WorldWideScience

Sample records for vhtr plenum flows

  1. Scaled Experimental Modeling of VHTR Plenum Flows

    Energy Technology Data Exchange (ETDEWEB)

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  2. Experimental Modeling of VHTR Plenum Flows during Normal Operation and Pressurized Conduction Cooldown

    Energy Technology Data Exchange (ETDEWEB)

    Glenn E McCreery; Keith G Condie

    2006-09-01

    The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. The present document addresses experimental modeling of flow and thermal mixing phenomena of importance during normal or reduced power operation and during a loss of forced reactor cooling (pressurized conduction cooldown) scenario. The objectives of the experiments are, 1), provide benchmark data for assessment and improvement of codes proposed for NGNP designs and safety studies, and, 2), obtain a better understanding of related phenomena, behavior and needs. Physical models of VHTR vessel upper and lower plenums which use various working fluids to scale phenomena of interest are described. The models may be used to both simulate natural convection conditions during pressurized conduction cooldown and turbulent lower plenum flow during normal or reduced power operation.

  3. Numerical investigation of flow characteristics in a prototypical lower plenum of a prismatic VHTR

    International Nuclear Information System (INIS)

    Ying, Alice; Narula, Manmeet; Abdou, Mohamed; Tsai, Peter; Ando, Yuya

    2007-01-01

    The aim of this study is to obtain insights into the flow behavior, as well as to develop predictive capability with regards to the flow and thermal mixing, that occurs in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In this paper, numerical modeling has been used to capture qualitative phenomena observed during an experiment performed at INL, using a finite volume, thermo-fluid solver system, 'SC/Tetra' from CRADLE. The choice of the correct turbulence model is critical to accurately predict the flow in the VHTR lower plenum. Four different turbulence models have been used in this study and the flow predictions are significantly different. A trail of marker particles and fluid temperature as a passive scalar have been used to qualitatively study the flow characteristics, specifically the turbulent mixing of water jets. The quantitative experimental data, when available, will be used to compare and improve on the available turbulence models. Preliminary numerical modeling has been carried out to address the issue of hot streaking and buoyancy effects of hot helium jets in the lower plenum. (author)

  4. PIV Experiments to Measure Flow Phenomena in a Scaled Model of a VHTR Lower Plenum

    Energy Technology Data Exchange (ETDEWEB)

    Hugh M. McIlroy, Jr.; Donald M. McEligot; Richard R. Schultz; Daniel Christensen; Robert J. Pink; Ryan C. Johnson

    2006-09-01

    A report of experimental data collected at the Matched-Index-of-Refraction (MIR) Laboratory in support of contract DE-AC07-05ID14517 and the INL Standard Problem on measurements of flow phenomena occurring in a lower plenum of a typical prismatic VHTR concept reactor to assess CFD code is presented. Background on the experimental setup and procedures is provided along with several samples of data obtained from the 3-D PIV system and an assessment of experimental uncertainty is provided. Data collected in this study include 3-dimensional velocity-field descriptions of the flow in all four inlet jets and the entire lower plenum with inlet jet Reynolds numbers (ReJet) of approximately 4300 and 12,400. These investigations have generated over 2 terabytes of data that has been processed to describe the various velocity components in formats suitable for external release and archived on removable hard disks. The processed data from both experimental studies are available in multi-column text format.

  5. Validation Studies for Numerical Simulations of Flow Phenomena Expected in the Lower Plenum of a Prismatic VHTR Reference Design

    International Nuclear Information System (INIS)

    Richard W. Johnson

    2005-01-01

    The final design of the very high temperature reactor (VHTR) of the fourth generation of nuclear power plants (Gen IV) has not yet been established. The VHTR may be either a prismatic (block) or pebble bed type. It may be either gas-cooled or cooled with an as yet unspecified molten salt. However, a conceptual design of a gas-cooled VHTR, based on the General Atomics GT-MHR, does exist and is called the prismatic VHTR reference design, MacDonald et al [2003], General Atomics [1996]. The present validation studies are based on the prismatic VHTR reference design. In the prismatic VHTR reference design, the flow in the lower plenum will be introduced by dozens of turbulent jets issuing into a large crossflow that must negotiate dozens of cylindrical support columns as it flows toward the exit duct of the reactor vessel. The jets will not all be at the same temperature due to the radial variation of power density expected in the core. However, it is important that the coolant be well mixed when it enters the power conversion unit to ensure proper operation and long life of the power conversion machinery. Hence, it is deemed important to be able to accurately model the flow and mixing of the variable temperature coolant in the lower plenum and exit duct. Accurate flow modeling involves determining modeling strategies including the fineness of the grid needed, iterative convergence tolerance, numerical discretization method used, whether the flow is steady or unsteady, and the turbulence model and wall treatment employed. It also involves validation of the computer code and turbulence model against a series of separate and combined flow phenomena and selection of the data used for the validation. The present report describes progress made to date for the task entitled ''CFD software validation of jets in crossflow'' which was designed to investigate the issues pertaining to the validation process

  6. Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

    2005-09-01

    The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

  7. Experimental Measurement of Flow Phenomena in a VHTR Lower Plenum Model

    Energy Technology Data Exchange (ETDEWEB)

    Hugh M. McIlroy Jr.; Keith G. Condie; Glenn E. McCreery; Donald M. McEligot; Robert J. Pink

    2006-06-01

    The Very-High-Temperature Reactor (VHTR) is one of six reactor technologies chosen for further development by the Generation IV International Forum. In addition this system is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. In preparation for the thermal-hydraulics and safety analyses that will be required to confirm the performance of the NGNP, work has begun on readying the computational tools that will be needed to predict the thermal-hydraulics conditions and safety margins of the reactor design. Meaningful feasibility studies for VHTR designs will require accurate, reliable predictions of material temperatures which depend upon the thermal convection in the coolant channels of the core and other components. Unfortunately, one-dimensional system codes for gas-cooled reactors typically underpredict these temperatures, particularly for reduced power operations and hypothesized accident scenarios. Likewise, most turbulence models in general-purpose CFD codes also underpredict these temperatures. Matched-Index-of-Refraction (MIR) fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of CFD solutions of the momentum equations, scalar mixing and turbulence models for typical VHTR plenum geometries in the limiting case of negligible buoyancy and constant fluid properties.

  8. Unsteady Reynolds Averaged Navier-Stokes and Large Eddy Simulations of Flows across Staggered Tube Bundle for a VHTR Lower Plenum Design

    International Nuclear Information System (INIS)

    Choi, Hyeon Kyeong; Park, Jong Woon

    2013-01-01

    In this work, behavior of unsteady and oscillating flow through a typical tube bundle array are analyzed by unsteady computations: 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) and the results are compared with existing experimental data. In order to confirm appropriateness and limitations of CFD applications in the Korean VHTR design, two types of unsteady computations are performed such as 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) for the existing tube bundle array. The velocity component profiles are compared with the experimental data and it is concluded that the URANS with the standard k-ω model is reasonably appropriate for cost-effective VHTR lower plenum analysis. Nevertheless, if more accurate results are needed, the LES-Smagorinsky computation is recommended considering limitations in the time averaged RANS in capturing small eddies

  9. Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem

    International Nuclear Information System (INIS)

    Johnson, Richard W.; Schultz, Richard R.

    2009-01-01

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U.S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made

  10. Computational fluid dynamic analysis of core bypass flow phenomena in a prismatic VHTR

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Johnson, Richard; Schultz, Richard

    2010-01-01

    The core bypass flow in a prismatic very high temperature reactor (VHTR) is an important design consideration and can have considerable impact on the condition of reactor core internals including fuels. The interstitial gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The occurrence of hot spots in the core and lower plenum and hot streaking in the lower plenum (regions of very hot gas flow) are affected by bypass flow. In the present study, three-dimensional computational fluid dynamic (CFD) calculations of a typical prismatic VHTR are conducted to better understand bypass flow phenomena and establish an evaluation method for the reactor core using the commercial CFD code FLUENT. Parametric calculations changing several factors in a one-twelfth sector of a fuel column are performed. The simulations show the impact of each factor on bypass flow and the resulting flow and temperature distributions in the prismatic core. Factors include inter-column gap-width, turbulence model, axial heat generation profile and geometry change from irradiation-induced shrinkage in the graphite block region. It is shown that bypass flow provides a significant cooling effect on the prismatic block and that the maximum fuel and coolant channel outlet temperatures increase with an increase in gap-width, especially when a peak radial factor is applied to the total heat generation rate. Also, the presence of bypass flow causes a large lateral temperature gradient in the block and also dramatically increases the variation in coolant channel outlet temperatures for a given block that may have repercussions on the structural integrity of the graphite, the neutronics and the potential for hot streaking and hot spots occurring in the lower plenum.

  11. Validation of turbulence models for LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Chen, Y.B.; Golay, M.W.

    1977-01-01

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds number (Re) values of 33000 and 70000 in a 1/15 - scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different two-equation turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet flow field, importantly also upon the degree of inlet turbulence, and also upon the turbulent momentum exchange model used in the calculations. In the FFTF geometry, the TEACH-T predictions agree well with the experiments. 7 refs

  12. Flow distribution in the inlet plenum of steam generator

    International Nuclear Information System (INIS)

    Khadamakar, H.P.; Patwardhan, A.W.; Padmakumar, G.; Vaidyanathan, G.

    2011-01-01

    Highlights: → Various flow distribution devices have been studied to make the flow distribution uniform in axial as well as tangential direction. → Experiments were performed using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV). → CFD modeling has been carried out to give more insights. → Various flow distribution devices have been compared. - Abstract: The flow distribution in a 1/5th and 1/8th scale models of inlet plenum of steam generator (SG) has been studied by a combination of experiments and Computational Fluid Dynamics (CFD) simulations. The distribution of liquid sodium in the inlet plenum of the SG strongly affects the thermal as well as mechanical performance of the steam generator. Various flow distribution devices have been used to make the flow distribution uniform in axial as well as tangential direction in the window region. Experiments have been conducted to measure the radial velocity distribution using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV) under a variety of conditions. CFD modeling has been carried out for various configurations to give more insight into the flow distribution phenomena. The various flow distribution devices have been compared on the basis of a non-uniformity index parameter.

  13. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Kawaji, Masahiro [City College of New York, NY (United States); Valentin, Francisco I. [City College of New York, NY (United States); Artoun, Narbeh [City College of New York, NY (United States); Banerjee, Sanjoy [City College of New York, NY (United States); Sohal, Manohar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-21

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  14. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    International Nuclear Information System (INIS)

    Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh; Banerjee, Sanjoy; Sohal, Manohar; Schultz, Richard; McEligot, Donald M.

    2015-01-01

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  15. Effects of lower plenum flow structure on core inlet flow of ABWR

    International Nuclear Information System (INIS)

    Watanabe, Shun; Abe, Yutaka; Kaneko, Akiko; Watanabe, Fumitoshi; Tezuka, Kenichi

    2010-01-01

    The evaluation of coolant flow structure at a lower plenum of an advanced boiling water reactor (ABWR) in which there are many structures is very important in order to improve generating power. Although the simulation results by CFD (Computational Fluid Dynamics) codes can predict such complicated flow in the lower plenum, it is required to establish the database of flow structure in lower plenum of ABWR experimentally for the benchmark of the CFD codes. In the model of the lower plenum, we measured velocity profiles with LDV and PIV. And differential pressure of constructed model is measured with differential pressure instrument. It was identified that the velocity and differential pressure profiles also showed the tendency to be flat in the core inlet. Moreover, vortexes were observed around side entry orifice by PIV measurement. (author)

  16. Preliminary Estimation of Local Bypass Flow Gap Sizes for a Prismatic VHTR Core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Jo, Chang Keun; Lee, Won Jae

    2009-01-01

    The Very High Temperature Reactor (VHTR) has been selected for the Nuclear Hydrogen Development and Demonstration (NHDD) project. In the VHTR design, core bypass flow has been one of key issues for core thermal margins and target temperature of the core outlet. The core bypass flow in the prismatic VHTR varies with the core life due to the irradiation shrinkage/ swelling and thermal expansion of the graphite blocks, which could be a significant proportion of the total core flow. Thus, accurate prediction of the bypass flow is of major importance in assuring the core thermal margin. To predict the bypass flow, first of all, local gap sizes between graphite blocks in the core should be determined. The objectives of this work are to develop a methodology for determining the gap sizes and to perform a preliminary evaluation for a reference reactor

  17. CFD Analysis for Predicting Flow Resistance of the Cross Flow Gap in Prismatic VHTR Core

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Park, Jong Woon

    2011-01-01

    The core of Very High Temperature Reactor (VHTR) consists of assemblies of hexagonal graphite blocks and its height and across-flats width are 800 mm and 360 mm respectively. They are equipped with 108 coolant holes 16 mm in diameter. Up to ten fuel blocks arranged in vertical order form a fuel element column and the neutron flux varies over the cross section of the core. It makes different axial shrinkage of fuel element and this leads to make wedge-shaped gaps between the base and top surfaces of stacked blocks. The cross flow is defined as the core flow that passes through this cross gaps. The cross flow complicates the flow distribution of reactor core. Moreover, the cross flow could lead to uneven coolant distribution and consequently to superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. In particular, to predict amount of flow at the cross flow gap obtaining accurate flow loss coefficient is important. Nevertheless, there has not been much effort in domestic. The experiment of cross flow was carried out by H. G. Groehn in 1981 Germany. For the study of cross flow the applicability of CFD code should be validated. In this paper a commercial CFD code CFX-12 validation will be carried out with this cross flow experiment. Validated data can be used for validation of other thermal-hydraulic analysis codes

  18. Experimental and CFD Studies of Coolant Flow Mixing within Scaled Models of the Upper and Lower Plenums of NGNP Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Anand, Nk [Texas A & M Univ., College Station, TX (United States)

    2016-03-30

    A 1/16th scaled VHTR experimental model was constructed and the preliminary test was performed in this study. To produce benchmark data for CFD validation in the future, the facility was first run at partial operation with five pipes being heated. PIV was performed to extract the vector velocity field for three adjacent naturally convective jets at statistically steady state. A small recirculation zone was found between the pipes, and the jets entered the merging zone at 3 cm from the pipe outlet but diverged as the flow approached the top of the test geometry. Turbulence analysis shows the turbulence intensity peaked at 41-45% as the jets mixed. A sensitivity analysis confirmed that 1000 frames were sufficient to measure statistically steady state. The results were then validated by extracting the flow rate from the PIV jet velocity profile, and comparing it with an analytic flow rate and ultrasonic flowmeter; all flow rates lie within the uncertainty of the other two methods for Tests 1 and 2. This test facility can be used for further analysis of naturally convective mixing, and eventually produce benchmark data for CFD validation for the VHTR during a PCC or DCC accident scenario. Next, a PTV study of 3000 images (1500 image pairs) were used to quantify the velocity field in the upper plenum. A sensitivity analysis confirmed that 1500 frames were sufficient to precisely estimate the flow. Subsequently, three (3, 9, and 15 cm) Y-lines from the pipe output were extracted to consider the output differences between 50 to 1500 frames. The average velocity field and standard deviation error that accrued in the three different tests were calculated to assess repeatability. The error was varied, from 1 to 14%, depending on Y-elevation. The error decreased as the flow moved farther from the output pipe. In addition, turbulent intensity was calculated and found to be high near the output. Reynolds stresses and turbulent intensity were used to validate the data by

  19. Experimental and CFD Studies of Coolant Flow Mixing within Scaled Models of the Upper and Lower Plenums of NGNP Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Hassan, Yassin; Anand, Nk

    2016-01-01

    A 1/16th scaled VHTR experimental model was constructed and the preliminary test was performed in this study. To produce benchmark data for CFD validation in the future, the facility was first run at partial operation with five pipes being heated. PIV was performed to extract the vector velocity field for three adjacent naturally convective jets at statistically steady state. A small recirculation zone was found between the pipes, and the jets entered the merging zone at 3 cm from the pipe outlet but diverged as the flow approached the top of the test geometry. Turbulence analysis shows the turbulence intensity peaked at 41-45% as the jets mixed. A sensitivity analysis confirmed that 1000 frames were sufficient to measure statistically steady state. The results were then validated by extracting the flow rate from the PIV jet velocity profile, and comparing it with an analytic flow rate and ultrasonic flowmeter; all flow rates lie within the uncertainty of the other two methods for Tests 1 and 2. This test facility can be used for further analysis of naturally convective mixing, and eventually produce benchmark data for CFD validation for the VHTR during a PCC or DCC accident scenario. Next, a PTV study of 3000 images (1500 image pairs) were used to quantify the velocity field in the upper plenum. A sensitivity analysis confirmed that 1500 frames were sufficient to precisely estimate the flow. Subsequently, three (3, 9, and 15 cm) Y-lines from the pipe output were extracted to consider the output differences between 50 to 1500 frames. The average velocity field and standard deviation error that accrued in the three different tests were calculated to assess repeatability. The error was varied, from 1 to 14%, depending on Y-elevation. The error decreased as the flow moved farther from the output pipe. In addition, turbulent intensity was calculated and found to be high near the output. Reynolds stresses and turbulent intensity were used to validate the data by

  20. A study on bypass flow gap distribution in a prismatic VHTR core

    International Nuclear Information System (INIS)

    Kim, M. H.; Jo, C. K.; Lim, H. S.

    2010-01-01

    Core bypass flow in VHTR is one of the key issues for core thermal margins and efficiency. The bypass flow in the prismatic core varies during core cycles due to the irradiation shrinkage and thermal expansion of the graphite blocks. A procedure to evaluate the local gap size variation between graphite blocks was developed and applied to a prismatic core VHTR. The influence of the core restraint mechanism on the bypass flow gap was evaluated. The predicted gap size is as much as 8 mm when the graphite block is exposed to its allowable limit of irradiation fluence. The analysis for the core bypass flow and hot spot was carried out based on the calculated gap distributions. The results indicate that the bypass flow and the location of core hot spots are closely related and a measure to reduce the bypass flow is necessary. (authors)

  1. CFD Validation with a Multi-Block Experiment to Evaluate the Core Bypass Flow in VHTR

    International Nuclear Information System (INIS)

    Yoon, Su Jong; Lee, Jeong Hun; Park, Goon Cherl; Kim, Min Hwan

    2010-01-01

    Core bypass flow of Very High Temperature Reactor (VHTR) is defined as the ineffective coolant which passes through the bypass gaps between the block columns and the crossflow gaps between the stacked blocks. This flows lead to the variation of the flow distribution in the core and affect the core thermal margin and the safety of VHTR. Therefore, bypass flow should be investigated and quantified. However, it is not a simple question, because the flow path of VHTR core is very complex. In particular, since dimensions of the bypass gap and the crossflow gap are of the order of few millimeters, it is very difficult to measure and to analyze the flow field at those gaps. Seoul National University (SNU) multi-block experiment was carried out to evaluate the bypass flow distribution and the flow characteristics. The coolant flow rate through outlet of each block column was measured, but the local flow field was measured restrictively in the experiment. Instead, CFD analysis was carried out to investigate the local phenomena of the experiment. A commercial CFD code CFX-12 was validated by comparing the simulation results and the experimental data

  2. Development of flow network analysis code for block type VHTR core by linear theory method

    International Nuclear Information System (INIS)

    Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.

    2012-01-01

    VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)

  3. Evaluation of Core Bypass Flow in the Prismatic VHTR with a Multi-block Experiment

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Kim, Min Hwan

    2010-01-01

    The core of Prismatic Modular Reactor (PMR) consists of assemblies of hexagonal graphite fuel and reflector elements. The core bypass flow of Very High Temperature Reactor (VHTR) is defined as the core flow that does not pass through the coolant channels but passes through the bypass gap between fuel elements. The increase in bypass flow makes the decrease in effective coolant flow. Since the core bypass flow has a negative impact on safety and efficiency of VHTR, core bypass phenomena have to be investigated to improve the core thermal margin of VHTR. For this purpose, the international project, I-NERI project, has been carried out since 2008. I-NERI project is collaborative project that KAERI and SNU of Korea side and INL, ANL and TAMU of U.S side are involved. In order to evaluate the core bypass flow, the multicolumn and multi-layer experimental facility is designed by SNU. In this experiment, the effect of cross-flow and local variation of bypass gap on the bypass flow distribution is investigated. Furthermore, the experimental data will be used for validation of CFD code or thermal hydraulic analysis codes such as GAMMA or GAS-NET

  4. Study on mixed convective flow penetration into subassembly from reactor hot plenum in FBRs

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, J.; Ohshima, H.; Kamide, H.; Ieda, Y. [Power Reactor and Nuclear Fuel Development Corporation, Ibaraki (Japan)

    1995-09-01

    Fundamental experiments using water were carried out in order to reveal the phenomenon of mixed convective flow penetration into subassemblies from a reactor`s upper plenum of fast breeder reactors. This phenomenon appears under a certain natural circulation conditions during the operation of the direct reactor auxiliary cooling system for decay heat removal and might influence the natural circulation head which determines the core flow rate and therefore affects the core coolability. In the experiment, a simplified model which simulates an upper plenum and a subassembly was used and the ultrasonic velocity profile monitor as well as thermocouples were applied for the simultaneous measurement of velocity and temperature distributions in the subassembly. From the measured data, empirical equations related to the penetration flow onset condition and the penetration depth were obtained using relevant parameters which were derived from dimensional analysis.

  5. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  6. Application of mesh free lattice Boltzmann method to the analysis of very high temperature reactor lower plenum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon [Dongguk Univ., Gyeongju (Korea, Republic of). Dept. of Energy and Environment

    2011-11-15

    Inside a helium-cooled very high temperature reactor (VHTR) lower plenum, hot gas jets from upper fuel channels with very high velocities and temperatures and is mixed before flowing out. One of the major concerns is local hot spots in the plenum due to inefficient mixing of the helium exiting from differentially heated fuel channels and it involves complex fluid flow physics. For this situation, mesh-free technique, especially Lattice Boltzmann Method (LBM), is thus of particular interest owing to its merit of no mesh generation. As an attempt to find efficiency of the method in such a problem, 3 dimensional flow field inside a scaled test model of the VHTR lower plenum is computed with commercial XFLOW code. Large eddy simulation (LES) and classical Smagorinsky eddy viscosity (EV) turbulence models are employed to investigate the capability of the LBM in capturing large scale vortex shedding. (orig.)

  7. Measurement of two-phase flow at the core upper plenum interface under simulated reflood conditions

    International Nuclear Information System (INIS)

    Thomas, D.G.; Combs, S.K.; Bagwell, M.E.

    1980-01-01

    Objectives of the Instrument Development Loop program were to simulate flows at the core/upper plenum interface during the reflood phase of a LOCA and to develop instruments for measuring mass-flows at this interface. A tie plate drag body was developed and tested successfully, and the data obtained were shown to be equivalent to pressure drops. The tie-plate drag body gave useful measurements in pure downflow, and the drag/turbine combination correlates with mass flow for high upflow

  8. Measurement of heat and momentum eddy diffusivities in recirculating LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Manno, V.P.; Golay, M.W.

    1978-06-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach-Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Lows are introduced into both the 1 / 15 scale FFTF outlet plenum and the 3 / 80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000. Measurements of the eddy diffusivity of heat and the eddy diffusivity of momentum are performed at a total of 11 measurement stations. Significant differences of the turbulence parameters are found between the two geometries, and the higher chimney structure of the CRBR case is found to be the major cause of the distinction. Spectral intensity studies of the fluctuating electronic analog signals of velocity and temperature are also performed. Error analysis of the overall technique indicates an experimental error of 10% in the determination of the eddy diffusivity of heat and 6% in the evaluation of turbulent momentum viscosity. In general it is seen that the turbulence in the cases observed is not isotropic, and use of isotropic turbulent heat and momentum diffusivities in transport modelling would not be a valid procedure

  9. Analytical study on coolant temperature of several leak flows in the experimental VHTr core

    International Nuclear Information System (INIS)

    Fumizawa, Motoh; Arai, Taketoshi; Miyamoto, Yoshiaki

    1982-08-01

    This report describes heat transfer analysis of several leak flows which bypass main coolant flow path in the experimental VHTR core. The analysis contains the leak flow at permanent reflectors, replaceable reflectors and gaps between fuel columns. The summary of the results are as follows: (1) the temperature of the leak flow gas increases up to the surface temperature of permanent reflectors, (2) the gas temperature at replaceable reflectors increases at least 40 0 C in case of the worst analytical condition, (3) the gas temperature increases remarkably with decreasing equivalent diameter which is changed by the angle of bevel edge of the reflector, (4) while the gas temperature is low at the upper part of the fuel element, the temperature increases rapidly when it flow down along the gap of the fuel columns. (author)

  10. Two-phase flow in the upper plenum of a boiling water nuclear reactor

    International Nuclear Information System (INIS)

    Tinoco, Hernan

    2003-01-01

    The end part of the Emergency Core Spray System (ECSS) of the Boiling Water Reactors (BWRs) at Forsmark Nuclear Power Plant (NPP) is situated in the Upper Plenum. It consists of a pipe network equipped with water injection nozzles. In case of Lost-of-Coolant Accidents (LOCAs), the ECSS should maintain the core covered by water and, at the same time, rapidly cool and decompress the reactor by means of cold water injection. In similar reactors, some welds belonging to the ECSS support have, after a period of time, shown crack indications. Inspection, repair or replacement of these welds is time consuming and expensive. For this reason, it has now been decided to permanently remove the end part of the ECSS and to replace it by water injection in the Downcomer. However, this removal should not be accompanied by undesirable effects like an increase in the moisture of the steam used for operating the turbines. To investigate the effect of this removal on the steam moisture, a CFD analysis of the two-phase flow in the Upper Plenum of Unit 3, with and without ECSS, has been carried out by means of a two-phase Euler model in FLUENT 6.0. The inlet conditions are given by an analysis of the core kinetics and thermal hydraulics by mean of the POLCA-code. The outlet conditions, i. e. the steam separator pressure drops, are given by empirical correlations from the experiments carried out at the SNORRE facility. The predicted the mass flow-rates to each separator, together with empirical correlations for the moisture content of the steam leaving the separators and the steam dryer, indicate a slight decrease in the steam moisture when the ECSS is removed. Also, a minor decrease in pressure losses over the Upper Plenum is achieved with this removal. On the other hand, rounding the sharp edges of the inlet openings to the steam separators at the shroud cover may give a large reduction in pressure losses

  11. Numerical and experimental investigation on labyrinth seal mechanism for bypass flow reduction in prismatic VHTR core

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong, E-mail: paper80@snu.ac.r [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Sang-Moon [Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Tak, Nam-il; Kim, Min-Hwan [Korea Atomic Energy Research Institute, 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Kwang-Yong [Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2013-09-15

    Highlights: • Bypass flow reduction method was developed by applying labyrinth seal mechanism. • Grooves on side walls of replaceable reflector block were made. • Design of the grooved wall of the reflector block was optimized by the RSA method. • The flow resistance of the bypass gap rose from 18.04 to 26.24 by the optimization. • The bypass ratios at the inlet and outlet were reduced by 36.19% and 14.66%, respectively. -- Abstract: Core bypass flow in block type very high temperature reactor (VHTR) occurs due to the inevitable gaps between the hexagonal core blocks for the block installation and refueling. Since the core bypass flow affects the reactor safety and efficiency, it should be minimized to enhance the core thermal margin. In this regard, the core bypass flow reduction method applying the labyrinth seal mechanism was developed and optimized by using the single-objective shape optimization method. Response surface approximation (RSA) method was adopted as the optimization method. Side wall of the replaceable reflector block was redesigned and response surface approximate model was adopted to optimize the shape of the reflector wall. Computational fluid dynamics (CFD) analyses were carried out not only to assess the limitation of existing method of bypass flow reduction, but also to optimize the design of a newly developed reduction method. The experiment with Seoul National University (SNU) multi-block experimental facility was performed to demonstrate the performance of the reduction method. It was found that the effect of the existing bypass flow reduction method by sealing the bypass gap exit was restricted nearby the lower region of the core. However, the flow resistance factor of the bypass gap increased from 18.04 to 26.24 by the optimized reduction method. The results of the performance test showed that the bypass flow distribution was reduced throughout the entire core regions. The bypass flow ratios at the inlet and the outlet were

  12. Experimental Investigation on Cross Flow of Wedge-shaped Gap in the core of Prismatic VHTR

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Goon Cherl; Cho, Hyoung Kyu; Yoon, Su Jong

    2014-01-01

    The core of the PMR type reactor consists of assemblies of hexagonal graphite blocks. The graphite blocks have lots of advantages for neutron economy and high temperature structural integrity. The height and flat-to-flat width of fuel bock are 793 mm and 360 mm, respectively. Each block has 108 coolant channels of which the diameter is 16 mm. And there are gaps between blocks not only vertically but also horizontally for reloading of the fuel elements. The vertical gap induces the bypass flow and through the horizontal gap the cross flow is formed. Since the complicated flow distribution occurs by the bypass flow and cross flow, flow characteristics in the core of the PMR reactor cannot be treated as a simple pipe flow. The fuel zone of the PMR core consists of multiple layers of fuel blocks. The shape change of the fuel blocks could be caused by the thermal expansion and fast-neutron induced shrinkage. It could make different axial shrinkage of fuel block and this leads to wedge-shaped gaps between two stacked fuel blocks. The cross flow is often considered as a leakage flow through the horizontal gap between stacked fuel blocks and it complicates the flow distribution in the reactor core by connecting the coolant channel and the bypass gap. Moreover, the cross flow could lead to uneven coolant distribution and consequently cause superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. To develop the cross flow loss coefficient model for determination of the flow distribution for PMR core analysis codes, study on cross flow for PMR200 core is essential. In particular, to predict the amount of flow through the cross flow gap, obtaining accurate flow loss coefficient is important. In this study, the full-scale cross flow experimental facility was constructed to

  13. Numerical solution of heat transfer process in a prismatic VHTR core accompanying bypass and cross flows

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Qiusheng; Fukuda, Katsuya

    2016-01-01

    Highlights: • Three-dimensional CFD analysis is conducted for the thermal analysis in the reactor core. • Hot spot temperature, coolant channel outlet temperature distribution are affected by bypass flow. • Bypass gap size has significant influence on temperature and flow distribution in the core. • Cross flow has some effect on the temperature distribution of the coolant in the core due to flow mixing in the cross gaps. - Abstract: Bypass flow and cross flow gaps both exist in the core of a very high temperature gas-cooled reactor (VHTR), which is inevitable owing to tolerances in manufacturing, thermal expansion and irradiation shrinkage. The coolant mass flow rate distribution, temperature distribution, and hot spot temperature are significantly affected by bypass and cross flows. In the present study, three-dimensional CFD analysis is conducted for thermal analysis of the reactor core. A validation study for the turbulence model is performed by comparing the friction coefficient with published correlations. A sensitivity study of the near wall mesh is conducted to ensure mesh quality. Parametric studies are performed by changing the size of the bypass and cross gaps using a one-twelfth sector of a fuel block. Simulation results show the influence of the bypass gap size on temperature distribution and coolant mass flow rate distribution in the prismatic core. It is shown that the maximum fuel and coolant channel outlet temperatures increase with an increase in the gap size, which may lead to a structural risk to the fuel block. The cross flow is divided into two types: the cross flow from the bypass gap to the coolant channels and the cross flow from the high-pressure coolant channels to low-pressure coolant channels. These two types of flow have an opposing influence on the temperature gradient. It is found that the presence of the cross flow gaps may have a significant effect on the distribution of the coolant in the core due to flow mixing in the

  14. Large Eddy Simulation of Fluid flow and Heat Transfer in the Upper Plenum of Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seokki; Lee, Taeho; Kim, Dongeun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Sungho [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    The important parameters in the thermal striping are the frequency and the amplitude of the temperature fluctuation. Since the sodium used as coolant in the PGSFR has a high thermal conductivity, the temperature fluctuation can be easily transferred to the solid walls of the components in the upper plenum. To remedy these problems, numerical studies are performed in the present study to analyze the thermal striping for possible improvement of the design and safety of the reactor. For the numerical works, Chacko et al. performed LES for the experiment by Nam and Kim, and found that the LES can produce the oscillation of temperature fluctuation properly, while the realizable k - ε model predicts the amplitude and frequency of the temperature fluctuation very poorly indicating that the LES method is an appropriate calculation method for the thermal striping. In this paper, the simulation of thermal striping in the upper plenum of PGSFR is performed using the LES method. The WALE eddy viscosity model by Nicoud and Ducros built in CFX-13 commercial code is employed for the LES eddy viscosity model. The numerical investigation of the thermal striping is performed with the LES method using the CFX-13 commercial code, where the solution domain is the upper plenum of the PGSFR. As the first step, dozens of monitoring points are set to locations that are anticipated to cause thermal striping. Then, the temperature fluctuations were calculated along with the time-averaged variables such as the velocity and temperature. From these results we have obtained the following conclusions. At the side wall of IHX, a slight fluctuation is observed, but it seems that there is no risk of thermal striping. The flows from the reactor core are not mixed when reaching the UIS. So both the first and second plates need to be considered. Among the first grid plate regions, the shape region is the weakest region for thermal striping. The second weakest region for thermal striping is the shape

  15. TRIO a general computer code for reactor 3-D flows analysis. Application to a LMFBR hot plenum

    International Nuclear Information System (INIS)

    Magnaud, J.P.; Rouzaud, P.

    1985-09-01

    TRIO is a code developed at CEA to investigate general incompressible 2D and 3D viscous flows. Two calculations are presented: the lid driven cubic cavity at Re=400; steady state (velocity and temperature field) of a LMFBR hot plenum, carried out in order to prepare the calculation of a cold shock consecutive to a reactor scram. 8 refs., 26 figs.

  16. Studies of flow stratification in the hot plenum of an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P; Hickmott, S [Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, Gloucestershire (United Kingdom)

    1983-07-01

    The paper reviews work at Berkeley Nuclear Laboratories on the extent and effects of buoyancy in the hot plenum of an LMFBR. It summarizes the experimental, theoretical and numerical work has has been conducted to aid the understanding of the complex transient flows which occur following a reactor trip. The experimental work has been conducted in small-scale idealised geometries which isolate the essential features of the reactor flows and is not intended to provide detailed design data. An integral theory has been devised to describe the thermal hydraulics of negatively-buoyant jets. The predictions are shown to be in good agreement with the experimental results and emphasize the need to correctly represent the inlet velocity and temperature profiles. Some preliminary calculations with a transient, two-dimensional, finite-element code are compared with the experimental results. These calculations reproduce the overall features of the flows but not the details of the stratified interface. The development of turbulence models for stratified flows is seen as a fruitful area for further research. (author)

  17. Evaluation of effective coolant flow rate in advanced design of the small scale VHTR core

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Suzuki, Kunihiko; Murakami, Tomoyuki.

    1988-02-01

    This report describes the evaluation of effective coolant flow rate in the advanced design of the small scale VHTR core. The analytical design study was carried out after the 2nd stage of detailed design in order to reduce the cost of construction. The summary of the analytical results are as follows: (1) Crossflow loss coefficient of flange type fuel block having 0.1 mm of sealing gap is about 100 times higher than that of dowel type block adopted in the 2nd stage of detailed design. (2) In case that coolant channel outer diameter is 52 mm and hydraulic diameter is 6 mm, the effective coolant flow rates using flange and dowel type fuel blocks are 80 % and 70 % respectively. Because the crossflow loss coefficients of dowel type are lower than that of flange type. (3) The effective coolant flow rate, when crossflow loss coefficients are distributed along with the axial direction, agrees well with that using mean value of crossflow loss coefficient i.e. 5 x 10 11 m -4 . (author)

  18. Evaluation of the influence of bypass flow gap distribution on the core hot spot in a prismatic VHTR core

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Lim, Hong-Sik

    2011-01-01

    Highlights: → A procedure to evaluate the local gap size variation between graphite blocks was developed and applied to a prismatic core VHTR. → The analysis for the core bypass flow and hot spot was carried out based on the calculated gap distributions. → The predicted gap size is large enough to affect the flow distribution in the core. → The bypass gap and flow distributions are closely related to the local hot spot temperature and its location. → The core restraint mechanism preventing outward movement of graphite block reduces the bypass gap size and hot spot temperature. - Abstract: Core bypass flow in VHTR is one of the key issues for core thermal margins and efficiency. The bypass flow in the prismatic core varies during core cycles due to the irradiation shrinkage/swelling and thermal expansion of the graphite blocks. A procedure to evaluate the local gap size variation between graphite blocks was developed and applied to a prismatic core VHTR. The influence of the core restraint mechanism on the bypass flow gap was evaluated. The predicted gap size is as much as 8 mm when the graphite block is exposed to its allowable limit of fast neutron fluence. The analysis for the core bypass flow and hot spot was carried out based on the calculated gap distributions. The results indicate that the bypass gap and flow distributions are closely related to the local hot spot and its location and the core restraint mechanism preventing outward movement of the graphite block by a fastening device reduces the bypass gap size, which results in the decrease of maximum fuel temperature not less than 100 deg. C, when compared to the case without it.

  19. Experimental study of core bypass flow in a prismatic VHTR based on a two-layer block model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huhu, E-mail: huhuwang@tamu.edu; Hassan, Yassin A., E-mail: y-hassan@tamu.edu; Dominguez-Ontiveros, Elvis, E-mail: elvisdom@tamu.edu

    2016-09-15

    Bypass flow in a prismatic very high temperature gas-cooled nuclear reactor (VHTR) plays an important role in determining the coolant distribution in the core region. Efficient removal of heat from the core relies on the majority of coolant passing through the coolant channels instead of the bypass gaps. Consequently, the bypass flow fraction and its flow characteristic are important in the design process of the prismatic VHTR. The objective of this study is to experimentally investigate the flow behavior including the turbulence characteristics inside the bypass gaps using laser Doppler velocimetry (LDV), bypass fraction and pressure drops in the system. The experiment facility constructed at Texas A&M University is a scaled model consisting of two layers of fuel blocks. The distributions of the mean streamwise velocity, turbulence intensity and turbulence kinetic energy within the bypass gap at two different elevations under different Reynolds number were investigated. Uncertainties in the bypass flow fraction estimation were evaluated. The velocity and turbulence study in this work is considered to be unique, and may serve as a benchmark for the related numerical calculations.

  20. Three-dimensional calculation of the flow in the cold plenum of the Fast Breeder Reactor 1500 MW

    International Nuclear Information System (INIS)

    Chabard, J.P.; Daubert, O.; Gregoire, J.P.; Hemmerich, P.

    1987-01-01

    To solve thermalhydraulics problems which are rising for example on the various parts of nuclear reactors, several departments of the Direction des Etudes et Recherches are developing the N3S code, three-dimensional code using the finite element method. First, this paper presents the basic equations (Navies-Stokes with turbulence modelling and coupled with the thermal equation) and well suited algorithms to solve them. The industrial adequacy of the code is clearly demonstrated through the application to the computation of the flow in the cold plenum of the Fast Breeder Reactor 1500 MW on a mesh of about 20000 velocity nodes [fr

  1. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    Science.gov (United States)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat

  2. IDAHO NATIONAL LABORATORY PROGRAM TO OBTAIN BENCHMARK DATA ON THE FLOW PHENOMENA IN A SCALED MODEL OF A PRISMATIC GAS-COOLED REACTOR LOWER PLENUM FOR THE VALIDATION OF CFD CODES

    International Nuclear Information System (INIS)

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-01-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a typical prismatic gas-cooled (GCR) reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A detailed description of the model, scaling, the experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that are presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic GCR design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal undeveloped, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet flow is also presented

  3. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    International Nuclear Information System (INIS)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-01-01

    Highlights: • A 1/8th geometric-scale test facility that models the VHTR hot plenum is proposed. • Geometric scaling analysis is introduced for VHTR to analyze air-ingress accident. • Design calculations are performed to show that accident phenomenology is preserved. • Some analyses include time scale, hydraulic similarity and power scaling analysis. • Test facility has been constructed and shake-down tests are currently being carried out. - Abstract: A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time

  4. Experimental evaluation of blockage ratio and plenum evacuation system flow effects on pressure distribution for bodies of revolution in 0.1 scale model test section of NASA Lewis Research Center's proposed altitude wind tunnel

    Science.gov (United States)

    Burley, Richard R.; Harrington, Douglas E.

    1987-01-01

    An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.

  5. Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment

    International Nuclear Information System (INIS)

    Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

    2007-01-01

    The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties

  6. PBDOWN: A computer code for simulation of core material discharge and expansion in the upper coolant plenum in a hypothetical unprotected loss of flow accident in a LMFBR

    International Nuclear Information System (INIS)

    Royl, P.

    1985-01-01

    The report gives a description of the code PBDOWN (Pool Blow Down), its equations, input specifications and subroutines and it lists the input and output for some samples. Besides that some analysis results for the SNR-300 are discussed, that were obtained with this code. PBDOWN is an integral blow-down and expansion code, which simulates core material discharge and expansion into a sodium filled upper coolant plenum after build-up of vapour pressures in an unprotected loss of flow accident. The model includes the effect of sodium entrainment into an expending bubble of fuel or steel vapour with various assumptions for the heat transfer and vaporization of the entrained sodium droplets. The expanding vapour bubble is connected to the discharging pool via an orifice of a given size through which a time dependent ejection is simulated using quasi-stationary blow down correlations. The model allows bounding analysis of the possible influence of sodium vapour as a secondary working fluid, that is activated outside the pool on the overall expansion energy and discharge

  7. Upper plenum dump during reflood in PWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Sudo, Yukio; Griffith, Peter.

    1981-01-01

    Upper plenum dump during reflood in a large break loww-of-coolant accident of PWR is studied with the emergency core coolant injection into the upper plenum in addition to the cold leg. Transient experiments were carried out by injecting water into the upper plenum and the simple analysis based on a one-dimensional model was done using the drift flux model in order to investigate the conditions under which water dump through the core occurs during reflood. The most significant result is an upper plenum dump occurs when the pressure (hydrostatic head) in the upper plenum is greater than that in the lower plenum. Under those circumstances the flow regime isco-current down flow in which the upper plenum is rapidly emptied. On the other hand, when the upper plenum pressure (hydrostatic head) is less than the lower plenum pressure (hydrostatic head), the co-current down flow is not realized but a counter-current flow occurs. With subcooled water injection to the upper plenum, co-current down flow is realized even when the upper plenum hydrostatic head is less than the lower plenum hydrostatic head. The importance of this effect varies according to the magnetude of water subcooling. (author)

  8. Study on core flow distribution of the reference core design Mark-III of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Satoh, Sadao; Arai, Taketoshi; Miyamoto, Yoshiaki; Hirano, Mitsumasa

    1977-01-01

    Concerning the coolant flow distribution between fuel channels and other flow paths in the core, designated as Reference Core Mark-III of the Multi-purpose Experimental Very High Temperature Reactor, thermal analysis has been made of the control rods and other steel structures around the core to find the coolant flow rates (bypass flow) necessary to cool them to their safe operating temperatures. Calculations showed that adequate cooling could be achieved in the Mark-III Core by the bypass flow of 8% of the total reactor coolant flow, 4% each for the control-rod channels and for other structures. The thermal and coolant flow design bases, including the assumption of a 10% bypass flow, were thus confirmed to first approximation. (auth.)

  9. Application of Network Analysis Method to VHTR core

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl

    2012-01-01

    A Very High Temperature Reactor (VHTR) is currently envisioned as a promising future reactor concept because of its high-efficiency and capability of generating hydrogen. Prismatic Modular Reactor (PMR) is one of the main VHTR concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear grade graphite. However their shape could be changed by neutron damage during the reactor operation and the shape change can makes the gaps between the blocks inducing bypass flow. Most of reactor coolant flows through the coolant channel within the fuel block, but some portion of the reactor coolant bypasses to the interstitial gaps. The vertical gap and horizontal gap are called bypass gap and cross gap, respectively. CFD simulation for the full core of VHTR might be possible but it requires vast computational cost and time. Therefore, fast, flexible and reliable code is required to predict the flow distribution corresponding to the various bypass gap distribution. Consequently in this study, the flow network analysis method is applied to analyze the core flow of VHTR. The applied method was validated by comparing with SNU VHTR multiblock experiment. As a result, the calculated results show good agreements with experimental data although computational time and cost of the developed code was very small

  10. Coolant mixing in the LMFBR outlet plenum

    International Nuclear Information System (INIS)

    Chen, Y.B.; Golay, M.W.

    1977-06-01

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds Number (Re) values of 33000 and 70000 in a 1/15-scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet velocity field, upon the degree of inlet turbulence, and upon the turbulence momentum exchange model used in the calculations. It is found in the FFTF geometry that the TEACH-T predictions are better than that of VARR-II, and in the CRBR geometry neither code provides a good prediction of the observed behavior. From the sensitivity analysis, it is found that the production and dissipation of turbulence are the dominant terms in the transport equations for turbulent kinetic energy and turbulent energy dissipation rate, and the diffusion terms are relatively small. From the same study a new set of empirical constants for the turbulence model is evolved for the prediction of plenum flows

  11. Strategy of VHTR Realization

    International Nuclear Information System (INIS)

    Chang, Jonghwa

    2015-01-01

    High temperature gas cooled reactor has been developed since 1956. Fundamental idea of a gas cooled reactor is to achieve high temperature which is suitable for high efficiency application such as electricity generation. The core is composed of ceramics, graphite blocks which are mechanical stable up to very high temperature. Fuel is ceramics, TRISO ( tri-isotropic coated micro particle) whose dense coating layers work as small radioactivity containment. Coolant is inert gas, helium, which is stable chemically, neutronically, and thermal hydraulically. Several test reactors such as DRE, PB-1, FSV, AVR, THTR, HTTR, HTR-10 were built and demonstrated their safety. Large GA-HTR, RSA-PBMR projects are canceled and US-NGNP project is idling. Only Chinese HTR-PM demonstrator is under construction. HTGR has long history of development. For realization and market penetration, VHTR community should look at niche market such as carbon free energy supply to industry complex, electric power for small grid, carbon free hydrogen production, power source for space colony. Technology Readiness Level should be advanced to get proper investment from industry. For this, cooperation between international R and D institutions is required. Clearly divided role between universities, research institutions, and industries will reduce complication and shorten VHTR realization day

  12. Strategy of VHTR Realization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    High temperature gas cooled reactor has been developed since 1956. Fundamental idea of a gas cooled reactor is to achieve high temperature which is suitable for high efficiency application such as electricity generation. The core is composed of ceramics, graphite blocks which are mechanical stable up to very high temperature. Fuel is ceramics, TRISO ( tri-isotropic coated micro particle) whose dense coating layers work as small radioactivity containment. Coolant is inert gas, helium, which is stable chemically, neutronically, and thermal hydraulically. Several test reactors such as DRE, PB-1, FSV, AVR, THTR, HTTR, HTR-10 were built and demonstrated their safety. Large GA-HTR, RSA-PBMR projects are canceled and US-NGNP project is idling. Only Chinese HTR-PM demonstrator is under construction. HTGR has long history of development. For realization and market penetration, VHTR community should look at niche market such as carbon free energy supply to industry complex, electric power for small grid, carbon free hydrogen production, power source for space colony. Technology Readiness Level should be advanced to get proper investment from industry. For this, cooperation between international R and D institutions is required. Clearly divided role between universities, research institutions, and industries will reduce complication and shorten VHTR realization day.

  13. A Study on the Uncertainty of Flow-Induced Vibration in a Cross Flow over Staggered Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Park, Jong-Woon [Dongguk univ, Gyeong Ju (Korea, Republic of); Choi, Hyeon-Kyeong [HanNam University, Daejeon (Korea, Republic of)

    2015-05-15

    Cross-flow in many support columns of very high temperature reactor (VHTR) lower plenum would have FIV issues under high speed flow jetting from the core. For a group of multiple circular cylinders subjected to a cross-flow, three types of potential vibration mechanisms may exist: (1) Vortex-induced vibration (VIV), (2) Fluid-elastic vibration (FEV) and (3) Turbulence-induced vibration (TIV). Kevalahan studied the free vibration of circular cylinders in a tightly packed periodic square inline array of cylinders. Pandey et al. studied the flue gas flow distribution in the Low Temperature Super Heater (LTSH) tube bundles situated in second pass of a utility boiler and the phenomenon of flow induced vibration. Nakamura et al. studied flow instability of cylinder arrays resembling U-bend tubes in steam generators. The FIV evaluation is usually performed with computational fluid dynamic (CFD) analysis to obtain unknown frequency of oscillation of the multiple objects under turbulent flow and thus the uncertainty residing in the turbulence model used should be quantified. In this paper, potential FIV uncertainty arising from the turbulence phenomena are evaluated for a typical cross flow through staggered tube bundles resembling the VHTR lower plenum support columns. Flow induced vibration (FIV) is one of the important mechanical and fatigue issues in nuclear systems. Especially, cross-flow in many support structures of VHTR lower plenum would have FIV issues under highly turbulent jet flows from the core. The results show that the effect of turbulence parameters on FIV is not negligible and the uncertainty is 5 to 10%. Present method can be applied to future FIV evaluations of nuclear systems. More extensive studies on flow induced vibration in a plant scale by using more rigorous computational methods are under way.

