WorldWideScience

Sample records for vhtgr neutronic analysis

  1. A Cross-Section Adjustment Method for Double Heterogeneity Problem in VHTGR Analysis

    International Nuclear Information System (INIS)

    Yun, Sung Hwan; Cho, Nam Zin

    2011-01-01

    Very High Temperature Gas-Cooled Reactors (VHTGRs) draw strong interest as candidates for a Gen-IV reactor concept, in which TRISO (tristructuralisotropic) fuel is employed to enhance the fuel performance. However, randomly dispersed TRISO fuel particles in a graphite matrix induce the so-called double heterogeneity problem. For design and analysis of such reactors with the double heterogeneity problem, the Monte Carlo method is widely used due to its complex geometry and continuous-energy capabilities. However, its huge computational burden, even in the modern high computing power, is still problematic to perform wholecore analysis in reactor design procedure. To address the double heterogeneity problem using conventional lattice codes, the RPT (Reactivityequivalent Physical Transformation) method considers a homogenized fuel region that is geometrically transformed to provide equivalent self-shielding effect. Another method is the coupled Monte Carlo/Collision Probability method, in which the absorption and nu-fission resonance cross-section libraries in the deterministic CPM3 lattice code are modified group-wise by the double heterogeneity factors determined by Monte Carlo results. In this paper, a new two-step Monte Carlo homogenization method is described as an alternative to those methods above. In the new method, a single cross-section adjustment factor is introduced to provide self-shielding effect equivalent to the self-shielding in heterogeneous geometry for a unit cell of compact fuel. Then, the homogenized fuel compact material with the equivalent cross-section adjustment factor is used in continuous-energy Monte Carlo calculation for various types of fuel blocks (or assemblies). The procedure of cross-section adjustment is implemented in the MCNP5 code

  2. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core; Comportamento termofluidodinamico do gas refrigerante helio em um canal topico de reator VHTGR de nucleo prismatico

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Allan Cavalcante

    2016-08-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4{sup th} generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range

  3. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core

    International Nuclear Information System (INIS)

    Belo, Allan Cavalcante

    2016-01-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4 th generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range and

  4. Neutron Multiplicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  5. Forensic neutron activation analysis

    International Nuclear Information System (INIS)

    Kishi, T.

    1987-01-01

    The progress of forensic neutron activation analysis (FNAA) in Japan is described. FNAA began in 1965 and during the past 20 years many cases have been handled; these include determination of toxic materials, comparison examination of physical evidences (e.g., paints, metal fragments, plastics and inks) and drug sample differentiation. Neutron activation analysis is applied routinely to the scientific criminal investigation as one of multielement analytical techniques. This paper also discusses these routine works. (author) 14 refs

  6. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  7. Fast neutron activation analysis

    International Nuclear Information System (INIS)

    Pepelnik, R.

    1986-01-01

    Since 1981 numerous 14 MeV neutron activation analyses were performed at Korona. On the basis of that work the advantages of this analysis technique and therewith obtained results are compared with other analytical methods. The procedure of activation analysis, the characteristics of Korona, some analytical investigations in environmental research and material physics, as well as sources of systematic errors in trace analysis are described. (orig.) [de

  8. Neutron activation analysis

    International Nuclear Information System (INIS)

    Taure, I.; Riekstina, D.; Veveris, O.

    2004-01-01

    Neutron activation analysis (NAA) in Latvia began to develop after 1961 when nuclear reactor in Salaspils started to work. It provided a powerful neuron source, which is necessary for this analytical method. In 1963 at Institute of Physics of the Latvian Academy of Sciences the Laboratory of Neutron Activation Analysis was formed. At the first stage of development the main tasks were of theoretical and technical aspects of NAA. Later the NAA was used to solve problems in technology, biology, and medicine. In the beginning of the 80-ties more attention was focussed to the use of NAA in the environmental research. Environmental problems stayed the main task till the closing the nuclear reactor in Salaspils in 1998 that ceased the main the existence of the laboratory and of NAA, this significant and powerful analytical method in Latvia and Baltic in general. (authors)

  9. Neutron activation analysis

    International Nuclear Information System (INIS)

    Okada, Yukiko

    2005-01-01

    Trends and progress in neutron activation analysis (NAA) for the period starting in 1999 to 2003 are presented. Numbers of published reports on NAA are decreasing year by year as investigated from the database JST and NUCLEN. Summary reports on the international conferences held on NAA are followed by classifying according to the fields: various measurement techniques and application fields. Specially focused topics are newly developed techniques for measuring trace elements with high sensitivity and high accuracy such as (1) by diminishing the Compton-background gamma-rays using anti-coincidence technique, (2) by using prompt-gamma rays measurement method (PGAA) and (3) by using a gamma-ray detector array (GEMINI), which has succeeded in a simultaneous quantification of 27 elements from a standard rock sample having a weight of only 10 milligrams, and others. These techniques will be applied in the space and earth sciences and medical fields. (S. Ohno)

  10. Neutron activation analysis in Romania

    International Nuclear Information System (INIS)

    Apostolescu, St.

    1985-01-01

    The following basic nuclear facilities are used for neutron activation analysis: a 2000 KW VVR-S Nuclear Reactor, a U-200 Cyclotron, a 30 MeV Betatron, several 14 MeV neutron generators and a king size High Voltage tandem Van de'Graaff accelerator. The main domains of application of the thermal neutron activation analysis are: geology and mining, processing of materials, environment and biology, achaeology. Epithermal neutron activation analysis has been used for determination of uranium and thorium in ores with high Th/U ratios or high rare earth contents. One low energy accelerator, used as 14.1 Mev neutron source, is provided with special equipmen for oxigen and low mass elements determination. An useful alternating way to support fast neutron activation analysis is an accurate theoretical description of the fast neutron induced reactions based on the statistical model (Hauser-Feubach STAPRE code) and the preequilibrium decay geometry dependent model. A gravitational sample changer has been installed at the end of a beam line of the Cyclotron, which enables to perform charged particles activation analysis for protein determination in grains

  11. Neutron activation analysis

    International Nuclear Information System (INIS)

    Borsaru, M.; Eisler, P.L.

    1981-01-01

    A method of simultaneously analysing the aluminium and silicon content of a sample of material is claimed. The method comprises the following steps: (1) irradiating the sample with fast neutrons; (2) monitoring the thermal neutron flux within the sample; (3) monitoring the gamma radiation from the irradiated sample at energies of 1.78 MeV and 1.015 and/or 0.844 MeV; (4) using the monitored gamma radiation at 1.015 and/or 0.844 MeV to estimate the aluminium content of the sample; and (5) using the monitored gamma radiation at 1.78 MeV, compensated by the gamma radiation at 1.78 MeV due to the thermal neutron reaction with the estimated aluminium in the sample to estimate the silicon content

  12. Application of neutron activation analysis

    International Nuclear Information System (INIS)

    Dybczynski, R.

    2001-01-01

    The physical basis and analytical possibilities of neutron activation analysis have been performed. The number of applications in material engineering, geology, cosmology, oncology, criminology, biology, agriculture, environment protection, archaeology, history of art and especially in chemical analysis have been presented. The place of the method among other methods of inorganic quantitative chemical analysis for trace elements determination has been discussed

  13. Prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    Goswami, A.

    2003-01-01

    Prompt gamma neutron activation analysis (PGNAA) is a technique for the analysis of elements present in solid, liquid and gaseous samples by measuring the capture gamma rays emitted from the sample during neutron irradiation. The technique is complementary to conventional neutron activation analysis (NAA) as it can be used in number of cases where NAA fails. Though the technique was first used in sixties, the advantage of the technique was first highlighted by Lindstrom and Anderson. PGNAA is increasingly being used as a rapid, instrumental, nondestructive and multielement analysis technique. A monograph and several excellent reviews on this topic have appeared recently. In this review, an attempt has been made to bring out the essential aspects of the technique, experimental arrangement and instrumentation involved, and areas of application. Some of the results will also be presented

  14. Neutron activation analysis in Bulgaria

    International Nuclear Information System (INIS)

    Apostolov, D.

    1985-01-01

    The development of instrumental neutron activation analysis (INAA) as a routine method started in 1960 with bringing into use of the experimental nuclear reactor 2 MW -IRT-2000. For the purposes of INAA the vertical channels were used. The neutron flux vary from 1 to 6x10 12 n/cm 2 s, with Cd ratio for gold of about 4,4. In one of the channels the neutron flux is additionally thermalised with grafite, in others - a pneumatic double-tube rabbit system is installed. One of the irradiation positions is equiped with 1 mm Cd shield constantly. With the pressure of the working gas (air) of 2 bar the transport time in one direction is 2,5 sec. Because of lack of special system for uniform irradiation an accuracy of 3% can be reached by use of iron monitors for long irradiations and copper monitors for use in the rabbit system. Two neutron generators are also working but the application of 14 MeV neutrons for INAA is still quite limited. The most developed are the applications of INAA in the fields of geology and paedology, medicine and biology, environment and pollution, archaeology, metallurgy, metrology and hydrology, criminology

  15. Neutron activation analysis of artefacts

    International Nuclear Information System (INIS)

    Mohd Suhaimi Hamzah; Shamsiah Abd Rahman

    2004-01-01

    The paper discussed the utilization of neutron activation analysis in this field. NAA, an analytical technique which analyzing the elements in the sample without any chemical treatment. It is sensitive and accurate. Archaeological objects i.e. ceramics, historical building materials, metals, etc can be analyze with this technique. The analysis results were presented in form of characterization of the artefacts in chemical profiles, which can present the information of the origin of the artefacts as well as it originality. (Author)

  16. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  17. Neutron Activation Analysis with k0-standardisation

    International Nuclear Information System (INIS)

    Pomme, S.

    2001-01-01

    SCK-CEN's programme on Neutron Activation Analysis with k 0 -standardisation concentrates on the improvement of the standardisation method and the characterisation of the neutron field as well as on the improvement of the statistical control on neutron activation analysis. Main achievements in 2000 are reported

  18. Neutronics of the IFMIF neutron source: development and analysis

    International Nuclear Information System (INIS)

    Wilson, P.P.H.

    1999-01-01

    The accurate analysis of this system required the development of a code system and methodology capable of modelling the various physical processes. A generic code system for the neutronics analysis of neutron sources has been created by loosely integrating existing components with new developments: the data processing code NJOY, the Monte Carlo neutron transport code MCNP, and the activation code ALARA were supplemented by a damage data processing program, damChar, and integrated with a number of flexible and extensible modules for the Perl scripting language. Specific advances were required to apply this code system to IFMIF. Based on the ENDF-6 data format requirements of this system, new data evaluations have been implemented for neutron transport and activation. Extensive analysis of the Li(d, xn) reaction has led to a new MCNP source function module, M c DeLi, based on physical reaction models and capable of accurate and flexible modelling of the IFMIF neutron source term. In depth analyses of the neutron flux spectra and spatial distribution throughout the high flux test region permitted a basic validation of the tools and data. The understanding of the features of the neutron flux provided a foundation for the analyses of the other neutron responses. (orig./DGE) [de

  19. Fast neutron activation analysis in metallurgy

    International Nuclear Information System (INIS)

    Sterlinski, S.

    1981-01-01

    Article discusses the usage of a 14 MeV neutron generator for producing fast neutrons of different energies and intensities. A complete instrumental set-up for the neutron activation analysis (NAA) is given. In metallurgy the device is mainly used in the determination of oxygen and silicon in steel and non-ferrous metal, including different alloys

  20. Study on neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Cho, Seung Yeon

    1993-01-01

    Environmental samples were analyzed quantitatively by neutron activation analysis using high resolution γ-ray spectrometry. The accuracy and precision of the method were checked by the analysis of reference materials, Urban Particulate Matter (NBS SRM 1648) and Coalfly ash (NBS SRM 1633a). Airborne particulates collected for 6 months with low volume air sampler at the outer area of Seoul were analyzed as the start of full scale airborne particulates research. We analyzed 19 trace elements from the samples and the NAA method was confirmed to be utilized for environmental pollution research. (Author)

  1. Fast neutron activation analysis by means of low voltage neutron generator

    Directory of Open Access Journals (Sweden)

    M.E. Medhat

    Full Text Available A description of D-T neutron generator (NG is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given. Keywords: Neutron generator, Fast neutron activation analysis, Elemental analysis

  2. Instrumental neutron activation analysis - a routine method

    International Nuclear Information System (INIS)

    Bruin, M. de.

    1983-01-01

    This thesis describes the way in which at IRI instrumental neutron activation analysis (INAA) has been developed into an automated system for routine analysis. The basis of this work are 20 publications describing the development of INAA since 1968. (Auth.)

  3. Proceedings of national seminar neutron activation analysis

    International Nuclear Information System (INIS)

    Agus Taftazani; Muhayatun Santoso; Budi Haryanto; Khatarina Oginawati

    2010-11-01

    Proceedings of national seminar neutron activation analysis in 2010 with the theme of the Role of Nuclear Analytical Techniques in the Field of Environment, Health and Industry. The seminar was organized by Indonesians Neutron Activation Analysis and BATAN Forum. These proceedings contain the result of environmental research in BATAN, universities and institutions associated with the application on neutron activation analysis technique. The purpose of these proceedings was as a useful source of information to spur research and development of activation analysis applications in various fields for the Indonesian welfare. There are 40 articles. (PPIKSN).

  4. Lifetime measurement of prompt neutrons using the neutronic noise analysis

    International Nuclear Information System (INIS)

    Ortiz Servin, J.J.

    1992-01-01

    The purpose of this work is to estimate the life of the prompt neutrons, i, of a nuclear reactor utilizing the neutron noise analysis. This technique carry to development of mathematical model that is valid for lower powers reactor. The equation resulting convey to the observation about power spectrum behaviour respect to the frecquency. In this case, the reactor in study is the Triga Mark III of Nuclear Center of Mexico that it was provided of fission chambers for register the neutron fluxes. These fluxes was digitized and storage in computer disc as signals dependents of time, for later apply the Fourier Transformation and obtain the spectras. The spectras measured to different reactor powers were adjusted to the development equation before, using the method of square minimum and so estimate the parameter i. The analysis of results throw a value of 22.73 +/- 0.92 μs. On the other hand, the calculate value to the resolve the kinetic equation of reactor defer in lower than 4 % about the estimate. Of this, it concludes that the model utilized is trusty with a good mistake margin, moreover of that the technique of Neutron Noise analysis demonstrate be competitive (Author)

  5. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  6. Neutron activation spectrometry and neutron activation analysis in analytical geochemistry

    International Nuclear Information System (INIS)

    Dulski, P.; Moeller, P.

    1975-07-01

    The present report is to show the geochemists who are interested in neutron activation spectrometry (NAS) and neutron activation analysis (NAA) which analytical possibilities these methods offer him. As a review of these analytical possibilities, a lieterature compolation is given which is subdivided into two groups: 1) rock (basic, intermediary, acid, sediments, soils and nuds, diverse minerals, tectites, meteorites and lunar material). 2) ore (Al, Au, Be, Cr, Cu, Mn, Mo, Fe, Pb, Pt, Sn, Ti, W, Zn, Zr, U and phosphate ore, polymetallic ores, fluorite, monazite and diverse ores). The applied methods as well as the determinable elements in the given materials can be got from the tables. On the whole, the literature evaluation carried out makes it clear that neutron activation spectrometry is a very useful multi-element method for the analysis of rocks. The analysis of ores, however, is subjected to great limitations. As rock analysis is very frequently of importance in prospecting for ore deposits, the NAS proves to be extremely useful for this very field of application. (orig./LH) [de

  7. The delayed neutron method of uranium analysis

    International Nuclear Information System (INIS)

    Wall, T.

    1989-01-01

    The technique of delayed neutron analysis (DNA) is discussed. The DNA rig installed on the MOATA reactor, the assay standards and the types of samples which have been assayed are described. Of the total sample throughput of about 55,000 units since the uranium analysis service began, some 78% has been concerned with analysis of uranium ore samples derived from mining and exploration. Delayed neutron analysis provides a high sensitivity, low cost uranium analysis method for both uranium exploration and other applications. It is particularly suitable for analysis of large batch samples and for non-destructive analysis over a wide range of matrices. 8 refs., 4 figs., 3 tabs

  8. Quantitative analysis of boron by neutron radiography

    International Nuclear Information System (INIS)

    Bayuelken, A.; Boeck, H.; Schachner, H.; Buchberger, T.

    1990-01-01

    The quantitative determination of boron in ores is a long process with chemical analysis techniques. As nuclear techniques like X-ray fluorescence and activation analysis are not applicable for boron, only the neutron radiography technique, using the high neutron absorption cross section of this element, can be applied for quantitative determinations. This paper describes preliminary tests and calibration experiments carried out at a 250 kW TRIGA reactor. (orig.) [de

  9. Forensic neutron activation analysis - the Japanese scene

    International Nuclear Information System (INIS)

    Kishi, Tohru.

    1986-01-01

    The progress of forensic neutron activation analysis/FNAA/ in Japan is described. FNAA began in 1965 and during the past 20 years many cases have been handled; these include determination of toxic materials, comparison examination of physical evidences /e.g.,paints, metal fragments, plastics and inks/ and drug sample differenciation. Neutron activation analysis is applied routinely to the scientific criminal investigation as one of multielement analytical techniques. This paper also discusses these routine works. (author)

  10. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  11. Fusion neutronics experiments and analysis

    International Nuclear Information System (INIS)

    1992-01-01

    UCLA has led the neutronics R ampersand D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989

  12. Uncertainty analysis of neutron transport calculation

    International Nuclear Information System (INIS)

    Oka, Y.; Furuta, K.; Kondo, S.

    1987-01-01

    A cross section sensitivity-uncertainty analysis code, SUSD was developed. The code calculates sensitivity coefficients for one and two-dimensional transport problems based on the first order perturbation theory. Variance and standard deviation of detector responses or design parameters can be obtained using cross section covariance matrix. The code is able to perform sensitivity-uncertainty analysis for secondary neutron angular distribution(SAD) and secondary neutron energy distribution(SED). Covariances of 6 Li and 7 Li neutron cross sections in JENDL-3PR1 were evaluated including SAD and SED. Covariances of Fe and Be were also evaluated. The uncertainty of tritium breeding ratio, fast neutron leakage flux and neutron heating was analysed on four types of blanket concepts for a commercial tokamak fusion reactor. The uncertainty of tritium breeding ratio was less than 6 percent. Contribution from SAD/SED uncertainties are significant for some parameters. Formulas to estimate the errors of numerical solution of the transport equation were derived based on the perturbation theory. This method enables us to deterministically estimate the numerical errors due to iterative solution, spacial discretization and Legendre polynomial expansion of transfer cross-sections. The calculational errors of the tritium breeding ratio and the fast neutron leakage flux of the fusion blankets were analysed. (author)

  13. Activation analysis with reactor neutrons

    International Nuclear Information System (INIS)

    Gangadharan, S.

    1983-01-01

    The potentialities of neutron as an analytical probe are indicated, pointing out the need for development of other approaches, besides the conventional activation method. Development of instrumental approach to activation and applications, carried out at Analytical Chemistry Division are outlined. The role of, and the need for, the development and application of mathematical methods in enhancing the information content, and in turn the interpretation of the analytical results, is demonstrated. (author)

  14. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  15. Neutron activation analysis of geochemical samples

    International Nuclear Information System (INIS)

    Rosenberg, R.; Zilliacus, R.; Kaistila, M.

    1983-06-01

    The present paper will describe the work done at the Technical Research Centre of Finland in developing methods for the large-scale activation analysis of samples for the geochemical prospecting of metals. The geochemical prospecting for uranium started in Finland in 1974 and consequently a manually operated device for the delayed neutron activation analysis of uranium was taken into use. During 1974 9000 samples were analyzed. The small capacity of the analyzer made it necessary to develop a completely automated analyzer which was taken into use in August 1975. Since then 20000-30000 samples have been analyzed annually the annual capacity being about 60000 samples when running seven hours per day. Multielemental instrumental neutron activation analysis is used for the analysis of more than 40 elements. Using instrumental epithermal neutron activation analysis 25-27 elements can be analyzed using one irradiation and 20 min measurement. During 1982 12000 samples were analyzed for mining companies and Geological Survey of Finland. The capacity is 600 samples per week. Besides these two analytical methods the analysis of lanthanoids is an important part of the work. 11 lanthanoids have been analyzed using instrumental neutron activation analysis. Radiochemical separation methods have been developed for several elements to improve the sensitivity of the analysis

  16. Neutron activation analysis in minerals prospecting

    International Nuclear Information System (INIS)

    Gomez, H.; Duque O, J.

    1988-01-01

    One method multielemental analysis in geological samples has been developed by neutron activation analysis without using standards and by eliminating many of the error sources of the absolute method. It uses the ratio of the activities induced by mass unit, between the element in the sample and one cobalt monitor. The detection limits are good for more than thirty elements in many prospecting programs, with a standard deviation less than 7%. The neutron flux used is 2x10 11 nxcm -2 .S -1 and the HPGE detector has a relative efficiency of 20% and an energy resolution of 1.9 KeV in 1332 KeV photopeak

  17. Neutron activation analysis: principle and methods

    International Nuclear Information System (INIS)

    Reddy, A.V.R.; Acharya, R.

    2006-01-01

    Neutron activation analysis (NAA) is a powerful isotope specific nuclear analytical technique for simultaneous determination of elemental composition of major, minor and trace elements in diverse matrices. The technique is capable of yielding high analytical sensitivity and low detection limits (ppm to ppb). Due to high penetration power of neutrons and gamma rays, NAA experiences negligible matrix effects in the samples of different origins. Depending on the sample matrix and element of interest NAA technique is used non-destructively, known as instrumental neutron activation analysis (INAA), or through chemical NAA methods. The present article describes principle of NAA, different methods and gives a overview some applications in the fields like environment, biology, geology, material sciences, nuclear technology and forensic sciences. (author)

  18. Digitizing and analysis of neutron generator waveforms

    International Nuclear Information System (INIS)

    Bryant, T.C.

    1977-11-01

    All neutron generator waveforms from units tested at the SLA neutron generator test site are digitized and the digitized data stored in the CDC 6600 tape library for display and analysis using the CDC 6600 computer. The digitizing equipment consists mainly of seven Biomation Model 8100 transient recorders, Digital Equipment Corporation PDP 11/20 computer, RK05 disk, seven-track magnetic tape transport, and appropriate DEC and SLA controllers and interfaces. The PDP 11/20 computer is programmed in BASIC with assembly language drivers. In addition to digitizing waveforms, this equipment is used for other functions such as the automated testing of multiple-operation electronic neutron generators. Although other types of analysis have been done, the largest use of the digitized data has been for various types of graphical displays using the CDC 6600 and either the SD4020 or DX4460 plotters

  19. Limitations for qualitative and quantitative neutron activation analysis using reactor neutrons

    International Nuclear Information System (INIS)

    El-Abbady, W.H.; El-Tanahy, Z.H.; El-Hagg, A.A.; Hassan, A.M.

    1999-01-01

    In this work, the most important limitations for qualitative and quantitative analysis using reactor neutrons for activation are reviewed. Each limitation is discussed using different examples of activated samples. Photopeak estimation, nuclear reactions interference and neutron flux measurements are taken into consideration. Solutions for high accuracy evaluation in neutron activation analysis applications are given. (author)

  20. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  1. Analysis of coal by neutron activation

    International Nuclear Information System (INIS)

    Burtner, D.R.

    1983-01-01

    The development of a thermal-neutron activation analysis procedure for determining elemental concentrations in whole coal samples, and the goal of combining this technique with other nuclear methods for determining a total mass balance in these and similar complex materials, is described. Problems of applying a fast-neutron activation analysis method for nitrogen are discussed, as well as an efficient procedure for drying and packaging coal samples. A thermal-neutron activation analysis (TNAA) procedure was developed for determining up to 27 elements in coal samples from the US, China, Nigeria, and Brazil. The comparator form of TNAA was applied, using a unique multielement standard, which contained 48 elements. The difference in net photopeak counts between sample and standard, due to γ-ray attenuation, was reduced by preparing this standard in an organic matrix, which simulates the composition and physical structure of the coal material. The simultaneous irradiation of several aliquots of this standard enabled high precision and accuracy to be attained. An accurate value for oxygen, determined by fast-neutron activation analysis, is used to correct for this effect in the nitrogen determination method

  2. General principles of neutron activation analysis

    International Nuclear Information System (INIS)

    Dostal, J.; Elson, C.

    1980-01-01

    Aspects of the principles of atomic and nuclear structure and the processes of radioactivity, nuclear transformation, and the interaction of radiations with matter which are of direct relevance to neutron activation analysis and its application to geologic materials are discussed. (L.L.)

  3. Neutron Activation Analysis with k0 Standardization

    International Nuclear Information System (INIS)

    Pomme, S.

    1998-01-01

    SCK-CEN's programme on Neutron Activation Analysis with k 0 -standardisation aims to: (1) develop and implement k 0 -standardisation method for NAA; (2) to exploit the inherent qualities of NAA such as accuracy, traceability, and multi-element capability; (3) to acquire technical spin-off for nuclear measurements services. Main achievements in 1997 are reported

  4. Applications of neutron activation analysis in industry

    International Nuclear Information System (INIS)

    Zaini Hamzah.

    1985-01-01

    Neutron activation analysis technique is discussed in brief. This technique is used for quality control of raw materials, process materials and finished products, as well as activities in research and development for the improvement of the products and new products. The uses of this technique in several experienced industries are mentioned (author)

  5. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    Hernandez H, V.

    1997-01-01

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 10 13 cm -2 s -1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  6. Neutron activation analysis-comparative (NAAC)

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1979-01-01

    A software system for the reduction of comparative neutron activation analysis data is presented. Libraries are constructed to contain the elemental composition and isotopic nuclear data of an unlimited number of standards. Ratios to unknown sample data are performed by standard calibrations. Interfering peak corrections, second-order activation-product corrections, and deconvolution of multiplets are applied automatically. Passive gamma-energy analysis can be performed with the same software. 3 figures

  7. Applications of neutron activation analysis technique

    International Nuclear Information System (INIS)

    Jonah, S. A.

