) deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR) Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress.

  12. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  13. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  14. Anaerobic Probiotics: The Key Microbes for Human Health.

    Science.gov (United States)

    El Enshasy, Hesham; Malik, Khairuddin; Malek, Roslinda Abd; Othman, Nor Zalina; Elsayed, Elsayed Ahmed; Wadaan, Mohammad

    Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.

  15. Diet, genes, and microbes: complexities of colon cancer prevention.

    Science.gov (United States)

    Birt, Diane F; Phillips, Gregory J

    2014-01-01

    Colorectal cancer is one of the leading causes of cancer-related deaths in the United States, and generally, as countries climb the economic ladder, their rates of colon cancer increase. Colon cancer was an early disease where key genetic mutations were identified as important in disease progression, and there is considerable interest in determining whether specific mutations sensitize the colon to cancer prevention strategies. Epidemiological studies have revealed that fiber- and vegetable-rich diets and physical activity are associated with reduced rates of colon cancer, while consumption of red and processed meat, or alcoholic beverages, and overconsumption as reflected in obesity are associated with increased rates. Animal studies have probed these effects and suggested directions for further refinement of diet in colon cancer prevention. Recently a central role for the microorganisms in the gastrointestinal tract in colon cancer development is being probed, and it is hypothesized that the microbes may integrate diet and host genetics in the etiology of the disease. This review provides background on dietary, genetic, and microbial impacts on colon cancer and describes an ongoing project using rodent models to assess the ability of digestion-resistant starch in the integration of these factors with the goal of furthering colon cancer prevention.

  16. The role of lipids in host microbe interactions.

    Science.gov (United States)

    Lang, Roland; Mattner, Jochen

    2017-06-01

    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  17. Utilization of waste as biogas substrateby dominan microbes identified

    Science.gov (United States)

    Nurlina, E.; Sambasri, S.; Hartati, E.; Safitri, R.; Hodijat, A.

    2018-05-01

    Indonesia as the tropics have a source of biomass feedstock which is very large, so the waste biomass can be used optimally as an energy source in the form of biogas. This study was conducted to obtain alternative energy from domestic waste materials, given the limited availability of petroleum and natural gas sourced from fossil fuels. This methodology is an experimental method, the process conditions at room temperature 25-27 °C, pH adjusted to the growth of microbes to produce biogas, retention time 20-60 days, the bioreactor is operated with a batch system, the volume of waste in the bioreactor is made permanent, so that the production of biogas in large scale will increase the pressure inside the bioreactor. Biogas is formed accommodated then distributed to the stove. Factors that determine the formation of biogas is a microbial species capable methanogens convert acetate into biogas. From the results of microbial identification of the isolates in the bioreactor, has identified three types of bacteria methanogens namely Methanospirillum hungatei, Methanobacterium polustre and Methanolacinapoynteri. The results of this study, domestic waste can be utilized as a substrate in biogas production, with the highest methane composition reaches 50.79%. This result is expected to increase public knowledge to utilize the waste into biogas as a renewable energy to sufficient the energy needs of household, so it does not depend on the energy derived from fossil fuels.

  18. Detoxification of Fusaric Acid by the Soil Microbe Mucor rouxii.

    Science.gov (United States)

    Crutcher, Frankie K; Puckhaber, Lorraine S; Bell, Alois A; Liu, Jinggao; Duke, Sara E; Stipanovic, Robert D; Nichols, Robert L

    2017-06-21

    Fusarium oxysporum f. sp. vasinfectum race 4 (VCG0114), which causes root rot and wilt of cotton (Gossypium hirsutum and G. barbadense), has been identified recently for the first time in the western hemisphere in certain fields in the San Joaquin Valley of California. This pathotype produces copious quantities of the plant toxin fusaric acid (5-butyl-2-pyridinecarboxylic acid) compared to other isolates of F. oxysporum f. sp. vasinfectum (Fov) that are indigenous to the United States. Fusaric acid is toxic to cotton plants and may help the pathogen compete with other microbes in the soil. We found that a laboratory strain of the fungus Mucor rouxii converts fusaric acid into a newly identified compound, 8-hydroxyfusaric acid. The latter compound is significantly less phytotoxic to cotton than the parent compound. On the basis of bioassays of hydroxylated analogues of fusaric acid, hydroxylation of the butyl side chain of fusaric acid may affect a general detoxification of fusaric acid. Genes that control this hydroxylation may be useful in developing biocontrol agents to manage Fov.

  19. Microbe-surface interactions in biofouling and biocorrosion processes.

    Science.gov (United States)

    Beech, Iwona B; Sunner, Jan A; Hiraoka, Kenzo

    2005-09-01

    The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.

  20. Of genes and microbes: solving the intricacies in host genomes.

    Science.gov (United States)

    Wang, Jun; Chen, Liang; Zhao, Na; Xu, Xizhan; Xu, Yakun; Zhu, Baoli

    2018-05-01

    Microbiome research is a quickly developing field in biomedical research, and we have witnessed its potential in understanding the physiology, metabolism and immunology, its critical role in understanding the health and disease of the host, and its vast capacity in disease prediction, intervention and treatment. However, many of the fundamental questions still need to be addressed, including the shaping forces of microbial diversity between individuals and across time. Microbiome research falls into the classical nature vs. nurture scenario, such that host genetics shape part of the microbiome, while environmental influences change the original course of microbiome development. In this review, we focus on the nature, i.e., the genetic part of the equation, and summarize the recent efforts in understanding which parts of the genome, especially the human and mouse genome, play important roles in determining the composition and functions of microbial communities, primarily in the gut but also on the skin. We aim to present an overview of different approaches in studying the intricate relationships between host genetic variations and microbes, its underlying philosophy and methodology, and we aim to highlight a few key discoveries along this exploration, as well as current pitfalls. More evidence and results will surely appear in upcoming studies, and the accumulating knowledge will lead to a deeper understanding of what we could finally term a "hologenome", that is, the organized, closely interacting genome of the host and the microbiome.

  1. Designer cells programming quorum-sensing interference with microbes.

    Science.gov (United States)

    Sedlmayer, Ferdinand; Hell, Dennis; Müller, Marius; Ausländer, David; Fussenegger, Martin

    2018-05-08

    Quorum sensing is a promising target for next-generation anti-infectives designed to address evolving bacterial drug resistance. The autoinducer-2 (AI-2) is a key quorum-sensing signal molecule which regulates bacterial group behaviors and is recognized by many Gram-negative and Gram-positive bacteria. Here we report a synthetic mammalian cell-based microbial-control device that detects microbial chemotactic formyl peptides through a formyl peptide sensor (FPS) and responds by releasing AI-2. The microbial-control device was designed by rewiring an artificial receptor-based signaling cascade to a modular biosynthetic AI-2 production platform. Mammalian cells equipped with the microbial-control gene circuit detect formyl peptides secreted from various microbes with high sensitivity and respond with robust AI-2 production, resulting in control of quorum sensing-related behavior of pathogenic Vibrio harveyi and attenuation of biofilm formation by the human pathogen Candida albicans. The ability to manipulate mixed microbial populations through fine-tuning of AI-2 levels may provide opportunities for future anti-infective strategies.

  2. Airborne gravity field Measurements - status and developments

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René

    2016-01-01

    English Abstract:DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM or inertial navigation systems) ...

  3. Downscaling of Airborne Wind Energy Systems

    NARCIS (Netherlands)

    Fechner, U.; Schmehl, R.

    2016-01-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that can not be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the

  4. Experimental airborne transmission of PRRS virus

    DEFF Research Database (Denmark)

    Kristensen, C.S.; Bøtner, Anette; Takai, H.

    2004-01-01

    A series of three experiments, differing primarily in airflow volume, were performed to evaluate the likelihood of airborne transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) from infected to non-infected pigs. Pigs were housed in two units (unit A and unit B) located 1 m...

  5. Airborne radioactive effluents: releases and processing

    International Nuclear Information System (INIS)

    Grissom, M.C.

    1982-10-01

    This bibliography contains 870 citations on airborne radioactive waste included in the Department of Energy's Energy Data Base from January 1981 through August 1982. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  6. Optimization of airborne wind energy generators

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2012-01-01

    This paper presents novel results related to an innovative airborne wind energy technology, named Kitenergy, for the conversion of high-altitude wind energy into electricity. The research activities carried out in the last five years, including theoretical analyses, numerical simulations, and

  7. Topology optimized cloak for airborne sound

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole

    2013-01-01

    Directional acoustic cloaks that conceal an aluminum cylinder for airborne sound waves are presented in this paper. Subwavelength cylindrical aluminum inclusions in air constitute the cloak design to aid practical realizations. The positions and radii of the subwavelength cylinders are determined...

  8. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  9. The National Airborne Field Experiment Data Sets

    DEFF Research Database (Denmark)

    Walker, J. P.; Balling, Jan E.; Bell, M.

    2007-01-01

    The National Airborne Field Experiment's (NAFE) were a series of intensive experiments recently conducted in different parts of Australia. These hydrologic-focused experiments have been designed to answer a range of questions which can only be resolved through carefully planned and executed field...

  10. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    Energy Technology Data Exchange (ETDEWEB)

    Mietz, D.; Archuleta, B.; Archuleta, J. [and others

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  11. Inactivation of an enterovirus by airborne disinfectants

    Science.gov (United States)

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 30 minutes at a concentration of 7.5 mL.m-3. Poliovirus inoculum, supplemented with 5%, heat inactivated non fat dry organic milk, were applied into the middle of the stainless steel disc and were dried under the air flow of a class II biological safety cabinet at room temperature. The Viral preparations were recovered by using flocked swabs and were titered on Vero cells using the classical Spearman-Kärber CPE reading method, the results were expressed as TCID50.ml-1. Results The infectious titer of dried poliovirus inocula was kept at 105 TCID50.mL-1 up to 150 minutes at room temperature. Dried inocula exposed to airborne peracetic acid containing disinfectants were recovered at 60 and 120 minutes post-exposition and suspended in culture medium again. The cytotoxicity of disinfectant containing medium was eliminated through gel filtration columns. A 4 log reduction of infectious titer of dried poliovirus inocula exposed to peracetic-based airborne disinfectant was obtained. Conclusion This study demonstrates that the virucidal activity of airborne disinfectants can be tested on dried poliovirus. PMID:23587047

  12. Grazing of particle-associated bacteria-an elimination of the non-viable fraction.

    Science.gov (United States)

    Gonsalves, Maria-Judith; Fernandes, Sheryl Oliveira; Priya, Madasamy Lakshmi; LokaBharathi, Ponnapakkam Adikesavan

    Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42h showed that at the end of 24h, growth coefficient (k) of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, 'k' value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g)=0.564), the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, 'g' of non-viable fraction (particle-associated bacteria=0.615, Free=0.0086) was much greater than the viable fraction (particle-associated bacteria=0.056, Free=0.068). Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the "persistent variants" where the viable fraction multiply and release their progeny. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Grazing of particle-associated bacteria-an elimination of the non-viable fraction

    Directory of Open Access Journals (Sweden)

    Maria-Judith Gonsalves

    Full Text Available Abstract Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42 h showed that at the end of 24 h, growth coefficient (k of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, ‘k’ value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g = 0.564, the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, ‘g’ of non-viable fraction (particle-associated bacteria = 0.615, Free = 0.0086 was much greater than the viable fraction (particle-associated bacteria = 0.056, Free = 0.068. Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the “persistent variants” where the viable fraction multiply and release their progeny.

  14. How Do Small Things Make a Big Difference? Activities to Teach about Human-Microbe Interactions.

    Science.gov (United States)

    Jasti, Chandana; Hug, Barbara; Waters, Jillian L; Whitaker, Rachel J

    2014-11-01

    Recent scientific studies are providing increasing evidence for how microbes living in and on us are essential to our good health. However, many students still think of microbes only as germs that harm us. The classroom activities presented here are designed to shift student thinking on this topic. In these guided inquiry activities, students investigate human-microbe interactions as they work together to interpret and analyze authentic data from published articles and develop scientific models. Through the activities, students learn and apply ecological concepts as they come to see the human body as a fascinatingly complex ecosystem.

  15. How Do Small Things Make a Big Difference? Activities to Teach about Human–Microbe Interactions

    Science.gov (United States)

    JASTI, CHANDANA; HUG, BARBARA; WATERS, JILLIAN L.; WHITAKER, RACHEL J.