  14. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  15. Indicial response test for the support post structure of VHTR

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Kikuchi, Kenji; Tachibana, Katsumi; Muto, Yasushi

    1985-11-01

    Fuel blocks and removable reflector blocks, which constitute a core of VHTR, are supported by support posts. Each support post is in contact with a hot plenum block at the top end and with a lower plenum block at the bottom end through hemispherical seats to absorb a relative displacement generated by the lateral movement of both blocks by means of small inclination or rotation of support posts. Indicial response tests have been carried out by using a specified one-dimensional vibration model in order to estimate the effects of the support post length, the mass of hot plenum block and the hemispherical radii of both support and post seat on the vibrational characteristics in the support post structure. Futhermore the experimental results have been compared with the analytical ones obtained from the Lagrange's equation. The following are the conclusions derived. (1) The hemispherical radii of support post and post seat have a large effect on the frequency of vibration in the support post structure. (2) The frequency of vibration in the support post structure is predictable using the Lagrange's equation. (author)

  16. Optimization of inlet plenum of A PBMR using surrogate modeling

    International Nuclear Information System (INIS)

    Lee, Sang-Moon; Kim, Kwang-Yong

    2009-01-01

    The purpose of present work is to optimize the design of inlet plenum of PBMR type gas cooled nuclear reactor numerically using a combining of three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. Shear stress transport (SST) turbulence model is used as a turbulence closure. Three geometric design variables are selected, namely, rising channel diameter to plenum height ratio, aspect ratio of the plenum cross section, and inlet port angle. The objective function is defined as a linear combination of uniformity of three-dimensional flow distribution term and pressure drop in the inlet plenum and rising channels of PBMR term with a weighting factor. Twenty design points are selected using Latin-hypercube method of design of experiment and objective function values are obtained at each design point using RANS solver. (author)

  17. Improved plenum pressure gradient facemaps for PKL reactors

    International Nuclear Information System (INIS)

    Crowley, D.A.; Hamm, L.L.

    1988-05-01

    This report documents the development of improved plenum pressure gradient facemaps* for PKL Mark 16--31 and Mark 22 reactor charges. These new maps are based on the 1985 L-area AC flow tests. Use of the L-area data base for estimating C-area plenum pressure gradient maps is inappropriate because the nozzle geometry plays a major role in determining the shape of the plenum pressure profile. These plenum pressure gradient facemaps are used in the emergency cooling system (ECS) and in the flow instability (FI) loss of coolant accident (LOCA) limits calculations. For the ECS LOCA limits calculations, the maps are used as input to the FLOWZONE computer code to determine the average flow within a flowzone during normal operating conditions. For the FI LOCA limits calculations, the maps are used as plenum pressure boundary conditions in the FLOWTRAN computer code to determine the maximum pre-incident assembly flow within a flowzone. These maps will also be used for flowzoning and transient protection limits analyses

  18. Plenum separator system for pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1983-01-01

    This invention provides a plenum separator system for pool-type nuclear reactors which substantially lessens undesirable thermal effects on major components. A primary feature of the invention is the addition of one or more intermediate plena, containing substantially stagnant and stratified coolant, which separate the hot and cold plena and particularly the hot plena from critical reactor components. This plenum separator system also includes a plurality of components which together form a dual pass flow path annular region spaced from the reactor vessel wall by an annular gas space. The bypass flow through the flow path is relatively small and is drawn from the main coolant pumps and discharged to an intermediate plenum

  19. Stratification in SNR-300 outlet plenum

    International Nuclear Information System (INIS)

    Reinders, R.

    1983-01-01

    In the inner outlet plenum of the SNR-300 under steady state conditions a large toroidal vortex is expected. The main flow passes through the gap between dipplate and shield vessel to the outer annular space. Only 3% of the flow pass the 24 emergency cooling holes, situated in the shield vessel. The sodium leaves the reactor tank through the 3 symmetrically arranged outlet nozzles. For a scram flow rates and temperatures are decreased simultaneously, so it is expected, that stratification occurs in the inner outlet plenum. A measure of stratification effects is the Archimedes Number Ar, which is the relation of buoyancy forces (negative) to kinetic energy. (The Archimedes Number is nearly identical with the Richardson Number). For values Ar>1 stratification can occur. Under the assumption of stratification the code TIRE was developed, which is only applicable for the period of time after some 50 sec after scram. This code serves for long term calculations. As the equations are very simple, it is a very fast code which gives the possibility to calculate transients for some hours real time. This code mainly has to take into account the pressure difference between inner plenum and outlet annulus caused by geodatic pressure. That force is in equilibrium with the pressure drop over the gap and holes in the shield vessel. For more detailed calculations of flow pattern and temperature distribution the code MIX and INKO 2T are applied. MIX was developed and validated at ANL, INKO 2T is a development of INTERATOM. INKO 2T is under validation. Mock up experiments were carried out with water to simulate the transient behavior of the SNR-300 outlet plenum. Calculations obtained by INKO 2T for steady state and the transient are shown for the flow pattern. Results of measurements also prove that stratification begins after about 30 sec. Measurements and detailed calculations show that it is admissible to use the code TIRE for the long term calculations. Calculations for a scram

  20. Requirements for the GCFR plenum streaming experiment

    International Nuclear Information System (INIS)

    Perkins, R.G.; Rouse, C.A.; Hamilton, C.J.

    1980-09-01

    This report gives the experiment objectives and generic descriptions of experimental configurations for the gas-cooled fast breeder reactor (GCFR) plenum shield experiment. This report defines four experiment phases. Each phase represents a distinct area of uncertainty in computing radiation transport from the GCFR core to the plenums, through the upper and lower plenum shields, and ultimately to the prestressed concrete reactor vessel (PCRV) liner: (1) the shield heterogeneity phase; (2) the exit shield simulation phase; (3) the plenum streaming phase; and (4) the plenum shield simulation phase

  1. Hydraulics in the RPV lower-plenum of EPR

    International Nuclear Information System (INIS)

    Barois, G.; Goreaud, N.; Nicaise, N.

    2001-01-01

    The in-core instrumentation penetrations of the European Pressurised water Reactor (EPR) have been removed from RPV-bottom to RPV-head, leaving empty the lower plenum of the RPV (Reactor Pressure Vessel). In a lower plenum with no internal structure, huge vortices may appear, with negative consequences, such as high disturbance of the core inlet flow distribution, and high increase of the RPV pressure loss. FRAMATOME ANP developed a specific Flow Distribution Device (FDD), annular shaped, located in the RPV lower plenum below the core support plate, which prevents huge vortices from appearing and guarantees a satisfying flow distribution at core inlet in normal operating conditions. The design of the FDD has been optimised with a numerical approach, using the 3-D CFD-code STAR-CD, previously qualified on scale mockup tests. The model developed represents the EPR RPV from the cold leg to core inlet. Thus, the flow distribution at core inlet, the mixing between loop-flows upstream core inlet and the pressure loss in the lower plenum can be evaluated. The optimised FDD provides satisfying performances for all these relevant functional items. (author)

  2. Current status of VHTR development in Japan

    International Nuclear Information System (INIS)

    Aochi, A.; Kondo, T.

    1982-01-01

    The status of the program at the beginning of fiscal 1982 is reviewed. Special emphasis is placed on the altering of the output helium temperature of the experimental VHTR to 950 0 . The modification is aimed at establishing the technical basis for post-experimental VHTR output helium temperature of 1000 0 C. Notes are given on the design of the VHTR as well as various research and development efforts in Japan on multi-purpose nuclear heat applications and HTGR technology

  3. Computational fluid dynamics analysis of the initial stages of a VHTR air-ingress accident using a scaled-down model

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Tae K., E-mail: taekyu8@gmail.com [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Arcilesi, David J., E-mail: arcilesi.1@osu.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Kim, In H., E-mail: ihkim0730@gmail.com [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Christensen, Richard N., E-mail: rchristensen@uidaho.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Oh, Chang H. [Idaho National Laboratory, Idaho Falls, ID 83402 (United States); Kim, Eung S., E-mail: kes7741@snu.ac.kr [Idaho National Laboratory, Idaho Falls, ID 83402 (United States)

    2016-04-15

    Highlights: • Uncertainty quantification and benchmark study are performed to validate an ANSYS FLUENT computer model for a depressurization process in a high-temperature gas-cooled reactor. • An ANSYS FLUENT computer model of a 1/8th scaled-down geometry of a VHTR hot exit plenum is presented, which is similar to the experimental test facility that has been constructed at The Ohio State University. • Using the computer model of the scaled-down geometry, the effects of the depressurization process and flow oscillations on the subsequent density-driven stratified flow phenomenology are examined computationally. • The effects of the scaled-down hot exit plenum internal structure temperature on the density-driven stratified flow phenomenology are investigated numerically. - Abstract: An air-ingress accident is considered to be one of the design basis accidents of a very high-temperature gas-cooled reactor (VHTR). The air-ingress accident is initiated, in its worst-case scenario, by a complete break of the hot duct in what is referred to as a double-ended guillotine break. This leads to an initial loss of the primary helium coolant via depressurization. Following the depressurization process, the air–helium mixture in the reactor cavity could enter the reactor core via the hot duct and hot exit plenum. In the event that air ingresses into the reactor vessel, the high-temperature graphite structures in the reactor core and hot plenum will chemically react with the air, which could lead to damage of in-core graphite structures and fuel, release of carbon monoxide and carbon dioxide, core heat up, failure of the structural integrity of the system, and eventually the release of radionuclides to the environment. Studies in the available literature focus on the phenomena of the air ingress accident that occur after the termination of the depressurization, such as density-driven stratified flow, molecular diffusion, and natural circulation. However, a recent study

  4. Final report on 3-D experiment project air-water upper plenum experiments

    International Nuclear Information System (INIS)

    Jacoby, J.K.; Mohr, C.M.

    1978-11-01

    The results are presented from upper plenum air-water reflood behavior testing performed as part of the program to investigate three-dimensional aspects of PWR LOCA research. Tests described were performed at near ambient temperature and pressure in a plexiglass vessel which included the important features of the upper core and upper plenum regions corresponding to a single fuel bundle in both Westinghouse Electric Corporation (Trojan) and Kraftwerk Union (KKU) PWR designs. The data included observed two-phase flow characteristics, particularly with regard to countercurrent flow, and cinematography of the characteristic upper plenum flow patterns

  5. Upper plenum mixing in a BWR

    International Nuclear Information System (INIS)

    Alamgir, M.; Andersen, J.G.M.; Parameswaran, V.

    1984-01-01

    A model for the emergency core cooling injection into the upper plenum of a boiling water reactor has been formulated and implemented into the TRACB02 computer program. The model consists of a spray model and a submerged jet model. The submerged jet model is used when the spray nozzles are covered by a two-phase mixture, and the spray model is used when the nozzles are uncovered. The upper plenum model has been assessed by comparison to an upper plenum mixing test in the Steam Sector Test Facility. It is found that the model accurately predicts the phenomena in the upper plenum of a boiling water reactor

  6. Development on experimental VHTR instrumentation

    International Nuclear Information System (INIS)

    Wakayama, N.; Ara, K.; Terada, H.; Yamagishi, H.; Tomoda, T.

    1982-06-01

    This paper describes developmental works on the instrumentation of the Experimental VHTR. In the area of the nuclear instrumentation for the reactor control, high temperature fission counter-chambers have been developed. These withstood the accelerated irradiation life tests at 600 deg. C, the long term in-reactor operating test at 600 deg. C and the 800 deg. C-operating tests for several hundred hours in a simulated accident condition. Platinum-Molybdenum alloy thermocouples have been studied as a neutron-irradiation-resistant high-temperature thermocouple for the in-core temperature distribution monitoring of the VHTR in the temperature range between 1000 deg. C and 1350 deg. C. The instability problems of the Pt-5% Mo/Pt-0.1% Mo thermocouple seem to be overcome by introducing a double sheath structure and adopting a better material to the inner sheath. A local failure and abnormality monitoring method for the HTR fuel is also studied using a gas-sweeping irradiation rig for the CPF compacts. This study aims mainly at the development of a method to compensate for the dependency of the FP-release rate on the fuel temperature, the neutron flux density, the burn-up and others, in order to increase the detection sensitivity of fuel failures. (author)

  7. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1977--May 31, 1977

    International Nuclear Information System (INIS)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1977-01-01

    Progress is summarized in the following tasks: (1) bundle flow studies (wrapped and bare rods); (2) subchannel flow studies (bare rods); (3) LMFBR outlet plenum flow mixing; and (4) theoretical determination of local temperature fields in LMFBR fuel rod bundles

  8. Proposed retrofit of HEPA filter plenums with injection and sampling manifolds for in-place filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Fretthold, J.K. [EG& G Rocky Flats, Inc., Golden, CO (United States)

    1995-02-01

    The importance of testing HEPA filter exhaust plenums with consideration for As Low as Reasonably Achievable (ALARA) will require that new technology be applied to existing plenum designs. HEPA filter testing at Rocky Flats has evolved slowly due to a number of reasons. The first plenums were built in the 1950`s, preceding many standards. The plenums were large, which caused air dispersal problems. The systems were variable air flow. Access to the filters was difficult. The test methods became extremely conservative. Changes in methods were difficult to make. The acceptance of new test methods has been made in recent years with the change in plant mission and the emphasis on worker safety.

  9. Numerical investigation of the High Temperature Reactor (VHTR) using computational fluid dynamics; Investigacao numerica do Reator de Alta Temperatura (VHTR) utilizando fluidodinamica computacional

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Joao Pedro C.T.A.; Santos, Andre A. Campagnole dos; Mesquita, Amir Z., E-mail: jpctap@cdtn.br, E-mail: aacs@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG),Belo Horizonte, MG (Brazil). Lab. de Termo-Hidraulica

    2013-07-01

    This work consists to evaluate and continue the study that is being developed in the Laboratory of Thermo-Hydraulics of the CNEN/CDTN (Centro de Desenvolvimento da Tecnologia Nuclear), aiming to validate the methods and procedures used in the numerical calculations of fluid flow in fuel elements of the core of the VHTR.

  10. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  11. Intake plenum volume and its influence on the engine performance, cyclic variability and emissions

    International Nuclear Information System (INIS)

    Ceviz, M.A.

    2007-01-01

    Intake manifold connects the intake system to the intake valve of the engine and through which air or air-fuel mixture is drawn into the cylinder. Details of the flow in intake manifolds are extremely complex. Recently, most of engine companies are focused on variable intake manifold technology due to their improvement on engine performance. This paper investigates the effects of intake plenum volume variation on engine performance and emissions to constitute a base study for variable intake plenum. Brake and indicated engine performance characteristics, coefficient of variation in indicated mean effective pressure (COV imep ) as an indicator for cyclic variability, pulsating flow pressure in the intake manifold runner, and CO, CO 2 and HC emissions were taken into consideration to evaluate the effects of different plenum volumes. The results of this study showed that the variation in the plenum volume causes an improvement on the engine performance and the pollutant emissions. The brake torque and related performance characteristics improved pronouncedly about between 1700 and 2600 rpm by increasing plenum volume. Additionally, although the increase in the plenum volume caused the mixture leaner due to the increase in the intake runner pressure and lean mixtures inclined to increase the cyclic variability, a decrease was interestingly observed in the COV imep

  12. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  13. Experiments on graphite block gaps connected with leak flow in bottom-core structure of experimental very high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Futakawa, Masatoshi; Takizuka, Takakazu; Kaburaki, Hideo; Sanokawa, Konomo

    1984-01-01

    In order to minimize the leak flow rate of an experimental VHTR (a multi-purpose very high-temperature gas-cooled reactor), the graphite blocks are tightened to reduce the gap distance between blocks by core restrainers surrounded outside of the fixed reflectors of the bottom-core structure and seal elements are placed in the gaps. By using a 1/2.75-scale model of the bottom-core structure, the experiments on the following items have been carried out: a relationship between core restraint force and block gap, a relationship between core restraint force and inclined angle of the model, leak flow characteristics of seal elements etc. The conclusions derived from the experiments are as follows: (1) Core restraint force is significantly effective for decreasing the gap distance between hot plenum blocks, but ineffective for the gap between hot plenum block and fixed reflector. (2) Graphite seal element reduces the leak flow rate from the top surface of hot plenum block into plenum region to one-third. (author)

  14. FBR/VHTR deployment scenarios in Japan

    International Nuclear Information System (INIS)

    Richards, Matt; Kunitomi, Kazuhiko

    2008-01-01

    Co-deployment of Fast Breeder Reactors (FBRs) and Very High Temperature Reactors (VHTRs) can be used as the nuclear technologies to meet a significant portion of Japan's future energy demands. The FBR provides the fissile fuel for energy security and sustainability, and can be used to provide a significant portion of the electricity demand. The VHTR can provide flexible energy outputs (electricity, hydrogen, and high-temperature heat) with high efficiency, can operate with a wide variety of fuel cycles, and can be sited at locations that have limited availability of cooling water. These features, combined with its passive safety and high degree of proliferation resistance, make the VHTR an ideal complement for co-deployment with the FBR in Japan and also a very low-risk technology of export to foreign countries. In addition to hydrogen production, the high-temperature thermal energy produced by the VHTR fleet can be used for a wide variety of process-heat applications, and the VHTR can play a key role for significantly reducing greenhouse-gas emissions. This paper describes assessments for deploying FBRs and VHTRs in Japan using a closed fuel cycle, with the FBRs supplying the fissile material to sustain the combined FBR/VHTR fleet. (author)

  15. Development of Essential Technology for VHTR

    International Nuclear Information System (INIS)

    Kim, Yong Wan; Koo, G. H.; Kim, D. H.

    2009-04-01

    The research tasks performed in this project can be classified into five categories; high temperature material of VHTR reactor and components for hydrogen production, the nuclear graphite for the core material, the essential technologies for VHTR components, Process Heat Exchanger (PHE) fabrication, and gas loop for PHE verification tests. Research tasks on high temperature materials of VHTR reactor and components include creep properties of super alloy for high temperature components, properties of a modified 9Cr-1Mo alloy, fabrication and properties of in-core ceramic composites, and corrosion properties of the materials for the sulfuric acid decomposer. The technologies of graphitization evaluation, nondestructive defect detection, and impurity analysis were developed in field of nuclear graphites. The properties of graphites were evaluated by tests using small specimen test. The abroad status of graphite machining was reviewed. Review about the status of VHTR components, structural sizing and analysis for hot gas duct, thermal sizing of IHX were performed in the field of the essential technologies for VHTR components. The surface modification process with ion beam mixing was optimized and evaluated for the fabrication of process heat exchanger (PHE). The secondary sulfuric acid loop was designed and constructed in the gas loop. The lab-scale PHE test was performed in the gas loop. In addition, the conceptual design of the mid-size helium loop was performed in the next stage of this project

  16. Numerical investigation of the High Temperature Reactor (VHTR) using computational fluid dynamics

    International Nuclear Information System (INIS)

    Pinto, Joao Pedro C.T.A.; Santos, Andre A. Campagnole dos; Mesquita, Amir Z.

    2013-01-01

    This work consists to evaluate and continue the study that is being developed in the Laboratory of Thermo-Hydraulics of the CNEN/CDTN (Centro de Desenvolvimento da Tecnologia Nuclear), aiming to validate the methods and procedures used in the numerical calculations of fluid flow in fuel elements of the core of the VHTR

  17. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in two different diameter channels (0.083 and 0.370Ã). In the 0

  18. Mitigation of thermal transients by tube bundle inlet plenum design

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1984-06-01

    A multiphase program aimed at investigating the importance of thermal buoyancy to LMFBR steam-generator and heat-exchanger thermal hydraulics under low-flow transient conditions is being conducted in the Argonne Mixing Components Test Facility (MCTF) on a 60 0 sector shell-side flow model of the Westinghouse straight-tube steam generator being developed under the US/DOE large-component development program. A series of shell-side constant-flow thermal-downramp transient tests have been conducted focusing on the phenomenon of thermal-buoyancy-induced-flow channeling. In addition, it was discovered that a shell-inlet flow-distribution plenum can play a significant role in mitigating the severity of a thermal transient entering a steam generator or heat exchanger

  19. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, December 1, 1975--February 29, 1976

    International Nuclear Information System (INIS)

    Todreas, N.E.; Golay, M.W.

    1976-01-01

    Progress is summarized in the following task areas: assessment of available data, experimental water mixing investigations, analytic model development, and analytical and experimental investigation of velocity and temperature fields in outlet plenum flow mixing

  20. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  1. Effects of upper plenum injection on thermo-hydrodynamic behavior under refill and reflood phases

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Sobajima, Makoto; Abe, Yutaka; Adachi, Hiromichi; Ohnuki, Akira; Osakabe, Masahiro

    1984-12-01

    In order to investigate the thermo-hydrodynamic behavior in core under simultaneous ECC water injection into the upper plenum and the intact cold leg during the refill and reflood phases of a PWR-LOCA, Tests S1-SH3 and S1-SH4 were performed by using Slab Core Test Facility (SCTF) with the injection of saturated and 67K subcooled water into the upper plenum, respectively, under the same cold leg injection condition. The following major findings were obtained by examining these test results. (1) Although the core was cooled by the fall back water from the upper plenum into the core during the period of high injection rate into the upper plenum, the core was cooled mainly by the bottom flooding after the BOCREC (Bottom of core recovery). (2) The possible fall back flow rate estimated with a CCFL correlation rapidly decreased after the BOCREC because of the increase of steam generation rate in core. (3) Continuous fall back of subcooled water was not observed even under the condition with large upper plenum injection rate of subcooled water and with steam outflow through the lower plenum into the downcomer. The fall back was intermittently limited by the rapid increase of upward steam flow which was generated in the core due to the evaporation of the fall back water. (4) The rising of liquid level in the lower plenum was suppressed by the pressurization in core due to the evaporation of fall back water before the BOCREC and therefore the beginning of bottom reflood was delayed. Some selected data from Tests S1-SH3 and S1-SH4 are also included in this report. (author)

  2. Application of Looped Network Analysis Method to Core of Prismatic VHTR

    International Nuclear Information System (INIS)

    Lee, Jeong-Hun; Cho, Hyoung-Kyu; Park, Goon-Cherl

    2016-01-01

    Most of reactor coolant flows through the coolant channel within the fuel block, but some portion of the reactor coolant bypasses to the interstitial gaps. The vertical gap and horizontal gap are called bypass gap and cross gap, respectively as shown in Fig. 1. CFD simulation for the full core of VHTR might be possible but it requires vast computational cost and time. Moreover, it is hard to cover whole cases corresponding to the various bypass gap distribution in the whole VHTR core. In order to solve this problem, in this study, the flow network analysis code, FastNet (Flow Analysis for Steady-state Network), was developed using the Looped Network Analysis Method. The applied method was validated by comparing with SNU VHTR multi-block experiment. A 3-demensional network modeling was conducted representing flow paths as flow resistances. Flow network analysis code, FastNet, was developed to evaluate the core bypass flow distribution by using looped network analysis method. Complex flow network could be solved simply by converting the non-linear momentum equation to the linearized equation. The FastNet code predicted the flow distribution of the SNU multi-block experiment accurately

  3. Design of a new SI engine intake manifold with variable length plenum

    International Nuclear Information System (INIS)

    Ceviz, M.A.; Akin, M.

    2010-01-01

    This paper investigates the effects of intake plenum length/volume on the performance characteristics of a spark-ignited engine with electronically controlled fuel injectors. Previous work was carried out mainly on the engine with carburetor producing a mixture desirable for combustion and dispatching the mixture to the intake manifold. The more stringent emission legislations have driven engine development towards concepts based on electronic-controlled fuel injection rather than the use of carburetors. In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected onto the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. Engine performance characteristics such as brake torque, brake power, thermal efficiency and specific fuel consumption were taken into consideration to evaluate the effects of the variation in the length of intake plenum. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. According to the test results, plenum length must be extended for low engine speeds and shortened as the engine speed increases. A system taking into account the results of the study was developed to adjust the intake plenum length.

  4. TMI-2 reactor vessel plenum final lift

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1986-01-01

    Removal of the plenum assembly from the TMI-2 reactor vessel was necessary to gain access to the core region for defueling. The plenum was lifted from the reactor vessel by the polar crane using three specially designed pendant assemblies. It was then transferred in air to the flooded deep end of the refueling canal and lowered onto a storage stand where it will remain throughout the defueling effort. The lift and transfer were successfully accomplished on May 15, 1985 in just under three hours by a lift team located in a shielded area within the reactor building. The success of the program is attributed to extensive mockup and training activities plus thorough preparations to address potential problems. 54 refs

  5. Salt Selection for the LS-VHTR

    International Nuclear Information System (INIS)

    Williams, D.F.; Clarno, K.T.

    2006-01-01

    Molten fluorides were initially developed for use in the nuclear industry as the high temperature fluid-fuel for a Molten Salt Reactor (MSR). The Office of Nuclear Energy is exploring the use of molten fluorides as a primary coolant (rather than helium) in an Advanced High Temperature Reactor (AHTR) design, also know as the Liquid-Salt cooled Very High Temperature Reactor (LS-VHTR). This paper provides a review of relevant properties for use in evaluation and ranking of candidate coolants for the LS-VHTR. Nuclear, physical, and chemical properties were reviewed and metrics for evaluation are recommended. Chemical properties of the salt were examined for the purpose of identifying factors that effect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented. (authors)

  6. Preliminary shielding analysis of VHTR reactors

    International Nuclear Information System (INIS)

    Flaspoehler, Timothy M.; Petrovic, Bojan

    2011-01-01

    Over the last 20 years a number of methods have been established for automated variance reduction in Monte Carlo shielding simulations. Hybrid methods rely on deterministic adjoint and/or forward calculations to generate these parameters. In the present study, we use the FWCADIS method implemented in MAVRIC sequence of the SCALE6 package to perform preliminary shielding analyses of a VHTR reactor. MAVRIC has been successfully used by a number of researchers for a range of shielding applications, including modeling of LWRs, spent fuel storage, radiation field throughout a nuclear power plant, study of irradiation facilities, and others. However, experience in using MAVRIC for shielding studies of VHTRs is more limited. Thus, the objective of this work is to contribute toward validating MAVRIC for such applications, and identify areas for potential improvement. A simplified model of a prismatic VHTR has been devised, based on general features of the 600 MWt reactor considered as one of the NGNP options. Fuel elements have been homogenized, and the core region is represented as an annulus. However, the overall mix of materials and the relatively large dimensions of the spatial domain challenging the shielding simulations have been preserved. Simulations are performed to evaluate fast neutron fluence, dpa, and other parameters of interest at relevant positions. The paper will investigate and discuss both the effectiveness of the automated variance reduction, as well as applicability of physics model from the standpoint of specific VHTR features. (author)

  7. A comparison of the risk measures between VHTR and LWR

    International Nuclear Information System (INIS)

    Han, Seok-Jung; Yang, Joon-Eon; Lee, Won-Jea

    2007-01-01

    Because the safety characteristics of a very high temperature reactor (VHTR) are different to that of light water reactors (LWRs), it is necessary to develop an adequate probabilistic safety assessment (PSA) methodology in order to perform a risk assessment. The inherent safety features of the VHTR are (1) simplified safety functions (2) the absence of the large release of radioactive materials such as a severe accident in LWRs. The PSA methodology for LWRs cannot be directly applied in a VHTR PSA. This paper proposes a PSA methodology for a VHTR. The essential point of the proposed methodology is to define end states of accident sequences in order to establish the risk measures for a VHTR PSA. This paper compares them with that for LWRs to discuss the differences of them

  8. Development of a Methodology for VHTR Accident Consequence Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joeun; Kim, Jintae; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    The substitution of the VHTR for burning fossil fuels conserves these hydrocarbon resources for other uses and eliminates the emissions of greenhouse. In Korea, for these reasons, constructing the VHTR plan for hydrogen production is in progress. In this study, the consequence analysis for the off-site releases of radioactive materials during severe accidents has been performed using the level 3 PRA technology. The offsite consequence analysis for a VHTR using the MACCS code has been performed. Since the passive system such as the RCCS(Reactor Cavity Cooling System) are equipped, the frequency of occurrence of accidents has been evaluated to be very low. For further study, the assessment for characteristic of VHTR safety system and precise quantification of its accident scenarios is expected to conduct more certain consequence analysis. This methodology shown in this study might contribute to enhancing the safety of VHTR design by utilizing the results having far lower effect on the environment than the LWRs.

  9. Analytical model for transient fluid mixing in upper outlet plenum of an LMFBR

    International Nuclear Information System (INIS)

    Yang, J.W.; Agrawal, A.K.

    1976-01-01

    A two-zone mixing model based on the lumped-parameter approach was developed for the analysis of transient thermal response in the outlet plenum of an LMFBR. The maximum penetration of core flow is used as the criterion for dividing the sodium region into two mixing zones. The model considers the transient sodium temperature affected by the thermal expansion of sodium, heat transfer with cover gas, heat capacity of different sections of metal and the addition of by-pass flow into the plenum. The results of numerical calculations indicate that effects of flow stratification, chimney height, metal heat capacity and by-pass flow are important for transient sodium temperature calculation. Thermal expansion of sodium and heat transfer with the cover gas do not play any significant role on sodium temperature

  10. A System Structure for a VHTR-SI Process Dynamic Simulation Code

    International Nuclear Information System (INIS)

    Chang, Jiwoon; Shin, Youngjoon; Kim, Jihwan; Lee, Kiyoung; Lee, Wonjae; Chang, Jonghwa; Youn, Cheung

    2008-01-01

    The VHTR-SI process dynamic simulation code embedded in a mathematical solution engine is an application software system that simulates the dynamic behavior of the VHTR-SI process. Also, the software system supports a user friendly graphical user interface (GUI) for user input/out. Structured analysis techniques were developed in the late 1970s by Yourdon, DeMarco, Gane and Sarson for applying a systematic approach to a systems analysis. It included the use of data flow diagrams and data modeling and fostered the use of an implementation-independent graphical notation for a documentation. In this paper, we present a system structure for a VHRT-SI process dynamic simulation code by using the methodologies of structured analysis

  11. Interferometric investigation of turbulently fluctuating temperature in an LMFBR outlet plenum geometry

    International Nuclear Information System (INIS)

    Bennett, R.G.; Golay, M.W.

    1975-01-01

    A novel optical technique is described for the measurement of turbulently fluctuating temperature in a transparent fluid flow. The technique employs a Mach-Zehnder interferometer of extremely short field and a simple photoconductive diode detector. The system produces a nearly linear D.C. electrical analog of the turbulent temperature fluctuations in a small, 1 mm 3 volume. The frequency response extends well above 2500 Hz, and can be improved by the choice of a more sophisticated photodetector. The turbulent sodium mixing in the ANL 1 1 / 15 -scale FFTF outlet plenum is investigated with a scale model outlet mixing plenum, using flows of air. The scale design represents a cross section of the ANL outlet plenum, so that the average recirculating flow inside the test cell is two dimensional. The range of the instrument is 120 0 F above the ambient air temperature. The accuracy is generally +-5 0 F, with most of the error due to noise originating from building vibrations and room noise. The power spectral density of the fluctuating temperature has been observed experimentally at six different stations in the flow. A strong 300 Hz component is generated in the inlet region, which decays as the flow progresses along streamlines. The effect of the inlet Reynolds number and the temperature difference between the inlet flows on the power spectral density has also been investigated. Traces of the actual fluctuating temperature are included for the six stations

  12. Gratiae plenum: Latin, Greek and the Cominform

    Directory of Open Access Journals (Sweden)

    David Movrin

    2010-12-01

    Full Text Available The survival of classics in the People’s Republic of Slovenia after World War II was dominated by the long shadow of the Coryphaeus of the Sciences, Joseph Stalin. Since 1945, the profile of the discipline was determined by the Communist Party, which followed the Soviet example, well-nigh destroying the classical education in the process. Fran Bradač, head of Classics at the University of Ljubljana, was removed for political reasons; the classical gymnasium belonging to the Church was closed down; Greek was struck from the curriculum of the two remaining state classical gymnasia; Latin, previously a central subject at every gymnasium, was severely reduced in 1945, only to disappear entirely in 1946. The classicists who continued to teach were forced to take ‘reorientation courses’ which enabled them to teach Russian and other more suitable subjects. By 1949, only two out of the 42 classicists employed by the Ministry of Education were actually teaching Latin. The Classics department at the university, where only two students were studying in 1949, was on the brink of closure.  Paradoxically, the classical tradition was saved by Stalin’s attack on the same Party. The Cominform conflict in 1948 astonished the Yugoslav communists and pushed them towards a tactical détente with the West, prompting a revision of some of their policies, including education. The process was led by the top echelons of the Party — such as Milovan Djilas, head of the central Agitprop, Boris Kidrič, in charge of Yugoslav economy, and Edvard Kardelj, the Party’s chief ideologue — during the Third Plenum of the Central Committee Politburo in Belgrade in December 1949. Their newly discovered love of Latin and Greek, documented in the minutes of the Politburo Plenum, was overseen only by the discriminating eye of Josip Broz Tito. Classical gymnasia were revived, Latin was reintroduced to some of the other gymnasia, students returned to study classics at the

  13. Analysis research on mixing characteristics of lower plenum of Qinshan phase Ⅱ NPP by CFD method

    International Nuclear Information System (INIS)

    Mao Huihui; He Peifeng; Lu Chuan; Zhang Hongliang

    2015-01-01

    The flowing and mixing characteristics of the lower plenum of Qinshan Phase n NPP were analyzed by CFD method. The calculation results were compared with the results of the reactor hydraulic simulation test. On core inlet mass flow distributions, both upwind and high resolution advection schemes show good agreements with test results. While on lower plenum mixing characteristics, the calculation results from either upwind or high resolution advection schemes show relatively large differences to the test data. Relatively, upwind advection schemes predict better anticipations on maximum and minimum mixing factors. Furthermore, whether or not considering helix flow by main pump is the most possible key factor that leads to difference between CFD calculation and test results. (authors)

  14. State of the Art Report for a Bearing for VHTR Helium Circulator

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-01

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator

  15. Effect of Permanent Side Reflector on the Temperature Variation in the VHTR Core

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Nam; Tak, Nam-il; Kim, Min-Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The temperature and pressure conditions range from 490°C to 950°C, 7MPa. GAMMA+ was developed to predict the overall phenomena of the VHTR system. The GAMMA+ algorithms focused on the transient condition for the systems. Therefore, the computational control volumes are coarse for reducing the computational time. However, there are difficulties calculating the temperature gradient in the fuel blocks in detail. There is a demand to predict a hot spot and temperature distribution in the reactor core to apply a thermal stress and find the fuel temperature margin. Computational Fluid Dynamic (CFD) tools can be an option to model the VHTR. However, the fluid has to be solved in three dimensions. The long computational time and heavy burden of the memory size have called for an alternative option. The PSR blocks are considered in the prismatic VHTR calculation with the CORONA code. The temperatures of a single assembly with an arc shape reflector by the CORONA code were verified with the results by the CFX calculation. The temperature distributions of the PSR regions did not show significant differences depending on the fixed inlet temperature boundary condition and bypass flow condition.

  16. CFD predictions of standby liquid control system mixing in lower plenum of a BWR

    International Nuclear Information System (INIS)

    Boyd, Christopher; Skarda, Raymond

    2014-01-01

    Highlights: • Computational fluid dynamics analysis of BWR lower plenum. • Mixing and stratification of the standby liquid control system injection. • Scoping study highlights the expected flow paths and limitations of experiments. - Abstract: During an anticipated transient without scram (ATWS) scenario in certain boiling water reactor (BWR) systems, a standby liquid control system (SLCS) is used to inject a sodium pentaborate solution into the reactor system in order to quickly shut down (scram) the reactor without the use of the control rods. Some BWR designs utilize a SLCS that injects through a set of nozzles on a vertical pipe in the peripheral region of the lower plenum of the reactor vessel. During the scenario, system water levels are reduced and natural circulation flow rates down through the jet pump nozzles and up into the core are a small fraction of the rated system flow. It is during this period that the SLCS flows are considered. This work outlines some initial scoping studies completed by the staff at the Nuclear Regulatory Commission (NRC). An attempt at benchmarking the computational fluid dynamics (CFD) approach using a set of available test data from a small facility is outlined. Due to our lack of information related to specific details of the facility geometry along with the limited data available from the test, the benchmark exercise produced only a qualitative basis for selecting turbulence models and mesh density. A CFD model simulating a full-scale reactor system is developed for the lower plenum of a representative BWR/4 design and SLCS flows and mixing are studied under a range of flow conditions. The full-scale BWR simulation builds upon the lessons learned from the benchmark exercise. One challenge for this work is the large size of the domain and the relatively small size of the geometric details such as flow passages and gaps. The geometry is simplified to make meshing feasible by eliminating some of the small features. The

  17. WAVE PROPAGATION in the HOT DUCT of VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz; Jim C. P. Liou

    2013-07-01

    In VHTR, helium from the reactor vessel is conveyed to a power conversion unit through a hot duct. In a hypothesized Depressurized Conduction Cooldown event where a rupture of the hot duct occurs, pressure waves will be initiated and reverberate in the hot duct. A numerical model is developed to quantify the transients and the helium mass flux through the rupture for such events. The flow path of the helium forms a closed loop but only the hot duct is modeled in this study. The lower plum of the reactor vessel and the steam generator are treated as specified pressure and/or temperature boundary to the hot duct. The model is based on the conservation principles of mass, momentum and energy, and on the equations of state for helium. The numerical solution is based on the method of characteristics with specified time intervals with a predictor and corrector algorithm. The rupture sub-model gives reasonable results. Transients induced by ruptures with break area equaling 20%, 10%, and 5% of the duct cross-sectional area are described.

  18. Evaluation of the DRAGON code for VHTR design analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.

  19. Evaluation of the DRAGON code for VHTR design analysis

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-01

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR

  20. Status of experimental data for the VHTR core design

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Seok; Chang, Jong Hwa; Park, Chang Kue

    2004-05-01

    The VHTR (Very High Temperature Reactor) is being emerged as a next generation nuclear reactor to demonstrate emission-free nuclear-assisted electricity and hydrogen production. The VHTR could be either a prismatic or pebble type helium cooled, graphite moderated reactor. The final decision will be made after the completion of the pre-conceptual design for each type. For the pre-conceptual design for both types, computational tools are being developed. Experimental data are required to validate the tools to be developed. Many experiments on the HTGR (High Temperature Gas-cooled Reactor) cores have been performed to confirm the design data and to validate the design tools. The applicability and availability of the existing experimental data have been investigated for the VHTR core design in this report.

  1. VHTR engineering design study: intermediate heat exchanger program. Final report

    International Nuclear Information System (INIS)

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes

  2. Development of whole core thermal-hydraulic analysis program ACT. 4. Incorporation of three-dimensional upper plenum model

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2003-03-01

    The thermal-hydraulic analysis computer program ACT is under development for the evaluation of detailed flow and temperature fields in a core region of fast breeder reactors under various operation conditions. The purpose of this program development is to contribute not only to clarifying thermal hydraulic characteristics that cannot be revealed by experiments due to measurement difficulty but also to performing rational safety design and assessment. This report describes the incorporation of a three-dimensional upper plenum model to ACT and its verification study as part of the program development. To treat the influence of three-dimensional thermal-hydraulic behavior in a upper plenum on the in-core temperature field, the multi-dimensional general purpose thermal-hydraulic analysis program AQUA, which was developed and validated at JNC, was applied as the base of the upper plenum analysis module of ACT. AQUA enables to model the upper plenum configuration including immersed heat exchangers of the direct reactor auxiliary cooling system (DRACS). In coupling core analysis module that consists of the fuel-assembly and the inter-wrapper gap calculation parts with the upper plenum module, different types of computation mesh systems were jointed using the staggered quarter assembly mesh scheme. A coupling algorithm among core, upper plenum and heat transport system modules, which can keep mass, momentum and energy conservation, was developed and optimized in consideration of parallel computing. ACT was applied to analyzing a sodium experiment (PLANDTL-DHX) performed at JNC, which simulated the natural circulation decay heat removal under DRACS operation conditions for the program verification. From the calculation result, the validity of the improved program was confirmed. (author)

  3. Analysis of transient thermal response in the outlet plenum of an LMFBR

    International Nuclear Information System (INIS)

    Yang, J.W.

    1976-05-01

    A two-zone mixing model based on the lumped-parameter approach was developed for the analysis of transient thermal response in the upper outlet plenum of an LMFBR. The one-dimensional turbulent jet flow equations were solved to determine the maximum penetration of the core flow. The maximum penetration is used as the criterion for dividing the sodium region into two mixing zones. The lumped-parameter model considers the transient sodium temperature affected by the thermal expansion of sodium, heat transfer with cover gas, heat capacity of different sections of metal and the addition of bypass flow into the plenum. Numerical calculations were performed for two cases. The first case corresponds to a normal scram followed by flow coast-down. The second case represents the double-ended pipe rupture at the inlet of cold leg followed by reactor scram. The results indicate that effects of flow stratification, chimney height, metal heat capacity and bypass flow are important for transient sodium temperature calculation. Thermal expansion of sodium and heat transfer with the cover gas does not play any significant role on sodium temperature. This two-zone mixing model will be a part of the thermohydraulic transient code SSC

  4. Development of the Log-in Process and the Operation Process for the VHTR-SI Process Dynamic Simulation Code

    International Nuclear Information System (INIS)

    Chang, Jiwoon; Shin, Youngjoon; Kim, Jihwan; Lee, Kiyoung; Lee, Wonjae; Chang, Jonghwa; Youn, Cheung

    2009-01-01

    The VHTR-SI process is a hydrogen production technique by using Sulfur and Iodine. The SI process for a hydrogen production uses a high temperature (about 950 .deg. C) of the He gas which is a cooling material for an energy sources. The Korea Atomic Energy Research Institute Dynamic Simulation Code (KAERI DySCo) is an integration application software that simulates the dynamic behavior of the VHTR-SI process. A dynamic modeling is used to express and model the behavior of the software system over time. The dynamic modeling deals with the control flow of system, the interaction of objects and the order of actions in view of a time and transition by using a sequence diagram and a state transition diagram. In this paper, we present an user log-in process and an operation process for the KAERI DySCo by using a sequence diagram and a state transition diagram

  5. VHTR Construction Ripple Effect using Inter-Industry Analysis

    International Nuclear Information System (INIS)

    Lee, T. H.; Lee, K. Y.; Shin, Y. J.

    2015-01-01

    As a part of a VHTR economic analysis, we have studied the VHTR construction cost and operation and maintenance cost. However, it is somewhat difficult to expect the exact cost due to insufficient reference data and experience. As a result, we propose quantitative analysis techniques for ripple effects such as the production inducement effect, added value inducement effect, and employment inducement effect for VHTR 600MWt x 4 module construction and operation ripple effect based on NOAK. This paper presents a new method for the ripple effect and preliminary ripple effect consequence. We proposed a ripple effect analysis method using a time series and inter-industry table. As a result, we can predict that a 600MWth x 4 module VHTR reactor construction will bring about a 43771 employment effect, 24160 billion KRW production effect, and 4472 billion added value effect for 22 years. It is necessary to use the sub-account values of an inter-industry table to obtain a more precise effect result. However, the methodology can be applied with minor modification to another reactor type.

  6. VHTR Construction Ripple Effect using Inter-Industry Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. H.; Lee, K. Y.; Shin, Y. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As a part of a VHTR economic analysis, we have studied the VHTR construction cost and operation and maintenance cost. However, it is somewhat difficult to expect the exact cost due to insufficient reference data and experience. As a result, we propose quantitative analysis techniques for ripple effects such as the production inducement effect, added value inducement effect, and employment inducement effect for VHTR 600MWt x 4 module construction and operation ripple effect based on NOAK. This paper presents a new method for the ripple effect and preliminary ripple effect consequence. We proposed a ripple effect analysis method using a time series and inter-industry table. As a result, we can predict that a 600MWth x 4 module VHTR reactor construction will bring about a 43771 employment effect, 24160 billion KRW production effect, and 4472 billion added value effect for 22 years. It is necessary to use the sub-account values of an inter-industry table to obtain a more precise effect result. However, the methodology can be applied with minor modification to another reactor type.

  7. Study of thermal-hydraulic characteristics in an LMFBR intermediate plenum

    International Nuclear Information System (INIS)

    Uotani, M.; Naohara, N.; Kinoshita, I.

    1985-01-01

    Experimental studies using water and liquid metal were conducted in order to investigate the thermal-hydraulic characteristics of an LMFBR intermediate plenum. The present study is an attempt to evaluate the effect of natural convection on the temperature field and to validate the prediction method of temperature profile in a thermally stratified cavity. The experimental results indicated that the effect of the natural convection on flow velocity and heat transfer in the cavity is reduced with increasing the modified stratification parameter. The calculation by FEM code and a simple 1-D model are effective to predict the temperature profile in the cavity

  8. Experiments on the lower plenum response during a severe accident

    International Nuclear Information System (INIS)

    Henry, Robert E.; Hammersley, Robert J.; Klopp, George T.; Merilo, Mati

    2004-01-01

    Severe accident evaluations for nuclear reactors consider the response when the core materials have been overheated sufficient to melt and change geometry. One possible consequence of this is that molten core debris could drain into the lower plenum, as occurred in the TMI-2 accident. Given this state, several physical processes need to be analyzed, i.e. the extent of debris particulation and cooling, the potential for thermal attack of lower plenum structures, the thermal transient of the RPV and the potential for external cooling of the RPV lower head. These are important and complex processes, the evaluations of which need to be guided by well founded experiments. To support the development of the MAAP codes, recent experiments have been performed on specific issues such as: 1. the response of lower head penetrations submerged in a high temperature melt, 2. the net steam generation rate when molten debris drains into the lower plenum, 3. the formation of a contact resistance when molten debris drains through water and contacts the RPV wall and 4. the potential for external cooling of the RPV lower head. This paper discusses these experiments and their results. More importantly, it discusses how these are used in formulating models to represent the lower plenum response in the MAAP codes. (author)

  9. Numerical study of hot-leg ECC injection into the upper plenum of a pressurized water reactor

    International Nuclear Information System (INIS)

    Daly, B.J.; Torrey, M.D.; Rivard, W.C.

    1981-01-01

    In certain pressurized water reactor (PWR) designs, emergency core coolant (ECC) is injected through the hot legs into the upper plenum. The condensation of steam on this subcooled liquid stream reduces the pressure in the hot legs and upper plenum and thereby affects flow conditions throughout the reactor. In the present study, we examine countercurrent steam-water flow in the hot leg to determine the deceleration of the ECC flow that results from an adverse pressure gradient and from momentum exchange from the steam by interfacial drag and condensation. For the parameters examined in the study, water flow reversal is observed for a pressure drop of 22 to 32 mBar over the 1.5 m hot leg. We have also performed a three-dimensional study of subcooled water injection into air and steam environments of the upper plenum. The ECC water is deflected by an array of cylindrical guide tubes in its passage through the upper plenum. Comparisons of the air-water results with data obtained in a full scale experiment shows reasonable agreement, but indicates that there may be too much resistance to horizontal flow about the columns because of the use of a stair-step representation of the cylindrical guide tube cross section. Calculations of flow past single columns of stair-step, square and circular cross section do indicate excessive water deeentrainment by the noncircular column. This has prompted the use of an arbitrary mesh computational procedure to more accuratey represent the circular cross-section guide tubes. 15 figures

  10. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    International Nuclear Information System (INIS)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified

  11. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  12. ANTARES: The HTR/VHTR project at Framatome ANP

    International Nuclear Information System (INIS)

    Gauthier, Jean-Claude; Brinkmann, Gerd; Copsey, Bernie; Lecomte, Michel

    2006-01-01

    Framatome ANP is developing a very high temperature reactor (VHTR), relying on its previous experience with high temperature reactor concepts, from its participation in the MODUL and the GT-MHR designs. While being a major actor in the nuclear reactor business with proven light water technology, AREVA wishes to be ready to meet the new challenges calling for small grid requirements, high temperature process heat and cogeneration. The Framatome ANP VHTR design for electricity production is based on an indirect cycle coupled to an 'off-the-shelf' combined cycle gas turbine. Although direct cycle HTRs are being promoted for their high efficiency, preliminary evaluations show that the Framatome ANP design efficiency is on par with a direct cycle while avoiding power generation system (PGS) developments and keeping the PGS contamination free. Moreover, the nuclear heat source of the indirect cycle could also be used to meet the heat supplies from a standard design for multiple applications

  13. Modeling study of deposition locations in the 291-Z plenum

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Glissmeyer, J.A.