    2000-07-01

    The technique was developed as far back as 1936 by G. Hevesy and H. Levy for the analysis of Dy using an isotopic source. Approximately 40 elements can be analyzed by instrumental neutron activation analysis (INNA) technique with neutrons from a nuclear reactor. By applying radiochemical separation, the number of elements that can be analysed may be increased to almost 70. Compared with other analytical methods used in environmental and industrial research, NAA has some unique features. These are multi-element capability, rapidity, reproducibility of results, complementarity to other methods, freedom from analytical blank and independency of chemical state of elements. There are several types of neutron sources namely: nuclear reactors, accelerator-based and radioisotope-based sources, but nuclear reactors with high fluxes of neutrons from the fission of 235 U give the most intense irradiation, and hence the highest available sensitivities for NAA. In this paper, the applications of NAA of socio-economic importance are discussed. The benefits of using NAA and related nuclear techniques for on-line applications in industrial process control are highlighted. A brief description of the NAA set-ups at CERT is enumerated. Finally, NAA is compared with other leading analytical techniques

  8. Applications of neutrons for laboratory and industrial activation analysis problems

    International Nuclear Information System (INIS)

    Szabo, Elek; Bakos, Laszlo

    1986-01-01

    This chapter presents some particular applications and case studies of neutrons in activation analysis for research and industrial development purposes. The reactor neutrons have been applied in Hungarian laboratories for semiconductor research, for analysis of geological (lunar) samples, and for a special comparator measurement of samples. Some industrial applications of neutron generator and sealed sources for analytical problems are presented. Finally, prompt neutron activation analysis is outlined briefly. (R.P.)

  9. Computed image analysis of neutron radiographs

    International Nuclear Information System (INIS)

    Dinca, M.; Anghel, E.; Preda, M.; Pavelescu, M.

    2008-01-01

    Similar with X-radiography, using neutron like penetrating particle, there is in practice a nondestructive technique named neutron radiology. When the registration of information is done on a film with the help of a conversion foil (with high cross section for neutrons) that emits secondary radiation (β,γ) that creates a latent image, the technique is named neutron radiography. A radiographic industrial film that contains the image of the internal structure of an object, obtained by neutron radiography, must be subsequently analyzed to obtain qualitative and quantitative information about the structural integrity of that object. There is possible to do a computed analysis of a film using a facility with next main components: an illuminator for film, a CCD video camera and a computer (PC) with suitable software. The qualitative analysis intends to put in evidence possibly anomalies of the structure due to manufacturing processes or induced by working processes (for example, the irradiation activity in the case of the nuclear fuel). The quantitative determination is based on measurements of some image parameters: dimensions, optical densities. The illuminator has been built specially to perform this application but can be used for simple visual observation. The illuminated area is 9x40 cm. The frame of the system is a comparer of Abbe Carl Zeiss Jena type, which has been adapted to achieve this application. The video camera assures the capture of image that is stored and processed by computer. A special program SIMAG-NG has been developed at INR Pitesti that beside of the program SMTV II of the special acquisition module SM 5010 can analyze the images of a film. The major application of the system was the quantitative analysis of a film that contains the images of some nuclear fuel pins beside a dimensional standard. The system was used to measure the length of the pellets of the TRIGA nuclear fuel. (authors)

  10. Neutron activation analysis in archaeological chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harbottle, G [Brookhaven National Lab., Upton, NY (United States)

    1990-01-01

    There is a long history of the application of chemical analysis to archaeological problems, extending to the last years of the 18th century. The nuclear-age technique of neutron activation analysis, permitting the simultaneous, sensitive, non-destructive estimation of many elements in an archaeological specimen, has found wide application. Important advances have been made, using this technique, in locating the origins of archaeological artifacts such as ceramics, metals, obsidian and semiprecious stones, among other articles of ancient ritual and commerce. In addition, the technique of neutron activation analysis has proved to be almost ideal in studies tracing the development of ancient technologies such as glass-making and smelting. In the future, the development of data banks of analyses of archaeological materials should provide an excellent new tool in studies of prehistory.

  11. Neutron activation analysis in archaeological chemistry

    International Nuclear Information System (INIS)

    Harbottle, G.

    1990-01-01

    There is a long history of the application of chemical analysis to archaeological problems, extending to the last years of the 18th century. The nuclear-age technique of neutron activation analysis, permitting the simultaneous, sensitive, non-destructive estimation of many elements in an archaeological specimen, has found wide application. Important advantages have been made, using this technique, in locating the origins of archaeological artifacts such as ceramics, metals, obsidian and semiprecious stones, among other articles of ancient ritual and commerce. In addition, the technique of neutron activation analysis has proved to be almost ideal in studies tracing the development of ancient technologies such as glass-making and smelting. In the future, the development of data banks of analyses of archaeological materials should provide an excellent new tool in studies of prehistory. (orig.)

  12. Physical basis for prompt-neutron activation analysis

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1982-01-01

    The technique called prompt ν-ray neutron activation analysis has been applied to rapid materials analysis. The radiation following the neutron radiation capture is prompt in the sense that the nuclear decay time is on the order of 10 - 15 second, and thus the technique is not strictly activation, but should be called radiation neutron capture spectroscopy or neutron capture ν-ray spectroscopy. This paper reviews the following: sources and detectors, theory of radiative capture, nonstatistical capture, giant dipole resonance, fast neutron capture, and thermal neutron capture ν-ray spectra. 14 figures

  13. Neutron activation analysis of biological substances

    International Nuclear Information System (INIS)

    Ordogh, M.

    1978-08-01

    A Bowen cabbage sample was used as a reference material for the neutron activation studies, and the method was checked by the analysis of other biological substances (blood or serum etc.). For nondestructive measurements also some non-trace elements were determined in order to decide whether the activation analysis is a useful means for such measurements. The new activation analysis procedure was used for biomedical studies as, e.g., for trace element determination in body fluids, and for the analysis of inorganic components in air samples. (R.P.)

  14. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  15. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1979-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other trace elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  16. Neutron activation analysis of high purity substances

    International Nuclear Information System (INIS)

    Gil'bert, Eh.N.

    1987-01-01

    Peculiarities of neutron-activation analysis (NAA) of high purity substances are considered. Simultaneous determination of a wide series of elements, high sensitivity (the lower bound of determined contents 10 -9 -10 -10 %), high selectivity and accuracy (Sr=0.10-0.15, and may be decreased up to 0.001), possibility of analysis of the samples from several micrograms to hundreds of grams, simplicity of calibration may be thought NAA advantages. Questions of accounting of NAA systematic errors associated with the neutron flux screening by the analysed matrix and with production of radionuclides of determined elements from accompanying elements according to concurrent nuclear reactions, as well as accounting of errors due to self-absorption of recorded radiation by compact samples, are considered

  17. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.; Bowman, W.W.; Zeh, C.W.

    1980-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program, which is sponsored and funded by the United States Department of Energy, Grand Junction Office. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  18. Neutron Activation Analysis with k0 standardisation

    International Nuclear Information System (INIS)

    Pomme, S.

    1998-01-01

    The objectives of the research are: (1) to develop and implement the k0 standardisation method for neutron activation analysis in close collaboration with scientific partners; (2) to exploit fully the inherent qualities of NAA such as accuracy, traceability, and multi-element offer complete services in health-physics measurements according to international quality standards, (2) to improve continuously these measurement techniques and to follow up international recommendations and legislation concerning the surveillance of workers; (3) to support and advise nuclear and non-nuclear industry on problems of radioactive contamination. Achievements in 1997 related to gamma spectrometry, whole-body counting, beta and alpha spectrometry, dosimetry, radon measurements, calibration, instrumentation, and neutron activation analysis are described

  19. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  20. Research reactor operations for neutron activation analysis

    International Nuclear Information System (INIS)

    Tv'ehlov, Yu.

    2002-01-01

    The IAEA Special Manual devoted to quality control during neutron activation analysis (NAA) on research and test reactors is discussed. Three parts of the publication involve presentation of common rules for performance of NAA, quantitative and qualitative analyses, statistic and systematic errors, safety regulations and radioactive waste management. Besides, the publication contains practical manual for the performance of NAA, and examples of different NAA regulating registration forms are presented [ru

  1. Reactor neutron activation analysis of industrial materials

    International Nuclear Information System (INIS)

    Niese, S.

    1983-01-01

    The specific application of neutron activation analysis (n.a.a.) for industrial materials is demonstrated by the determination of impurities in BeO, Al, Si, Cu, Ge, GaP, GaAs, steel, and irradiated uranium. A group scheme gives an orientation about the possibilities of n.a.a. The use of different standards, methods for the measurement of low radioactivities and errors caused by recoil reaction and radiation stimulated diffusion are discussed. (author)

  2. Neutron activation analysis of atmospheric aerosol

    International Nuclear Information System (INIS)

    Obrusnik, I.

    1986-01-01

    Neutron activation analysis (NAA) is a modern analytical method well suited for the analysis of atmospheric aerosols. Particular steps of the NAA procedure and especially different types of aerosol sampling and sample preparation for analysis are discussed in detail. Several possible NAA techniques are described and the advantages of a purely instrumental technique with short and long irradiation are pointed out. Important performance characteristics of the NAA method such as precision, accuracy, sensitivity and detection limits are also discussed. Different applications of NAA in environmental studies are reviewed. (author)

  3. Quality assurance in biomedical neutron activation analysis

    International Nuclear Information System (INIS)

    1984-01-01

    The summary report represents an attempt to identify some of the possible sources of error in in vitro neutron activation analysis of trace elements applied to specimens of biomedical origin and to advise on practical means to avoid them. The report is intended as guidance for all involved in analysis, including sample collection and preparation for analysis. All these recommendations constitute part of quality assurance which is here taken to encompass the two concepts - quality control and quality assessment. Quality control is the mechanism established to control errors, while quality assessment is the mechanism used to verify that the analytical procedure is operating within acceptable limits

  4. Development of neutron activation analysis software

    International Nuclear Information System (INIS)

    Wang Liyu

    1987-10-01

    The software for quantitative neutron activation analysis was developed to run under the MS/DOS operating system. The programmes of the IBM/SPAN include: spectra file transfer from and to a Canberra Series 35 multichannel analyzer, spectrum evaluation routines, calibration subprogrammes, and quantitative analysis. The programmes for spectrum analysis include fitting routine for separation of multiple lines by reproducing the peak shape with a combination of Gaussian and exponential terms. The programmes were tested on an IBM/AT-compatible computer. The programmes and the sources are available costfree for the IAEA projects of Technical Cooperation. 7 refs, 3 figs

  5. Neutron activation analysis using TRIGA

    International Nuclear Information System (INIS)

    Byrne, A.R.

    1972-01-01

    Activation analysis with TRIGA MARK II is the main part of the work of the nuclear Chemistry Section at the Institute. A major part of the effort in this field is concerned with the determination of trace elements at the micro and nanogram level in a wide variety of materials, and with the development of new methods, (or the adaptation of known methods,) applicable to these determinations. In particular, specific and group radiochemical separations are studied

  6. Uncertainty Assessments in Fast Neutron Activation Analysis

    International Nuclear Information System (INIS)

    W. D. James; R. Zeisler

    2000-01-01

    Fast neutron activation analysis (FNAA) carried out with the use of small accelerator-based neutron generators is routinely used for major/minor element determinations in industry, mineral and petroleum exploration, and to some extent in research. While the method shares many of the operational procedures and therefore errors inherent to conventional thermal neutron activation analysis, its unique implementation gives rise to additional specific concerns that can result in errors or increased uncertainties of measured quantities. The authors were involved in a recent effort to evaluate irreversible incorporation of oxygen into a standard reference material (SRM) by direct measurement of oxygen by FNAA. That project required determination of oxygen in bottles of the SRM stored in varying environmental conditions and a comparison of the results. We recognized the need to accurately describe the total uncertainty of the measurements to accurately characterize any differences in the resulting average concentrations. It is our intent here to discuss the breadth of potential parameters that have the potential to contribute to the random and nonrandom errors of the method and provide estimates of the magnitude of uncertainty introduced. In addition, we will discuss the steps taken in this recent FNAA project to control quality, assess the uncertainty of the measurements, and evaluate results based on the statistical reproducibility

  7. Activation analysis by filtered neutrons. Preliminary investigation

    International Nuclear Information System (INIS)

    Skarnemark, G.; Rodinson, T.; Skaalberg, M.; Tokay, R.K.

    1986-01-01

    In order to investigate if measuring sensibility and precision by epithermal neutron activation analysis may be improved, different types of geological and biologic test samples were radiated. The test samples were enclosed in an extra filter of tungsten or sodium in order to reduce the flux of those neutrons that otherwise would induce interfering activity in the sample. The geological test samples consist of granites containing lanthanides which had been crushed in tung- sten carbide grinder. Normally such test samples show a interferins 1 87W-activity. By use of a tungsten filter the activity was reduced by up to 60%, which resulted in a considerable improvement of sensibility and precision of the measurement. The biologic test samples consisted of evaporated urine from patients treated with the cell poison cis-platinol. A reliable method to measure the platinum content has not existed so far. This method, however, enables platinum contents as low as about 0.1 ppm to be determined which is quite adequate. To sum up this preliminary study has demonstrated that activation analysis using filtered neutrons, correctly applied, is a satisfactory method of reducing interferences without complicated and time-consuming chemical separation procedures. (O.S.)

  8. Steel research using neutron beam techniques. In-situ neutron diffraction, small-angle neutron scattering and residual stress analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo

    2014-01-01

    Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)

  9. Opportunities for innovation in neutron activation analysis

    International Nuclear Information System (INIS)

    Peter Bode

    2012-01-01

    Neutron activation laboratories worldwide are at a turning point at which new staff has to be found for the retiring pioneers from the 1960s-1970s. A scientific career in a well-understood technique, often characterized as 'mature' may only be attractive to young scientists if still challenges for further improvement and inspiring new applications can be offered. The strengths and weaknesses of neutron activation analysis (NAA) are revisited to identify opportunities for innovation. Position-sensitive detection of elements in large samples, Monte Carlo calculations replacing the use of standards, use of scintillator detectors and new deconvolution techniques for increasing the sensitivity are examples of challenging new roads in NAA. Material science provides challenges for the application of NAA in both bulk samples, ultrathin layers and ultrapure materials. (author)

  10. Neutron activation analysis of high purity tellurium

    International Nuclear Information System (INIS)

    Gil'bert, Eh.N.; Verevkin, G.V.; Obrazovskij, E.G.; Shatskaya, S.S.

    1980-01-01

    A scheme of neutron activation analysis of high purity tellurium is developed. Weighed amount of Te (0.5 g) is irradiated for 20-40 hr in the flux of 2x10 13 neutron/(cm 2 xs). After decomposition of the sample impurities of gold and palladium are determined by the extraction with organic sulphides. Tellurium separation from the remaining impurities is carried out by the extraction with monothiobenzoic acid from weakly acidic HCl solutions in the presence of iodide-ions, suppressing silver extraction. Remaining impurity elements in the refined product are determined γ-spectrometrically. The method allows to determine 34 impurities with determination limits 10 -6 -10 -11 g

  11. Neutron activation analysis of monomineral fractions

    International Nuclear Information System (INIS)

    Drykhin, V.I.; Belen'kij, B.V.; Voinkov, D.M.; Il'yasova, K.I.; Lejpinskaya, D.I.; Nedostyp, T.V.

    1977-01-01

    The results are described of the development of an instrumental neutron activation analysis (INAA) of monomineral sulfides (pyrites, pyrrhotites, chalcopyrites and others), quartzites and other minerals, the technique being intended for geochemical investigations. For a multi-element INAA of monomineral sulfides, the optimum irradiation time in a flux of 10 12 to 1.3x10 13 n/cm 2 (neutron field of a nuclear reactor) is 20 to 40 hours, thus ensuring a reliable determination of a great number of elements not lower than 10 -4 %. The time of the induced activity for determining indium in sulfides is 0.5 to 3 min. The actual sensitivity of the method is 10 -4 %. A sensitivity with respect to gold of 0.01 g/t was attained in monominerals after an irradiation of up to 5 min

  12. Optimising polarised neutron scattering measurements--XYZ and polarimetry analysis

    International Nuclear Information System (INIS)

    Cussen, L.D.; Goossens, D.J.

    2002-01-01

    The analytic optimisation of neutron scattering measurements made using XYZ polarisation analysis and neutron polarimetry techniques is discussed. Expressions for the 'quality factor' and the optimum division of counting time for the XYZ technique are presented. For neutron polarimetry the optimisation is identified as analogous to that for measuring the flipping ratio and reference is made to the results already in the literature

  13. Optimising polarised neutron scattering measurements--XYZ and polarimetry analysis

    CERN Document Server

    Cussen, L D

    2002-01-01

    The analytic optimisation of neutron scattering measurements made using XYZ polarisation analysis and neutron polarimetry techniques is discussed. Expressions for the 'quality factor' and the optimum division of counting time for the XYZ technique are presented. For neutron polarimetry the optimisation is identified as analogous to that for measuring the flipping ratio and reference is made to the results already in the literature.

  14. Accounting for the thermal neutron flux depression in voluminous samples for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Overwater, R.M.W.; Hoogenboom, J.E.

    1994-01-01

    At the Delft University of Technology Interfaculty Reactor Institute, a facility has been installed to irradiate cylindrical samples with diameters up to 15 cm and weights up to 50 kg for instrumental neutron activation analysis (INAA) purposes. To be able to do quantitative INAA on voluminous samples, it is necessary to correct for gamma-ray absorption, gamma-ray scattering, neutron absorption, and neutron scattering in the sample. The neutron absorption and the neutron scattering are discussed. An analytical solution is obtained for the diffusion equation in the geometry of the irradiation facility. For samples with known composition, the neutron flux--as a function of position in the sample--can be calculated directly. Those of unknown composition require additional flux measurements on which least-squares fitting must be done to obtain both the thermal neutron diffusion coefficient D s and the diffusion length L s of the sample. Experiments are performed to test the theory

  15. Neutron activation analysis of atmospheric aerosols

    International Nuclear Information System (INIS)

    Riekstinya, D.V.; Mednis, I.V.; Veveris, O.Eh.

    1987-01-01

    A review of studies by Soviet and foreign authors on radioactivation analysis is presented. Instrumental neutron activation analysis (INAA) techniques have been developed providing the possibility to determine a number of elements in very small portions of aerosols for pollutanless areas of the Earth. Two ways of INAA are presented: with long- and short-living radionuclides. The Antarctic and the Indian Ocean aerosol samples have been analysed for 26 microelements. It has been stated that restrictions of the detection limits attained relate to high proportions of certain elements and their nonhomogeneous distribution in filters. The detection limits can be lowered by the filtered air volume growth per unit of the filter area

  16. Instrumental Neutron Activation Analysis for Human Hair

    International Nuclear Information System (INIS)

    Ratanatongchai, W.; Dharmvanij, W; Chongkum, S.

    1998-01-01

    Hair samples from students aged between 7 to 22 years old were analysed by neutron activation analysis at nuclear research reactor TRR-1.M1. From qualitative analysis of short-lived isotopes, A1, V, Ca, I, Cl, Mn, and Na were found. The quantity of those elements can be classified into three groups. The first group is A1, Ca, Na and Cl with variance less than 10%. The second group is V and I with variance between 10% to 50% and the third group, Mn, two samples have concentration about 12 times higher than the others

  17. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  18. Neutron activation analysis of automobile exhaust pollutants

    International Nuclear Information System (INIS)

    Oakes, T.W.; Furr, A.K.; Adair, D.J.; Parkinson, T.F.

    1977-01-01

    An approximation of the distribution of lead particulate from vehicular exhausts is given. Soil and grass (Poa trivialis) samples were collected at five-foot intervals from the roadside out to 300 feet, at ten-foot intervals from 300 to 350 feet, and at 25-foot intervals from 350 to 600 feet. All samples were irradiated twice: once for a brief period of from 10 to 120 seconds and later for periods of from 6 to 8 hours. The short irradiations were at a thermal neutron flux of 1.2x10 12 ncm -2 sec -1 (decay time=1 min, counting time=8 min). The long irradiations were at a thermal neutron flux of 1.3x10 12 ncm -2 sec -1 , and the samples counted twice at decay intervals of two days and twelve days. The counting intervals were one hour. The spectra were stored on magnetic tape for processing by an IBM 370/158 computer. This initial neutron-activation analysis study has shown that there is an extremely detailed pattern of the effluent from vehicular highway traffic which is strongly affected by micrometeorological conditions. In order to detect these patterns it is necessary to use a very compact sample grid with every possible precaution taken to ensure sample homogeneity and cleanliness. A possibility of elevated levels of pollution may exist at considerable distances from the highway, perhaps even greater than at the immediate roadside. (T.G.)

  19. Neutron beams. Tracks analysis, imaging and medicine

    International Nuclear Information System (INIS)

    Pepy, G.

    2006-01-01

    Thermal neutron beams can supply informations about the arrangement of atoms and molecules and about their movement inside the matter. This article treats of the preparation of thermal neutron beams and of the applications that use their penetration and matter activation properties: 1 - thermal neutrons production; 2 - basic properties of thermal neutrons: neutrons scattering, absorbing materials, activating materials, transparent materials, preparation of a neutron beam; 3 - tracks measurement by activation: activation method, measurement of marine pollution by heavy elements, historical evolution of glass composition; 4 - neutron radiography: neutronography, neutronoscopy: viscosity measurement; 5 - cancer treatment. (J.S.)

  20. Industrial applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Hossain, T.Z.

    2001-01-01

    Neutron activation analysis has been widely used in the industry and over the years played a key role in the development of manufacturing process as well as monitoring of the process flow. In this context NAA has been utilized both in R and D, and in the factory as a flexible analytical tool. It has been used successfully in numerous industries including broad categories such as Chemical, Pharmaceutical, Mining, Photographic, Oil and Gas, Automobile, Defense, Semiconductor and Electronic industries. Dow Chemical owns and operates a research reactor for analytical measurements of samples generated in both R and D, and manufacturing area in its plant in Midland, Michigan. Although most industries do not have reactors on their campus but use an off site reactor regularly, and often have in-house neutron sources such as a 252 Cf used primarily for NAA. In most industrial materials analysis laboratory NAA is part of a number of analytical techniques such as ICP-MS, AA, SIMS, FTIR, XRF, TXRF etc. Analysis of complex industrial samples may require data from each of these methods to provide a clear picture of the materials issues involved. With the improvement of classical analytical techniques, and the introduction of new techniques, e.g. TXRF, the role of NAA continues to be a key bench mark technique that provides accurate and reliable data. The strength of the NAA in bulk analysis is balanced by its weakness in providing surface sensitive or spatially resolved analysis as is required by many applications. (author)

  1. Practical considerations in instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmad, N.

    2001-01-01

    Activation analysis is a technique of elemental analysis based on the measurement of characteristics radiation from radionuclides formed directly or indirectly by activation. The activation can be induced by bombarding the material with neutrons or charged particles or gamma rays. This is a well-accepted analytical technique for the determination of composition of complex materials. This technique is also sensitive at trace levels and is almost free from analytical interferences of matrix. It is used for multi-elemental determination in rocks, minerals, alloys, biological materials, geological samples, non-destructive analysis of materials and environmental samples such as water, air particulate matter, plants, soil, sediments and diets. This method is also used for production and measurements of radioisotopes in materials of known composition, for example, when radioactivation is used for nuclear reaction studies, for flux and beam intensity measurements for trace experiments and process quality control. In this article the parameters affecting the sensitivity of instrumental neutron activation analysis are briefly discussed. (author)

  2. Neutron activation analysis of Etruscan pottery

    International Nuclear Information System (INIS)

    Whitehead, J.; Silverman, A.; Ouellet, C.G.; Clark, D.D.; Hossain, T.Z.

    1992-01-01

    Neutron activation analysis (NAA) has been widely used in archaeology for compositional analysis of pottery samples taken from sites of archaeological importance. Elemental profiles can determine the place of manufacture. At Cornell, samples from an Etruscan site near Siena, Italy, are being studied. The goal of this study is to compile a trace element concentration profile for a large number of samples. These profiles will be matched with an existing data bank in an attempt to understand the place of origin for these samples. The 500 kW TRIGA reactor at the Ward Laboratory is used to collect NAA data for these samples. Experiments were done to set a procedure for the neutron activation analysis with respect to sample preparation, selection of irradiation container, definition of activation and counting parameters and data reduction. Currently, we are able to analyze some 27 elements in samples of mass 500 mg with a single irradiation of 4 hours and two sequences of counting. Our sensitivity for many of the trace elements is better than 1 ppm by weight under the conditions chosen. In this talk, details of our procedure, including quality assurance as measured by NIST standard reference materials, will be discussed. In addition, preliminary results from data treatment using cluster analysis will be presented. (author)

  3. Development of high flux thermal neutron generator for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, Jaakko H., E-mail: hannes@adelphitech.com [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K. [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Jones, Glenn [G& J Jones Enterprice, 7486 Brighton Ct, Dublin, CA 94568 (United States); Pantell, Richard H. [Department of Electrical Engineering, Stanford University, Stanford, CA (United States)

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3–5 · 10{sup 7} n/cm{sup 2}/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 10{sup 10} n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  4. Methodological developments and applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    2007-01-01

    The paper reviews the author's experience acquired and achievements made in methodological developments of neutron activation analysis (NAA) of mostly biological materials. These involve epithermal neutron activation analysis, radiochemical neutron activation analysis using both single- and multi-element separation procedures, use of various counting modes, and the development and use of the self-verification principle. The role of NAA in the detection of analytical errors is discussed and examples of applications of the procedures developed are given. (author)

  5. Neutron activation analysis of medicinal plant extracts

    International Nuclear Information System (INIS)

    Vaz, S.M.; Saiki, M.; Vasconcellos, M.B.A.; Sertie, J.A.A.

    1995-01-01

    Instrumental neutron activation analysis was applied to the determination of the elements Br, Ca, Cl, Cs, Fe, K, La, Mg, Mn, Na, Rb and Zn in medicinal extracts obtained from Centella asiatica, Citrus aurantium L., Achyrolcline satureoides DC, Casearia sylvestris, Solano lycocarpum, Zingiber officinale Roscoe, Solidago microglossa and Stryphnondedron barbatiman plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyldithiocarbamate solution. Precision and accuracy of the results were evaluated by analyzing biological reference materials. The therapeutic action of some elements found in plant extracts analyzed is briefly discussed. (author). 15 refs., 5 tabs

  6. Neutron activation analysis of biological material

    International Nuclear Information System (INIS)

    Kucera, J.; Simkova, M.; Obrusnik, I.

    1985-01-01

    The possibilities are briefly summed up of usino. NAA (neutron activation analysis) for determining element traces in foodstuffs and their intake by organisms, for monitoring changes in the content of important trace elements in tissues and body fluids owing to environmental pollution, for verifying the results of other analytical techniques and for certifying the content of element traces in reference materials. Examples are given of the use of NAA, and the results are summed up of the determination of Cd, Mn and Zn in biological reference materials NBS SRM-1577, Bovine Liver, Bowen's Kale, IAEA Milk Powder A-11 and IAEA Animal Muscle H-4. (E.S.)

  7. Toxicological applications of neutron-activation analysis

    International Nuclear Information System (INIS)

    Cross, J.D.; Dale, I.M.; Smith, H.