    2014-01-01

    Recent scientific studies are providing increasing evidence for how microbes living in and on us are essential to our good health. However, many students still think of microbes only as germs that harm us. The classroom activities presented here are designed to shift student thinking on this topic. In these guided inquiry activities, students investigate human–microbe interactions as they work together to interpret and analyze authentic data from published articles and develop scientific models. Through the activities, students learn and apply ecological concepts as they come to see the human body as a fascinatingly complex ecosystem. PMID:25520526

  16. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  17. The effects of packaging materials on microbe population in irradiated traditional herbal medicines

    International Nuclear Information System (INIS)

    Bagiawati, Sri; Hilmy, Nazly

    1983-01-01

    Microbial population and moisture content of traditional herbal medicines contaminated with 3 kinds of aerobic microbes, packed in 5 kinds of plastic packaging materials, followed by irradiation at minimum dose of 5 kGy and stored for 6 months were investigated. The highest reduction of microbial counts during storage was observed on samples packed in polyethylene bags. All of packaging materials used were found to be impermeable to microbes and water vapour. Radiation and packaging materials used acted synergistically to inactivate microbes durind storage. The microbial counts decreased as much as 2 to 4 log cycles during storage. (author)

  18. Saharan dust - a carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Directory of Open Access Journals (Sweden)

    V.H Garrison

    2006-12-01

    Full Text Available An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI, Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs, trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde and the Caribbean (USVI and Trinidad & Tobago. Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs and polycyclic aromatic hydrocarbons (PAHs and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions. Rev. Biol. Trop. 54 (Suppl. 3: 9-21. Epub 2007 Jan. 15.Un grupo internacional de agencias gubernamentales y universidades de los Estados Unidos, las Islas Vírgenes (EUA, Trinidad y Tobago, la República de Cabo Verde y la República de Mali (África Oeste, está trabajando en conjunto para elucidar el papel que el polvo del Sahara puede estar jugando en el deterioro de los ecosistemas caribeños. El

  19. Cybernetically sound organizational structures II: Relating de Sitter's design theory to Beer's viable system model

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.; Vriens, D.J.

    2011-01-01

    - Purpose – The purpose of this paper is to show how the viable system model (VSM) and de Sitter's design theory can complement each other in the context of the diagnosis and design of viable organizations. - Design/methodology/approach – Key concepts from Beer's model and de Sitter's design theory

  20. Small bugs, big business: the economic power of the microbe.

    Science.gov (United States)

    Demain, A L

    2000-10-01

    The versatility of microbial biosynthesis is enormous. The most industrially important primary metabolites are the amino acids, nucleotides, vitamins, solvents, and organic acids. Millions of tons of amino acids are produced each year with a total multibillion dollar market. Many synthetic vitamin production processes are being replaced by microbial fermentations. In addition to the multiple reaction sequences of fermentations, microorganisms are extremely useful in carrying out biotransformation processes. These are becoming essential to the fine chemical industry in the production of single-isomer intermediates. Microbially produced secondary metabolites are extremely important to our health and nutrition. As a group, they have tremendous economic importance. The antibiotic market amounts to almost 30 billion dollars and includes about 160 antibiotics and derivatives such as the beta-lactam peptide antibiotics, the macrolide polyketide erythromycin, tetracyclines, aminoglycosides and others. Other important pharmaceutical products produced by microrganisms are hypocholesterolemic agents, enzyme inhibitors, immunosuppressants and antitumor compounds, some having markets of over 1 billion dollars per year. Agriculturally important secondary metabolites include coccidiostats, animal growth promotants, antihelmintics and biopesticides. The modern biotechnology industry has made a major impact in the business world, biopharmaceuticals (recombinant protein drugs, vaccines and monoclonal antibodies) having a market of 15 billion dollars. Recombinant DNA technology has also produced a revolution in agriculture and has markedly increased markets for microbial enzymes. Molecular manipulations have been added to mutational techniques as means of increasing titers and yields of microbial procresses and in discovery of new drugs. Today, microbiology is a major participant in global industry. The best is yet to come as microbes move into the environmental and energy sectors.

  1. Insight and analysis problem solving in microbes to machines.

    Science.gov (United States)

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright

  2. Scaling Soil Microbe-Water Interactions from Pores to Ecosystems

    Science.gov (United States)

    Manzoni, S.; Katul, G. G.

    2014-12-01

    The spatial scales relevant to soil microbial activity are much finer than scales relevant to whole-ecosystem function and biogeochemical cycling. On the one hand, how to link such different scales and develop scale-aware biogeochemical and ecohydrological models remains a major challenge. On the other hand, resolving these linkages is becoming necessary for testing ecological hypotheses and resolving data-theory inconsistencies. Here, the relation between microbial respiration and soil moisture expressed in water potential is explored. Such relation mediates the water availability effects on ecosystem-level heterotrophic respiration and is of paramount importance for understanding CO2 emissions under increasingly variable rainfall regimes. Respiration has been shown to decline as the soil dries in a remarkably consistent way across climates and soil types (open triangles in Figure). Empirical models based on these respiration-moisture relations are routinely used in Earth System Models to predict moisture effects on ecosystem respiration. It has been hypothesized that this consistency in microbial respiration decline is due to breakage of water film continuity causing in turn solute diffusion limitations in dry conditions. However, this hypothesis appears to be at odds with what is known about soil hydraulic properties. Water film continuity estimated from soil water retention (SWR) measurements at the 'Darcy' scale breaks at far less negative water potential (micro-level relevant to microbial activity. Such downscaling resolves the inconsistency between respiration thresholds and hydrological thresholds. This result, together with observations of residual microbial activity well below -15 MPa (dashed back curve in Figure), lends support to the hypothesis that soil microbes are substrate-limited in dry conditions.

  3. Universal ligation-detection-reaction microarray applied for compost microbes

    Directory of Open Access Journals (Sweden)

    Romantschuk Martin

    2008-12-01

    Full Text Available Abstract Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities.

  4. How do natural, uncultivated microbes interact with organic matter? Insights from single cell genomics and metagenomics

    DEFF Research Database (Denmark)

    Lloyd, Karen; Bird, Jordan; Schreiber, Lars

    Abstract Since most of the microbes in marine sediments remain uncultured, little is known about the mechanisms by which these natural communities degrade organic matter (OM). Likewise, little is known about the make-up of labile OM in marine sediments beyond general functional classes such as pr......Abstract Since most of the microbes in marine sediments remain uncultured, little is known about the mechanisms by which these natural communities degrade organic matter (OM). Likewise, little is known about the make-up of labile OM in marine sediments beyond general functional classes...... such as proteins, carbohydrates, and lipids, measured as monomers. However, microbes have complex interactions with specific polymers within these functional classes, which can be indicated by a microbe's enzymatic toolkit. We ...

  5. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  6. Grow Plants the Organic Way: Give Them the Soil Microbes They Crave

    Directory of Open Access Journals (Sweden)

    Phil Mixter

    2013-03-01

    Full Text Available Review of: Teaming with Microbes: The Organic Gardener’s Guide to the Soil Food Web, revised ed.; Jeff Lowenfels and Wayne Lewis; (2010. Timber Press Inc., Portland, OR. 220 pages.

  7. Can Malin's gravitational-field equations be modified to obtain a viable theory of gravity to obtain a viable theory of gravity to obtain a viable theory of gravity

    International Nuclear Information System (INIS)

    Smalley, L.L.; Prestage, J.

    1976-01-01

    Malin's gravitational theory, which was recently shown by Lindblom and Nester to be incorrect, is modified by means of a recently proposed method for obtaining viable gravitational theories. The resulting self-consistent theory, which is in effect a Rastall-type modification of the Einstein theory, exhibits nonconservation of momentum, yet agrees with all experimental limits known to date within the PPN framework

  8. Inversion of Airborne Electromagnetic Data: Application to Oil Sands Exploration

    Science.gov (United States)

    Cristall, J.; Farquharson, C. G.; Oldenburg, D. W.

    2004-05-01

    In general, three-dimensional inversion of airborne electromagnetic data for models of the conductivity variation in the Earth is currently impractical because of the large amount of computation time that it requires. At the other extreme, one-dimensional imaging techniques based on transforming the observed data as a function of measurement time or frequency at each location to values of conductivity as a function of depth are very fast. Such techniques can provide an image that, in many circumstances, is a fair, qualitative representation of the subsurface. However, this is not the same as a model that is known to reproduce the observations to a level considered appropriate for the noise in the data. This makes it hard to assess the quality and reliability of the images produced by the transform techniques until other information such as bore-hole logs is obtained. A compromise between these two interpretation strategies is to retain the approximation of a one-dimensional variation of conductivity beneath each observation location, but to invert the corresponding data as functions of time or frequency, taking advantage of all available aspects of inversion methodology. For example, using an automatic method such as the GCV or L-curve criteria for determining how well to fit a set of data when the actual amount of noise is not known, even when there are clear multi-dimensional effects in the data; using something other than a sum-of-squares measure for the misfit, for example the Huber M-measure, which affords a robust fit to data that contain non-Gaussian noise; and using an l1-norm or similar measure of model structure that enables piecewise constant, blocky models to be constructed. These features, as well as the basic concepts of minimum-structure inversion, result in a flexible and powerful interpretation procedure that, because of the one-dimensional approximation, is sufficiently rapid to be a viable alternative to the imaging techniques presently in use

  9. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    International Nuclear Information System (INIS)

    Xie, Yankai; Dong, Haoran; Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi

    2017-01-01

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H_2) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  10. Research progress and application prospect of radiation-resistant prokaryotic microbe

    International Nuclear Information System (INIS)

    Wang Wei; Zhu Jing; Zhang Zhidong; Tang Qiyong; Chen Ming

    2013-01-01

    Radiation-resistant microbe is becoming the research hotspot because of its special life phenomenon and physiological mechanism. Radiation-resistant bacteria are one kind of the most studied radiation-resistant microbe. This article summarized some aspects of the research on radiation-resistant bacteria, including the radiation resistant bacteria resources, and discussed its potential application prospects in the environmental engineering, biotechnology, human health, military and space et al. (authors)

  11. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yankai [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2017-01-05

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H{sub 2}) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  12. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Joachimiak, Marcin; Price, Morgan; Bates, John; Baumohl, Jason; Chivian, Dylan; Friedland, Greg; Huang, Kathleen; Keller, Keith; Novichkov, Pavel; Dubchak, Inna; Alm, Eric; Arkin, Adam

    2011-07-14

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  13. Turning the table: plants consume microbes as a source of nutrients.

    Directory of Open Access Journals (Sweden)

    Chanyarat Paungfoo-Lonhienne

    Full Text Available Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively, we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles.

  14. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Alm, Eric J.; Arkin, Adam P.

    2009-09-17

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  15. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    Science.gov (United States)

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  16. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    Science.gov (United States)

    Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET

  17. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris

    Science.gov (United States)

    Osborn, A. Mark

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the

  18. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    Directory of Open Access Journals (Sweden)

    Sonja Oberbeckmann

    Full Text Available Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate (PET drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates and diatoms (e.g. Coscinodiscophytina, Bacillariophytina. The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact

  19. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards.

    Science.gov (United States)

    Kim, Sung-Han; Chang, So Young; Sung, Minki; Park, Ji Hoon; Bin Kim, Hong; Lee, Heeyoung; Choi, Jae-Phil; Choi, Won Suk; Min, Ji-Young

    2016-08-01

    The largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) outside the Middle East occurred in South Korea in 2015 and resulted in 186 laboratory-confirmed infections, including 36 (19%) deaths. Some hospitals were considered epicenters of infection and voluntarily shut down most of their operations after nearly half of all transmissions occurred in hospital settings. However, the ways that MERS-CoV is transmitted in healthcare settings are not well defined. We explored the possible contribution of contaminated hospital air and surfaces to MERS transmission by collecting air and swabbing environmental surfaces in 2 hospitals treating MERS-CoV patients. The samples were tested by viral culture with reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA) using MERS-CoV Spike antibody, and electron microscopy (EM). The presence of MERS-CoV was confirmed by RT-PCR of viral cultures of 4 of 7 air samples from 2 patients' rooms, 1 patient's restroom, and 1 common corridor. In addition, MERS-CoV was detected in 15 of 68 surface swabs by viral cultures. IFA on the cultures of the air and swab samples revealed the presence of MERS-CoV. EM images also revealed intact particles of MERS-CoV in viral cultures of the air and swab samples. These data provide experimental evidence for extensive viable MERS-CoV contamination of the air and surrounding materials in MERS outbreak units. Thus, our findings call for epidemiologic investigation of the possible scenarios for contact and airborne transmission, and raise concern regarding the adequacy of current infection control procedures. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  1. Forage: a sensitive indicator of airborne radioactivity

    International Nuclear Information System (INIS)

    Jackson, W.M.; Noakes, J.E.; Spaulding, J.D.

    1981-01-01

    This paper presents the results of using Ge(Li) γ-ray spectroscopy to measure radioactivity concentration of forage in the vicinity of the Joseph M. Farley Nuclear Plant, Houston County, AL., over a 31/2 yr period. The report period includes 2 yr of pre-operational and 11/2 yr of operational sampling. Although the objective of forage sampling was the measurement of manmade airborne fallout radioactivity, several natural radioisotopes were also found to be present. A summary of natural radioactivity data for all samples measured during the period from August 1975 to December 1978 is given. Approximately 10 days after each of four Chinese atmospheric nuclear tests conducted during the sampling period fresh fission product fallout was measured on the forage. The information from these nuclear tests shows forage sampling to be a convenient and sensitive monitoring tool for airborne fallout radioactivity. (author)

  2. Airborne systems for emergency radiological monitoring

    International Nuclear Information System (INIS)

    Jupiter, C.; Boyns, P.