    1994-06-01

    The TEMPEST (Trent and Eyler 1991) and PART5 computer codes were used to predict the probable locations of particle deposition in the suction-side plenum of the 291-Z building in the 200 Area of the Hanford Site, the exhaust fan building for the 234-5Z, 236-Z, and 232-Z buildings in the 200 Area of the Hanford Site. The Tempest code provided velocity fields for the airflow through the plenum. These velocity fields were then used with TEMPEST to provide modeling of near-floor particle concentrations without particle sticking (100% resuspension). The same velocity fields were also used with PART5 to provide modeling of particle deposition with sticking (0% resuspension). Some of the parameters whose importance was tested were particle size, point of injection and exhaust fan configuration

  14. A reliability assessment methodology for the VHTR passive safety system

    International Nuclear Information System (INIS)

    Lee, Hyungsuk; Jae, Moosung

    2014-01-01

    The passive safety system of a VHTR (Very High Temperature Reactor), which has recently attracted worldwide attention, is currently being considered for the design of safety improvements for the next generation of nuclear power plants in Korea. The functionality of the passive system does not rely on an external source of an electrical support system, but on the intelligent use of natural phenomena. Its function involves an ultimate heat sink for a passive secondary auxiliary cooling system, especially during a station blackout such as the case of the Fukushima Daiichi reactor accidents. However, it is not easy to quantitatively evaluate the reliability of passive safety for the purpose of risk analysis, considering the existing active system failure since the classical reliability assessment method cannot be applied. Therefore, we present a new methodology to quantify the reliability based on reliability physics models. This evaluation framework is then applied to of the conceptually designed VHTR in Korea. The Response Surface Method (RSM) is also utilized for evaluating the uncertainty of the maximum temperature of nuclear fuel. The proposed method could contribute to evaluating accident sequence frequency and designing new innovative nuclear systems, such as the reactor cavity cooling system (RCCS) in VHTR to be designed and constructed in Korea.

  15. Study on the experimental VHTR safety with analysis for a hypothetical rapid depressurization accident

    International Nuclear Information System (INIS)

    Mitake, S.; Suzuki, K.; Ohno, T.; Okada, T.

    1982-01-01

    A hypothetical rapid depressurization accident of the experimental VHTR has been analyzed, including all phenomena in the accident, from its initiating depressurization of the coolant to consequential radiological hazard. Based on reliability analysis of the engineered safety features, all possible sequences, in which the safety systems are in success or in failure, have been investigated with event tree analysis. The result shows the inherent safety characteristics of the reactor and the effectiveness of the engineered safety features. And through the analysis, it has been indicated that further investigations on some phenomena in the accident, e.g., air ingress by natural circulation flow and fission product transport in the plant, will bring forth more reasonable and sufficient safety of the reactor

  16. Molten material relocation into the lower plenum: a status report

    International Nuclear Information System (INIS)

    1998-09-01

    This report, prepared by the task group 'Degraded Core Cooling' (DCC) for the CSNI, summarizes the experimental and theoretical knowledge of molten material relocation from a degraded core to the lower plenum of the reactor vessel under the main severe accident scenarios envisaged for both PWRs and BWRs, and boundary conditions. Consequences of movement of material to the lower head are considered with respect to the potential for reactor pressure vessel failure. The following models are reviewed: SCDAP/RELAP5, ICARE/CATHARE, ATHLET-CD/KESS, MELCOR, MAAP4, ESCADRE, etc.

  17. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  18. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  19. Melt jet fragmentation and oxidation in the lower plenum

    International Nuclear Information System (INIS)

    Berthoud, G.

    2001-01-01

    During the late phases of a PWR Severe Accident, the core materials discharge into the lower plenum in which water is still present. In that case, we are then concerned by the possible occurrence of a Steam Explosion which may endanger the vessel structure and by the following cooling of the melt debris. So, we have two possible ways of vessel rupture: a mechanical one following an energetic Steam Explosion and a thermal one due to insufficient debris cooling. Both types of problems are linked with the degree of fragmentation of the core material during its penetration into the water of the lower plenum. One of the most likely mode of discharge consists in corium streams or jets. The fragmentation will build a corium-water mixture (the pre-mixing sequence) which, under certain circumstances, may undergo a fine fragmentation sequence leading to an energetic Steam Explosion (the explosion sequence). Whatever the occurrence of a Steam Explosion, the resulting debris will accumulate at the bottom of the Reactor Vessel and the cooling of such a ''debris bed'' is known to be highly dependant of the granulometry and build up of the debris bed which are linked with the previous sequence of corium fragmentation and dispersion. In CEA, the MC3D Code has been developed to deal with all these phenomena. (author)

  20. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ait Chaou, Abdelouahed, E-mail: aitchaou@subatech.in2p3.fr; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO{sub 2} and a clay-like Mg–silicate, while under reducing conditions (H{sub 2}/N{sub 2} atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  1. Gas cooled thermal reactors with high temperatures (VHTR)

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.; Vasile, A.

    2014-01-01

    VHTR is one of the 6 concepts retained for the 4. generation of nuclear reactors, it is an upgraded version of the HTR-type reactor (High Temperature Reactors). 5 HTR reactors were operated in the world in the eighties, now 2 experimental HTR are working in China and Japan and 2 HTR with an output power of 100 MWe are being built in China. The purpose of the VHTR is to provide an helium at very high temperatures around 1000 Celsius degrees that could be used directly in a thermochemical way to produce hydrogen for instance. HTR reactors are interesting in terms of safety but it does not optimise the consumption of uranium and the production of wastes. This article presents a brief historical account of HTR-type reactors and their main design and safety features. The possibility of using HTR to burn plutonium is also presented as well as the possibility of closing the fuel cycle and of using thorium-uranium fuel. (A.C.)

  2. A Quantitative Accident Sequence Analysis for a VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jintae; Lee, Joeun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In Korea, the basic design features of VHTR are currently discussed in the various design concepts. Probabilistic risk assessment (PRA) offers a logical and structured method to assess risks of a large and complex engineered system, such as a nuclear power plant. It will be introduced at an early stage in the design, and will be upgraded at various design and licensing stages as the design matures and the design details are defined. Risk insights to be developed from the PRA are viewed as essential to developing a design that is optimized in meeting safety objectives and in interpreting the applicability of the existing demands to the safety design approach of the VHTR. In this study, initiating events which may occur in VHTRs were selected through MLD method. The initiating events were then grouped into four categories for the accident sequence analysis. Initiating events frequency and safety systems failure rate were calculated by using reliability data obtained from the available sources and fault tree analysis. After quantification, uncertainty analysis was conducted. The SR and LR frequency are calculated respectively 7.52E- 10/RY and 7.91E-16/RY, which are relatively less than the core damage frequency of LWRs.

  3. Study on in-vessel thermohydraulics phenomena of sodium-cooled fast reactors. 3. Numerical investigation for thermal stratification phenomena in the upper plenum

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Yamaguchi, Akira

    2002-06-01

    A large-scale sodium-cooled fast breeder reactor in the feasibility studies on commercialized fast reactors has a feature of consideration of thorough simplified and compacted systems and components design to realize drastic economical improvements. Therefore, special attentions should be paid to thermohydraulic designs for gas entrainment behavior from free surface, flow-induced vibration of in-vessel components, thermal stratification in the plenum, thermal shock for various structures due to high-speed coolant flows, nonsymmetrical coolant flows, etc. in the reactor vessel. In-vessel thermohydraulic analyses were carried out using a multi-dimensional code AQUA to understand the thermal stratification characteristics in the upper plenum, and to investigate trade-off relations between gas entrainment and thermal stratification phenomena on in-vessel structures for the elimination of gas entrainment possibility. From the analysis, the following results were obtained. (1) Dummy plug insertion to a slit of the upper core structure is one of the effective measures to stabilize the in-vessel flow patterns and to mitigate in-vessel thermal shocks. (2) Though flow guide device such as a baffle ring attached to reactor vessel wall is an effective measure to eliminate impinging jet to dipped plate, rising characteristics of the thermal stratification interface are affected by the baffle ring devise. (3) Thermal stratification characteristics are not influenced very much by the installation of a partial inner barrel to the dipped plate, which is an effective measure to reduce the horizontal flow velocity components at free surface. (4) Labyrinth structures to the gap between the reactor vessel wall and the outer dipped plate have direct effects upon in-vessel thermal shock characteristics including thermal stratification phenomena due to the closing of flow path between the upper plenum and the free surface plenum. (author)

  4. Fracture mechanics evaluation of LOFT lower plenum injection nozzle

    International Nuclear Information System (INIS)

    Nagata, P.K.; Reuter, W.G.

    1977-01-01

    An analysis to establish whether or not a leak-before-break concept would apply to the LOFT lower plenum injection nozzle is described. The analysis encompassed the structure from the inlet side of valve V-2170 to the lower plenum nozzle-to-reactor vessel weld on the left side of the emergency core cooling system (ECCS). The defect that was assumed to exist was of such a size that the probability of its being missed by the applicable inspection technique was near zero. The Inconel 600 nozzle forging with an initial assumed defect size of 0.64 cm (0.25 in.) deep would behave as follows: (1) the axially oriented defect would result in leak before rupture (the number of cycles to rupture was 11,000), (2) the circumferentially oriented defect would result in a rupture before leak. The number of cycles to failure would be in excess of 14,000. Based on the conservative assumption that the thermal stresses were membrane stresses as opposed to a bending stress, the following were found. For the Inconel 82 weld metal (thickness of 1.3 cm [0.53 in.]) and AISI 316 SST valve body, with an initial assumed defect of 0.25 cm (0.1 in.), the crack would grow through the thickness in a minimum of 3950 cycles and to a critical rupture crack length of 5.1 cm (2.0 in.) in an additional 80 cycles. The Inconel 82 weld metal at the shell body (thickness of 9.7 cm or 3.8 in.) with an assumed defect 1.3 cm (0.5 in.) deep would fail in 334 cycles. Calculations made assuming a linear stress gradient instead of the above-mentioned flat distribution through the wall indicated that the number of stress cycles increased to 2200

  5. Designing a TAC thermometer from a VHTR graphite structure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James A., E-mail: James.Smith@INL.gov; Kotter, Dale, E-mail: James.Smith@INL.gov [Fuel Performance and Design, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Garrett, Steven L.; Ali, Randall A. [Graduate Program in Acoustics, Penn State University, State College, PA (United States)

    2015-03-31

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. Very High Temperature Reactors are pushing the in core temperatures even higher. A unique sensing approach will be discussed to address the necessary high temperature measurements. Thermoacoustic thermometry exploits high temperatures and uses materials that are immune to the effects of ionizing radiation to create a temperature sensor that is self-powered and wireless. In addition, the form-factor for the Thermoacoustic Thermometer (TACT) can be designed to be integrated within common in-pile structures. There are no physical moving parts required for TACT and the sensor is self-powered, as it uses the nuclear fuel for its heat source. TACT data will be presented from a laboratory prototype mimicking the design necessary for a VHTR graphite structure.

  6. Evaluation of nickel-based materials for VHTR heat exchanger

    International Nuclear Information System (INIS)

    Burlet, H.; Gentzbittel, J.M.; Cabet, C.; Lamagnere, P.; Blat, M.; Renaud, D.; Dubiez-Le Goff, S.; Pierron, D.

    2008-01-01

    Two available conventional nickel-based alloys (617 and 230) have been selected as structural materials for the advanced gas-cooled reactors, especially for the heat exchanger. An extensive research programme has been launched in France within the framework of the ANTARES programme to evaluate the performances of these materials in VHTR service environment. The experimental work is focused on mechanical properties, thermal stability and corrosion resistance in the temperature range (700-1 000 deg C) over long time. Thus the experimental work includes creep and fatigue tests on as-received materials, short- and medium-term thermal exposure tests followed by tensile and impact toughness tests, short- and medium-term corrosion exposure tests under impure He environment. The status of the results obtained up to now is given in this paper. Additional tests such as long-term thermal ageing and long-term corrosion tests are required to conclude on the selection of the material. (author)

  7. The reactor safety study of experimental multi-purpose VHTR design

    International Nuclear Information System (INIS)

    Yasuno, T.; Mitake, S.; Ezaki, M.; Suzuki, K.

    1981-01-01

    Over the past years, the design works of the Experimental Very High Temperature Reactor (VHTR) plant have been conducted at Japan Atomic Energy Research Institute. The conceptual design has been completed and the more detailed design works and the safety analysis of the experimental VHTR plant are continued. The purposes of design studies are to show the feasibility of the experimental VHTR program, to specify the characteristics and functions of the plant components, to point out the R and D items necessary for the experimental VHTR plant construction, and to analyze the feature of the plant safety. In this paper the summary of system design and safety features of the experimental reactor are indicated. Main issues are the safety philosophy for the design basis accident, the accidents assumed and the engineered safety systems adopted in the design works

  8. RELAP/MOD3.2 Assessment Using an 11% Upper Plenum Break Experiment in the PSB Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, P.D.

    2003-01-17

    The RELAP/MOD3.2 computer code has been assessed using an 11% upper plenum break experiment in the PSB test facility at the Electrogorsk Research and Engineering Center. This work was performed as part of the U.S. Department of Energy's International Nuclear Safety Program, and is part of the effort addressing the capability of the RELAP5/MOD3.2 code to model transients in Soviet-designed reactors. Designated VVER Standard Problem PSBV1, the test addressed several important phenomena related to VVER behavior that the code needs to simulate well. The code was judged to reasonably model the phenomena of two-phase flow natural circulation in the primary coolant system, asymmetric loop behavior, leak flow, loop seal clearance in the cold legs, heat transfer in a covered core, heat transfer in a partially covered core, pressurizer thermal-hydraulics, and integral system effects. The code was judged to be in minimal agreement with the experiment data for the mixture level and entrainment in the core, leading to a user recommendation to assess the sensitivity of transient calculations to the interphase drag modeling in the core. No judgments were made for the phenomena of phase separation without mixture level formation, mixture level and entrainment in the steam generators, pool formation in the upper plenum, or flow stratification in horizontal pipes because either the phenomenon did not occur in the test or there were insufficient measurements to characterize the behavior.

  9. RELAP/MOD3.2 Assessment Using an 11% Upper Plenum Break Experiment in the PSB Facility

    International Nuclear Information System (INIS)

    Bayless, P.D.

    2003-01-01

    The RELAP/MOD3.2 computer code has been assessed using an 11% upper plenum break experiment in the PSB test facility at the Electrogorsk Research and Engineering Center. This work was performed as part of the U.S. Department of Energy's International Nuclear Safety Program, and is part of the effort addressing the capability of the RELAP5/MOD3.2 code to model transients in Soviet-designed reactors. Designated VVER Standard Problem PSBV1, the test addressed several important phenomena related to VVER behavior that the code needs to simulate well. The code was judged to reasonably model the phenomena of two-phase flow natural circulation in the primary coolant system, asymmetric loop behavior, leak flow, loop seal clearance in the cold legs, heat transfer in a covered core, heat transfer in a partially covered core, pressurizer thermal-hydraulics, and integral system effects. The code was judged to be in minimal agreement with the experiment data for the mixture level and entrainment in the core, leading to a user recommendation to assess the sensitivity of transient calculations to the interphase drag modeling in the core. No judgments were made for the phenomena of phase separation without mixture level formation, mixture level and entrainment in the steam generators, pool formation in the upper plenum, or flow stratification in horizontal pipes because either the phenomenon did not occur in the test or there were insufficient measurements to characterize the behavior

  10. RELAP-5/MOD 3.2 Assessment Using an 11% Upper Plenum Break Experiment in the PSB Facility

    Energy Technology Data Exchange (ETDEWEB)

    Paul D. Bayless

    2003-01-01

    The RELAP/MOD3.2 computer code has been assessed using an 11% upper plenum break experiment in the PSB test facility at the Electrogorsk Research and Engineering Center. This work was performed as part of the U.S. Department of Energy's International Nuclear Safety Program, and is part of the effort addressing the capability of the RELAP5/MOD3.2 code to model transients in Soviet-designed reactors. Designated VVER Standard Problem PSBV1, the test addressed several important phenomena related to VVER behavior that the code needs to simulate well. The code was judged to reasonably model the phenomena of two-phase flow natural circulation in the primary coolant system, asymmetric loop behavior, leak flow, loop seal clearance in the cold legs, heat transfer in a covered core, heat transfer in a partially covered core, pressurizer thermal-hydraulics, and integral system effects. The code was judged to be in minimal agreement with the experiment data for the mixture level and entrainment in the core, leading to a user recommendation to assess the sensitivity of transient calculations to the interphase drag modeling in the core. No judgments were made for the phenomena of phase separation without mixture level formation, mixture level and entrainment in the steam generators, pool formation in the upper plenum, or flow stratification in horizontal pipes because either the phenomenon did not occur in the test or there were insufficient measurements to characterize the behavior.

  11. An Innovative VHTR Waste Heat Integration with Forward Osmosis Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    The integration concept implies the coupling of the waste heat from VHTR with the draw solute recovery system of FO process. By integrating these two novel technologies, advantages, such as improvement of total energy utilization, and production of fresh water using waste heat, can be achieved. In order to thermodynamically analyze the integrated system, the FO process and power conversion system of VHTR are simulated using chemical process software UNISIM together with OLI property package. In this study, the thermodynamic analysis on the VHTR and FO integrated system has been carried out to assess the feasibility of the concept. The FO process including draw solute recovery system is calculated to have a higher GOR compared to the MSF and MED when reasonable FO performance can be promised. Furthermore, when FO process is integrated with the VHTR to produce potable water from waste heat, it still shows a comparable GOR to typical GOR values of MSF and MED. And the waste heat utilization is significantly higher in FO than in MED and MSF. This results in much higher water production when integrated to the same VHTR plant. Therefore, it can be concluded that the suggested integrated system of VHTR and FO is a very promising and strong system concept which has a number of advantages over conventional technologies.

  12. An Assessment of the VHTR Safety Distance Using the Reliability Physics Model

    International Nuclear Information System (INIS)

    Lee, Joeun; Kim, Jintae; Jae, Moosung

    2015-01-01

    In Korea planning the production of hydrogen using high temperature from nuclear power is in progress. To produce hydrogen from nuclear plants, supplying temperature above 800 .deg. C is required. Therefore, Very High Temperature Reactor (VHTR) which is able to provide about 950 .deg. C is suitable. In situation of high temperature and corrosion where hydrogen might be released easily, hydrogen production facility using VHTR has a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but also on VHTR. Those explosions result in unsafe situation that cause serious damage. However, In terms of thermal-hydraulics view, long distance makes low efficiency Thus, in this study, a methodology for the safety assessment of safety distance between the hydrogen production facilities and the VHTR is developed with reliability physics model. Based on the standard safety criteria which is a value of 1 x 10 -6 , the safety distance between the hydrogen production facilities and the VHTR using reliability physics model are calculated to be a value of 60m - 100m. In the future, assessment for characteristic of VHTR, the capacity to resist pressure from outside hydrogen explosion and the overpressure for the large amount of detonation volume in detail is expected to identify more precise safety distance using this reliability physics model

  13. Design of pellet surface grooves for fission gas plenum

    International Nuclear Information System (INIS)

    Carter, T.J.; Jones, L.R.; Macici, N.; Miller, G.C.

    1986-01-01

    In the Canada deuterium uranium pressurized heavy water reactor, short (50-cm) Zircaloy-4 clad bundles are fueled on-power. Although internal void volume within the fuel rods is adequate for the present once-through natural uranium cycle, the authors have investigated methods for increasing the internal gas storage volume needed in high-power, high-burnup, experimental ceramic fuels. This present work sought to prove the methodology for design of gas storage volume within the fuel pellets - specifically the use of grooves pressed or machined into the relatively cool pellet/cladding interface. Preanalysis and design of pellet groove shape and volume was accomplished using the TRUMP heat transfer code. Postirradiation examination (PIE) was used to check the initial design and heat transfer assumptions. Fission gas release was found to be higher for the grooved pellet rods than for the comparison rods with hollow or unmodified pellets. This had been expected from the initial TRUMP thermal analyses. The ELESIM fuel modeling code was used to check in-reactor performance, but some modifications were necessary to accommodate the loss of heat transfer surface to the grooves. It was concluded that for plenum design purposes, circumferential pellet grooves could be adequately modeled by the codes TRUMP and ELESIM

  14. Whole core transport calculation for the VHTR hexagonal core

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.

    2007-01-01

    Recently, the DeCART code which performs the whole core calculation by coupling the radial MOC transport kernel with the axial nodal kernel has equipped a kernel to deal with the hexagonal geometry and applied to the VHTR hexagonal core to examine the accuracy and the computational efficiency of the implemented kernel. The implementation includes a modular ray tracing module based on the hexagonal assembly and a multi-group CMFD module to perform an efficient transport calculation. The requirements for the modular ray are: (1) the assembly based path linking and (2) the complete reflection capabilities. The first requirement is met by adjusting the azimuthal angle and the ray spacing for the modular ray to construct a core ray by the path linking. The second requirement is met by expanding the constructed azimuthal angle in the range of [0,30 degree] to the remained range to reflect completely at the core boundaries. The considered reflecting surface angles for the complete reflection are 30n's (n=1,2,1,12). The CMFD module performs the equivalent diffusion calculation to the radial MOC transport calculation based on the homogenized structure units. The structure units include the hexagonal pin cells and gap cells appearing at the assembly boundary. Therefore, the CMFD module is programmed to deal with the unstructured cells such as the gap cells. The CMFD equation consists of the two parts of (1) the conventional FDM and (2) the current corrective parts. Since the second part of the CMFD equation guarantees the reproducibility of the radial MOC transport solutions for the cell averaged reaction rate and the net current at the cell surfaces, how to build the first part of the CMFD equation is not important. Therefore, the first part of the CMFD equation is roughly built by using the normal distance from the gravity center to the surface. The VHTR core uses helium as a coolant which is realized as a void hole in a neutronics calculation. This void hole which

  15. Benchmark simulation of turbulent flow through a staggered tube bundle to support CFD as a reactor design tool. Part 1. SRANS CFD simulation

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira

    2008-01-01

    Time-invariant and time-variant numerical simulations of flow through a staggered tube bundle array, idealizing the lower plenum (LP) subsystem configuration of a very high temperature reactor (VHTR), were performed. In Part 1, the CFD prediction of fully periodic isothermal tube-bundle flow using steady Reynolds-averaged Navier-Stokes (SRANS) equations with common turbulence models was investigated at a Reynolds number (Re) of 1.8x10 4 , based on the tube diameter and inlet velocity. Three first-order turbulence models, standard k-ε turbulence, renormalized group (RNG) k-ε, and shear stress transport (SST) k-ω models, and a second-order turbulence model, Reynolds stress model (RSM), were considered. A comparison of CFD simulations and experiment results was made at five locations along (x,y) coordinates. The SRANS simulation showed that no universal model predicted the turbulent Reynolds stresses, and generally, the results were marginal to poor. This is because these models cannot accurately model the periodic, spatiotemporal nature of the complex wake flow structure. (author)

  16. TRISO fuel thermal simulations in the LS-VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Mario C.; Scari, Maria E.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F., E-mail: marc5663@gmail.com, E-mail: melizabethscari@yahoo.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil)

    2017-07-01

    The liquid-salt-cooled very high-temperature reactor (LS-VHTR) is a reactor that presents very good characteristics in terms of energy production and safety aspects. It uses as fuel the TRISO particles immersed in a graphite matrix with a cylindrical shape called fuel compact, as moderator graphite and as coolant liquid salt Li{sub 2}BeF{sub 4} called Flibe. This work evaluates the thermal hydraulic performance of the heat removal system and the reactor core by performing different simplifications to represent the reactor core and the fuel compact under steady-state conditions, starting the modeling from a single fuel element, until complete the studies with the entire core model developed in the RELAP5-3D code. Two models were considered for representation of the fuel compact, homogeneous and non-homogeneous models, as well as different geometries of the heat structures was considered. The aim to develop several models was to compare the thermal hydraulic characteristics resulting from the construction of a more economical and less discretized model with much more refined models that can lead to more complexes analyzes to representing TRISO effect particles in the fuel compact. The different results found, mainly, for the core temperature distributions are presented and discussed. (author)

  17. Current collector design for closed-plenum polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Daniels, F. A.; Attingre, C.; Kucernak, A. R.; Brett, D. J. L.

    2014-03-01

    This work presents a non-isothermal, single-phase, three-dimensional model of the effects of current collector geometry in a 5 cm2 closed-plenum polymer electrolyte membrane (PEM) fuel cell constructed using printed circuit boards (PCBs). Two geometries were considered in this study: parallel slot and circular hole designs. A computational fluid dynamics (CFD) package was used to account for species, momentum, charge and membrane water distribution within the cell for each design. The model shows that the cell can reach high current densities in the range of 0.8 A cm-2-1.2 A cm-2 at 0.45 V for both designs. The results indicate that the transport phenomena are significantly governed by the flow field plate design. A sensitivity analysis on the channel opening ratio shows that the parallel slot design with a 50% opening ratio shows the most promising performance due to better species, heat and charge distribution. Modelling and experimental analysis confirm that flooding inhibits performance, but the risk can be minimised by reducing the relative humidity of the cathode feed to 50%. Moreover, overheating is a potential problem due to the insulating effect of the PCB base layer and as such strategies should be implemented to combat its adverse effects.

  18. Current Status of the Elevated Temperature Structure Design Codes for VHTR

    International Nuclear Information System (INIS)

    Kim, Jong-Bum; Kim, Seok-Hoon; Park, Keun-Bae; Lee, Won-Jae

    2006-01-01

    An elevated temperature structure design and analysis is one of the key issues in the VHTR (Very High Temperature Reactor) project to achieve an economic production of hydrogen which will be an essential energy source for the near future. Since the operating temperature of a VHTR is above 850 .deg. C, the existing code and standards are insufficient for a high temperature structure design. Thus the issues concerning a material selection and behaviors are being studied for the main structural components of a VHTR in leading countries such as US, France, UK, and Japan. In this study, the current status of the ASME code, French RCC-MR, UK R5, and Japanese code were investigated and the necessary R and D items were discussed

  19. An Adaptation of the HELIOS/MASTER Code System to the Analysis of VHTR Cores

    International Nuclear Information System (INIS)

    Noh, Jae Man; Lee, Hyun Chul; Kim, Kang Seog; Kim, Yong Hee

    2006-01-01

    KAERI is developing a new computer code system for an analysis of VHTR cores based on the existing HELIOS/MASTER code system which was originally developed for a LWR core analysis. In the VHTR reactor physics, there are several unique neutronic characteristics that cannot be handled easily by the conventional computer code system applied for the LWR core analysis. Typical examples of such characteristics are a double heterogeneity problem due to the particulate fuels, the effects of a spectrum shift and a thermal up-scattering due to the graphite moderator, and a strong fuel/reflector interaction, etc. In order to facilitate an easy treatment of such characteristics, we developed some methodologies for the HELIOS/MASTER code system and tested their applicability to the VHTR core analysis

  20. CFD analysis of the VHTR prismatic core with variation of geometry parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lira, Carlos A.B.O.; Paiva, Pedro P.D.S., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-11-01

    The Very High Temperature Reactor is a thermal, graphite moderated and helium cooled nuclear reactor. The purpose of this work is to study the behavior of the VHTR by means of parametric analysis, altering the energy generation profile in the fuel blocks and the influence of modifications in the geometry itself. The coolant flow through the coolant channels and by-pass channels were analyzed in a 1/12{sup th} section of a fuel block column. Geometry was used with by-pass channels of different dimensions, besides one that had only the cooling channels, without by-pass channel. It has been found that the existence of a by-pass flow induces an increase in the temperature gradient in the fuel block. Comparative studies were performed between the results obtained in simulations carried out with different profiles of thermal energy generation (uniform and sinusoidal) in the fuel channels. It was verified that when there is the same total thermal energy generation in the fuel block, the maximum temperature observed in each of the materials is smaller for the generation with sinusoidal profile. Computer simulations were performed using a geometry with a central channel with the same diameter as the others to verify the hypothesis that the existence of a temperature gradient in the fuel block, with the highest temperature at the center and the lowest temperature being at the periphery of this block, is due to the smaller dimension of the coolant channel located in the center of this block. The results obtained confirm the hypothesis. (author)

  1. Nuclear analysis of the experimental VHTR fuel lattice

    International Nuclear Information System (INIS)

    Doi, Takeshi; Shindo, Ryuiti; Hirano, Mitsumasa; Takano, Makoto

    1984-11-01

    Nuclear properties of a fuel lattice in the experimental VHTR core were analyzed with DELIGHT-6 and SRAC codes. Analytical results by both codes were compared by using various calculational model. The nuclear parameters were analyzed, such as a multiplication factor of a fuel lattice and it's variation with burnup, a temperature effect on reactivity, an effect of double-heterogeniety in a resonance absorption calculation, a resonance integral of 238 U and a reactivity worth of burnable poison. From these analyses, following results were obtained. Firstly, on calculational models, 1) Effect of double-heterogeniety in the resonance absorption calculation for Mark-III fuel element, causing a decrease of about 5.5 barns in the resonance integral and an increase of about 2.6 %ΔK in the infinite multiplication factor, 2) The heterogeneous calculation with the collision probability method resulted in about 0.6 %ΔK higher the multiplication factor of fuel lattice than that with the point model, 3) The reactivity worth of burnable poison rod by a multi-region model is about 20 % less than that by a 2-region model at an initial state of burnup and it's variation with burnup are fairly different, Secondly, on comparison between the results by DELIGHT-6 and SRAC, 4) The nuclear parameters obtained with both codes agreed well, Lastly, on the improvement in DELIGHT-6, 5) Consideration of the neutron spectrum shielding effect in the resonance effective cross section calculation caused a decrease of about 2.4 %ΔK in the multiplication factor of fuel lattice, 6) The lattice multiplication factor increased about 0.5 %ΔK by introducing lambda-parameters for the non-resonant nuclie. (J.P.N.)

  2. Guidelines for the structural design of experimental multi-purpose VHTR at the elevated temperature services

    International Nuclear Information System (INIS)

    Nomura, Sueo; Uga, Takeo; Miyamoto, Yoshiaki; Muto, Yasushi; Ikushima, Takeshi

    1976-02-01

    The guidelines are presented for structural design of the experimental multi-purpose VHTR(Very High Temperature Reactor) at the elevated temperature services. Covered are features of the VHTR structural design, specifications, safety design, seismic design, failure modes to be considered, stress criteria for various load combinations and the mechanical properties of the materials. The guidelines were prepared by referring to safety criteria of high-temperature gas cooled reactors, ASME Boiler and Pressure Vessel code, Section III, case 1592 and the domestic seismic design guide of nuclear power facilities. (auth.)

  3. Study on the tritium behaviors in the VHTR system. Part 2: Analyses on the tritium behaviors in the VHTR/HTSE system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung S. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States); Oh, Chang H., E-mail: Chang.Oh@inl.go [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States); Patterson, Mike [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States)

    2010-07-15

    Tritium behaviors in the very high temperature gas reactor (VHTR)/high temperature steam electrolysis (HTSE) system have been analyzed by the TPAC developed by Idaho National Laboratory (INL). The reference system design and conditions were based on the indirect parallel configuration between a VHTR and a HTSE. The analyses were based on the SOBOL method, a modern uncertainty and sensitivity analyses method using variance decomposition and Monte Carlo method. A total of 14 parameters have been taken into account associated with tritium sources, heat exchangers, purification systems, and temperatures. Two sensitivity indices (first order index and total index) were considered, and 15,360 samples were totally used for solution convergence. As a result, important parameters that affect tritium concentration in the hydrogen product have been identified and quantified with the rankings. Several guidelines and recommendations for reducing modeling uncertainties have been also provided throughout the discussions along with some useful ideas for mitigating tritium contaminations in the hydrogen product.

  4. A Design of He-Molten Salt Intermediate Heat Exchanger for VHTR

    International Nuclear Information System (INIS)

    Jeong, Hui Seong; Bang, Kwang Hyun

    2010-01-01

    The Very High Temperature Reactor (VHTR), one of the most challenging next generation nuclear reactors, has recently drawn an international interest due to its higher efficiency and the operating conditions adequate for supplying process heat to the hydrogen production facilities. To make the design of VHTR complete and plausible, the designs of the Intermediate Heat Transport Loop (IHTL) as well as the Intermediate Heat Exchanger (IHX) are known to be one of the difficult engineering tasks due to its high temperature operating condition (up to 950 .deg. C). A type of compact heat exchangers such as printed circuit heat exchanger (PCHE) has been recommended for the IHX in the technical and economical respects. Selection of the heat transporting fluid for the intermediate heat transport loop is important in consideration of safety and economical aspects. Although helium is currently the primary interest for the intermediate loop fluid, several safety concerns of gas fluids have been expressed. If the pressure boundary of the intermediate loop fails, the blowdown of the gas may overcool the reactor core and then the heat sink is lost after the blowdown. Also the large inventory of gas in the intermediate loop may leak into the primary side. There is also a recommendation that the nuclear plant and the hydrogen production plant be separated by a certain distance to ensure the safety of the nuclear plant in case of accidental heavy gas release from the chemical plant. In this circumstance, the pumping power of gas fluid in the intermediate loop will be large enough to degrade the economics of nuclear hydrogen.An alternative candidate for the intermediate loop fluid in consideration of these safety and economical problems of gas fluid can be molten salts. The Flinak molten salt, a eutectic mixture of LiF, NaF and KF (46.5:11.5:42.0 mole %) is considered to be a potential candidate for the heat transporting fluid in the IHTL due to its chemical stability against the

  5. Overview of the Modified SI Cycle to Produce Nuclear Hydrogen Coupled to VHTR

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    The steam reforming of methane is one of hydrogen production processes that rely on cheap fossil feedstocks. An overview of the VHTR-based nuclear hydrogen production process with the modified SI cycle has been carried out to establish whether it can be adopted as a feasible technology to produce nuclear hydrogen

  6. Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: An overview

    International Nuclear Information System (INIS)

    Vitart, X.; Le Duigou, A.; Carles, P.

    2006-01-01

    The sulfur-iodine thermo-chemical cycle is considered to be one of the most promising routes for massive hydrogen production, using high temperature heat from a Generation IV VHTR. We propose here a brief overview of the main questions raised by this cycle, along with the general lines of French CEA's program

  7. ECC delivery to lower plenum under downcomer injection part 2. RELAP5 assessment

    International Nuclear Information System (INIS)

    Bang, Young Seok; Shin, An Dong; Kim, Hho Jung

    2000-01-01

    In the present study, the capability of the thermal-hydraulic codes, RELAP5/MOD3.2.2 gamma, in predicting the steam-water interaction and the related ECC delivery to lower plenum under downcomer injection condition during refill phase is evaluated using the experimental data of the UPTF Test 21A. The facility is modeled in detail, and the test condition simulated for code calculations. The calculation result is compared with the applicable measurement data and discussed for the pressure response, ECC bypass behavior, lower plenum delivery, global water mass distribution, and local behavior in downcomer

  8. A study on Monte Carlo analysis of Pebble-type VHTR core for hydrogen production

    International Nuclear Information System (INIS)

    Kim, Hong Chul

    2005-02-01

    In order to pursue exact the core analysis for VHTR core which will be developed in future, a study on Monte Carol method was carried out. In Korea, pebble and prism type core are under investigation for VHTR core analysis. In this study, pebble-type core was investigated because it was known that it should not only maintain the nuclear fuel integrity but also have the advantage in economical efficiency and safety. The pebble-bed cores of HTR-PROTEUS critical facility in Swiss were selected for the benchmark model. After the detailed MCNP modeling of the whole facility, calculations of nuclear characteristics were performed. The two core configurations, Core 4.3 and Core 5 (reference state no. 3), among the 10 configurations of the HTR-PROTEUS cores were chosen to be analyzed in order to treat different fuel loading pattern and modeled. The former is a random packing core and the latter deterministic packing core. Based on the experimental data and the benchmark result of other research groups for the two different cores, some nuclear characteristics were calculated. Firstly, keff was calculated for these cores. The effect for TRIO homogeneity model was investigated. Control rod and shutdown rod worths also were calculated and the sensitivity analysis on cross-section library and reflector thickness was pursued. Lastly, neutron flux profiles were investigated in reflector regions. It is noted that Monte Carlo analysis of pebble-type VHTR core was firstly carried out in Korea. Also, this study should not only provide the basic data for pebble-type VHTR core analysis for hydrogen production but also be utilized as the verified data to validate a computer code for VHTR core analysis which will be developed in future

  9. CFD Analysis of Hot Spot Fuel Temperature in the Control Fuel Block Assembly of a VHTR core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il; Noh, Jae Man

    2010-01-01

    The Very High Temperature Reactor (VHTR) dedicated for efficient hydrogen production requires core outlet temperatures of more than 950 .deg. C. As the outlet temperature increases, the thermal margin of the core decreases, which highlights the need for a detailed analysis to reduce its uncertainty. Tak et al. performed CFD analysis for a 1/12 fuel assembly model and compared the result with a simple unit-cell model in order to emphasize the need of a detailed CFD analysis for the prediction of hot spot fuel temperatures. Their CFD model, however, was focused on the standard fuel assembly but not on the control fuel assembly in which a considerable amount of bypass flow is expected to occur through the control rod passages. In this study, a CFD model for the control fuel block assembly is developed and applied for the hot spot analyses of PMR200 core. Not only the bypass flow but also the cross flow is considered in the analyses

  10. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  11. Estimate of LOCA-FI plenum pressure uncertainty for a five-ring RELAP5 production reactor model

    International Nuclear Information System (INIS)

    Griggs, D.P.

    1993-03-01

    The RELAP5/MOD2.5 code (RELAP5) is used to perform best-estimate analyses of certain postulated Design Basis Accidents (DBAs) in SRS production reactors. Currently, the most limiting DBA in terms of reactor power level is an instantaneous double-ended guillotine break (DEGB) loss of coolant accident (LOCA). A six-loop RELAP5 K Reactor model is used to analyze the reactor system behavior dozing the Flow Instability (FI) phase of the LOCA, which comprises only the first 5 seconds following the DEGB. The RELAP5 K Reactor model includes tank and plenum nodalizations having five radial rings and six azimuthal sectors. The reactor system analysis provides time-dependent plenum and tank bottom pressures for use as boundary conditions in the FLOWTRAN code, which models a single fuel assembly in detail. RELAP5 also performs the system analysis for the latter phase of the LOCA, denoted the Emergency Cooling System (ECS) phase. Results from the RELAP analysis are used to provide boundary conditions to the FLOWTRAN-TF code, which is an advanced two-phase version of FLOWTRAN. The RELAP5 K Reactor model has been tested for LOCA-FI and Loss-of-Pumping Accident analyses and the results compared with equivalent analyses performed with the TRAC-PF1/MOD1 code (TRAC). An equivalent RELAP5 six-loop, five-ring, six-sector L Reactor model has been benchmarked against qualified single-phase system data from the 1989 L-Area In-Reactor Test Program. The RELAP5 K and L Reactor models have also been subjected to an independent Quality Assurance verification

  12. Influence of graphite discs, chamfers, and plenums on temperature distributions in high burnup fuel

    International Nuclear Information System (INIS)

    Ranger, A.; Tayal, M.; Singh, P.

    1990-04-01

    Previous studies have demonstrated the desirability to increase the fuel burnups in CANDU reactors from 7-9 GW.d/t to 21 GW.d/t. At high burnups, one consideration in fuel integrity is fission gas pressure, which is predicted to reach about 13 MPa. The gas pressure can be kept below the coolant pressure (about 10 MPa) via a variety of options such as bigger chamfers, deeper dishes, central hole, and plenums. However, it is important to address the temperature perturbations produced by the bigger chamfers and plenums which in turn, affect the gas pressure. Another consideration in fuel integrity is to reduce the likelihood of fuel failures via environmentally assisted cracking. Insertion of graphite discs between neighbouring pellets will lower the pellet temperatures, hence, lower fission gas release and lower expansion of the pellet. Therefore, it is desired to quantify the effect of graphite discs on pellet temperatures. Thermal analyses of different fuel element geometries: with and without chamfers, graphite discs, and plenums were performed. The results indicate that the two-dimensional distributions of temperatures due to the presence of chamfers, graphite discs, or plenums can have a significant impact on the integrity of high burnup fuel as we have been able to quantify in this paper

  13. Reduction of sound transmission across plenum windows by incorporating an array of rigid cylinders

    Science.gov (United States)

    Tang, S. K.

    2018-02-01

    The potential improvement of plenum window noise reduction by installing rigid circular cylinder arrays into the window cavity is investigated numerically using the finite-element method in this study. A two-dimensional approach is adopted. The sound transmission characteristics and propagation within the plenum window are also examined in detail. Results show that the installation of the cylinders in general gives rise to broadband improvement of noise reduction across a plenum window regardless of the direction of sound incidence. Such acoustical performance becomes better when more cylinder columns are installed, but it is suggested that the number of cylinder rows should not exceed two. Results also show that the cylinder positions relative to the nodal/anti-nodal planes of the acoustic modes are crucial in the noise reduction enhancement mechanisms. Noise reduction can further be enhanced by staggering the cylinder rows, such that each cylinder row supports the development of a different acoustic mode. For the simple cylinder arrangements considered in this study, the traffic noise reduction enhancement observed in this study can be as high as 4-5 dB, which is already comparable to or higher than the maximum achieved by installing sound absorption into a plenum window.

  14. Potential for HEPA filter damage from water spray systems in filter plenums

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W. [Lawrence Livermore National Lab., CA (United States); Fretthold, J.K. [Rocky Flats Safe Sites of Colorado, Golden, CO (United States); Slawski, J.W. [Department of Energy, Germantown, MD (United States)

    1997-08-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for BEPA filter damage during fires has also occurred in the field. A fire in a four-stage, BEPA filter plenum at Rocky Flats in 1980 caused the first three stages of BEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenums, additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk. 22 refs., 15 figs.

  15. Effects of Parallel Channel Interactions, Steam Flow, Liquid Subcool ...

    African Journals Online (AJOL)

    Tests were performed to examine the effects of parallel channel interactions, steam flow, liquid subcool and channel heat addition on the delivery of liquid from the upper plenum into the channels and lower plenum of Boiling Water Nuclear Power Reactors during reflood transients. Early liquid delivery into the channels, ...

  16. Initial VHTR accident scenario classification: models and data.

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Feldman, E. E.; Pointer, W. D.; Wei, T. Y. C.; Nuclear Engineering Division

    2005-09-30

    mixed convection regime for circular channel geometry were identified in the literature. We describe the use of computational experiments to obtain correction factors for applying these circular channel results to the specialized channel geometry of the RCCS. The intent is to reduce the number of laboratory experiments required. The FLUENT and Star-CD codes contain models that in principle can handle mixed convection but no data were found to indicate that their empirical models for turbulence have been benchmarked for mixed convection conditions. Separate effects experiments were proposed for gathering the needed data. In future work we will use the PIRTs to guide review of other components and phenomena in a similar manner as was done for the mixed convection mode in the RCCS. This is consistent with the project objective of identifying weaknesses or gaps in the code models for representing thermal-hydraulic phenomena expected to occur in the VHTR both during normal operation and upsets, identifying the models that need to be developed, and identifying the experiments that must be performed to support model development.

  17. CATHARE2 analysis on the loss of residual heat removal system during mid-loop operation : pressurizer and SGI outlet plenum manways open

    International Nuclear Information System (INIS)

    Chung, Young Jong; Chang, Won Pyo.

    1997-06-01

    The present study is to analyze the BETHSY test 6.9c using CATHARE2 v1.3u. BETHSY test 6.9c simulates plant conditions following loss of residual heat removal system under mid-loop operation. The configuration is that the pressurizer and steam generator outlet plenum manways are opened as vent paths in order to protect the system from overpressurization by removing the steam generated in the core. Most of the important physical phenomena are observed in the experiment have been predicted reasonably by the CATHARE2 code. Since the differential pressure between the pressurizer and the surge line is overestimated, the peak pressure in the upper plenum is predicted higher than the experimental value by 11 kPa and occurrence is delayed by 210s. Also earlier core uncovery is predicted, mainly due to overprediction of the manway flows. The analysis results are demonstrated that opening of the pressurizer and the steam generator outlet plenum manways is effective to prevent the core uncovery by only gravity feed injection. Although some disagreements found in detailed phenomena, the prediction of the overall system behavior by the code does not deviate from the experimental results unacceptably. The core bypass flowrate is found to be very sensitive to mass distribution in the core and the system behaviors are strongly affected by phase separation modeling under low pressure and particularly stratified flow condition. the main purpose of the present study is to understand physical phenomena under the accident and to assess the capability of CATHARE2 prediction for enhancement of reliability in actual plant analyses. (author). 11 refs., 3 tabs., 41 figs

  18. A Review on the VHTR PIRT Development Status of Both Regulatory Authority and Licensee

    International Nuclear Information System (INIS)

    Hwang, Su Hyun; Jeon, Seong Su; Hong, Soon Joon; Lee, Byung Chul; Huh, Chang Wook; Jin, Chang Yong; Kim, Kyun Tae

    2011-01-01

    The VHTR (Very High Temperature Reactor) is defined as a helium-cooled, graphite moderated reactor with a core outlet temperature in excess of 900 .deg. C and a long-term goal of achieving an outlet temperature of 1000 .deg. C. The VHTR is suited for a broad range of applications, including the production of hydrogen and electricity. The PIRT (Phenomena Identification and Ranking Table) provides a structured means of identifying and analyzing a wide variety of off-normal sequences that potentially challenge the viability of complex technological systems. As applied to VHTR, the PIRT is used to identify a spectrum of safety-related sequences or phenomena that could affect those systems, and to rank order those sequences on the basis of their frequencies, their potential consequences, and state of knowledge related to associate phenomena. It is to be used as an early screening tool to identify, categorize, and characterize phenomena and issues that are potentially important to risk and safety of VHTR. Since a specific design has not yet been selected for the choice of the US VHTR (NGNP), it was decided early on to focus on a generic plant and reactor design with broadly typical features. Both a generic Pebble Bed Reactor (PBR) design and a generic Prismatic Modular Reactor (PMR) design were selected as the reference plant for KAERI and ANL PIRT. The generic PBR design selected is a version of the 400 MWt South African PBMR design. The generic PMR design selected is a version of the 600 MWt GT-MHR. The reference plant of NRC PIRT is assumed to be a modular high temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GT-MHR) version (a prismatic-core modular reactor- PMR) or a pebble bed modular reactor (PBMR) version (a pebble bed reactor-PBR) design, with either a director indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. The difference of VHTR PIRT

  19. Heat transfer in a spent fuel pool concept containing PWR, Hybrid ADS-Fission, and VHTR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Fernando P.; Cardoso, Fabiano; Salomé, Jean A.D.; Velasquez, Carlos E.; Pereira, Claubia, E-mail: fernandopereirabh@gmail.com, E-mail: fabinuclear@yahoo.com.br, E-mail: jadsalome@yahoo.com.br, E-mail: carlosvelcab@hotmail.com, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Thermal evaluation under wet storage conditions of spent fuels (SF) of the types UO{sub 2} discharged from Pressurized Water Reactor (PWR) and Very High-temperature Reactor (VHTR), and (Th,TRU)O{sub 2} from Accelerator-Driven Subcritical Reactor System (ADS) and VHTR are presented. The analyzes are in the absence of an external cooling system of the pool, and the goal is to compare the water boiling time of the pool storing these different types of SF, at time t=0 year after reactor discharge. Two techniques were implemented. In the first one, all the materials of the fuel elements are considered. In the second, the SF is treated as holes inside the pool, assuming the heat transfer directly from the SF to the water. Results from first technique show that the boiling time (T{sub b}) ranged from 23 minutes for (Th,TRU)O{sub 2} from VHTR to 3 hours for UO{sub 2} from VHTR, while for the second technique, T{sub b} ranged from 10 minutes for (Th,TRU)O{sub 2} from VHTR to 2.7 hours for UO{sub 2} from VHTR. The discrepancies between Tb from both techniques reveal that the pathways considered for the heat transfer are crucial to the results. The thermal studies used the module CFX of the ANSYS Workbench 16.2 - student version. (author)

  20. A preliminary neutronic evaluation and depletion study of VHTR and LS-VHTR reactors using the codes: WIMSD5 and MCNPX

    International Nuclear Information System (INIS)

    Silva, Fabiano C.; Pereira, Claubia; Costa, Antonella Lombardi; Veloso, Maria Auxiliadora Fortini

    2009-01-01

    It is expected that, in the future, besides electricity generation, reactors should also develop secondary activities, such as hydrogen generation and seawater desalinization. Generation IV reactors are expected to possess special characteristics, like high safety, minimization of radioactive rejects amount and ability to use reprocessed fuel with non-proliferating projects in their cycles. Among the projects of IV generation reactors available nowadays, the (High Temperature Reactors) HTR, are highlighted due to these desirable characteristics. Under such circumstances, such reactor may be able to have significant higher thermal power ratings to be used for hydrogen production, without loose of safety, even in an emergency. For this work, we have chosen two HTR concepts of a prismatic reactor: (Very High Temperature Reactor) VHTR and the (Liquid Salted -Very High Temperature Reactor) LS-VHTR. The principal difference between them is the coolant. The VHTR uses helium gas as a coolant and have a burnup of 101,661 MWd/THM while the LS-VHTR uses low-pressure liquid coolant molten fluoride salt with a boiling point near 1500 de C working at 155,946 MWd/THM. The ultimate power output is limited by the capacity of the passive decay system; this capacity is limited by the reactor vessel temperature. The goal was to evaluate the neutronic behavior and fuel composition during the burnup using the codes (Winfrith Improved Multi-Group Scheme) WIMSD5 and the MCNPX2.6. The first, deterministic and the second, stochastic. For both reactors, burned fuel type 'C' coming from Angra-I nuclear plant, in Brazil, was used with 3.1% of initial enrichment, burnup to 33,000 MWd/THM using the ORIGEN2.1 code, divided in three steps of 11,000 MWd/THM, with an average density power of 37.75 MWd/THM and 5 years of cooling in pool. Finally, the fuel was reprocessed by Purex technique extracting 99.9% of Pu, and the desired amount of fissile material (15%) to achieve the final mixed oxide was

  1. Studies on the core-support carbon material for VHTR, (1)

    International Nuclear Information System (INIS)

    Matsuo, Hideto; Saito, Tamotsu; Fukuda, Yasumasa; Sasaki, Yasuichi; Hasegawa, Takashi.