    1975-01-01

    Thermal neutron-activation analysis is recognised as a useful tool for trace element studies in toxicology. This paper describes some recent applications of the technique to three elements when ingested by people in excess of normal intake Two of the elements (copper and chromium) are essential to life and one (bromine) is as yet unclassified. Three deaths were investiagted and trace element levels compared with normal levels from healthy subjects in the same geographical area who had died as a result of violence. (author)

  8. Support system for Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Sasajima, Fumio; Ohtomo, Akitoshi; Sakurai, Fumio; Onizawa, Koji

    1999-01-01

    In the research reactor of JAERI, the Neutron Activation Analysis (NAA) has been utilized as a major part of an irradiation usage. To utilize NAA, research participants are always required to learn necessary technique. Therefore, we started to examine a support system that will enable to carry out INAA easily even by beginners. The system is composed of irradiation device, gamma-ray spectrometer and data analyzing instruments. The element concentration is calculated by using KAYZERO/SOLCOI software with the K 0 standardization method. In this paper, we review on a construction of this INAA support system in JRR-3M of JAERI. (author)

  9. Selected industrial and environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Kucera, J.

    1999-01-01

    A review of the applications of Instrumental Neutron Activation Analysis (INAA) in the industrial and environmental fields is given. Detection limits for different applications are also given. (author)

  10. Reactor neutron activation for multielemental analysis

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    1999-01-01

    Neutron Activation Analysis using single comparator (K 0 NAA method) has been used for obtaining multielemental profiles in a variety of matrices related to environment. Gold was used as the comparator. Neutron flux was characterised by determining f, the epithermal to thermal neutron flux ratio and cc, the deviation from ideal shape of the neutron spectrum. The f and a were determined in different irradiation positions in APSARA reactor, PCF position in CIRUS reactor and tray rod position in Dhruva reactor using both cadmium cut off and multi isotope detector methods. High resolution gamma ray spectrometry was used for radioactive assay of the activation products. This technique is being used for multielement analysis in a variety of matrices like lake sediments, sea nodules and crusts, minerals, leaves, cereals, pulses, leaves, water and soil. Elemental profiles of the sediments corresponding to different depths from Nainital lake were determined and used to understand the history of natural absorption/desorption pattern of the previous 160 years. Ferromanganese crusts from different locations of Indian Ocean were analysed with a view to studying the distribution of some trace elements along with Fe and Mn. Variation of Mn/Fe ratio was used to identify the nature of the crusts as hydrogenous or hydrothermal. Fe-rich and Fe-depleted nodules from Indian Ocean were analysed to understand the REE patterns and it is proposed that REE-Th associated minerals could be the potential Th contributors to the sea water and thus reached ferromanganese nodules. Dolomites (unaltered and altered), two types of serpentines and intrusive rock dolerite from the asbestos mines of Cuddapah basin were analysed for major, minor and trace elements. The elemental concentrations are used for distinguishing and characterising these minerals. From our investigations, it was concluded that both dolomite and dolerite contribute elements in the serpentinisation process. Chemical neutron

  11. Neutron capture prompt gamma-ray activation analysis at the NIST cold neutron research facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Vincent, D H; Greenberg, R R; Stone, C A; Mackey, E A [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Anderson, D L [Food and Drug Administration, Washington, DC (United States); Clark, D D [Cornell Univ., Ithaca, NY (United States)

    1993-01-01

    An instrument for neutron capture prompt gamma-ray activation analysis (PGAA) has been constructed as part of the Cold Neutron Research Facility at the 20 MW National Institute of Standards and Technology Research Reactor. The neutron fluence rate (thermal equivalent) is 1.5*10[sup 8] n*cm[sup -2]*s[sup -] [sup 1], with negligible fast neutrons and gamma-rays. With compact geometry and hydrogen-free construction, the sensitivity is sevenfold better than an existing thermal instrument. Hydrogen background is thirtyfold lower. (author) 17 refs.; 2 figs.

  12. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 μamp proton beam is 4.0 x 10 11 n/cm 2 -s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error

  13. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  14. Instrumental neutron activation analysis of soil sample

    International Nuclear Information System (INIS)

    Abdul Khalik Haji Wood.

    1983-01-01

    This paper describes the analysis of soil samples collected from 5 different location around Sungai Lui, Kajang, Selangor, Malaysia. These sample were taken at 22-24 cm from the top of the ground and were analysed using the techniques of Instrumental Neutron Activation Analysis (INAA). The analysis on soil sample taken above 22-24 cm level were done in order to determine if there is any variation in elemental contents at different sampling levels. The results indicate a wide variation in the contents of the samples. About 30 elements have been analysed. The major ones are Na, I, Cl, Mg, Al, K, Ti, Ca and Fe. Trace elements analysed were Ba, Sc, V, Cr, Mn, Ga, As, Zn, Br, Rb, Co, Hf, Zr, Th, U, Sb, Cs, Ce, Sm, Eu, Tb, Dy, Yb, Lu and La. (author)

  15. Neutron activation analysis of geological material

    International Nuclear Information System (INIS)

    Greef, G.J.

    1977-05-01

    In neutron activation analysis the precision and accuracy of results are often misleading, since only the statistical errors which accompany the measuring of radioactivity are taken into consideration. Several other factors can, however, also influence precision and accuracy. It was found that a geological sample was contaminated with the construction material of the mill in which it had been pulverised. Several geometrical differences which could possibly play a role were also investigated. Impurities in the irradiation containers affect the determination of some elements in the samples; the contamination materials in quarts irradiation tubes were determined. The flux gradients which may effect the relative activities of the samples and standards were measured. Suitable standards are necessary to ensure accurate analyses of geological material. Available natural standards were critically evaluated and several methods were investigated by which synthetic standards may be prepared. In order to accurately determine gallium, lanthanum and samarium by means of neutron activation analysis, sodium first had to be removed. After irradiation the sample was dissolved in a mixture of acids and the soidium absorbed from the solution on a hydrated antimony pentoxide column. Gallium, lanthanum and samarium activities were measured by means of precision gamma-spectrometry

  16. Monte Carlo criticality analysis for dissolvers with neutron poison

    International Nuclear Information System (INIS)

    Yu, Deshun; Dong, Xiufang; Pu, Fuxiang.

    1987-01-01

    Criticality analysis for dissolvers with neutron poison is given on the basis of Monte Carlo method. In Monte Carlo calculations of thermal neutron group parameters for fuel pieces, neutron transport length is determined in terms of maximum cross section approach. A set of related effective multiplication factors (K eff ) are calculated by Monte Carlo method for the three cases. Related numerical results are quite useful for the design and operation of this kind of dissolver in the criticality safety analysis. (author)

  17. Past, present, future of neutron activation analysis

    International Nuclear Information System (INIS)

    Guinn, V.P.

    1991-01-01

    Although the method of NAA was originated in 1936, use of the method was minimal for about the next ten years - due to the lack of a high-flux source of thermal neutrons. When such a copious source of neutrons - the nuclear reactor - became available, commencing in 1945, the power of the method to determine many elements, quantitatively, even though present in samples at concentrations as low as ppb, attracted many scientists. During about the next 20 years (1945-1965), NAA provided the first major results on trace elements (essential and toxic) in biomedical materials. These studies constituted the first major achievement of NAA - and such studies continue. Due to the initial lack of a high-efficiency detector of gamma radiation, work during the early part of this period had to be carried out by tedious radiochemical separations. Starting in the early 1950's, with the advent of the NaI(Tl) scintillation detector and multichannel pulse-height analyzers, the purely-instrumental form of the method (INAA) was born, and research and applications mushroomed. In the 1960s, two additional important applications of NAA were its vital use in the semiconductor industry and in the analysis of the lunar rocks. The INAA method in this period was greatly advanced by the availability of high-resolution germanium detectors. Applications in environmental studies, archaeology, and forensic chemistry were also of note. INAA is now a mature method, but still improving. As for the future, what is still needed are less expensive high-flux neutron sources, simple automated systems, gamma-ray detectors of even better resolution, and faster electronics. The field of NAA has been, and is, blessed by a large number of outstanding scientists, world-wide, all intrigued by the atomic nucleus and radioactive decay

  18. Phosphorus analysis in milk samples by neutron activation analysis method

    International Nuclear Information System (INIS)

    Oliveira, R.M. de; Cunha, I.I.L.

    1991-01-01

    The determination of phosphorus in milk samples by instrumental thermal neutron activation analysis is described. The procedure involves a short irradiation in a nuclear reactor and measurement of the beta radiation emitted by phosphorus - 32 after a suitable decay period. The sources of error were studied and the established method was applied to standard reference materials of known phosphorus content. (author)

  19. Neutronic activation analysis of antique ceramics. Groups and differenciation

    International Nuclear Information System (INIS)

    Widemann, F.

    1975-01-01

    Different techniques for clay analysis in view of studying the origin of ceramics are exposed. The element abundance is measured by X-ray fluorescence analysis or by neutron activation analysis. Comparative tables of the results are established [fr

  20. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  1. Neutron activation analysis: recent developments and applications

    International Nuclear Information System (INIS)

    Acharya, R.; Reddy, A.V.R.

    2012-01-01

    Neutron activation analysis (NAA) is a powerful isotope specific nuclear analytical technique for simultaneous determination of major to trace elemental concentrations in diverse matrices. NAA is associated with high analytical sensitivities and low detection limits (ppm to ppb) due to utilization of high neutron flux from research reactors and high efficiency high resolution gamma ray spectrometry. Elemental concentrations are determined either by conventional NAA using relative method or by single comparator method of NAA (k 0 -NAA). Since 1994, Radiochemistry Division is actively engaged in developments and applications of k 0 -based NAA and Prompt Gamma ray NAA (PGNAA) methods for compositional characterization of materials, in addition to conventional instrumental NAA (INAA) and chemical NAA (CNAA) methods for total as well as speciation studies. The article briefly summarizes developments of k 0 based method of NAA using an external single comparator (k 0 -NAA) and an internal monostandard (lM-NAA) and PGNAA and their applications to small as well as large size samples. The article also briefly highlights the application of INAA and chemical NAA (CNAA) for speciation studies of arsenic and iodine in environmental and food samples respectively and bioaccesibility of selenium in food samples and trace elements wheatgrass samples

  2. Homotopy analysis method for neutron diffusion calculations

    International Nuclear Information System (INIS)

    Cavdar, S.

    2009-01-01

    The Homotopy Analysis Method (HAM), proposed in 1992 by Shi Jun Liao and has been developed since then, is based on a fundamental concept in differential geometry and topology, the homotopy. It has proved useful for problems involving algebraic, linear/non-linear, ordinary/partial differential and differential-integral equations being an analytic, recursive method that provides a series sum solution. It has the advantage of offering a certain freedom for the choice of its arguments such as the initial guess, the auxiliary linear operator and the convergence control parameter, and it allows us to effectively control the rate and region of convergence of the series solution. HAM is applied for the fixed source neutron diffusion equation in this work, which is a part of our research motivated by the question of whether methods for solving the neutron diffusion equation that yield straightforward expressions but able to provide a solution of reasonable accuracy exist such that we could avoid analytic methods that are widely used but either fail to solve the problem or provide solutions through many intricate expressions that are likely to contain mistakes or numerical methods that require powerful computational resources and advanced programming skills due to their very nature or intricate mathematical fundamentals. Fourier basis are employed for expressing the initial guess due to the structure of the problem and its boundary conditions. We present the results in comparison with other widely used methods of Adomian Decomposition and Variable Separation.

  3. Epithermal neutron activation analysis of food

    International Nuclear Information System (INIS)

    Zikovsky, L.; Soliman, K.

    1999-01-01

    Food samples were irradiated with thermal and epithermal neutrons. The average ratios of thermal to epithermal activity were determined for 80 Br, 49 Ca, 38 Cl, 60m Co, 42 K, 27 Mg, 56 Mn, 24 Na, and 86m Rb. They were equal to 2.1, 26, 24, 6.6, 19, 16, 11, 23 and 1.9, respectively. Then, 57 food samples were analyzed by epithermal neutron activation analysis for Br and Rb. The concentrations (in ppm) of Br and Rb were in asparagus (2) 2.3, 11.5; beets (3) 0.5, 0.8; beef (3) 1.7, 3.6; cabbage (5) 0.5, 10.8; carrot (3) 0.2, 3.7; chicken (3) 0.6, 4.4; chocolate (7) 11.1, 18.7; egg (3) 0.9, 1.9; french bean (3) 0.3, 1.0; goose (2) 1.3, 9.3; lettuce (2) 0.9, 1.7; pork (1) 1.5, 4.4; potato (7) 1.0, 1.2; sausage (3) 4.8, 3.5; spinach (3) 3.6, 4.0; strawberry jam (3) 0.4, 1.4; tomato (1) 13.5, 14.6; turkey (3) 1.2, 4.9. respectively. The number of samples and analyzed is indicated in parentheses. (author)

  4. Development of educational program for neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis

  5. Development of educational program for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis.

  6. Instrumental neutron activation analysis in environmental research

    International Nuclear Information System (INIS)

    Bruin, M. de.

    1985-01-01

    The main characteristics of instrumental neutron activation analysis (INAA),relevant for environmental research and monitoring, was reviewed and discussed-sensitivity, suitable for detection of many toxic elements, the low risks of contamination of element loss, lack of matrix effects, lack of light element interference except for 24 Na, capability for multi-element determination, comparatively low costs. A detailed description of the IRI analysis system for routine INAA is given. The system is based on the single comparator method of standartization to take full advantage of multi-element without preparation and use the trace element standards. Zinc was used as mono element standard, the element concentrations are calculated on the basis of 65 Zn and 69m Zn-activities. The irradiations were carried out in a thermal neutron flux of 1.10 13 n/cm 2 .s. The gamma spectra is converted into element concentrations using a set of dedicated software, performing the following functions: spectrum analysis and interpretation, comparison and combination of the intermediate results from different decay times, generation of the final report, bookkeeping of the results obtained. The main applications of the INAA system mentioned are: identification of sources of heavy metal air pollution using air filters or biological indicators such as mosses, lichens, toe-nails, bird feathers, molusks and waterplants; and study of the uptake and translocation of heavy element in plants. Special attention was paid to mathematical techniques for a reliable interpretation of the element concentration patterns observed in sets of lichen samples. Future developments in INAA in environmental science are briefly mentioned

  7. Neutron activation analysis at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide 252 Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world's largest inventory of compact 252 Cf neutron sources. Neutron source intensities of ≤ 10 11 neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10 8 cm -2 s -1 at the sample. Total flux of ≥10 9 cm -2 s -1 is feasible for large-volume irradiation rabbits within the 252 Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis

  8. Neutron activation analysis of airborne inorganic pollutants

    International Nuclear Information System (INIS)

    Oerdoegh, M.; Kalman, L.

    1975-01-01

    The aim of the studies was to determine the radioactive and non-radioactive pollution of the air in the environment of the atomic reactor WWR-S of the Hungarian Academy of Sciences. Accordingly the investigations were carried out by two ways: the samples were analysed partly without previous irradiation and partly by neutron activation analysis. The use of several filter papers was studied and the most suitable filter paper (Whatman No. 41) was chosen for this investigation. The quantitative determination of more than twenty elements has been performed. First the natural activity of the aerosol samples taken periodically was measured and subsequently they have been analysed after irradiation in the atomic reactor for 1 minute, 1 hour, and 50 hours, respectively. A 45 cm 3 Ge/Li detector/ Nuclear Diodes/ was used in connection with a 1024 channel analyzer /type NTA-512B/. The analyses were made nondestructively, and the gamma-spectra were evaluated by computer. (K.A.)

  9. Instrumental neutron activation analysis of kidney stones

    International Nuclear Information System (INIS)

    Sarmani, S.; Kuan, L.L.; Bakar, M.A.A.

    1990-01-01

    Kidney stone samples of the types calcium oxalate, uric acid, and xanthine were analyzed for their elemental contents by neutron activation analysis to study both the elemental correlation and influence of element on stone precipitation processes. Elements, such as Al, Au, Br, Ca, Cl, Co, Cr, Fe,H, I, K, Mg, Na, Sb, Se, Sr, and Zn, were determined quantitatively. Calcium oxalate stones contained higher concentration of all the elements analyzed compared to uric acid or xanthine stones. The concentrations of Cl, Fe, K, Na, Sr, and Zn were relatively higher than Au, Co, Cr, and Sb. A positive correlation exists between Ca and Zn, whereas a negative correlation exists between Sr and Ca. Zinc may play an important role in the formation of calcium oxalate stone

  10. Neutron activation analysis of urinary calculi

    International Nuclear Information System (INIS)

    Souka, N.; Souka, S.; Sanad, W.; Abdel-Rassoul, A.A.

    1974-01-01

    Urinary calculi resulting from disorders in the urinary system are mostly composed of uric acid, urates, calcium oxalate, alkaline earth phosphates (Ca and Mg), triple phosphate (magnesium ammonium phosphate), calcium carbonate, cystine, xanthine, and traces of proteins. The determination of these macro-constituents has been carried out by different analytical procedures. No attempts however, have been reported regarding the determination of trace elements in urinary stones, apart from that of Herring et al., who investigated the consumption of strontium by urolithiasis patients. The present work is a non-destructive neutron activation analysis of urinary calculi, to search the variation in concentration of certain trace elements with the chemical composition of the calculus

  11. Neutronics analysis for HYLIFE-II

    International Nuclear Information System (INIS)

    Tobin, M.T.

    1990-01-01

    A preliminary neutronics analysis of the HYLIFE-2 reactor concept gives a tritium breeding ratio of 1.17 and a system energy multiplication factor of 1.14. Modified SS-316 (in which Mn is substituted for Ni) is superior to Hastelloy X and Hastelloy N as a firstwall material considering He generation, dpa-limited lifetime, and shallow-burial index. Since Flibe is corrosive to Mn metals, however, a favorable first-wall material is yet to be decided on. Flibe impurities considered (e.g., inherent impurities and those arising from wall erosion or secondary-coolant leakage) do not increase the hazard to the public over that of pure Flibe. The main issues for HYLIFE-2 are the high shallow-burial index (106) and the requirement to contain some 99.7% of the 18 F inventory to prevent its release to the public 18 refs., 3 figs., 9 tabs

  12. Analysis of human enamel and dentine by neutron activation analysis

    International Nuclear Information System (INIS)

    Soares, Marco A.B.

    2005-01-01

    Determination of trace elements in dental tissues has been of great interest to study the correlation between element composition and caries as well as food habits of individuals. In the present study dentine and enamel samples from healthy individuals were analysed by neutron activation analysis. The teeth were provided form dental clinics, and they were previously washed using purified water and acetone. Then they were dried at 40 deg C and ground in a agate mortar. The samples and element standards were irradiated with thermal neutrons at the IEA-R1 nuclear reactor. Long irradiations of 8 h under thermal neutron flux of 5x10 12 n cm -2 s -1 were used for Ca, Na, Sr and Zn determinations. In short irradiations of 15 s and under neutron flux of 10 12 n cm -2 s -1 the elements Mg, Mn, Na e Sr were determined. The induced gamma activities of the samples and standards were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. Elemental concentrations were calculated by comparative method. Results obtained showed that Ca, Mg and Na are present in both tissues at the level of percentages and the elements Mn, Sr and Zn at the μg g -1 levels. For quality control of the results the certified reference materials NIST 1400 Bone Ash and NIST 1486 Bone Meal were analysed. (author)

  13. Fast neutron activation analysis at Texas A and M University

    International Nuclear Information System (INIS)

    James, W.D.

    1997-01-01

    Fast neutron generators are used at Texas A and M University to provide a supply of high energy neutrons for nuclear analytical measurements. A series of neutron activation analysis procedures have been developed for determining various major, minor and trace constituents in a variety of materials. These procedures are primarily developed to compliment our reactor based NAA program, thereby expanding the list of determinable elements to include those difficult or impossible to measure using thermal neutrons. A few typical methods are discussed. The unique implementation of the methodologies at Texas A and M are explained. (author)

  14. Trace element analysis of common salt using neutron activation analysis

    International Nuclear Information System (INIS)

    Usman, K.

    1993-01-01

    Instrumental Fast Neutron Activation Analysis (IFNAA) technique has been used in the qualitative and quantitative determination of the impurity elements in common salt. Samples of the different types of common salt processed in Nigeria and some of those imported into the country were used. The type A711 KAMAN neutron generator and a high-purity Germanium (HpGe) gamma spectrometer available at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria has been used. The ORTEC ADCAM 100 Emulation Software (Maestro) was used in the qualitative measurement of the detected elements. The G.R.G Activation Analysis System by G. R. Gilmore, 1987, was used in the quantitative determination of the elements detected by relative method. Aluminium and arsenic were detected and measured

  15. Neutronic analysis of fusion tokamak devices by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Takiyoshi, Kouji; Amano, Toshio; Kawasaki, Hiromitsu; Okuno, Koichi

    2011-01-01

    A complete 3D neutronic analysis by PHITS (Particle and Heavy Ion Transport code System) has been performed for fusion tokamak devices such as JT-60U device and JT-60 Superconducting tokamak device (JT-60 Super Advanced). The mono-energetic neutrons (E n =2.45 MeV) of the DD fusion devices are used for the neutron source in the analysis. The visual neutron flux distribution for the estimation of the port streaming and the dose rate around the fusion tokamak devices has been calculated by the PHITS. The PHITS analysis makes it clear that the effect of the port streaming of superconducting fusion tokamak device with the cryostat is crucial and the calculated neutron spectrum results by PHITS agree with the MCNP-4C2 results. (author)

  16. Fast neutron activation analysis of Kalewa (Myanmar) coal

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Naing, W [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-06-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab.

  17. Fast neutron activation analysis of Kalewa (Myanmar) coal

    International Nuclear Information System (INIS)

    Myint, U.; Naing, W.

    1994-01-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab

  18. Thermogravimetric analysis of reactor-neutrons-irradiated LEXAN polycarbonate film

    International Nuclear Information System (INIS)

    Kalsi, P.C.

    2000-01-01

    The effects of reactor-neutrons irradiation on the thermogravimetric (TG) analysis of LEXAN polycarbonate film in air were studied. Irradiation enhances the degradation rate and the effect increases further with increasing neutron fluence. The kinetics of the different steps of degradation were also evaluated from the TG curves. The activation energy values calculated for all the degradation stages decrease on irradiation. (author)

  19. Neutron activation analysis applied to energy and environment

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1975-01-01

    Neutron activation analysis was applied to a number of problems concerned with energy production and the environment. Burning of fossil fuel, the search for new sources of uranium, possible presence of toxic elements in food and water, and the relationship of trace elements to cardiovascular disease are some of the problems in which neutron activation was used. (auth)

  20. Analysis of atmospheric particulate samples via instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Greenberg, R.R.

    1990-01-01

    Instrumental neutron activation analysis (INAA) is a powerful analytical technique for the elemental characterization of atmospheric particulate samples. It is a true multielement technique with adequate sensitivity to determine 30 to 40 elements in a sample of atmospheric particulate material. Its nondestructive nature allows sample reanalysis by the same or a different analytical technique. In this paper as an example of the applicability of INAA to the study of atmospheric particulate material, a study of the emissions from municipal incinerators is described

  1. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    Science.gov (United States)

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  2. Monte Carlo method in neutron activation analysis

    International Nuclear Information System (INIS)

    Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.

    2009-01-01

    Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA

  3. Techniques of in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Chettle, D.R.; Fremlin, J.H.

    1984-01-01

    This review is dealt with under the following headings, intended to reflect the different factors affecting the measurement sensitivity, starting with the choice of neutron source and proceeding, through the reaction characteristics, to the detection system, the questions of dosimetry and ethical constraints being also discussed: 1) neutron sources, slowing down and interaction processes, energy spectrum and flux uniformity, timing 2) neutron reactions used for in vivo analyses 3) detectors, choice, geometrical considerations and detector shielding 4) data collection and processing 5) interpretation, major elements, absolute or sequential measurements, relationship to other parameters 6) dosimetry, framework for dose levels, biological effects of neutron interactions, neutron doses in practice 7) implications for measurement of calcium, nitrogen and cadmium. (U.K.)

  4. Activation analysis opportunities using cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Rossbach, M

    1987-05-01

    Guided beams of cold neutrons being installed at a number of research reactors may become increasingly available for analytical research. A guided cold beam will provide higher neutron fluence rates and lower background interferences than in present facilities. In an optimized facility, fluence rates of 10/sup 9/ nxcm/sup -2/xs/sup -1/ are obtainable. Focusing a large area beam onto a small target will further increase the neutron intensity. In addition, the shift to lower neutron energy increases the effective cross sections. The absence of fast neutrons and gamma rays permits detectors to be placed near the sample without intolerable background, and thus the efficiency for counting prompt gamma rays can be much higher than in present systems. Measurements made at the hydrogen cold source of the FRJ-2 (DIDO) reactor at the KFA provide a numerical evaluation of the improvements in PGAA with respect to signal-to-background ratios of important elements and matrices. (author) 15 refs.

  5. Cement analysis using d + D neutrons

    International Nuclear Information System (INIS)

    Womble, Phillip C.; Paschal, Jon; Moore, Ryan

    2005-01-01

    In the cement industry, the primary concern is quality control. The earlier the cement industry can institute quality control upon their product, the more significant their savings in labor, energy and material. We are developing a prototype cement analyzer using pulsed neutrons from a d-D electronic neutron generator with the goal of ensuring quality control of cement in an on-line manner. By utilizing a low intensity d-D neutron source and a specially-designed moderator assembly, we are able to produce one of the safest neutron-based systems in the market. Also, this design includes some exciting new methods of data acquisition which may substantially reduce the final installation costs. In our proof-of-principle measurements, we were able to measure the primary components of cement (Al, Si, Ca and Fe) to limits required for the raw materials, the derived mixes and the clinkers utilizing this neutron generator

  6. Epithermal neutron activation analysis in applied microbiology

    International Nuclear Information System (INIS)

    Marina Frontasyeva

    2012-01-01

    Some results from applying epithermal neutron activation analysis at FLNP JINR, Dubna, Russia, in medical biotechnology, environmental biotechnology and industrial biotechnology are reviewed. In the biomedical experiments biomass from the blue-green alga Spirulina platensis (S. platensis) has been used as a matrix for the development of pharmaceutical substances containing such essential trace elements as selenium, chromium and iodine. The feasibility of target-oriented introduction of these elements into S. platensis biocomplexes retaining its protein composition and natural beneficial properties was shown. The absorption of mercury on growth dynamics of S. platensis and other bacterial strains was observed. Detoxification of Cr and Hg by Arthrobacter globiformis 151B was demonstrated. Microbial synthesis of technologically important silver nanoparticles by the novel actinomycete strain Streptomyces glaucus 71 MD and blue-green alga S. platensis were characterized by a combined use of transmission electron microscopy, scanning electron microscopy and energy-dispersive analysis of X-rays. It was established that the tested actinomycete S. glaucus 71 MD produces silver nanoparticles extracellularly when acted upon by the silver nitrate solution, which offers a great advantage over an intracellular process of synthesis from the point of view of applications. The synthesis of silver nanoparticles by S. platensis proceeded differently under the short-term and long-term silver action. (author)

  7. Neutron activation analysis of limestone objects

    International Nuclear Information System (INIS)

    Meyers, P.; Van Zelst, L.