    1976-01-01

    A variety of aerial radiological monitoring systems are available to respond to a radiological accident or incident affecting large areas. These are operated by EG and G, Inc. for ERDA's Division of Operational Safety. A survey system can be airborne within approximately two hours after notification. Both airborne and terrestrial radioactivity can be measured and mapped. Special analysis procedures allow discrimination between radioactivity from most man-made radioelements and naturally occurring radioelements. A position accuracy of +-54 feet can be maintained over a large area survey. Detection sensitivity for gamma sources employing NaI detector arrays on board an airplane flying at 500 feet altitude is better than 2 μR/hr for surface planar contaminants and approximately 10 mCi for a point gamma source

  3. Development of acute exposure guideline levels for airborne exposures to hazardous substances.

    Science.gov (United States)

    Krewski, Daniel; Bakshi, Kulbir; Garrett, Roger; Falke, Ernest; Rusch, George; Gaylor, David

    2004-04-01

    Hazardous substances can be released into the atmosphere due to industrial and transportation accidents, fires, tornadoes, earthquakes, and terrorists, thereby exposing workers and the nearby public to potential adverse health effects. Various enforceable guidelines have been set by regulatory agencies for worker and ambient air quality. However, these exposure levels generally are not applicable to rare lifetime acute exposures, which possibly could occur at high concentrations. Acute exposure guideline levels (AEGLs) provide estimates of concentrations for airborne exposures for an array of short durations that possibly could cause mild (AEGL-1), severe, irreversible, potentially disabling adverse health effects (AEGL-2), or life threatening effects (AEGL-3). These levels can be useful for emergency responders and planners in reducing or eliminating potential risks to the public. Procedures and methodologies for deriving AEGLs are reviewed in this paper that have been developed in the United States, with direct input from international representatives of OECD member-countries, by the National Advisory Committee for Acute Exposure Guidelines for Hazardous Substances and reviewed by the National Research Council. Techniques are discussed for the extrapolation of effects across different exposure durations. AEGLs provide a viable approach for assisting in the prevention, planning, and response to acute airborne exposures to toxic agents.

  4. RADIOMETRIC CALIBRATION OF AIRBORNE LASER SCANNING DATA

    OpenAIRE

    Pilarska Magdalena

    2016-01-01

    Airborne laser scanning (ALS) is widely used passive remote sensing technique. The radiometric calibration of ALS data is presented in this article. This process is a necessary element in data processing since it eliminates the influence of the external factors on the obtained values of radiometric features such as range and incidence angle. The datasets were captured with three different laser scanners; since each of these operates at a different wavelength (532, 106 4 and 1550 nm) th...

  5. The Airborne Optical Systems Testbed (AOSTB)

    Science.gov (United States)

    2017-05-31

    are the Atlantic Ocean and coastal waterways, which reflect back very little light at our SWIR operating wavelength of 1064 nm. The Airborne Optical...demonstrate our typical FOPEN capabilities, figure 5 shows two images taken over a forested area near Burlington, VT. Figure 5(a) is a 3D point...Systems Testbed (AOSTB) 1 - 6 STO-MP-SET-999 (a) (b) Fig. 5. Ladar target scan of a forested area in northern Vermont

  6. Airborne Multi-Spectral Minefield Survey

    Science.gov (United States)

    2005-05-01

    Swedish Defence Research Agency), GEOSPACE (Austria), GTD ( Ingenieria de Sistemas y Software Industrial, Spain), IMEC (Ineruniversity MicroElectronic...RTO-MP-SET-092 18 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Airborne Multi-Spectral Minefield Survey Dirk-Jan de Lange, Eric den...actions is the severe lack of baseline information. To respond to this in a rapid way, cost-efficient data acquisition methods are a key issue. de

  7. Airborne geophysics in Australia: the government contribution

    International Nuclear Information System (INIS)

    Denham, D.

    1997-01-01

    Airborne geophysical data sets provide important cost-effective information for resource exploration and land management. Improved techniques, developed recently, now enable high-resolution aeromagnetic and gamma-ray surveys to be used extensively by the resource industries to improve the cost effectiveness of exploration and by governments to encourage resource development and sustainable management of natural resources. Although airborne geophysical techniques have been used extensively and are now used almost routinely by mineral explorers, it is only in the last few years that governments have been involved as major players in the acquisition of data. The exploration industry pioneered the imaging of high-resolution airborne geophysical data sets in the early 1980s and, at the same time, the Northern Territory Government started a modest program of flying the Northern Territory, at 500 m flight-line spacing, to attract mineral exploration. After the start of the National Geoscience Mapping Accord in 1990, the then BMR and its State/Territory counterparts used the new high-resolution data as an essential ingredient to underpin mapping programs. These new data sets proved so valuable that, starting in 1992/93, the annual expenditure by the Commonwealth and States/Northern Territory increased from roughly $2 million per year to a massive $10 million per year. These investments by governments, although unlikely to be permanently sustainable, have been made to encourage and expand exploration activity by providing new high-quality data sets in industry at very low cost. There are now approximately 11 million line-km of airborne geophysical data available in databases held by the Commonwealth, States and Northern Territory. The results so far have seen a significant increase in exploration activity in States that have embarked on this course (e.g. South Australia and Victoria), and the information provided from these surveys is proving crucial to understanding the

  8. Airborne Nanostructured Particles and Occupational Health

    Science.gov (United States)

    Maynard, Andrew D.; Kuempel, Eileen D.

    2005-12-01

    Nanotechnology is leading to the development in many field, of new materials and devices in many fields that demonstrate nanostructure-dependent properties. However, concern has been expressed that these same properties may present unique challenges to addressing potential health impact. Airborne particles associated with engineered nanomaterials are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanostructured particles is just beginning. However, there is a large body of data on occupational and environmental aerosols, which is applicable to developing an initial assessment of potential risk and risk reduction strategies. Epidemiological and pathological studies of occupational and environmental exposures to airborne particles and fibers provide information on the aerosol-related lung diseases and conditions that have been observed in humans. Toxicological studies provide information on the specific disease mechanisms, dose-response relationships, and the particle characteristics that influence toxicity, including the size, surface area, chemistry or reactivity, solubility, and shape. Potential health risk will depend on the magnitude and nature of exposures to airborne nanostructured particles, and on the release, dispersion, transformation and control of materials in the workplace. Aerosol control methods have not been well-characterized for nanometer diameter particles, although theory and limited experimental data indicate that conventional ventilation, engineering control and filtration approaches should be applicable in many situations. Current information supports the development of preliminary guiding principles on working with engineered nanomaterials. However critical research questions remain to be answered before the potential health risk of airborne nanostructured particles in the workplace can be fully addressed.

  9. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  10. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1995-01-01

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  11. Government-industry conference on airborne radioiodine

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1975-01-01

    The Working Group on Airborne Radioiodine met at AEC Headquarters on March 28, 1974. Dr. Alex Perge gave the introduction for the Division of Waste Management and Transportation, noting the Commission hopes that private industry will take a bigger share in the future in funding and initiating needed research; that there should be a greater effort in the direction of reducing the quantity of material that becomes contaminated as an avenue toward reducing the airborne radioiodine problem, and toward reducing the waste generated to a form suitable for direct storage; and that the Commission must ensure valid bases for future regulations governing airborne releases and contamination. Dr. First discussed the background of the review committee and its outgrowth from the earlier organization meeting. He noted that its function will be the coordination of efforts concerned with the radioiodine problem and the dissemination of information and research data. A major objective of this meeting was to identify subjects for discussion at the Government-Industry Conference of Adsorbers and Adsorbents which will be held in conjunction with the 13th AEC Air Cleaning Conference in August. Mr. Dempsey noted that the gaseous effluent program had been inherited by WMT from the Division of Operational Safety, and that an important function of these continuing meetings of the Working Group will be to guide WMT in the expenditure of funds and assignment of research related to the radioiodine problem. (U.S.)

  12. ICESat-2 simulated data from airborne altimetery

    Science.gov (United States)

    Brunt, K. M.; Neumann, T.; Markus, T.; Brenner, A. C.; Barbieri, K.; Field, C.; Sirota, M.

    2010-12-01

    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2015 and will carry onboard the Advanced Topographic Laser Altimeter System (ATLAS), which represents a new approach to spaceborne determination of surface elevations. Specifically, the current ATLAS design is for a micropulse, multibeam, photon-counting laser altimeter with lower energy, a shorter pulse width, and a higher repetition rate relative to the Geoscience Laser Altimeter (GLAS), the instrument that was onboard ICESat. Given the new and untested technology associated with ATLAS, airborne altimetry data is necessary (1) to test the proposed ATLAS instrument geometry, (2) to validate instrument models, and (3) to assess the atmospheric effects on multibeam altimeters. We present an overview of the airborne instruments and datasets intended to address the ATLAS instrument concept, including data collected over Greenland (July 2009) using an airborne SBIR prototype 100 channel, photon-counting, terrain mapping altimeter, which addresses the first of these 3 scientific concerns. Additionally, we present the plan for further simulator data collection over vegetated and ice covered regions using Multiple Altimeter Beam Experimental Lidar (MABEL), intended to address the latter two scientific concerns. As the ICESAT-2 project is in the design phase, the particular configuration of the ATLAS instrument may change. However, we expect this work to be relevant as long as ATLAS pursues a photon-counting approach.

  13. Airborne pollen trends in the Iberian Peninsula.

    Science.gov (United States)

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Water Mapping Using Multispectral Airborne LIDAR Data

    Science.gov (United States)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  15. Non-viable antagonist cells are associated with reduced biocontrol performance by viable cells of the yeast Papiliotrema flavescens against Fusarium head blight of wheat.

    Science.gov (United States)

    Microbially-based plant disease control products have achieved commercial market success, but the efficacy of such biocontrol products is sometimes deemed inconsistent. Improper processing of harvested microbial biomass or long-term storage can reduce the proportion of viable cells and necessitate t...

  16. Planning a radar system for protection from the airborne threat

    International Nuclear Information System (INIS)

    Greneker, E.F.; McGee, M.C.

    1986-01-01

    A planning methodology for developing a radar system to protect nuclear materials facilities from the airborne threat is presented. Planning for physical security to counter the airborne threat is becoming even more important because hostile acts by terrorists are increasing and airborne platforms that can be used to bypass physical barriers are readily available. The comprehensive system planning process includes threat and facility surveys, defense hardening, analysis of detection and early warning requirements, optimization of sensor mix and placement, and system implementation considerations

  17. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    Science.gov (United States)

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  18. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    Directory of Open Access Journals (Sweden)

    Nurmi ePangesti

    2013-10-01

    Full Text Available Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic levels. Aboveground, plants are under continuous attack by insect herbivores and mount multiple responses that also have systemic effects on belowground microbes. Until recently, both ecological and mechanistic studies have mostly focused on exploring these below- and above-ground interactions using simplified systems involving both single microbe and herbivore species, which is far from the naturally occurring interactions. Increasing the complexity of the systems studied is required to increase our understanding of microbe - plant - insect interactions and to gain more benefit from the use of non-pathogenic microbes in agriculture. In this review, we explore how colonization by either single non-pathogenic microbe species or a community of such microbes belowground affects plant growth and defense and how this affects the interactions of plants with aboveground insects at different trophic levels. Moreover, we review how plant responses to foliar herbivory by insects belonging to different feeding guilds affect interactions of plants with non-pathogenic soil-borne microbes. The role of phytohormones in coordinating plant growth, plant defenses against foliar herbivores while simultaneously establishing associations with non-pathogenic soil microbes is discussed.

  19. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review

    Institute of Scientific and Technical Information of China (English)

    Shobhit Raj VIMAL; Jay Shankar SINGH; Naveen Kumar ARORA; Surendra SINGH

    2017-01-01

    The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry.The impact of soil nutrient imbalance,mismanaged use of chemicals,high temperature,flood or drought,soil salinity,and heavy metal pollutions,with regard to food security,is increasingly being explored worldwide.This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems.Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity,drought,pollutions,etc.) stresses.The plant growth-promoting rhizobacteria (PGPR) and mycorrhizae,a key component of soil microbiota,could play vital roles in the maintenance of plant fitness and soil health under stressed environments.The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield.A combination of plant,stress-tolerant microbe,and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem.Agriculture land use patterns with the proper exploitation of plant-microbe associations,with compatible beneficial microbial agents,could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience.However,the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.

  20. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer....

  1. SGA-WZ: A New Strapdown Airborne Gravimeter

    DEFF Research Database (Denmark)

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance......, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter...... and discussion of the airborne field test results are also given....