    1979-11-01

    To obtain information of core-support carbon material for VHTR, thermal conductivity and electrical resistivity of three domestic carbon blocks were measured. Results indicated the need for development of carbon material with lower thermal conductivity for VHTR. These two were also measured of the samples heat-treated between 1000 0 C and 3040 0 C for one hour. Thermal conductivity increased with heat-treatment above 1200 0 C and resistivity stayed constant between 1500 0 C and 2000 0 C. The results should be useful in choosing the final heat-treatment temperature in carbon material production. The changes of Lorentz number with heat treatment were classified into three heat-treatment temperature regions of below 1500 0 C, 1500 0 C - 2500 0 C, and above 2500 0 C; the results are interpreted with a graphitization model. (author)

  2. Design studies for the Mark-III core of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu; Shindo, Ryuiti; Arai, Taketoshi

    1979-08-01

    The Mark-III core in the first conceptual design made in 1975 is a fundamental core for VHTR. Subsequently, further design studies were made fuel loading scheme and control rod withdrawal sequence for the core to increase its safety margin (shutdown margin, etc.) and operational margin (minimum Reynolds number, maximum fuel temperature, etc.). It was shown that the Mark-III should exhibit the performance expected of VHTR, unless changes are made in the preconditions for its nuclear, thermal-hydraulic design. Also, the needs as below were indicated: (1) reasonable core design criteria and guidelines, (2) fuel-loading-scheme requirements in fuel management, fuel misloading and reactor operation, (3) confirmation on precision of the core design method and its further refinement. (author)

  3. Neutronic performance of high molecular weight coolants for a prismatic VHTR

    International Nuclear Information System (INIS)

    Schriener, T. M.; El-Genk, M. S.

    2008-01-01

    A neutronic model is developed of a prismatic Very High Temperature Reactor (VHTR) to investigate the effects on the excess reactivity and operation cycle length of replacing helium with binary gas mixtures of He-Ne, He-N 2 , or He-Xe as reactor coolants and working fluids in the direct Closed Brayton Cycle (CBC) for energy conversion. Also investigated is the neutron activation of these binary gas mixtures in the VHTR. The motivation for using the heavy binary mixtures is the smaller size and the fewer number of stages of the CBC turbo-machinery. The present analysis uses the Monte Carlo code MCNPX 2.6D at typical operating conditions (500-1000 degrees and 7.12 MPa) in the VHTR. He-Ne (15 g/mol) is the best neutronically, but not thermal-hydraulically, followed by He-N 2 . Although He-Ne has ∼13.6% lower heat transfer coefficient than helium, it insignificantly affects the initial excess reactivity and the operation life cycle and experiences no neutrons activation. On the other hand, He-N 2 has 4.4% higher heat transfer coefficient than helium and experiences insignificant neutron activation in the reactor, but decreases the initial excess reactivity by ∼5.2% and the operation cycle length by 6.7%. He-Xe (15 g/mol) has 8% higher heat transfer coefficient than helium, but decreases the initial excess reactivity by 18.2% and the operational cycle length by 17%. In addition, neutron activation of xenon produces a significant source term, requiring shielding of the CBC loop and could contaminate the turbo-machinery with long-lived radioactive cesium. Thus, He-Xe is not recommended as a reactor coolant, but could be used as working fluid in a CBC loop that is indirectly coupled to helium cooled VHTR. (authors)

  4. Reference design (MK-I and MK-II) for experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiaki; Suzuki, Kunihiko; Sato, Sadao

    1975-10-01

    This report summarizes the results of a study on thermal and mechanical performances of the core, which are obtained in course of reference design (Mk-I and Mk-II) for the experimental multi-purpose VHTR: (1) Design criteria, design methods and design data. These bases are also discussed in order to refer in the case of proceeding a next design work. (2) The results of performance analysis such as the initial core and its prediction for the irradiated core. (auth.)

  5. A study on a reliability assessment methodology for the VHTR safety systems

    International Nuclear Information System (INIS)

    Lee, Hyung Sok

    2012-02-01

    The passive safety system of a 300MWt VHTR (Very High Temperature Reactor)which has attracted worldwide attention recently is actively considered for designing the improvement in the safety of the next generation nuclear power plant. The passive system functionality does not rely on an external source of the electrical support system,but on an intelligent use of the natural phenomena, such as convection, conduction, radiation, and gravity. It is not easy to evaluate quantitatively the reliability of the passive safety for the risk analysis considering the existing active system failure since the classical reliability assessment method could not be applicable. Therefore a new reliability methodology needs to be developed and applied for evaluating the reliability of the conceptual designed VHTR in this study. The preliminary evaluation and conceptualization are performed using the concept of the load and capacity theory related to the reliability physics model. The method of response surface method (RSM) is also utilized for evaluating the maximum temperature of nuclear fuel in this study. The significant variables and their correlation are considered for utilizing the GAMMA+ code. The proposed method might contribute to designing the new passive system of the VHTR

  6. Monte Carlo simulation of VHTR particle fuel with chord length sampling

    International Nuclear Information System (INIS)

    Ji, W.; Martin, W. R.

    2007-01-01

    The Very High Temperature Gas-Cooled Reactor (VHTR) poses a problem for neutronic analysis due to the double heterogeneity posed by the particle fuel and either the fuel compacts in the case of the prismatic block reactor or the fuel pebbles in the case of the pebble bed reactor. Direct Monte Carlo simulation has been used in recent years to analyze these VHTR configurations but is computationally challenged when space dependent phenomena are considered such as depletion or temperature feedback. As an alternative approach, we have considered chord length sampling to reduce the computational burden of the Monte Carlo simulation. We have improved on an existing method called 'limited chord length sampling' and have used it to analyze stochastic media representative of either pebble bed or prismatic VHTR fuel geometries. Based on the assumption that the PDF had an exponential form, a theoretical chord length distribution is derived and shown to be an excellent model for a wide range of packing fractions. This chord length PDF was then used to analyze a stochastic medium that was constructed using the RSA (Random Sequential Addition) algorithm and the results were compared to a benchmark Monte Carlo simulation of the actual stochastic geometry. The results are promising and suggest that the theoretical chord length PDF can be used instead of a full Monte Carlo random walk simulation in the stochastic medium, saving orders of magnitude in computational time (and memory demand) to perform the simulation. (authors)

  7. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    International Nuclear Information System (INIS)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Cao, Guoping; Kulcinski, Gerald

    2011-01-01

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan (1) has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

  8. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    Energy Technology Data Exchange (ETDEWEB)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  9. Preliminary Core Design Analysis of a 200MWth Pebble Bed-type VHTR

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Noh, Jae Man

    2007-01-01

    This paper intends to suggest the preliminary core design analysis of a VHTR for a hydrogen production. The nuclear hydrogen system that utilizes the high temperature heat generated from the VHTR is a promising candidate for a cost effective, safe and clean supply of hydrogen in the age of hydrogen economy. Among two candidate VHTR cores, that is, a prismatic modular reactor (PMR) and a pebble bed-type reactor (PBR), we focus on the design of a 200MWth PBR (hereinafter PBR200) in this paper. Here, the 200MWth power is selected for a demonstration plant. The core configuration of the PBR200 is similar to the PBMR (Pebble Bed Modular Reactor, 400MWth) of South Africa, but the overall dimension of the reactor system is scaled-down. This paper is to suggest two candidate PBR200 cores. One is an annular core with an inner reflector (PBR200-CD1) which was presented at IWRES07, and the other is a cylindrical core without an inner reflector (PBR200-CD2)

  10. Uncertainty analysis methods for estimation of reliability of passive system of VHTR

    International Nuclear Information System (INIS)

    Han, S.J.

    2012-01-01

    An estimation of reliability of passive system for the probabilistic safety assessment (PSA) of a very high temperature reactor (VHTR) is under development in Korea. The essential approach of this estimation is to measure the uncertainty of the system performance under a specific accident condition. The uncertainty propagation approach according to the simulation of phenomenological models (computer codes) is adopted as a typical method to estimate the uncertainty for this purpose. This presentation introduced the uncertainty propagation and discussed the related issues focusing on the propagation object and its surrogates. To achieve a sufficient level of depth of uncertainty results, the applicability of the propagation should be carefully reviewed. For an example study, Latin-hypercube sampling (LHS) method as a direct propagation was tested for a specific accident sequence of VHTR. The reactor cavity cooling system (RCCS) developed by KAERI was considered for this example study. This is an air-cooled type passive system that has no active components for its operation. The accident sequence is a low pressure conduction cooling (LPCC) accident that is considered as a design basis accident for the safety design of VHTR. This sequence is due to a large failure of the pressure boundary of the reactor system such as a guillotine break of coolant pipe lines. The presentation discussed the obtained insights (benefit and weakness) to apply an estimation of reliability of passive system

  11. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    International Nuclear Information System (INIS)

    Chang H. Oh

    2006-01-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency

  12. Summary report of incineration plenum fire: Building 771, July 2, 1980

    International Nuclear Information System (INIS)

    Fretthold, J.K.

    1995-01-01

    At about 1100 on July 2, 1980, a temperature rise above normal was recorded on charts monitoring operation of the incinerator in Room 149, Building 771. The plenum overheat alarm sounded at 1215, emergency actions initiated, and the fire was extinguished and mop-up began at about 1300. Investigation determined that the fire in the plenum was caused by a heat rise in the system, a deteriorated bypass valve on the No. 3 heat exchanger (KOH scrubber), nitration of the urethane seal on the HEPA filter media to the filter frame, and accumulation of metallic fines on the filter media. It was concluded that the management system responded properly, except for the ring- down system to activate the Emergency Operations Center

  13. Determining Bond Sodium Remaining in Plenum Region of Spent Nuclear Driver Fuel

    International Nuclear Information System (INIS)

    Vaden, D.; Li, S.X.

    2008-01-01

    The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electro-chemical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials (REF 1). Upon immersion into the ER electrolyte, the sodium used to thermally bond the fuel to the clad jacket chemically reacts with the UCl3 in the electrolyte producing NaCl and uranium metal. The uranium in the spent fuel is separated from the cladding and fission products by taking advantage of the electro-chemical potential differences between uranium and the other fuel components. Assuming all the sodium in the thermal bond is converted to NaCl in the ER, the difference between the cumulative bond sodium mass in the fuel elements and the cumulative sodium mass found in the driver ER electrolyte inventory provides an upper mass limit for the sodium that migrated to the upper gas region, or plenum section, of the fuel element during irradiation in the reactor. The plenums are to be processed as metal waste via melting and metal consolidation operations. However, depending on the amount of sodium in the plenums, additional processing may be required to remove the sodium before metal waste processing

  14. Safety study of the coupling of a VHTR with a hydrogen production plant

    International Nuclear Information System (INIS)

    Bertrand, F.; Germain, T.; Bentivoglio, F.; Bonnet, F.; Moyart, Q.; Aujollet, P.

    2011-01-01

    Highlights: → The paper deals with safety issues of the coupling of a VHTR with a H 2 production plant. → Internal incidents/accidents in the coupling system have been studied with the CATHARE2 code. → Transient studies have indicated a substantial grace delay when the VHTR faces the H 2 plant disturbances. → Hydrogen release and combustion leads to safety distances of about 100 m. → No showstopper has been put in evidence regarding the feasibility of the VHTR/H 2 plant coupling. - Abstract: The present paper deals with specific safety issues resulting from the coupling of a nuclear reactor (very high temperature reactor, VHTR) with a hydrogen production plant (HYPP). The first part is devoted to the safety approach consisting in taking into account the safety standards and rules dedicated to the nuclear facility as well as those dedicated to the process industry. This approach enabled two main families of events to be distinguished: the so-called internal events taking place in the coupling circuit (transients, breaks in pipes and in heat exchangers) and the external events able to threat the integrity of the various equipments (in particular the VHTR containment and emergency cooling system) that could result from accidents in the HYPP. By considering a hydrogen production by means of the iodine/sulfur (IS) process, the consequences of the both families of events aforementioned have been assessed in order to provide an order of magnitude of the effects of the incidents and accidents and also in order to propose safety provisions to mitigate these effects when it is necessary. The study of transients induced by a failure of a part of the HYPP has shown the possibility to keep the part of the HYPP unaffected by the transient under operation by means of an adapted regulation set. Moreover, the time to react in case of transfer of corrosive products in the VHTR containment has been assessed as well as the thermohydraulic loading that would experience the

  15. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    International Nuclear Information System (INIS)

    Guzina, Bojan; Kunerth, Dennis

    2014-01-01

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  16. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guzina, Bojan [Univ. of Minnesota, Minneapolis, MN (United States); Kunerth, Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  17. Experimental system description for air-water CCFL tests of the 161-rod FLECHT-SEASET test vessel upper plenum

    International Nuclear Information System (INIS)

    Fogdall, S.P.; Anderson, J.L.

    1983-01-01

    A series of countercurrent flow limiting (CCFL) experiments has been performed by EG and G Idaho, Inc. in the Steam-Air-Water (SAW) test facility at the Idaho National Engineering Laboratory on behalf of the US Nuclear Regulatory Commission (NRC). Tests were performed in a mockup of the vessel for the 161-Rod Systems Effects Test (SET) facility of the FLECHT-SEASET program, conducted by the Westinghouse Electric Corporation. Westinghouse and the NRC will use the test results to provide a CCFL correlation to predict the flooding behavior in the upper plenum of the SET vessel. This paper presents a description of the experimental system and the test conduct, including data validation and uncertainty analysis. The test objectives centered on experimentally obtaining coefficients in the Wallis correlation for flooding with the specific vessel geometry. The test conditions and vessel configuration are described and the design of the test loop, instrumentation, and data acquisition are discussed. The establishment of a test point and the resultant data are described

  18. Investigation of an Alternative Fuel Form for the Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    Much of the recent studies investigating the use of liquid salts as reactor coolants have utilized a core configuration of graphite prismatic fuel block assemblies with TRISO particles embedded into cylindrical fuel compacts arranged in a triangular pitch lattice. Although many calculations have been performed for this fuel form in gas cooled reactors, it would be instructive to investigate whether an alternative fuel form may yield improved performance for the liquid salt-cooled Very High Temperature Reactor (LS-VHTR). This study investigates how variations in the fuel form will impact the performance of the LS-VHTR during normal and accident conditions and compares the results with a similar analysis that was recently completed for a LS-VHTR core made up of prismatic block fuel. (author)

  19. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  20. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    International Nuclear Information System (INIS)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok

    2016-01-01

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  1. VHTR-fuel irradiation capsules for VT-1 hole of JRR-2

    International Nuclear Information System (INIS)

    Kikuchi, Teruo; Kikuchi, Akira; Tobita, Tsutomu; Kashimura, Satoru; Miyasaka, Yasuhiko

    1977-02-01

    Irradiations of VHTR fuels were made in the VT-1 irradiation hole of JRR-2. Three capsules, VP-1, VP-2 and VP-4, which contained fuel compacts, were irradiated for 300 hr at temperatures of 950 0 , 1370 0 and 1500 0 C up to the estimated burn-ups of 0.74, 0.87 and 0.80%FIMA, respectively. And, to study the amoeba effect of fuel particles, two capsules, VP-3 and VP-5, were irradiated for 300 hr at temperatures of 1650 0 and 1670 0 C up to the estimated burn-ups of 0.38 and 0.33%FIMA, respectively. (auth.)

  2. Key technology for (V)HTR: laser beam joining of SiC

    International Nuclear Information System (INIS)

    Knorr, J.; Lippmann, W.; Reinecke, A.M.; Wolf, R.; Rasper, R.; Kerber, A.; Wolter, A.

    2005-01-01

    Laser beam joining has numerous advantages over other methods presently known. After having been developed successful for brazing silicon carbide for high temperature applications, this technology is now also available for silicon nitride. Thus the field of application of SiC and Si 3 N 4 which are very interesting materials for the nuclear sector is considerably extended thanks to this new technology. Ceramic encapsulation of fuel and absorber increases the margins for operation at very high temperatures. Additionally, without ceramic encapsulation of the main core components, it will be difficult to continue claiming non-catastrophic behaviour for the (V)HTR. (orig.)

  3. Improving Corrosion Behavior in SCWR, LFR and VHTR Reactor Materials by Formation of a Stable Oxide

    International Nuclear Information System (INIS)

    Motta, Arthur T.; Comstock, Robert; Li, Ning; Allen, Todd; Was, Gary

    2009-01-01

    The objective of this study is to understand the influence of the alloy microstructure and composition on the formation of a stable, protective oxide in the environments relevant to the SCWR and LFR reactor concepts, as well as to the VHTR. It is proposed to use state-of-the art techniques to study the fine structure of these oxides to identify the structural differences between stable and unstable oxide layers. The techniques to be used are microbeam synchrotron radiation diffraction and fluorescence, and cross-sectional transmission electron microcopy on samples prepared using focused ion beam.

  4. Development of thermal mixing enhancement method for lower plenum of the High Temperature Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gradecka, Malwina Joanna, E-mail: malgrad@gmail.com; Woods, Brian G., E-mail: brian.woods@oregonstate.edu

    2016-08-15

    Highlights: • Coolant mixing in lower plenum might be insufficient and pose operational issues. • Two mixing methods were developed to lower the coolant temperature variation. • The methods resulted with reduction of the temperature variation by 60% and 71%. - Abstract: The High Temperature Gas-cooled Reactor (HTGR) is one of the most mature Gen IV reactor concepts under development today. The High Temperature Test Facility (HTTF) at Oregon State University is a test facility that supports the R&D needs for HTGRs. This study focuses on the issue of helium mixing after the core section in the HTTF, the results of which are generally applicable in HTGRs. In the HTTF, hot helium jets at different temperatures are supposed to uniformly mix in the lower plenum (LP) chamber. However, the level of mixing is not sufficient to reduce the peak helium temperature before the hot jet impinges the LP structure, which can cause issues with structural materials and operational issues in the heat exchanger downstream. The maximum allowable temperature variation in the outlet duct connected to the lower plenum is defined as 40 K (±20 K from the average temperature), while the CFD simulations of this study indicate that the reference design suffers temperature variations in the duct as high as 100 K. To solve this issue, the installation of mixing-enhancing structures within the outlet duct were proposed and analyzed using CFD modeling. We show that using either an optimized “Kwiat” structure (developed in this study) or a motionless mixer installed in the outlet duct, the temperature variations can be brought dramatically, with acceptable increases in pressure drop. The optimal solution appears to be to install double motionless mixers with long blades in the outlet duct, which brings the temperature variation into the acceptable range (from 100 K down to 18 K), with a resulting pressure drop increase in the HTTF loop of 0.73 kPa (6% of total pressure drop).

  5. Development of thermal mixing enhancement method for lower plenum of the High Temperature Test Facility

    International Nuclear Information System (INIS)

    Gradecka, Malwina Joanna; Woods, Brian G.

    2016-01-01

    Highlights: • Coolant mixing in lower plenum might be insufficient and pose operational issues. • Two mixing methods were developed to lower the coolant temperature variation. • The methods resulted with reduction of the temperature variation by 60% and 71%. - Abstract: The High Temperature Gas-cooled Reactor (HTGR) is one of the most mature Gen IV reactor concepts under development today. The High Temperature Test Facility (HTTF) at Oregon State University is a test facility that supports the R&D needs for HTGRs. This study focuses on the issue of helium mixing after the core section in the HTTF, the results of which are generally applicable in HTGRs. In the HTTF, hot helium jets at different temperatures are supposed to uniformly mix in the lower plenum (LP) chamber. However, the level of mixing is not sufficient to reduce the peak helium temperature before the hot jet impinges the LP structure, which can cause issues with structural materials and operational issues in the heat exchanger downstream. The maximum allowable temperature variation in the outlet duct connected to the lower plenum is defined as 40 K (±20 K from the average temperature), while the CFD simulations of this study indicate that the reference design suffers temperature variations in the duct as high as 100 K. To solve this issue, the installation of mixing-enhancing structures within the outlet duct were proposed and analyzed using CFD modeling. We show that using either an optimized “Kwiat” structure (developed in this study) or a motionless mixer installed in the outlet duct, the temperature variations can be brought dramatically, with acceptable increases in pressure drop. The optimal solution appears to be to install double motionless mixers with long blades in the outlet duct, which brings the temperature variation into the acceptable range (from 100 K down to 18 K), with a resulting pressure drop increase in the HTTF loop of 0.73 kPa (6% of total pressure drop).

  6. Thermophysical, hydrodynamic and mechanical aspects of molten core relocation to lower plenum

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y.; Huh, Chang Wook [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    This paper presents the current state of knowledge on molten material relocation into the lower plenum. Consequences of movement of material to the lower head are considered with regard to the potential for reactor pressure vessel failure from both thermal hydraulic and mechanical standpoints. The models are applied to evaluating various in-vessel retention strategies for the Korean Standard Power Plant (KSNPP) reactor. The results are summarized in terms of thermal response of the reactor vessel from the very relevant severe accident management perspective. 10 refs., 1 fig., 1 tab. (Author)

  7. Thermophysical, hydrodynamic and mechanical aspects of molten core relocation to lower plenum

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y; Huh, Chang Wook [Seoul National University, Seoul (Korea, Republic of)

    1998-12-31

    This paper presents the current state of knowledge on molten material relocation into the lower plenum. Consequences of movement of material to the lower head are considered with regard to the potential for reactor pressure vessel failure from both thermal hydraulic and mechanical standpoints. The models are applied to evaluating various in-vessel retention strategies for the Korean Standard Power Plant (KSNPP) reactor. The results are summarized in terms of thermal response of the reactor vessel from the very relevant severe accident management perspective. 10 refs., 1 fig., 1 tab. (Author)

  8. Critical heat flux of water in vertical tubes with an upper plenum and a closed bottom

    International Nuclear Information System (INIS)

    Kim, Hong Chae; Baek, Won Pil; Chang, Soon Heung

    2000-01-01

    An experimental study is conducted for vertical round tubes with an upper plenum and a closed bottom to investigate CHF behavior and CHF onset location under the counter-current condition. The measured CHF values are well predicted by general Wallis type flooding correlations. A 1-D steady state analytical flooding model for thermosyphon by El-Genk and Saber was assessed with the data and the liquid film thickness at the liquid entrance was calculated. The CHF onset position becomes different with L/D and D, and liquid entrance geometry affects only CHF values not CHF onset positions

  9. Effect of upper plenum water accumuration on reflooding phenomena under forced-feed flooding in SCTF Core-I tests

    International Nuclear Information System (INIS)

    Sudo, Yukio; Sobajima, Makoto; Iwamura, Takamichi; Osakabe, Masahiro; Ohnuki, Akira; Abe, Yutaka; Adachi, Hiromichi

    1983-07-01

    Large Scale Reflood Test Program has been performed under contract with the Atomic Energy Bureau of Science and Technology Agency of Japan since 1976. The Slab Core Test Program is a part of the Large Scale Reflood Test Program along with the Cylindrical Core Test Program. Major purpose of the Slab Core Test Program is to investigate two-dimensional, thermo-hydrodynamic behavior in the core and the effect of fluid communication between the core and the upper plenum on the reflood phenomena in a postulated loss-of-coolant accident of a PWR. A significant upper plenum water accumulation was observed in the Base Case Test Sl-01 which was carried out under forced-feed flooding condition. To investigate the effects of upper plenum water accumulation on reflooding phenomena, accumulated water is extracted out of the upper plenum in Test Sl-03 by full opening of valves for extraction lines located just above the upper core support plate. This report presents this effect of upper plenum water accumulation on reflooding phenomena through the comparison of Tests Sl-01 and Sl-03. In spite of full opening of valves for upper plenum water extraction in Test Sl-03, a little water accumulation was observed which is of the same magnitude as in Test Sl-01 for about 200 s after the beginning of reflood. From 200 s after the beginning of reflood, however, the upper plenum water accumulation is much less in Test Sl-03 than in Test Sl-01, showing the following effects of upper plenum water accumulation. In Test Sl-03, (1) the two-dimensionality of horizontal fluid distribution is much less both above and in the core, (2) water carryover through hot leg and water accumulation in the core are less, (3) quench time is rather delayed in the upper part of the core by less water fall back from the upper plenum, and (4) difference in the core thermal behavior and core heat transfer are not significant in the middle and lower part of the core. (author)

  10. Needs in Research and Development on materials for the gas coolant nuclear system: HTR/VHTR and GFR; Besoins en R et D sur les materiaux pour les systemes nucleaires a caloporteur gaz: HTR/VHTR et GFR

    Energy Technology Data Exchange (ETDEWEB)

    Billot, Ph. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN), 91 - Gif Sur Yvette (France)

    2003-07-01

    This presentation takes stock on the materials for high temperature reactors HTR (850 C), very high temperature VHTR(>1000 C) and fast neutrons high temperature GGF(850 C). It concerns the welding materials for the vessel, Ni-based superalloys for gas turbines, coatings, graphite, ceramics and corrosion studies. (A.L.B.)

  11. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  12. Power requirements at the VHTR/HTE interface for hydrogen production

    International Nuclear Information System (INIS)

    Vilim, R.B.

    2007-01-01

    The power requirements at the interface between the High Temperature Electrolysis (HTE) process and the Very High Temperature Reactor (VHTR) were investigated. The study was performed using a network systems code that linked together individual component models for boiler, condenser, turbine, compressor, pump, gas-to-gas heat exchanger, electrolyser, and reactor and properties for water, hydrogen, oxygen, nitrogen, and helium. A species mixture model supported the use of mixtures of gases in each component model. The requirements for a reference design with a dedicated high temperature process heat loop are given. In general the quantity and quality of the process heat needed by the HTE process is a function of how the electrolyser is operated. Operating at higher voltage increases throughput and resistive heating providing the opportunity to recuperate this heat and supplant a large fraction of high temperature reactor heat. Any shortfall can be added by electrical heaters in the HTE plant. Eliminating the associated high temperature heat exchanger from the nuclear plant in this manner would significantly improve safety and maintainability. Low temperature process heat is still needed to vaporize water for the HTE process but this can be obtained at very low cost from VHTR waste heat rejected to the ultimate heat sink. (author)

  13. Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)

    2007-07-15

    Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.

  14. Safety assessment of VHTR hydrogen production system against fire, explosion and acute toxicity

    International Nuclear Information System (INIS)

    Murakami, Tomoyuki; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-01-01

    The Japan Atomic Energy Agency has been developing a nuclear hydrogen production system by using heat from the Very High Temperature Reactor (VHTR). This system will handle a large amount of combustible gas and toxic gas. The risk from fire, explosion and acute toxic exposure caused by an accident involving chemical material release in a hydrogen production system is assessed. It is important to ensure the safety of the nuclear plant, and the risks for public health should be sufficiently small. This report provides the basic policy for the safety evaluation in cases of accident involving fire, explosion and toxic material release in a hydrogen production system. Preliminary safety analysis of a commercial-sized VHTR hydrogen production system, GTHTR300C, is performed. This analysis provides us with useful information on the separation distance between a nuclear plant and a hydrogen production system and a prospect that an accident in a hydrogen production system does not significantly increase the risks of the public. (author)

  15. Design studies of back up cores for the experimental multi-purpose VHTR, (1)

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu

    1982-09-01

    For the Experimental Multi-Purpose Very High Temperature Reactor, design studies have been made of two backup cores loaded with new type fuel elements. The purpose is to improve core operational characteristics of the standard design core (Mark-III core) consisting of pin-in-block type fuel element having externally cooled hollow fuel rods. The first backup core (semi-pin fuel core) is composed of fuel elements with internally cooled fuel pins, and the second core (multihole fuel core) is composed of multihole fuel elements, which can be adopted for the experimental VHTR as the substitution of the standard Mark-III fuel element. Either of the cores has 73 fuel columns and 4 m height. The arrangement of active core and reactor internal structure is same as that in the standard design core. These backup cores meet almost all design requirements of the VHTR and increase the margins for some important design items in comparison with the standard core (Mark-III core). This report describes the overall characteristics of nuclear, thermal-hydraulic, fuel and safety, and structural consideration for these cores. (author)

  16. Feasibility study on the application of carbide (ZrC, SiC) for VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog; Kim, Si Hyeong; Jang, Moon Hee; Lee, Young Woo

    2006-08-15

    A feasibility study on the coating process of ZrC for the TRISO nuclear fuel and applications of SiC as high temperature materials for the core components has performed to develop the fabrication process for the advanced ZrC TRISO fuels and the high temperature structural components for VHTR, respectively. In the case of ZrC coating, studies were focused on the comparisons of the developed coating processes for screening of our technology, the evaluations of the reactions parameters for a ZrC deposition by the thermodynamic calculations and the preliminary coating experiments by the chloride process. With relate to SiC ceramics, our interesting items are as followings; an analysis of applications and specifications of the SiC components and collections of the SiC properties and establishments of data base. For these purposes, applications of SiC ceramics for the GEN-IV related components as well as the fusion reactor related ones were reviewed. Additionally, the on-going activities with related to the ZrC clad and the SiC composites discussed in the VHTR GIF-PMB, were reviewed to make the further research plans at the section 1 in chapter 3.

  17. Deformation and collapse of zircaloy fuel rod cladding into plenum axial gaps

    International Nuclear Information System (INIS)

    Pfennigwerth, P.L.; Gorscak, D.A.; Selsley, I.A.

    1983-01-01

    To minimize support structure, blanket and reflector fuel rods of the thoria urania-fueled Light Water Breeder Reactor (LWBR) were designed with non-freestanding Zircaloy-4 cladding. An analytical model was developed to predict deformation of unirradiated cladding into axial gaps of fuel rod plenum regions where it is unsupported. This model uses the ACCEPT finite element computer program to calculate elastic-plastic deformation of cladding due to external pressure. The finite element is 20-node, triquadratic, isoparametric, and 3-dimensional. Its curved surface permits accurate modeling of the tube geometry, including geometric nonuniformities such as circumferential wall thickness variation and initial tube out-of-roundness. Progressive increases in axial gap length due to cladding elongation and fuel stack shrinkage are modeled, as are deformations of fuel pellets and stainless steel support sleeves which bound plenum axial gaps in LWBR type blanket fuel rods. Zircaloy-4 primary and secondary thermal creep representations were developed from uniaxial creep testing of fuel rod tubing. Creep response to multi-axial loading is modeled with a variation of Hill's formulation for anisotropic materials. Coefficients accounting for anisotropic thermal creep in Zircaloy-4 tubes were developed from creep testing of externally pressurized tubes having fixed axial gaps in the range 2.5 cm to 5.7 cm and radial clearances over simulated fuel pellets ranging from zero to 0.089 mm. (orig./RW)

  18. Needs in Research and Development on materials for the gas coolant nuclear system: HTR/VHTR and GFR

    International Nuclear Information System (INIS)

    Billot, Ph.

    2003-01-01

    This presentation takes stock on the materials for high temperature reactors HTR (850 C), very high temperature VHTR(>1000 C) and fast neutrons high temperature GGF(850 C). It concerns the welding materials for the vessel, Ni-based superalloys for gas turbines, coatings, graphite, ceramics and corrosion studies. (A.L.B.)

  19. Numerical simulation and geometry optimization of hot-gas mixing in lower plenum of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Hang; Wang Jie; Laurien, E.

    2010-01-01

    The lower plenum in high temperature gas-cooled reactor was designed to mix the gas of different temperatures from the reactor core. Previous researches suggest the current geometry of the lower plenum to be improved for better mixing capability and lower pressure drop. In the presented work, a series of varied geometries were investigated with numerical simulation way. The choice of appropriate mesh type and size used in the geometry variation was discussed with the reference of experimental data. The original thin ribs in the current design were merged into thicker ones, and a junction located at the starting end of the outlet pipe was introduced. After comparing several potential optimization methods, an improved geometry was selected with the merged ribs increasing the pre-defined mixing coefficient and the junction reducing the pressure drop. Future work was discussed based on the simulation of real reactor case. The work shows a direction for design improvements of the lower plenum geometry. (authors)

  20. Investigation of the coolability of a continuous mass of relocated debris to a water-filled lower plenum. Technical report

    International Nuclear Information System (INIS)

    Rempe, J.L.; Wolf, J.R.; Chavez, S.A.; Condie, K.G.; Hagrman, D.L.; Carmack, W.J.

    1994-09-01

    This report documents work performed to support the development of an analytical and experimental program to investigate the coolability of a continuous mass of debris that relocates to a water-filled lower plenum. The objective of this program is to provide an adequate data base for developing and validating a model to predict the coolability of a continuous mass of debris relocating to a water-filled lower plenum. The model must address higher pressure scenarios, such as the TMI-2 accident, and lower pressure scenarios, which recent calculations indicate are more likely for most operating LWR plants. The model must also address a range of possible debris compositions

  1. Development of Lower Plenum Molten Pool Module of Severe Accident Analysis Code in Korea

    International Nuclear Information System (INIS)

    Son, Donggun; Kim, Dong-Ha; Park, Rae-Jun; Bae, Jun-Ho; Shim, Suk-Ku; Marigomen, Ralph

    2014-01-01

    To simulate a severe accident progression of nuclear power plant and forecast reactor pressure vessel failure, we develop computational software called COMPASS (COre Meltdown Progression Accident Simulation Software) for whole physical phenomena inside the reactor pressure vessel from a core heat-up to a vessel failure. As a part of COMPASS project, in the first phase of COMPASS development (2011 - 2014), we focused on the molten pool behavior in the lower plenum, heat-up and ablation of reactor vessel wall. Input from the core module of COMPASS is relocated melt composition and mass in time. Molten pool behavior is described based on the lumped parameter model. Heat transfers in between oxidic, metallic molten pools, overlying water, steam and debris bed are considered in the present study. The models and correlations used in this study are appropriately selected by the physical conditions of severe accident progression. Interaction between molten pools and reactor vessel wall is also simulated based on the lumped parameter model. Heat transfers between oxidic pool, thin crust of oxidic pool and reactor vessel wall are considered and we solve simple energy balance equations for the crust thickness of oxidic pool and reactor vessel wall. As a result, we simulate a benchmark calculation for APR1400 nuclear power plant, with assumption of relocated mass from the core is constant in time such that 0.2ton/sec. We discuss about the molten pool behavior and wall ablation, to validate our models and correlations used in the COMPASS. Stand-alone SIMPLE program is developed as the lower plenum molten pool module for the COMPASS in-vessel severe accident analysis code. SIMPLE program formulates the mass and energy balance for water, steam, particulate debris bed, molten corium pools and oxidic crust from the first principle and uses models and correlations as the constitutive relations for the governing equations. Limited steam table and the material properties are provided

  2. Study on cooling model for debris in lower plenum and countermeasures for prevention of focusing effect

    International Nuclear Information System (INIS)

    Guan Zhonghua; Yu Hongxing; Jiang Guangming

    2008-01-01

    From the basic energy conservation equations and experimental or empirical correlations, an intact model is constructed for the thermal calculation of the core debris in the lower plenum. For verification of this model, the results of two calculations for AP600 and AP1000 plants are compared with those presented in relevant literature. The analysis highlights on the impact of the decay heat power density and the focusing effect. In order to mitigate the focusing effect, it is proposed in this paper to change the lower head profile from hemisphere to parabola. The results show that this change of lower head profile can change the heat flux distribution of the debris, and mitigate the focusing effect. (authors)

  3. Improvements of Physical Models in TRITGO code for Tritium Behavior Analysis in VHTR

    International Nuclear Information System (INIS)

    Yoo, Jun Soo; Tak, Nam Il; Lim, Hong Sik

    2010-01-01

    Since tritium is radioactive material with 12.32 year of half-life and is generated by a ternary fission reaction in fuel as well as by neutron absorption reactions of impurities in Very High Temperature gas-cooled Reactor (VHTR) core, accurate prediction of tritium behavior and its concentration in product hydrogen is definitely important in terms of public safety for its construction. In this respect, TRITGO code was developed for estimating the tritium production and distribution in high temperature gas-cooled reactors by General Atomics (GA). However, some models in it are hard-wired to specific reactor type or too simplified, which makes the analysis results less applicable. Thus, major improvements need to be considered for better predictions. In this study, some of model improvements have been suggested and its effect is evaluated based on the analysis work against PMR600 design concept

  4. Evaluation of the oxidation behavior and strength of the graphite components in the VHTR, (1)

    International Nuclear Information System (INIS)

    Eto, Motokuni; Kurosawa, Takeshi; Nomura, Shinzo; Imai, Hisashi

    1987-04-01

    Oxidation experiments have been carried out mainly on a fine-grained isotropic graphite, IG-110, at temperatures between 1173 and 1473 K in a water vapor/helium mixture. In most cases water vapor concentration was 0.65 vol% and helium pressure, 1 atm. Reaction rate and burn-off profile were measured using cylindrical specimens. On the basis of the experimental data the oxidation behavior of fuel block and core support post under the condition of the VHTR operation was estimated using the first-order or Langmuir-Hinshelwood equation with regard to water vapor concentration. Strength and stress-strain relationship of the graphite components with burn-off profiles estimated above were analyzed on the basis of the model for stress-strain relationship and strength of graphite specimens with density gradients. The estimation indicated that the integrity of the components would be maintained during normal reactor operation. (author)

  5. Feasibility study of thermal insulation materials for core support of experimental VHTR

    International Nuclear Information System (INIS)

    Kawakami, H.; Nakanishi, T.

    1982-01-01

    Thermal insulation materials for core support of the experimental VHTR, planned by JAERI, should maintain moderate compressive strength and dimensional stability as well as low thermal conductivity at the maximum service temperature of 1100 0 C for 20 years. For selecting materials, we investigate properties of some candidates, and evaluate their feasibility. Preliminary tests, heat treatment test and compressive creep tests for 1000 hours at 900 0 C and 1000 0 C were conducted. In the preliminary tests, EG-38B (carbon baked at 1350 0 C) and Fine Finnex 600 (silicon nitride) showed acceptable physical stability. In the heat treatment tests, silicon nitride showed weight loss probably caused by thermal decomposition. Compressive creep deformation of Fine Finnex 600 was negligible under stress of 100 kg/cm 2 for 1000 hours. Heat treatment at 1200 to 1300 0 C for 50 hours improved dimensional stability of carbon at 1000 0 C

  6. A study on the aseismic safety of the experimental VHTR on the dense sandy layer

    International Nuclear Information System (INIS)

    Fujita, Shigeki; Ito, Yoshio; Baba, Osamu; Suzuki, Hideyuki; Takewaki, Naonobu; Kondo, Tsukasa; Yoshimura, Takashi; Yamada, Hitoshi.

    1986-12-01

    A series of studies has been carried out in 1983 and 1985 for the purpose of confirming the aseismic safety of the Experimental VHTR on the dense sandy layer. In 1983, effect of some of soil properties on seismic responses of the reactor building was estimated by means of parametric survey, and soil properties were estimated by analyzing the obserbed earthquake record. In 1985, literature review, linear, nonlinear parametric analyses and nonlinear simulation analyses were carried to study and compare the analysis method. In addition, seismic response of proposed construction site was estimated with nonlinear analysis method. As a result of these studies, the seismic response of reactor building on the dense sandy layers and wave propagation characteristics of sandy layers are understood. Especially, by means of many parametric studies, the effect of input wave characteristics, soil stiffness, nonlinear characteristics of soil properties and nonlinear analysis method on the reactor building responses were evaluated. (author)

  7. Development of Barrier Layers for the Protection of Candidate Alloys in the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Carlos G. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Jones, J. Wayne [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Pollock, Tresa M. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Was, Gary S. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project was to develop concepts for barrier layers that enable leading candi- date Ni alloys to meet the longer term operating temperature and durability requirements of the VHTR. The concepts were based on alpha alumina as a primary surface barrier, underlay by one or more chemically distinct alloy layers that would promote and sustain the formation of the pro- tective scale. The surface layers must possess stable microstructures that provide resistance to oxidation, de-carburization and/or carburization, as well as durability against relevant forms of thermo-mechanical cycling. The system must also have a self-healing ability to allow endurance for long exposure times at temperatures up to 1000°C.

  8. Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR and PP)

    International Nuclear Information System (INIS)

    Moses, David Lewis

    2011-01-01

    This report documents the detailed background information that has been compiled to support the preparation of a much shorter white paper on the design features and fuel cycles of Very High-Temperature Reactors (VHTRs), including the proposed Next-Generation Nuclear Plant (NGNP), to identify the important proliferation resistance and physical protection (PR and PP) aspects of the proposed concepts. The shorter white paper derived from the information in this report was prepared for the Department of Energy Office of Nuclear Science and Technology for the Generation IV International Forum (GIF) VHTR Systems Steering Committee (SSC) as input to the GIF Proliferation Resistance and Physical Protection Working Group (PR and PPWG) (http://www.gen-4.org/Technology/horizontal/proliferation.htm). The short white paper was edited by the GIF VHTR SCC to address their concerns and thus may differ from the information presented in this supporting report. The GIF PR and PPWG will use the derived white paper based on this report along with other white papers on the six alternative Generation IV design concepts (http://www.gen-4.org/Technology/systems/index.htm) to employ an evaluation methodology that can be applied and will evolve from the earliest stages of design. This methodology will guide system designers, program policy makers, and external stakeholders in evaluating the response of each system, to determine each system's resistance to proliferation threats and robustness against sabotage and terrorism threats, and thereby guide future international cooperation on ensuring safeguards in the deployment of the Generation IV systems. The format and content of this report is that specified in a template prepared by the GIF PR and PPWG. Other than the level of detail, the key exception to the specified template format is the addition of Appendix C to document the history and status of coated-particle fuel reprocessing technologies, which fuel reprocessing technologies have yet

  9. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  10. Accelerator-Based Irradiation Creep of Pyrolytic Carbon Used in TRISO Fuel Particles for the (VHTR) Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Wang, Lumin; Was, Gary

    2010-01-01

    Pyrolytic carbon (PyC) is one of the important structural materials in the TRISO fuel particles which will be used in the next generation of gas-cooled very-high-temperature reactors (VHTR). When the TRISO particles are under irradiation at high temperatures, creep of the PyC layers may cause radial cracking leading to catastrophic particle failure. Therefore, a fundamental understanding of the creep behavior of PyC during irradiation is required to predict the overall fuel performance.

  11. VHTR-based Nuclear Hydrogen Plant Analysis for Hydrogen Production with SI, HyS, and HTSE Facilities

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    In this paper, analyses of material and heat balances on the SI, HyS, and HTSE processes coupled to a Very High Temperature gas-cooled Reactor (VHTR) were performed. The hydrogen production efficiency including the thermal to electric energy ratio demanded from each process is found and the normalized evaluation results obtained from three processes are compared to each other. The currently technological issues to maintain the long term continuous operation of each process will be discussed at the conference site. VHTR-based nuclear hydrogen plant analysis for hydrogen production with SI, HyS, and HTSE facilities has been carried out to determine the thermal efficiency. It is evident that the thermal to electrical energy ratio demanded from each hydrogen production process is an important parameter to select the adequate process for hydrogen production. To improve the hydrogen production efficiency in the SI process coupled to the VHTR without electrical power generation, the demand of electrical energy in the SI process should be minimized by eliminating an electrodialysis step to break through the azeotrope of the HI/I_2/H_2O ternary aqueous solution

  12. Upper plenum break LOCA investigation in the ISB-VVER and PSB-VVER facilities

    Energy Technology Data Exchange (ETDEWEB)

    Blinkov, V. N.; Melikhov, O. I.; Lipatov, I. A.; Nikonov, S. M.; Dremin, G. I.; Galchanskaya, S. A.; Gashenko, M. P.; Rovnov, A. A.; Kapustin, A. V.; Elkin, I. V. [EREC, Moscow (Russian Federation)

    2003-07-01

    The capability to define the actual NPP transient/accident scenario depends to a great extent on facilities' scaling and reliability of the system thermalhydraulic codes which, in turn, are assessed against the experimental data taken in the same facilities. At the present time, it is received fact that the rigorous modeling of the cumulative set of all thermalhydraulic processes in the plant primary and secondary sides during accident is unfeasible. Therefore, the extrapolation of the facilities loops behavior to the actual systems constitutes a fundamental problem in this area. In the paper, some aspects for the problem have been discussed in the course of comparative analysis of the data derived from the 11 % upper plenum break LOCA tests performed in the PSB-VVER and ISB-VVER integral test facilities under the close scenarios. Both facilities, PSB-VVER and ISB-VVER, are modeled the same VVER-1000 reactor in different scales. The thermalhydraulic behavior of the primary systems in both facilities has been discussed in the paper, and shown to be similar. Also, the attention has been focused upon the discrepancies in the significant variables trends. The discrepancies are shown to be caused by influence of peculiarities of the facilities hardware and due to the scale factor. The scaling study is an important aspect of the thermalhydraulic codes verification procedure. Being qualified against the experimentally simulated accident sequence in two test facilities of different scales, the thermalhydraulic codes will be capable of evaluation of the prototype behavior to greater accuracy.

  13. Modeling for evaluation of debris coolability in lower plenum of reactor pressure vessel

    International Nuclear Information System (INIS)

    Maruyama, Yu; Moriyama, Kiyofumi; Nakamura, Hideo; Hirano, Masashi

    2003-01-01

    Effectiveness of debris cooling by water that fills a gap between the debris and the lower head wall was estimated through steady calculations in reactor scale. In those calculations, the maximum coolable debris depth was assessed as a function of gap width with combination of correlations for critical heat flux and turbulent natural convection of a volumetrically heated pool. The results indicated that the gap with a width of 1 to 2 mm was capable of cooling the debris under the conditions of the TMI-2 accident, and that a significantly larger gap width was needed to retain a larger amount of debris within the lower plenum. Transient models on gap growth and water penetration into the gap were developed and incorporated into CAMP code along with turbulent natural convection model developed by Yin, Nagano and Tsuji, categorized in low Reynolds number type two-equation model. The validation of the turbulent model was made with the UCLA experiment on natural convection of a volumetrically heated pool. It was confirmed that CAMP code predicted well the distribution of local heat transfer coefficients along the vessel inner surface. The gap cooling model was validated by analyzing the in-vessel debris coolability experiments at JAERI, where molten Al 2 O 3 was poured into a water-filled hemispherical vessel. The temperature history measured on the vessel outer surface was satisfactorily reproduced by CAMP code. (author)

  14. Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP)

    Energy Technology Data Exchange (ETDEWEB)

    Moses, David Lewis [ORNL

    2011-10-01

    This report documents the detailed background information that has been compiled to support the preparation of a much shorter white paper on the design features and fuel cycles of Very High-Temperature Reactors (VHTRs), including the proposed Next-Generation Nuclear Plant (NGNP), to identify the important proliferation resistance and physical protection (PR&PP) aspects of the proposed concepts. The shorter white paper derived from the information in this report was prepared for the Department of Energy Office of Nuclear Science and Technology for the Generation IV International Forum (GIF) VHTR Systems Steering Committee (SSC) as input to the GIF Proliferation Resistance and Physical Protection Working Group (PR&PPWG) (http://www.gen-4.org/Technology/horizontal/proliferation.htm). The short white paper was edited by the GIF VHTR SCC to address their concerns and thus may differ from the information presented in this supporting report. The GIF PR&PPWG will use the derived white paper based on this report along with other white papers on the six alternative Generation IV design concepts (http://www.gen-4.org/Technology/systems/index.htm) to employ an evaluation methodology that can be applied and will evolve from the earliest stages of design. This methodology will guide system designers, program policy makers, and external stakeholders in evaluating the response of each system, to determine each system's resistance to proliferation threats and robustness against sabotage and terrorism threats, and thereby guide future international cooperation on ensuring safeguards in the deployment of the Generation IV systems. The format and content of this report is that specified in a template prepared by the GIF PR&PPWG. Other than the level of detail, the key exception to the specified template format is the addition of Appendix C to document the history and status of coated-particle fuel reprocessing technologies, which fuel reprocessing technologies have yet to be

  15. Prediction of corium debris characteristics in lower plenum of a nordic BWR in different accident scenarios using MELCOR code - 15367

    International Nuclear Information System (INIS)

    Phung, V.A.; Galushin, S.; Raub, S.; Goronovski, A.; Villanueva, W.; Koeoep, K; Grishchenko, D.; Kudinov, P.