    1977-01-01

    The elemental composition of samples from limestone objects were determined by neutron activation analysis to investigate whether this technique can be used to distinguish between objects made of limestone from different sources. Samples weighing between 0.2-2 grams were obtained by drilling from a series of ancient Egyptian and medieval Spanish objects. Analysis was performed on aliquots varying in weight from 40-100 milligrams. The following elements were determined quantitatively: Na, K, Rb, Cs, Ba, Sc, La, Ce, Sm, Eu, Hf, Th, Ta, Cr, Mn, Fe, Co and Zn. The data on Egyptian limestones indicate that, because of the inhomogeneous nature of the stone, 0.2-2 gram samples may not be representative of an entire object. Nevertheless, multivariate statistical methods produced a clear distinction between objects originating from the Luxor area (ancient Thebes) and objects found north of Luxor. The Spanish limestone studied appeared to be more homogeneous. Samples from stylistically related objects have similar elemental compositions while relative large differences were observed between objects having no relationship other than the common provenance of medieval Spain. (orig.) [de

  8. Quality assurance in neutron activation analysis

    International Nuclear Information System (INIS)

    Heydorn, K.

    1984-01-01

    As a potential reference method, neutron activation analysis does not have to rely on other reference materials to ascertain the quality of analytical results. The fundamental characteristics of the method with the clear separation between irradiation, processing, and counting makes possible the estimation of uncertainties of individual results from a priori assumptions. Such estimates of the standard deviation from a series of independent sources of variation are compared with the a posteriori variability of replicate determinations in order to ascertain that the analytical method is in a state of statistical control. This Analysis of Precision tests the absence of unknown errors by means of a statistic T, which is closely approximated by a chi-square distribution. In this manner an evaluation is made of a commercially available computer program for peak evaluation in γ-spectrometry, as well as of other factors affecting the precision and accuracy of the counting process. An attempt is also made to determine sampling constants of one gram or less in a candidate biological reference material

  9. Multielement analysis of biological standards by neutron activation analysis

    International Nuclear Information System (INIS)

    Nadkarni, R.A.

    1977-01-01

    Up to 28 elements were determined in two IAEA standards: Animal Muscle H4 and Fish Soluble A 6/74, and three NBS standards: Spinach: SRM-1570, Tomato Leaves: SRM-1573 and Pine Needles: SRM-1575 by instrumental neutron-activation analysis. Seven noble metals were determined in two NBS standards: Coal: SRM-1632 and Coal Fly Ash: SRM-1633 by radiochemical procedure while 11 rare earth elements were determined in NBS standard Orchard Leaves: SRM-1571 by instrumental neutron-activation analysis. The results are in good agreement with the certified and/or literature data where available. The irradiations were performed at the Cornell TRIGA Mark II nuclear reactor at a thermal neutron flux of 1-3x10 12 ncm -2 sec -1 . The short-lived species were determined after a 2-minute irradiation in the pneumatic rabbit tube, and the longer-lived species after an 8-hour irradiation in the central thimble facility. The standards and samples were counted on coaxial 56-cm 3 Ge(Li) detector. The system resolution was 1.96 keV (FWHM) with a peak to Compton ratio of 37:1 and counting efficiency of 13%, all compared to the 1.332 MeV photopeak of Co-60. (T.I.)

  10. Analysis of Brazilian snake venoms by neutron activation analysis

    International Nuclear Information System (INIS)

    Saiki, M.; Vasconcellos, M.B.A.; Rogero, J.R.; Cruz, M.C.G.

    1991-01-01

    Instrumental neutron activation analysis (INAA) has been applied to multielemental determinations of Brazilian snake venoms from the species: Bothrops jararacussu, Crotalus durissus terrificus and Bothrops jararaca. Concentrations of Br, Ca, Cl, Cs, K, Mg, Na, Rb, Sb, Se and Zn have been determined in lyophilized venoms by using short and long irradiations in the IEA-RI nuclear reactor under a thermal neutron flux of 10 11 to 10 13 n · cm -2 · s -1 . The reference materials NIST Bovine Liver 1577 and IUPAC Bowen's Kale were also analyzed simultaneously with the venoms to evaluate the accuracy and the reproducibility of the method. The concentrations of the elements found in snake venoms from different species were compared. The Crotalus durissus terrificus venoms presented high concentration of Se but low concentrations of Zn when these results are compared with those obtained from genera Bothrops venoms. (author) 9 refs.; 2 tabs

  11. Neutron noise analysis for malfunction diagnosis at sodium cooled reactors

    International Nuclear Information System (INIS)

    Hoppe, P.

    1978-09-01

    For the investigation of the potential use of neutron noise analysis at sodium cooled power reactors, measurements have been performed at the KNK I reactor over a period of 18 month under different operational conditions. The signal fluctuations of the following tranducers have been recorded: In-core and Ex-core neutron detectors, temperature-, flow-, pressure-, vibration- and acoustic sensors. These extensive measurements have been analyzed in the frequency range from 0,001 Hz to 1000 Hz with all currently known methods for the identification of noise sources. The following results have been found: - Neutron noise for f 20 Hz the white detection noise prevails. In the region from 1 Hz to 20 Hz the vibrations of core components contribute to neutron noise. - Neutron noise is influenced by the state of the plant. - The contributions to neutron noise due to the fluctuations of coolant flow and inlet temperature are small compared to those produced by the movements of the control rod initiated by the reactor control system. The quantitatively unidentifiable amount of reactivity fluctuations (0,6 time-dependent thermal bowing of the core. With respect to these results and by calculation of the neutron noise patterns to be expected for the SNR 300, the following possible applications for neutron noise analysis have been found: By means of neutron noise analysis only reactivity fluctuations can be identified and supervised which are produced by time dependent changes of the core geometry. Furthermore neutron noise analysis is well suited for a sensitive detection of control rod vibrations and of local sodium boiling. Finally it can be used for the surveillance of the proper functioning of the reactor control system and of the control rod drive mechanism. (orig./HP) 891 HP [de

  12. Neutronics analysis of Nigerian Research Reactor-1

    International Nuclear Information System (INIS)

    Azande, T.S.; Balogun, G.I.

    2010-01-01

    Feasibility studies for the conversion of the Nigerian Research Reactor-1 (NIRR-1) have been performed using WIMS and CITATION codes (Azande et al, 2009 and Balogun, 2003) at the Centre for Energy Research and Training (CERT), Ahmadu Bello University, Zaria Kaduna State. In this work, the neutronics analysis of NIRR-1 core concerning mass loading of U-235 in the core, shut down margin (SDM), safety reactivity factor (SRF), control rod worth, and control rod critical depth of insertion were investigated at low enrichment. Two fuel types (UAl 4 and UO 2 ) were considered and the uranium densities required for the conversion of NIRR-1 core to low enrichment were computed to be 1201g/cc with 20% enrichment, 1144 g/cc with 19.75% enrichment, 1274 g/cc with 15% enrichment, 1448 g/cc with 10% enrichment for UAl 4 fuel type and 1141g/cc with 20% enrichment, 1144 g/cc with 19.75% enrichment, 1216 g/cc with 15% enrichment, and 1389 g/cc with 10% enrichment for UO 2 fuel type. Signi ficantly, higher uranium densities are required to convert NIRR-1 from HEU to LEU - indicating a drastic review of the NIRR-1 core.

  13. Neutron activation analysis of arsenic in Greece

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1989-01-01

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  14. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  15. Prospects for accelerator neutron sources for large volume minerals analysis

    International Nuclear Information System (INIS)

    Clayton, C.G.; Spackman, R.

    1988-01-01

    The electron Linac can be regarded as a practical source of thermal neutrons for activation analysis of large volume mineral samples. With a suitable target and moderator, a neutron flux of about 10 10 n/cm/s over 2-3 kg of rock can be generated. The proton Linac gives the possibility of a high neutron yield (> 10 12 n/s) of fast neutrons at selected energies. For the electron Linac, targets of W-U and W-Be are discussed. The advantages and limitations of the system are demonstrated for the analysis of gold in rocks and ores and for platinum in chromitite. These elements were selected as they are most likely to justify an accelerator installation at the present time. Errors due to self shielding in gold particles for thermal neutrons are discussed. The proton Linac is considered for neutrons generated from a lithium target through the 7 Li(p, n) 7 Be reaction. The analysis of gold by fast neutron activation is considered. This approach avoids particle self-absorption and, by appropriate proton energy selection, avoids potentially dominating interfering reactions. The analysis of 235 U in the presence of 238 U and 232 Th is also considered. (author)

  16. Fast neutron analysis code SAD1

    International Nuclear Information System (INIS)

    Jung, M.; Ott, C.

    1985-01-01

    A listing and an example of outputs of the M.C. code SAD1 are given here. This code has been used many times to predict responses of fast neutrons in hydrogenic materials (in our case emulsions or plastics) towards the elastic n, p scattering. It can be easily extended to other kinds of such materials and to any kind of incident fast neutron spectrum

  17. Identifying functions for ex-core neutron noise analysis

    International Nuclear Information System (INIS)

    Avila, J.M.; Oliveira, J.C.

    1987-01-01

    A method of performing the phase analysis of signals arising from neutron detectors placed in the periphery of a pressurized water reactor is proposed. It consists in the definition of several identifying functions, based on the phases of cross power spectral densities corresponding to four ex-core neutron detectors. Each of these functions enhances the appearance of different sources of noise. The method, applied to the ex-core neutron fluctuation analysis of a French PWR, proved to be very useful as it allows quick recognition of various patterns in the power spectral densities. (orig.) [de

  18. Neutron activation analysis for certification of standard reference materials

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Perez Zayas, G.; Hernandez Rivero, A.; Ribeiro Guevara, S.

    1996-01-01

    Neutron activation analysis is used extensively as one of the analytical techniques in the certification of standard reference materials. Characteristics of neutron activation analysis which make it valuable in this role are: accuracy multielemental capability to asses homogeneity, high sensitivity for many elements, and essentially non-destructive method. This paper report the concentrations of 30 elements (major, minor and trace elements) in four Cuban samples. The samples were irradiated in a thermal neutron flux of 10 12- 10 13 n.cm 2. s -1. The gamma ray spectra were measured by HPGe detectors and were analyzed using ACTAN program development in Center of Applied Studies for Nuclear Development

  19. Elemental analysis of combustion products by neutron activation

    International Nuclear Information System (INIS)

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification

  20. Analysis by neutronic activation of the active principles of MIBI

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Hernandez Rivero, A.T.; Moreno Bermudez, J.; Ribeiro Guevara, S.; Molina Insfran, J.; Perez Zayas, G.

    1997-01-01

    In the present job the obtained results are shown through the application of an analysis by neutronic activation, in their instrumental variant, for the determination of the elementary composition of three Cuban radiopharmaceuticals. (author) [es

  1. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    Science.gov (United States)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  2. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    International Nuclear Information System (INIS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-01-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  3. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    Energy Technology Data Exchange (ETDEWEB)

    Glascock, M. D.; Neff, H. [University of Missouri, Research Reactor Center (United States); Vaughn, K. J. [Pacific Lutheran University, Department of Anthropology (United States)

    2004-06-15

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  4. Least squares analysis of fission neutron standard fields

    International Nuclear Information System (INIS)

    Griffin, P.J.; Williams, J.G.

    1997-01-01

    A least squares analysis of fission neutron standard fields has been performed using the latest dosimetry cross sections. Discrepant nuclear data are identified and adjusted spectra for 252 Cf spontaneous fission and 235 U thermal fission fields are presented

  5. Applicability of the activation analysis with prompt neutron in medicine

    International Nuclear Information System (INIS)

    Yaghubian-Malhami, R.

    1975-04-01

    The concentrations of boron and cadmium in the human body are of great importance in medicine. The author determined their concentration by prompt neutron activation analysis in aqueous solutions and in urine. The results show that this technique may be used in medical diagnosis. The author discusses the qualities and the applicability of delayed and prompt neutron activation analysis in biology and medicine. (C.R.)

  6. Neutron activation analysis: an emerging technique for conservation/preservation

    International Nuclear Information System (INIS)

    Sayre, E.V.

    1976-01-01

    The diverse applications of neutron activation in analysis, preservation, and documentation of art works and artifacts are described with illustrations for each application. The uses of this technique to solve problems of attribution and authentication, to reveal the inner structure and composition of art objects, and, in some instances to recreate details of the objects are described. A brief discussion of the theory and techniques of neutron activation analysis is also included

  7. Neutron activation analysis for noble metals in matte leach residues

    International Nuclear Information System (INIS)

    Hart, R.J.

    1978-01-01

    The development of the neutron activation analysis technique as a method for rapid and precise determinations of platinum group metals in matte leach residues depends on obtaining a method for effecting complete and homogeneous sample dilution. A simple method for solid dilution of metal samples is outlined in this study, which provided a basis for the accurate determination of all the noble metals by the Neutron Activation Analysis technique

  8. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1

    International Nuclear Information System (INIS)

    Bellido, Luis F.; Bellido, Alfredo V.

    1997-02-01

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author)

  9. Detail analysis of fusion neutronics benchmark experiment on beryllium

    International Nuclear Information System (INIS)

    Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Ohnishi, Seiki; Kondo, Keitaro; Wada, Masayuki; Sato, Satoshi

    2010-01-01

    Our previous analysis of the integral experiments (in situ and TOF experiments) on beryllium with DT neutrons at JAEA/FNS pointed out two problems by using MCNP4C and the latest nuclear data libraries; one was a strange larger neutron peak around 12 MeV appearing in the TOF experiment analysis with JEFF-3.1 and the other was an overestimation on law energy neutrons in the in situ experiment analyses with all the nuclear data libraries. We investigated reasons for these problems in detail. It was found out that the official ACE file MCJEFF3.1 of JEFF-3.1 had an inconsistency with the original JEFF-3.1, which caused the strange larger neutron peak around 12 MeV in the TOF experiment analysis. We also found out that the calculated thermal neutron peak was probably too large in the in situ experiment. On trial we examined influence of the thermal neutron scattering law data of beryllium metal in ENDF/B-VI. The result pointed out that the coherent elastic scattering cross-section data in the thermal neutron scattering law data of beryllium metal were probably too large.

  10. Neutron resonance analysis for nuclear safeguards and security applications

    Science.gov (United States)

    Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi

    2017-09-01

    Neutron-induced reactions can be used to study the properties of nuclear materials of interest in the fields of nuclear safeguards and security. The elemental and isotopic composition of these materials can be determined by using the presence of resonance structures. This idea is the basis of two non-destructive analysis techniques which have been developed at the GELINA neutron time-of-flight facility at JRC-Geel: Neutron Resonance Capture Analysis (NRCA) and Neutron Resonance Transmission Analysis (NRTA). A combination of NRTA and NRCA has been proposed for the characterisation of particle-like debris of melted fuel formed in severe nuclear accidents. In this work, we present a quantitative validation of the NRTA technique which was used to determine the areal densities of Pu enriched reference samples used for safeguards applications. Less than 2% bias has been obtained for the fissile isotopes, with well-known total cross sections.

  11. Neutronics analysis of Dalat Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Nguyen Manh Hung; Pham Hong Son; Tran Quoc Duong

    2006-01-01

    Many neutronics codes have been used to calculate for Dalat Research Reactor (DRR) from 1983 (the first critical of DRR in December, 1983). The purposes of all calculations are to know exactly many important parameters related to Reactor Physics and Neutron Physics in reactor core. The results from calculation play important role in core and fuel management for DRR. Especially basing on the results we can predict about fuel cycle, fuel burn up distribution and plan for using optimize remain fresh fuel assemblies of DRR. By using system neutronics code including transport codes, diffusion codes and Mote Carlo code, many characteristics of fuel assemblies and other parameters of whole core were received such as main features of VVR-M2 fuel assembly type, multiplication factor, neutron flux distribution, power distribution, burn up distribution, excess reactivity, control rods worth, neutron spectrum, temperature reactivity coefficient ect. In the paper, brief description all computer codes to being used in DRR and the calculation results from the codes above are presented. (author)

  12. Neutron activation analysis of some building materials

    International Nuclear Information System (INIS)

    Salagean, M.; Pantelica, A.; Georgescu, I.I.; Muntean, M.I.

    1999-01-01

    Over the past decade, indoor air quality has become a growing environmental problem. A careful selection of building materials concerning the acceptance of chemical and radioactive emissions is one of the ways to ensure high indoor air quality. Nowadays, it is a tendency to obtain new building materials having good isolation properties and low density by using the cheap and practically inexhaustible solid waste products like furnace slag, fly coal ash and phosphogypsum, without combustion. The Romanian furnace slag containing generally, above 45 % CaO can be used alone or mixed with fly ash to obtain some binder materials with mechanical resistance comparable to the Portland cement. Different additives such as CaO+Na 2 SO 4 or CaCl 2 +Na 2 SO 4 are used as activating admixtures. Concentrations of As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Rb, Sb, Sc, Sr, Ta, Tb, Th, U, Yb, W and Zn in seven Romanian building materials were determined by Instrumental Neutron Activation Analysis (INAA) method at WWR-S Reactor of IFIN-HH, Bucharest. Raw material used in the cement production (∼75 % limestone, ∼25 % clay), cement samples from three different factories, furnace slag, phosphogypsum, and a type of brick compacted from furnace slag, fly coal ash, phosphogypsum, lime and cement have been analyzed. The fly coal ashes from five Romanian coal-fired power plants, resulting by the combustion of the xyloide brown coals, lignite and bituminous-subbituminous coals were previously analyzed. It was found that the content of the toxic microelements like As, Co, Cr, Th, U, Zn in the ceramic blocks is especially due to the slag and fly ash, the main components. This content depends on the particular sources of mineral raw materials. The presence of U, Th and K in slag is mainly correlated with the limestone and dolomite as used in the metallurgical process. (authors)

  13. Detection of land mines using fast and thermal neutron analysis

    International Nuclear Information System (INIS)

    Bach, P.

    1998-01-01

    The detection of land mines is made possible by using nuclear sensor based on neutron interrogation. Neutron interrogation allows to detect the sensitive elements (C, H, O, N) of the explosives in land mines or in unexploded shells: the evaluation of characteristic ratio N/O and C/O in a volume element gives a signature of high explosives. Fast neutron interrogation has been qualified in our laboratories as a powerful close distance method for identifying the presence of a mine or explosive. This method could be implemented together with a multisensor detection system - for instance IR or microwave - to reduce the false alarm rate by addressing the suspected area. Principle of operation is based on the measurement of gamma rays induced by neutron interaction with irradiated nuclei from the soil and from a possible mine. Specific energy of these gamma rays allows to recognise the elements at the origin of neutron interaction. Several detection methods can be used, depending on nuclei to be identified. Analysis of physical data, computations by simulation codes, and experimentations performed in our laboratory have shown the interest of Fast Neutron Analysis (FNA) combined with Thermal Neutron Analysis (TNA) techniques, especially for detection of nitrogen 14 N, carbon 12 C and oxygen 16 O. The FNA technique can be implemented using a 14 MeV sealed neutron tube, and a set of detectors. The mines detection has been demonstrated from our investigations, using a low power neutron generator working in the 10 8 n/s range, which is reasonable when considering safety rules. A fieldable demonstrator would be made with a detection head including tube and detectors, and with remote electronics, power supplies and computer installed in a vehicle. (author)

  14. Safety analysis report for the Neutron Multiplier Facility, 329 Building

    International Nuclear Information System (INIS)

    Rieck, H.G.

    1978-09-01

    Neutron multiplication is a process wherein the flux of a neutron source such as 252 Cf is enhanced by fission reactions that occur in a subcritical assemblage of fissile material. The multiplication factor of the device depends upon the consequences of neutron reactions with matter and is independent of the initial number of neutrons present. Safe utilization of such a device demands that the fissile material assemblage be maintained in a subcritical state throughout all normal and credibly abnormal conditions. Examples of things that can alter the multiplication factor (and degree of subcriticality) are temperature fluctuations, changes in moderator material such as voiding or composition, addition of fissile materials, and change in assembly configuration. The Neutron Multiplier Facility (NMF) utilizes a multiplier- 252 Cf assembly to produce neutrons for activation analysis of organic and inorganic environmental samples and for on-line mass spectrometry analysis of fission products which diffuse from a stationary fissile target (less than or equal to 4 g fissile material) located in the Neutron Multiplier. The NMF annex to the 329 Building provides close proximity to related counting equipment, and delay between sample irradiation and counting is minimized

  15. Neutronics analysis of the Laboratory Microfusion Facility

    International Nuclear Information System (INIS)

    Tobin, M.T.; Singh, M.S.; Meier, W.R.

    1988-01-01

    The radiological safety hazards of the experimental area (EA) for the proposed Inertial Confinement Fusion (ICF) Laboratory Microfusion Facility (LMF) have been examined. The EA includes those structures required to establish the proper pre-shot environment, point the beams, contain the pellet yield, and measure many different facets of the experiments. The radiation dose rates from neutron activation of representative target chamber materials, the laser beam tubes and the argon gas they contain, the air surrounding the chamber, and the concrete walls of the experimental area are given. Combining these results with the allowable dose rates for workers, we show how radiological considerations affect access to the inside of the target chamber and to the diagnostic platform area located outside the chamber. Waste disposal and tritium containment issues are summarized. Other neutronics issues, such as radiation damage to the final optics and neutron heating of materials placed close to the target, are also addressed. 16 refs., 2 figs., 1 tab

  16. A device for simultaneous spin analysis of ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Afach, S. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Paul Scherrer Institute, Villigen-PSI (Switzerland); Jena University Hospital, Hans Berger Department of Neurology, Jena (Germany); Ban, G.; Lefort, T.; Lemiere, Y.; Naviliat-Cuncic, O.; Quemener, G. [Universite de Caen, CNRS/IN2P3, LPC Caen ENSICAEN, Caen (France); Bison, G.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B.; Mtchedlishvili, A.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Bodek, K.; Rawlik, M.; Rozpedzik, D.; Zejma, J. [Jagiellonian University, Marian Smoluchowski Institute of Physics, Cracow (Poland); Fertl, M.; Franke, B.; Kirch, K.; Komposch, S. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Paul Scherrer Institute, Villigen-PSI (Switzerland); Geltenbort, P. [Institut Laue-Langevin, Grenoble (France); Grujic, Z.D.; Kasprzak, M.; Weis, A. [University of Fribourg, Physics Department, Fribourg (Switzerland); Hayen, L.; Severijns, N.; Wursten, E. [Katholieke Universiteit Leuven, Instituut voor Kernen Stralingsfysica, Leuven (Belgium); Helaine, V. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Universite de Caen, CNRS/IN2P3, LPC Caen ENSICAEN, Caen (France); Kermaidic, Y.; Pignol, G.; Rebreyend, D. [Universite Grenoble Alpes, CNRS/IN2P3, LPSC, Grenoble (France); Kozela, A. [Henryk Niedwodniczanski Institute for Nuclear Physics, Cracow (Poland); Krempel, J.; Piegsa, F.M. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Prashanth, P.N. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Katholieke Universiteit Leuven, Instituut voor Kernen Stralingsfysica, Leuven (Belgium); Ries, D. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Jena University Hospital, Hans Berger Department of Neurology, Jena (Germany); Roccia, S. [Universite Paris Sud, CNRS/IN2P3, CSNSM, Orsay campus (France); Wyszynski, G. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Jagiellonian University, Marian Smoluchowski Institute of Physics, Cracow (Poland)

    2015-11-15

    We report on the design and first tests of a device allowing for measurement of ultracold neutrons polarisation by means of the simultaneous analysis of the two spin components. The device was developed in the framework of the neutron electric dipole moment experiment at the Paul Scherrer Institute. Individual parts and the entire newly built system have been characterised with ultracold neutrons. The gain in statistical sensitivity obtained with the simultaneous spin analyser is (18.2 ± 6.1) % relative to the former sequential analyser under nominal running conditions. (orig.)

  17. Prompt gamma cold neutron activation analysis applied to biological materials

    International Nuclear Information System (INIS)

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  18. Certification of standard reference materials employing neutron activation analysis

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Hernandez Rivero, A.; Molina Insfran, J.; Ribeiro Guevara, S.; Santana Encinosa, C.; Perez Zayas, G.

    1997-01-01

    Neutron activation analysis (Naa) is used extensively as one of the analytical techniques in the certification of standard reference materials (Srm). Characteristics of Naa which make it valuable in this role are: accuracy; multielemental capability; ability to assess homogeneity; high sensitivity for many elements, and essentially non-destructive method. This paper reports the concentrations of thirty elements (major, minor and trace elements) in four Cuban Srm's. The samples were irradiated in a thermal neutron flux of 10 12 -10 13 neutrons.cm -2 .s -1 . The gamma-ray spectra were measured by HPGe detectors and were analysed using ACTAN program, developed in CEADEN. (author) [es

  19. Backtracing neutron analysis in the fusion-fission dynamics study

    International Nuclear Information System (INIS)

    Brennand, E. de Goes; Hanappe, F.; Stuttge, L.

    2001-01-01

    A new method for the analysis of multi parametric experimental data is used in the study of the dynamics of the fission process for the compound system 126 Ba. We apply this method to obtain the correlation between thermal energy related to the neutron total multiplicity and the correlation between pre-scission neutron and pos-scission neutron multiplicities. The results obtained are interpreted into the framework of a dynamical model. From this interpretation we have access to the following information: the friction intensity which drives the dynamical evolution of the system; the initial deformation of the compound system; the barrier evolution with temperature and angular momentum, and fission times. (author)

  20. Neutron performance analysis for ESS target proposal

    International Nuclear Information System (INIS)

    Magán, M.; Terrón, S.; Thomsen, K.; Sordo, F.; Perlado, J.M.; Bermejo, F.J.

    2012-01-01

    In the course of discussing different target types for their suitability in the European Spallation Source (ESS) one main focus was on neutronics' performance. Diverse concepts have been assessed baselining some preliminary engineering and geometrical details and including some optimization. With the restrictions and resulting uncertainty imposed by the lack of detailed designs optimizations at the time of compiling this paper, the conclusion drawn is basically that there is a little difference in the neutronic yield of the investigated targets. Other criteria like safety, environmental compatibility, reliability and cost will thus dominate the choice of an ESS target.