  2. Prototype repository - Microbes in the retrieved outer section

    International Nuclear Information System (INIS)

    Arlinger, Johanna; Bengtsson, Andreas; Edlund, Johanna; Eriksson, Lena; Johansson, Jessica; Lydmark, Sara; Rabe, Lisa; Pedersen, Karsten

    2013-10-01

    colony-forming units per gram wet weight (CFU gww-1). These four samples were all taken near the tunnel ceiling, supporting the possibility of an influx of nutrients from surrounding groundwater. This milieu seems to favour SRB over IRB, according to the most probable number (MPN) results for these samples. Microbial numbers in buffer and on canister surfaces seem to be low judging from the present results. However, from samples from buffer areas with high water saturation and low density, i.e. three samples from buffer ring 5 in deposition hole 6, we were able to grow up to 1.3 X 104 cells gww-1 in IRB medium. DNA from these samples was extracted and then sequenced to obtain information about the species cultivated. Alignment indicated that species of anaerobic thermophilic bacteria, such as Thermacetogenium phaeum, and other aerobic bacteria with the potential to form spores, such as Thermaerobacter subterraneus, could be found in the buffer. These bacteria must have been dormant since the formation of the bentonite blocks, but are obviously still viable when given appropriate growing conditions. Molecular biology methods were also able to find traces of SRB on canister surfaces, though these bacteria were not viable and could not be cultivated

  3. Prototype repository - Microbes in the retrieved outer section

    Energy Technology Data Exchange (ETDEWEB)

    Arlinger, Johanna; Bengtsson, Andreas; Edlund, Johanna; Eriksson, Lena; Johansson, Jessica; Lydmark, Sara; Rabe, Lisa; Pedersen, Karsten [Microbial Analytics Sweden, Moelnlycke (Sweden)

    2013-10-15

    colony-forming units per gram wet weight (CFU gww-1). These four samples were all taken near the tunnel ceiling, supporting the possibility of an influx of nutrients from surrounding groundwater. This milieu seems to favour SRB over IRB, according to the most probable number (MPN) results for these samples. Microbial numbers in buffer and on canister surfaces seem to be low judging from the present results. However, from samples from buffer areas with high water saturation and low density, i.e. three samples from buffer ring 5 in deposition hole 6, we were able to grow up to 1.3 X 104 cells gww-1 in IRB medium. DNA from these samples was extracted and then sequenced to obtain information about the species cultivated. Alignment indicated that species of anaerobic thermophilic bacteria, such as Thermacetogenium phaeum, and other aerobic bacteria with the potential to form spores, such as Thermaerobacter subterraneus, could be found in the buffer. These bacteria must have been dormant since the formation of the bentonite blocks, but are obviously still viable when given appropriate growing conditions. Molecular biology methods were also able to find traces of SRB on canister surfaces, though these bacteria were not viable and could not be cultivated.

  4. Mathematical modelling of the viable epidermis: impact of cell shape and vertical arrangement

    KAUST Repository

    Wittum, Rebecca; Naegel, Arne; Heisig, Michael; Wittum, Gabriel

    2017-01-01

    In-silico methods are valuable tools for understanding the barrier function of the skin. The key benefit is that mathematical modelling allows the interplay between cell shape and function to be elucidated. This study focuses on the viable (living

  5. Solar System constraints on a cosmologically viable f(R) theory

    Energy Technology Data Exchange (ETDEWEB)

    Bisabr, Yousef, E-mail: y-bisabr@srttu.ed [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788 (Iran, Islamic Republic of)

    2010-01-18

    Recently, a model f(R) theory is proposed (Miranda et al. (2009)) which is cosmologically viable and distinguishable from LAMBDACDM. We use chameleon mechanism to investigate viability of the model in terms of Solar System experiments.

  6. Establishment of a Viable Population of Red-Cockaded Woodpeckers at the Savannah River Site

    International Nuclear Information System (INIS)

    Johnston, P.A.

    2002-01-01

    Report on program's objective to restore viable population of Red-cockaded woodpecker at SRS. Several management strategies were used to promote population expansion of Red-cockaded woodpecker and reduction of interspecific competition with Red-Cockaded woodpecker

  7. Solar System constraints on a cosmologically viable f(R) theory

    International Nuclear Information System (INIS)

    Bisabr, Yousef

    2010-01-01

    Recently, a model f(R) theory is proposed (Miranda et al. (2009)) which is cosmologically viable and distinguishable from ΛCDM. We use chameleon mechanism to investigate viability of the model in terms of Solar System experiments.

  8. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam; Ravel, J.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    , direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. V. harveyi incubated at 22 degrees C nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d...

  9. Immediate natural tooth pontic: A viable yet temporary prosthetic solution: A patient reported outcome

    Directory of Open Access Journals (Sweden)

    Sudhir Bhandari

    2012-01-01

    Conclusion: The concept of immediate pontic placement is surely a viable treatment option and promises an excellent transient esthetic solution for a lost tooth as well as enables good preparation of the extraction site for future prosthetic replacement.

  10. Improved identification of viable myocardium using second harmonic imaging during dobutamine stress echocardiography

    NARCIS (Netherlands)

    F. Sozzi (Fabiola); D. Poldermans (Don); J.J. Bax (Jeroen); A. Elhendy (Abdou); E.C. Vourvouri (Eleni); R. Valkema (Roelf); J. de Sutter; A.F.L. Schinkel (Arend); A. Borghetti; J.R.T.C. Roelandt (Jos)

    2001-01-01

    textabstractOBJECTIVE: To determine whether, compared with fundamental imaging, second harmonic imaging can improve the accuracy of dobutamine stress echocardiography for identifying viable myocardium, using nuclear imaging as a reference. PATIENTS: 30 patients with chronic left

  11. Polythene and Plastics-degrading microbes from the mangrove soil

    Directory of Open Access Journals (Sweden)

    K Kathiresan

    2003-09-01

    Full Text Available Biodegradation of polythene bags and plastic cups was analyzed after 2, 4, 6, and 9 months of incubation in the mangrove soil. The biodegradation of polythene bags was significantly higher (up to 4.21% in 9 months than that of plastic cups (up to 0.25% in 9 months. Microbial counts in the degrading materials were recorded up to 79.67 x 10 4 per gram for total heterotrophic bacteria, and up to 55.33 x 10 2 per gram for fungi. The microbial species found associated with the degrading materials were identified as five Gram positive and two Gram negative bacteria, and eight fungal species of Aspergillus. The species that were predominant were Streptococcus, Staphylococcus, Micrococcus (Gram +ve, Moraxella, and Pseudomonas (Gram -ve and two species of fungi (Aspergillus glaucus and A. niger. Efficacy of the microbial species in degradation of plastics and polythene was analyzed in shaker cultures. Among the bacteria, Pseudomonas species degraded 20.54% of polythene and 8.16% of plastics in one-month period. Among the fungal species, Aspergillus glaucus degraded 28.80% of polythene and 7.26% of plastics in one-month period. This work reveals that the mangrove soil is a good source of microbes capable of degrading polythene and plasticsLa biodegradación de las bolsas de polietileno y vasos de plástico fue analizada después de 2, 4, 6 y 9 meses de incubación en suelo de manglar. La biodegradación de las bolsas fue significativamente más alta (hasta 4.21% en 9 meses que los vasos plásticos (hasta 0.25% en 9 meses. Los conteos microbianos en los materiales degradados mostraron hasta 79.67 x 10(4 por gramo para las bacterias heterotroficas totales, y hasta 55.33 x 10² por gramo para los hongos. Se identificó 5 especies microbianas Gram positivas, 2 Gram negativas, y 8 especies de hongos del género Aspergillus en asociación con materiales degradados. Las especies predominantes fueron Streptococcus, Staphylococcus, Micrococcus (Gram +, Moraxella

  12. Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay.

    Science.gov (United States)

    Graczyk, Thaddeus K; Lewis, Earl J; Glass, Gregory; Dasilva, Alexandre J; Tamang, Leena; Girouard, Autumn S; Curriero, Frank C

    2007-01-01

    The epidemiological importance of increasing reports worldwide on Cryptosporidium contamination of oysters remains unknown in relation to foodborne cryptosporidiosis. Thirty market-size oysters (Crassostrea virginica), collected from each of 53 commercial harvesting sites in Chesapeake Bay, MD, were quantitatively tested in groups of six for Cryptosporidium sp. oocysts by immunofluorescent antibody (IFA). After IFA analysis, the samples were retrospectively retested for viable Cryptosporidium parvum oocysts by combined fluorescent in situ hybridization (FISH) and IFA. The mean cumulative numbers of Cryptosporidium sp. oocysts in six oysters (overall, 42.1+/-4.1) were significantly higher than in the numbers of viable C. parvum oocysts (overall, 28.0+/-2.9). Of 265 oyster groups, 221 (83.4%) contained viable C. parvum oocysts, and overall, from 10-32% (mean, 23%) of the total viable oocysts were identified in the hemolymph as distinct from gill washings. The amount of viable C. parvum oocysts was not related to oyster size or to the level of fecal coliforms at the sampling site. This study demonstrated that, although oysters are frequently contaminated with oocysts, the levels of viable oocysts may be too low to cause infection in healthy individuals. FISH assay for identification can be retrospectively applied to properly stored samples.

  13. Spatiotemporal Dynamics of Total Viable Vibrio spp. in a NW Mediterranean Coastal Area.

    Science.gov (United States)

    Girard, Léa; Peuchet, Sébastien; Servais, Pierre; Henry, Annabelle; Charni-Ben-Tabassi, Nadine; Baudart, Julia

    2017-09-27

    A cellular approach combining Direct Viable Counting and Fluorescent In Situ Hybridization using a one-step multiple-probe technique and Solid Phase Cytometry (DVC-FISH-SPC) was developed to monitor total viable vibrios and cover the detection of a large diversity of vibrios. FISH combined three probes in the same assay and targeted sequences located at different positions on the 16S rRNA of Vibrio and Aliivibrio members. We performed a 10-month in situ study to investigate the weekly dynamics of viable vibrios relative to culturable counts at two northwestern Mediterranean coastal sites, and identified the key physicochemical factors for their occurrence in water using a multivariate analysis. Total viable and culturable cell counts showed the same temporal pattern during the warmer season, whereas the ratios between both methods were inverted during the colder seasons (<15°C), indicating that some of the vibrio community had entered into a viable but non-culturable (VBNC) state. We confirmed that Seawater Surface Temperature explained 51-62% of the total variance in culturable counts, and also showed that the occurrence of viable vibrios is controlled by two variables, pheopigment (15%) and phosphate (12%) concentrations, suggesting that other unidentified factors play a role in maintaining viability.

  14. Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host.

    Science.gov (United States)

    Lam, Weng Ngai; Chong, Kwek Yan; Anand, Ganesh S; Tan, Hugh Tiang Wah

    2017-03-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. © 2017 The Author(s).

  15. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield

    Science.gov (United States)

    Ganey, Gerard Q.; Loso, Michael G.; Burgess, Annie Bryant; Dial, Roman J.

    2017-10-01

    A lack of liquid water limits life on glaciers worldwide but specialized microbes still colonize these environments. These microbes reduce surface albedo, which, in turn, could lead to warming and enhanced glacier melt. Here we present results from a replicated, controlled field experiment to quantify the impact of microbes on snowmelt in red-snow communities. Addition of nitrogen-phosphorous-potassium fertilizer increased alga cell counts nearly fourfold, to levels similar to nitrogen-phosphorus-enriched lakes; water alone increased counts by half. The manipulated alga abundance explained a third of the observed variability in snowmelt. Using a normalized-difference spectral index we estimated alga abundance from satellite imagery and calculated microbial contribution to snowmelt on an icefield of 1,900 km2. The red-snow area extended over about 700 km2, and in this area we determined that microbial communities were responsible for 17% of the total snowmelt there. Our results support hypotheses that snow-dwelling microbes increase glacier melt directly in a bio-geophysical feedback by lowering albedo and indirectly by exposing low-albedo glacier ice. Radiative forcing due to perennial populations of microbes may match that of non-living particulates at high latitudes. Their contribution to climate warming is likely to grow with increased melt and nutrient input.

  16. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  17. Airborne Arctic Stratospheric Expedition II: An overview

    Science.gov (United States)

    Anderson, James G.; Toon, Owen B.

    1993-11-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), staged from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromine radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the Antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O.In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-I), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NOx and to some degree NOy were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, ClO was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of ClO and its dimer ClOOCl.This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-II): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30°N in the winter/spring northern hemisphere reported in satellite observations?

  18. Even Shallower Exploration with Airborne Electromagnetics

    Science.gov (United States)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  19. Treatment of gaseous and airborne radioactive waste

    International Nuclear Information System (INIS)

    Leichsenring, C.H.

    1982-01-01

    Gaseous and airborne radionuclides in the fuel cycle are retained in vessel off-gas filter systems and in the dissolver off-gas cleaning system. Those systems have to meet the regulatory requirements for both normal and accident conditions. From the solutions liquid aerosols are formed during liquid transfer (air lifts, steam jets) or by air sparging or by evaporation processes. During dissolution the volatile radionuclides i.e. 85 Kr, 129 I and 14 C are liberated and enter into the dissolver off-gas cleaning system. Flow sheets of different cleaning systems and their stage of development are described. (orig./RW)

  20. Improvements in the detection of airborne plutonium

    International Nuclear Information System (INIS)

    Ryden, D.J.

    1981-02-01

    It is shown how it is possible to compensate individually for each of the background components on the filter paper used to collect samples. Experimentally it has been shown that the resulting compensated background count-rate averages zero with a standard deviation very close to the fundamental limit set by random statistical variations. Considerable improvements in the sensitivity of detecting airborne plutonium have been achieved. Two new plutonium-in-air monitors which use the compensation schemes described in this report are now available. Both have operated successfully in high concentrations of radon daughters. (author)

  1. Highly Protable Airborne Multispectral Imaging System

    Science.gov (United States)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  2. Savannah River Plant airborne emissions and controls

    International Nuclear Information System (INIS)

    Dukes, E.K.; Benjamin, R.W.