    2015-01-01

    Severe accident management strategy in Nordic boiling water reactors (BWRs) relies on ex-vessel core debris coolability. The mode of corium melt release from the vessel determines conditions for ex-vessel accident progression and threats to containment integrity, e.g., formation of a non-coolable debris bed and possibility of energetic steam explosion. In-vessel core degradation and relocation is an important stage which determines characteristics of corium debris in the vessel lower plenum, such as mass, composition, thermal properties, timing of relocation, and decay heat. These properties affect debris reheating and remelting, melt interactions with the vessel structures, and possibly vessel failure and melt ejection mode. Core degradation and relocation is contingent upon the accident scenario parameters such as recovery time and capacity of safety systems. The goal of this work is to obtain a better understanding of the impact of the accident scenarios and timing of the events on core relocation phenomena and resulting properties of the debris bed in the vessel lower plenum of Nordic BWRs. In this study, severe accidents in a Nordic BWR reference plant are initiated by a station black out event, which is the main contributor to core damage frequency of the reactor. The work focuses on identifying ranges of debris bed characteristics in the lower plenum as functions of the accident scenario with different recovery timing and capacity of safety systems. The severe accident analysis code MELCOR coupled with GA-IDPSA is used in this work. GA-IDPSA is a Genetic Algorithm-based Integrated Deterministic Probabilistic Safety Analysis tool, which has been developed to search uncertain input parameter space. The search is guided by different target functions. Scenario grouping and clustering approach is applied in order to estimate the ranges of debris characteristics and identify scenario regions of core relocation that can lead to significantly different debris bed

  16. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  17. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-21). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  18. A Sub-channel Analysis of a VHTR Fuel Block with Tin Gap-Filler

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Kim, Yong Hee; Yi, Yong Sun; Kim, Hong Pyo

    2005-01-01

    In the Nuclear Hydrogen Development and Demonstration (NHDD) project, two types of VHTRs (Very High Temperature Reactors), prismatic or pebble bed, are under investigation as the nuclear heat source for hydrogen production. In general, the targeted coolant outlet temperature of VHTR is 950∼1000 .deg. C and the maximum allowable fuel temperature is 1250 .deg. C during the normal operation. In the case of the prismatic reactor (PMR), conventional fuel designs result in a small margin in the maximum fuel temperature. This is one of the biggest demerits of the prismatic type In this paper, a technique of lowering the maximum fuel temperature is suggested. The PMR fuel assembly is comprised of many coolant holes and fuel channels. Cylindrical fuel compacts are stacked inside the fuel channel. Consequently, there should be a physical gap between the fuel compact and graphite block, which is filled with the He gas in the conventional design. The heat transfer coefficient of the He gap is very poor, and this increases the fuel temperature substantially. In the proposed design measure, the gap is filled with a liquid metal, tin (Sn) that has a very high thermal conductivity. The effects of tin in the gap with gap distance variation in the viewpoint of thermal hydraulics are quantitatively discussed. Also, the effects of the variations of the axial power distribution are discussed

  19. A dynamic study on the sulfuric acid distillation column for VHTR-assisted hydrogen production systems

    International Nuclear Information System (INIS)

    Youngjoon, Shin; Heesung, Shin; Jiwoon, Jang; Kiyoung, Lee; Jonghwa, Chang

    2007-01-01

    The sulfur-iodine (SI) cycle and the Westinghouse sulfur hybrid cycle coupled to a very high temperature gas-cooled reactor (VHTR) are well known as a feasible technology to produce hydrogen. The concentration of the sulfuric acid solution and its decomposition are essential parts in both cycles. In this paper, the thermophysical properties which are the boiling point, latent heat, and the partial pressures of water, sulfuric acid, and sulfur trioxide have been correlated as a function of the sulfuric acid concentration for the H 2 SO 4 and H 2 O binary chemical system, based on the data in Perry's chemical engineers' hand-book and other experimental data. By using these thermophysical correlations, a dynamic analysis of a sulfuric acid distillation column has been performed to establish the column design requirements and its optimum operation condition. From the results of the dynamic analysis, an optimized column system is anticipated for a distillation column equipped with 2 ideal plates and a second plate feeding system from the bottom plate. The effects of the hold-up of the re-boiler and the reflux ratio from the top product stream on the elapsing time when the system progresses toward a steady state have been analyzed. (authors)

  20. One stacked-column vibration test and analysis for VHTR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Ishizuka, Hiroshi; Ide, Akira; Hayakawa, Hitoshi; Shingai, Kazuteru.

    1978-07-01

    This paper describes experimental results of the vibration test on a single stacked-column and compares them with the analytical results. A 1/2 scale model of the core element of a very high temperature gas-cooled reactor (VHTR) was set on a shaking table. Sinusoidal waves, response time history waves, beat wave and step wave of input acceleration 100 - 900 gal in the frequency of 0.5 to 15 Hz were used to vibrate the table horizontally. Results are as follows: (1) The column has a non-linear resonance and exhibits a hysteresis response with jump points. (2) The column vibration characteristics is similar to that of the finite beams connected with non-linear soft spring. (3) The column resonance frequency decreases with increasing input acceleration. (4) The impact force increases with increasing input acceleration and boundary gap width. (5) Good correlation in vibration behavior of the stacked-column and impact force on the boundary between test and analysis was obtained. (auth.)

  1. Analysis of Creep Crack Growth Behavior of Alloy 617 for Use in a VHTR System

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Kim, Min-Hwan; Park, Jae-Young; Ekaputra, I. M. W.; Kim, Seon-Jin

    2015-01-01

    Alloy 617 is a major candidate material for the IHX component. The design of the component, which will operate well into the creep range, will require a good understanding of creep crack growth deformation. Efforts are now being undertaken in the Gen-IV program to provide data needed for the design and licensing of the nuclear plants, and with this goal in mind, to meet the needs of the conceptual designers of the VHTR system, 'Gen-IV Materials Handbook' is being established through an international collaboration program of GIF (Gen-IV Forum) countries. To logically obtain the B and q values in the CCGR equation, three methods in terms of LSFM, MVM, and PDM were adopted. The PDM was most useful. Both the B and q coefficients followed a lognormal distribution. Using a lognormal distribution in the PDM, a number of random variables were generated by Monte Carlo Simulation, and the CCGR lines could be successfully predicted from the viewpoint of reliability

  2. CLUPH: a Fortran program of collision probabilities for hexagonal lattice and its application to VHTR

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Gotoh, Yorio

    1981-02-01

    A new collision probability routine CLUPH was added to the computer program set LAMP-B to analyse the hexagonal VHTR fuel and control blocks where in addition to the annular array of fuel pin rods the asymmetric insertions of burnable poison rods and control rods are characteristic. The perfect reflective boundary condition is no more realistic to consider the arrangement of asymmetric hexagonal blocks. The periodic and the rotational arrangement of blocks are surveyed to consider the interference effect between the burnable poison rods. In addition the effects of coated particle fuel in fuel rod, and of B 4 C grain in burnable poison rod, are investigated. The average cross sections of control rod block were derived from the calculation of a super cell which consists of the control rod block and of the surrounding six fuel blocks. The care was taken to the control rod block located at the core-reflector boundary by replacing a sector of surrounding material in supper cell by reflector material. The two dimensional diffusion calculations of simplified cores of Mk-III were performed to obtain the reactivity worths of control rods, for illustration. (author)

  3. Novel experiments to characterise creep-fatigue degradation in VHTR alloys

    International Nuclear Information System (INIS)

    Simpson, J.A.; Wright, J.K.; Wright, R.N.

    2015-01-01

    It is well known in energy systems that the creep lifetime of high temperature alloys is significantly degraded when a cyclic load is superimposed on components operating in the creep regime. A test method has been developed in an attempt to characterise creep-fatigue behaviour of alloys at high temperature. The test imposes a hold time during the tensile phase of a fully reversed strain-controlled low cycle fatigue test. Stress relaxation occurs during the strain-controlled hold period. This type of fatigue stress relaxation test tends to emphasise the fatigue portion of the total damage and does not necessarily represent the behaviour of a component in-service well. Several different approaches to laboratory testing of creep-fatigue at 950 deg. C have been investigated for Alloy 617, the primary candidate for application in VHTR heat exchangers. The potential for mode switching in a cyclic test from strain control to load control, to allow specimen extension by creep, has been investigated to further emphasise the creep damage. In addition, tests with a lower strain rate during loading have been conducted to examine the influence of creep damage occurring during loading. Very short constant strain hold time tests have also been conducted to examine the influence of the rapid stress relaxation that occurs at the beginning of strain holds. (authors)

  4. Back up core designs for the experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Miyamoto, Yoshiaki; Shindo, Ryuichi; Ikushima, Takeshi

    1979-02-01

    For the Experimental Multi-Purpose Very High Temperature Reactor (thermal power 50 MW and reactor outlet helium temperature 1000 0 C), design studies have been made of two backup cores loaded with new-type fuel elements. The purpose is to improve core operational characteristics, especially in thermohydraulics, of the reference design core consisting of pin-in-block type fuel elements having externally cooled hollow fuel rods. In this report are described the design principles and the analyses made of nuclear, thermal and hydraulic, fuel, and safety performances to determine the backup fuel and core design parameters. The first backup core (SP fuel core) is composed of fuel elements with internally cooled fuel rods (semi-pin), 36 rods in each standard element and 18 rods in each control element. The second backup core (MH fuel core) is composed of multihole fuel elements. 102 fuel and 54 coolant holes in each standard element and 30 fuel and 18 coolant holes in each control element. Either of the cores has 73 fuel columns 4 m high; the arrangement of active core and reactor internal structures is the same as that in the reference design. The backup cores meet nearly all design requirements of the VHTR, permitting the rated power operation with coolant Reynolds number of over 10,000 in the SP core and over 6,000 in the MH core. (author)

  5. Integral analysis of debris material and heat transport in reactor vessel lower plenum

    International Nuclear Information System (INIS)

    Suh, K.Y.; Henry, R.E.

    1994-01-01

    An integral, fast-running, two-region model has been developed to characterize the debris material and heat transport in the reactor lower plenum under severe accident conditions. The debris bed is segregated into the oxidic pool and an overlying metallic layer. Debris crusts can develop on three surfaces: the top of the molten pool, the RPV wall, and the internal structures. To account for the decay heat generation, the crust temperature profile is assumed to be parabolic. The oxidic debris pool is homogeneously mixed and has the same material composition, and hence the same thermophysical properties, as the crusts, while the metallic constituents are assumed to rise to the top of the debris pool. Steady-state relationships are used to describe the heat transfer rates, with the assessment of solid or liquid state, and the liquid superheat in the pool being based on the average debris temperature. Natural convection heat transfer from the molten debris pool to the upper, lower and embedded crusts is calculated based on the pool Rayleigh number with the conduction heat transfer from the crusts being determined by the crust temperature profile. The downward heat flux is transferred to the lowest part of the RPV lower head through a crust-to-RPV contact resistance. The sideward heat flux is transferred to the upper regions of the RPV lower head as well as to the internal structures. The upward heat flux goes to the metal layer, water, or available heat sink structures above. Quenching due to water ingression is modeled separately from the energy transfer through the crust. The RPV wall temperature distribution and the primary system pressure are utilized to estimate challenges to the RPV integrity. ((orig.))

  6. Study on in-vessel thermohydraulics phenomena of sodium-cooled fast reactors. 1. Numerical investigation for the rationalization of hydrodynamics in the upper plenum

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Yamaguchi, Akira

    2002-02-01

    A large-scale sodium-cooled fast breeder reactor in feasibility studies on commercialized fast reactors has a tendency of consideration of thorough simplified and compacted system designs to realize drastic economical improvements. Therefore, special attention should be paid to thermohydraulic designs for a gas entrainment behavior from free surfaces, a flow-induced vibration of in-vessel components, a thermal shock for various structures due to high-speed coolant flows, nonsymmetrical coolant flows, etc. in the reactor vessel. In-vessel thermohydraulic analyses were carried out using a multi-dimensional code AQUA to understand the thermohydraulic characteristics in the upper plenum, and to investigate suitable in-vessel structure for the elimination of gas entrainment possibility. From the analysis, the following results were obtained. (1) It is difficult to rationale in-vessel flow patterns through adjustments of porous ratio and pressure loss for a hold down plate and baffle plates installed in an upper core structure. (2) Dummy plug insertion to a slit of the upper core structure is one of effective measures to stabilize in-vessel flow patterns. (3) Flow guide devices such as a baffle ring and a partial inner barrel are also effective measures to eliminate impinging jet to a dipped plate (D/P) and to reduce horizontal flow velocity components at free surface. (4) Installations of labyrinth structures to a R/V - D/P gap is successful for decreasing of free surface horizontal flows. (5) Gap closing of an in-vessel fuel pot and two cold trap components has the effects of reductions for free surface horizontal flows and for the difference of free surface levels. Following future investigations are important preventive measures against the gas entrainment from the free surface. (1) Flattening of spatial axial velocity distributions at the R/V - D/P gap. (2) Alleviation measures of vortex concentration at free surface. (3) Separation measures of 3-dimensional vortex

  7. Investigation of the tube side flow distribution in heat exchangers

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Pyare, R.

    1977-01-01

    The tube side flow distribution in heat exchangers is being investigated through the solution of the governing equations of fluid mechanics with distributed resistances that simulate the presence of the tubes. The modeling scheme used in the analysis and the numerical methods of solving the governing equations are described. The analysis is applied to the CRBRP-Intermediate Heat Exchanger (IHX), where its tube side plenum is simulated by several models that approximate its spherical boundary. The flow field within the plenum and the distribution of the total flow rate among the tubes are determined by the analysis

  8. Program plan for correction of US instrument degradation or failure in the Upper Plenum Test Facility (UPTF) in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Rhee, G.S.; Chen, Y.S.; Shotkin, L.M.

    1987-07-01

    This report documents, as of September, 1986, the investigation of the failure or degradation of some of the advanced two-phase flow instruments supplied by the United States Nuclear Regulatory Commission (USNRC) to the German Upper Plenum Test Facility (UPTF). These instruments include Tie-Plate Drag Bodies (DBs), Breakthrough Detectors (BTDs), Loop Drag Disc (DD) paddles, Fluid Distribution Grid (FDG) sensors, and Liquid Level Detector (LLD) sensors. The exact causes for these instrument degradations or failures are not known, but several potential causes have been identified. For DBs and BTDs, the primary mechanism for the degradation appears to be a leakage in the Inconel 600 strain gage encapsulation and the subsequent burnout of the strain gage elements. Excessive loads appear to be the cause of the degradation or failure of the drag discs. The degradation cause for most of the FDGs and LLDs may be either steam/water erosion or mechanical abrasion of the sapphire sensor tips. However, some of the FDG tips were found to be cracked also. The corrective actions are being directed towards identification of the primary causes for the instrument degradation or failure and methods of preventing recurrance and toward minimizing the impact on the test program. All possible action items are being reviewed to arrange them in terms of priority and the likelihood of success so that the best results can be obtained under the constraints of a fixed amount of resources and limited time

  9. CEA and AREVA R and D on V/HTR fuel fabrication with the CAPRI experimental manufacturing line

    International Nuclear Information System (INIS)

    Charollais, Francois; Fonquernie, Sophie; Perrais, Christophe; Perez, Marc; Cellier, Francois; Vitali, Marie-Pierre

    2006-01-01

    In the framework of the French V/HTR fuel development and qualification program, the Commissariat a l'Energie Atomique (CEA) and AREVA through its program called ANTARES (Areva New Technology for Advanced Reactor Energy Supply) conduct R and D projects covering the mastering of UO 2 coated particle and fuel compact fabrication technology. To fulfill this task, a review of past knowledge, of existing technologies and a preliminary laboratory scale work program have been conducted with the aim of retrieving the know-how on HTR coated particle and compact manufacture: - The different stages of UO 2 kernel fabrication GSP Sol-Gel process have been reviewed, reproduced and improved; - The experimental conditions for the chemical vapour deposition (CVD) of coatings have been defined on dummy kernels and development of innovative characterization methods has been carried out; - Former CERCA compacting process has been reviewed and updated. In parallel, an experimental manufacturing line for coated particles, named GAIA, and a compacting line based on former CERCA compacting experience have been designed, constructed and are in operation since early 2005 at CEA Cadarache and CERCA Romans, respectively. These two facilities constitute the CAPRI line (CEA and AREVA PRoduction Integrated line). The major objectives of the CAPRI line are: - to recover and validate past knowledge; - to permit the optimisation of reference fabrication processes for kernels and coatings and the investigation of alternative and innovative fuel design (UCO kernel, ZrC coating); - to test alternative compact process options; - to fabricate and characterize fuel required for irradiation and qualification purpose; - to specify needs for the fabrication of representative V/HTR TRISO fuel meeting industrial standards. This paper presents the progress status of the R and D conducted on V/HTR fuel particle and compact manufacture by mid 2005. (authors)

  10. A global model for gas cooled reactors for the Generation-4: application to the Very High Temperature Reactor (VHTR)

    International Nuclear Information System (INIS)

    Limaiem, I.

    2006-12-01

    Gas cooled high temperature reactor (HTR) belongs to the new generation of nuclear power plants called Generation IV. The Generation IV gathers the entire future nuclear reactors concept with an effective deployment by 2050. The technological choices relating to the nature of the fuel, the moderator and the coolant as well as the annular geometry of the core lead to some physical characteristics. The most important of these characteristics is the very strong thermal feedback in both active zone and the reflectors. Consequently, HTR physics study requires taking into account the strong coupling between neutronic and thermal hydraulics. The work achieved in this Phd consists in modeling, programming and studying of the neutronic and thermal hydraulics coupling system for block type gas cooled HTR. The coupling system uses a separate resolution of the neutronic and thermal hydraulics problems. The neutronic scheme is a double level Transport (APOLLO2) /Diffusion (CRONOS2) scheme respectively on the scale of the fuel assembly and a reactor core scale. The thermal hydraulics model uses simplified Navier Stokes equations solved in homogeneous porous media in code CAST3M CFD code. A generic homogenization model is used to calculate the thermal hydraulics parameters of the porous media. A de-homogenization model ensures the link between the porous media temperatures of the temperature defined in the neutronic model. The coupling system is made by external procedures communicating between the thermal hydraulics and neutronic computer codes. This Phd thesis contributed to the Very High Temperature Reactor (VHTR) physics studies. In this field, we studied the VHTR core in normal operating mode. The studies concern the VHTR core equilibrium cycle with the control rods and using the neutronic and thermal hydraulics coupling system. These studies allowed the study of the equilibrium between the power, the temperature and Xenon. These studies open new perspective for core

  11. The shifting study of the active core or a VHTR based on the TRISO packing fraction changing

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.C.; Pereira, C.; Veloso, M.A.F., E-mail: claubia@nuclear.ufmg.br, E-mail: antonella@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Departamento de Engenharia Nuclear. Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Costa, A.L. [Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (CNPq), Brasilia, DF (Brazil)

    2011-07-01

    A simplified VHTR core was analyzed, loaded with a fuel mixture of uranium oxide together with reprocessed transuranic nuclides. The TRUs were reprocessed together with Pu, Am, Np and Cm (23.80%) from PWR spent fuel, and dissolved in depleted uranium (0.2% {sup 235}U) until obtain 15% LEU-fuel ({sup 235}U, {sup 239}Pu and {sup 241}Pu). The shifting study of the active core was based on changes in the TRISO particle. Five cases were analyzed changing the VM/VF ratio (moderator volume/ fuel volume) making changes in the TRISO packing fraction (tpf), where tpf represents the ratio of TRISO particle on the fuel pin. The fuels were evaluated during the burnup up to 100,000.0 MWd/THM, during 990 days and without reloads. Then, it evaluated the multiplication (k{sub eff}) at zero and full power, fuel temperature coefficient ({alpha}{sub TF}), moderator temperature coefficient ({alpha}{sub TM}), and fuel composition at BOL (begin of life) and EOL (end of life), using the code Winfrith Improved Multi-Group Scheme (WIMSD5). The results show an overall heavy metal decrease in relation to the total TRU, with some Pu and Np being transmuted in the VHTR core. The results also clearly show the advantage of using reprocessed fuel in VHTR. It decreases the impact of the final spent fuel deposition, minimizes the cost of new fuel using reprocessed fuel and depleted uranium and demonstrated the promising neutronic behavior of the new types of nuclear reactors. (author)

  12. Reducing uncertainty in personnel dosimetry calculations in the VHTR plant using MAVRIC

    International Nuclear Information System (INIS)

    Flaspoehler, T.; Petrovic, B.

    2013-01-01

    This work analyzes the efficacy of the MAVRIC sequence of the Scale 6.1 code package with respect to the accuracy of results and the ability to utilize large-memory, parallel machines. MAVRIC implements the hybrid FW-CADIS methodology to solve neutron and photon transport for shielding applications. Using the discrete ordinates method to solve the Boltzmann transport equation, an importance map is generated which MAVRIC then uses to bias a stochastic Monte Carlo simulation. The MAVRIC sequence is applied to generate neutron and photon dose rate distributions of improved accuracy in a model of a proposed VHTR power plant. Problems like this one, with a size on the order of magnitude of a nuclear power plant, require a prohibitive amount of memory to store complete importance maps. The issue is addressed by refining the mesh in areas around the source through the detector regions, while leaving a coarse mesh elsewhere. Additionally through the use of parallel computing, the angular flux can be expanded in higher quadrature sets, which leads to a better importance map while requiring no extra memory requirements during the Monte Carlo portion of the sequence. The final Monte Carlo simulations can be run concurrently on several machines with results combined after the fact, emulating parallelism that is not yet available in MAVRIC sequence. Using a combination of strategies, the MAVRIC sequence is shown to be able to scale across available computational resources, allowing the user to more quickly obtain Monte Carlo results with lower relative uncertainties in large, deep-penetration shielding problems. (authors)

  13. Euratom research and training in generation IV systems with emphasis on V/HTR

    International Nuclear Information System (INIS)

    Goethem, G. van; Manolatos, P.; Fuetterer, M.

    2006-01-01

    In this overview paper, the following questions are addressed: (1) What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2) What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle: Education, Research, and Innovation') respond to the S/T challenges: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is principally under the responsibility of the 2 Directorates Generals (DG) DG Research (RTD, located in Brussels), which implements and manages the programme of 'indirect actions', and the DG Joint Research Centre (JRC, headquarters in Brussels and 7 scientific institutes in 5 Member States) which carries out 'direct actions' in their own laboratories. In this HTR-2006 introductory paper, the emphasis is on the indirect and direct actions of the 6 th Euratom research framework programme 2003-2006, FP-6, with special emphasis on V/HTR Generation IV research. (orig.)

  14. Simulation experiments of small break LOCA in upper plenum joint pipe for 5 MW heating test reactor

    International Nuclear Information System (INIS)

    Bo Jinhai; Jiang Shengyao; Zhang Youjie; Tong Yunxian; Sun Shusen; Yao Meisheng

    1988-12-01

    A simulation experiment of small break LOCA is introduced, which was caused by the breakdown of a small size or middle size pipe located at upper plenum, or by unexpected opening the safety valve. In the tests, the system pressure, temperature, void fraction and total loss of water were studied. The results showed that the total loss of water was nearly 20% of initial loading water. It means under this condition the 5MW low temperature heating reactor being built in Institute of Nnclear Engergy Technology of Tsinghua University is safe

  15. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life VHTR Configurations: Designs, Advantages and Limitations

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.

    2009-01-01

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  16. Corrosion of nickel-base heat resistant alloys in simulated VHTR coolant helium at very high temperatures

    International Nuclear Information System (INIS)

    Shindo, Masami; Kondo, Tatsuo

    1976-01-01

    A comparative evaluation was made on three commercial nickel-base heat resistant alloys exposed to helium-base atmosphere at 1000 0 C, which contained several impurities in simulating the helium cooled very high temperature nuclear reactor (VHTR) environment. The choice of alloys was made so that the effect of elements commonly found in commercial alloys were typically examined. The corrosion in helium at 1000 0 C was characterized by the sharp selection of thermodynamically unstable elements in the oxidizing process and the resultant intergranular penetration and internal oxidation. Ni-Cr-Mo-W type solution hardened alloy such as Hastelloy-X showed comparatively good resistance. The alloy containing Al and Ti such as Inconel-617 suffered adverse effect in contrast to its good resistance to air oxidation. The alloy nominally composed only of noble elements, Ni, Fe and Mo, such as Hastelloy-B showed least apparent corrosion, while suffered internal oxidation due to small amount of active impurities commonly existing in commercial heats. The results were discussed in terms of selection and improvement of alloys for uses in VHTR and the similar systems. (auth.)

  17. Evaluation of the heat transfer in a geological repository concept containing PWR, VHTR and hybrid ads-fission spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jonusan, Raoni A.S.; Pereira, Fernando; Velasquez, Carlos E.; Salome, Jean A.D.; Cardoso, Fabiano; Pereira, Claubia; Fortini, Angela, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    The investigation of the thermal behavior of spent fuel (SF) materials is essential to determining appropriate potential sites to accommodate geological repositories as well as the design of canisters, considering their potential risk to people health and of environmental contamination. This work presents studies of the temperature in a canister containing spent fuels discharged from Pressurized Water Reactor (PWR), Very High-Temperature Reactor (VHTR) and Accelerator-Driven Subcritical Reactor System (ADS) reactor systems in a geological repository concept. The thermal analyses were performed with the software ANSYS, which is widely used to solve engineering problems through the Finite Element Method. The ANSYS Transient Thermal module was used. The spent nuclear fuels were set as heat sources using data of previous studies derived from decay heat curves. The studies were based on comparison of the mean temperature on a canister surface along the time under geological disposal conditions, for a same amount of each type of spent nuclear fuel evaluated. The results conclude that fuels from VHTR and ADS systems are inappropriate to be disposed in a standardized PWR canister, demanding new studies to determine the optimal amount of spent fuel and new internal canister geometries. It is also possible to conclude that the hypothetical situation of a single type of canister being used to accommodate different types of spent nuclear fuels is not technically feasible. (author)

  18. Flow model study of 'Monju' reactor vessel

    International Nuclear Information System (INIS)

    Miyaguchi, Kimihide

    1980-01-01

    In the case of designing the structures in nuclear reactors, various problems to be considered regarding thermo-hydrodynamics exist, such as the distribution of flow quantity and the pressure loss in reactors and the thermal shock to inlet and outlet nozzles. In order to grasp the flow characteristics of coolant in reactors, the 1/2 scale model of the reactor structure of ''Monju'' was attached to the water flow testing facility in the Oarai Engineering Center, and the simulation experiment has been carried out. The flow characteristics in reactors clarified by experiment and analysis so far are the distribution of flow quantity between high and low pressure regions in reactors, the distribution of flow quantity among flow zones in respective regions of high and low pressure, the pressure loss in respective parts in reactors, the flow pattern and the mixing effect of coolant in upper and lower plenums, the effect of the twisting angle of inlet nozzles on the flow characteristics in lower plenums, the effect of internal cylinders on the flow characteristics in upper plenums and so on. On the basis of these test results, the improvement of the design of structures in reactors was made, and the confirmation test on the improved structures was carried out. The testing method, the calculation method, the test results and the reflection to the design of actual machines are described. (Kako, I.)

  19. Flow-throttling orifice nozzle

    International Nuclear Information System (INIS)

    Sletten, H.L.

    1975-01-01

    A series-parallel-flow type throttling apparatus to restrict coolant flow to certain fuel assemblies of a nuclear reactor is comprised of an axial extension nozzle of the fuel assembly. The nozzle has a series of concentric tubes with parallel-flow orifice holes in each tube. Flow passes from a high pressure plenum chamber outside the nozzle through the holes in each tube in series to the inside of the innermost tube where the coolant, having dissipated most of its pressure, flows axially to the fuel element. (U.S.)

  20. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-09-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding

  1. Advanced construction materials for thermo-chemical hydrogen production from VHTR process heat

    International Nuclear Information System (INIS)

    Kosmidou, Theodora; Haehner, Peter

    2009-01-01

    The (very) high temperature reactor concept ((V)HTR) is characterized by its potential for process heat applications. The production of hydrogen by means of thermo-chemical cycles is an appealing example, since it is more efficient than electrolysis due to the direct use of process heat. The sulfur-iodine cycle is one of the best studied processes for the production of hydrogen, and solar or nuclear energy can be used as a heating source for the high temperature reaction of this process. The chemical reactions involved in the cycle are: I 2 (l) + SO 2 (g) +2 H 2 O (l) → 2HI (l) + H 2 SO 4 (l) (70-120 deg. C); H 2 SO 4 (l) → H 2 O (l) + SO 2 (g) + 1/2 O 2 (g) (800-900 deg. C); 2HI (l) → I 2 (g) + H 2 (g) (300-450 deg. C) The high temperature decomposition of sulphuric acid, which is the most endothermic reaction, results in a very aggressive chemical environment which is why suitable materials for the decomposer heat exchanger have to be identified. The class of candidate materials for the decomposer is based on SiC. In the current study, SiC based materials were tested in order to determine the residual mechanical properties (flexural strength and bending modulus, interfacial strength of brazed joints), after exposure to an SO 2 rich environment, simulating the conditions in the hydrogen production plant. Brazed SiC specimens were tested after 20, 100, 500 and 1000 hrs exposure to SO 2 rich environment at 850 o C under atmospheric pressure. The gas composition in the corrosion rig was: 9.9 H 2 O, 12.25 SO 2 , 6.13 O 2 , balance N 2 (% mol). The characterization involved: weight change monitoring, SEM microstructural analysis and four-point bending tests after exposure. Most of the specimens gained weight due to the formation of a corrosion layer as observed in the SEM. The corrosion treatment also showed an effect on the mechanical properties. In the four-point bending tests performed at room temperature and at 850 deg. C, a decrease in bending modulus with

  2. Creys-Malville nuclear plant. Simulation of the cold plenum thermal-hydraulics. 12 zone model presentation

    International Nuclear Information System (INIS)

    Faulot, J.P.

    1990-05-01

    The CRUSIFI code has been developed by SEPTEN (Engineering and Construction Division) with SICLE software during 1983-1985 in order to study the CREYS-MALVILLE dynamic behavior. At the time, the version was based on project data (version 2.3). It includes a 2 zones model for the cold plenum thermal-hydraulics, modelling which does not allow to reproduce accurately dissymetries apt to occur as well in usual operating (hydraulic dissymetries bound to one or many systems out of order), as during incidentally operating (hydraulic dissymetries bound to primary pump working back or thermal dissymetries after a transient on one or many secondary loops). Moreover, a 2 zones model cannot simulate axial temperature gradients which appear during double stratification phenomenon (upper and lower part of the plenum) produced by alternating thermal shock. A 12 zones model (4 sectors with 3 axial zones each) such as model developed by R$DD (Research and Development Division) allows to satisfy correctly these problems. This report is a specification of the chosen modelling. This model is now operational after qualifying with experimental transients on mockup and reactor. It is to-day connected with the EDF general operating code CRUSIFI (calibrating version 3.0). It could be easily integrated in a four loops plant modelling such as the CREYS-MALVILLE simulator in a four loops plant modelling such as the CREYS-MALVILLE simulator under construction at the present time by THOMSON

  3. Experimental study on breakup and fragmentation behavior of molten material jet in complicated structure of BWR lower plenum

    International Nuclear Information System (INIS)

    Saito, Ryusuke; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    To estimate the state of reactor pressure vessel of Fukushima Daiichi nuclear power plant, it is important to clarify the breakup and fragmentation of molten material jet in the lower plenum of boiling water reactor (BWR) by a numerical simulation. To clarify the effects of complicated structures on the jet behavior experimentally and validate the simulation code, we conduct the visualized experiments simulating the severe accident in the BWR lower plenum. In this study, jet breakup, fragmentation and surrounding velocity profiles of the jet were observed by the backlight method and the particle image velocimetry (PIV) method. From experimental results using the backlight method, it was clarified that jet tip velocity depends on the conditions whether complicated structures exist or not and also clarified that the structures prevent the core of the jet from expanding. From measurements by the PIV method, the surrounding velocity profiles of the jet in the complicated structures were relatively larger than the condition without structure. Finally, fragment diameters measured in the present study well agree with the theory suggested by Kataoka and Ishii by changing the coefficient term. Thus, it was suggested that the fragmentation mechanism was mainly controlled by shearing stress. (author)

  4. Influence of heating rate on corrosion behavior of Ni-base heat resistant alloys in simulated VHTR helium environment

    International Nuclear Information System (INIS)

    Kurata, Yuji; Kondo, Tatsuo

    1985-04-01

    The influence of heating rate on corrosion and carbon transfer was studied for Ni-base heat resistant alloys exposed to simulated VHTR(very high temperature reactor) coolant environment. Special attention was focused to relationship between oxidation and carburization at early stage of exposure. Tests were conducted on two heats of Hastelloy XR with different boron(B) content and the developmental alloys, 113MA and KSN. Two kinds of heating rates, i.e. 80 0 C/min and 2 0 C/min, were employed. Corrosion tests were carried out at 900 0 C up to 500 h in JAERI Type B helium, one of the simulated VHTR primary coolant specifications. Under higher heating rate, oxidation resistance of both heats of Hastelloy XR(2.8 ppmB and 40 ppmB) were equivalent and among the best, then KSN and 113MA followed in the order. Under lower heating rate only alloy, i.e. Hastelloy XR with 2.8 ppmB, showed some deteriorated oxidation resistance while all others being unaffected by the heating rate. On the other hand the carbon transfer behavior showed strong dependence on the heating rate. In case of higher heating rate, significant carburization occured at early stage of exposure and thereafter the progress of carburization was slow in all the alloys. On the other hand only slow carburization was the case throughout the exposure in case of lower heating rate. The carburization in VHTR helium environment was interpreted as to be affected by oxide film formation in the early stage of exposure. The carbon pick-up was largest in Hastelloy XR with 40 ppmB and it was followed by Hastelloy XR with 2.8 ppmB. 113MA and KSN were carburized only slightly. The observed difference of carbon pick-up among the alloys tested was interpreted to be attributed mainly to the difference of the carbon activity, the carbide precipitation characteristics among the alloys tested. (author)

  5. Dynamic PIV measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    In one of the power uprated plants in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In the preliminary study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on the flow. (author)

  6. High Temperature Degradation Behavior and its Mechanical Properties of Inconel 617 alloy for Intermediate Heat Exchanger of VHTR

    International Nuclear Information System (INIS)

    Jo, Tae Sun; Kim, Se Hoon; Kim, Young Do; Park, Ji Yeon

    2008-01-01

    Inconel 617 alloy is a candidate material of intermediate heat exchanger (IHX) and hot gas duct (HGD) for very high temperature reactor (VHTR) because of its excellent strength, creep-rupture strength, stability and oxidation resistance at high temperature. Among the alloying elements in Inconel 617, chromium (Cr) and aluminum (Al) can form dense oxide that act as a protective surface layer against degradation. This alloy supports severe operating conditions of pressure over 8 MPa and 950 .deg. C in He gas with some impurities. Thus, high temperature stability of Inconel 617 is very important. In this work, the oxidation behavior of Inconel 617 alloy was studied by exposure at high temperature and was discussed the high temperature degradation behavior with microstructural changes during the surface oxidation

  7. Fundamental validation of simulation method for thermal stratification in upper plenum of fast reactors. Analysis of sodium experiment

    International Nuclear Information System (INIS)

    Ohno, Shuji; Ohshima, Hiroyuki; Sugahara, Akihiro; Ohki, Hiroshi

    2010-01-01

    Three-dimensional thermal-hydraulic analyses have been carried out for a sodium experiment in a relatively simple axis-symmetric geometry using a commercial CFD code in order to validate simulating methods for thermal stratification behavior in an upper plenum of sodium-cooled fast reactor. Detailed comparison between simulated results and experimental measurement has demonstrated that the code reproduced fairly well the fundamental thermal stratification behaviors such as vertical temperature gradient and upward movement of a stratification interface when utilizing high-order discretization scheme and appropriate mesh size. Furthermore, the investigation has clarified the influence of RANS type turbulence models on phenomena predictability; i.e. the standard k-ε model, the RNG k-ε model and the Reynolds Stress Model. (author)

  8. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    International Nuclear Information System (INIS)

    Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie

    2017-01-01

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  9. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  10. Oil flow at the scroll compressor discharge: visualization and CFD simulation

    Science.gov (United States)

    Xu, Jiu; Hrnjak, Pega

    2017-08-01

    Oil is important to the compressor but has other side effect on the refrigeration system performance. Discharge valves located in the compressor plenum are the gateway for the oil when leaving the compressor and circulate in the system. The space in between: the compressor discharge plenum has the potential to separate the oil mist and reduce the oil circulation ratio (OCR) in the system. In order to provide information for building incorporated separation feature for the oil flow near the compressor discharge, video processing method is used to quantify the oil droplets movement and distribution. Also, CFD discrete phase model gives the numerical approach to study the oil flow inside compressor plenum. Oil droplet size distributions are given by visualization and simulation and the results show a good agreement. The mass balance and spatial distribution are also discussed and compared with experimental results. The verification shows that discrete phase model has the potential to simulate the oil droplet flow inside the compressor.

  11. Measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Especially, when the phases of acoustic sources were different, various acoustic wave effects were checked. (author)

  12. Experimental study of core thermohydraulics in fast reactors during transition from forced to natural circulation. Influence of inter-wrapper flow

    International Nuclear Information System (INIS)

    Kamide, H.; Hayashi, K.; Momoi, K.

    1997-01-01

    The evaluation of core thermohydraulics under natural circulation conditions is important to utilize inherent safety features of Fast Reactors. When heat exchangers of a decay heat removal system are operated in an upper plenum of reactor vessel, cold sodium is provided by the heat exchangers. Core-plenum interactions will occur during a natural circulation condition due to this cold sodium in the upper plenum, e.g., it can penetrate into gap regions between fuel subassemblies (inter-wrapper flow, IWF) and the flow may reverse in low power core channels. These interactions will significantly modify the flow and temperature distributions in the core. Sodium experiments were carried out to study these phenomena. In a test section, seven subassemblies are housed and connected to an upper plenum. The influences of core-plenum interactions on the core thermohydraulics were investigated under steady state conditions and also in transitions from forced to natural circulation. Cooling effects of IWF on the fuel subassemblies were found in spite of natural circulation flow reduction in the primary loop due to temperature decreases in the upper non-heated section in the core. The inter-wrapper flow can effectively cool the core under extreme conditions of low flow rates through the core. (author)

  13. Analysis of turbulent natural convection heat transfer in a lower plenum during external cooling using the COSMO code

    International Nuclear Information System (INIS)

    Noguchi, H.; Sawatari, Y.; Imada, T.

    2000-01-01

    The behavior of a large volumetrically heated melt pool is important to evaluate the feasibility of in-vessel retention by external flooding as an accident management. The COSMO (Coolability Simulation of Molten corium during severe accident) code has been developed at NUPEC to simulate turbulent natural convection heat transfer with internal heat source. The COSMO code solves thermal hydraulic conservation equations with turbulent model and can simulate melting and solidification process. The standard k-ε model has a limitation to describe the turbulent natural convection in the very high Rayleigh number condition (10 16 -10 17 ) assumed to occur in a lower plenum of RPV during a severe accident. This limitation results from the assumption of an analogy of momentum and energy transfer phenomena in the standard model. In this paper the modified turbulent model in which the turbulent number is treated, as a function of the flux Richardson number derived from the experiment, has been incorporated and verified by using the BALI experiments. It was found that the prediction of averaged Nusselt number became better than that of the standard model. In order to extend the COSMO code to the actual scale analysis under the external flooding conditions, more realistic boundary condition derived from the experiments should be treated. In this work the CHF correlation from ULPU experiment or the heat transfer coefficient correlation from CYBL experiment have been applied. The preliminary analysis of an actual scale analysis has been carried out under the condition of the TMI-2 accident. (author)

  14. Simulation and uncertainties of the heat transfer from a heat-generating DEBRIS bed in the lower plenum

    International Nuclear Information System (INIS)

    Schaaf, K.; Trambauer, K.

    1999-01-01

    The findings of the TMI-2 post-accident analyses indicated that internal cooling mechanisms may have a considerable potential to sustain the vessel integrity after a relocation of core material to the lower plenum, provided that water is continuously available in the RPV. Numerous analytical and experimental research activities are currently underway in this respect. This paper illustrates some major findings of the experimental work on internal cooling mechanisms and describes the limitations and the uncertainties in the simulation of the heat transfer processes. Reference is made especially to the joint German DEBRIS/ RPV research program, which encompasses the experimental investigation of the thermal-hydraulics in gaps, of the heat transfer within a particulate debris bed, and of the high temperature performance of vessel steel, as well as the development of simulation models for the heat transfer in the lower head and the structural response of the RPV. In particular, the results of uncertainty and sensitivity analyses are presented, which have been carried out at GRS using an integral model that describes the major phenomena governing the long-term integrity of the reactor vessel. The investigation of a large-scale relocation indicated that the verification of a gap cooling mechanism as an inherent mechanism is questionable in terms of a stringent probabilistic uncertainty criterion, as long as the formation of a large molten pool cannot be excluded. (author)

  15. Theoretical study on flow-induced vibration of a cylindrical weir due to fluid discharge

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Ito, Tomohiro; Hirota, Kazuo; Kodama, Tetsuhiko

    1994-01-01

    In a FBR, the inside of the reactor vessel is cooled by liquid sodium. Liquid sodium is supplied to the upper plenum from its bottom and discharges over the top of the cylindrical weir down to the lower plenum. The weir is so thin in order to decrease the thermal stress on it that the fluid--structure interaction becomes predominant. A fluidelastic vibration of the weir due to fluid discharge was discovered in a French FBR. In this study, a theoretical model was developed on the ''fluid--elastic mode'' instability of a cylindrical weir due to fluid discharge from the upper plenum to the lower plenum. In the analysis, the fluctuation of both the discharge flow rate over a weir due to the vibration of the cylindrical shell and the pressure in the lower plenum due to fluid discharge were formulated. Instability criteria was derived from the added damping ratio due to fluid discharge using modal analysis. The natural modes and modal mass of the weir were obtained by the analysis using the FEM code taking the fluid - structure interaction into consideration. The theoretical instability range in terms of the fall height and the flow rate is compared with the experimental results. The theoretical values showed a good agreement with the experimental ones

  16. Standard Problems for CFD Validation for NGNP - Status Report

    International Nuclear Information System (INIS)

    Johnson, Richard W.; Schultz, Richard R.

    2010-01-01

    The U.S. Department of Energy (DOE) is conducting research and development to support the resurgence of nuclear power in the United States for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The project is called the Next Generation Nuclear Plant (NGNP) Project, which is based on a Generation IV reactor concept called the very high temperature reactor (VHTR). The VHTR will be of the prismatic or pebble bed type; the former is considered herein. The VHTR will use helium as the coolant at temperatures ranging from 250 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not previously been used for the safety analysis of nuclear reactors in the United States, it is being considered for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal operational and accident situations. The ''Standard Problem'' is an experimental data set that represents an important physical phenomenon or phenomena, whose selection is based on a phenomena identification and ranking table (PIRT) for the reactor in question. It will be necessary to build a database that contains a number of standard problems for use to validate CFD and systems analysis codes for the many physical problems that will need to be analyzed. The first two standard problems that have been developed for CFD validation consider flow in the lower plenum of the VHTR and bypass flow in the prismatic core. Both involve scaled models built from quartz and designed to be installed in the INL's matched index of refraction (MIR) test facility. The MIR facility employs mineral oil as the working fluid at a constant temperature. At this temperature, the index of refraction of the mineral oil is the same as that of the quartz. This provides an advantage to the

  17. Cyclic Deformation and Fatigue Behaviors of Alloy 617 Base Metal and Weldments at 900℃ for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Kim, Byung Tak; Dewa, Rando T.; Hwang, Jeong Jun; Kim, Tae Su [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An analysis of cyclic deformation can contribute to a deeper understanding of the fatigue fracture mechanisms as well as to improvements in the design and application of VHTR system. However, the studies associated with cyclic deformation and low cycle fatigue (LCF) properties of Alloy 617 have focused mainly on the base metal, with little attention given to the weldments. Totemeier studied on high-temperature creep-fatigue of Alloy 617 base metal and weldments. Current research activities at PKNU and KAERI focus on the study of cyclic deformation and LCF behaviors of Alloy 617 base metal (BM) and weldments (WM) specimens were machined from GTAW buttwelded plates at very high-temperature of 900℃. In this work, the cyclic deformation characteristics and fatigue behaviors of Alloy 617 BM and WM are studied and discussed with respect to LCF. In this paper, cyclic deformation and low cycle fatigue behaviors of Alloy 617 base metal and weldments was evaluated using strain-controlled LCF tests at 900℃for 0.6% total strain range. Results of the current experiments can be concluded; The WM specimen has shown a higher cyclic stress response than the BM specimen. The fatigue life of WM specimen was reduced relative to that of BM specimen.

  18. A Dynamic Simulation Program for a Hydriodic Acid Concentration and Decomposition Process in the VHTR-SI Process

    International Nuclear Information System (INIS)

    Chang, Ji Woon; Shin, Young Joon; Lee, Tae Hoon; Lee, Ki Young; Kim, Yong Wan; Chang, Jong Hwa; Youn, Cheung

    2011-01-01

    The Sulfur-Iodine (SI) cycle which can produce hydrogen by using nuclear heat consists of a Bunsen reaction (Section 1), a sulfur acid concentration and decomposition (Section 2), and a hydriodic acid concentration and decomposition (Section 3). The heat required in the SI process can be supplied through an intermediate heat exchanger (IHX) by a Very High Temperature Gas Cooled Reactor (VHTR). The Korea Atomic Energy Research Institute-Dynamic Simulation Code (KAERI-DySCo) based on the Visual C++ is an integration application software that simulates the dynamic behavior of the SI process. KAERI-DySCo was prepared to solve dynamic problem of the seven chemical reactors which consist of Sections 2 and 3. Section 3 is the key part of the SI process, because the strong non-ideality and the partial immiscibility of the binary HI.H 2 O and the ternary HI.I 2 .H 2 O (HIX solution) mixture make it difficult to model and simulate the dynamic behavior of the system. Therefore, it is necessary to compose separately a dynamic simulation program for Section 3 in KAERI-DySCo optimization. In this paper, a simulation program to analyze the dynamic behavior of Section 3 is introduced using the prepared KAERI-DySCo, and results of dynamic simulation are represented by running the program

  19. Issues of Exercising the Right to Defence amid the Explanations of the Plenum of the Supreme Court of the Russian Federation

    Directory of Open Access Journals (Sweden)

    Oksana A. Voltornist

    2016-04-01

    Full Text Available The article analyzes the explanations of the Plenum of the Supreme Court No. 29 dated June 30, 2015 “On application of laws by the courts ensuring the right to defense in criminal proceedings”. The author details the applied aspects of certain provisions of the aforementioned document within the criminal procedure legislation and estimates their significance for the judicial and investigative practice

  20. Reflooding phenomena of German PWR estimated from CCTF [Cylindrical Core Test Facility], SCTF [Slab Core Test Facility] and UPTF [Upper Plenum Test Facility] results

    International Nuclear Information System (INIS)

    Murao, Y.; Iguchi, T.; Sugimoto, J.

    1988-09-01

    The reflooding behavior in a PWR with a combined injection type ECCS was studied by comparing the test results from Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF) and Upper Plenum Test Facility (UPTF). Core thermal-hydraulics is discussed mainly based on SCTF test data. In addition, the water accumulation behavior in hot legs and the break-through characteristics at tie plate are discussed

  1. Effect of Crossflow on Hot Spot Fuel Temperature in Prismatic VHTR

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam-il; Kim, Min Hwan; Noh, Jae Man; Park, Goon-Cherl

    2014-01-01

    Various studies have been conducted to predict the thermal-hydraulics of a prismatic gas-cooled reactor. However, most previous studies have concentrated on the nominal-designed core. The fuel assembly of a high temperature gas-cooled reactor consists of a fuel compact and graphite block used as a moderator. This graphite faces a dimensional change due to irradiation or heating during normal operation. This size change might affect the coolant flow distribution in the active core. Therefore, the hot spot fuel temperature position or value could vary. There are two types of flows by the size change of graphite. One is the bypass flow and the other is the crossflow. The crossflow occurs at the crossflow gap between the vertical stacks of fuel blocks. In this study, the effect of the crossflow on the hot spot fuel temperature has been intensively investigated. (author)

  2. Value-creating investment strategies to manage risk from structural market uncertainties: Switching and compound options in (V)HTR technologies - HTR2008-58157

    International Nuclear Information System (INIS)

    Lauferts, U.; Halbe, C.; Van Heek, A.