  1. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  2. Radiochemical and instrumental neutron activation analysis - recent trends

    International Nuclear Information System (INIS)

    Dams, R.

    1990-01-01

    Recent trends of radiochemical and instrumental neutron activation analysis are discussed. Novel developments include the application of cyclic and pulsed activation, better energy resolution with hyperpure germanium detectors, and use of pulse processing systems allowing extremely high count rates of very short-lived isotopes. Further development is anticipated in the field of speciation in biological and environmental studies. Radiochemical methods have led to accurate determinations at the ng/g level. A promising future is expected for neutron activation techniques. (orig.)

  3. Data analysis for neutron monitoring in an enrichment facility

    International Nuclear Information System (INIS)

    Markin, J.T.; Stewart, J.E.; Goldman, A.S.

    1982-01-01

    Area monitoring of neutron radiation to detect high-enriched uranium production is a potential strategy for inspector verification of operations in the cascade area of a centrifuge enrichment facility. This paper discusses the application of statistical filtering and hypothesis testing procedures to experimental data taken in an enrichment facility. The results demonstrate that these data analysis methods can enhance detection of facility misoperation by neutron monitoring

  4. ANS - the analysis of the neutron spectra

    International Nuclear Information System (INIS)

    Ivanov, B.I.; Rosek, J.

    1991-01-01

    The program ANS which is the graphical user friendly program to process evaluated neutron data files for interpretation of transmission experiments. The ANS program was written in the Turbo Pascal v. 5 language and may work on the IBM AT with Math CoProcessor. 3 refs.; 1 fig

  5. Elemental analysis of brazing alloy samples by neutron activation technique

    International Nuclear Information System (INIS)

    Eissa, E.A.; Rofail, N.B.; Hassan, A.M.; El-Shershaby, A.; Walley El-Dine, N.

    1996-01-01

    Two brazing alloy samples (C P 2 and C P 3 ) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10 1 1 n/cm 2 /s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10 1 2 n/cm 2 /s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab

  6. Elemental analysis of brazing alloy samples by neutron activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, E A; Rofail, N B; Hassan, A M [Reactor and Neutron physics Department, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt); El-Shershaby, A; Walley El-Dine, N [Physics Department, Faculty of Girls, Ain Shams Universty, Cairo (Egypt)

    1997-12-31

    Two brazing alloy samples (C P{sup 2} and C P{sup 3}) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 10{sup 1}1 n/cm{sup 2}/s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 10{sup 1}2 n/cm{sup 2}/s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab.

  7. Neutron activation analysis of wheat samples

    International Nuclear Information System (INIS)

    Galinha, C.; Anawar, H.M.; Freitas, M.C.; Pacheco, A.M.G.; Almeida-Silva, M.; Coutinho, J.; Macas, B.; Almeida, A.S.

    2011-01-01

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordao presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordao and Marialva cultivars accumulated not statistically significant different

  8. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  9. Elemental analysis of some West Malaysian limestones using neutron activation, delayed neutron and electron microprobe analysis

    International Nuclear Information System (INIS)

    Amin, Y.M.; Kamaluddin, B.; Mahat, R.H.

    1990-01-01

    Limestone stratigraphy in Malaysia has been and is dependent almost entirely in palaeontology. However fossil localities are sporadic and as such a new fossil discovery mean the necessity for a complete re-appraisal of the stratigraphy. The almost complete dependence upon palaeontology results from the difficulties of stratigraphy correlation of isolated outcrops, from the cover of tropical vegetation and from the often complex folding and faulting which has been imposed on the geosyn-clinical rocks by the Indonesian-Thai-Malayan orogeny. So by studying the elemental composition of limestones accurately, we would be able to correlate outcrops and other stratigraphic samples independent of fossil finds. The use of delayed neutron analysis would also determine the concentration of uranium and thorium accurately. This study, in conjunction with thermoluminescence and fission track studies, would able us to date the age of the limestones

  10. Absolute instrumental neutron activation analysis at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Heft, R.E.

    1977-01-01

    The Environmental Science Division at Lawrence Livermore Laboratory has in use a system of absolute Instrumental Neutron Activation Analysis (INAA). Basically, absolute INAA is dependent upon the absolute measurement of the disintegration rates of the nuclides produced by neutron capture. From such disintegration rate data, the amount of the target element present in the irradiated sample is calculated by dividing the observed disintegration rate for each nuclide by the expected value for the disintegration rate per microgram of the target element that produced the nuclide. In absolute INAA, the expected value for disintegration rate per microgram is calculated from nuclear parameters and from measured values of both thermal and epithermal neutron fluxes which were present during irradiation. Absolute INAA does not depend on the concurrent irradiation of elemental standards but does depend on the values for thermal and epithermal neutron capture cross-sections for the target nuclides. A description of the analytical method is presented

  11. Neutron activation analysis for environmental sample in Thailand

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Nouchpramool, Sunun; Bunprapob, Supamatthree; Sumitra, Tatchai

    2003-01-01

    Neutron Activation Analysis has been applied for the trace elements analysis in environmental samples. Thirty three samples of airborne particulate were collected every week at Ongkharak Nuclear Research Center (ONRC) during the period of June 1998 to March 1999. The Ti, I, Mg, Na, V, K, Cl, Al, Mn, Ca, As, Sm, Sb, Br, La, Ce, Th, Cr, Cs, Sc, Rb, Fe, Zn and Co were analyzed by Neutron Activation Analysis utilizing 2 MW TRIGA MARK III research reactor. The certified reference materials 1632a and 1633a from National Bureau of Standard were select as standard. (author)

  12. Neutron activation analysis for antimetabolites. [in food samples

    Science.gov (United States)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  13. A new facility for rapid neutron activation analysis

    International Nuclear Information System (INIS)

    Zeisler, R.; Makarewicz, M.; Grass, F.; Casta, J.

    1996-01-01

    Many research groups have undertaken efforts on the utilization of short-lived nuclides in a broad spectrum of neutron activation analysis (NAA) applications. The advantages of these approaches are obvious because the information on the sample can be extracted more rapidly. In addition to its other advantages, NAA can become extremely competitive in price and analysis time. Nevertheless, NAA with short-lived nuclides has not gained broad popularity, perhaps because of some difficulties in accuracy and the availability of suitable irradiation facilities. This report discusses the ASTRA reactor for neutron activation analysis capabilities

  14. The verification of neutron activation analysis support system (cooperative research)

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Fumio; Ichimura, Shigeju; Ohtomo, Akitoshi; Takayanagi, Masaji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sawahata, Hiroyuki; Ito, Yasuo [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology; Onizawa, Kouji [Radiation Application Development Association, Tokai, Ibaraki (Japan)

    2000-12-01

    Neutron activation analysis support system is the system in which even the user who has not much experience in the neutron activation analysis can conveniently and accurately carry out the multi-element analysis of the sample. In this verification test, subjects such functions, usability, precision and accuracy of the analysis and etc. of the neutron activation analysis support system were confirmed. As a method of the verification test, it was carried out using irradiation device, measuring device, automatic sample changer and analyzer equipped in the JRR-3M PN-3 facility, and analysis software KAYZERO/SOLCOI based on the k{sub 0} method. With these equipments, calibration of the germanium detector, measurement of the parameter of the irradiation field and analysis of three kinds of environmental standard sample were carried out. The k{sub 0} method adopted in this system is primarily utilized in Europe recently, and it is the analysis method, which can conveniently and accurately carried out the multi-element analysis of the sample without requiring individual comparison standard sample. By this system, total 28 elements were determined quantitatively, and 16 elements with the value guaranteed as analytical data of the NIST (National Institute of Standards and Technology) environment standard sample were analyzed in the accuracy within 15%. This report describes content and verification result of neutron activation support system. (author)

  15. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    Science.gov (United States)

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ( 241 Am/Be, 252 Cf, 241 Am/B, and DT neutron generator). Among the different systems the 252 Cf neutron based PGNAA system has the best performance.

  16. Application of the neutron activation analysis to environmental study

    International Nuclear Information System (INIS)

    Fu Bozhi.

    1995-01-01

    Neutron activation analysis is a nuclear analysis technology. It has been developed in recent times. By this means, the paper analyzes the element contents of leaves, soil and atmospheric dust-fall from the eastern and the western suburbs of Chengdu, then makes a comparison between the two areas and approaches some problems on environmental pollution

  17. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  18. Recent applications of neutron activation analysis at Lucas Heights

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1978-01-01

    The use of neutron activation analysis to determine key elemental distribution patterns in samples from both the energy industry and health science field is summarised. Instrumental neutron activation analysis has successfully measured simultaneously more than twenty elements in a sample of brown coal from Victoria, black coal from New South Wales and samples from the product stream of ACIRL's batch autoclave, solvent-refined, coal hydrogenation process. Four gallstones removed from the same gallbladder have been examined instrumentally by neutron activation analysis. A total of sixteen trace elements were detected with concentrations in the range 0.8 ng g -1 for gold to 7,800 μg g -1 for calcium

  19. Elemental Study in Soybean and Products by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Vorapot, Permnamtip; Arporn Busamongkol; Sirinart, Laoharojanaphand

    2009-07-01

    Full text: Elements were analyzed in soybean and products by Instrumental Neutron Activation Analysis (INAA), Pseudo-Cyclic Instrumental Neutron Activation Analysis (PCINAA) and Epithermal Instrumental Neutron Activation Analysis (EINAA). Elements detected in sample were include Al, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn Na, Se and Zn. The result showed that the nutritional contents changed after food processing. From experiments (n = 2), it was found that after food processing, the concentration of Cl and Na in soy bean curd increased from 0.0045 and 0.0011% to found 0.91 and 0.39 %, respectively. Other elements did not differ from soybean. Limits of detection for Al, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn Na, Se and Zn were 0.05, 0.2, 50, 6, 10, 15, 0.05, 30, 40, 5, 5, 0.05 and 1 mg.kg - 1, respectively

  20. Optimization to the medical facilities for Neutron activation analysis

    International Nuclear Information System (INIS)

    Franklin Mergarerejo, Ricardo; GarcIa Parra, Lazaro; Desdin, Luis Felipe; Lopez Aldama, Daniel

    2001-01-01

    A method of detection of the Fluorine is presented by means of the neutron activation analysis. This method supposes an accuracy in the determination of any very high element (of the ppm order); but having the particularity that with Oxygen and Fluorine after certain nuclear reactions are obtained the same reaction product (son). This implies serious inconveniences since an interference he/she takes place among the activation of the Oxygen and of the Fluorine falsifying the reading. To save this inconvenience and to take advantage of the kindness of this method it is known that the Oxygen is activated for neutrons with superior energy to the 10.5 MeV, while the Fluorine for energy of the superior incident neutrons to the 1.5 MeV. We think about as hypothesis that is possible to reduce the interference of the Oxygen using a moderator in order to affect the statistic of the count the less possible thing. The objective of the present work is to design and to optimize an installation to measure concentrations of Fluorine in presence of Oxygen using neutrons of 14 MeV coming from a generator of neutrons of the type NG-12-1. To fulfill our objective leaving of the hypothesis an experimental simulation it was implemented using mathematical methods of having proven efficiency in the transport of neutrons like the method of Mount Carlo (specifically the code MCNP-)

  1. SVIP-N 1.0: An integrated visualization platform for neutronics analysis

    International Nuclear Information System (INIS)

    Luo Yuetong; Long Pengcheng; Wu Guoyong; Zeng Qin; Hu Liqin; Zou Jun

    2010-01-01

    Post-processing is an important part of neutronics analysis, and SVIP-N 1.0 (scientific visualization integrated platform for neutronics analysis) is designed to ease post-processing of neutronics analysis through visualization technologies. Main capabilities of SVIP-N 1.0 include: (1) ability of manage neutronics analysis result; (2) ability to preprocess neutronics analysis result; (3) ability to visualization neutronics analysis result data in different way. The paper describes the system architecture and main features of SVIP-N, some advanced visualization used in SVIP-N 1.0 and some preliminary applications, such as ITER.

  2. Experimental investigation of thermal neutron analysis based landmine detection technology

    International Nuclear Information System (INIS)

    Zeng Jun; Chu Chengsheng; Ding Ge; Xiang Qingpei; Hao Fanhua; Luo Xiaobing

    2013-01-01

    Background: Recently, the prompt gamma-rays neutron activation analysis method is wildly used in coal analysis and explosive detection, however there were less application about landmine detection using neutron method especially in the domestic research. Purpose: In order to verify the feasibility of Thermal Neutron Analysis (TNA) method used in landmine detection, and explore the characteristic of this technology. Methods: An experimental system of TNA landmine detection was built based on LaBr 3 (Ce) fast scintillator detector and 252 Cf isotope neutron source. The system is comprised of the thermal neutron transition system, the shield system, and the detector system. Results: On the basis of the TNA, the wide energy area calibration method especially to the high energy area was investigated, and the least detection time for a typical mine was defined. In this study, the 72-type anti-tank mine, the 500 g TNT sample and several interferential objects are tested in loess, red soil, magnetic soil and sand respectively. Conclusions: The experimental results indicate that TNA is a reliable demining method, and it can be used to confirm the existence of Anti-Tank Mines (ATM) and large Anti-Personnel Mines (APM) in complicated condition. (authors)

  3. The multielement potential of fast neutron cyclic activation analysis

    International Nuclear Information System (INIS)

    Nonie, S.E.; Randle, K.

    1994-01-01

    Cyclic neutron activation analysis (CNAA) has, in recent years been developed as a useful analytical tool for the assay of short-lived isotopes in single element situations. The work described in this paper investigates the potential of the technique for composite samples having a wide range of elements that produce short-lived and long-lived isotopes on neutron irradiation. Accelerator-derived neutrons with average energies of 3 MeV, 6 MeV and 14 MeV were employed in what has been dubbed 'Fast Neutron Cyclic Neutron Activation Analysis' (FNCAA). The approach to multi-element analysis entailed: determination of cycle parameters in single element samples via the reactions 27 Al(n,p) 27 Mg(9.6 min,E γ =840keV), and 137 Ba(n,n 'γ137m Ba(2.3 min,E γ 137m Ba(2.3 min,E γ =662 keV), a test of the method on a composite rock sample, determination of analytical sensitivities using both powdered kale and rock standards and a comparison of analytical results with other techniques. The results obtained in all these measurements are presented and discussed. (author) 10 refs.; 3 figs.; 5 tabs

  4. Determination of silver using cyclic epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Pun, T.H.; Landsberger, S.

    2012-01-01

    A fast pneumatic transfer facility was installed in Nuclear Engineering Teaching Laboratory (NETL) of the University of Texas at Austin for the purpose of cyclic thermal and epithermal neutron activation analysis. In this study efforts were focused on the evaluation of cyclic epithermal neutron activation analysis (CENAA). Various NIST and CANMET certified materials were analyzed by the system. Experiment results showed 110 Ag with its 25 s half-life as one of the isotopes favored by the system. Thus, the system was put into practical application in identifying silver in metallic ores. Comparison of sliver concentrations as determined by CENAA in CANMET certified reference materials gave very good results. (author)

  5. On neutron activation analysis with γγ coincidence spectrometry

    International Nuclear Information System (INIS)

    Zeisler, Rolf; Danyal Turkoglu; Ibere Souza Ribeiro Junior; Shetty, M.G.

    2017-01-01

    A new γγ coincidence system has been set up at NIST. It is operated with a digital data finder supported by new software developed at NIST. The system is used to explore possible enhancements in instrumental neutron activation analysis (INAA) and study applicability to neutron capture prompt gamma activation analysis (PGAA). The performance of the system is tested with certified reference materials for efficiency calibration and quantitative performance. Comparisons of INAA results based on conventional gamma-ray spectrometry data with INAA results based on coincidence data obtained from the same samples show improvements in the counting uncertainties and demonstrates the quantitative accuracy of the new system. (author)

  6. Neutron activation analysis in reconnaissance geochemical survey of Northwestern Mindoro

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.G.

    1987-01-01

    Instrumental neutron activation analysis (NAA) technique was used to analyze stream sediments collected in Northwestern Mindoro. The concentration levels of 18 elements were determined. It was noted that NAA is suitable for the determination of rare earth, gold, arsenic and cobalt among others because of favorable high neutron cross sections. Samples collected in regional reconnaissance geochemical surveys could be analyzed usng NAA technique to complement other non-nuclear techniques, such as atomic absorption and X-ray fluorescence analysis. (Author). 11 figs.; 2 tabs.; 12 refs

  7. Neutron analysis of the fuel of high temperature nuclear reactors

    International Nuclear Information System (INIS)

    Bastida O, G. E.; Francois L, J. L.

    2014-10-01

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  8. Development and simulation of various methods for neutron activation analysis

    International Nuclear Information System (INIS)

    Otgooloi, B.

    1993-01-01

    Simple methods for neutron activation analysis have been developed. The results on the studies of installation for determination of fluorine in fluorite ores directly on the lorry by fast neutron activation analysis have been shown. Nitrogen in organic materials was shown by N 14 and N 15 activation. The description of the new equipment 'FLUORITE' for fluorate factory have been shortly given. Pu and Be isotope in organic materials, including in wheat, was measured. 25 figs, 19 tabs. (Author, Translated by J.U)

  9. Analysis of some Egyptian cosmetic samples by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Medhat, M.E.; Ali, M.A.; Hassan, M.F.

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. The concentrations of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis

  10. Analysis of Some Egyptian Cosmetic Samples by Fast Neutron Activation Analysis

    CERN Document Server

    Medhat, M E; Fayez-Hassan, M

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. In our work, the concentration of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis.

  11. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  12. Development of ITER diagnostics: Neutronic analysis and radiation hardness

    Energy Technology Data Exchange (ETDEWEB)

    Vukolov, Konstantin, E-mail: vukolov_KY@nrcki.ru; Borisov, Andrey; Deryabina, Natalya; Orlovskiy, Ilya

    2015-10-15

    Highlights: • Problems of ITER diagnostics caused by neutron radiation from hot DT plasma considered. • Careful neutronic analysis is necessary for ITER diagnostics development. • Effective nuclear shielding for ITER diagnostics in the 11th equatorial port plug proposed. • Requirements for study of radiation hardness of diagnostic elements defined. • Results of optical glasses irradiation tests in a fission reactor given. - Abstract: The paper is dedicated to the problems of ITER diagnostics caused by effects of radiation from hot DT plasma. An effective nuclear shielding must be arranged in diagnostic port plugs to meet the nuclear safety requirements and to provide reliable operation of the diagnostics. This task can be solved with the help of neutronic analysis of the diagnostics environment within the port plugs at the design stage. Problems of neutronic calculations are demonstrated for the 11th equatorial port plug. The numerical simulation includes the calculations of neutron fluxes in the port-plug and in the interspace. Options for nuclear shielding, such as tungsten collimator, boron carbide and water moderators, stainless steel and lead screens are considered. Data on neutron fluxes along diagnostic labyrinths allow to define radiation hardness requirements for the diagnostic components and to specify their materials. Options for windows and lenses materials for optical diagnostics are described. The results of irradiation of flint and silica glasses in nuclear reactor have shown that silica KU-1 and KS-4V retain transparency in visible range after neutron fluence of 10{sup 17} cm{sup −2}. Flints required for achromatic objectives have much less radiation hardness about 5 × 10{sup 14} n/cm{sup 2}.

  13. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. NAC, Neutron Activation Analysis and Isotope Inventory

    International Nuclear Information System (INIS)

    1995-01-01

    1 - Description of program or function: NAC was designed to predict the neutron-induced gamma-ray radioactivity for a wide variety of composite materials. The NAC output includes the input data, a list of all reactions for each constituent element, and the end-of-irradiation disintegration rates for each reaction. NAC also compiles a product isotope inventory containing the isotope name, the disintegration rate, the gamma-ray source strength and the absorbed dose rate at 1 meter from an unshielded point source. The induced activity is calculated as a function of irradiation and decay times; the effect of cyclic irradiation can also be calculated. 2 - Method of solution: The standard neutron activation and decay equations are programmed. A data library is supplied which contains target element names, atomic densities, reaction indices, individual reactions and reaction parameters, and product isotopes and gamma energy yields. 3 - Restrictions on the complexity of the problem: Each composite material may consist of up to 20 different elements and up to 20 different decay times may be included. Both limits may be increased by the user by increasing the appropriate items in the dimension statement

  15. General classification and analysis of neutron β-decay experiments

    International Nuclear Information System (INIS)

    Gudkov, V.; Greene, G.L.; Calarco, J.R.

    2006-01-01

    A general analysis of the sensitivities of neutron β-decay experiments to manifestations of possible interaction beyond the standard model is carried out. In a consistent fashion, we take into account all known radiative and recoil corrections arising in the standard model. This provides a description of angular correlations in neutron decay in terms of one parameter, which is accurate to the level of ∼10 -5 . Based on this general expression, we present an analysis of the sensitivities to new physics for selected neutron decay experiments. We emphasize that the usual parametrization of experiments in terms of the tree-level coefficients a,A, and B is inadequate when the experimental sensitivities are at the same or higher level relative to the size of the corrections to the tree-level description

  16. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  17. Neutron-gamma discrimination by pulse analysis with superheated drop detector

    International Nuclear Information System (INIS)

    Das, Mala; Seth, S.; Saha, S.; Bhattacharya, S.; Bhattacharjee, P.

    2010-01-01

    Superheated drop detector (SDD) consisting of drops of superheated liquid of halocarbon is irradiated to neutrons and gamma-rays from 252 Cf fission neutron source and 137 Cs gamma source, respectively, separately. Analysis of pulse height of signals at the neutron and gamma-ray sensitive temperature provides significant information on the identification of neutron and gamma-ray induced events.

  18. Current status of neutron activation analysis in HANARO Research Reactor

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Sohn, Jae Min

    2003-01-01

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 10 13 - 1 x 10 14 n/cm 2 ·s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  19. Current status of neutron activation analysis in HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Sohn, Jae Min [Korea Atomic Energy Research Institute, Daejeon (Korea)

    2003-03-01

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 10{sup 13} - 1 x 10{sup 14} n/cm{sup 2}{center_dot}s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  20. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  1. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.

    1996-01-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs

  2. Neutron noise analysis of BWR using time series analysis

    International Nuclear Information System (INIS)

    Fukunishi, Kohyu

    1976-01-01

    The main purpose of this paper is to give more quantitative understanding of noise source in neutron flux and to provide a useful tool for the detection and diagnosis of reactor. The space dependent effects of distributed neutron flux signals at the axial direction of two different strings are investigated by the power contribution ratio among neutron fluxes and the incoherent noise spectra of neutron fluxes derived from autoregressive spectra. The signals are measured on the medium sized commercial BWR of 460 MWe in Japan. From the obtained results, local and global noise sources in neutron flux are discussed. This method is indicated to be a useful tool for detection and diagnosis of anomalous phenomena in BWR. (orig./RW) [de

  3. Time-correlated neutron analysis of a multiplying HEU source

    International Nuclear Information System (INIS)

    Miller, E.C.; Kalter, J.M.; Lavelle, C.M.; Watson, S.M.; Kinlaw, M.T.; Chichester, D.L.; Noonan, W.A.

    2015-01-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3 He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations

  4. Time-correlated neutron analysis of a multiplying HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.C., E-mail: Eric.Miller@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Kalter, J.M.; Lavelle, C.M. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Watson, S.M.; Kinlaw, M.T.; Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID (United States); Noonan, W.A. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States)

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated {sup 3}He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  5. Time-correlated neutron analysis of a multiplying HEU source

    Science.gov (United States)

    Miller, E. C.; Kalter, J. M.; Lavelle, C. M.; Watson, S. M.; Kinlaw, M. T.; Chichester, D. L.; Noonan, W. A.

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  6. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B P [ed.

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  7. Neutronics methods for transient and safety analysis of fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Marco

    2017-07-01

    Modeling the evolution of possible or postulated accidents in nuclear reactors is fundamental in designing safe systems. For the next generation of reactors, in particular fast reactors, fuel movement during an accident can, in principle, drive an energetic event. Such is the issue of recriticality. The thermal energy produced during these events will, possibly, be converted into mechanical energy by some mechanisms. For example, the nuclear heat deposited in the fuel could cause fuel vaporization and its subsequent expansion. This movement would accelerate the surrounding sodium: part of the initial energy in the fuel is thus converted into sodium kinetic energy. This mechanical energy will finally be absorbed, in some way or another, by the reactor vessel. Providing an accurate estimate for the maximum mechanical work that any accidental sequence can do onto the reactor vessel is an essential step in designing a reactor containment that would withstand any load generated by any accident. That would assure accident containment, without consequences for the general public. Fast reactor accident modeling is a complicated task. The outcome of an accident is determined by different physical phenomena, all acting at almost the same time. Safety analysts must track all these different phenomena. Multi-physics codes have been developed for this task. They must contain accurate models for fluid-dynamics, neutronics, and structures. This work has to do with neutronics modeling of such accidents. Past and recent analyses have been limited to the approximate description of the neutronic field, for example by using a rough description of the energy and/or of the angular dependence of the neutron flux. In this work, different neutronic solvers are selected and coupled into a general multi-physics code for fast reactor accident analysis. Performances of each of them is then assessed. Some emphasis has been put also in assessing the speed of these solvers for determining the

  8. Applicability of neutron activation analysis to geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Ebihara, Mitsuru [Tokyo Metropolitan Univ., Graduate School of Science, Tokyo (Japan)

    2003-03-01

    The applicability of neutron activation analysis (NAA) to geological samples in space is discussed by referring to future space mission programs, by which the extraterrestrial samples are to be delivered to the earth for scientific inspections. It is concluded that both destructive and non-destructive NAA are highly effective in analyzing these samples. (author)

  9. Applicability of neutron activation analysis to geological samples

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru

    2003-01-01

    The applicability of neutron activation analysis (NAA) to geological samples in space is discussed by referring to future space mission programs, by which the extraterrestrial samples are to be delivered to the earth for scientific inspections. It is concluded that both destructive and non-destructive NAA are highly effective in analyzing these samples. (author)

  10. Characterisation of South African coals using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hart, R.J.

    1985-01-01

    This report includes the establishment of the major minor and trace element compositions of South African coals with the aim of characterising the different coal seams within a basin, defining regions of similar compositions and obtaining an overall view of the geochemistry of coals in this country. The results of 40 coal samples analysed by neutron activation analysis

  11. Application of neutron activation analysis in study of ancient ceramics

    International Nuclear Information System (INIS)

    Li Guoxia; Zhao Weijuan; Gao Zhengyao; Xie Jianzhong; Huang Zhongxiang; Jia Xiuqin; Han Song

    2000-01-01

    Trace-elements in ancient ceramics and imitative ancient ceramics were determined by neutron activation analysis (NAA). The NAA data are then analyzed by fuzzy cluster method and the trend cluster diagram is obtained. The raw material sources of ancient ceramics and imitative ancient ceramics are determined. The path for improving quality of imitative ancient ceramics is found

  12. Neutron activation analysis - an aid to forensic science

    International Nuclear Information System (INIS)

    Chattopadhyay, N.; Basu, A.K.; Tripathi, A.B.R.; Bhadkambekar, C.A.; Shukla, S.K.