    1982-12-01

    The Savannah River Plant (SRP) was established to produce special nuclear materials, principally plutonium and tritium, for national defense needs. Major operating facilities include three nuclear reactors, two chemical separations plants, a fuel and target fabrication plant, and a heavy-water rework plant. An extensive environmental surveillance program has been maintained continuously since 1951 (before SRP startup) to determine the concentrations of radionuclides in a 1200-square-mile area centered on the plant, and the radiation exposure of the population resulting from SRP operations. This report provides data on SRP emissions, controls systems, and airborne radioactive releases. The report includes descriptions of current measurement technology. 10 references, 14 figures, 9 tables

  3. Airborne radioactive emission control technology. Volume II

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, including uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking, a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  4. Airborne radioactive emission control technology. Volume III

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, including uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking, a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  5. Airborne radioactive emission control technology. Volume I

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, includimg uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  6. Expression of proposed implantation marker genes CDX2 and HOXB7 in the blastocyst does not distinguish viable from non-viable human embryos

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Hindkjær, Johnny Juhl; Ingerslev, Hans Jakob

    2012-01-01

    expression differs between viable and non-viable embryos in both human and non-humans, suggesting transcriptome analysis of trophectoderm (TE) as a novel method of improving embryo selection. Potential candidate marker genes have been identified with array studies on animal blastocysts. The aim of this study...... was to investigate the expression of selected genes in human blastocysts in relation to the outcome of implantation. Materials and methods: Embryos from 10 oatients undergoing in vitro fertilization treatment were included in the project. A single blastocyst was chosen for biopsy on the morning of day 5 after oocyte...... of 15 key genes associated with developmental competence in animals were evaluated in high quality human embryos with monogenic or chromosomal disorders from a pre-implantation genetic disorder program. Triplicate cDNA amplifications for quantitative (q) RT-PCR were performed using pre-designed gene...

  7. Quantitative Analysis of Microbes in Water Tank of G.A. Siwabessy Reactor

    International Nuclear Information System (INIS)

    Itjeu Karliana; Diah Dwiana Lestiani

    2003-01-01

    The quality of water in reactor system has an important role because it could effect the function as a coolant and the operation of reactor indirectly. The study of microbe analyzes has been carried out to detect the existence of microbes in water tank and quantitative analyzes of microbes also has been applied as a continuation of the previous study. The samples is taken out from the end side of reactor GA Siwabessy's tank, inoculated in TSA (Tripcase Soy Agar) medium, put in incubator at 30 - 35 o C for 4 days. The results of experiment show the reconfirmation for the existence of bacteria and the un-existence of yield. The quantitative analysis with TPC method show the growth rate of bacteria is twice in 24 hours. (author)

  8. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-10-01

    Full Text Available Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.

  9. [Origin of the plague microbe Yersinia pestis: structure of the process of speciation].

    Science.gov (United States)

    Suntsov, V V

    2012-01-01

    The origin and evolution of the plague microbe Yersinia pestis are considered in the context of propositions of modern Darwinism. It was shown that the plague pathogen diverged from the pseudotuberculous microbe Yersinia pseudotuberculosis O:1b in the mountain steppe landscapes of Central Asia in the Sartan: 22000-15000 years ago. Speciation occurred in the tarbagan (Marmota sibirica)--flea (Oropsylla silantiewi) parasitic system. The structure of the speciation process included six stages: isolation, genetic drift, enhancement of intrapopulational polymorphism, the beginning of pesticin synthesis (genetic conflict and emergence of hiatus), specialization (stabilization of characteristics), and adaptive irradiation (transformation of the monotypic species Y. pestis tarbagani into a polytypic species). The scenario opens up wide prospects for construction of the molecular phylogeny of the plague microbe Y. pestis and for investigation of the biochemical and molecular-genetic aspects of "Darwinian" evolution of pathogens from many other nature-focal infections.

  10. Wars between microbes on roots and fruits [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ben Lugtenberg

    2017-03-01

    Full Text Available Microbes in nature often live in unfavorable conditions. To survive, they have to occupy niches close to food sources and efficiently utilize nutrients that are often present in very low concentrations. Moreover, they have to possess an arsenal of attack and defense mechanisms against competing bacteria. In this review, we will discuss strategies used by microbes to compete with each other in the rhizosphere and on fruits, with a focus on mechanisms of inter- and intra-species antagonism. Special attention will be paid to the recently discovered roles of volatile organic compounds. Several microbes with proven capabilities in the art of warfare are being applied in products used for the biological control of plant diseases, including post-harvest control of fruits and vegetables.

  11. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Shivankar Agrawal

    2017-11-01

    Full Text Available Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs. Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.

  12. Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data

    International Nuclear Information System (INIS)

    D. Yuan; E. Doak; P. Guss; A. Will

    2002-01-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images

  13. Detection in Urban Scenario Using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The

  14. Detection in Urban Scenario using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The

  15. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exposure limits for airborne contaminants. 56... Quality and Physical Agents Air Quality § 56.5001 Exposure limits for airborne contaminants. Except as... contaminants shall not exceed, on the basis of a time weighted average, the threshold limit values adopted by...

  16. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    Science.gov (United States)

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  17. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    Science.gov (United States)

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  18. Particle dry-deposition experiment using ambient airborne soil

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1979-01-01

    Airborne solid concentrations were measured simultaneously at sampling towers upwind and 305-m downwind of a site. When the wind speed and wind direction were identical at each site, isokinetic air samplers on the sampling towers were automatically activated. The fraction of the airborne solid plume remaining after the 305-m fetch ranged from 0.53 to 1.07

  19. Air ICP uses for instantaneous monitoring of airborne pollutants

    International Nuclear Information System (INIS)

    Thouzeau, F.; Birolleau, J.C.; Fieni, J.M.; Bergey, C.

    1987-01-01

    Recently the development of a pure AIR-ICP which breathes in and excites the analysed air without sample dilution, allowed the application of this technique to the real time analysis of airborne metallic pollutants. First results obtained on airborne Beryllium in a laboratory and a test-site apparatus are presented in this paper

  20. Airborne evaluation/verification of antenna patterns of broadcasting stations

    NARCIS (Netherlands)

    Witvliet, Ben

    2006-01-01

    This paper describes a method for airborne evaluation and verification of the antenna patterns of broadcasting stations. Although it is intended for governmental institutions and broadcasters it may be also of interest to anyone who wants to evaluate large radiating structures. An airborne

  1. Companion animals symposium: role of microbes in canine and feline health.

    Science.gov (United States)

    Kil, D Y; Swanson, K S

    2011-05-01

    Whether in an ocean reef, a landfill, or a gastrointestinal tract (GIT), invisible communities of highly active and adaptable microbes prosper. Over time, mammals have developed a symbiosis with microbes that are important inhabitants not only in the GIT, but also in the mouth, skin, and urogenital tract. In the GIT, the number of commensal microbes exceeds the total number of host cells by at least 10 times. The GIT microbes play a critical role in nutritional, developmental, defensive, and physiologic processes in the host. Recent evidence also suggests a role of GIT microbes in metabolic phenotype and disease risk (e.g., obesity, metabolic syndrome) of the host. Proper balance is a key to maintaining GIT health. Balanced microbial colonization is also important for other body regions such as the oral cavity, the region with the greatest prevalence of disease in dogs and cats. A significant obstruction to studying microbial populations has been the lack of tools to identify and quantify microbial communities accurately and efficiently. Most of the current knowledge of microbial populations has been established by traditional cultivation methods that are not only laborious, time-consuming, and often inaccurate, but also greatly limited in scope. However, recent advances in molecular-based techniques have resulted in a dramatic improvement in studying microbial communities. These DNA-based high-throughput technologies have enabled us to more clearly characterize the identity and metabolic activity of microbes living in the host and their association with health and diseases. Despite this recent progress, however, published data pertaining to microbial communities of dogs and cats are still lacking in comparison with data in humans and other animals. More research is required to provide a more detailed description of the canine and feline microbiome and its role in health and disease.

  2. Soil microbes and successful invasions of an exotic weed Eupatorium adenophorum

    International Nuclear Information System (INIS)

    Zhou, P.; Tang, T.; Zhao, P.; Chen, J.

    2016-01-01

    The effects of soil microbes collected from the two invasive species Eupatorium adenophorum and E. odoratum and the two native species E. japonicum and E. chinense on the growth and biomass of E. adenophorum was examined to explore a possible link between soil microbes and successful invasions of the weed species E. adenophorum. In most cases, plant height, stem diameter, root number and root length were significantly enhanced when E. adenophorum was grown in sterilized soils compared with those when one was grown in non-sterilized soils collected from the rhizosphere of E. adenophorum, E. japonicum and E. chinense. In contrast, the growth and biomass of E. adenophorum were apparently inhibited when grown in soils collected from the rhizosphere of E. odoratum. Plant height, stem diameter, leaf area per plant and root length of E. adenophorum was greater when it was grown in soils collected from the rhizosphere of E. adenophorum compared with those when it was grown in soils collected from the rhizosphere of E. odoratum, but the enhancement considerably greater when it was grown in soils collected from the rhizosphere of E. japonicum and E. chinense compared with those when it was grown in soils collected from the rhizosphere of E. adenophorum. In addition, the biomass allocation of E. adenophorum was not significantly affected by soil microbes and soil sources. These Results suggest that although the competitive advantage of the invasive weed E. adenophorum is not achieved solely by soil microbes, successful invasions of E. adenophorum may result partly from its release from the harmful soil microbes in its native range and the positive feedbacks of soil microbes from itself and the native species in its invading range. (author)

  3. Study on analysis from sources of error for Airborne LIDAR

    Science.gov (United States)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  4. Microbes in biological processes for municipal landfill leachate treatment: Community, function and interaction

    DEFF Research Database (Denmark)

    Zhang, Duoying; Vahala, Riku; Wang, Yu

    2016-01-01

    Landfill leachate (LFL) contains high strength of ammonium and complex organic substances including biodegradable volatile fatty acids (VFAs), refractory aquatic humic substances (AHS) and micro-scale xenobiotic organic chemicals (XOCs), which promotes the diverse microbial community in LFL...... treatment bioreactors. These microbes cooperate to remove nitrogen, biodegrade organic matters, eliminate the toxicity of XOCs and produce energy. In these diverse microbes, some show dominant in the bioreactor and are prevalent in many kinds of LFL treatment bio-processes, such as Brocadia from the phylum...

  5. The Physical Microbe; An introduction to noise, control, and communication in the prokaryotic cell

    Science.gov (United States)

    Hagen, Stephen J.

    2017-10-01

    Physical biology is a fusion of biology and physics. This book narrows down the scope of physical biology by focusing on the microbial cell; exploring the physical phenomena of noise, feedback, and variability that arise in the cellular information-processing circuits used by bacteria. It looks at the microbe from a physics perspective, asking how the cell optimizes its function to live within the constraints of physics. It introduces a physical and information-based (as opposed to microbiological) perspective on communication and signalling between microbes.

  6. The Use of Stuffed Microbes in an Undergraduate Microbiology Course Increases Engagement and Student Learning

    Directory of Open Access Journals (Sweden)

    Ginny Webb

    2015-08-01

    Full Text Available Student engagement, attention, and attendance during a microbiology lecture are crucial for student learning.  In addition, it is challenging to cover a large number of infectious diseases during a one-semester introductory microbiology course.  The use of visual aids helps students retain the information presented during a lecture.  Here, I discuss the use of stuffed, plush microbes as visual aids during an introductory microbiology course.  The incorporation of these stuffed microbes during a microbiology lecture results in an increase in engagement, interest, attendance, and retention of material.

  7. Performance of duckweed and effective microbes in reducing arsenic in paddy and paddy soil

    Science.gov (United States)

    Ng, C. A.; Wong, L. Y.; Lo, P. K.; Bashir, M. J. K.; Chin, S. J.; Tan, S. P.; Chong, C. Y.; Yong, L. K.

    2017-04-01

    In this study phytoremediation plant (duckweed) and effective microbes were used to investigate their effectiveness in reducing arsenic concentration in paddy soil and paddy grain. The results show that using duckweed alone is a better choice as it could decrease the arsenic concentration in paddy by 27.697 % and 8.268 % in paddy grain and paddy husk respectively. The study also found out that the concentration of arsenic in soil would affect the performance of duckweed and also delayed the reproduction rate of duckweed. Using the mixture of effective microbes and duckweed together to decrease arsenic in paddy was noticed having the least potential in reducing the arsenic concentration in paddy.

  8. airborne data analysis/monitor system

    Science.gov (United States)

    Stephison, D. B.