    2008-01-01

    To measure the value of a technology investment under uncertainty with standard techniques like net present value (NPV) or return on investment (ROI) will often uncover the difficulty to present convincing business case. Projected cash flows are inefficient or the discount rate chosen to compensate for the risk is so high, that it is disagreeable to the investor s requirements. Decision making and feasibility studies have to look beyond traditional analysis to reveal the strategic value of a technology investment. Here, a Real Option Analysis (ROA) offers a powerful alternative to standard discounted cash-flow (DCF) methodology by risk-adjusting the cash flow along the decision path rather than risk adjusting the discount rate. Within the GEN IV initiative attention is brought not only towards better sustainability, but also to broader industrial application and improved financing. Especially the HTR design is full of strategic optionalities: The high temperature output facilitates penetration into other non-electricity energy markets like industrial process heat applications and the hydrogen market. The flexibility to switch output in markets with multi-source uncertainties reduces downside risk and creates an additional value of over 50% with regard to the Net Present Value without flexibility. The supplement value of deploying a modular (V)HTR design adds over 100% to the project value using real option evaluation tools. Focus of this paper was to quantify the strategic value that comes along a) with the modular design; a design that offers managerial flexibility adapting a step-by-step investment strategy to the actual market demand and b) with the option to switch between two modes of operation, namely electricity and hydrogen production. We will demonstrate that the effect of uncertain electricity prices can be dampened down with a modular HTR design. By using a real option approach, we view the project as a series of compound options - each option depending

  3. Reverse flow through a large scale multichannel nozzle

    International Nuclear Information System (INIS)

    Duignan, M.R.; Nash, C.A.

    1992-01-01

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 44 cm long, had an entrance diameter of 95 mm, an exit opening of 58 mm x 356 mm, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. All data were taken at steady-state and isothermal (300 K ± 1.5 K) conditions. During the reverse flow of water through the nozzle the point at which air begins to enter was predicted within 90% by a critical weir-flow calculation. The point of air entry into the plenum itself was found to be a function of flow conditions

  4. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Company Ltd., Seoul (Korea, Republic of); Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    A gas cooled reactor has the advantage of being able to create a higher temperature coolant than a water cooled reactor. We can take advantage of supplying electricity as well as process heat. Recently, taking the export opportunity of a commercial nuclear power plants in UAE, Middle East area where politically stable and resource-rich seems promising for further nuclear business. Even if construction cost is more expensive than water cooled reactors, a high temperature gas cooled reactor is an attractive option from the viewpoint of safety. It can reduce the domestic use of fossil fuels and secure power and water, which is the most important part of people's daily life. All- Electrical Mode (AEM) operates only for the purpose of electricity generation. Rated Cogeneration Mode (RCM) uses approximately 60% of the total flow as process heat. We use a part flow exiting the high pressure turbine of end portion to the process heat, and the flow channel to a heat exchanger and a deaerator is changed at this time. Turbine Bypass Mode (TBM) will be used to supply the process heat by blocking all flow to the turbines.

  5. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR

    International Nuclear Information System (INIS)

    Lee, Sang Il; Yoo, Yeon Jae; Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan

    2015-01-01

    A gas cooled reactor has the advantage of being able to create a higher temperature coolant than a water cooled reactor. We can take advantage of supplying electricity as well as process heat. Recently, taking the export opportunity of a commercial nuclear power plants in UAE, Middle East area where politically stable and resource-rich seems promising for further nuclear business. Even if construction cost is more expensive than water cooled reactors, a high temperature gas cooled reactor is an attractive option from the viewpoint of safety. It can reduce the domestic use of fossil fuels and secure power and water, which is the most important part of people's daily life. All- Electrical Mode (AEM) operates only for the purpose of electricity generation. Rated Cogeneration Mode (RCM) uses approximately 60% of the total flow as process heat. We use a part flow exiting the high pressure turbine of end portion to the process heat, and the flow channel to a heat exchanger and a deaerator is changed at this time. Turbine Bypass Mode (TBM) will be used to supply the process heat by blocking all flow to the turbines

  6. Development of the loss coefficient correlation for cross flow between graphite fuel blocks in the core of prismatic very high temperature reactor-PMR200

    International Nuclear Information System (INIS)

    Lee, Jeong-Hun; Cho, Hyoung-Kyu; Park, Goon-Cherl

    2016-01-01

    Highlights: • Cross flow experimental data are produced with wedge-shaped and parallel gaps. • The results of a CFD analysis and experimental data are in good agreement. • Pressure loss coefficient for the cross gap between fuel blocks in PMR200 is found. • A new correlation of the cross flow loss coefficient for PMR200 is proposed. - Abstract: The core of the very high temperature reactor (VHTR) PMR200 (a prismatic modular reactor rated at 200 MW of thermal power) consists of hexagonal prismatic fuel blocks and reflector blocks made of graphite. If the core bypass flow ratio increases, the coolant channel flow is decreased and can then lower the heat removal efficiency, resulting in a locally increased fuel block temperature. The coolant channels in the fuel blocks are connected to bypass gaps by the cross gap, complicating flow distribution in the VHTR core. Therefore, reliable estimation of the bypass flow is highly important for the design and safety analysis of the VHTR core. Because of the complexity of the core geometry and gap configuration, it is challenging to predict the flow distribution in the VHTR core. To analyze this flow distribution accurately, it is necessary to determine the cross flow phenomena, and the loss coefficient across the cross gap has to be evaluated to determine the flow distribution in the VHTR core when a lumped parameter code or a flow network analysis code that uses the correlation of the loss coefficient is employed. The purpose of this paper is to develop a loss coefficient correlation applicable to the cross gap in the PMR200 core. The cross flow was evaluated experimentally using the difference between the measured inlet and outlet mass flow rates. Next, the applicability of a commercial computational fluid dynamics (CFD) code, CFX 15, was confirmed by comparing the experimental data and CFD analysis results. To understand the cross flow phenomena, the loss coefficient was evaluated; in the high Reynolds number region

  7. Development of the loss coefficient correlation for cross flow between graphite fuel blocks in the core of prismatic very high temperature reactor-PMR200

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Hun, E-mail: huny12@snu.ac.kr; Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr; Park, Goon-Cherl, E-mail: parkgc@snu.ac.kr

    2016-10-15

    Highlights: • Cross flow experimental data are produced with wedge-shaped and parallel gaps. • The results of a CFD analysis and experimental data are in good agreement. • Pressure loss coefficient for the cross gap between fuel blocks in PMR200 is found. • A new correlation of the cross flow loss coefficient for PMR200 is proposed. - Abstract: The core of the very high temperature reactor (VHTR) PMR200 (a prismatic modular reactor rated at 200 MW of thermal power) consists of hexagonal prismatic fuel blocks and reflector blocks made of graphite. If the core bypass flow ratio increases, the coolant channel flow is decreased and can then lower the heat removal efficiency, resulting in a locally increased fuel block temperature. The coolant channels in the fuel blocks are connected to bypass gaps by the cross gap, complicating flow distribution in the VHTR core. Therefore, reliable estimation of the bypass flow is highly important for the design and safety analysis of the VHTR core. Because of the complexity of the core geometry and gap configuration, it is challenging to predict the flow distribution in the VHTR core. To analyze this flow distribution accurately, it is necessary to determine the cross flow phenomena, and the loss coefficient across the cross gap has to be evaluated to determine the flow distribution in the VHTR core when a lumped parameter code or a flow network analysis code that uses the correlation of the loss coefficient is employed. The purpose of this paper is to develop a loss coefficient correlation applicable to the cross gap in the PMR200 core. The cross flow was evaluated experimentally using the difference between the measured inlet and outlet mass flow rates. Next, the applicability of a commercial computational fluid dynamics (CFD) code, CFX 15, was confirmed by comparing the experimental data and CFD analysis results. To understand the cross flow phenomena, the loss coefficient was evaluated; in the high Reynolds number region

  8. Analysis of turbulent natural convection heat transfer in a lower plenum during external cooling using the COSMO code

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Sawatari, Y.; Imada, T. [Fuji Research Institute Corporation, Tokyo (Japan)

    2000-11-01

    The behavior of a large volumetrically heated melt pool is important to evaluate the feasibility of in-vessel retention by external flooding as an accident management. The COSMO (Coolability Simulation of Molten corium during severe accident) code has been developed at NUPEC to simulate turbulent natural convection heat transfer with internal heat source. The COSMO code solves thermal hydraulic conservation equations with turbulent model and can simulate melting and solidification process. The standard k-{epsilon} model has a limitation to describe the turbulent natural convection in the very high Rayleigh number condition (10{sup 16}-10{sup 17}) assumed to occur in a lower plenum of RPV during a severe accident. This limitation results from the assumption of an analogy of momentum and energy transfer phenomena in the standard model. In this paper the modified turbulent model in which the turbulent number is treated, as a function of the flux Richardson number derived from the experiment, has been incorporated and verified by using the BALI experiments. It was found that the prediction of averaged Nusselt number became better than that of the standard model. In order to extend the COSMO code to the actual scale analysis under the external flooding conditions, more realistic boundary condition derived from the experiments should be treated. In this work the CHF correlation from ULPU experiment or the heat transfer coefficient correlation from CYBL experiment have been applied. The preliminary analysis of an actual scale analysis has been carried out under the condition of the TMI-2 accident. (author)

  9. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  10. Detailed flow analysis for the Three Mile Island unit 2 reactor accident

    International Nuclear Information System (INIS)

    Lillington, J.N.; Lyons, A.J.

    1990-01-01

    Some particular characteristics of the steam flow in the accident at the Three Mile Island unit 2 pressurized water reactor are investigated using the AEA Technology Flow3D code. Natural circulation flows with heat removal from the core and deposition in the upper plenum are predicted during the primary heating phase. The structure of the upper plenum cylinder and core blockage, owing to material relocation, are shown to force the flow into a complex three-dimensional pattern. The flows and temperature distributions from the calculations are shown to be consistent with the observed damage pattern above the core. Despite high core temperatures, damage was limited by the operation of one of the pumps at the end of the initial heating phase. Flow3D calculations are also carried out to demonstrate that the three-dimensional buoyancy driven flows are completely destroyed by the high steam generation rates arising from the pump operation. (author)

  11. Construction of helium engineering demonstration loop (HENDEL M+A) for VHTR

    International Nuclear Information System (INIS)

    Shimomura, Saneaki; Tanaka, Toshiyuki; Nakano, Tadasuke

    1983-01-01

    The mother and adapter sections of the large structural component demonstration test loop, alias Helium Engineering Demonstration Loop, for the multipurpose, high temperature gas-cooled experimental reactor were completed in March, 1982. This facility was constructed by Fuji Electric Co., Ltd. and Kawasaki Heavy Industries Ltd. as the main contractors, and by the cooperation with Mitsubishi Heavy Industries Ltd. and Ishikawajima Harima Heavy Industries Co., Ltd. The HENDEL M+A is the testing facility of the largest scale in the world, which can handle 1000 deg C, 40 kgf/cm 2 G helium at a half flow rate of one core cooling loop of the experimental reactor. With the HENDEL M+A, the demonstration tests of fuel assembly stacks, in-core structures, large flow rate and high temperature equipment are planned. The HENDEL M+A comprises two mother loops, an adapter loop, and common auxiliary systems fon measurement and control (In), refining (Mp), makeup (Mu) and cooling water (Uc). The construction and function of such main equipment as a heater, circulators and internally insulated piping are described. The progress of the construction and the main experience during the construction, the process of operation and the performance are reported. (Kako, I.)

  12. Construction and performance tests of Helium Engineering Demonstration Loop (HENDEL) for VHTR

    International Nuclear Information System (INIS)

    Hishida, M.; Tanaka, T.; Shimomura, H.; Sanokawa, K.

    1984-01-01

    A helium engineering demonstration loop (HENDEL) was constructed and operated in JAERI in order to develop the high-temperature key components of an experimental very high temperature gas cooled reactor, like fuel stack, in-core reactor structure, hot gas duct, intermediate heat exchanger. Performance tests as well as demonstration of integrity are carried out with large-size or actual-size models of key components. The key components to be tested in HENDEL are: fuel stack and control rod; core supporting structure, or bottom structure of rector core exposed to direct impingement of high temperature core outlet flow; reactor internal components and structure; high temperature components in heat removal system (primary and secondary cooling systems)

  13. Fuel temperature prediction using a variable bypass gap size in the prismatic VHTR

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam-il; Kim, Min Hwan

    2016-01-01

    Highlights: • The bypass flow of the prismatic very high temperature reactor is analyzed. • The bypass gap sizes are calculated considering the effect of the neutron fluences and thermal expansion. • The fuel hot spot temperature and temperature profiles are calculated using the variable gap size. • The BOC, MOC and EOC condition at the cycle 07 and 14 are applied. - Abstract: The temperature gradient and hot spot temperatures were calculated in the prismatic very high temperature reactor as a function of the variable bypass gap size. Many previous studies have predicted the temperature of the reactor core based on a fixed bypass gap size. The graphite matrix of the assemblies in the reactor core undergoes a dimensional change during the operation due to thermal expansion and neutron fluence. The expansion and shrinkage of the bypass gaps change the coolant flow fractions into the coolant channels, the control rod holes, and the bypass gaps. Therefore, the temperature of the assemblies may differ compared to those for the fixed bypass gap case. The temperature gradient and the hot spot temperatures are important for the design of reactor structures to ensure their safety and efficiency. In the present study, the temperature variation of the PMR200 is studied at the beginning (BOC), middle (MOC), and end (EOC) of cycles 07 and 14. CORONA code which has been developed in KAERI is applied to solve the thermal-hydraulics of the reactor core of the PMR200. CORONA solves a fluid region using a one-dimensional formulation and a solid region using a three-dimensional formulation to enhance the computational speed and still obtain a reasonable accuracy. The maximum temperatures in the fuel assemblies using the variable bypass gaps did not differ much from the corresponding temperatures using the fixed bypass gaps. However, the maximum temperatures in the reflector assemblies using the variable bypass gaps differ significantly from the corresponding temperatures

  14. Modified laminar flow biological safety cabinet.

    Science.gov (United States)

    McGarrity, G J; Coriell, L L

    1974-10-01

    Tests are reported on a modified laminar flow biological safety cabinet in which the return air plenum that conducts air from the work area to the high efficiency particulate air filters is under negative pressure. Freon gas released inside the cabinet could not be detected outside by a freon gas detection method capable of detecting 10(-6) cc/s. When T3 bacteriophage was aerosolized 5 cm outside the front opening in 11 tests, no phage could be detected inside the cabinet with the motor-filter unit in operation. An average of 2.8 x 10(5) plaque-forming units (PFU)/ft(3) (ca. 0.028 m(3)) were detected with the motor-filter unit not in operation, a penetration of 0.0%. Aerosolization 5 cm inside the cabinet yielded an average of 10 PFU/ft(3) outside the cabinet with the motor-filter unit in operation and an average of 4.1 x 10(5) PFU/ft(3) with the motor-filter unit not in operation, a penetration of 0.002%. These values are the same order of effectiveness as the positive-pressure laminar flow biological safety cabinets previously tested. The advantages of the negative-pressure return plenum design include: (i) assurance that if cracks or leaks develop in the plenum it will not lead to discharge of contaminated air into the laboratory; and (ii) the price is lower due to reduced manufacturing costs.

  15. Numerical simulations of helium flow through prismatic fuel elements of very high temperature reactors

    International Nuclear Information System (INIS)

    Ribeiro, Felipe Lopes; Pinto, Joao Pedro C.T.A.

    2013-01-01

    The 4 th generation Very High Temperature Reactor (VHTR) most popular concept uses a graphite-moderated and helium cooled core with an outlet gas temperature of approximately 1000 deg C. The high output temperature allows the use of the process heat and the production of hydrogen through the thermochemical iodine-sulfur process as well as highly efficient electricity generation. There are two concepts of VHTR core: the prismatic block and the pebble bed core. The prismatic block core has two popular concepts for the fuel element: multihole and annular. In the multi-hole fuel element, prismatic graphite blocks contain cylindrical flow channels where the helium coolant flows removing heat from cylindrical fuel rods positioned in the graphite. In the other hand, the annular type fuel element has annular channels around the fuel. This paper shows the numerical evaluations of prismatic multi-hole and annular VHTR fuel elements and does a comparison between the results of these assembly reactors. In this study the analysis were performed using the CFD code ANSYS CFX 14.0. The simulations were made in 1/12 fuel element models. A numerical validation was performed through the energy balance, where the theoretical and the numerical generated heat were compared for each model. (author)

  16. Investigation of analytical methods in thermal stratification analysis. Evaluation of flow rates through flow holes for normal and scram conditions of 40% power operation with AQUA code

    International Nuclear Information System (INIS)

    Doi, Yoshihiro; Muramatsu, Toshiharu

    1997-08-01

    Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on structural components. Therefore it is important to evaluate characteristics of phenomena in the design of the internal structure in an LMFBR plenum. To evaluate flow rates through flow holes of the prototype fast breeder reactor, MONJU, numerical analyses were carried out with AQUA code for normal and scram conditions with 40% power operation. Through comparison of analysis results and measured temperature, thermal stratification phenomena in 300 second period after the scram was evaluated. Flow rate through the upper flow holes, the lower flow holes and annular gap between the inner barrel and the reactor vessel were evaluated with the measured temperature and the analysis results individually. (J.P.N.)

  17. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  18. A Numerical Assessment of the Air Flow Behaviour in a Conventional Compact Dry Kiln

    OpenAIRE

    Paulo Zdanski; Daniel Possamai; Miguel Vaz Jr.

    2015-01-01

    Convective drying is the most common drying strategy used in timber manufacturing industries in the developing world. In convective drying, the reduction rate of the moisture content is directly affected by the flow topology in the inlet and exit plenums and the air flow velocity in the channels formed by timber layers.Turbulence, boundary layer separation, vortex formation and recirculation regions are flow features that are intrinsically associated with the kiln geometry, which in turn dict...

  19. Dynamic PIV measurement of the effect of sound waves in the upper plenum of the boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    In recent years, power uprating of boiling power reactors has been conducted at several existing power plants in order to improve plant economy. In one power uprated plant (117.8% uprate) in the United States, steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound waves into the steam-dome. The resonance among the structure, the flow, and the pressure fluctuation resulted in the breakages. In order to clarify the basic mechanism of the resonance, previous studies were performed by conducting a point measurement of the pressure and a phase averaged measurement of the flow, although detecting the interaction among the structure, the flow, and the pressure fluctuation by the conventional method was difficult. In a preliminary study, a dynamic Particle Image Velocimetry (PIV) system was used to investigate the effect of sound on the flow. A dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over a plane extended across the entire velocity field. Using the dynamic PIV system, the influence of sound waves on the flow field was measured. As a result, when two speakers were placed diagonally and sound waves were presented in the same phase, vertical motion was strongly observed compared to horizontal motion. (author)

  20. Development of multipurpose VHTR

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Aochi, Tetsuo; Hara, Masao

    1983-01-01

    In order to introduce atomic energy, which has been utilized mostly for electric power generation, into non-electric power field which amounts to 60 - 70% of energy demand in Japan, the development of a multi-purpose high temperature gas-cooled reactor has been advanced in the Japan Atomic Energy Research Institute. Including the progress and trend of the development of high temperature gas-cooled reactors in foreign countries, the features, necessity, the state of research and development and the way of thinking about heat utilization system regarding the reactors of this type are summarized. Since the Dragon Project of OECD in 1959, the course of the development of high temperature gas-cooled reactors is described. In Japan, the utilization of nuclear thermal energy for iron-making process was investigated to resolve environmental problems and to get rid of coal. It was decided to construct an experimental reactor, aiming at the start of operation around 1990. The features of high temperature gas-cooled reactors, the utilization mode of nuclear thermal energy, the design of an experimental reactor, the research and development related to the experimental reactor and the heat utilization system for the experimental reactor, the trend of development in FRG, USA and USSR are described. (Kako, I.)

  1. A conceptual framework for the integration of flow theory and cognitive evaluation theory

    OpenAIRE

    Abuhamdeh, Sami

    2012-01-01

    Flow theory (Csikszentmihalyi, Beyond boredom and anxiety: Experiencing flow in work and play. Jossey-Bass, San Francisco, 1975) and cognitive evaluation theory (Deci and Ryan, Intrinsic motivation and self-determination in human behaviour. Plenum, New York, 1985) have each inspired a large body of research dedicated to understanding why we enjoy doing what we enjoy doing. Although both theories ostensibly address the same category of behavior—namely, intrinsically motivated behavior—there ha...

  2. A study on the FIV characteristics of a coaxial double-tube under counter flow

    Energy Technology Data Exchange (ETDEWEB)

    Song, K. N.; Kim, Y. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, S. C. [ABLEMAX, Seoul (Korea, Republic of)

    2009-07-01

    A VHTR of 200 MWt that produces heat at temperatures in the order of 950 .deg. C is being considered for the nuclear hydrogen system at KAERI. A structural pre-sizing for the coaxial double-tube type cross vessel was carried out to modulate a Flow-Induced Vibration (FIV) and a Fluid-Structure Interaction (FSI) analysis has been carried our using the ADINA code. When compared the FIV characteristics of the proposed design cases by an FSI interaction, and it was found that maximum displacements of the HGD structure are mainly affected by the flow velocity rather than the structural stiffness.

  3. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  4. Numerical study on coolant flow distribution at the core inlet for an integral pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Peng, Min Jun; Xia, Genglei; Lv, Xing; Li, Ren [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-02-15

    When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

  5. Flow analysis of HANARO flow simulated test facility

    International Nuclear Information System (INIS)

    Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin

    2002-01-01

    The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)

  6. Heat and momentum transfer in a gas coolant flow through a circular pipe in a high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1989-07-01

    In Japan Atomic Energy Research Institute (JAERI), a very high temperature gas cooled reactor (VHTR) has been researched and developed with a purpose of attaining a coolant temperature of around 1000degC at the reactor outlet. In order to design VHTR, comprehensive knowledge is required on thermo-hydraulic characteristics of laminar-turbulent transition, of coolant flow with large thermal property variation due to temperature difference, and of heat transfer deterioration. In the present investigation, experimental and analytical studies are made on a gas flow in a circular tube to elucidate the thermo-hydraulic characteristics. Friction factors and heat transfer coefficients in transitional flows are obtained. Influence of thermal property variation on the friction factor is qualitatively determined. Heat transfer deterioration in the turbulent flow subjected to intense heating is experimentally found to be caused by flow laminarization. The analysis based on a k-kL two-equation model of turbulence predicts well the experimental results on friction factors and heat transfer coefficients in flows with thermal property variation and in laminarizing flows. (author)

  7. Benchmark Analyses of Sodium Natural Convection in the Upper Plenum of the Monju Reactor Vessel. Final Report of a Coordinated Research Project 2008-2012

    International Nuclear Information System (INIS)

    2014-11-01

    The IAEA supports Member States in the area of advanced fast reactor technology development by providing a major fulcrum for information exchange and collaborative research programmes. The IAEA’s activities in this field are mainly carried out within the framework of the Technical Working Group on Fast Reactors (TWG-FR), which assists in the implementation of corresponding IAEA support, and ensures that all technical activities are in line with expressed needs of Member States. Among this broad range, the IAEA proposes and establishes coordinated research projects (CRPs), aimed at improving Member State capability in fast reactor design and analysis. An important opportunity to perform collaborative research activities was provided by the system startup tests carried out by the Japan Atomic Energy Agency (JAEA) in the prototype loop type sodium cooled fast reactor Monju, in particular a turbine trip test performed in December 1995. As the JAEA opened the experimental dataset to international collaboration in 2008, the IAEA launched the CRP on Benchmark Analyses of Sodium Natural Convection in the Upper Plenum of the Monju Reactor Vessel. The CRP, together with eight institutes from seven States, has contributed to improving capabilities in sodium cooled fast reactors simulation through code verification and validation, with particular emphasis on thermal stratification and natural circulation phenomena

  8. Effects of Coolant Temperature Changes on Reactivity for Various Coolants in a Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    The purpose of this study is to perform an investigation into the relative merit of various salts and salt compounds being considered for use as coolants in the liquid salt cooled very high temperature reactor platform (LS-VHTR). Most of the non-nuclear properties necessary to evaluate these salts are known, but the neutronic characteristics important to reactor core design are still in need of a more extensive examination. This report provides a two-fold approach to further this investigation. First, a list of qualifying salts is assembled based upon acceptable non-nuclear properties. Second, the effect on system reactivity for a secondary system transient or an off-normal or accident condition is examined for each of these salt choices. The specific incident to be investigated is an increase in primary coolant temperature beyond normal operating parameters. In order to perform the relative merit comparison of each candidate salt, the System Temperature Coefficient of Reactivity is calculated for each candidate salt at various state points throughout the core burn history. (author)

  9. A system for the discharge of gas bubbles from the coolant flow of a nuclear reactor cooled by forced circulation

    International Nuclear Information System (INIS)

    Markfort, D.; Kaiser, A.; Dohmen, A.

    1975-01-01

    In a reactor cooled by forced circulation the gas bubbles carried along with the coolant flow are separated before entering the reactor core or forced away into the external zones. For this purpose the coolant is radially guided into a plenum below the core and deflected to a tangential direction by means of flow guide elements. The flow runs spirally downwards. On the bubbles, during their dwell time in this channel, the buoyant force and a force towards the axis of symmetry of the tank are exerted. The major part of the coolant is directed into a radial direction by means of a guiding apparatus in the lower section of the channel and guided through a chimney in the plenum to the center of the reactor core. This inner chimney is enclosed by an outer chimney for the core edge zones through which coolant with a small share of bubbles is taken away. (RW) [de

  10. One-dimensional three-field model of condensation in horizontal countercurrent flow with supercritical liquid velocity

    International Nuclear Information System (INIS)

    Trewin, Richard R.

    2011-01-01

    Highlights: → CCFL in the hot leg of a PWR with ECC Injection. → Three-Field Model of counter flowing water film and entrained droplets. → Flow of steam can cause a hydraulic jump in the supercritical flow of water. → Condensation of steam on subcooled water increases the required flow for hydraulic jump. → Better agreement with UPTF experimental data than Wallis-type correlation. - Abstract: A one-dimensional three-field model was developed to predict the flow of liquid and vapor that results from countercurrent flow of water injected into the hot leg of a PWR and the oncoming steam flowing from the upper plenum. The model solves the conservation equations for mass, momentum, and energy in a continuous-vapor field, a continuous-liquid field, and a dispersed-liquid (entrained-droplet) field. Single-effect experiments performed in the upper plenum test facility (UPTF) of the former SIEMENS KWU (now AREVA) at Mannheim, Germany, were used to validate the countercurrent flow limitation (CCFL) model in case of emergency core cooling water injection into the hot legs. Subcooled water and saturated steam flowed countercurrent in a horizontal pipe with an inside diameter of 0.75 m. The flow of injected water was varied from 150 kg/s to 400 kg/s, and the flow of steam varied from 13 kg/s to 178 kg/s. The subcooling of the liquid ranged from 0 K to 104 K. The velocity of the water at the injection point was supercritical (greater than the celerity of a gravity wave) for all the experiments. The three-field model was successfully used to predict the experimental data, and the results from the model provide insight into the mechanisms that influence the flows of liquid and vapor during countercurrent flow in a hot leg. When the injected water was saturated and the flow of steam was small, all or most of the injected water flowed to the upper plenum. Because the velocity of the liquid remained supercritical, entrainment of droplets was suppressed. When the injected

  11. Analysis of a postulated accident scenario involving loss of forced flow in a LMFBR

    International Nuclear Information System (INIS)

    Moreira, M.L.

    1985-01-01

    A model to analyse a postulated accident scenario involving loss of forced flow in the reactor vessel of a LMFBR is used. Five phases of the accident are analysed: Natural Circulation, Subcooled Boiling, Nucleate Boiling, Core Dryout and Cladding melt. The heat conduction in the fuel cladding, coolant and lower and upper plenum are calculated by a lump-parameter model. Physical data of a prototype LMFBR reactor were used for the calculation. (author)

  12. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  13. Partial Cavity Flows at High Reynolds Numbers

    Science.gov (United States)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Partial cavity flows created for friction drag reduction were examined on a large-scale. Partial cavities were investigated at Reynolds numbers up to 120 million, and stable cavities with frictional drag reduction of more than 95% were attained at optimal conditions. The model used was a 3 m wide and 12 m long flat plate with a plenum on the bottom. To create the partial cavity, air was injected at the base of an 18 cm backwards-facing step 2.1 m from the leading edge. The geometry at the cavity closure was varied for different flow speeds to optimize the closure of the cavity. Cavity gas flux, thickness, frictional loads, and cavity pressures were measured over a range of flow speeds and air injection fluxes. High-speed video was used extensively to investigate the unsteady three dimensional cavity closure, the overall cavity shape and oscillations.

  14. Laser/fluorescent dye flow visualization technique developed for system component thermal hydraulic studies

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1988-01-01

    A novel laser flow visualization technique is presented together with examples of its use in visualizing complex flow patterns and plans for its further development. This technique has been successfully used to study (1) the flow in a horizontal pipe subject to temperature transients, to view the formation and breakup of thermally stratified flow and to determine instantaneous velocity distributions in the same flow at various axial locations; (2) the discharge of a stratified pipe flow into a plenum exhibiting a periodic vortex pattern; and (3) the thermal-buoyancy-induced flow channeling on the shell side of a heat exchanger with glass tubes and shell. This application of the technique to heat exchangers is unique. The flow patterns deep within a large tube bundle can be studied under steady or transient conditions. This laser flow visualization technique constitutes a very powerful tool for studying single or multiphase flows in complex thermal system components

  15. Results of the Preliminary Test in the 1/4-Scale RCCS of the PMR200 VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hwan; Bae, Yoon-Yeong; Hong, Sung-Deok; Kim, Chan-Soo; Cho, Bong-Hyun; Kim, Min-Hwan [Nuclear Hydrogen Reactor Technology Development Dep., Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The Reactor Cavity Cooling System (RCCS) is a key ex-vessel passive safety system that will ensure the safety of the PMR200, and its performance needs to be verified. For the difficulty of the full-scale test, a 1/4-scale RCCS facility, NACEF (Natural Cooling Experimental Facility), has been constructed at KAERI, and a shakedown test has been performed. A brief design and the preliminary test results of this facility are described. A 1/4-scale RCCS mockup of PMR200, NACEF, was constructed and tested preliminarily. The functioning of the facility worked quite well. Moreover, the preliminary test results show a fairly good agreement with past work except for the conductive heat transfer region in the riser bottom. After a remedy such as the installation of more precise flow meters and a more improved insulation, the test facility is likely to work well.

  16. Effects of the Air Flow Rate on The Oxidation of NBG-18 and 25 Nuclear Graphite Grades

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Kim, Gen-Chan; Jang, Joon-Hee

    2007-01-01

    For a VHTR, graphite oxidation is regarded as a critical phenomenon for degrading the integrity of graphite components under normal or abnormal conditions. The oxidation of a graphite core component can occur by air which may permeate into the primary coolant operation and/or by impurities contained in the He coolant, or by air ingress during a severe accident. It is well known that the oxidation properties of a graphite are highly dependent on the source of raw materials, impurities, microstructures (crystallites, pore structure), and on the processing and environmental parameters, such as the forming methods, the coolant type, moisture and impurity content, temperature, flow rate and the oxygen potential of the coolants. A lot of work has been performed on the oxidation of graphite since the 1960s, and, for example, in the case of the temperature, a widely accepted oxidation model on the effects of a temperature has already been developed. However, in the case of the flow rate, even for its expected effects in a VHTR, for example, as to the expected changes in the bypass flow (10-20 %) during an operation, no systematic works have been performed. In this respect, as a preliminary study, the effects of an air flow rate on the oxidation of NBG-18 and 25 nuclear graphite were investigated

  17. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  18. Transient behavior of natural circulation for boiling two-phase flow, 2

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Chiang, Jing-Hsien; Mori, Michitugu.

    1991-01-01

    In this set of experiments, natural circulation in boiling two-phase flow has been investigated for power transients, simulating the start-up process in a natural circulation BWR. This was done in order to understand the underlying mechanism of thermo-hydraulic instability which may appear during a start-up. In this paper, geysering is dealt with especially and the driving mechanism is clarified by investigating the stability related to effects of inlet velocity, subcooling, temperature in an outlet plenum and non-heated length between heated section and the outlet plenum. Furthermore, by considering these results and the operational experience in the Dodewaard reactor, recommendations on how the thermo-hydraulic instabilities can be prevented from occurring are proposed concerning a reactor configuration and start-up procedure for natural circulation BWRs. (author)

  19. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  20. Analysis of the VVER Standard Problem INSC-PSBV1 '11% Coolant Leak from Upper Plenum' with RELAP5/MOD3.2

    International Nuclear Information System (INIS)

    Melikhov, O.; Melikhov, V.; Parfenov, Yu.; Gavritenkova, O.; Lipatov, I.; Elkin, I.; Bayless, P.

    2004-01-01

    Analyses of a loss-of-coolant experiment carried out at the PSB-VVER test facility with the RELAP5/MOD3.2 code have been performed independently by analysts at the Electrogorsk Research and Engineering Center (EREC) and the Idaho National Engineering and Environmental Laboratory (INEEL). The PSB-VVER facility is a full-height scale model of a VVER 1000 reactor that is approximately 1/300 scale in volume and power. VVER Standard Problem INSC-PSBV1 represents an 11% leak from the upper plenum of the PSB-VVER facility, simulating the rupture of one of the accumulator injection lines. The safety-significant thermalhydraulic phenomena occurring in VVER type reactors addressed by this experiment were identified in the test validation matrix. Most of the phenomena of the validation matrix were reasonably simulated by RELAP5/MOD3.2 in both calculations. The major differences between the test and the calculations were the timing of the core heatup, and the thermal response to the accumulator injection cycles in both calculations. The INEEL calculation had a more extensive axial heatup, with most of the core experiencing small heat-ups. The accumulator injection was more effective in quenching the core in the test than in the INEEL calculation. This difference is attributed to the liquid distribution in the core, rather than to the heat transfer models in the code. The code calculation had a more uniform axial distribution of the liquid in the core, and the accumulator injection did not have much impact on the core liquid inventory. In the EREC calculation, only one heatup of the cladding temperature was observed for upper and middle section of the fuel rods before the final heatup. The small heat-ups were not reproduced in EREC calculation. The difference could be attributed to differences in liquid distribution, namely the core region in the EREC calculation contains more liquid over most of the transient than in the experiment. The distribution of liquid in the core in

  1. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  2. Analysis and design of the SI-simulator software system for the VHTR-SI process by using the object-oriented analysis and object-oriented design methodology

    International Nuclear Information System (INIS)

    Chang, Jiwoon; Shin, Youngjoon; Kim, Jihwan; Lee, Kiyoung; Lee, Wonjae; Chang, Jonghwa; Youn, Cheung

    2008-01-01

    The SI-simulator is an application software system that simulates the dynamic behavior of the VHTR-SI process by the use of mathematical models. Object-oriented analysis (OOA) and object-oriented design (OOD) methodologies were employed for the SI simulator system development. OOA is concerned with developing software engineering requirements and specifications that are expressed as a system's object model (which is composed of a population of interacting objects), as opposed to the traditional data or functional views of systems. OOD techniques are useful for the development of large complex systems. Also, OOA/OOD methodology is usually employed to maximize the reusability and extensibility of a software system. In this paper, we present a design feature for the SI simulator software system by the using methodologies of OOA and OOD

  3. A general coarse and fine mesh solution scheme for fluid flow modeling in VHTRS

    International Nuclear Information System (INIS)

    Clifford, I; Ivanov, K; Avramova, M.

    2011-01-01

    Coarse mesh Computational Fluid Dynamics (CFD) methods offer several advantages over traditional coarse mesh methods for the safety analysis of helium-cooled graphite-moderated Very High Temperature Reactors (VHTRs). This relatively new approach opens up the possibility for system-wide calculations to be carried out using a consistent set of field equations throughout the calculation, and subsequently the possibility for hybrid coarse/fine mesh or hierarchical multi scale CFD simulations. To date, a consistent methodology for hierarchical multi-scale CFD has not been developed. This paper describes work carried out in the initial development of a multi scale CFD solver intended to be used for the safety analysis of VHTRs. The VHTR is considered on any scale to consist of a homogenized two-phase mixture of fluid and stationary solid material of varying void fraction. A consistent set of conservation equations was selected such that they reduce to the single-phase conservation equations for the case where void fraction is unity. The discretization of the conservation equations uses a new pressure interpolation scheme capable of capturing the discontinuity in pressure across relatively large changes in void fraction. Based on this, a test solver was developed which supports fully unstructured meshes for three-dimensional time-dependent compressible flow problems, including buoyancy effects. For typical VHTR flow phenomena the new solver shows promise as an effective candidate for predicting the flow behavior on multiple scales, as it is capable of modeling both fine mesh single phase flows as well as coarse mesh flows in homogenized regions containing both fluid and solid materials. (author)

  4. Problems of mixed convection flow regime map in a vertical cylinder

    International Nuclear Information System (INIS)

    Kang, Gyeong Uk; Chung, Bum Jin

    2012-01-01

    One of the technical issues by the development of the VHTR is the mixed convection, which is the regime of heat transfer that occurs when the driving forces of both forced and natural convection are of comparable orders of magnitude. In vertical internal flows, the buoyancy force acts upward only, but forced flows can move either upward or downward. Thus, there are two types of mixed convection flows, depending on the direction of the forced flow. When the directions of the forced flow and buoyancy are the same, the flow is a buoyancy aided flow; when they are opposite, the flow is a buoyancy opposed flow. In laminar flows, buoyancy aided flow shows enhanced heat transfer compared to the pure forced convection and buoyancy opposed flow shows impaired heat transfer due to the flow velocity affected by the buoyancy forces. In turbulent flows, however, buoyancy opposed flows shows enhanced heat transfer due to increased turbulence production and buoyancy aided flow shows impaired heat transfer at low buoyancy forces and as the buoyancy increases, the heat transfer restores and at further increases of the buoyancy forces, the heat transfer is enhanced. It is of primary interests to classify which convection regime is mainly dominant. The methods most used to classify between forced, mixed and natural convection have been to refer to the classical flow regime map suggested by Meta is and Eckert. During the course of fundamental literature studies on this topic, it is found that there are some problems on the flow regime map in a vertical cylinder. This paper is to discuss problems identified through reviewing the papers composed in the classical flow regime map. We have tried to reproduce the flow regime map independently using the data obtained from the literatures and compared with the classical flow regime map and finally, the problems on this topic were discussed

  5. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the

  6. Flow instability tests for a particle bed reactor nuclear thermal rocket fuel element

    Science.gov (United States)

    Lawrence, Timothy J.

    1993-05-01

    Recent analyses have focused on the flow stability characteristics of a particle bed reactor (PBR). These laminar flow instabilities may exist in reactors with parallel paths and are caused by the heating of the gas at low Reynolds numbers. This phenomena can be described as follows: several parallel channels are connected at the plenum regions and are stabilized by some inlet temperature and pressure; a perturbation in one channel causes the temperature to rise and increases the gas viscosity and reduces the gas density; the pressure drop is fixed by the plenum regions, therefore, the mass flow rate in the channel would decrease; the decrease in flow reduces the ability to remove the energy added and the temperature increases; and finally, this process could continue until the fuel element fails. Several analyses based on different methods have derived similar curves to show that these instabilities may exist at low Reynolds numbers and high phi's ((Tfinal Tinitial)/Tinitial). These analyses need to be experimentally verified.

  7. Scale-model characterization of flow-induced vibrational response of FFTF reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Mahoney, J.J.

    1980-10-01

    Fast Test Reactor core internal and peripheral components were assessed for flow-induced vibrational characteristics under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup as an integral part of the Fast Test Reactor Vibration Program. The Hydraulic Core Mockup was an 0.285 geometric scale model of the Fast Test Reactor internals designed to simulate prototype vibrational and hydraulic characteristics. Using water to simulate sodium coolant, vibrational characteristics were measured and determined for selected model components over the scaled flow range of 36 to 110%. Additionally, in-situ shaker tests were conducted on selected Hydraulic Core Mockup outlet plenum components to establish modal characteristics. Most components exhibited resonant response at all test flow rates; however, the measured dynamic response was neither abnormal nor anomalously flow-rate dependent, and the predicted prototype components' response were deemed acceptable

  8. Predictions of the Bypass Flows in the HTR-PM Reactor Core

    International Nuclear Information System (INIS)

    Sun Jun; Chen Zhipeng; Zheng Yanhua; Shi Lei; Li Fu

    2014-01-01

    In the HTR-PM reactor core, the basic structure materials are large amount of graphite reflectors and carbon bricks. Small gaps among those graphite and carbon bricks are widespread in the reactor core so that the cold helium flow may be bypassed and not completely heated. The bypass flows in relative lower temperature would change the flow and temperature distributions in the reactor core, therefore, the accurate prediction of bypass flows need to be carried out carefully to evaluate the influence to the reactor safety. Based on the characteristics of the bypass flow problem, hybrid method of the flow network and the CFD tools was employed to represent the connections and calculate flow distributions of all the main flow and bypass flow paths. In this paper, the hybrid method was described and applied to specific bypass flow problem in the HTR-PM. Various bypass flow paths in the HTR-PM were reviewed, figured out, and modeled by the flow network and the CFD methods, including the axial vertical gaps in the side reflectors, control rod channels, absorber sphere channels and radial gap flow through keys around the hot helium plenum. The bypass flow distributions and its flow rate ratio to the total flow rate in the primary loop were also calculated, discussed and evaluated. (author)

  9. Thermo-Fluid Verification of Fuel Column with Crossflow Gap

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam Il; Kim, Min Hwan; Noh, Jae Man

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing thermal-hydraulic code to design a safe and effective VHTR. Core reliable Optimization and Network thermo-fluid Analysis (CORONA) is a code that solves the fluid region as 1-D and the solid domain as 3-D. The postulated event is modeled to secure safety during design process. The reactor core of VHTR is piled with multi-fuel block layers. The helium gas goes through coolant channel holes after distributed from upper plenum. The fuel blocks are irradiated during operation and there might be cross gaps between blocks. These cross gaps change the passage of coolant channels and could affect the temperature of fuel compact. Therefore, two types of single fuel assembly (i. e., standard and Reserved Shutdown Control (RSC) hole fuel assemblies) were investigated in this study. The CORONA, thermo-fluid analysis code, has been developing to compute the reactor core of VHTR. Crossflow model was applied to predict temperature and flow distribution between fuel blocks in this study. The calculated results are compared with the data of commercial software, CFX. The temperature variations along the axial direction well agree for both standard / RSC fuel assemblies. The flow redistribution due to crossflow matches well. The hot spot temperature and locations might differ depending on the cross gap size. This research will be done in detail for further study

  10. Investigation of flow stabilization in a compact reactor vessel of a FBR. Flow visualization in a reactor vessel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Igarashi, Minoru; Kimura, Nobuyuki; Kamide, Hideki

    2002-01-01

    In the feasibility studies of Commercialized Fast Breeder Reactor Cycle System, a compact reactor vessel is considered from economical improvement point of a sodium cooled loop type fast reactor. The flow field was visualized by water experiment for a reactor vessel with 'a column type UIS (Upper Internal Structure)', which has a slit for fuel handling mechanism and is useful for a compact fast reactor. In this research, the 1/20 scale test equipment using water was made to understand coolant flow through a slit of a column type UIS' and fundamental behavior of reactor upper plenum flow. In the flow visualization tests, tracer particles were added in the water, and illuminated by the slit-shaped pulse laser. The flow visualization image was taken with a CCD camera. We obtained fluid velocity vectors from the visualization image using the Particle Imaging Velocimetry (PIV). The results are as follows. 1. Most of coolant flow through a slit of 'column type UIS' arrived the dip plate directly. In the opposite side of a slit, most of coolant flowed toward reactor vessel wall before it arrived the dip plate. 2. The PIV was useful to measure the flow field in the reactor vessel. The obtained velocity field was consistent with the flow visualization result. 3. The jet through the UIS slit was dependent on the UIS geometry. There is a possibility to control the jet by the UIS geometry. (author)

  11. Inhalational anaesthesia with low fresh gas flow

    Directory of Open Access Journals (Sweden)

    Christian Hönemann

    2013-01-01

    Full Text Available During the inhalation of anaesthesia use of low fresh gas flow (0.35-1 L/min has some important advantages. There are three areas of benefit: pulmonary - anaesthesia with low fresh gas flow improves the dynamics of inhaled anaesthesia gas, increases mucociliary clearance, maintains body temperature and reduces water loss. Economic - reduction of anaesthesia gas consumption resulting in significant savings of > 75% and Ecological - reduction in nitrous oxide consumption, which is an important ozone-depleting and heat-trapping greenhouse gas that is emitted. Nevertheless, anaesthesia with high fresh gas flows of 2-6 L/min is still performed, a technique in which rebreathing is practically negligible. This special article describes the clinical use of conventional plenum vaporizers, connected to the fresh gas supply to easily perform low (1 L/min, minimal (0.5 L/min or metabolic flow anaesthesia (0.35 L/min with conventional Primus Draeger® anaesthesia machines in routine clinical practice.

  12. UPTF/TEST10B/RUN081, Steam/Water Flow Phenomena Reflood PWR Cold Leg Break LOCA

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of test facility: The Upper Plenum Test Facility (UPTF) is a geometrical full-scale simulation of the primary system of the four-loop 1300 MWe Siemens/KWU pressurized water reactor (PWR) at Grafenrheinfeld. The test vessel, upper plenum and its internals, downcomer, primary loops, pressurizer and surge line are replicas of the reference plant. The core, coolant pumps, steam generators and containment of a PWR are replaced by simulators which simulate the boundary and initial conditions during end-of-blowdown, refill and reflood phase following a loss-of-coolant accident (LOCA) with a hot or cold leg break. The break size and location can be simulated in the broken loop. The emergency core coolant (ECC) injection systems at the UPTF are designed to simulate the various ECC injection modes, such as hot leg, upper plenum, cold leg, downcomer or combined hot and cold leg injection of different ECC systems of German and US/Japan PWRs. Moreover, eight vent valves are mounted in the core barrel above the hot leg nozzle elevation for simulation of ABB and B and W PWRs. The UPTF primary system is divided into the investigation and simulation areas. The investigation areas, which are the exact replicas of a GPWR, consist of the upper plenum with internals, hot legs, cold legs and downcomer. The realistic thermal-hydraulic behavior in the investigation areas is assured by appropriate initial and boundary conditions of the area interface. The boundary conditions are realized by above mentioned simulators, the setup and the operation of which are based on small-scale data and mathematical models. The simulation areas include core simulator, steam generator simulators, pump simulators and containment simulator. The steam production and entrainment in a real core during a LOCA are simulated by steam and water injection through the core simulator. 2 - Description of test: Investigation of steam/water flow phenomena at the upper tie plate and in the upper plenum and

  13. Numerical evaluation of flow through a prismatic very high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Barros Filho, Jose A.; Santos, Andre A.C.; Navarro, Moyses A.; Ribeiro, Felipe Lopes

    2011-01-01

    The High-temperature Gas-cooled reactor (HTGR) is a Next Generation Nuclear System that has a good chance to be used as energy generation source in the near future owing to its potential capacity to supply hydrogen without greenhouse gas emission for the future humanity. Recently, improvements in the HTGR design led to the Very High Temperature Reactor (VHTR) concept in which the outlet temperature of the coolant gas reaches to 1000 deg C increasing the efficiency of the hydrogen and electricity generation. Among the core concepts emerging in the VHTR development stands out the prismatic block which uses coated fuel microspheres named TRISO pressed into cylinders and assembled in hexagonal graphite blocks staked to form columns. The graphite blocks contain flow channels around the fuel cylinders for the helium coolant. In this study an analysis is performed using the CFD code CFX 13.0 on a prismatic fuel assembly in order to investigate its thermo-fluid dynamic performance. The simulations were made in a 1/12 fuel element model of the GT-MHR design which was developed by General Atomics. A numerical mesh verification process based on the Grid Convergence Index (GCI) was performed using five progressively refined meshes to assess the numerical uncertainty of the simulation and determine adequate mesh parameters. An analysis was also performed to evaluate different methods to define the inlet and outlet boundary conditions. In this study simulations of models with and without inlet and outlet plena were compared, showing that the presence of the plena offers a more realistic flow distribution. (author)

  14. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Energy Technology Data Exchange (ETDEWEB)

    Avital, E J; Salvatore, E [School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd London E1 4NS (United Kingdom); Munjiza, A [Civil Engineering, University of Split, Livanjska 2100 Split (Croatia); Suponitsky, V; Plant, D; Laberge, M, E-mail: e.avital@qmul.ac.uk [General Fusion Inc.,108-3680 Bonneville Place, Burnaby, BC V3N 4T5 (Canada)

    2017-08-15

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots. (paper)

  15. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Science.gov (United States)

    Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.