    2006-01-01

    Forensic Science is oriented towards the examination of evidence specimens, collected from a scene of crime in order to establish the link between the criminal and the crime. This science therefore has a profound role to play in criminal justice delivery system. The importance of neutron activation analysis (NAA) as a specialised technique to aid crime investigation has emerged and has been recognised

  13. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, Jan; Koleska, M.; Voljanskij, A.

    2015-01-01

    Roč. 116, NOV (2015), s. 56-59 ISSN 0969-806X R&D Projects: GA TA ČR TA01010237; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : fluorescent lamp * mercury measurement * neutron activation analysis * research reactor Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2015

  14. Neutron activation analysis as an element of sculpture provenance establishing

    International Nuclear Information System (INIS)

    Panczyk, E.; Rowinska, L.; Walis, L.; Ligeza, M.; Nalepa, B.

    1998-01-01

    Investigation was carried out on the subject named ''Madonna Jackowa'' (XV cent.). The investigation object was to answer whether ''Madonna Jackowa'' was made of a native alabaster. Alabaster derived from five carious mines situated at the Cracow - Lvov line and ''Madonna Jackowa'' were analysed and the trace elements contents were compared. Instrumental neutron activation method was used for analysis of the trace. (author)

  15. Precision of neutron activation analysis for environmental biological materials

    International Nuclear Information System (INIS)

    Hamaguchi, Hiroshi; Iwata, Shiro; Koyama, Mutsuo; Sasajima, Kazuhisa; Numata, Yuichi.

    1977-01-01

    Between 1973 and 1974 a special committee ''Research on the application of neutron activation analysis to the environmental samples'' had been organized at the Research Reactor Institute, Kyoto University. Eleven research groups composed mainly of the committee members cooperated in the intercomparison programme of the reactor neutron activation analysis of NBS standard reference material, 1571 Orchard Leaves and 1577 Bovine Liver. Five different type of reactors were used for the neutron irradiation; i.e. KUR reactor of the Research Reactor Institute, Kyoto University, TRIGA MARK II reactor of the Institute for Atomic Energy, Rikkyo University, and JRR-2, JRR-3, JRR-4 reactor of Japan Atomic Energy Research Institute. Analyses were performed mainly by instrumental method. Precision of the analysis of 23 elements in Orchard Leaves and 13 elements in Bovine Liver presented by the different research groups was shown in table 4 and 5, respectively. The coefficient of variation for these elements was from several to -- 30 percent. Averages given to these elements agreed well with the NBS certified or reference values. Thus, from the practical point of view for the routine multielement analysis of environmental samples, the validity of the instrumental neutron activation technique for this purpose has been proved. (auth.)

  16. An approach to neutronics analysis of candu reactors

    International Nuclear Information System (INIS)

    Gul, S.; Arshad, M.

    1982-12-01

    An attempt is made to tackle the problem of neutronics analysis of CANDU reactors. Until now CANDU reactors have been analysed by the methods developed at AECL and CGE using mainly receipe methods. Relying on multigroup transport codes GAM-GATHER in combination with diffusion code CITATION a package of codes is established to use it for survey as well as production purposes. (authors)

  17. Improving the effectiveness of geological prospecting with neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1984-01-01

    Two examples of the use of neutron activation analysis to improve the effectiveness of geological prospecting are examined. The first is application to the direct hydrogeochemical prospecting for gold in surface waters. The second shows how multielement data banks produced by NAA for a geological formation provide a powerful method for the classification of ore bodies and sedimentary materials

  18. Informational-computer system for the neutron spectra analysis

    International Nuclear Information System (INIS)

    Berzonis, M.A.; Bondars, H.Ya.; Lapenas, A.A.

    1979-01-01

    In this article basic principles of the build-up of the informational-computer system for the neutron spectra analysis on a basis of measured reaction rates are given. The basic data files of the system, needed software and hardware for the system operation are described

  19. Trace elements in Australian opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Fardy, J.J.

    1994-01-01

    Neutron activation analysis was used to determine the concentration of trace elements in 42 samples of black, grey and white opals taken from a number of recognised Australian field. The results were evaluated to determine if a relationship exited between trace element content and opal colour. (author) 12 refs.; 12 figs.; 3 tabs

  20. Errors in instumental neutron activation analysis caused by matrix absorption

    International Nuclear Information System (INIS)

    Croudace, I.W.

    1979-01-01

    Instrumental neutron activation analysis of the geochemically important rare earth elements, together with Ta, Hf and U involves energies below 150 keV where absorption of radiation by the sample becomes inceasingly important. Determinations of the total mass absorption coefficients have been made. (C.F.)

  1. Probing Trace-elements in Bitumen by Neutron Activation Analysis

    NARCIS (Netherlands)

    Nahar, S.N.; Schmets, A.J.M.; Scarpas, Athanasios

    Trace elements and their concentrations play an important role in both chemical and physical properties of bitumen. Instrumental Neutron Activation Analysis (INAA) has been applied to determine the concentration of trace elements in bitumen. This method requires irradiation of the material with

  2. Neutronic analysis of the ford nuclear reactor leu core

    International Nuclear Information System (INIS)

    Raza, S.S.; Hayat, T.

    1989-08-01

    Neutronic analysis of the ford nuclear reactor low enriched uranium core has been carried out to gain confidence in the com puting methodology being used for Pakistan Research Reactor-1 core conversion calculations. The computed value of the effective multiplication factor (Keff) is found to be in good agreement with that quoted by others. (author). 6 figs

  3. Vanadium determination in pretoleum by neutron activation analysis

    International Nuclear Information System (INIS)

    Lopez, M.; Espinosa, R.

    1983-01-01

    The vanadium concentration in an Peruvian petroleum sample is determined by neutron activation analysis. The samples were irradiated for 20 minutes with a flux of thermal neutrons of 1.75 x 10 7 n/cm 2 -s in a subcritical assembly. The activity of the created samples decreases to half 15 minutes after the irradiation. The result is 28.3 +- 0.8 p.p.m. with a typical deviation of 2.8%. The detection limit of this method is 4 p.p.m

  4. Automatic sample changer for neutron activation analysis at CDTN, Brazil

    International Nuclear Information System (INIS)

    Aimore Dutra Neto; Oliveira Pelaes, Ana Clara; Jacimovic, Radojko

    2018-01-01

    An automatic sample changer was recently developed and installed in the Neutron Activation Analysis (NAA) Laboratory. The certified reference material BCR-320R, Channel Sediment, was analysed in order to verify the reliability of the results obtained by NAA, k 0 -standardisation method, using this automatic system during the gamma-ray measurement step. The results were compared to those manually obtained. The values pointed out that the automatic sample changer is working properly. This changer will increase the productiveness of the neutron activation technique applied at Nuclear Technology Development Centre, CDTN/CNEN expanding its competitiveness as an analytical technique in relation to other techniques. (author)

  5. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Brune, D.

    1968-08-01

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined

  6. Neutron radiative capture methods for surface elemental analysis

    Science.gov (United States)

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  7. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D

    1968-08-15

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined.

  8. Analysis of neutron flux measurement systems using statistical functions

    International Nuclear Information System (INIS)

    Pontes, Eduardo Winston

    1997-01-01

    This work develops an integrated analysis for neutron flux measurement systems using the concepts of cumulants and spectra. Its major contribution is the generalization of Campbell's theorem in the form of spectra in the frequency domain, and its application to the analysis of neutron flux measurement systems. Campbell's theorem, in its generalized form, constitutes an important tool, not only to find the nth-order frequency spectra of the radiation detector, but also in the system analysis. The radiation detector, an ionization chamber for neutrons, is modeled for cylindrical, plane and spherical geometries. The detector current pulses are characterized by a vector of random parameters, and the associated charges, statistical moments and frequency spectra of the resulting current are calculated. A computer program is developed for application of the proposed methodology. In order for the analysis to integrate the associated electronics, the signal processor is studied, considering analog and digital configurations. The analysis is unified by developing the concept of equivalent systems that can be used to describe the cumulants and spectra in analog or digital systems. The noise in the signal processor input stage is analysed in terms of second order spectrum. Mathematical expressions are presented for cumulants and spectra up to fourth order, for important cases of filter positioning relative to detector spectra. Unbiased conventional estimators for cumulants are used, and, to evaluate systems precision and response time, expressions are developed for their variances. Finally, some possibilities for obtaining neutron radiation flux as a function of cumulants are discussed. In summary, this work proposes some analysis tools which make possible important decisions in the design of better neutron flux measurement systems. (author)

  9. Kalman filter analysis of delayed neutron nondestructive assay measurements

    International Nuclear Information System (INIS)

    Aumeier, S. E.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation

  10. Advances in 14 MeV neutron activation analysis by means of a new intense neutron source

    International Nuclear Information System (INIS)

    Pepelnik, R.; Fanger, H.-U.; Michaelis, W.; Anders, B.

    1982-01-01

    A new intense 14 MeV neutron generator with cylindrical acceleration structure has been put in operation at the GKSS Research Center Geesthacht. The sealed neutron tube is combined with a fast pneumatic rabbit system with particular capabilities for neutron activation analysis involving short-lived reaction products. The sample transfer time is less than 140 ms. The maximum neutron flux available for activation is 5.2x10 10 n/cm 2 s. Theoretical sensitivity predictions made in a previous study have been verified for some important trace elements. As a first application, samples of freeze-dried suspended matter and fishes of the Elbe river were analyzed. (author)

  11. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    Directory of Open Access Journals (Sweden)

    Abdessamad Didi

    2017-06-01

    Full Text Available Americium–beryllium (Am-Be; n, γ is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci, yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  12. Studies on airborne dust particles by neutron activation analysis

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1974-01-01

    Neutron activation analysis was performed on the airborne dust particles collected at six places with different contaminating circumstances in Kyoto city and the suburbs of Okayama city, using an open type low volume air sampler with a membrance filter attached. Radioactivation by neutrons was performed with the reactor in the Research Reactor Institute of Kyoto University. Short half-life nuclides activated by thermal neutrons were measured. The concentration of airborne dust was usually high in November and December, while Na, Mn, K, etc. probably owing to soil origin showed similar seasonal change to the dust particles, as expected. The concentrations Cl and Br were in proportion to traffic volume, and it was considered to be caused by the exhaust gas from cars. Zn, V. et. were thick in factory areas, which seemed to show the relationship with oil fuel consumption. (Kobatake, H.)

  13. Measurement and analysis of leakage neutron energy spectra around the Kinki University Reactor, UTR-KINKI

    CERN Document Server

    Ogawa, Y; Sagawa, H; Tsujimoto, T

    2002-01-01

    The highly sensitive cylindrical multi-moderator type neutron spectrometer was constructed for measurement of low level environmental neutrons. This neutron spectrometer was applied for the determination of leakage neutron energy spectra around the Kinki University Reactor. The analysis of the leakage neutron energy spectra was performed by MCNP Monte Carlo code. From the obtained results, the agreement between the MCNP predictions and the experimentally determined values is fairly good, which indicates the MCNP model is correctly simulating the UTR-KINKI.

  14. Neutron activation analysis of essential elements in Multani mitti clay using miniature neutron source reactor

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, S.; Faiz, Y.; Siddique, N.

    2012-01-01

    Multani mitti clay was studied for 19 essential and other elements. Four different radio-assay schemes were adopted for instrumental neutron activation analysis (INAA) using miniature neutron source reactor. The estimated weekly intakes of Cr and Fe are high for men, women, pregnant and lactating women and children while intake of Co is higher in adult categories and Mn by pregnant women. Comparison of MM clay with other type of clays shows that it is a good source of essential elements. - Highlights: ► Multani mitti clay has been studied for 19 essential elements for human adequacy and safety using INAA and AAS. ► Weekly intakes for different consumer categories have been calculated and compared with DRIs. ► Comparison of MM with other type of clays depict that MM clay is a good source of essential elements.

  15. Instrumental neutron activation analysis of brewer's yeast

    International Nuclear Information System (INIS)

    Bergerioux, C.; Zikovsky, L.

    1978-01-01

    Instrumental neutron activation was used for the determination of 23 trace and minor elements in 4 different samples of brewer's yeast. Detection limits vary from 2 ppb to 100 ppm. The following average concentrations were found (ppm, dry weight): Al 597, Br 0.36, Cl 1473, Co 0.21, Cu 19, Fe 285, K 16400, Mg 1355, Mn 8.4, Na 2330, Rb 19, Sb 0.053, Se 1.2, V 2.2 and Zn 80. NBS standard 1569 was also analyzed and the following concentrations (in ppm) were measured: Al 2300, Br 0.65, Ce 0.23, Cl 460, Co 0.26, Cr 2.12, Cu 11, Fe 707, Gd 7.1, Hf 0.13, K 15500, Mg 1780, Mn 7, Na 510, Rb 16, Sb 0.075, Sc 0.18, Se 0.92, Th 3.7, Ti 38, U 0.49, V 4.1 and Zn 70. (author)

  16. Analysis of the neutron slowing down equation

    International Nuclear Information System (INIS)

    Sengupta, A.; Karnick, H.

    1978-01-01

    The infinite series solution of the elementary neutron slowing down equation is studied using the theory of entire functions of exponential type and nonharmonic Fourier series. It is shown from Muntz--Szasz and Paley--Wiener theorems, that the set of exponentials ]exp(ilambda/sub n/u) ]/sup infinity//sub n/=-infinity, where ]lambda/sub n/]/sup infinity//sub n/=-infinity are the roots of the transcendental equation in slowing down theory, is complete and forms a basis in a lethargy interval epsilon. This distinctive role of the maximum lethargy change per collision is due to the Fredholm character of the slowing down operator which need not be quasinilpotent. The discontinuities in the derivatives of the collision density are examined by treating the slowing down equation in its differential-difference form. The solution (Hilbert) space is the union of a countable number of subspaces L 2 (-epsilon/2, epsilon/2) over each of which the exponential functions are complete

  17. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  18. Protein determination in soya bean by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Szegedi, S.; Mosbah, D.S.; Varadi, M.; Szaloki, I.

    1988-01-01

    For a non-destructive determination of the protein content in soya bean samples, 14-MeV neutron activation analysis was applied. To check the method, the results obtained by X-ray fluorescence analysis and the Kjeldahl procedure were compared. For pressed pellet samples of about 1 g with 15 min irradiation and 10 min measuring times the accuracy of the protein determination was found to be 15%. (author) 7 refs.; 4 figs.; 3 tabs

  19. Determination of iodine 129 in vegetables using neutron activation analysis

    International Nuclear Information System (INIS)

    Quintana, Eduardo E.; Thyssen, Sandra M.; Bruno, Hector A.

    1999-01-01

    The developed methodology allows the determination of iodine 129 in vegetables, using neutron activation analysis. The chemical treatment removes the interferences present in these matrixes, as well as the bromine 82 originated in the activation process. The experimental method for the determination of iodine 129 by neutron activation analysis involves five steps: 1- digestion by alkaline fusion; 2- pre-irradiation purification of iodine 129 by distillation followed by solvent extraction, and adsorption on activated charcoal by distillation; 3- neutron irradiation; 4- post-irradiation purification of iodine 130 by distillation followed by solvent extraction; 5- gamma spectrometry. A chemical recovery of 95 % is obtained in the distillations, measured using iodine 131 as tracer. The whole process recovery is within 70 % and 85 %. The detection limit is 2 mBq/kg of sample, but several factors affect this value, such as type of vegetable, natural iodine concentration, irradiation time and neutron flux. The methodology developed is applied at environmental surveillance with safeguards proposes, in the detection of undeclared reprocessing of irradiated fuel. (authors)

  20. Inversion methods for analysis of neutron brightness measurements in tokamaks

    International Nuclear Information System (INIS)

    Gorini, G.; Gottardi, N.

    1990-02-01

    The problem of determining neutron emissivity from neutron brightness measurements in magnetic fusion plasmas is addressed. In the case of two-dimensional measurements with two orthogonal cameras, a complete, tomographic analysis of the data can in principle be performed. The results depend critically on the accuracy of the measurements and alternative solutions can be sought under the assumption of a known emissivity topology (Generalized Abel Inversion). In this work, neutron brightness data from the JET tokamak have been studied with both methods. We find that with the present experimental uncertainty (levels 10-20%) the Abel inversion method works best, while two-dimensional information cannot in general be deduced. This is confirmed by studies of the error propagation in the inversion using artificial data, which are also presented here. An important application of emissivity profile information is the determination of the plasma deuterium temperature profile, T D (R). Results are presented here from the analysis of JET data and the errors in T D (R) are discussed in some detail. It is found that, for typical JET plasma conditions, the dominant source of uncertainty arises from the high plasma impurity level and the fact that it is poorly known; these problems can be expected to be remedied and neutron brightness measurements would be expected to be very effective (especially in high density plasmas) as a T D (R) diagnostics. (author)

  1. Instrumental neutron activation analysis for coal

    International Nuclear Information System (INIS)

    Suzuki, Shohgo; Okada, Yukiko; Hirai, Shoji

    1985-01-01

    Various methods of neutron irradiation and of gamma-ray spectrometry were used in order to improve the detection sensitivity. Gamma-ray spactra of irradiated samples were collected by four methods, namely, spectrometry using a coaxial Ge(Li) detector, anticoincidence and coincidence counting spectrometries using a coaxial Ge(Li) detector and a well-type NaI(Tl) detector, and low energy photon spectrometry using a planer Ge detector (LEPS). Gamma-ray spectra obtained were analyzed by a peak-fitting procedure using a minicomputer system (GAMA system). Concentration of 35 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Mo, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Dy, Hf, Ta, W, Th and U) were determined by the combination of no-filter irradiation and spectrometry using a coaxial Ge(Li) detector that is conventionaly widely used. Concentrations of other 19 elements were determined by other combinations of irradiation and spectrometry. Mercury concentration was determined by the combination of no-filter irradiation and anticoincidence counting spectrometry. Concentrations of 7 elements (Cu, Nd, Gd, Ho, Tm, Yb and Lu) were determined by the combination of no-filter irradiation and LEPS. Concentrations of 3 elements (In, Ga and Ag) were determined by the combination of cadmium-filter irradiation and spectrometry using a coaxial Ge(Li) detector. Concentrations of 5 elements (Pr, Cd, Au, Te and Sn) were determined by the combination of cadmium-filter irradiation and anticoincidence counting spectrometry. Selenium concentration was determined by the combination of cadmium-filter irradiation and coincidence counting spectrometry. Silicon concentration was determined by the combination of boron-filter irradiation and spectrometry using a coaxial Ge(Li) detector. Iodine concentration was determined by the combination of boron-filter irradiation and anticoincidence counting spectrometry. (J.P.N.)

  2. Automatization of the neutron activation analysis method in the nuclear analysis laboratory

    International Nuclear Information System (INIS)

    Gonzalez, N.R.; Rivero, D del C.; Gonzalez, M.A.; Larramendi, F.

    1993-01-01

    In the present paper the work done to automatice the Neutron Activation Analysis technic with a neutron generator is described. An interface between an IBM compatible microcomputer and the equipment in use to make this kind of measurement was developed. including the specialized software for this system

  3. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  4. Monte Carlo calculations and neutron spectrometry in quantitative prompt gamma neutron activation analysis (PGNAA) of bulk samples using an isotopic neutron source

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Awotwi-Pratt, J.B.; Williams, A.M.

    2004-01-01

    An activation analysis facility based on an isotopic neutron source (185 GBq 241 Am/Be) which can perform both prompt and cyclic activation analysis on bulk samples, has been used for more than 20 years in many applications including 'in vivo' activation analysis and the determination of the composition of bio-environmental samples, such as, landfill waste and coal. Although the comparator method is often employed, because of the variety in shape, size and elemental composition of these bulk samples, it is often difficult and time consuming to construct appropriate comparator samples for reference. One of the obvious problems is the distribution and energy of the neutron flux in these bulk and comparator samples. In recent years, it was attempted to adopt the absolute method based on a monostandard and to make calculations using a Monte Carlo code (MCNP4C2) to explore this further. In particular, a model of the irradiation facility has been made using the MCNP4C2 code in order to investigate the factors contributing to the quantitative determination of the elemental concentrations through prompt gamma neutron activation analysis (PGNAA) and most importantly, to estimate how the neutron energy spectrum and neutron dose vary with penetration depth into the sample. This simulation is compared against the scattered and transmitted neutron energy spectra that are experimentally and empirically determined using a portable neutron spectrometry system. (author)

  5. Quantitative multiphase analysis of archaeological bronzes by neutron diffraction

    CERN Document Server

    Siano, S; Celli, M; Pini, R; Salimbeni, R; Zoppi, M; Kockelmann, W A; Iozzo, M; Miccio, M; Moze, O

    2002-01-01

    In this paper, we report the first investigation on the potentials of neutron diffraction to characterize archaeological bronze artifacts. The preliminary feasibility of phase and structural analysis was demonstrated on standardised specimens with a typical bronze alloy composition. These were realised through different hardening and annealing cycles, simulating possible ancient working techniques. The Bragg peak widths that resulted were strictly dependent on the working treatment, thus providing an important analytical element to investigate ancient making techniques. The diagnostic criteria developed on the standardised specimens were then applied to study two Etruscan museum pieces. Quantitative multiphase analysis by Rietveld refinement of the diffraction patterns was successfully demonstrated. Furthermore, the analysis of patterns associated with different artifact elements also yielded evidence for some peculiar perspective of the neutron diffraction diagnostics in archeometric applications. (orig.)

  6. Safeguards and Physics Measurements: Neutron Activation Analysis with k0-standardisation

    International Nuclear Information System (INIS)

    Pomme, S.

    2000-01-01

    SCK-CEN's programme on Neutron Activation Analysis with k 0 -standardisation concentrates on the improvement of the standardisation method and the characterisation of the neutron field as well as on the improvement of the statistical control on neutron activation analysis. Main achievements in 2000 are reported

  7. Determination of copper in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Myint-U; Kyi Kyi San

    1994-01-01

    Copper was determined in two Myanmar indigenous medicines by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 511 keV peak of the 64 Cu was measured. (author) 2 refs.; 2 tabs

  8. Determination of copper in some Myanmar indigenous medicines by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint-U,; San, Kyi Kyi [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-09-15

    Copper was determined in two Myanmar indigenous medicines by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 511 keV peak of the [sup 64]Cu was measured. (author) 2 refs.; 2 tabs.

  9. In-situ elemental analysis of coal by neutron activation

    International Nuclear Information System (INIS)

    Mikesell, J.L.; Senftle, F.E.; Tanner, A.B.

    1986-01-01

    The U.S. Geological Survey (USGS) has worked to develop neutron techniques for the borehole measurement of the elemental composition of ores since 1969, and first demonstrated a borehole ultimate analysis of coal in 1977. Borehole measurements such as these permit real-time evaluation of coal quality without the expense of coring or the delays associated with laboratory analyses. Two technological innovations make such measurements possible: the availability, from Savannah River Operations Office, DOE, of small californium-252 (/sup 252/Cf) fission neutron sources, and the development, by USGS and Princeton Gamma-Techn, of the melting-cryogen-cooled high-purity germanium borehole gamma-ray detector. A technique of relating mass fractions to measured gamma-ray intensities, which eliminates the need for detailed knowledge of the geometry of the neutron distribution, is used to calculate elemental compositions without resorting to the test pits or computer borehole modeling. In coal, all of the major constituents (C, H, N, S, Si, Al, Fe, Ti) except oxygen can be determined quantitatively by thermal neutron capture gamma-ray spectroscopy

  10. Neutronics comparative analysis between MNSR and slowpoke-II reactors

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-01-01

    Neutronics analysis of both MNSR and Slowpoke reactors were made. Calculations including flux distribution, power estimation, excess and shutdown reactivity margins, flooding effects of irradiation sites, and initial investigation of fuel conversion from high to low enriched uranium were discussed. A neutronic 3-D model, dedicated mainly for the MNSR, has been developed to perform such neutronic calculations for both reactors. Well-known cell and core calculation codes such as WIMSD4 and CITATIONS have been used. It was found out that it is possible to lower the fuel enrichment of the Miniature Neutron Source Reactor (MNSR) to 20% using U O 2 as fuel instead of U Al 4 . The number of fuel elements required for the new core is 199. The use of double thickness of the bottom reflector in Slowpoke reactor made it possible to load the reactor with lower enriched fuel compared to MNSR. Values of reactivity flooding effects for single or combination of inner irradiation sites were obtained accurately. Results show good agreement with reported data for MNSR. (author)

  11. Aspects of precision and accuracy in neutron activation analysis

    International Nuclear Information System (INIS)

    Heydorn, K.

    1980-03-01

    Analytical results without systematic errors and with accurately known random errors are normally distributed around their true values. Such results may be produced by means of neutron activation analysis both with and without radiochemical separation. When all sources of random variation are known a priori, their effect may be combined with the Poisson statistics characteristic of the counting process, and the standard deviation of a single analytical result may be estimated. The various steps of a complete neutron activation analytical procedure are therefore studied in detail with respect to determining their contribution to the overall variability of the final result. Verification of the estimated standard deviation is carried out by demonstrating the absence of significant unknown random errors through analysing, in replicate, samples covering the range of concentrations and matrices anticipated in actual use. Agreement between the estimated and the observed variability of replicate results is then tested by a simple statistic T based on the chi-square distribution. It is found that results from neutron activation analysis on biological samples can be brought into statistical control. In routine application of methods in statistical control the same statistical test may be used for quality control when some of the actual samples are analysed in duplicate. This analysis of precision serves to detect unknown or unexpected sources of variation of the analytical results, and both random and systematic errors have been discovered in practical trace element investigations in different areas of research. Particularly, at the ultratrace level of concentration where there are few or no standard reference materials for ascertaining the accuracy of results, the proposed quality control based on the analysis of precision combined with neutron activation analysis with radiochemical separation, with an a priori precision independent of the level of concentration, becomes a

  12. Large sample neutron activation analysis of a reference inhomogeneous sample

    International Nuclear Information System (INIS)

    Vasilopoulou, T.; Athens National Technical University, Athens; Tzika, F.; Stamatelatos, I.E.; Koster-Ammerlaan, M.J.J.