    1981-01-01

    An Airborne Data Analysis/Monitor System (ADAMS), a ROLM 1666 computer based system installed onboard test airplanes used during experimental testing is evaluated. In addition to the 1666 computer, the ADAMS hardware includes a DDC System 90 fixed head disk and a Miltape DD400 floppy disk. Boeing designed a DMA interface to the data acquisition system and an intelligent terminal to reduce system overhead and simplify operator commands. The ADAMS software includes RMX/RTOS and both ROLM FORTRAN and assembly language are used. The ADAMS provides real time displays that enable onboard test engineers to make rapid decisions about test conduct thus reducing the cost and time required to certify new model airplanes, and improved the quality of data derived from the test, leading to more rapid development of improvements resulting in quieter, safer, and more efficient airplanes. The availability of airborne data processing removes most of the weather and geographical restrictions imposed by telemetered flight test data systems. A data base is maintained to describe the airplane, the data acquisition system, the type of testing, and the conditions under which the test is performed.

  9. Airborne radiation monitoring using a manned helicopter

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Nishizawa, Yukiyasu; Ishizaki, Azusa; Urabe, Yoshimi

    2017-01-01

    The Great East Japan Earthquake that occurred on 11 March 2011 generated a series of large tsunami waves that caused serious damage to the Fukushima Dai-ichi Nuclear Power Station, following which a large amount of radioactive material was discharged from the nuclear power plant into the environment. Airborne radiation measurements using a manned helicopter were applied to measure the radiation distribution immediately after accident as technique to quickly measure the radiation distribution over a wide area. In Japan, this technique was researched and developed in the 1980s. However, this technique and system were not applied immediately after the accident because standardization of analysis was not established and the Japanese system became deteriorated. This technique is important for post-accident studies at a nuclear facility. We summarized the methods of the airborne radiation measurement using a manned helicopter. In addition, measurement results of the dose rate distribution at the Fukushima Dai-ichi Nuclear Power Station are given in this paper. (author)

  10. Airborne hyperspectral remote sensing in Italy

    Science.gov (United States)

    Bianchi, Remo; Marino, Carlo M.; Pignatti, Stefano

    1994-12-01

    The Italian National Research Council (CNR) in the framework of its `Strategic Project for Climate and Environment in Southern Italy' established a new laboratory for airborne hyperspectral imaging devoted to environmental problems. Since the end of June 1994, the LARA (Laboratorio Aereo per Ricerche Ambientali -- Airborne Laboratory for Environmental Studies) Project is fully operative to provide hyperspectral data to the national and international scientific community by means of deployments of its CASA-212 aircraft carrying the Daedalus AA5000 MIVIS (multispectral infrared and visible imaging spectrometer) system. MIVIS is a modular instrument consisting of 102 spectral channels that use independent optical sensors simultaneously sampled and recorded onto a compact computer compatible magnetic tape medium with a data capacity of 10.2 Gbytes. To support the preprocessing and production pipeline of the large hyperspectral data sets CNR housed in Pomezia, a town close to Rome, a ground based computer system with a software designed to handle MIVIS data. The software (MIDAS-Multispectral Interactive Data Analysis System), besides the data production management, gives to users a powerful and highly extensible hyperspectral analysis system. The Pomezia's ground station is designed to maintain and check the MIVIS instrument performance through the evaluation of data quality (like spectral accuracy, signal to noise performance, signal variations, etc.), and to produce, archive, and diffuse MIVIS data in the form of geometrically and radiometrically corrected data sets on low cost and easy access CC media.

  11. Airborne fungi in an intensive care unit

    Directory of Open Access Journals (Sweden)

    C. L. Gonçalves

    2017-07-01

    Full Text Available Abstract The presence of airborne fungi in Intensive Care Unit (ICUs is associated with increased nosocomial infections. The aim of this study was the isolation and identification of airborne fungi presented in an ICU from the University Hospital of Pelotas – RS, with the attempt to know the place’s environmental microbiota. 40 Petri plates with Sabouraud Dextrose Agar were exposed to an environment of an ICU, where samples were collected in strategic places during morning and afternoon periods for ten days. Seven fungi genera were identified: Penicillium spp. (15.18%, genus with the higher frequency, followed by Aspergillus spp., Cladosporium spp., Fusarium spp., Paecelomyces spp., Curvularia spp., Alternaria spp., Zygomycetes and sterile mycelium. The most predominant fungi genus were Aspergillus spp. (13.92% in the morning and Cladosporium spp. (13.92% in the afternoon. Due to their involvement in different diseases, the identified fungi genera can be classified as potential pathogens of inpatients. These results reinforce the need of monitoring the environmental microorganisms with high frequency and efficiently in health institutions.

  12. Spatial variability in airborne pollen concentrations.

    Science.gov (United States)

    Raynor, G S; Ogden, E C; Hayes, J V

    1975-03-01

    Tests were conducted to determine the relationship between airborne pollen concentrations and distance. Simultaneous samples were taken in 171 tests with sets of eight rotoslide samplers spaced from one to 486 M. apart in straight lines. Use of all possible pairs gave 28 separation distances. Tests were conducted over a 2-year period in urban and rural locations distant from major pollen sources during both tree and ragweed pollen seasons. Samples were taken at a height of 1.5 M. during 5-to 20-minute periods. Tests were grouped by pollen type, location, year, and direction of the wind relative to the line. Data were analyzed to evaluate variability without regard to sampler spacing and variability as a function of separation distance. The mean, standard deviation, coefficient of variation, ratio of maximum to the mean, and ratio of minimum to the mean were calculated for each test, each group of tests, and all cases. The average coefficient of variation is 0.21, the maximum over the mean, 1.39 and the minimum over the mean, 0.69. No relationship was found with experimental conditions. Samples taken at the minimum separation distance had a mean difference of 18 per cent. Differences between pairs of samples increased with distance in 10 of 13 groups. These results suggest that airborne pollens are not always well mixed in the lower atmosphere and that a sample becomes less representative with increasing distance from the sampling location.

  13. Handling Trajectory Uncertainties for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  14. APEX - the Hyperspectral ESA Airborne Prism Experiment

    Directory of Open Access Journals (Sweden)

    Koen Meuleman

    2008-10-01

    Full Text Available The airborne ESA-APEX (Airborne Prism Experiment hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB by using the Control Test Master (CTM, the In-Flight Calibration facility (IFC, quality flagging (QF and specific processing in a dedicated Processing and Archiving Facility (PAF, and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function issues are discussed and the spectral database SPECCHIO (Spectral Input/Output introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a satisfying the needs of several research communities and (b helping the understanding of the Earth’s complex mechanisms.

  15. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  16. PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores

    Science.gov (United States)

    LaDuc, Myron T.; Venkateswaran, Kasthuri; Mohapatra, Bidyut

    2012-01-01

    The most common approach for assessing the abundance of viable bacterial endospores is the culture-based plating method. However, culture-based approaches are heavily biased and oftentimes incompatible with upstream sample processing strategies, which make viable cells/spores uncultivable. This shortcoming highlights the need for rapid molecular diagnostic tools to assess more accurately the abundance of viable spacecraft-associated microbiota, perhaps most importantly bacterial endospores. Propidium monoazide (PMA) has received a great deal of attention due to its ability to differentiate live, viable bacterial cells from dead ones. PMA gains access to the DNA of dead cells through compromised membranes. Once inside the cell, it intercalates and eventually covalently bonds with the double-helix structures upon photoactivation with visible light. The covalently bound DNA is significantly altered, and unavailable to downstream molecular-based manipulations and analyses. Microbiological samples can be treated with appropriate concentrations of PMA and exposed to visible light prior to undergoing total genomic DNA extraction, resulting in an extract comprised solely of DNA arising from viable cells. This ability to extract DNA selectively from living cells is extremely powerful, and bears great relevance to many microbiological arenas.

  17. Issues of organizational cybernetics and viability beyond Beer's viable systems model

    Science.gov (United States)

    Nechansky, Helmut

    2013-11-01

    The paper starts summarizing the claims of Beer's viable systems model to identify five issues any viable organizations has to deal with in an unequivocal hierarchical structure of five interrelated systems. Then the evidence is introduced for additional issues and related viable structures of organizations, which deviate from Beer's model. These issues are: (1) the establishment and (2) evolution of an organization; (3) systems for independent top-down control (like "Six Sigma"); (4) systems for independent bottom-up correction of performance problems (like "Kaizen"), both working outside a hierarchical structure; (5) pull production systems ("Just in Time") and (6) systems for checks and balances of top-level power (like boards and shareholder meetings). Based on that an evolutionary approach to organizational cybernetics is outlined, addressing the establishment of organizations and possible courses of developments, including recent developments in quality and production engineering, as well as problems of setting and changing goal values determining organizational policies.

  18. A multicenter study of viable PCR using propidium monoazide to detect Legionella in water samples.

    Science.gov (United States)

    Scaturro, Maria; Fontana, Stefano; Dell'eva, Italo; Helfer, Fabrizia; Marchio, Michele; Stefanetti, Maria Vittoria; Cavallaro, Mario; Miglietta, Marilena; Montagna, Maria Teresa; De Giglio, Osvalda; Cuna, Teresa; Chetti, Leonarda; Sabattini, Maria Antonietta Bucci; Carlotti, Michela; Viggiani, Mariagabriella; Stenico, Alberta; Romanin, Elisa; Bonanni, Emma; Ottaviano, Claudio; Franzin, Laura; Avanzini, Claudio; Demarie, Valerio; Corbella, Marta; Cambieri, Patrizia; Marone, Piero; Rota, Maria Cristina; Bella, Antonino; Ricci, Maria Luisa

    2016-07-01

    Legionella quantification in environmental samples is overestimated by qPCR. Combination with a viable dye, such as Propidium monoazide (PMA), could make qPCR (named then vPCR) very reliable. In this multicentre study 717 artificial water samples, spiked with fixed concentrations of Legionella and interfering bacterial flora, were analysed by qPCR, vPCR and culture and data were compared by statistical analysis. A heat-treatment at 55 °C for 10 minutes was also performed to obtain viable and not-viable bacteria. When data of vPCR were compared with those of culture and qPCR, statistical analysis showed significant differences (P 0.05). Overall this study provided a good experimental reproducibility of vPCR but also highlighted limits of PMA in the discriminating capability of dead and live bacteria, making vPCR not completely reliable. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Association of viable Mycobacterium leprae with Type 1 reaction in leprosy.

    Science.gov (United States)

    Save, Mrudula Prakash; Dighe, Anju Rajaram; Natrajan, Mohan; Shetty, Vanaja Prabhakaran

    2016-03-01

    The working hypothesis is that, viable Mycobacterium leprae (M. leprae) play a crucial role in the precipitation of Type 1 reaction (T1R) in leprosy. A total of 165 new multibacillary patients were studied. To demonstrate presence of viable M. leprae in reactional lesion (T1R+), three tests were used concurrently viz. growth in the mouse foot pad (MFP), immunohistochemical detection of M. leprae secretory protein Ag85, and 16s rRNA--using in situ RT-PCR. Mirror biopsies and non reactional lesions served as controls (T1R-). A significantly higher proportion of lesion biopsy homogenates obtained at onset, from T1R(+) cases have shown unequivocal growth in MFP, proving the presence of viable bacteria, as compared to T1R(-) (P leprae is a component/prerequisite and the secretory protein Ag 85, might be the trigger for precipitation of T1R.

  20. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    Science.gov (United States)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  1. El modelo de sistema viable: un instrumento para la organización efectiva

    Directory of Open Access Journals (Sweden)

    Norlando Sánchez Rueda

    2015-05-01

    Full Text Available RESUMEN En este ensayo se presenta una interpretación teórica del denominado Modelo de Sistema Viable (MSV, de Stafford Beer y su Potencial Aplicación en Tareas de Diagnóstico  y diseño empresarial, al igual que para Mejorar las capacidades Organizacionales de Auto- Regulación  y Auto- Organización. Se explica como el Modelo del Sistema Viable permite conocer e interpretar  los mecanismos de estabilidad y adaptabilidad de las organizaciones, pilares para el crecimiento de una verdadera organización Efectiva.

  2. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Pieterse, C.M.J.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the

  3. Formation of a symbiotic host-microbe interface: the role of SNARE-mediated regulation of exocytosis

    NARCIS (Netherlands)

    Huisman, Rik

    2018-01-01

    At the heart of endosymbiosis microbes are hosted inside living cells in specialized membrane compartments that from a host-microbe interface, where nutrients and signal are efficiently exchanged. Such symbiotic interfaces include arbuscules produced by arbuscular mycorrhiza (AM) and

  4. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir

    2011-10-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. Eavesdropping on plant-insect-microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals

    Science.gov (United States)

    Studies of plant-insect interactions, and more recently the interactions among plants, insects, and microbes, have revealed that volatiles often facilitate insect movement, aggregation, and host location by herbivores, predators and parasitoids, all of which could be used to help protect agriculture...

  6. The Hsp90 Complex in Microbes and Man | Center for Cancer Research

    Science.gov (United States)

    Why would cancer researchers be interested in how a bacteria named Escherichia coli (E. coli) rebuilds its cellular proteins after they have been inactivated by environmental stress such as heat?  The answer lies in a protein remodeling mechanism that is shared by microbes and man.