    2017-08-01

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.

  16. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    Science.gov (United States)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  17. Assessment of some interfacial shear correlations in a model of ECC bypass flow in PWR reactor downcomer

    International Nuclear Information System (INIS)

    Popov, N.K.; Rohatgi, U.S.

    1987-01-01

    The bypass/refill process in the PWR reactor downcomer, following a large rupture of a cold leg coolant supply pipe, is a complicated thermo-hydraulic two-phase flow phenomenon. Mathematical modeling of such phenomena is always accompanied with a difficult task of selection of suitable constitutive correlations. In a typically hydrodynamic phenomenon, like ECC refill process of the reactor lower plenum is considered, the phasic interfacial friction is the most influential constitutive correlation. Therefore, assessment of the well-known widely-used interfacial friction constitutive correlations in the model of ECC bypass/refill process, is the subject of this paper

  18. Preliminary Calculations of Bypass Flow Distribution in a Multi-Block Air Test

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il

    2011-01-01

    The development of a methodology for the bypass flow assessment in a prismatic VHTR (Very High Temperature Reactor) core has been conducted at KAERI. A preliminary estimation of variation of local bypass flow gap size between graphite blocks in the NHDD core were carried out. With the predicted gap sizes, their influence on the bypass flow distribution and the core hot spot was assessed. Due to the complexity of gap distributions, a system thermo-fluid analysis code is suggested as a tool for the core thermo-fluid analysis, the model and correlations of which should be validated. In order to generate data for validating the bypass flow analysis model, an experimental facility for a multi-block air test was constructed at Seoul National University (SNU). This study is focused on the preliminary evaluation of flow distribution in the test section to understand how the flow is distributed and to help the selection of experimental case. A commercial CFD code, ANSYS CFX is used for the analyses

  19. Measurement of two-phase flow momentum with force transducers

    International Nuclear Information System (INIS)

    Hardy, J.E.; Smith, J.E.

    1990-01-01

    Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs

  20. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  1. Numerical modeling of an all vanadium redox flow battery.

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  2. Analysis of reverse flow in inverted U-tubes of steam generator under natural circulation condition

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Liu Jinggong; Qin Shiwei

    2008-01-01

    In this paper, we report on the analysis of reverse flow in inverted U-tubes of a steam generator under natural circulation condition. The mechanism of reverse flow in inverted U-tubes of the steam generator with natural circulation is graphically analyzed by using the full-range characteristic curve of parallel U-tubes. The mathematical model and numerical calculation method for analyzing the reverse flow in inverted U-tubes of the steam generator with natural circulation have been developed. The reverse flow in an inverted U-tube steam generator of a simulated pressurized water reactor with natural circulation in analyzed. Through the calculation, the mass flow rates of normal and reverse flows in individual U-tubes are obtained. The predicted sharp drop of the fluid temperature in the inlet plenum of the steam generator due to reverse flow agrees very well with the experimental data. This indicates that the developed mathematical model and solution method can be used to correctly predict the reverse flow in the inverted U-tubes of the steam generator with natural circulation. The obtained results also show that in the analysis of natural circulation flow in the primary circuit, the reverse flow in the inverted U-tubes of the steam generator must be taken into account. (author)

  3. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  4. Development of the three dimensional flow model in the SPACE code

    International Nuclear Information System (INIS)

    Oh, Myung Taek; Park, Chan Eok; Kim, Shin Whan

    2014-01-01

    SPACE (Safety and Performance Analysis CodE) is a nuclear plant safety analysis code, which has been developed in the Republic of Korea through a joint research between the Korean nuclear industry and research institutes. The SPACE code has been developed with multi-dimensional capabilities as a requirement of the next generation safety code. It allows users to more accurately model the multi-dimensional flow behavior that can be exhibited in components such as the core, lower plenum, upper plenum and downcomer region. Based on generalized models, the code can model any configuration or type of fluid system. All the geometric quantities of mesh are described in terms of cell volume, centroid, face area, and face center, so that it can naturally represent not only the one dimensional (1D) or three dimensional (3D) Cartesian system, but also the cylindrical mesh system. It is possible to simulate large and complex domains by modelling the complex parts with a 3D approach and the rest of the system with a 1D approach. By 1D/3D co-simulation, more realistic conditions and component models can be obtained, providing a deeper understanding of complex systems, and it is expected to overcome the shortcomings of 1D system codes. (author)

  5. De-entrainment phenomena on vertical tubes in droplet cross flow. Informal report

    International Nuclear Information System (INIS)

    Dallman, J.C.; Kirchner, W.L.

    1980-04-01

    In this study, flow conditions in the upper plenum of a PWR during the reflood stage of a loss-of-coolant accident (LOCA) are simulated using water sprays and a draft-induced wind tunnel. The de-entrainment efficiencies of isolated structures are presented for a variety of air-water droplet cross flow conditions. Since droplet splashing and/or bouncing from the draining liquid film is not accounted for in classical inertial impaction theory, there is substantial disagreement between measurement and the theory. The de-entrainment efficiencies of isolated tubes are extrapolated to those of tubes in a multiple tube array, and a predictive relation is presented for the overall de-entrainment eficiency of multiple tube arrays

  6. Particle image velocimetry measurements of the flow in the converging region of two parallel jets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huhu, E-mail: huhuwang@tamu.edu; Lee, Saya, E-mail: sayalee@tamu.edu; Hassan, Yassin A., E-mail: y-hassan@tamu.edu

    2016-09-15

    Highlights: • The flow behaviors in the converging region were non-intrusively investigated using PIV. • The PIV results using two measuring scales and LDV data matched very well. • Significant momentum transfer was observed in the merging region right after the merging point. • Instantaneous vector field revealed characteristic interacting patterns of the jets. - Abstract: The interaction between parallel jets plays a critical role in determining the characteristics of the momentum and heat transfer in the flow. Specifically for next generation VHTR, the output temperature will be about 900 °C, and any thermal oscillations will create safety issues. The mixing variations of the coolants in the reactor core may influence these power oscillations. Numerous numerical tools such as computational fluid dynamics (CFD) simulations have been used to support the reactor design. The validation of CFD method is important to ensure the fidelity of the calculations. This requires high-fidelity, qualified benchmark data. Particle image velocimetry (PIV), a non-intrusive measuring technique, was used to provide benchmark data for resolving a simultaneous flow field in the converging region of two submerged parallel jets issued from rectangular channels. The jets studied in this work had an equal discharge velocity at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses and z-component vorticity were studied. The streamwise mean velocity measured by PIV and LDV were compared, and they agreed very well.

  7. Numerical Simulation of a Coolant Flow and Heat Transfer in a Pebble Bed Reactor

    International Nuclear Information System (INIS)

    In, Wang-Kee; Kim, Min-Hwan; Lee, Won-Jae

    2008-01-01

    Pebble Bed Reactor(PBR) is one of the very high temperature gas cooled reactors(VHTR) which have been reviewed in the Generation IV International Forum as potential sources for future energy needs, particularly for a hydrogen production. The pebble bed modular reactor(PBMR) exhibits inherent safety features due to the low power density and the large amount of graphite present in the core. PBR uses coated fuel particles(TRISO) embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the PBR core during a reactor operation and the coolant flows around randomly distributed spheres. For the reliable operation and the safety of the PBR, it is important to understand the coolant flow structure and the fuel pebble temperature in the PBR core. There have been few experimental and numerical studies to investigate the fluid and heat transfer phenomena in the PBR core. The objective of this paper is to predict the fluid and heat transfer in the PBR core. The computational fluid dynamics (CFD) code, STAR-CCM+(V2.08) is used to perform the CFD analysis using the design data for the PBMR400

  8. Accidents and transients analyses of a super fast reactor with single flow pass core

    International Nuclear Information System (INIS)

    Sutanto,; Oka, Yoshiaki

    2014-01-01

    Highlights: • Safety analysis of a Super FR with single flow pass core is conducted. • Loss of feed water flow leads to a direct effect on the loss of fuel channel flow. • The core pressure is sensitive to LOCA accidents due to the direct effect. • Small LOCA introduces a critical break. • The safety criteria for all selected events are satisfied. - Abstract: The supercritical water cooled fast reactor with single flow pass core has been designed to simplify refueling and the structures of upper and lower mixing plenums. To evaluate the safety performance, safety analysis has been conducted with regard to LOCA and non-LOCA accidents including transient events. Safety analysis results show that the safety criteria are satisfied for all selected events. The total loss of feed water flow is the most important accident which the maximum cladding surface temperature (MCST) is high due to a direct effect of the accident on the total loss of flow in all fuel assemblies. However, actuation of the ADS can mitigate the accident. Small LOCA also introduces a critical break at 7.8% break which results high MCST at BOC because the scram and ADS are not actuated. Early ADS actuation is effective to mitigate the accident. In large LOCA, 100% break LOCA results a high MCST of flooding phase at BOC due to high power peaking at the bottom part. Use of high injection flow rate by 2 LPCI units is effective to decrease the MCST

  9. Analytical evaluation of two-phase natural circulation flow characteristics under external reactor vessel cooling

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2009-01-01

    This work proposes an analytical method of evaluating the effects of design and operating parameters on the low-pressure two-phase natural circulation flow through the annular shaped gap at the reactor vessel exterior surface heated by corium (molten core) relocated to the reactor vessel lower plenum after loss of coolant accidents. A natural circulation flow velocity equation derived from steady-state mass, momentum, and energy conservation equations for homogeneous two-phase flow is numerically solved for the core melting conditions of the APR1400 reactor. The solution is compared with existing experiments which measured natural circulation flow through the annular gap slice model. Two kinds of parameters are considered for this analytical method. One is the thermal-hydraulic conditions such as thermal power of corium, pressure and inlet subcooling. The others are those for the thermal insulation system design for the purpose of providing natural circulation flow path outside the reactor vessel: inlet flow area, annular gap clearance and system resistance. A computer program NCIRC is developed for the numerical solution of the implicit flow velocity equation.

  10. Modeling and analysis of the unprotected loss-of-flow accident in the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Morris, E.E.; Dunn, F.E.; Simms, R.; Gruber, E.E.

    1985-01-01

    The influence of fission-gas-driven fuel compaction on the energetics resulting from a loss-of-flow accident was estimated with the aid of the SAS3D accident analysis code. The analysis was carried out as part of the Clinch River Breeder Reactor licensing process. The TREAT tests L6, L7, and R8 were analyzed to assist in the modeling of fuel motion and the effects of plenum fission-gas release on coolant and clad dynamics. Special, conservative modeling was introduced to evaluate the effect of fission-gas pressure on the motion of the upper fuel pin segment following disruption. For the nominal sodium-void worth, fission-gas-driven fuel compaction did not adversely affect the outcome of the transient. When uncertainties in the sodium-void worth were considered, however, it was found that if fuel compaction occurs, loss-of-flow driven transient overpower phenomenology could not be precluded

  11. Analysis of the UPTF Separate Effects Test 11 (steam-water counter-current flow in the broken loop hot leg) using RELAP5/MOD2

    International Nuclear Information System (INIS)

    Dillistone, M.J.

    1989-08-01

    RELAP5/MOD2 predictions of countercurrent flow limitation in the UPTF hot leg separate effects Test (test 11) are compared with the experimental data. The code underestimates, by a factor of more than three, the gas flow necessary to prevent liquid runback from the steam generator, and this is shown to be due to an oversimplified flow-regime map which does not allow the possibility of stratified flow in the hot leg riser. The predicted countercurrent flow is also shown to depend, wrongly, on the depth of liquid in the steam generator plenum. The same test is also modelled using a version of the code in which stratified flow in the riser is made possible. The gas flow needed to prevent liquid runback is then predicted quite well, but at all lower gas flows the code predicts that the flow is completely unrestricted - i.e. liquid flows between full flow and zero flow are not predicted. This is shown to happen because the code cannot calculate correctly the liquid level in the hot leg, mainly because of a numerical effect of upwind donoring in the momentum flux terms of the code's basic equations. It is also shown that the code cannot model the considerable effect of the ECCS injection pipe (which runs inside the hot leg) on the liquid level. (author)

  12. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  13. Heat transfer and fluid flow aspects of fuel--coolant interactions

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon

  14. A probabilistic method for determining effluent temperature limits for flow instability for SRS reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.J.; White, A.M.

    1990-06-01

    This manual describes the uncertainty analysis used to determine the effluent temperature limits for a Mark 22 charge in the Savannah River Site production reactors. The postulated accident scenario is a DEGB/LOCA resulting from a coolant pipe break at the plenum inlet accompanied by the safety rod failure described in the previous chapter. The analysis described in this manual is used to calculate the limits for the flow instability phase of the accident. For this phase of the accident, the limits criterion is that the Stanton number does not exceed 0.00455 [1]. The limits are determined for a specified 84% probability that the Stanton number will not exceed 0.00455 in any assembly in the core.

  15. Simulated experimental research on flow field near control rod guide tubes

    International Nuclear Information System (INIS)

    Yu Ping'an; Shen Xiuzhong; Yang Guanyue; He Fangzheng; Gao Weiguo; Zhang Zhiyi; Tian Ji'an

    1997-01-01

    The paper presents the velocity measurement in the 1/4 scale transparent model of PWR pressure vessel upper plenum of 300 MW nuclear power plant by employing dynamic resistance strain foil velocity measurement technology and laser Doppler velocity measurement technology which have no effect on the flow field. In the experiment water is chosen as the fluid. As a result of the measurement the hydraulic load on the control rods is clarified and the experimental basis is provided for the analysis of whether the control rods are moving upward and downward freely and drop rapidly in emergency case by order. Meantime it also provides the experimental basis for the optical design of the control rod guide tubes and bundles

  16. A probabilistic method for determining effluent temperature limits for flow instability for SRS reactors

    International Nuclear Information System (INIS)

    Hardy, B.J.; White, A.M.

    1990-06-01

    This manual describes the uncertainty analysis used to determine the effluent temperature limits for a Mark 22 charge in the Savannah River Site production reactors. The postulated accident scenario is a DEGB/LOCA resulting from a coolant pipe break at the plenum inlet accompanied by the safety rod failure described in the previous chapter. The analysis described in this manual is used to calculate the limits for the flow instability phase of the accident. For this phase of the accident, the limits criterion is that the Stanton number does not exceed 0.00455 [1]. The limits are determined for a specified 84% probability that the Stanton number will not exceed 0.00455 in any assembly in the core

  17. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  18. EXAMINATION OF A PROPOSED VALIDATION DATA SET USING CFD CALCULATIONS

    International Nuclear Information System (INIS)

    Johnson, Richard W.

    2009-01-01

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for such for future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present article presents new results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made

  19. Validation Plan of Turbulence Models for Internal Gas Flow Analysis in a Heated Rectangular Riser Duct

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Yeob; Shin, Dong-Ho; Park, Goon-Cherl; Cho, Hyoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Kim, Chan-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    VHTR being developed at Korea Atomic Energy Research Institute adopts an air-cooled Reactor Cavity Cooling System (RCCS) incorporating rectangular riser channels to remove the afterheat emitted from the reactor vessel. Because the performance of RCCS is determined by heat removal rate through the RCCS riser, it is important to understand the heat transfer phenomena in the RCCS riser to ensure the safety of the reactor. In the mixed convection, due to the buoyance force induced by temperature and density differences, local flow structure and heat transfer mode near the heated wall have significantly dissimilar characteristics from both forced convection and free convection. In this study, benchmark calculation was conducted to reproduce the previous statements that V2F turbulence model can capture the mixed convection phenomena with the Shehata's experimental data. Then, the necessity of the model validation for the mixed convection phenomena was confirmed with the CFD analyses for the geometry of the prototype RCCS riser. For the purpose of validating the turbulence models for mixed convection phenomena in the heated rectangular riser duct, validation plan with three experimental tests was introduced. Among them, the flow visualization test facility with preserved cross-section geometry was introduced and a preliminary test result was shown.

  20. Stability management of high speed axial flow compressor stage through axial extensions of bend skewed casing treatment

    Directory of Open Access Journals (Sweden)

    DilipkumarBhanudasji Alone

    2016-09-01

    Full Text Available This paper presents the experimental results to understand the performance of moderately loaded high speed single stage transonic axial flow compressor subjected to various configurations of axial extensions of bend skewed casing treatment with moderate porosity. The bend skewed casing treatment of 33% porosity was coupled with rectangular plenum chamber of depth equal to the slots depth. The five axial extensions of 20%, 40%, 60%, 80% and 100% were used for the experimental evaluations of compressor performance. The main objective was to identify the optimum extension of the casing treatment with reference to rotor leading edge which results in maximum stall margin improvements with minimum loss in the stage efficiency. At each axial extension the compressor performance is distinctive. The improvement in the stall margin was very significant at some axial extensions with 4%–5% penalty in the stage efficiency. The compressors stage shows recovery in terms of efficiency at lower axial extensions of 20% and 40% with increase in the peak stage efficiency. Measurements of flow parameters showed the typical behaviors at near stall flow conditions. Hot wire sensor was placed at the rotor upstream in the tip region to capture the oscillations in the inlet axial and tangential velocities at stall conditions. In the absence of casing treatment the compressor exhibit abrupt stall with very high oscillations in the inlet axial and tangential velocity of the flow. The extents of oscillations reduce with bend skewed casing treatment. Few measurements were also performed in the plenum chamber and salient results are presented in this paper.

  1. Calculation of local flow conditions in the lower core of a PWR with code-Saturne

    International Nuclear Information System (INIS)

    Fournier, Y.

    2003-01-01

    In order to better understand the stresses to which fuel rods are subjected, we need to improve our knowledge of the fluid flow inside the core. A code specialized for calculations in tube bundles is used to calculate the flow inside the whole of the core, with a resolution at the assembly level. Still, it is necessary to obtain realistic entry conditions, and these depend on the flow in the downcomer and lower plenum. Also, the flow in the first stages of the core features 4 incoming jets per assembly, and requires a resolution much finer than that used for the whole core calculation. A series of calculations are thus run with our incompressible Navier-Stokes solver, Code-Saturne, using a classical Ranse turbulence model. The first calculations involve a detailed geometry, including part of the cold legs, downcomer, lower plenum, and lower core of a pressurized water reactor. The level of detail includes most obstacles below the core. The lower core plate, being pierced with close to 800 holes, cannot be realistically represented within a practical mesh size, so that a head loss model is used. The lower core itself requiring even more detail is also represented with head losses. We make full use of Code-Saturne's non conforming mesh possibilities to represent a complex geometry, being careful to retain a good mesh quality. Starting just under the lower core, the mesh is aligned with fuel rod assemblies, so that different types of assemblies can be represented through different head loss coefficients. These calculations yield steady-state or near steady-state results, which are compared to experimental data, and should be sufficient to yield realistic entry conditions for full core calculations at assembly width resolution, and beyond those mechanical strain calculations. We are also interested in more detailed flow conditions and fluctuations in the lower core area, so as to better quantify vibrational input. This requires a much higher resolution, which we limit

  2. Physical interpretation of geysering phenomena and periodic boiling instability at low flows

    International Nuclear Information System (INIS)

    Duffey, R.B.; Rohatgi, U.S.

    1996-01-01

    Over 30 years ago, Griffith showed that unstable and periodic initial boiling occurred in stagnant liquids in heated pipes coupled to a cooler or condensing plenum volume. This was called ''geysering'', and is a similar phenomenon to the rapid nucleation and voiding observed in tubes filled with superheated liquid. It is also called ''bumping'' when non-uniformly heated water or a chemical suddenly boils in laboratory glassware. In engineering, the stability and predictability has importance to the onset of bulk boiling in a natural and forced circulation loops. The latest available data show the observed stability and periodicity of the onset of boiling flow when there is a plenum, multiple heated channels, and a sustained subcooling in a circulating loop. We examine the available data, both old and new, and develop a new theory to illustrate the simple physics causing the observed periodicity of the flow. We examine the validity of the theory by comparison to all the geysering data, and develop a useful and simple correlation. We illustrate the equivalence of the onset of geysering to the onset of static instability in subcooled boiling. We also derive the stability boundary for geysering, utilizing turbulent transport analysis to determine the effects of pressure and other key parameters. This new result explains the greater stability region observed at higher pressures. The paper builds on the 30 years of quite independent thermal hydraulic work that is still fresh and useful today. We discuss the physical interpretation of geysering onset with a consistent theory, and show where refinements would be useful to the data correlations

  3. Flow regimes

    International Nuclear Information System (INIS)

    Kh'yuitt, G.

    1980-01-01

    An introduction into the problem of two-phase flows is presented. Flow regimes arizing in two-phase flows are described, and classification of these regimes is given. Structures of vertical and horizontal two-phase flows and a method of their identification using regime maps are considered. The limits of this method application are discussed. The flooding phenomena and phenomena of direction change (flow reversal) of the flow and interrelation of these phenomena as well as transitions from slug regime to churn one and from churn one to annular one in vertical flows are described. Problems of phase transitions and equilibrium are discussed. Flow regimes in tubes where evaporating liquid is running, are described [ru

  4. Flow Induced Vibration Program at Argonne National Laboratory

    Science.gov (United States)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  5. Flow Induced Vibration Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse

  6. Design concept of the HPLWR moderator flow path

    International Nuclear Information System (INIS)

    Koehly, Christina; Schulenberg, Thomas; Starflinger, Joerg

    2009-01-01

    The latest design concept of the High Performance Light Water Reactor (HPLWR) includes a thermal core in which supercritical water at 25 MPa inlet pressure is heated up from 280degC reactor inlet temperature to 500degC core exit temperature in three steps with intermediate coolant mixing to minimize peak cladding temperatures of the fuel rods. Prior to entering the first fuel assemblies, the coolant is used as moderator in water rods inside assemblies, in the gap volume between assembly boxes, as well as in the surrounding axial or radial reflectors. Even though assembly boxes and moderator rods are designed with a certain thermal insulation, heat is generated in the moderator water or transferred to it from the superheated steam inside assemblies, causing concern of natural convection phenomena with uncontrolled neutronic feedback on the core power distribution. Moreover, bypass flows of the moderator water need to be minimized at any thermal expansion of the reactor internal structures to avoid an unpredictable moderator mass flow. The design concept of the moderator flow path described in this paper is trying to overcome these problems. Downward flow of moderator water is limited to sub-cooled conditions, well below the pseudo-critical point of supercritical water. Dedicated orifices are foreseen to allow later correction of the mass flow split. The sealing concept accounts for larger thermal expansions of reactor components by using C-rings or bellows. A welded construction is preferred wherever possible to minimize leakage. The removable steam plenum is aligned at the extractable steam pipes to minimize thermal displacements at the sealing positions. The paper is showing several design details to illustrate the technical solutions. (author)

  7. Mechanism of falling water limitation in two-phase counter flow through single hole vertical channel

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ohnuki, Akira

    1983-01-01

    In the safety evaluation at the time of loss coolant accident, which is a credible accident in LWRs, recently main effort has been concentrated to the optimum evaluation calculation, and the grasp of vapor-liquid two-phase flow phenomena has become important. As one of the important phenomena, there is the limitation of falling water in two-phase counter flow through a vertical channel. This phenomenon is divided into the limitation of falling water stored in an upper plenum to a core through an upper core-supporting plate and a tie plate at the time of reflooding, and the limitation of falling emergency core-cooling water in downcomer channels at the time of reflooding in PWRs, under the presence of rising steam flow. In both cases, the evaluation of the quantity of falling water is important, because it contributes directly to core cooling. In this research, in order to clarify the mechanism of limitation of falling water in two-phase vertical counter flow, first, two-phase flow of air-water system through a single-hole vertical channel was taken up, and the effect of main parameters was experimentally studied. At the same time, the theoretical investigation was performed, and the comparison with the experimental results obtained so far was carried out. The different mechanisms for short and long channels gave the good results. (Kako, I.)

  8. Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR

    International Nuclear Information System (INIS)

    Moriya, Shoichi

    2001-01-01

    Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)

  9. Flow visualization

    International Nuclear Information System (INIS)

    Weinstein, L.M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities. 8 refs

  10. Flow regimes

    International Nuclear Information System (INIS)

    Liles, D.R.

    1982-01-01

    Internal boundaries in multiphase flow greatly complicate fluid-dynamic and heat-transfer descriptions. Different flow regimes or topological configurations can have radically dissimilar interfacial and wall mass, momentum, and energy exchanges. To model the flow dynamics properly requires estimates of these rates. In this paper the common flow regimes for gas-liquid systems are defined and the techniques used to estimate the extent of a particular regime are described. Also, the current computer-code procedures are delineated and introduce a potentially better method is introduced

  11. RANS modeling for particle transport and deposition in turbulent duct flows: Near wall model uncertainties

    International Nuclear Information System (INIS)

    Jayaraju, S.T.; Sathiah, P.; Roelofs, F.; Dehbi, A.

    2015-01-01

    Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions

  12. Reverse primary-side flow in steam generators during natural circulation cooling

    International Nuclear Information System (INIS)

    Stumpf, H.; Motley, F.; Schultz, R.; Chapman, J.; Kukita, Y.

    1987-01-01

    A TRAC model of the Large Scale Test Facility with a 3-tube steam-generator model was used to analyze natural-circulation test ST-NC-02. For the steady state at 100% primary mass inventory, TRAC was in excellent agreement with the natural-circulation flow rate, the temperature distribution in the steam-generator tubes, and the temperature drop from the hot leg to the steam-generator inlet plenum. TRAC also predicted reverse flow in the long tubes. At reduced primary mass inventories, TRAC predicted the three natural-circulation flow regimes: single phase, two phase, and reflux condensation. TRAC did not predict the cyclic fill-and-dump phenomenon seen briefly in the test. TRAC overpredicted the two-phase natural-circulation flow rate. Since the core is well cooled at this time, the result is conservative. An important result of the analysis is that TRAC was able to predict the core dryout and heatup at approximately the same primary mass inventory as in the test. 4 refs., 8 figs., 2 tabs

  13. Flow visualization on a natural circulation inter-wrapper flow. Experimental and numerical results under a geometric condition of button type spacer pads

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, A.; Miyakoshi, H.; Hayashi, K.; Nishimura, M.; Kamide, H.; Hishida, K. [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-04-01

    Investigations on the inter-wrapper flow (IWF) in a liquid metal cooled fast breeder reactor core have been carried out. The IWF is a natural circulation flow between wrapper tubes in the core barrel where cold fluid is coming from a direct heat exchanger (DHX) in the upper plenum. It was shown by the sodium experiment using 7-subassembly core model that the IWF can cool the subassemblies. To clarify thermal-hydraulic characteristics of the IWF in the core, the water experiment was performed using the flow visualization technique. The test rig for IWF (TRIF) has the core simulating the fuel subassemblies and radial reflectors. The subassemblies are constructed featuring transparent heater to enable both Joule heating and flow visualization. The transparent heater was made of glass with thin conductor film coating of tin oxide, and the glass heater was embedded on the wall of modeled wrapper tube made of acrylic plexiglass. In the present experiment, influences of peripheral geometric parameters such as flow holes of core formers on the thermal-hydraulic field were investigated with the button type spacer pads of the wrapper tube. Through the water tests, flow patterns of the IWF were revealed and velocity fields were quantitatively measured with a particle image velocimetry (PIV). Also, no substantial influence of peripheral geometry was found on the temperature field of the IWF, as far as the button type spacer pad was applied. Numerical simulation was applied to the experimental analysis of IWF by using multidimensional code with porous body model. The numerical results reproduced the flow patterns within TRIF and agreed well to experimental temperature distributions, showing capability of predicting IWF with porous body model. (author)

  14. Simulation of turbulent flow over staggered tube bundles using multi-relaxation time lattice Boltzmann method

    International Nuclear Information System (INIS)

    Park, Jong Woon; Choi, Hyun Gyung

    2014-01-01

    A turbulent fluid flow over staggered tube bundles is of great interest in many engineering fields including nuclear fuel rods, heat exchangers and especially a gas cooled reactor lower plenum. Computational methods have evolved for the simulation of such flow for decades and lattice Boltzmann method (LBM) is one of the attractive methods due to its sound physical basis and ease of computerization including parallelization. In this study to find computational performance of the LBM in turbulent flows over staggered tubes, a fluid flow analysis code employing multi-relaxation time lattice Boltzmann method (MRT-LBM) is developed based on a 2-dimensional D2Q9 lattice model and classical sub-grid eddy viscosity model of Smagorinsky. As a first step, fundamental performance MRT-LBM is investigated against a standard problem of a flow past a cylinder at low Reynolds number in terms of drag forces. As a major step, benchmarking of the MRT-LBM is performed over a turbulent flow through staggered tube bundles at Reynolds number of 18,000. For a flow past a single cylinder, the accuracy is validated against existing experimental data and previous computations in terms of drag forces on the cylinder. Mainly, the MRT-LBM computation for a flow through staggered tube bundles is performed and compared with experimental data and general purpose computational fluid dynamic (CFD) analyses with standard k-ω turbulence and large eddy simulation (LES) equipped with turbulence closures of Smagrinsky-Lilly and wall-adapting local eddy-viscosity (WALE) model. The agreement between the experimental and the computational results from the present MRT-LBM is found to be reasonably acceptable and even comparable to the LES whereas the computational efficiency is superior. (orig.)

  15. Simulation of turbulent flow over staggered tube bundles using multi-relaxation time lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon; Choi, Hyun Gyung [Dongguk Univ., Gyeongju (Korea, Republic of). Nuclear and Energy Engineering Dept.

    2014-02-15

    A turbulent fluid flow over staggered tube bundles is of great interest in many engineering fields including nuclear fuel rods, heat exchangers and especially a gas cooled reactor lower plenum. Computational methods have evolved for the simulation of such flow for decades and lattice Boltzmann method (LBM) is one of the attractive methods due to its sound physical basis and ease of computerization including parallelization. In this study to find computational performance of the LBM in turbulent flows over staggered tubes, a fluid flow analysis code employing multi-relaxation time lattice Boltzmann method (MRT-LBM) is developed based on a 2-dimensional D2Q9 lattice model and classical sub-grid eddy viscosity model of Smagorinsky. As a first step, fundamental performance MRT-LBM is investigated against a standard problem of a flow past a cylinder at low Reynolds number in terms of drag forces. As a major step, benchmarking of the MRT-LBM is performed over a turbulent flow through staggered tube bundles at Reynolds number of 18,000. For a flow past a single cylinder, the accuracy is validated against existing experimental data and previous computations in terms of drag forces on the cylinder. Mainly, the MRT-LBM computation for a flow through staggered tube bundles is performed and compared with experimental data and general purpose computational fluid dynamic (CFD) analyses with standard k-ω turbulence and large eddy simulation (LES) equipped with turbulence closures of Smagrinsky-Lilly and wall-adapting local eddy-viscosity (WALE) model. The agreement between the experimental and the computational results from the present MRT-LBM is found to be reasonably acceptable and even comparable to the LES whereas the computational efficiency is superior. (orig.)

  16. Heat transfer effect of an extended surface in downward-facing subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul R., E-mail: khan@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Erkan, Nejdet, E-mail: erkan@vis.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan); Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan)

    2015-12-15

    Highlights: • Compare downward-facing flow boiling results from bare and extended surfaces. • Upstream and downstream temperatures were measured on the extended surface. • Downstream temperatures exceed upstream temperatures for all flow rates. • Bubble accumulation occurs downstream on extended surface. • Extended surface heat transfer lower than bare surface as flow rate reduced. - Abstract: New BWR containment designs are considering cavity flooding as an accident management strategy. Unlike the PWR, the BWR has many Control Rod Guide Tube (CRGT) penetrations in the lower head. During a severe accident scenario with core melt in the lower plenum along with cavity flooding, the penetrations may affect the heat transfer on the ex-vessel surface and disrupt fluid flow during the boiling process. A small-scale experiment was performed to investigate the issues existing in downward-facing boiling phenomenon with an extended surface. The results were compared with a bare (flat) surface. The mass flux of 244 kg/m{sup 2} s, 215 kg/m{sup 2} s, and 177 kg/m{sup 2} s were applied in this study. CHF conditions were observed only for the 177 kg/m{sup 2} s case. The boiling curves for both types of surfaces and all flow rates were obtained. The boiling curves for the highest flow rate showed lower surface temperatures for the extended surface experiments when compared to the bare surface. The downstream location on the extended surface yielded the highest surface temperatures as the flow rate was reduced. The bubble accumulation and low velocity in the wake produced by flow around the extended surface was believed to have caused the elevated temperatures in the downstream location. Although an extended surface may enhance the overall heat transfer, a reduction in the local heat transfer was observed in the current experiments.

  17. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    International Nuclear Information System (INIS)

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-01-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  18. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Chenu, A. [Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Mikityuk, K.; Krepel, J. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland)

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  19. Flow chemistry vs. flow analysis.

    Science.gov (United States)

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Vortical flows

    International Nuclear Information System (INIS)

    Wu, Jie-Zhi; Ma, Hui-Yang; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  1. Vortical flows

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie-Zhi [Peking Univ., Beijing (China). College of Engineering; Ma, Hui-Yang [Univ. of Chinese Academy of Sciences, Beijing (China). Dept. of Physics; Zhou, Ming-De [Arizona Univ., Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering

    2015-11-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  2. Flooding and non-equilibrium in counter-current flows with reference to pressurised water reactors

    International Nuclear Information System (INIS)

    Megahed, M.M.M.

    1981-12-01

    During the refill stage of a Loss of Coolant Accident (LOCA) in a Pressurised Water Reactor (PWR) the effectiveness with which the emergency coolant penetrates to the lower plenum, and hence to the core, is of paramount importance. Results of experimental and theoretical work carried out at the University of Strathclyde on two 1/10 scale planar test sections of a PWR downcomer annulus are presented. The experiments involved the countercurrent flows of air and water and the data were compared with existing flooding correlations for tubes. It was found experimentally that, as the inlet air flowed upwards against two opposing waterfalls, an increase in air flowrate caused the waterfalls to mover closer together until a critical air flowrate was reached where the waterfalls collapsed. A theoretical model defined this collapse condition. It was shown to be analogous to the choked flow of air through a nozzle whose cross sectional area varied with pressure. Previous experimental results for steam-water mixtures on similar test sections and the present air-water data were used to study condensation effects. Non-equilibrium effects were isolated and correlated against the dependent parameters of inlet water flowrate, inlet subcooling and downcomer wall temperature. A theoretical model giving good qualitative and quantitative agreement with experiment was developed. (author)

  3. Unsteady single-phase natural circulation flow mixing prediction using CATHARE three-dimensional capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Anis Bousbia; Vlassenbroeck, Jacques [Bel V - Subsidiary of the Belgian Federal Agency for Nuclear Contro, Brussels (Belize)

    2017-04-15

    Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal–hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

  4. Dynamic characteristics of a perforated cylindrical shell for flow distribution in SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seungho; Choi, Youngin; Ha, Kyungrok [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Kyoung-Su, E-mail: pks6348@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, No-Cheol; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Jeong, Kyeong-Hoon; Park, Jin-Seok [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-303 (Korea, Republic of)

    2011-10-15

    Highlights: > A 1/12 scaled-down flow skirt is manufactured and a modal test is performed. > A finite element model predicts the added mass effect of the perforated cylindrical shell. > Modal characteristics are extracted by considering the fluid-structure interaction. - Abstract: The System-integrated Modular Advanced ReacTor (SMART) is a small nuclear reactor under development in Korea. It is equipped with a perforated cylindrical shell, which is called a flow skirt, in the lower plenum of the reactor for uniform flow distribution and to prevent inflow of debris into the core. This perforated cylindrical shell can be excited by external forces such as seismic or pump pulsation loads. The dynamic characteristics of the perforated cylindrical shell must be identified for further dynamic analysis. This research explores the modal analysis of the scaled-down flow skirt model submerged in coolant water. For the numerical simulation, finite element analysis is carried out to extract modal characteristics of the structure considering the fluid-structure interaction and we introduce the NAVMI factor for similarity analysis. In the finite element model, the whole shape of the perforated cylindrical shell is simulated instead of using the effective material properties. In addition, a 1/12 scaled-down flow skirt is manufactured, and an experiment is designed using an exciter and waterproof accelerometers for the modal test. Due to excellent agreement between the modal test results and the finite element analysis results such as natural frequencies and mode shapes, the finite element model is validated and can be used to predict the dynamic characteristics of the real flow skirt. Moreover, the natural frequency of the real flow skirt can be calculated from the NAVMI factor and is in good agreement with the FEM result.

  5. Granular flow

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Nakanishi, Hiizu

    2012-01-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing...... on the shear flow of dry granular materials and granule-liquid mixture....

  6. Flow Game

    DEFF Research Database (Denmark)

    Olsen, Jesper Lind

    2003-01-01

    Flow Game er et dialogspil, der kan bruges som ledelsesværktøj, ledertræning, samtaletræning, coachingtræning og ideudvikling m.m. Gennem dilemmakort provokeres en dialog og teori-U inspireret afklaring- og udviklingsproces, hvor der enten arbejdes på en gruppes eller et individs vision/innovatio......Flow Game er et dialogspil, der kan bruges som ledelsesværktøj, ledertræning, samtaletræning, coachingtræning og ideudvikling m.m. Gennem dilemmakort provokeres en dialog og teori-U inspireret afklaring- og udviklingsproces, hvor der enten arbejdes på en gruppes eller et individs vision...

  7. Media Flow

    DEFF Research Database (Denmark)

    Kabel, Lars

    2016-01-01

    News and other kinds of journalistic stories, 16-17 hours a day, all year round, on all platforms, also the moderated social media. The key research thesis behind this article is that the continuous and speedy stream of news stories and media content now is becoming the centre of the production...... processes and the value creation in converged multimedia newsrooms. The article identify new methods and discuss editorial challenges in handling media flow....

  8. Study of counter current flow limitation model of MARS-KS and SPACE codes under Dukler's air/water flooding test conditions

    International Nuclear Information System (INIS)

    Lee, Won Woong; Kim, Min Gil; Lee, Jeong Ik; Bang, Young Seok

    2015-01-01

    In particular, CCFL(the counter current flow limitation) occurs in components such as hot leg, downcomer annulus and steam generator inlet plenum during LOCA which is possible to have flows in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model will be evaluated with MARS-KS based on two-phase two-field governing equations and SPACE code based on two-phase three-field governing equations. This study will be conducted by comparing MARS-KS code which is being used for evaluating the safety of a Korean Nuclear Power Plant and SPACE code which is currently under assessment for evaluating the safety of the designed nuclear power plant. In this study, comparison of the results of liquid upflow and liquid downflow rate for different gas flow rate from two code to the famous Dukler's CCFL experimental data are presented. This study will be helpful to understand the difference between system analysis codes with different governing equations, models and correlations, and further improving the accuracy of system analysis codes. In the nuclear reactor system, CCFL is an important phenomenon for evaluating the safety of nuclear reactors. This is because CCFL phenomenon can limit injection of ECCS water when CCFL occurs in components such as hot leg, downcomer annulus or steam generator inlet plenum during LOCA which is possible to flow in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model was evaluated with MARS-KS and SPACE codes for studying the difference between system analysis codes with different governing equations, models and correlations. This study was conducted by comparing MARS-KS and SPACE code results of liquid upflow and liquid downflow rate for different gas flow rate to the famous Dukler

  9. Flow Control

    Science.gov (United States)

    2013-04-08

    can be written as â fj (t) =WO tanh( WIx (t)+bI)+bO, (38) where WI , WO are the input and output matrices, respectively, and bI and bO are the input...applications, present on envisioned airborne optical platforms . One of the problems is that all adaptive optical systems rely on mechanically moving some...of successfully controlling the optical aberration due to the flow over the aperture of airborne optical platforms . As outlined above, systems

  10. Experimental and numerical study on transient heat transfer for helium gas flowing over a twisted plate with different length

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Qiusheng; Fukuda, Katsuya

    2015-01-01

    This study was conducted to investigate the transient heat transfer process between the solid surface and the coolant (helium gas) in Very High Temperature Reactor (VHTR). Forced convection transient heat transfer for helium gas flowing over a twisted plate with different length was experimentally and theoretically studied. The heat generation rate of the twisted plate was increased with a function of Q = Q_0exp(t/τ)(where t is time, τ is period). Experiment was carried out at various periods ranged from 35 ms to 14 s and gas temperature of 303 K under 500 kPa. The flow velocities ranged from 4 m/s to 10 m/s. Platinum plates with a thickness of 0.1 mm and width of 4 mm were used as the test heaters. The plates were twisted with the same helical pitch of 20 mm, and length of 26.8 mm, 67.8 mm and 106.4 mm (pitch numbers of 1, 3 and 5), respectively. Based on the experimental data, it was found that the average heat transfer coefficient approaches the quasi-steady-state value when the dimensionless period τ* (τ* = τU/L, U is flow velocity, and L is effective length) is larger than about 100 and it becomes higher when τ* is small. The heat transfer coefficient decreases with the increase of twisted plate length under the same period of heat generation rate. According to the experimental data, the distribution for heat transfer coefficient along the heater is nonlinear. Numerical simulation results were obtained for average surface temperature difference, heat flux and heat transfer coefficient of the twisted plates with different length and showed reasonable agreement with experimental data. Based on the numerical simulation, mechanism of local heat transfer coefficient distribution was clarified. (author)

  11. Astrophysical Flows

    Science.gov (United States)

    Pringle, James E.; King, Andrew

    2003-07-01

    Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas

  12. Accidents of loss of flow for the ETTR-2 reactor; deterministic analysis

    International Nuclear Information System (INIS)

    El-Messiry, A.M.

    2000-01-01

    The main objective for reactor safety is to keep the fuel in a thermally safe condition with adequate safety margins during all operational modes (normal-abnormal and accidental states). To achieve this purpose an accident analysis of different design base accident (DBA) as loss of flow accident (LOFA), is required assessing reactor safety. The present work concerns this transients applied to Egypt Test and Research Reactor ETRR-3 (new reactor). An accident analysis code FLOWTR is developed to investigate the thermal behaviour of the core during such flow transients. The active core is simulated by two channels: 1 - hot channel (HC), and 2 - average channel (AC) representing the remainder of the core. Each channel is divided into four axial sections. The external loop, core plenums, and core chimney are simulated by different dynamic loops. The code includes modules for pump cast down, flow regimes, decay heat, temperature distributions, and feedback coefficients. FLOWTR is verified against results from RETRAN code, THERMIC code and commissioning tests for null transient case. The comparison shows a good agreement. The study indicates that for LOFA transients, provided the scram system is available, the core is shutdown safely by low flow signal (496.6 kg/s) at 1.4 s were the HC temperature reaches the maximum value, 45.64 o C after shutdown. On the other hand, if the scram system is unavailable, and at t = 47.33 s, the core flow decreases to 67.41 kg/s, the HC temperature increases to 164.02 o C, and the HC clad surface heat flux exceeds its critical value of 400.00 W/cm 2 resulting of fuel burnout. (author)

  13. Evaluation method for core thermohydraulics during natural circulation in fast reactors numerical predictions of inter-wrapper flow

    International Nuclear Information System (INIS)

    Kamide, H.; Kimura, N.; Miyakoshi, H.; Nagasawa, K.

    2001-01-01

    Decay heat removal using natural circulation is one of the important functions for the safety of fast reactors. As a decay heat removal system, direct reactor auxiliary cooling system has been selected in current designs of fast reactors. In this design, dumped heat exchanger provides cold sodium and it covers the reactor core outlet. The cold sodium can penetrate into the gap region between the subassemblies. This gap flow is referred as inter-wrapper flow (IWF). A numerical estimation method for such natural circulation phenomena in a reactor core has been developed, which models each subassembly as a rectangular duct with gap region between the subassemblies and also the upper plenum in a reactor vessel. This numerical simulation method was verified based on experimental data of a sodium test using 7- subassembly core model and also a water test which simulates IWF using the 1/12 sector model of a reactor core. We applied the estimation method to the natural circulation in a 600 MW class fast reactor. The temperature in the core strongly depended on IWF, flow redistribution in the core, and inter-subassembly heat transfer. It is desired for prediction methods on the natural circulation to simulate these phenomena. (author)

  14. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  15. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  16. Boron dilution transients during natural circulation flow in PWR-Experiments and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Thomas [Forschungszentrum Dresden-Rossendorf (FZD)-Institute of Safety Research, P.O. Box 510119, D-01314 Dresden (Germany)], E-mail: T.Hoehne@fzd.de; Kliem, Soeren; Rohde, Ulrich; Weiss, Frank-Peter [Forschungszentrum Dresden-Rossendorf (FZD)-Institute of Safety Research, P.O. Box 510119, D-01314 Dresden (Germany)

    2008-08-15

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loops 1:5 scaled Rossendorf coolant mixing model (ROCOM) mixing test facility. In particular thermal hydraulics analyses have shown, that weakly borated condensate can accumulate in the pump loop seal of those loops, which do not receive a safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side, the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities.

  17. Entrainment and deposition studies in two-phase cross flow: comparison between air-water and steam-water in a square horizontal duct. Technical report (final)

    International Nuclear Information System (INIS)

    Berryman, R.J.; Ralph, J.C.; Wade, C.D.

    1981-03-01

    Air-water simulation studies of two phase steam water flow relevant to the upper plenum of a PWR during reflood situations have recently been undertaken at Harwell for the US Nuclear Regulatory Commission. In order to give confidence that the simulation fluids were capable of modelling the important features of the actual system, a relatively basic comparison experiment has been carried out. Water entrainment and deposition tests have been carried out on a pair of 2.5 cm diameter vertical rods mounted in a cross flow of steam or air in a 10.2 cm x 10.2 cm tunnel. The air and steam systems exhibited similar characteristics to one another. A 'critical' film flowrate was identified for the rods which, once reached, either by injection through the sinters or by entrainment from the main two phase stream, was not exceeded with further water addition. The 'critical' film flowrate decreased with increase of cross flow velocity and was lower for air than steam at the same velocity. The results from the air and steam tests were found to be reasonably well correlated on the basis of the cross flow momentum flux of the air or steam

  18. Heat-transfer and pressure distributions for laminar separated flows downstream of rearward-facing steps with and without mass suction

    Science.gov (United States)

    Brown, R. D.; Jakubowski, A. K.

    1974-01-01

    Heat-transfer and pressure distributions were measured for laminar separated flows downstream of rearward-facing steps with and without mass suction. The flow conditions were such that the boundary-layer thickness was comparable to or larger than the step height. For both suction and no-suction cases, an increase in the step height resulted in a sharp decrease in the initial heat-transfer rates behind the step. Downstream, however, the heat transfer gradually recovered back to less than or near attached-flow values. Mass suction from the step base area increased the local heat-transfer rates; however, this effect was relatively weak for the laminar flows considered. Even removal of the entire approaching boundary layer raised the post-step heat-transfer rates only about 10 percent above the flatplate values. Post-step pressure distributions were found to depend on the entrainment conditions at separation. In the case of the solid-faced step, a sharp pressure drop behind the step was followed by a very short plateau and relatively fast recompression. For the slotted-step connected to a large plenum but without suction, the pressure drop at the base was much smaller and the downstream recompression more gradual than that for solid-faced step.