    2011-01-01

    A benchmark experiment was performed for Neutron Activation Analysis (NAA) of a large inhomogeneous sample. The reference sample was developed in-house and consisted of SiO 2 matrix and an Al-Zn alloy 'inhomogeneity' body. Monte Carlo simulations were employed to derive appropriate correction factors for neutron self-shielding during irradiation as well as self-attenuation of gamma rays and sample geometry during counting. The large sample neutron activation analysis (LSNAA) results were compared against reference values and the trueness of the technique was evaluated. An agreement within ±10% was observed between LSNAA and reference elemental mass values, for all matrix and inhomogeneity elements except Samarium, provided that the inhomogeneity body was fully simulated. However, in cases that the inhomogeneity was treated as not known, the results showed a reasonable agreement for most matrix elements, while large discrepancies were observed for the inhomogeneity elements. This study provided a quantification of the uncertainties associated with inhomogeneity in large sample analysis and contributed to the identification of the needs for future development of LSNAA facilities for analysis of inhomogeneous samples. (author)

  13. Neutron multimonochromator-bipolarizer based on magnetic multilayer Fe/Co and new scheme for the total neutron polarization analysis

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Zaw Lin, Kyaw

    2017-01-01

    In this paper, we present a new neutron-optical element, Neutron Multimonochromator-Bipolarizer (NMB). It consists of a multimultilayer structure made of 12 periodic multilayer Fe/Co magnetic nanostructures whose period increases with distance from the substrate. Results are presented of calculations of the reflection coefficients from the NMB. We propose a new scheme of the total neutron polarization analysis for the time-of-flight method in the reflectometry. In this scheme, double NMB is used as a polarizer and there is no spin-flipper before the sample. NMB can be used in polarized neutron reflectometry, in SESANS, and for research of low-angle and inelastic scattering of polarized neutrons. (paper)

  14. Analysis of medicinal plant extracts by neutron activation method

    International Nuclear Information System (INIS)

    Vaz, Sandra Muntz

    1995-01-01

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed

  15. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    International Nuclear Information System (INIS)

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements

  16. Applied research and development of neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Ryel; Kim, Young Gi; Jung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun; Lim, Jong Myoung

    2003-05-01

    The aims of this project are to establish the quality control system of Neutron Activation Analysis(NAA) due to increase of industrial needs for standard analytical method and to prepare and identify the standard operation procedure of NAA through practical testing for different analytical items. R and D implementations of analytical quality system using neutron irradiation facility and gamma-ray measurement system and automation of NAA facility in HANARO research reactor are as following ; 1) Establishment of NAA quality control system for the maintenance of best measurement capability and the promotion of utilization of HANARO research reactor 2) Improvement of analytical sensitivity for industrial applied technologies and establishment of certified standard procedures 3) Standardization and development of Prompt Gamma-ray Activation Analysis (PGAA) technology

  17. Neutron activation analysis of trace elements in foodstuffs

    International Nuclear Information System (INIS)

    Schelenz, R.; Fischer, E.

    1976-05-01

    A neutron activation method for multielement determination in biological material was developed. The individual steps of the method include radiochemical processing as well as nondestructive techniques. In order to develop a high resolution gamma spectrometric method the indispensable assumptions were the application of Ge(Li)-semiconductor detectors, multi-channel pulse height analyzers and the use of electronic data evaluation with mini-computers for the automatic evaluation of complex gamma spectra. After radiochemical separation (RNAA) 33 elements can be determined in biological materials and by application of nondestructive, purely instrumental techniques (INAA) 25 elements. The time required for the analysis of 33 elements can be determined in biological materials and by application of nondestructive, purely instrumental techniques (INAA) 25 elements. The time required for the analysis of 33 elements is 4 days. The neutron activation method is used routinely for the determination of trace elements in foodstuffs and in the field of nutrition research. (orig.) [de

  18. Practical aspects of operating a neutron activation analysis laboratory

    International Nuclear Information System (INIS)

    1990-07-01

    This book is intended to advise in everyday practical problems related to operating a neutron activation analysis (NAA) laboratory. It gives answers to questions like ''what to use NAA for'', ''how to find relevant research problems'', ''how to find users for the technique'', ''how to estimate the cost of the analysis and how to finance the work'', ''how to organize the work in a rational way'' and ''how to perform the quality control''. It gives advice in choosing staff, equipment, and consumables and how to design facilities and procedures according to need and available resources. Potential applications of economic or environmental importance, reactor facilities, counting and measuring equipment of the lab, cooperation with other analytical groups and competitiveness of NAA are discussed by experienced analysts. The compiled 8 tables of data useful for neutron activation analysts are a valuable asset for research labs as well as industrial quality control units. Refs, figs and tabs

  19. Records in ultra low radioactivity measurements with neutron activation analysis

    International Nuclear Information System (INIS)

    Hentig, R. von; Goldbrunner, T.; Angloher, G.; Feilitzsch, F. von

    1999-01-01

    Neutron Activation Analysis has emerged to be an analytical method sensitive enough to detect fg/g traces of unstable primordial nuclides in complex matrices. Especially low count rate experiments in the field of solar neutrino physics and dark matter search can profit from the detection capabilities of this method which had been unattained so far. This gain in sensitivity has been achieved by combining neutron activation, radiochemical separation methods, and efficient low level counting systems at the new underground laboratory of the accelerator laboratory in Garching. Recent improvements which have been made in the purification and analysis of the liquid scintillator, as foreseen for the solar neutrino experiment BOREXINO, are being presented as an example in this paper

  20. Neutron activation analysis using Excel files and Canberra Genie-2000

    International Nuclear Information System (INIS)

    Landsberger, S.; Jackman, K.; Welch, L.

    2005-01-01

    A method for analyzing neutron activated sample data by using Microsoft Excel as the analysis engine has been developed. A simple technique for inputting data is based on report files generated by Canberra's Genie-2000 spectroscopy system but could be easily modified to support other vendors having report formats with consistent text placement. A batch program handles operating an automatic sample changer, acquiring the data, and analyzing the spectrum to create a report of the peak locations and net area. The entire report is then transferred to within an Excel spreadsheet as the source data for neutron activation analysis. Unique Excel templates have been designed, for example, to accommodate short-lived and long-lived isotopes. This process provides a largely integrated solution to NAA while providing the results in an industry standard spreadsheet format. This software is ideally suited for teaching and training purposes. (author)

  1. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1; Diagnostico da mucoviscidose utilizando analise por ativacao com neutrons. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Luis F.; Bellido, Alfredo V

    1997-02-01

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author) 33 refs., 13 figs.

  2. Obsidian sources characterized by neutron-activation analysis.

    Science.gov (United States)

    Gordus, A A; Wright, G A; Griffin, J B

    1968-07-26

    Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.

  3. Neutron activation analysis of absolutely-dated tree rings

    International Nuclear Information System (INIS)

    Uenlue, K.; Hauck, D.K.; Kuniholm, P.I.; Chiment, J.J.

    2005-01-01

    Gold concentration was determined for dendrochronologically-dated wood samples using neutron activation analysis (NAA) and correlation sought with known environmental changes, e.g., volcanic activities, during historic periods. Uptake of gold is sensitive to soil pH for many plants. Data presented are from a single, cross-dated tree that grew in Greece. Using NAA, gold was measured with parts-per-billion sensitivity in individual tree rings from 1411 to 1988 AD. (author)

  4. A study on cigarette tobacco by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Md Soot Haji Ahmad; Tey Nsan Yen

    1987-01-01

    The concentration of 25 elements in cigarette tobacco of popular brands locally marketed were determined using instrumental neutron activation analysis. These elements are: Al, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, Th, and Zn. Comparison of the element contents to the reported cigarette tobacco of Egypt, Iran and Turkey was also done. (author)

  5. Determination of manganese in blood by neutron activation analysis

    International Nuclear Information System (INIS)

    Kocsis, E.; Kovats, M.; Molnar, M.

    1981-01-01

    A new method has been elaborated: the manganese content of a blood sample was precipitated by H 2 O 2 , and analysed by neutron activation analysis. The mean value was 2.67x10 -8 g/g in men, 3.25x10 -8 g/g in women and 3.57x10 -8 g/g in men working as welders for several years. (L.E.)

  6. Estimation of iodine in soils by neutron activation analysis

    International Nuclear Information System (INIS)

    Krishnamoorthy, K.R.; Iyer, R.K.

    1982-01-01

    This paper reports the determination of the iodine content of soils by neutron activation analysis. The irradiated sample is fused with alkali in presence of 131 I tracer. From the aqueous extract, iodine activity is extracted into carbon tetrachloride and stripped back to aqueous phase with a high selectivity for iodine. 131 I tracer is used to measure chemical yield. Iodine contents in the range 1 to 20 ppm. have been determined by this technique. (author)

  7. Provenience studies using neutron activation analysis: the role of standardization

    International Nuclear Information System (INIS)

    Harbottle, G.

    1980-01-01

    This paper covers the historical background of chemical analysis of archaeological artifacts which dates back to 1790 to the first application of neutron activation analysis to archaeological ceramics and goes on to elaborate on the present day status of neutron activation analysis in provenience studies, and the role of standardization. In principle, the concentrations of elements in a neutron-activated specimen can be calculated from an exact knowledge of neutron flux, its intensity, duration and spectral (energy) distribution, plus an exact gamma ray count calibrated for efficiency, corrected for branching rates, etc. However, in practice it is far easier to compare one's unknown to a standard of known or assumed composition. The practice has been for different laboratories to use different standards. With analyses being run in the thousands throughout the world, a great benefit would be derived if analyses could be exchanged among all users and/or generators of data. The emphasis of this paper is on interlaboratory comparability of ceramic data; how far are we from it, what has been proposed in the past to achieve this goal, and what is being proposed. All of this may be summarized under the general heading of Analytical Quality Control - i.e., how to achieve precise and accurate analysis. The author proposes that anyone wishing to analyze archaeological ceramics should simply use his own standard, but attempt to calibrate that standard as nearly as possible to absolute (i.e., accurate) concentration values. The relationship of Analytical Quality Control to provenience location is also examined

  8. Trace elements in coloured opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Smallwood, A.

    1995-01-01

    Neutron activation analysis was used to determine the concentration of trace elements in 50 samples of orange, yellow, honey, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were evaluated to determine the relationship between trace elements content and opal colour. (author). 10 refs., 10 figs., 3 tabs

  9. Current applications of vibration monitoring and neutron noise analysis

    International Nuclear Information System (INIS)

    Damiano, B.; Kryter, R.C.

    1990-02-01

    Monitoring programs using vibration monitoring or neutron noise analysis have demonstrated the ability to detect and, in some cases, diagnose the nature of reactor vessel internals structural degradation. Detection of compromised mechanical integrity of reactor vessel internal components in its early stages allows corrective action to be taken before weakening or damage occurs. In addition to the economic benefits early detection and correction can provide, they can also help maintain plant safety. Information on the condition of reactor vessel internal components gained from a monitoring program supplements in-service inspection results and may be useful in justifying plant license extension. This report, which was prepared under the Nuclear Plant Aging Research Program sponsored by the US Nuclear Regulatory Commission, discusses the application of vibration monitoring and neutron noise analysis for monitoring light-water reactor vessel internals. The report begins by describing the effects of structural integrity loss on internals vibration and how measurable parameters can be used to detect and track the progress of degradation. This is followed by a description and comparison of vibration monitoring and neutron noise analysis, two methods for monitoring the mechanical integrity of reactor vessel internals condition monitoring programs in the United States, Federal Republic of Germany, and France, three countries having substantial commitments to nuclear power. The last section presents guidelines for US utilities wishing to establish reactor internals condition monitoring programs. 20 refs., 5 figs., 4 tabs

  10. Determination of ancient ceramics reference material by neutron activation analysis

    International Nuclear Information System (INIS)

    Li Huhou; Sun Jingxin; Wang Yuqi; Lu Liangcai

    1986-01-01

    Contents of trace elements in the reference material of ancient ceramics (KPS-1) were determined by means of activation analysis, using thermal neutron irradiation produced in nuclear reactor. KPS-1 favoured the analysis of ancient ceramics because it had not only many kinds of element but also appropriate contents of composition. The values presented here are reliable within the experimental precision, and have shown that the reference material had a good homogeneity. So KPS-1 can be used as a suitable reference material for the ancient ceramics analysis

  11. Analysis by Neutron activation of the Calakmul jadeite mask

    International Nuclear Information System (INIS)

    Alemon A, E.; Herrera V, L.

    1998-01-01

    It is very important to know the elemental composition of archaeological materials with the purpose to find relations that allow to establish their origin standards. the origin and present localization of pre hispanic archaeological pieces can lead to the determination of commercial routes and of technology transfer among different ancient cultures. In the present work it has been realized a systematic analysis using the Instrumental neutron activation analysis technique of three samples obtained from Calakmul jadeite mask, tomb I, that in addition to give a composition of constituent and trace elements detected by this technique it has leaded to establish an applicable methodology to the routine analysis of ceramics of historical interest. (Author)

  12. Neutron activation analysis of trace elements in IAEA reference materials

    International Nuclear Information System (INIS)

    Cheema, M.N.; Hasany, S.M.; Hanif, I.; Chaudhry, M.S.; Qureshi, I.H.

    1978-09-01

    Analytical Chemistry Group of Nuclear Chemistry Division at PINSTECH has been participating in IAEA Intercomparison programme of analytical quality control since 1972. So far fifteen samples of a variety of materials received from the Agency have been analyzed for different minor and trace elements. Mostly destructive and non-destructive neutron activation analysis techniques have been used for elemental analysis. In this report the description of the samples and the experimental procedures employed have been mentioned. The results of elemental analysis have been reported and compared with IAEA values which are based on the average computed from the results of different participating laboratories. (authors)

  13. Non-destructive bulk analysis of the Buggenum sword by neutron resonance capture analysis and neutron diffraction

    International Nuclear Information System (INIS)

    Postma, H.; Clarijs, M.; Borella, A.; Schillebeeckx, P.; Kamermans, H.

    2010-01-01

    Two neutron based techniques, neutron resonance capture analysis (NRCA) and time-of-flight neutron-diffraction (TOF-ND) have been used to determine the elemental composition and structure of a precious and very well preserved all-metal sword from the Bronze Age. This Buggenum sword was on loan from the National Museum of Antiquities (NMA) in Leiden (NL). NRCA and TOF-ND experiments have been carried out at a number of more or less identical positions of the sword. The tin-bronze ratio and the relative amounts of some minor elements (Sb, As, Ag, In) have been determined. The results of neutron diffraction measurements showed considerable tin-segregation, and clear indications of hardening on the edges of the blade. In addition, radiographs using Bremsstrahlung revealed the construction of the hilt-blade connection. The work was carried out at the EC Joint Research Centre IRMM in Geel (B) and at the ISIS facility of the Rutherford Appleton Laboratory (UK). (author)

  14. Neutron scattering investigation on low-dimensional, quantum and frustrated magnetism and utilization of neutron polarization analysis. My first encounter with neutron research

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2013-01-01

    My first encounter with neutron scattering research on low-dimensional magnetism at the Hahn-Meitner Institut under the supervision of Prof. H. Dachs and Prof. M. Steiner, were it all began, is accounted for. The polarized neutron analysis research on low-dimensional magnetism at the Institut Laue Langevin under the supervision of Dr. R. Pynn is also reported. I would like to dedicate this article to late Prof. H. Dachs expressing may deepest gratitude for his warm guidance during the early period of my neutron science carrier. (author)

  15. Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute

    International Nuclear Information System (INIS)

    Festa, G; Andreani, C; Pietropaolo, A; Grazzi, F; Scherillo, A; Barzagli, E; Sutton, L F; Bognetti, L; Bini, A; Schooneveld, E

    2013-01-01

    A metallic 19th century flute was studied by means of integrated and simultaneous neutron-based techniques: neutron diffraction, neutron radiative capture analysis and neutron radiography. This experiment follows benchmark measurements devoted to assessing the effectiveness of a multitask beamline concept for neutron-based investigation on materials. The aim of this study is to show the potential application of the approach using multiple and integrated neutron-based techniques for musical instruments. Such samples, in the broad scenario of cultural heritage, represent an exciting research field. They may represent an interesting link between different disciplines such as nuclear physics, metallurgy and acoustics. (paper)

  16. Heterogeneous analysis of non-uniform neutron field formation

    International Nuclear Information System (INIS)

    Zagrebaev, A.M.; Fedosov, A.M.

    1979-01-01

    Investigated are the specific features of spatial-energy neutron distribution formation in the transient zone between regions, operating at different levels of energy release with accounting for the real structure of fuel element lattice and control elements in the channel reactors of high power. Presented are the calculation results, obtained by heterogeneous method in the two-group monopole approximation by means of the HETLAT code. The analysis, based on the homogeneous model shows, that the efficiency of the transient zone in forming neutron flux qradient can be increased by introducing an additional interlayer of moderator between the layers with extreme multiplying properties. It is stressed, that the most favourable from the point of view of energy release uniformity in zones and width of the transient zone is the variant in which neutron flux gradient is carried out by moving the control elements on the boundaries of regions while the internal rows of control elements create the conditions for flattening the energy release in the zones. The result obtained corresponds to the recommendation on optimal control, coming from the Pontryagin maximum principle. The analysis of neutron field formation using heterogeneous models mainly proves the conclusions following from homogeneous calculations using the maximum principle. At the same time quantitative results for the zones of small dimensions (less than 10 migration lengths) with a vividly expressed heterogeneous structure essentially differ from the forecast, obtained on the basis of the simplified homogeneous one-group model. The heterogeneous analysis shows possibilities for further optimization of the transient zone structure with account of the control element location

  17. PANTHER - Polarisation Analysis with Thermal neutron

    International Nuclear Information System (INIS)

    Deen, P.P.; Fennell, T.; Schober, H.; Orecchini, A.; Rols, S.; Andersen, K.H.; Stewart, J.R.

    2011-01-01

    PANTHER will build on the success of IN4, the world's most intense time-of-flight spectrometer. A large position-sensitive detector (PSD) will improve data collection rates significantly, the background will be greatly reduced, and it will incorporate features indispensable for magnetic studies (small angles, polarisation analysis, high magnetic field devices). The new instrument will enable rapid surveys of (Q,ω) space, as well as more detailed studies in fields ranging from magnetism to the structural excitations - phonon densities of states, dispersion of collective modes and molecular vibrations - that govern the behaviour of many important physical and chemical systems. (authors)

  18. Multielement neutron-activation analysis of plants and fertilizers

    International Nuclear Information System (INIS)

    Srapenyants, R.A.; Saveliev, I.B.

    1977-01-01

    The development of an automated technique for simultaneous multielement activation analysis of plants and fertilizers for the macronutrient elements N, P, K, Ca, Mg, Cl, and Si is presented. The developed universal NAA is based on the installation manufactured and supplied by Sames, France. The components of the automatic installation for neutron activation analysis are: neutron generator; a pneumatic transfer system; a scintillation crystal detector; a spectrometer rack including a basic multichannel analyser; a control panel for the neutron generator and pneumatic transfer system; a computer and teletype. On the basis of analytical procedures, algorithms and software, the first automatic (computer based) installation for multielement analyses of plants and fertilizers has been completed and is in routine use in the agrochemical and plant breeding research program in the Soviet Union. The proposed technique together with the full automatic real-time process of measurement and processing of data by computer, provides a throughput of 250-500 samples (1250-2500 elements determinations) per 8-hour shift, with the accuracy of +-3%; for N and +-5%; for P, K, Mg, Cl and +-15% for Ca. (T.G.)

  19. Multi-element neutron activation analysis of Brazilian coal samples

    International Nuclear Information System (INIS)

    Atalla, L.T.; Requejo, C.S.

    1982-09-01

    The elements U, Th, La, Ce, Nd, Sm, Eu, Dy, Tb, Yb, Lu, Sc, Ta, Hf, Co, Ni, Cr, Mo, Ti, V, W, In, Ga, Mn, Ba, Sr, Mg, Rb, Cs, K, Cl, Br, As, Sb, Au, Ca, Al and Fe were determined in coal samples by instrumental neutron activation analysis, by using both thermal and epithermal neutron irradiations. The irradiation times were 10 minutes and 8 or 16 hours in a position where the thermal neutron flux was about 10 12 n.cm - 2 .s - 1 and 72 non-consecutive hours for epithermal irradiation at a flux of about 10 11 n.Cm - 2 .s - 1 . After the instrumental analysis of the above mentioned elements, Zn and Se were determined with chemical separation. The relative standard deviation of, at least, 4 determinations was about + - 10% for the majority of the results. The coal samples analysed were supplied by: Cia. Estadual da Tecnologia e Saneamento Basico (CETESB-SP), Cia. de Pesquisas e Lavras Minerais (COPELMI-RS), Cia. Carbonifera Urussunga (SC), Cia. Carbonifera Prospera (SC), Cia. Carbonifera Treviso (SC), Cia. Nacional de Mineracao de Carvao do Barro Branco (SC) and Comissao Nacional de Energia Nuclear (CNEN-RJ). (Author) [pt

  20. Iodine-129 separation and determination by neutron activation analysis

    International Nuclear Information System (INIS)

    Bate, L.C.; Stokely, J.R.

    1982-01-01

    This paper describes a method for analysis of iodine-129 in fission product mixtures originating from fuel reprocessing studies and low-level wastes. The method utilizes conventional iodine valence adjustment and solvent extraction techniques to chemically separate iodine-129 from most fission products. The iodine-129 is determined by neutron irradiation and measurement of the 12.4 hour iodine-130 produced by the neutron capture reaction. Special techniques were devised for neutron irradiation of iodine-129 samples in the pneumatic tube irradiation facilities at the High Flux Isotope (HFIR) and Oak Ridge Research (ORR) Reactors. Chemically separated iodine-129 is adsorbed on an anion exchange resin column made from an irradiation container. The loaded resin is then irradiated in either of the pneumatic facilities to produce iodine-130. Sensitivity of the analysis with the HFIR facility (flux: 5x10 14 n/cm 2 /s) and a 100 second irradiation time is approximately 0.03 nanograms. Samples up to 250 ml in volume can be easily processed. (author)

  1. Epithermal neutron activation analysis using a boron carbide irradiation filter

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Brueckner, J.

    1980-01-01

    The use of boron carbide as a thermal neutron filter in epithermal neutron activation (ENAA) analysis has been investigated. As compared to the use of a cadmium filter, boron provides a greater reduction of activities from elements relatively abundant in terrestrial rocks and fossil fuels, such as Na, La, Sc and Fe. These elements have excitation functions which follow the 1/v law in the 1 to 10 eV lower epithermal region. This enhances the sensitivity of ENAA for elements such as U, Th, Ba and etc. which have strong resonances in the higher epithermal region above 10 eV. In addition, a boron carbide filter has the advantages over cadmium of acquiring a relatively low level of induced activity which poses minimal radiation safety problems, when used for ENAA. (author)

  2. Neutron activation analysis of trace elements in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Velandia, J A; Perkons, A K

    1974-01-01

    Thermal Neutron Activation Analysis with Instrumental Ge(Li) Gamma Spectrometry was used to determine the amounts of more than 30 trace constituents in heart tissue of rats and kidney tissue of rabbits. The results were confirmed by a rapid ion-exchange group separation method in the initial stages of the experiments. The samples were exposed to thermal neutrons for periods between 3 minutes and 14 hours. Significant differences in the amounts and types of trace elements in the two different tissue types are apparent, however, are probably due to specific diets. Tables of relevant nuclear data, standard concentrations, radiochemical separation recoveries, and quantitative analytical results are presented. The ion-exchange group separation scheme and typical examples of the instrumental gamma ray spectra are shown. The techniques developed in this study are being used for a large scale constituent survey of various diseased and healthy human tissues.

  3. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor, k/sub eff/ has been satisfactorily determined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments and the development of theoretical methods to predict the experimental observables

  4. Neutron activation analysis applied to nutritional and foodstuff studies

    International Nuclear Information System (INIS)

    Maihara, Vera A.; Santos, Paola S.; Moura, Patricia L.C.; Castro, Lilian P. de; Avegliano, Roseane P.

    2009-01-01

    Neutron Activation Analysis, NAA, has been successfully used on a regularly basis in several areas of nutrition and foodstuffs. NAA has become an important and useful research tool due to the methodology's advantages. These include high accuracy, small quantities of samples and no chemical treatment. This technique allows the determination of important elements directly related to human health. NAA also provides data concerning essential and toxic concentrations in foodstuffs and specific diets. In this paper some studies in the area of nutrition which have been carried out at the Neutron Activation Laboratory of IPEN/CNEN-SP will be presented: a Brazilian total diet study: nutritional element dietary intakes of Sao Paulo state population; a study of trace element in maternal milk and the determination of essential trace elements in some edible mushrooms. (author)

  5. Certification of biological candidates reference materials by neutron activation analysis

    Science.gov (United States)

    Kabanov, Denis V.; Nesterova, Yulia V.; Merkulov, Viktor G.

    2018-03-01

    The paper gives the results of interlaboratory certification of new biological candidate reference materials by neutron activation analysis recommended by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). The correctness and accuracy of the applied method was statistically estimated for the determination of trace elements in candidate reference materials. The procedure of irradiation in the reactor thermal fuel assembly without formation of fast neutrons was carried out. It excluded formation of interfering isotopes leading to false results. The concentration of more than 20 elements (e.g., Ba, Br, Ca, Co, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Ta, Th, Tb, Yb, U, Zn) in candidate references of tobacco leaves and bottom sediment compared to certified reference materials were determined. It was shown that the average error of the applied method did not exceed 10%.

  6. Determination of sodium in pharmaceuticals by neutron activation analysis

    International Nuclear Information System (INIS)

    Kanias, G.D.