  7. Microstructured Block Copolymer Surfaces for Control of Microbe Adhesion and Aggregation

    Directory of Open Access Journals (Sweden)

    Ryan R. Hansen

    2014-03-01

    Full Text Available The attachment and arrangement of microbes onto a substrate is influenced by both the biochemical and physical surface properties. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe immobilization. Films of poly(glycidyl methacrylate-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA were patterned on silicon surfaces into line arrays or square grid patterns with 5 μm wide features and varied pitch. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates immobilized was dependent on the pattern dimensions. Films patterned as parallel lines or square grids with a pitch of 10 μm or less led to the immobilization of individual microbes with minimal formation of aggregates. Both geometries allowed for incremental increases in aggregate size distribution with each increase in pitch. These engineered surfaces combine spatial confinement with affinity-based capture to control the extent of microbe adhesion and aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

  8. BRC - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...table). Data file File name: brc.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/LATEST/brc.ta...rains in JCM. About This Database Database Description Download License Update History of This Database Site Policy | Contact Us BRC - MicrobeDB.jp | LSDB Archive ...

  9. SRA - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...e following table). Data file File name: sra.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/L...t This Database Database Description Download License Update History of This Database Site Policy | Contact Us SRA - MicrobeDB.jp | LSDB Archive ...

  10. Experimental Activities in Primary School to Learn about Microbes in an Oral Health Education Context

    Science.gov (United States)

    Mafra, Paulo; Lima, Nelson; Carvalho, Graça S.

    2015-01-01

    Experimental science activities in primary school enable important cross-curricular learning. In this study, experimental activities on microbiology were carried out by 16 pupils in a Portuguese grade-4 classroom (9-10?years old) and were focused on two problem-questions related to microbiology and health: (1) do your teeth carry microbes? (2) why…

  11. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  12. Progress of CRISPR-Cas based genome editing in Photosynthetic microbes

    NARCIS (Netherlands)

    Naduthodi, M.I.S.; Barbosa, M.J.; Oost, van der J.

    2018-01-01

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been

  13. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes

    Science.gov (United States)

    Fructans are an important nonfiber carbohydrate in cool-season grasses. Their fermentation by ruminal microbes is not well described, though such information is needed to understand their nutritional value to ruminants. Our objective was to compare kinetics and product formation of orchardgrass fruc...

  14. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    DEFF Research Database (Denmark)

    Ip Cho, Simon; Sundelin, Thomas; Erbs, Gitte

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposin...

  15. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    Science.gov (United States)

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  16. Plant interactions with microbes and insects: from molecular mechanisms to ecology

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Dicke, M.

    2007-01-01

    Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, beneficial microbes and insects into the most appropriate adaptive response.

  17. Isolation and cultivation of planktonic freshwater microbes is essential for a comprehensive understanding of their ecology.

    Czech Academy of Sciences Publication Activity Database

    Salcher, Michaela M.; Šimek, Karel

    2016-01-01

    Roč. 77, č. 3 (2016), s. 183-196 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : autecology * axenic cultures * dilution to extinction * ecophysiology * genomics * isolation of freshwater microbes * targeted enrichment Subject RIV: EE - Microbiology, Virology Impact factor: 1.633, year: 2016

  18. Do volatiles produced by nectar-dwelling microbes affect honey bee preferences?

    Science.gov (United States)

    The microbiome of plants mediates many interactions in natural and managed systems. Among these, plant-pollinator interactions are important for ensuring high crop yields, pollinator health and successful plant reproduction. Despite initial work demonstrating effects of floral microbes on pollinatio...

  19. The MICROBE Project, A Report from the Interagency Working Group on Microbial Genomics

    Science.gov (United States)

    2001-01-01

    functional genomics tools (gene chips, technologies, etc.), comparative genomics, proteomics tools, novel culture techniques, in situ analyses, and...interested in supporting microarray/chip development for gene expression analysis for agricultural microbes, bioinformatics, and proteomics , and the...including one fungus ) in various stages of progress. The closely integrated Natural and Accelerated Bioremediation Research Program in the Office of

  20. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition

    Science.gov (United States)

    Beth Cheever; Erika Kratzer; Jackson Webster

    2012-01-01

    According to theory, the rate and stoichiometry of microbial mineralization depend, in part, on nutrient availability. For microbes associated with leaves in streams, nutrients are available from both the water column and the leaf. Therefore, microbial nutrient cycling may change with nutrient availability and during leaf decomposition. We explored spatial and temporal...

  1. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  2. Disease - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...File name: disease.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/...iption Download License Update History of This Database Site Policy | Contact Us Disease - MicrobeDB.jp | LSDB Archive ...

  3. Burstiness in Viral Bursts: How Stochasticity Affects Spatial Patterns in Virus-Microbe Dynamics

    Science.gov (United States)

    Lin, Yu-Hui; Taylor, Bradford P.; Weitz, Joshua S.

    Spatial patterns emerge in living systems at the scale of microbes to metazoans. These patterns can be driven, in part, by the stochasticity inherent to the birth and death of individuals. For microbe-virus systems, infection and lysis of hosts by viruses results in both mortality of hosts and production of viral progeny. Here, we study how variation in the number of viral progeny per lysis event affects the spatial clustering of both viruses and microbes. Each viral ''burst'' is initially localized at a near-cellular scale. The number of progeny in a single lysis event can vary in magnitude between tens and thousands. These perturbations are not accounted for in mean-field models. Here we developed individual-based models to investigate how stochasticity affects spatial patterns in virus-microbe systems. We measured the spatial clustering of individuals using pair correlation functions. We found that increasing the burst size of viruses while maintaining the same production rate led to enhanced clustering. In this poster we also report on preliminary analysis on the evolution of the burstiness of viral bursts given a spatially distributed host community.

  4. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    Science.gov (United States)

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  5. Dietary inclusion of direct fed microbe on the growth performance of ...

    African Journals Online (AJOL)

    The birds were obtained from a reputable hatchery and randomly assigned to four dietary treatments, each with three replicate of ten birds. ... The results show that the growth performance of the broiler chicken fed diet containing different level of direct fed microbes did not differ significantly (P>0.05) in initial weight, final ...

  6. Prominent Human Health Impacts from Several Marine Microbes: History, Ecology, and Public Health Implications

    Directory of Open Access Journals (Sweden)

    P. K. Bienfang

    2011-01-01

    Full Text Available This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense, BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment.

  7. Airborne laser: a tool to study landscape surface features

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Jackson, T.J.; Everitt, J.H.; Escobar, D.E.; Murphey, J.B.; Grissinger, E.H.

    1992-01-01

    Landscape surface features related to erosion and hydrology were measured using an airborne laser profiler. The airborne laser profiler made 4,000 measurements per second with a recording accuracy of 5 cm (1.9 inches) on a single measurement. Digital data from the laser are recorded and analyzed with a personal computer. These airborne laser profiles provide information on surface landscape features. Topography and canopy heights, cover, and distribution of natural vegetation were determined in studies in South Texas. Laser measurements of shrub cover along flightlines were highly correlated (R 2 = 0.98) with ground measurements made with line-intercept methods. Stream channel cross sections on Goodwin Creek in Mississippi were measured quickly and accurately with airborne laser data. Airborne laser profile data were used to measure small gullies in a level fallow field and in field with mature soybeans. While conventional ground-based techniques can be used to make these measurements, airborne laser profiler techniques allow data to be collected quickly, at a high density, and in areas that are essentially inaccessible for ground surveys. Airborne laser profiler data can quantify landscape features related to erosion and runoff, and the laser proler has the potential to be a useful tool for providing other data for studying and managing natural resources

  8. Toolsets for Airborne Data (TAD): Enhanced Airborne Data Merging Functionality through Spatial and Temporal Subsetting

    Science.gov (United States)

    Early, A. B.; Chen, G.; Beach, A. L., III; Northup, E. A.

    2016-12-01

    NASA has conducted airborne tropospheric chemistry studies for over three decades. These field campaigns have generated a great wealth of observations, including a wide range of the trace gases and aerosol properties. The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in Hampton Virginia originally developed the Toolsets for Airborne Data (TAD) web application in September 2013 to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. The analysis of airborne data typically requires data subsetting, which can be challenging and resource intensive for end users. In an effort to streamline this process, the TAD toolset enhancements will include new data subsetting features and updates to the current database model. These will include two subsetters: temporal and spatial, and vertical profile. The temporal and spatial subsetter will allow users to both focus on data from a specific location and/or time period. The vertical profile subsetter will retrieve data collected during an individual aircraft ascent or descent spiral. This effort will allow for the automation of the typically labor-intensive manual data subsetting process, which will provide users with data tailored to their specific research interests. The development of these enhancements will be discussed in this presentation.

  9. Airborne Nicotine, Secondhand Smoke, and Precursors to Adolescent Smoking.

    Science.gov (United States)

    McGrath, Jennifer J; Racicot, Simon; Okoli, Chizimuzo T C; Hammond, S Katharine; O'Loughlin, Jennifer

    2018-01-01

    Secondhand smoke (SHS) directly increases exposure to airborne nicotine, tobacco's main psychoactive substance. When exposed to SHS, nonsmokers inhale 60% to 80% of airborne nicotine, absorb concentrations similar to those absorbed by smokers, and display high levels of nicotine biomarkers. Social modeling, or observing other smokers, is a well-established predictor of smoking during adolescence. Observing smokers also leads to increased pharmacological exposure to airborne nicotine via SHS. The objective of this study is to investigate whether greater exposure to airborne nicotine via SHS increases the risk for smoking initiation precursors among never-smoking adolescents. Secondary students ( N = 406; never-smokers: n = 338, 53% girls, mean age = 12.9, SD = 0.4) participated in the AdoQuest II longitudinal cohort. They answered questionnaires about social exposure to smoking (parents, siblings, peers) and known smoking precursors (eg, expected benefits and/or costs, SHS aversion, smoking susceptibility, and nicotine dependence symptoms). Saliva and hair samples were collected to derive biomarkers of cotinine and nicotine. Adolescents wore a passive monitor for 1 week to measure airborne nicotine. Higher airborne nicotine was significantly associated with greater expected benefits ( R 2 = 0.024) and lower expected costs ( R 2 = 0.014). Higher social exposure was significantly associated with more temptation to try smoking ( R 2 = 0.025), lower aversion to SHS ( R 2 = 0.038), and greater smoking susceptibility ( R 2 = 0.071). Greater social exposure was significantly associated with more nicotine dependence symptoms; this relation worsened with higher nicotine exposure (cotinine R 2 = 0.096; airborne nicotine R 2 = 0.088). Airborne nicotine exposure via SHS is a plausible risk factor for smoking initiation during adolescence. Public health implications include limiting airborne nicotine through smoking bans in homes and cars, in addition to stringent restrictions

  10. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  11. Determination of airborne nanoparticles from welding operations.

    Science.gov (United States)

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

  12. Dual channel airborne hygrometer for climate research

    Science.gov (United States)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Airborne hygrometry has an increasing role in climate research and nowadays the determination of cloud content especially of cirrus clouds is gaining high interest. The greatest challenges for such measurements are being used from ground level up to the lower stratosphere with appropriate precision and accuracy the low concentration and varying environment pressure. Such purpose instrument was probably presented first by our research group [1-2]. The development of the system called WaSUL-Hygro and some measurement results will be introduced. The measurement system is based on photoacoustic spectroscopy and contains two measuring cells, one is used to measure water vapor concentration which is typically sampled by a sideward or backward inlet, while the second one measures total water content (water vapor plus ice crystals) after evaporation in a forward facing sampler. The two measuring cells are simultaneously illuminated through with one distributed feedback diode laser (1371 or 1392 nm). Two early versions have been used within the CARIBIC project. During the recent years, efforts were made to turn the system into a more reliable and robust one [3]. The first important development was the improvement of the wavelength stabilization method of the applied laser. As a result the uncertainty of the wavelength is less than 40fm, which corresponds to less than 0.05% of PA signal uncertainty. This PA signal uncertainty is lower than the noise level of the system itself. The other main development was the improvement of the concentration determination algorithm. For this purpose several calibration and data evaluation methods were developed, the combination of the latest ones have made the system traceable to the humidity generator applied during the calibration within 1.5% relative deviation or within noise level, whichever is greater. The improved system was several times blind tested at the Environmental Simulation Facility (Forschungszentrum Jülich, Germany) in

  13. NASA Airborne Science Program: NASA Stratospheric Platforms

    Science.gov (United States)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  14. Upgraded airborne scanner for commercial remote sensing

    Science.gov (United States)

    Chang, Sheng-Huei; Rubin, Tod D.

    1994-06-01

    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  15. Composite mapping experiences in airborne gamma spectrometry

    International Nuclear Information System (INIS)

    Bucher, B.