  19. Cold and hot model investigation of flow and mixing in a multi-jet flare

    Energy Technology Data Exchange (ETDEWEB)

    Pagot, P.R. [Petrobras Petroleo Brasileiro S.A., Rio de Janeiro (Brazil); Sobiesiak, A. [Windsor Univ., ON (Canada); Grandmaison, E.W. [Queen' s Univ., Kingston, ON (Canada). Centre for Advanced Gas Combustion Technology

    2003-07-01

    The oil and gas industry commonly disposes of hydrocarbon wastes by flaring. This study simulated several features of industrial offshore flares in a multi-jet burner. Cold and hot flow experiments were performed. Twenty-four nozzles mounted on radial arms originating from a central fuel plenum were used in the burner design. In an effort to improve the mixing and radiation characteristics of this type of burner, an examination of the effect of various mixing-altering devices on the nozzle exit ports was performed. Flow visualization studies of the cold and hot flow systems were presented, along with details concerning temperature, gas composition and radiation levels from the burner models. The complex flow pattern resulting when multiple jets are injected into a cross flow stream were demonstrated with the flow visualization studies from the cold model. The trajectory followed by the leading edge jet for the reference case and the ring attachments was higher but similar to the simple round jet in a cross flow. The precessing jets and the cone attachments were more strongly deflected by the cross flow with a higher degree of mixing between the jets in the nozzle region. For different firing rates, flow visualization, gas temperature, gas composition and radiative heat flux measurements were performed in the hot model studies. Flame trajectories, projected side view areas and volumes increased with firing rates for all nozzle configurations and the ring attachment flare had the smallest flame volume. The gas temperatures reached maximum values at close to 30 per cent of the flame length and the lowest gas temperature was observed for the flare model with precessing jets. For the reference case nozzle, nitrogen oxide (NOx) concentrations were in the 30 to 45 parts per million (ppm) range. The precessing jet model yielded NOx concentrations in the 22 to 24 ppm range, the lowest obtained. There was a linear dependence between the radiative heat flux from the flames

  20. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  1. An evaluation method of critical velocity for self-excited vibration of cross-shaped tube bundle in cross flow

    International Nuclear Information System (INIS)

    Inada, Fumio; Nishihara, Takashi; Yasuo, Akira; Morita, Ryo

    2002-01-01

    The applicability of the cross-shaped tube bundle as a lower plenum component of pressure vessel is examined to develop a next generation LWR in Japanese electric utilities. The flow-induced vibration characteristics are not understood well. Methods to evaluate turbulence induced vibration and vortex induced vibration were proposed by CRIEPI. In this study, vibration response is obtained experimentally to propose a method to evaluate self-excited vibration of cross-shaped tube bundle. The self-excited vibration was found to be generated when nondimensional flow velocity was above a critical value. The nondimensional critical velocity of normal configuration is 15% smaller than that of staggered configuration, which means that the nondimensional critical velocity of normal configuration can give conservative evaluation. The result of Reynolds number Re=6.2 x 10 4 agrees well with that of Re=6.8 x 10 5 , in which region, the effect of Reynolds number on the critical velocity is small. (author)

  2. Flow of Aqueous Humor

    Science.gov (United States)

    ... Home Flow of Aqueous Humor Flow of Aqueous Humor Most, but not all, forms of glaucoma are ... remains normal when some of the fluid (aqueous humor) produced by the eye's ciliary body flows out ...

  3. Detailed analysis of turbulent flows in air curtains

    NARCIS (Netherlands)

    Jaramillo, Julian E.; Perez-Segarra, Carlos D.; Lehmkuhl, Oriol; Castro, Jesus

    2011-01-01

    In order to prevent entrainment, an air curtain should provide a jet with low turbulence level, and enough momentum to counteract pressure differences across the opening. Consequently, the analysis of the discharge plenum should be taken into consideration. Hence, the main object of this paper is to

  4. Numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Z., E-mail: ssfmorghi@gmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Puente, Jesus, E-mail: jpuente720@gmail.com [Centro Federal de Educaçao Tecnologica Celso Suckowda Fonseca (CEFET), Angra dos Reis, RJ (Brazil); Baliza, Ana R., E-mail: baliza@eletronuclear.gov.br [Eletrobras Eletronuclear Angra dos Reis, RJ (Brazil)

    2017-07-01

    After a loss-of-coolant accident (LOCA) in a Pressurized Water Reactor (PWR), the temperature of the fuel elements cladding increases dramatically due to the heat produced by the fission products decay, which is not adequately removed by the vapor contained in the core. In order to avoid this sharp rise in temperature and consequent melting of the core, the Emergency Core Cooling System is activated. This system initially injects borated water from accumulator tanks of the reactor through the inlet pipe (cold leg) and the outlet pipe (hot leg), or through the cold leg only, depending on the plant manufacturer. Some manufacturers add to this, direct injection into the upper plenum of the reactor. The penetration of water into the reactor core is a complex thermo fluid dynamic process because it involves the mixing of water with the vapor contained in the reactor, added to that generated in the contact of the water with the still hot surfaces in various geometries. In some critical locations, the vapor flowing in the opposite direction of the water can control the penetration of this into the core. This phenomenon is known as Countercurrent Flow Limitation (CCFL) or Flooding, and it is characterized by the control that a gas exerts in the liquid flow in the opposite direction. This work presents a proposal to use a CFD to simulate the CCFL phenomenon. Numerical computing can provide important information and data that is difficult or expensive to measure or test experimentally. Given the importance of computational science today, it can be considered a third and independent branch of science on an equal footing with the theoretical and experimental sciences. (author)

  5. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  6. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  7. Critical heat flux under zero flow conditions in a vertical 3 X 3 rod bundle with a non-uniform axial heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok; Chun, Se Young; Moon, Sang Ki; Baek, Won Pil

    2003-11-01

    KAERI has performed an experimental study of water Critical Heat Flux (CHF) under zero flow conditions with a non-uniformly heated 3 by 3 rod bundle. Experimental conditions are in the range of a system pressure from 0.5 to 15.0 MPa and inlet water subcooling enthalpies from 67.5 to 351.5 kJ/kg. The test section used in the present experiments consisted of a vertical flow channel, upper and lower plenums, and a non-uniformly heated 3 by 3 rod bundle. The experimental results show that the CHFs in low-pressure conditions are somewhat scattered within a narrow range. As the system pressure increases, however, the CHFs show a consistent parametric trend. The CHFs occur in the upper region of the heated section, but the vertical distances of the detected CHFs from the bottom of the heated section are reduced as the system pressure increases. Even though the effects of the inlet water subcooling enthalpies and system pressure in the flooding CHF are relatively smaller than those of the flow boiling CHF, the CHF increases by increasing the inlet water subcooling enthalpies. Several existing correlations for the countercurrent flooding CHF based on Wallis's flooding correlation and Kutateladze's criterion for the onset of flooding are compared with the CHF data obtained in the present experiments to examine the applicability of the correlations.

  8. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  9. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  10. A Reliability Assessment Method for the VHTR Safety Systems

    International Nuclear Information System (INIS)

    Lee, Hyung Sok; Jae, Moo Sung; Kim, Yong Wan

    2011-01-01

    The Passive safety system by very high temperature reactor which has attracted worldwide attention in the last century is the reliability safety system introduced for the improvement in the safety of the next generation nuclear power plant design. The Passive system functionality does not rely on an external source of energy, but on an intelligent use of the natural phenomena, such as gravity, conduction and radiation, which are always present. Because of these features, it is difficult to evaluate the passive safety on the risk analysis methodology having considered the existing active system failure. Therefore new reliability methodology has to be considered. In this study, the preliminary evaluation and conceptualization are tried, applying the concept of the load and capacity from the reliability physics model, designing the new passive system analysis methodology, and the trial applying to paper plant.

  11. Why HTR/VHTR? A European point of view

    International Nuclear Information System (INIS)

    Basini, V.; Bogusch, E.; Breuil, E.; Buckthorpe, D.; Chauvet, V.; Ftitterer, M.; Van Heek, A.; Hittner, D.; Von Lensa, W.; Pirson, J.; Verrier, D.

    2008-01-01

    The (European) High Temperature Reactor Technology Network (HTR-TN) was created in 2000 by the main industrial and Research actors of nuclear energy in Europe for elaborating a strategy for developing advanced HTR technology towards industrial application and for taking initiatives for implementing this strategy, most particularly through the Euratom funded R and D programmes. HTR-TN members are convinced that the main market push for industrial deployment of a new generation of HTR will not come from utility needs for electricity generation, but from industrial process heat needs: even if HTR can be considered for satisfying particular niches of the electricity market, there will not be any incentive for utilities already experienced in the exploitation of large LWR to take the risk of a significant technology change, when no evident competitive edge would result from it. On the contrary, HTR is the sole nuclear system that can address heat needs of a large number of industrial processes that require a higher temperature than the temperature provided by all other types of industrial reactors. The possibility for HTR to address the industrial process heat market is a strong asset, as it opens to HTR a large market which is presently looking for solutions to reduce drastically CO 2 emissions, but at the same time it is a huge challenge: industrial exploitation of nuclear energy has been for the time being focused on electricity generation for which user requirements are relatively uniform. The versatility of process heat needs in terms of power, temperature, reliability, etc. will require a much larger flexibility of the nuclear heat source, which is not usual for nuclear industry, looking for competitiveness through standardisation. Therefore HTR-TN considers that the top priority innovation for HTR present development should not be missed: it is to demonstrate at an industrial scale the technical, industrial and economical feasibility of the coupling of a HTR with a process heat application, even at a reasonable temperature level ∼500-700 deg. C), and not necessarily to search for higher temperatures ∼ 800-1000 deg. C), which will be reached in the longer term, if there are significant market needs for such temperatures. After a period of 7 years dedicated to the development of base HTR technologies within several projects of the 5. and 6. Euratom Framework Programmes, HTR-TN proposes to launch in the 7. Framework Programme the development of a demonstrator coupling a HTR with an industrial process heat application. Such a development cannot be performed by the nuclear industry and research alone: it requires a close partnership with end-user industries. As a first step for building such a partnership, HTR-TN proposes, together with partners of different industries (steel, chemistry...) and Technical Support Organisations of Safety Authorities a preliminary project preparing the launching of the demonstrator design, by assessing the technical, economical and safety feasibility of the coupling, proposing coupling architectures, identifying the technical and licensing issues for coupling and defining a programme of development for the reactor, the heat transport system and the industrial heat application. (authors)

  12. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  13. Practical flow cytometry

    National Research Council Canada - National Science Library

    Shapiro, Howard M

    2003-01-01

    ... ... Conflict: Resolution ... 1.3 Problem Number One: Finding The Cell(s) ... Flow Cytometry: Quick on the Trigger ... The Main Event ... The Pulse Quickens, the Plot Thickens ... 1.4 Flow Cytometry: ...

  14. Review of zonal flows

    International Nuclear Information System (INIS)

    Diamond, P.H.; Itoh, S.-I.; Itoh, K.; Hahm, T.S.

    2004-10-01

    A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, zonal flows in nature are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave - zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying direction for progress in future research. (author)

  15. Load flow optimization and optimal power flow

    CERN Document Server

    Das, J C

    2017-01-01

    This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.

  16. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  17. Hyperspectral imaging flow cytometer

    Science.gov (United States)

    Sinclair, Michael B.; Jones, Howland D. T.

    2017-10-25

    A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.

  18. Flowing holographic anyonic superfluid

    Science.gov (United States)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2014-10-01

    We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.

  19. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  20. OpenFlow cookbook

    CERN Document Server

    Smiler S, Kingston

    2015-01-01

    This book is intended for network protocol developers, SDN controller application developers, and academics who would like to understand and develop their own OpenFlow switch or OpenFlow controller in any programming language. With basic understanding of OpenFlow and its components, you will be able to follow the recipes in this book.

  1. STOCHASTIC FLOWS OF MAPPINGS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.

  2. Distributed Power Flow Controller

    NARCIS (Netherlands)

    Yuan, Z.

    2010-01-01

    In modern power systems, there is a great demand to control the power flow actively. Power flow controlling devices (PFCDs) are required for such purpose, because the power flow over the lines is the nature result of the impedance of each line. Due to the control capabilities of different types of

  3. Assessment of TRAC-PF1/MOD3 Mark-22 assembly model using SRL ''A'' tank single-assembly flow experiments

    International Nuclear Information System (INIS)

    Fischer, S.R.; Lam, K.; Lin, J.C.

    1991-01-01

    This paper summarizes the results of an assessment of our TRAC-PF1/MOD3 Mark-22 prototype fuel assembly model against single-assembly data obtained from the ''A'' Tank single-assembly tests that were performed at the Savannah River Laboratory. We felt the data characterize prototypic assembly behavior over a range of air-water flow conditions of interest for loss-of-coolant accident (LOCA) calculations. This study was part of a benchmarking effort performed to evaluate and validate a multiple-assembly, full-plant model that is being developed by Los Alamos National Laboratory to study various aspects of the Savannah River plant operating conditions, including LOCA transients, using TRAC-PF1/MOD3 Version 1.10. The results of this benchmarking effort demonstrate that TRAC-PF1/MOD3 is capable pf calculating plenum conditions and assembly flows during conditions thought to be typical of the Emergency Cooling System (ECS) phase of a LOCA. 10 refs., 12 fig

  4. Flow lab.: flow visualization and simulation

    International Nuclear Information System (INIS)

    Park, Chung Kyun; Cho, Won Jin; Hahn, Pil Soo

    2005-01-01

    The experimental setups for flow visualization and processes identification in laboratory scale (so called Flow Lab.) has developed to get ideas and answer fundamental questions of flow and migration in geologic media. The setup was made of a granite block of 50x50cm scale and a transparent acrylate plate. The tracers used in this experiments were tritiated water, anions, and sorbing cations as well as an organic dye, eosine, to visualize migration paths. The migration plumes were taken with a digital camera as a function of time and stored as digital images. A migration model was also developed to describe and identify the transport processes. Computer simulation was carried out not only for the hydraulic behavior such as distributions of pressure and flow vectors in the fracture but also for the migration plume and the elution curves

  5. Is there elliptic flow without transverse flow?

    International Nuclear Information System (INIS)

    Huovinen, Pasi; Kolb, Peter F.; Heinz, Ulrich

    2001-01-01

    Azimuthal anisotropy of final particle distributions was originally introduced as a signature of transverse collective flow. We show that finite anisotropy in momentum space can result solely from the shape of the particle emitting source. However, by comparing the differential anisotropy to recent data from STAR collaboration we can exclude such a scenario, but instead show that the data favour strong flow as resulting from a hydrodynamical evolution

  6. Signal flow analysis

    CERN Document Server

    Abrahams, J R; Hiller, N

    1965-01-01

    Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther

  7. Separation of flow

    CERN Document Server

    Chang, Paul K

    2014-01-01

    Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt

  8. Physics of zonal flows

    International Nuclear Information System (INIS)

    Itoh, K.; Fujisawa, A.; Itoh, S.-I.; Yagi, M.; Nagashima, Y.; Diamond, P.H.; Tynan, G.R.; Hahm, T.S.

    2006-01-01

    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as ''drift wave-zonal flow turbulence.'' In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress. (author)

  9. Physics of zonal flows

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Diamond, P.H.; Hahm, T.S.; Fujisawa, A.; Tynan, G.R.; Yagi, M.; Nagashima, Y.

    2006-01-01

    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as 'drift wave-zonal flow turbulence'. In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress

  10. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  11. The mean Evershed flow

    Science.gov (United States)

    Hu, W.-R.

    1984-09-01

    The paper gives a theoretical analysis of the overall characteristics of the Evershed flow (one of the main features of sunspots), with particular attention given to its outward flow from the umbra in the photosphere, reaching a maximum somewhere in the penumbra, and decreasing rapidly further out, and its inward flow of a comparable magnitude in chromosphere. Because the inertial force of the flow is small, the relevant dynamic process can be divided into a base state and a perturbation. The base-state solution yields the equilibrium relations between the pressure gradient, the Lorentz force, and gravity, and the flow law. The perturbation describes the force driving the Evershed flow. Since the pressure gradient in the base state is already in equilibrium with the Lorentz force and the gravity, the driving force of the mean Evershed flow is small.

  12. Make peak flow a habit

    Science.gov (United States)

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  13. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  14. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  15. Defining Quantum Control Flow

    OpenAIRE

    Ying, Mingsheng; Yu, Nengkun; Feng, Yuan

    2012-01-01

    A remarkable difference between quantum and classical programs is that the control flow of the former can be either classical or quantum. One of the key issues in the theory of quantum programming languages is defining and understanding quantum control flow. A functional language with quantum control flow was defined by Altenkirch and Grattage [\\textit{Proc. LICS'05}, pp. 249-258]. This paper extends their work, and we introduce a general quantum control structure by defining three new quantu...

  16. Microparticle Flow Sensor

    Science.gov (United States)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  17. Flow patterns in vertical two-phase flow

    International Nuclear Information System (INIS)

    McQuillan, K.W.; Whalley, P.B.

    1985-01-01

    This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained

  18. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  19. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik

    1995-01-01

    This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...... is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V...

  20. Study on CFD approach for gas entrainment phenomenon. Evaluation of applicability of finite element flow analysis

    International Nuclear Information System (INIS)

    Eguchi, Yuzuru

    2005-07-01

    The report is concerned with the evaluation of applicability of numerical modelling methods for the prediction of gas entrainment in an upper plenum of a sodium-cooled fast breeder reactor (FBR). Special attention was paid to applicability of variational multiscale (VMS) modelling in the context of the Finite Element Method. Two flow problems, which were experimentally shown to induce gas entrainment, are solved by a VMS code (MISTRAL). First, computing a benchmark problem of a gas entrainment swirl flow in a cylindrical vessel has led to the following results; (1) the VMS solution is able to resolve the precise vortex core structure more accurately than the non-VMS solution computed by Smart-fem. The circumferential velocity obtained from VMS computation rises almost double in comparison with the non-VMS solution, though it still underestimates the experimental values. (2) the half-value radius of the negative region of the second invariant of velocity gradient matches well between the VMS solution and non-VMS solution. (3) the negative/positive boundary of the second invariant of velocity gradient obtained from the VMS solution is closer to the vortex core radius observed in the experiment than that of the non-VMS solution, though the vortex dip length computed from the VMS result is shorter than the experimental value. Second, computing a benchmark problem of open channel flow with a square pillar and downstream suction pipe has led to the following results; (4) 2Δx-type spatial oscillation was observed due to lack of mesh subdivisions. (5) the distributional profile of the second invariant of velocity gradient is similar to that of the first problem (swirl flow in a cylindrical vessel), characterized by a strong negative region surrounded by a weak positive region. As a possible future plan, it may be necessary to analyze more precisely the features of unsteady vortices obtained in the second benchmark problem and to identify the difference (if any) from the

  1. 3-Dimensional Flow Modeling of a Proposed Hanford Waste Treatment Plant Ion-Exchange Column Design

    International Nuclear Information System (INIS)

    ALEMAN, SEBASTIAN

    2002-01-01

    Historically, it has been assumed that the inlet and outlet low activity waste plenums would be designed such that a nearly uniform velocity profile would be maintained at every axial cross-section (i.e., providing nearly 100 percent use of the resin bed). With this proposed design, we see a LAW outlet distributor that results in significant non-axial velocity gradients in the bottom regions of the bed with the potential to reduce the effectiveness'' of the overall resin bed. The magnitude of this efficiency reduction depends upon how far up-gradient of the LAW outlet these non-axial velocities persist and to what extent a ''dead-zone'' is established beneath the LAW outlet. This can impact loading and elution performance of the ion-exchange facility. Currently, no experimental studies are planned. The primary objective of this work was, through modeling, to assess the fluid dynamic impact on ''effective'' resin volume of the full-scale column based on its normal operation using a recently proposed LAW outlet distributor. The analysis effort was limited to 3-D flow only analyses (i.e., no follow on transport analyses) with 3-D particle tracking to approximate the impact that a nonaxial velocity profile would have on bed ''effectiveness''. Additional analyses were performed to estimate under nominal operating conditions the thermal temperature rise across a loaded resin bed and within its particles. Hydrogen bubble formation is not considered in the heat transfer analysis or in the determination of minimum flowrate. All modeling objectives were met

  2. An experimental study on counter current flow limitation in annular narrow gaps with large diameter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Jeong, Ji Whan; Lee, Sung Jin; Cho, Young Ro; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The present study intends to carry out CCFL experiment with the same gap size as the CHFG facility and suggest an empirical correlation in order to provide basic information useful to development of an empirical critical-power correlation. The present facility consists of water accumulator tank, test section, DC pump, air regulator, valves and sensors. Air and water are used as working fluids. The experiments are carried out at the atmospheric pressure. Differential pressure between the gap ends, liquid and gas phase flow rates, temperature, lower plenum pressure are measured.Measured values are expressed in terms of Wallis' parameter using gap size as a characteristic length. There is a big difference between the present experimental results and the Koizumi et al.'s results, but the present experimental results are very similar to the Richter et al.'s results. The present results agree well with the Osakabe and Kawasaki's results. In comparison of present experiments with the Koizumi et al.'s experiments, gap thickness is similar, but the diameter of the present is bigger than that of Koizumi et al.'s experiments. In comparison of present experiments with the Richter et al.'s experiments, diameter is similar, but the gap thickness of the present is smaller than that of Richter et al.'s experiments. It is judged from these results that correlation development on CCFL to consider gap thickness is reasonable at similar condition of diameter.The developed correlation will be used to develop the CHFG model. 36 refs., 26 figs., 7 tabs. (Author)

  3. Flow chemistry is starting to flow

    NARCIS (Netherlands)

    Duisterwinkel, A.E.

    2012-01-01

    One good thing about this symposium on flow chemistry is that at least half of the papers was on actual applications: summarized one member of the audience of the IPIT symposium in Rotterdam, 25 May 2012. This remark can be viewed as a compliment to the organizer, TNO, a Dutch contract research

  4. Flow Around Steep Topography

    Science.gov (United States)

    2015-09-30

    Flow around steep topography T. M. Shaun Johnston Scripps Institution of Oceanography University of California, San Diego 9500 Gilman Drive, M...tall, steep, submarine topography and islands. During the Flow Encountering Abrupt Topography (FLEAT) DRI, investigators will determine: • Whether...estimates from making accurate statistical/deterministic predictions at ᝺ km resolution around submarine topography and islands? How can we

  5. Biomimetic Flow Sensors

    NARCIS (Netherlands)

    Casas, J.; Liu, Chang; Krijnen, Gijsbertus J.M.

    2012-01-01

    Biomimetic flow sensors are biologically inspired devices that measure the speed and direction of fluids. This survey starts by describing the role and functioning of airflow-sensing hairs in arthropods and in fishes, carries on with the biomimetic MEMS implementations, both for air and water flow

  6. Pressure Driven Poiseuille Flow

    DEFF Research Database (Denmark)

    Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, D. Rhodri

    2018-01-01

    The Pacific plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians–Japan, Marianas–Izu–Bonin and Tonga–Kermadec trenches. This implies that viscous flow within the sub–Pacific asthenosphere is mainly generated by overlying plate motion (i.e. Couette flow...

  7. Flow cytometry protocols

    National Research Council Canada - National Science Library

    Jaroszeski, Mark J; Heller, Richard

    1998-01-01

    ... are individually analyzed, and it is typical for flow cytometers to quantitatively process thousands of individual particles in a matter of seconds. This a powerful analytic feat particularly if one relates it to the time required to examine several thousand individual cells using a microscope. This leaves little doubt regarding why the field of flow cytometry has...

  8. Airport Network Flow Simulator

    Science.gov (United States)

    1978-10-01

    The Airport Network Flow Simulator is a FORTRAN IV simulation of the flow of air traffic in the nation's 600 commercial airports. It calculates for any group of selected airports: (a) the landing and take-off (Type A) delays; and (b) the gate departu...

  9. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  10. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  11. Elementary chaotic snap flows

    International Nuclear Information System (INIS)

    Munmuangsaen, Buncha; Srisuchinwong, Banlue

    2011-01-01

    Highlights: → Five new elementary chaotic snap flows and a generalization of an existing chaotic snap flow have been presented. → Three of all are conservative systems whilst three others are dissipative systems. → Four cases need only a single control parameter and a single nonlinearity. → A cubic case in a jerk representation requires only two terms and a single nonlinearity. - Abstract: Hyperjerk systems with 4th-order derivative of the form x .... =f(x ... ,x .. ,x . ,x) have been referred to as snap systems. Five new elementary chaotic snap flows and a generalization of an existing flow are presented through an extensive numerical search. Four of these flows demonstrate elegant simplicity of a single control parameter based on a single nonlinearity of a quadratic, a piecewise-linear or an exponential type. Two others demonstrate elegant simplicity of all unity-in-magnitude parameters based on either a single cubic nonlinearity or three cubic nonlinearities. The chaotic snap flow with a single cubic nonlinearity requires only two terms and can be transformed to its equivalent dynamical form of only five terms which have a single nonlinearity. An advantage is that such a chaotic flow offers only five terms even though the (four) dimension is high. Three of the chaotic snap flows are characterized as conservative systems whilst three others are dissipative systems. Basic dynamical properties are described.

  12. Elbow mass flow meter

    Science.gov (United States)

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  13. Optimised Renormalisation Group Flows

    CERN Document Server

    Litim, Daniel F

    2001-01-01

    Exact renormalisation group (ERG) flows interpolate between a microscopic or classical theory and the corresponding macroscopic or quantum effective theory. For most problems of physical interest, the efficiency of the ERG is constrained due to unavoidable approximations. Approximate solutions of ERG flows depend spuriously on the regularisation scheme which is determined by a regulator function. This is similar to the spurious dependence on the ultraviolet regularisation known from perturbative QCD. Providing a good control over approximated ERG flows is at the root for reliable physical predictions. We explain why the convergence of approximate solutions towards the physical theory is optimised by appropriate choices of the regulator. We study specific optimised regulators for bosonic and fermionic fields and compare the optimised ERG flows with generic ones. This is done up to second order in the derivative expansion at both vanishing and non-vanishing temperature. An optimised flow for a ``proper-time ren...

  14. Pengalaman Flow dalam Belajar

    Directory of Open Access Journals (Sweden)

    Lucky Purwantini

    2017-08-01

    Full Text Available Flow is a condition when individual merges within his/her activity. When a person in flow state, he/she can develop his/her abilities and more success in learning. The purpose of the study is to understand flow experience in learning among undergraduate student. The study used case study qualitative approach. Informant of this research was an undergraduate student which had flow experience. Data was collected by an interview. According to the result, the subject did not experience flow in the learning process, as likes he was in meditation. It happened because when he learned something, he felt be pressed by tasks. It’s important for individual to relax when they are learning.

  15. Flow in bedrock canyons.

    Science.gov (United States)

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  16. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  17. Pulsatile pipe flow transition: Flow waveform effects

    Science.gov (United States)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  18. Flow in rod bundles

    International Nuclear Information System (INIS)

    Hazi, G.; Mayer, G.

    2005-01-01

    For power upgrading VVER-440 reactors we need to know exactly how the temperature measured by the thermocouples is related to the average outlet temperature of the fuel assemblies. Accordingly, detailed knowledge on mixing process in the rod bundles and in the fuel assembly head have great importance. Here we study the hydrodynamics of rod bundles based on the results of direct numerical and large eddy simulation of flows in subchannels. It is shown that secondary flow and flow pulsation phenomena can be observed using both methodologies. Some consequences of these observations are briefly discussed. (author)

  19. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  20. Initiation of slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Hanratty, T.J.; Woods, B.D. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-31

    The initiation of slug flow in a horizontal pipe can be predicted either by considering the stability of a slug or by considering the stability of a stratified flow. Measurements of the shedding rate of slugs are used to define necessary conditions for the existence of a slug. Recent results show that slugs develop from an unstable stratified flow through the evolution of small wavelength waves into large wavelength waves that have the possibility of growing to form a slug. The mechanism appears to be quite different for fluids with viscosities close to water than for fluids with large viscosities (20 centipoise).

  1. Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature.......The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....

  2. Flow Cytometry Section

    Data.gov (United States)

    Federal Laboratory Consortium — The primary goal of the Flow Cytometry Section is to provide the services of state-of-the-art multi-parameter cellular analysis and cell sorting for researchers and...

  3. The disappearance of flow

    International Nuclear Information System (INIS)

    Soff, S.; Hartnack, C.; Stoecker, H.; Greiner, W.

    1995-01-01

    We investigate the disappearance of collective flow in the reaction plane in heavy-ion collisions within a microscopic model (QMD). A systematic study of the impact parameter dependence is performed for the system Ca+Ca. The balance energy strongly increases with impact parameter. Momentum dependent interactions reduce the balance energies for intermediate impact parameters b∼4.5 fm. Dynamical negative flow is not visible in the laboratory frame but does exist in the contact frame for the heavy system Au+Au. For semi-peripheral collisions of Ca+Ca with b∼6.5 fm a new two-component flow is discussed. Azimuthal distributions exhibit strong collectiv flow signals, even at the balance energy. (orig.)

  4. Border information flow architecture

    Science.gov (United States)

    2006-04-01

    This brochure describes the Border Information Flow Architecture (BIFA). The Transportation Border Working Group, a bi-national group that works to enhance coordination and planning between the United States and Canada, identified collaboration on th...

  5. Upscaling of Forchheimer flows

    KAUST Repository

    Aulisa, Eugenio; Bloshanskaya, Lidia I.; Efendiev, Yalchin R.; Ibragimov, Akif I.

    2014-01-01

    analytical results (Aulisa et al., 2009) [1] and formulate the resulting system in terms of a degenerate nonlinear flow equation for the pressure with the nonlinearity depending on the pressure gradient. The coarse scale parameters for the steady state

  6. Flow in data racks

    Directory of Open Access Journals (Sweden)

    Manoch Lukáš

    2014-03-01

    Full Text Available This paper deals with the flow in data racks. The aim of this work is to find a new arrangement of elements regulating the flow in the data rack so that the aerodynamic losses and the recirculation zones were minimized. The main reason for solving this problem is to reduce the costs of data racks cooling. Another problem to be solved is a reverse flow in the servers, thus not cooled, occuring due to the underpressure in the recirculation zones. In order to solve the problem, the experimental and numerical model of 27U data rack fitted with 10 pieces of server models with a total input of 10 kW was created. Different configurations of layout of elements affecting the flow in the inlet area of the data rack were compared. Depending on the results achieved, design solutions for the improvement of existing solutions were adopted and verified by numerical simulations.

  7. Complex Flow Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  8. Water Flow Experiments

    Indian Academy of Sciences (India)

    year undergraduate student at Ashoka University,. Sonipat, Haryana. This article studies how the height of water varies with time when water ... Experiment using a one-bottle system with a small bore tube at- tached to .... restricting free flow.

  9. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  10. Stability of parallel flows

    CERN Document Server

    Betchov, R

    2012-01-01

    Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equation

  11. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  12. Hydrodynamical description of collective flow

    OpenAIRE

    Huovinen, Pasi

    2003-01-01

    I review how hydrodynamical flow is related to the observed flow in ultrarelativistic heavy ion collisions and how initial conditions, equation of state and freeze-out temperature affect flow in hydrodynamical models.

  13. Mini-channel flow experiments and CFD validation analyses with the IFMIF Thermo- Hydraulic Experimental facility (ITHEX)

    International Nuclear Information System (INIS)

    Arbeiter, F.; Heinzel, V.; Leichtle, D.; Stratmanns, E.; Gordeev, S.

    2006-01-01

    The design of the IFMIF High Flux Test Module (HFTM) is based on the predictions for the heat transfer in narrow channels conducting helium flow of 50 o C inlet temperature at 0.3 MPa. The emerging helium flow conditions are in the transition regime of laminar to turbulent flow. The rectangular cooling channels are too short for the full development of the coolant flow. Relaminarization along the cooling passage is expected. At the shorter sides of the channels secondary flow occurs, which may have an impact on the temperature field inside the irradiation specimen's stack. As those conditions are not covered by available experimental data, the dedicated gas loop ITHEX has been constructed to operate up to a pressure of 0.42 MPa and temperatures of 200 o C. It's objective is to conduct experiments for the validation of the STAR-CD CFD code used for the design of the HFTM. As a first stage, two annular test-sections with hydraulic diameter of 1.2 mm have been used, where the experiments have been varied with respect to gas species (N 2 , He), inlet pressure, dimensionless heating span and Reynolds number encompassing the range of operational parameters of the HFTM. Local friction factors and Nusselt numbers have been obtained giving evidence that the transition regime will extend to Reynolds 10,000. For heating rates comparable to the HFTM filled with RAFM steels, local heat transfer coefficients are in consistence with the measured friction data. To validate local velocity profiles the ITHEX facility was further equipped with a flat rectangular test-section and a Laser Doppler Anemometry (LDA) system. An appropriate optical system has been developed and tested for the tiny observation volume of 40 μm diameter. Velocity profiles as induced by the transition of a wide inlet plenum to the flat mini-channels have been measured. Whereas the CFD models were able to reproduce the patterns far away from the nozzle, they show some disagreement for the conditions at the

  14. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  15. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  16. Tomographic multiphase flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saetre, C., E-mail: camilla@ift.uib.no [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Johansen, G.A. [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Tjugum, S.A. [Michelsen Centre for Industrial Measurement Science and Technology (Norway); Roxar Flow Measurement, Bergen (Norway)

    2012-07-15

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: Black-Right-Pointing-Pointer Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. Black-Right-Pointing-Pointer High-speed gamma ray tomograph as reference for the flow

  17. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  18. Rapid flow imaging method

    International Nuclear Information System (INIS)

    Pelc, N.J.; Spritzer, C.E.; Lee, J.N.

    1988-01-01

    A rapid, phase-contrast, MR imaging method of imaging flow has been implemented. The method, called VIGRE (velocity imaging with gradient recalled echoes), consists of two interleaved, narrow flip angle, gradient-recalled acquisitions. One is flow compensated while the second has a specified flow encoding (both peak velocity and direction) that causes signals to contain additional phase in proportion to velocity in the specified direction. Complex image data from the first acquisition are used as a phase reference for the second, yielding immunity from phase accumulation due to causes other than motion. Images with pixel values equal to MΔΘ where M is the magnitude of the flow compensated image and ΔΘ is the phase difference at the pixel, are produced. The magnitude weighting provides additional vessel contrast, suppresses background noise, maintains the flow direction information, and still allows quantitative data to be retrieved. The method has been validated with phantoms and is undergoing initial clinical evaluation. Early results are extremely encouraging

  19. Upscaling of Forchheimer flows

    KAUST Repository

    Aulisa, Eugenio

    2014-08-01

    In this work we propose upscaling method for nonlinear Forchheimer flow in heterogeneous porous media. The generalized Forchheimer law is considered for incompressible and slightly-compressible single-phase flows. We use recently developed analytical results (Aulisa et al., 2009) [1] and formulate the resulting system in terms of a degenerate nonlinear flow equation for the pressure with the nonlinearity depending on the pressure gradient. The coarse scale parameters for the steady state problem are determined so that the volumetric average of velocity of the flow in the domain on fine scale and on coarse scale are close. A flow-based coarsening approach is used, where the equivalent permeability tensor is first evaluated following streamline methods for linear cases, and modified in order to take into account the nonlinear effects. Compared to previous works (Garibotti and Peszynska, 2009) [2], (Durlofsky and Karimi-Fard) [3], this approach can be combined with rigorous mathematical upscaling theory for monotone operators, (Efendiev et al., 2004) [4], using our recent theoretical results (Aulisa et al., 2009) [1]. The developed upscaling algorithm for nonlinear steady state problems is effectively used for variety of heterogeneities in the domain of computation. Direct numerical computations for average velocity and productivity index justify the usage of the coarse scale parameters obtained for the special steady state case in the fully transient problem. For nonlinear case analytical upscaling formulas in stratified domain are obtained. Numerical results were compared to these analytical formulas and proved to be highly accurate. © 2014.

  20. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  1. Turbine flow meter response in two-phase flows

    International Nuclear Information System (INIS)

    Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.

    1996-01-01

    The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter

  2. Particles in flows

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2017-01-01

    This book aims to face particles in flows from many different, but essentially interconnected sides and points of view. Thus the selection of authors and topics represented in the chapters, ranges from deep mathematical analysis of the associated models, through the techniques of their numerical solution, towards real applications and physical implications. The scope and structure of the book as well as the selection of authors was motivated by the very successful summer course and workshop "Particles in Flows'' that was held in Prague in the August of 2014. This meeting revealed the need for a book dealing with this specific and challenging multidisciplinary subject, i.e. particles in industrial, environmental and biomedical flows and the combination of fluid mechanics, solid body mechanics with various aspects of specific applications.

  3. Two-phase flow

    International Nuclear Information System (INIS)

    Olive, J.

    1990-01-01

    The design, operation and safety of nuclear components requires increasingly accurate knowledge of two-phase flows. This knowledge is also necessary for some studies related to electricity applications. The author presents some concrete examples showing the range of problems and the complexity of the phenomena involved in these types of flows. Then, the basic principles of their numerical modelling are explained, as well as the new tendency to use increasingly local and refined models. The newest computer codes developed at EDF are briefly presented. Experimental studies dealing with twophase flow are also referred to, and their connections to numerical modelling are explained. Emphasis is placed on the major efforts devoted to the development of new test rigs and instrumentation [fr

  4. Robust Optical Flow Estimation

    Directory of Open Access Journals (Sweden)

    Javier Sánchez Pérez

    2013-10-01

    Full Text Available n this work, we describe an implementation of the variational method proposed by Brox etal. in 2004, which yields accurate optical flows with low running times. It has several benefitswith respect to the method of Horn and Schunck: it is more robust to the presence of outliers,produces piecewise-smooth flow fields and can cope with constant brightness changes. Thismethod relies on the brightness and gradient constancy assumptions, using the information ofthe image intensities and the image gradients to find correspondences. It also generalizes theuse of continuous L1 functionals, which help mitigate the effect of outliers and create a TotalVariation (TV regularization. Additionally, it introduces a simple temporal regularizationscheme that enforces a continuous temporal coherence of the flow fields.

  5. Designing reliability information flows

    International Nuclear Information System (INIS)

    Petkova, Valia T.; Lu Yuan; Ion, Roxana A.; Sander, Peter C.

    2005-01-01

    It is well-known [Reliab. Eng. Syst. Saf. 75 (2002) 295] that in modern development processes it is essential to have an information flow structure that facilitates fast feedback from product users (customers) to departments at the front end, in particular development and production. As information is only relevant if it is used when taking decisions, this paper presents a guideline for building field feedback information flows that facilitate the decision taking during the product creation and realisation process. The guideline takes into consideration that the type of decisions depends on the span-of-control, therefore following Parsons [Structure and Process in Modern Societies (1990)] the span-of-control is subdivided into the following three levels: strategic, tactic, and executive. The guideline is illustrated with a case in which it is used for analysing the quality of existing field feedback flows

  6. Hypogenetic chaotic jerk flows

    International Nuclear Information System (INIS)

    Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan

    2016-01-01

    Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that special nonlinearities with partial information in the variable can also lead to chaos. Some striking properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications. - Highlights: • Hypogenetic chaotic jerk flows with incomplete feedback of amplitude or polarity are obtained. • Multistability of symmetric coexisting attractors from an asymmetric structure is found. • Some jerk systems have hidden attractors with respect to equilibria but have global attraction. • These chaotic jerk flows have the properties of amplitude control and phase reversal.

  7. Choked flow through cracks

    International Nuclear Information System (INIS)

    Feburie, V.; Giot, M.; Granger, S.; Seynhaeve, J.M.

    1992-06-01

    The leaks through steam-generator cracks are the subject of a research carried out in cooperation between EDF and UCL. A software called ECREVISSE to predict the mass flow rate has been developed and has been successfully validated. The purpose of the paper is to present the mathematical model used in ECREVISSE as well as some comparison between the results and the presently available data. The model takes into account the persistence of some metastable liquid in the crack and the special flow pattern which appears in such particular geometry. Although the model involves the use of several correlations (friction, heat transfer), no adjustment of parameters against the data has been needed, neither in the single-phase part of the flow, or in the two-phase part. (authors). 8 figs., 1 tab., 20 refs

  8. Evaluation of flow hood measurements for residential register flows; TOPICAL

    International Nuclear Information System (INIS)

    Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

    2001-01-01

    Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large-on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue

  9. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  10. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  11. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  12. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0

    2012-01-01

    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  13. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method

    Science.gov (United States)

    Broglia, Riccardo; Durante, Danilo

    2017-11-01

    This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to

  14. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  15. Using Crossflow for Flow Measurements and Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)

    2016-10-15

    Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.

  16. ECAL Energy Flow Calibration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.

  17. Is flow verification necessary

    International Nuclear Information System (INIS)

    Beetle, T.M.

    1986-01-01

    Safeguards test statistics are used in an attempt to detect diversion of special nuclear material. Under assumptions concerning possible manipulation (falsification) of safeguards accounting data, the effects on the statistics due to diversion and data manipulation are described algebraically. A comprehensive set of statistics that is capable of detecting any diversion of material is defined in terms of the algebraic properties of the effects. When the assumptions exclude collusion between persons in two material balance areas, then three sets of accounting statistics are shown to be comprehensive. Two of the sets contain widely known accountancy statistics. One of them does not require physical flow verification - comparisons of operator and inspector data for receipts and shipments. The third set contains a single statistic which does not require physical flow verification. In addition to not requiring technically difficult and expensive flow verification, this single statistic has several advantages over other comprehensive sets of statistics. This algebraic approach as an alternative to flow verification for safeguards accountancy is discussed in this paper

  18. Flow of nuclear matter

    International Nuclear Information System (INIS)

    Ritter, H.G.; Doss, K.G.R.; Gustafsson, H.A.

    1985-08-01

    The systems Nb + Nb and Au + Au have been measured at different energies at the Bevalac with the Plastic Ball spectrometer. Distributions of the flow angles as a function of charged particle multiplicity are presented. Also shown is a transverse momentum analysis for 400 MeV per nucleon Nb + Nb. 25 refs., 5 figs., 1 tab

  19. Heat flow method

    International Nuclear Information System (INIS)

    Chen Yunmei

    1994-01-01

    In this paper we study the heat flow of harmonic maps between two compact Riemannian manifolds. The global existence of the regular solution and the weak solution, as well as the blow up of the weak solution are discussed. (author). 14 refs

  20. Lateral flow assays

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Amerongen, van A.

    2012-01-01

    A simple version of immunochemical-based methods is the Lateral Flow Assay (LFA). It is a dry chemistry technique (reagents are included); the fluid from the sample runs through a porous membrane (often nitrocellulose) by capillary force. Typically the membrane is cut as a strip of 0.5*5 cm. In most

  1. Delta Flow Modulator

    NARCIS (Netherlands)

    Stamhuis, Eize; Lengkeek, W

    2015-01-01

    A support structure (2) is installed in or near a water (50). The support structure is holding a deltalike-wing (3) under an angle of incidence relative to an incoming flow (54), caused by at least a prevailing current in the water, thus generating a vortex (77). The action of the vortex is

  2. Flow cytometry apparatus

    Science.gov (United States)

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  3. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  4. Proportionate Flow Shop Games

    NARCIS (Netherlands)

    Estevez Fernandez, M.A.; Mosquera, M.A.; Borm, P.E.M.; Hamers, H.J.M.

    2006-01-01

    In a proportionate flow shop problem several jobs have to be processed through a fixed sequence of machines and the processing time of each job is equal on all machines.By identifying jobs with agents, whose costs linearly depend on the completion time of their jobs, and assuming an initial

  5. Probabilistic Load Flow

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte

    2008-01-01

    This paper reviews the development of the probabilistic load flow (PLF) techniques. Applications of the PLF techniques in different areas of power system steady-state analysis are also discussed. The purpose of the review is to identify different available PLF techniques and their corresponding...

  6. Techniques of Flow Visualization

    Science.gov (United States)

    1987-12-01

    are sensitive. Within the bandwidth of their sensitivity, up to ten color hues may be discriminated by the eye. The visible edge between two colors...can be performed with conven- tional photography or cinematography . Video recording is of advantage for the further pro- cessing of the flow pictures

  7. Erosion in extruder flow

    Science.gov (United States)

    Kaufman, Miron; Fodor, Petru S.

    A detailed analysis of the fluid flow in Tadmor's unwound channel model of the single screw extruder is performed by combining numerical and analytical methods. Using the analytical solution for the longitudinal velocity field (in the limit of zero Reynolds number) allows us to devote all the computational resources solely for a detailed numerical solution of the transversal velocity field. This high resolution 3D model of the fluid flow in a single-screw extruder allows us to identify the position and extent of Moffatt eddies that impede mixing. We further consider the erosion of particles (e.g. carbon-black agglomerates) advected by the polymeric flow. We assume a particle to be made of primary fragments bound together. In the erosion process a primary fragment breaks out of a given particle. Particles are advected by the laminar flow and they disperse because of the shear stresses imparted by the fluid. The time evolution of the numbers of particles of different sizes is described by the Bateman coupled differential equations used to model radioactivity. Using the particle size distribution we compute an entropic fragmentation index which varies from 0 for a monodisperse system to 1 for an extreme poly-disperse system.

  8. Upscaling of reactive flows

    NARCIS (Netherlands)

    Kumar, K.

    2012-01-01

    The thesis deals with the upscaling of reactive flows in complex geometry. The reactions which may include deposition or dissolution take place at a part of the boundary and depending on the size of the reaction domain, the changes in the pore structure that are due to the deposition process may or

  9. Visualization study of flow in axial flow inducer.

    Science.gov (United States)

    Lakshminarayana, B.

    1972-01-01

    A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

  10. Critical flow rate in a single phase flow. Blocking concept

    International Nuclear Information System (INIS)

    Giot, Michel

    1978-01-01

    After referring to the phenomena accompanying the appearance of a critical flow rate in a nozzle and presenting equations governing single phase flows, the critical condition is defined. Several particular cases are then examined; the horizontal and vertical isentropic flow, Fanno's flow and Raleigh's and the isothermal flow. The entropy deviation is calculated on either side of a normal impact. To conclude, the link existing between the concepts of critical flow and the propagation rate of small perturbations is demonstrated. To do so, the method of perturbations, that of Prandtl and that of characteristic directions are applied in turn [fr

  11. Structural power flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  12. Slow viscous flow

    CERN Document Server

    Langlois, William E

    2014-01-01

    Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." -    from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...

  13. Fracture flow code

    International Nuclear Information System (INIS)

    Dershowitz, W; Herbert, A.; Long, J.

    1989-03-01

    The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)

  14. The Flow of Energy

    Science.gov (United States)

    Znidarsic, F.; Robertson, G. A.

    In this paper, the flow of energy in materials is presented as mechanical waves with a distinct velocity or speed of transition. This speed of transition came about through the observations of cold fusion experiments, i.e., Low Energy Nuclear Reactions (LENR) and superconductor gravity experiments, both assumed speculative by mainstream science. In consideration of superconductor junctions, the LENR experiments have a similar speed of transition, which seems to imply that the reactions in the LENR experiment are discrete quantized reactions (energy - burst vs. continuous). Here an attempt is made to quantify this new condition as it applies to electrons; toward the progression of quantized energy flows (discrete energy burst) as a new source of clean energy and force mechanisms (i.e, propulsion).

  15. Hawaii Lava Flows

    Science.gov (United States)

    2001-01-01

    This sequence of ASTER nighttime thermal images shows the Pu'u O'o lava flows entering the sea at Kamokuna on the southeast side of the Island of Hawaii. Each image covers an area of 9 x 12 km. The acquisition dates are April 4 2000, May 13 2000, May 22 2000 (upper row) and June 30 2000, August 1 2000 and January 1 2001 (lower row). Thermal band 14 has been color coded from black (coldest) through blue, red, yellow and white (hottest). The first 5 images show a time sequence of a single eruptive phase; the last image shows flows from a later eruptive phase. The images are located at 19.3 degrees north latitude, 155 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  16. Optimal Power Flow Pursuit

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Simonetto, Andrea

    2018-03-01

    This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall, the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.

  17. Flow Control Technology

    Science.gov (United States)

    2010-07-01

    known as Darrieus turbines or, after the German inventors of these devices, Voith-Schneider propellers. Their main advantage is the ability to produce... turbines (VAWT), named for the typical orientation of the main shaft. While their efficiency is similar to that of the more common horizontal axis wind ...Oscillating Systems’, Cambridge University Press, 2002 [11] G. M. Darrieus , ’ Turbine having its rotating shaft transverse to the flow of the current

  18. Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1998-01-01

    Learning objectives:* To provide an introduction to automated assays* To describe the basic principles of FIA * To demonstrate the capabilities of FIA in relation to batch assays and conventional continuous flow systems* To show that FIA allows one to augment existing analytical techniques* To sh...... how FIA offers novel analytical procedures which are not feasible by conventional means* To hightlight the potentials of FIA in selected practical assays...

  19. Invariant submanifold flows

    Energy Technology Data Exchange (ETDEWEB)

    Olver, Peter J [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: olver@math.umn.edu

    2008-08-29

    Given a Lie group acting on a manifold, our aim is to analyze the evolution of differential invariants under invariant submanifold flows. The constructions are based on the equivariant method of moving frames and the induced invariant variational bicomplex. Applications to integrable soliton dynamics, and to the evolution of differential invariant signatures, used in equivalence problems and object recognition and symmetry detection in images, are discussed.

  20. Secondary Flow in Cascades.

    Science.gov (United States)

    1984-06-01

    Int. .7. Neat adMs rnfr 9 the auction Vo1. iS. p. 1.157, 12 1.7r aeTase WOW ugte 0In the comuted 2. Briley# V.R., umenrical Method for AW16 wereo at...S. ft, C.R., -A General Theory of Three saemnit u thecsg the rotation Dimensional Flow in subsonic -a super- injoes Wer sonic Turhasachines of Axial