    2014-01-01

    During an international intercomparison exercise of airborne gamma spectrometry held in Switzerland 2007 teams from Germany, France and Switzerland were proving their capabilities. One of the tasks was the composite mapping of an area around Basel. Each team was mainly covering the part of its own country at its own flying procedures. They delivered the evaluated data in a data format agreed in advance. The quantities to be delivered were also defined in advance. Nevertheless, during the process to put the data together a few questions raised: Which dose rate was meant? Had the dose rate to be delivered with or without cosmic contribution? Activity per dry or wet mass? Which coordinate system was used? Finally, the data could be put together in one map. For working procedures in case of an emergency, quantities of interest and exchange data format have to be defined in advance. But the procedures have also to be proved regularly. (author)

  16. A place for host-microbe symbiosis in the comparative physiologist's toolbox.

    Science.gov (United States)

    Kohl, Kevin D; Carey, Hannah V

    2016-11-15

    Although scientists have long appreciated that metazoans evolved in a microbial world, we are just beginning to appreciate the profound impact that host-associated microbes have on diverse aspects of animal biology. The enormous growth in our understanding of host-microbe symbioses is rapidly expanding the study of animal physiology, both technically and conceptually. Microbes associate functionally with various body surfaces of their hosts, although most reside in the gastrointestinal tract. Gut microbes convert dietary and host-derived substrates to metabolites such as short-chain fatty acids, thereby providing energy and nutrients to the host. Bacterial metabolites incorporated into the host metabolome can activate receptors on a variety of cell types and, in doing so, alter host physiology (including metabolism, organ function, biological rhythms, neural activity and behavior). Given that host-microbe interactions affect diverse aspects of host physiology, it is likely that they influence animal ecology and, if they confer fitness benefits, the evolutionary trajectory of a species. Multiple variables - including sampling regime, environmental parameters, host metadata and analytical methods - can influence experimental outcomes in host-microbiome studies, making careful experimental design and execution crucial to ensure reproducible and informative studies in the laboratory and field. Integration of microbiomes into comparative physiology and ecophysiological investigations can reveal the potential impacts of the microbiota on physiological responses to changing environments, and is likely to bring valuable insights to the study of host-microbiome interactions among a broad range of metazoans, including humans. © 2016. Published by The Company of Biologists Ltd.

  17. Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Jeroen van Bergenhenegouwen

    Full Text Available Oral delivery of Gram positive bacteria, often derived from the genera Lactobacillus or Bifidobacterium, can modulate immune function. Although the exact mechanisms remain unclear, immunomodulatory effects may be elicited through the direct interaction of these bacteria with the intestinal epithelium or resident dendritic cell (DC populations. We analyzed the immune activation properties of Lactobacilli and Bifidobacterium species and made the surprising observation that cellular responses in vitro were differentially influenced by the presence of serum, specifically the extracellular vesicle (EV fraction. In contrast to the tested Lactobacilli species, tested Bifidobacterium species induce TLR2/6 activity which is inhibited by the presence of EVs. Using specific TLR ligands, EVs were found to enhance cellular TLR2/1 and TLR4 responses while TLR2/6 responses were suppressed. No effect could be observed on cellular TLR5 responses. We determined that EVs play a role in bacterial aggregation, suggesting that EVs interact with bacterial surfaces. EVs were found to slightly enhance DC phagocytosis of Bifidobacterium breve whereas phagocytosis of Lactobacillus rhamnosus was virtually absent upon serum EV depletion. DC uptake of a non-microbial substance (dextran was not affected by the different serum fractions suggesting that EVs do not interfere with DC phagocytic capacity but rather modify the DC-microbe interaction. Depending on the microbe, combined effects of EVs on TLR activity and phagocytosis result in a differential proinflammatory DC cytokine release. Overall, these data suggest that EVs play a yet unrecognized role in host-microbe responses, not by interfering in recipient cellular responses but via attachment to, or scavenging of, microbe-associated molecular patterns. EVs can be found in any tissue or bodily fluid, therefore insights into EV-microbe interactions are important in understanding the mechanism of action of potential

  18. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  19. Air sampling system for airborne surveys

    International Nuclear Information System (INIS)

    Jupiter, C.; Tipton, W.J.

    1975-01-01

    An air sampling system has been designed for installation on the Beechcraft King Air A-100 aircraft as a part of the Aerial Radiological Measuring System (ARMS). It is intended for both particle and whole gas sampling. The sampling probe is designed for isokinetic sampling and is mounted on a removable modified escape hatch cover, behind the co-pilot's seat, and extends about two feet forward of the hatch cover in the air stream lines. Directly behind the sampling probe inside the modified hatch cover is an expansion chamber, space for a 5-inch diameter filter paper cassette, and an optional four-stage cascade impactor for particle size distribution measurements. A pair of motors and blower pumps provide the necessary 0.5 atmosphere pressure across the type MSA 1106 B glass fiber filter paper to allow a flow rate of 50 cfm. The MSA 1106 B filter paper is designed to trap sub-micrometer particles with a high efficiency; it was chosen to enable a quantitative measurement of airborne radon daughters, one of the principal sources of background signals when radiological surveys are being performed. A venturi section and pressure gauges allow air flow rate measurements so that airborne contaminant concentrations may be quantified. A whole gas sampler capable of sampling a cubic meter of air is mounted inside the aircraft cabin. A nuclear counting system on board the aircraft provides capability for α, β and γ counting of filter paper samples. Design data are presented and types of survey missions which may be served by this system are described

  20. Airborne system for mapping and tracking extended gamma ray sources

    International Nuclear Information System (INIS)

    Stuart, T.P.; Hendricks, T.J.; Wallace, G.G.; Cleland, J.R.

    1976-01-01

    An airborne system was developed for mapping and tracking extended sources of airborne or terrestrially distributed γ-ray emitters. The system records 300 channel γ-ray spectral data every three seconds on magnetic tape. Computer programs have been written to isolate the contribution from the particular radionuclide of interest. Aircraft position as sensed by a microwave ranging system is recorded every second on magnetic tape. Measurements of airborne stack releases of 41 A concentrations versus time or aircraft position agree well with computer code predictions

  1. AIRBORNE CONTACT DERMATITIS – CURRENT PERSPECTIVES IN ETIOPATHOGENESIS AND MANAGEMENT

    Science.gov (United States)

    Handa, Sanjeev; De, Dipankar; Mahajan, Rahul

    2011-01-01

    The increasing recognition of occupational origin of airborne contact dermatitis has brought the focus on the variety of irritants, which can present with this typical morphological picture. At the same time, airborne allergic contact dermatitis secondary to plant antigens, especially to Compositae family, continues to be rampant in many parts of the world, especially in the Indian subcontinent. The recognition of the contactant may be difficult to ascertain and the treatment may be even more difficult. The present review focuses on the epidemiological, clinical and therapeutic issues in airborne contact dermatitis. PMID:22345774

  2. Airborne gravimetry used in precise geoid computations by ring integration

    DEFF Research Database (Denmark)

    Kearsley, A.H.W.; Forsberg, René; Olesen, Arne Vestergaard

    1998-01-01

    Two detailed geoids have been computed in the region of North Jutland. The first computation used marine data in the offshore areas. For the second computation the marine data set was replaced by the sparser airborne gravity data resulting from the AG-MASCO campaign of September 1996. The results...... of comparisons of the geoid heights at on-shore geometric control showed that the geoid heights computed from the airborne gravity data matched in precision those computed using the marine data, supporting the view that airborne techniques have enormous potential for mapping those unsurveyed areas between...

  3. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    Science.gov (United States)

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  4. In search of viable business models for development: sustainable energy in developing countries

    NARCIS (Netherlands)

    Kolk, A.; van den Buuse, D.

    2012-01-01

    Purpose - Although the crucial role of business, and of business-based approaches, in development is increasingly emphasised by academics and practitioners, insight is lacking into the "whether and how" of viable business models, in environmental, social and economical terms. This article analyses

  5. Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach

    NARCIS (Netherlands)

    Wijnands, L.M.; Pielaat, A.; Dufrenne, J.B.; Zwietering, M.H.; Leusden, van F.M.

    2009-01-01

    Aims: Model the number of viable vegetative cells of B. cereus surviving the gastric passage after experiments in simulated gastric conditions. Materials and Methods: The inactivation of stationary and exponential phase vegetative cells of twelve different strains of Bacillus cereus, both mesophilic

  6. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Science.gov (United States)

    2010-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted... Seed Bacteria shall be tested for extraneous viable bacteria and fungi as prescribed in this section. A...

  7. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1011 Viable spores of the... characteristics of the parent strain or contamination by other microorganisms. (3) Each lot of spore preparation... production is a Bacillus thuringiensis strain which does not produce β-exotoxin under standard manufacturing...

  8. Economically viable biochemical processes for the advanced rural biorefinery and downstream recovery operations

    Science.gov (United States)

    Rural biorefineries offer an alternative to traditional ethanol production by providing the opportunity to produce fuel on site to reduce costs associated with biomass transportation thus making the fuel economically viable. Widespread installation of rural biorefineries could lead to increased upt...

  9. The ghost of extinction: Preservation values and minimum viable population in wildlife models

    NARCIS (Netherlands)

    Eiswerth, M.E.; Kooten, van G.C.

    2009-01-01

    The inclusion of a minimum viable population in bioeconomic modeling creates at least two complications that are not resolved by using a modified logistic growth function. The first complication can be dealt with by choosing a different depensational growth function. The second complication relates

  10. Viable Techniques, Leontief’s Closed Model, and Sraffa’s Subsistence Economies

    Directory of Open Access Journals (Sweden)

    Alberto Benítez

    2014-11-01

    Full Text Available This paper studies the production techniques employed in economies that reproduce themselves. Special attention is paid to the distinction usually made between those that do not produce a surplus and those that do, which are referred to as first and second class economies, respectively. Based on this, we present a new definition of viable economies and show that every viable economy of the second class can be represented as a viable economy of the first class under two different forms, Leontief‘s closed model and Sraffa’s subsistence economies. This allows us to present some remarks concerning the economic interpretation of the two models. On the one hand, we argue that the participation of each good in the production of every good can be considered as a normal characteristic of the first model and, on the other hand, we provide a justification for the same condition to be considered a characteristic of the second model. Furthermore, we discuss three definitions of viable techniques advanced by other authors and show that they differ from ours because they admit economies that do not reproduce themselves completely.

  11. Mapping In Vivo Tumor Oxygenation within Viable Tumor by 19F-MRI and Multispectral Analysis

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2013-11-01

    Full Text Available Quantifying oxygenation in viable tumor remains a major obstacle toward a better understanding of the tumor microenvironment and improving treatment strategies. Current techniques are often complicated by tumor heterogeneity. Herein, a novel in vivo approach that combines 19F magnetic resonance imaging (19F-MRIR1 mapping with diffusionbased multispectral (MS analysis is introduced. This approach restricts the partial pressure of oxygen (pO2 measurements to viable tumor, the tissue of therapeutic interest. The technique exhibited sufficient sensitivity to detect a breathing gas challenge in a xenograft tumor model, and the hypoxic region measured by MS 19F-MRI was strongly correlated with histologic estimates of hypoxia. This approach was then applied to address the effects of antivascular agents on tumor oxygenation, which is a research question that is still under debate. The technique was used to monitor longitudinal pO2 changes in response to an antibody to vascular endothelial growth factor (B20.4.1.1 and a selective dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor (GDC-0980. GDC-0980 reduced viable tumor pO2 during a 3-day treatment period, and a significant reduction was also produced by B20.4.1.1. Overall, this method provides an unprecedented view of viable tumor pO2 and contributes to a greater understanding of the effects of antivascular therapies on the tumor's microenvironment.

  12. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state.

    Science.gov (United States)

    Ramaiah, N; Ravel, J; Straube, W L; Hill, R T; Colwell, R R

    2002-01-01

    Physiological responses of marine luminous bacteria, Vibrio harveyi (ATCC 14216) and V. fischeri (UM1373) to nutrient-limited normal strength (35 ppt iso-osmolarity) and low (10 ppt hypo-osmolarity) salinity conditions were determined. Plate counts, direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. Vibrio harveyi incubated at 22 degrees C in nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d in microcosms of 35 ppt and 10 ppt ASW, respectively. In contrast, V. fischeri became nonculturable at approximately 55 and 31 d in similar microcosms. Recovery of both culturability and luminescence of cells in the viable but nonculturable state was achieved by addition of nutrient broth or nutrient broth supplemented with a carbon source, including luminescence-stimulating compounds. Temperature upshift from 22 degrees C to 30 degrees C or 37 degrees C did not result in recovery from nonculturability. The study confirms entry of V. harveyi and V. fischeri into the viable but nonculturable state under low-nutrient conditions and demonstrates nutrient-dependent resuscitation from this state. This study confirms loss of luminescence of V. harveyi and V. fischeri on entry into the viable but nonculturable state and suggests that enumeration of luminescent cells in water samples may be a rapid method to deduce the nutrient status of a water sample.

  13. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    Science.gov (United States)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy

  14. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  15. CAMEX-3 AIRBORNE VERTICAL ATMOSPHERE PROFILING SYSTEM (AVAPS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 DC-8 Airborne Vertical Atmosphere Profiling System (AVAPS) uses dropwindsonde and Global Positioning System (GPS) receivers to measure the atmospheric...

  16. Airborne Geophysical/Geological Mineral Inventory CIP Program

    National Research Council Canada - National Science Library

    1999-01-01

    The Airborne-Geophysical/Geological Mineral Inventory project is a special multi-year investment to expand the knowledge base of Alaska's mineral resources and catalyze private-sector mineral development...

  17. Airborne Gravity: NGS' Gravity Data for ES03 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...

  18. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  19. Airborne Gravity: NGS' Gravity Data for EN10 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...

  20. Airborne Gravity: NGS' Gravity Data for AN08 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...