    1985-01-01

    A simple, fast and accurate neutron activation analysis method for determination of Na in drugs concerning either active compound or total content was developed. The examined dosage forms consisted of 10 injectable ampoules and 10 bottles of oral solutions. The irradiation of samples and standards was carried out in the rotation system of the Reactor of Nuclear Research Center Democritos with maximal neutron flux of 2,9.10 13 n.cm -2 .sec -1 . Gamma-ray spectrometry of the irradiated samples and standards was accomplished with a coaxial Ge(Li) detector series Win 15 with an efficiency of 15% connected to an Ino-Tech 1024 channel analyser (Model IT 5200). The accuracy and precision of the method are found to be very high and therefore it could be established as an official one for the determination of sodium in parmaceuticals

  7. Determination of inorganic component in plastics by neutron activation analysis

    International Nuclear Information System (INIS)

    Mateus, Sandra Fonseca; Saiki, Mitiko

    1995-01-01

    In order to identify possible sources of heavy metals in municipal solid waste incinerator ashes, plastic materials originated mainly from household waste were analyzed by using instrumental neutron activation analysis method. Plastic samples and synthetic standards of elements were irradiated at the IEA-R1 nuclear reactor for 8 h under thermal neutron flux of about 10 13 n cm -2 s -1 . After adequate decay time, counting were carried out using a hyperpure Ge detector and the concentrations of the elements As, Ba, Br, Cd, Co, Cr, Fe, Sb, Sc, Se, Sn, Ti and Zn were determined. For some samples, not all these elements were detected. Besides, the range of concentrations determined in similar type and colored samples varied from a few ppb to percentage. In general, colored and opaque plastic samples presented higher concentrations of the elements than those obtained from transparent and milky plastics. Precision of the results was also evaluated. (author). 3 refs., 2 tabs

  8. Neutron activation analysis for calibration of phosphorus implantation dose

    International Nuclear Information System (INIS)

    Paul, Rick L.; Simons, David S.

    2001-01-01

    A feasibility study was undertaken to determine if radiochemical neutron activation analysis (RNAA) can be used to certify the retained dose of phosphorus implanted in silicon, with the goal of producing a phosphorus SRM. Six pieces of silicon, implanted with a nominal phosphorus dose of 8.5x10 14 atoms·cm -2 were irradiated at a neutron flux of 1.05x10 14 cm -2 ·s -1 . The samples were mixed with carrier, dissolved in acid, the phosphorus isolated by chemical separation, and 32 P measured using a beta proportional counter. A mean phosphorus concentration of (8.35±0.20)x10 14 atoms·cm -2 (uncertainty=1 standard deviation) was determined for the six samples, in agreement with the nominal implanted dose

  9. Activation analysis with neutron generators using short-lived radionuclides

    International Nuclear Information System (INIS)

    Salma, I.

    1993-01-01

    The short half-life involves a number of important differences in production, transportation and measurement of radionuclides, and in counting statistics as compared with those in traditional activation analysis. Experiments were performed to investigate the analytical possibilities and prospective utilization of short-lived radionuclides produced by 14-MeV neutron irradiation. A rapid pneumatic transfer system for use with neutron generators was installed and applied for detecting radionuclides with a half-life from 300 ms to 30 s. The transport time for samples with a total mass of 1-4 g is between 130 and 160 ms for pressurized air of 0.1-0.4 MPa. 11 elements were studied by the conventional activation method using both a typical pneumatic transport system (run time 3 s) and the fast pneumatic transport facility. The effect of the cyclic activation technique on the elemental sensitivities was also investigated. (orig.)

  10. Epithermal neutron flux characterization of the TRIGA Mark III reactor, Salazar, Mexico, for use in Internal Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Herrera Peraza, E.

    1996-01-01

    The non ideality of the epithermal neutron flux distribution at a reactor site parameter (made, using Chloramine-T method. Radiochemical purity and stability of the labelled product were determined by radiochromatography. The labelled Melagenine-II showed two radioactive fractions thermal-to-epithermal neutron ratio (f) were determined in the 3 typical irradiations positions of the TRIGA Mark III reactor of the National Nuclear Research Institute, Salazar, Mexico, using the Cd-ratio for multi monitor and bare bi-isotopic monitor methods respectively. This characterization is of use in the K o - method of neutron activation analysis, recently introduced at the Institute

  11. Measurements and analysis of neutron and gamma noise in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van; Kleiss, E.B.J.

    1985-01-01

    Neutron and gamma sensitive collectrons (self-powered detectors) have been designed for incore noise measurements in BWRs. A so-called twin-type has been developed for measurements of two-phase flow characteristics and detailed axial velocity distributions. Construction aspects of the twin detectors are discussed. An analysis is presented of the response of both detector types to incore parametric fluctuations. This analysis is based on detector response functions which provide an insight into the 'field of view' of the two types. The results are supported by experimental verifications; it is shown that incore gamma detectors provide useful additional information about two-phase flow in a BWR. (author)

  12. Neutron-activation analysis of trace elements in thyroids

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Petri, H.; Kanash, N.V.; Malenchenko, A.F.

    1999-01-01

    Neutron activation analysis was used for routine measurement of trace elements in thyroids of inhabitants of Belarus as well as in thyroids of people operated for thyroid cancer. The method chosen allowed the analysis of 28 elements, among them essential and toxic ones, with a good accuracy. The results obtained showed significant differences in the elemental composition of thyroid from the different regions. The changes of elemental composition of thyroids of inhabitants of the Gomel region, where goiter is endemic, seem to be identical to those in the tumor tissue. (author)

  13. Mercury determination in natural waters using neutron activation analysis

    International Nuclear Information System (INIS)

    Cagnone, M.; Marques, R.O.

    1994-01-01

    Available as short communication only. An analytical method for quantitative determination of Mercury traces in river and sea water is proposed. The neutron activation method and radiochemical separation of Mercury by developing of C L 4 Hg -2 complex, and their chromatographic separation using anionic exchange resin Dowex 1 X 8 of 400 mesh is used. The quantitative determination is done by gamma spectrometric analysis. The selection limits reached with this method showed that this is an amenable procedure in routine mercury determination in the ppb level, specially useful in the environmental contamination analysis. (author). 3 refs, 2 figs, 1 tab

  14. Characterization of the volcanic eruption emissions using neutron activation analysis

    International Nuclear Information System (INIS)

    Pla, Rita R.; Tafuri, Victoria V.

    1997-01-01

    Characterization of the volcanic particulate material has been performed by analyzing aerosols and ashes with instrumental neutron activation analysis. Crustal enrichment factors were calculated using the elemental concentration and clustering techniques, and multivariate analysis were done. The analytical and data treatment methodologies allowed the sample differentiation from their geographical origin viewpoint, based on their chemical composition patterns, which are related to the deposit formation processes, which consist of direct deposition from the volcanic cloud, and removal by wind action after the end of the eruption, and and finally the deposition. (author). 8 refs., 5 figs

  15. Multielemental neutron activation analysis of some egyptian cement samples

    International Nuclear Information System (INIS)

    Eissa, E.A.; Rofail, N.B.; Abdel-Basset, N.; Soroor, A.; Hassan, A.M.

    1996-01-01

    Multielemental analysis of normal, Karnak and sea-water cement samples were performed by neutron activation analysis technique using the (ET-R R-1) reactor for sample irradiation. The Data were collected and analysed by means of the (HPGe) detection system and a Pca computer. A total of 23 elements namely, Na, A1, C 1, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, Sr, Ba, La, Sm, Eu, Yb, Lu, Ta, Au, Th and U were identified and analysed with concentrations ranging from 1 ppm upto 62% a comparison between the elemental concentrations of the three cement types is given. 2 tabs

  16. Neutron activation and statistical analysis of pottery from Thera, Greece

    International Nuclear Information System (INIS)

    Kilikoglou, V.; Grimanis, A.P.; Karayannis, M.I.

    1990-01-01

    Neutron activation analysis, in combination with multivariate analysis of the generated data, was used for the chemical characterization of prehistoric pottery from the Greek islands of Thera, Melos (islands with similar geology) and Crete. The statistical procedure which proved that Theran pottery could be distinguished from Melian is described. This discrimination, attained for the first time, was mainly based on the concentrations of the trace elements Sm, Yb, Lu and Cr. Also, Cretan imports to both Thera and Melos were clearly separable from local products. (author) 22 refs.; 1 fig.; 4 tabs

  17. High count problems in elemental analysis using pulsed neutron inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D; Wielopolski, L; Ellis, K J; Cohn, S H [Brookhaven National Lab., Upton, NY (USA). Medical Dept.

    1983-03-01

    Elemental analysis by neutron inelastic scattering using a miniature intense pulsed neutron source ('Zetatron') was evaluated. The particular problems associated with detector pulse-pile-up during the neutron burst and the limited ability of the analyzer to process on average more than one detector pulse per neutron burst were examined. The severity of these problems is described and a solution using a multiple ADC system is proposed.

  18. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.

    1985-01-01

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  19. Development of a novel neutron detector for imaging and analysis

    International Nuclear Information System (INIS)

    Darambara, D.G.; Beach, A.C.; Spyrou, N.M.

    1993-01-01

    A hardware system employing dynamic Random Access Memory (dRAM) has been designed to make possible the detection of neutrons. One recognised difficulty with dynamic memory devices is the alpha-particle problem. That is alpha-particle 'contamination' present within the dRAM encapsulating material may interact sufficiently as to corrupt stored data. These corruptions, 'known as soft errors', may be induced in dRAMs by the interaction of charged particles with the chip itself as a basis for system function. A preliminary feasibility study has been carried out to use dynamic RAMs as alpha-particle detectors. The initial system tests provide information upon detection efficiency, soft error reading rate, energy dependence of the soft error rate and the soft error reading rate, energy dependence of the soft error rate and the soft error operating bias relationship. These findings highlight the usefulness of such a device in neutron dosimetry, imaging and analysis, by using a neutron converter with a high cross section for the (n, α) capture reaction. (author) 20 refs.; 8 figs

  20. Selenium contents of Japanese foodstuffs by neutron activation analysis

    International Nuclear Information System (INIS)

    Noda, Katsuhiko; Hirai, Shoji; Danbara, Hiroshi.

    1980-01-01

    Selenium (Se) contents of Japanese foodstuffs were measured by neutron activation analyses with the TRIGA-II reactor in Atomic Energy Research Laboratory, Musashi Institute of Technology. Freezedried samples (200 - 500 mg) were irradiated in the pneumatic tube (thermal neutron flux, 1 x 10 12 n.cm -2 . sec -1 ) for 10 sec, and sup(77m)Se produced was counted for 30 sec in a gamma -ray spectrometer system equipped with a Ge(Li) detector. Samples containing less than 0.05 ppm Se and the processed foods of high salt contents were analyzed with radioactivities of 75 Se after irradiation in the central symble (thermal neutron flux, 4 x 10 12 n.cm -2 .sec -1 ) for 5 hours, digestion in the HNO 3 -HClO 4 mixture, and then purification by a precipitation process. Foodstuffs of animal origins contained more Se than those of plant origins. Se contents were as follows in the descending order: fish, meats, cereals, vegetables, and fruit. Daily per capital intaked of Se was in the range of 100 - 200 mu g, as calculated for and as found by analysis of composite diets representing ordinary Japanese meals. (author)

  1. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  2. Detection of hidden explosives by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Li Xinnian; Guo Junpeng; Luo Wenyun; Wang Chuanshan; Fang Xiaoming; Yu Tailiu

    2008-01-01

    The paper describes the method and principle for detection of hidden explosive by fast neutron activation analysis (FNAA). The method of detection of explosives by FNAA has the specific properties of simple determination equipments, high reliability, and low detecting cost, and would be beneficial to the applicability and popularization in the field of protecting and securing nation. The contents of nitrogen and oxygen in four explosives, more then ten common materials and TNT samples covered with soil, were measured by FNAA. 14 MeV fast neutrons were generated from (d, t) reaction with a 400 kV Cockcroft Walton type accelerator. The two-dimension distributions for nitro- gen and oxygen counting rates per unit mass of determined matters were obtained, and the characteristic area of explosives and non-explosives can be defined. By computer aided pattern recognition, the samples were identified with low false alarm or omission rates. The Monte-Carlo simulation indicates that there is no any radiation at 15 m apart from neutron source and is safe for irradiation after 1 h. It is suggested that FNAA may be potential in remote controlling for detection hidden explosive system with multi-probe large array. (authors)

  3. Simultaneous analysis of qualitative parameters of solid fuel using complex neutron gamma method

    International Nuclear Information System (INIS)

    Dombrovskij, V.P.; Ajtsev, N.I.; Ryashchikov, V.I.; Frolov, V.K.

    1983-01-01

    A study was made on complex neutron gamma method for simultaneous analysis of carbon content, ash content and humidity of solid fuel according to gamma radiation of inelastic fast neutron scattering and radiation capture of thermal neutrons. Metrological characteristics of pulse and stationary neutron gamma methods for determination of qualitative solid fuel parameters were analyzed, taking coke breeze as an example. Optimal energy ranges of gamma radiation detection (2-8 MeV) were determined. The advantages of using pulse neutron generator for complex analysis of qualitative parameters of solid fuel in large masses were shown

  4. Neutron activation analysis for uranium and associated elements

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1977-01-01

    The samples obtained by the Savannah River Laboratory as part of the National Uranium Resource Evaluation program are activated in the intense neutron flux from a Savannah River Plant production reactor. A pilot-scale facility was installed at the reactor site to provide analyses of samples through the initial phase of the program and to develop design data for a full-scale facility. Sediments are analyzed by direct activation of 0.5-g samples. However, to analyze ground or surface water samples, mineral elements from 1-liter samples are concentrated on ion exchange resin and then approximately 5-g samples of resin are activated. Uranium concentration is determined by counting neutrons emitted from specific short-lived products of fission induced in 235 U by the primary neutron flux. Repetitive short cycles of irradiation and counting permit detection and determination of <0.1 μg of uranium. Elements associated with uranium are determined by spectral analysis of the gamma ray activities induced by the cyclic and subsequent longer irradiations. The pilot facility consists of four irradiation positions (plus 2 spare positions), a sample loader and unloader, and counting stations with neutron and gamma ray detectors, all interconnected with a pneumatic sample transport system. A computer controls both the transport system and the data acquisition devices. Gamma ray counting data are stored on magnetic tape for further processing by a large central computer. Facility hardware and software are described. Repetitive analyses of standards have shown an accuracy within +-10% for uranium values and within +-25% for associated elements. A quality assurance program has been developed to maintain these levels of reliability

  5. Simulation for sodium-24 production using cyclic neutron activation analysis

    International Nuclear Information System (INIS)

    Ahamed, O. M. H.

    2012-04-01

    The cyclic neutron activation analysis is a method for elemental analysis which is preferred to use short-lived radio-nuclides. In recent years this method became a new application for radioisotope production especially in low power research reactors. In this study instrumental cyclic neutron activation analysis was used for 2 4N a production using 2 3N a (n, γ) 2 4N a reaction. The simplified westcott convention method is used neutron activation analysis in a research reactor. The method takes into account all corrections that can affect that yield created. In this work a model was devolving for calculations through this simplified Westcott convention method by using C++ program and selecting good parameters that can produce the expected activity. The simulation is used for the theoretical yield calculated has been validated by data from the 1 77L u production used for theoretical yield which it gives the approached result had been obtained by FORTRAN 90 from literature (8). The results were achieved for expected activity at full power (1 x 10 1 2n cm -2 s - 1 ) and half power (5 x 10 11 cm -2 s -1 ) for research reactor MNSR. The activity at full power was equal to about twice the activity at half power ( 49±7, 24.9 ± MBq/g), respectively. The irradiation parameters selected were irradiation time 4 min and decay time 12 min. Sample weight was 50 mg at 12 numbers of cycles, when the K-factor was equal to 1.74. This work is considered as first step for production of 2 4N a which can use such parameters experimentally. It is then possible to compare the expected activity with measured activity. (Author)

  6. Fourier convergence analysis applied to neutron diffusion Eigenvalue problem

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Noh, Jae Man; Joo, Hyung Kook

    2004-01-01

    Fourier error analysis has been a standard technique for the stability and convergence analysis of linear and nonlinear iterative methods. Though the methods can be applied to Eigenvalue problems too, all the Fourier convergence analyses have been performed only for fixed source problems and a Fourier convergence analysis for Eigenvalue problem has never been reported. Lee et al proposed new 2-D/1-D coupling methods and they showed that the new ones are unconditionally stable while one of the two existing ones is unstable at a small mesh size and that the new ones are better than the existing ones in terms of the convergence rate. In this paper the convergence of method A in reference 4 for the diffusion Eigenvalue problem was analyzed by the Fourier analysis. The Fourier convergence analysis presented in this paper is the first one applied to a neutronics eigenvalue problem to the best of our knowledge

  7. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    illustrated how the activated water would propagate along that pipe. C) Combustion products. In order to investigate the oxidation in combustion products (deposits), the total amount of oxygen in the deposits collected from combustion chambers of a modern gasoline engine was measured, using cyclic fast neutron activation analysis (FNAA). As a compartment, the organic compounds containing oxygen were identified using {sup 13}C solid-state nuclear magnetic resonance (NMR) spectroscopy. The results of FNAA showed that the amount of oxygen in deposits varies depending on where the deposits have been formed. {sup 13}C NMR has showed that the carbon backbone of the deposits exists as highly oxidized poly aromatics and/or graphitic structure. D) On-line fast neutron activation analysis. On-line neutron activation analysis was used to detect the amount of oxygen in bulk liquids. The method was optimised for on-line detection of oxygen in rapeseed oil. The goal was to develop a non-intrusive method for measurement of the total amount of oxygen in oil during combustion/oxidation.

  8. Some Applications of Fast Neutron Activation Analysis of Oxygen

    International Nuclear Information System (INIS)

    Owrang, Farshid

    2003-01-01

    illustrated how the activated water would propagate along that pipe. C) Combustion products. In order to investigate the oxidation in combustion products (deposits), the total amount of oxygen in the deposits collected from combustion chambers of a modern gasoline engine was measured, using cyclic fast neutron activation analysis (FNAA). As a compartment, the organic compounds containing oxygen were identified using 13 C solid-state nuclear magnetic resonance (NMR) spectroscopy. The results of FNAA showed that the amount of oxygen in deposits varies depending on where the deposits have been formed. 13 C NMR has showed that the carbon backbone of the deposits exists as highly oxidized poly aromatics and/or graphitic structure. D) On-line fast neutron activation analysis. On-line neutron activation analysis was used to detect the amount of oxygen in bulk liquids. The method was optimised for on-line detection of oxygen in rapeseed oil. The goal was to develop a non-intrusive method for measurement of the total amount of oxygen in oil during combustion/oxidation

  9. Large Sample Neutron Activation Analysis of Heterogeneous Samples

    International Nuclear Information System (INIS)

    Stamatelatos, I.E.; Vasilopoulou, T.; Tzika, F.

    2018-01-01

    A Large Sample Neutron Activation Analysis (LSNAA) technique was developed for non-destructive analysis of heterogeneous bulk samples. The technique incorporated collimated scanning and combining experimental measurements and Monte Carlo simulations for the identification of inhomogeneities in large volume samples and the correction of their effect on the interpretation of gamma-spectrometry data. Corrections were applied for the effect of neutron self-shielding, gamma-ray attenuation, geometrical factor and heterogeneous activity distribution within the sample. A benchmark experiment was performed to investigate the effect of heterogeneity on the accuracy of LSNAA. Moreover, a ceramic vase was analyzed as a whole demonstrating the feasibility of the technique. The LSNAA results were compared against results obtained by INAA and a satisfactory agreement between the two methods was observed. This study showed that LSNAA is a technique capable to perform accurate non-destructive, multi-elemental compositional analysis of heterogeneous objects. It also revealed the great potential of the technique for the analysis of precious objects and artefacts that need to be preserved intact and cannot be damaged for sampling purposes. (author)

  10. Analysis of the neutron generation from a D-Li neutron source

    International Nuclear Information System (INIS)

    Gomes, I.

    1994-02-01

    The study of the neutron generation from the D-Li reaction is an important issue to define the optimum combination of the intervening parameters during the design phase of a D-Li neutron source irradiation facility. The major players in defining the neutron yield from the D-Li reaction are the deuteron incident energy and the beam current, provided that the lithium target is thick enough to stop all incident deuterons. The incident deuteron energy also plays a role on the angular distribution of the generated neutrons, on the energy distribution of the generated neutrons, and on the maximum possible energy of the neutrons. The D-Li reaction produces neutrons with energies ranging from eV's to several MeV's. The angular distribution of these neutrons is dependent on the energy of both, incident deuterons and generated neutrons. The deuterons lose energy interacting with the lithium target material in such a way that the energy of the deuterons inside the lithium target varies from the incident deuteron energy to essentially zero. The first part of this study focuses in analyzing the neutron generation rate from the D-Li reaction as a function of the intervening parameters, in defining the source term, in terms of the energy and angular distributions of the generated neutrons, and finally in providing some insights of the impact of varying input parameters on the generation rate and correlated distributions. In the second part an analytical description of the Monte Carlo sampling procedure of the neutron from the D-Li reaction is provided with the aim at further Monte Carlo transport of the D-Li neutrons

  11. Time-of-flight and vector polarization analysis for diffuse neutron scattering

    International Nuclear Information System (INIS)

    Schweika, W.

    2003-01-01

    The potential of pulsed neutron sources for diffuse scattering including time-of-flight (TOF) and polarization analysis is discussed in comparison to the capabilities of the present instrument diffuse neutron scattering at the research center Juelich. We present first results of a new method for full polarization analysis using precessing neutron polarization. A proposal is made for a new type of instrument at pulsed sources, which allows for vector polarization analysis in TOF instruments with multi-detectors

  12. Elemental characterization of Brazilian beans using neutron activation analysis

    International Nuclear Information System (INIS)

    Lilian Seiko Kato; Nadai Fernandes, E.A. De; Marcio Arruda Bacchi; Gabriel Adrian Sarries; Andres Enrique Lai Reyes

    2015-01-01

    Beans are important for many developing countries as a source of protein and mineral nutrients. Here, ten commercial types of Brazilian beans, from the species Phaseolus vulgaris (common beans) and Vigna unguiculata (cowpeas), were analyzed by neutron activation analysis for the determination of Br, Ca, Co, Cs, Fe, K, Mo, Na, Rb, Sc and Zn. There were statistical differences (p/0.05) amongst the commercial types, except for Br, Rb and Sc. In general, non-essential elements showed high variability, indicating that the origin of beans had a strong influence on the mass fraction of such elements. (author)

  13. Biological and environmental reference materials in neutron activation analysis work

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The great usefulness of reference materials, especially ones of certified elemental composition, is discussed with particular attention devoted to their use in instrumental neutron activation analysis (INAA) work. Their use, including both certified and uncertified values, in calculations made by the INAA Advance Prediction Computer Program (APCP) is discussed. The main features of the APCP are described, and mention is made of the large number of reference materials run on the APCP (including the new personal computer version of the program), with NBS Oyster Tissue SRM-1566 used as the principal examle. (orig.)

  14. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  15. Multielement analysis of iliac crest bone by neutron activation

    International Nuclear Information System (INIS)

    Aras, N.K.; Yilmaz, G.; Korkusuz, F.; Olmez, I.; Sepici, B.; Eksioglu, F.; Bode, P.

    2000-01-01

    Bone samples from iliac crest were obtained from apparently healthy female (n = 4) and male (n = 8) subjects with ages between 15-50. Cortical and trabecular parts were separated and soft tissues like fat, muscle and blood were removed. Calcium, Mg, Na, Cl, Fe, Zn, Br, Sr, and Cs were determined by instrumental neutron activation analysis and other techniques, and their relations were discussed. Fairly good agreement was obtained with literature data. These values may serve as reference values for subjects from a Turkish population. (author)

  16. The application of radiotracer technique for preconcentration neutron activation analysis

    International Nuclear Information System (INIS)

    Wang Xiaolin; Chen Yinliang; Sun Ying; Fu Yibei

    1995-01-01

    The application of radiotracer technique for preconcentration neutron activation analysis (Pre-NAA) are studied and the method for determination of chemical yield of Pre-NAA is developed. This method has been applied to determination of gold, iridium and rhenium in steel and rock samples and the contents of noble metal are in the range of 1-20 ng·g -1 (sample). In addition, the accuracy difference caused by determination of chemical yield between RNAA and Pre-NAA are also discussed

  17. Certification of biological reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lanjewar, Mamata R.; Lanjewar, R.B.

    2014-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 21 minor and trace elements in two standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques ,Czechoslovakia. Also some biological standards such as Bowen's kale, cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of Reference Materials of Biological Matrices. (author)

  18. Determination of mercury in dentists through Neutron activation analysis

    International Nuclear Information System (INIS)

    Padilla M, M.A.; Granados C, F.

    1999-01-01

    It was determined the mercury levels in urine through Neutron activation analysis to 25 dentists who have been exposed to mercury by several time periods, because of the routine manipulations of amalgams. The determined concentrations of mercury were less to 10 μ g Hg/l of urine. The results were founded inside the safety limits reported in the literature. The mercury levels in the dentists are associated with a wide variety of factors that contribute to their exposure as: number of years of dental practice, number of amalgams manipulated between others. (Author)

  19. Neutron activation analysis of high-purity zinc

    International Nuclear Information System (INIS)

    Khodzhamberdyeva, A.A.; Usmanova, M.M.; Gil'bert, Eh.N.; Ivanov, I.M.; Yankovskaya, T.A.; Kholyavko, E.P.

    1987-01-01

    The methods of neutron activation analysis of high-purity zinc with preliminary separation of the zinc base using extraction by trialkylbenzylammonium rhodanide in carbon tetrachloride from 0.5-2.0 M nitric acid solutions is developed. Only rhenium is quantitatively extracted together with zinc. Gold, iridium and molybdenum are extracted to 50-60%, and selenium - to 20%. The Na, K, La, Cr, Sc, Co, Cs, Rb, Fe, Zr, Sn, Te, As, Cd, Hf, W, Sb, Sm impurities remain in the aqueous phase. The methods permits to determine the impurities above with detection limits from 1x10 -6 to 4x10 -11 g

  20. Neutron activation analysis of trace elements in rain water

    International Nuclear Information System (INIS)

    Luten, J.B.

    1977-01-01

    In this thesis the principles and practical aspects of activation analysis which are of direct importance in the analysis of rain water, are presented together with recent literature data on other techniques. Problems due to the storage of rain water samples are discussed. A multi-element method for the determination of trace elements in rain water by instrumental neutron activation analysis is described. Gamma ray spectrometry using Ge(Li) detectors offers the possibility to determine Na, Al, Cl, V, Mn, Co, Cu, Br and I in rain water samples of 2.5 ml after a 4-min irradiation in a thermal neutron flux of 5 x 10 13 n cm -2 s -1 . In residues of rain water samples of 100 ml, irradiated during 2 days in a thermal neutron flux of >5 x 10 13 n cm -2 s -1 Cr, Fe, Co, Zn and Sb can be determined after a cooling period of approximately 21 days. The detection limits are lower than those reported in previous investigations except for Cu. The precision is about 10% or better, except for Co, Cu and I. A routine method for the determination of bromine and iodine in rain water by n.a.a. is presented. The elements are isolated by isotope exchange between the irradiated sample and a solution of Br 2 or I 2 in CCl 4 . The method is not sensitive to the chemical species in which the halogen is present. Irradiation of solutions of iodine compounds in a high thermal neutron flux gives rise to the formation of iodate. Results of a further investigation of this phenomenon are given, as well as the determination of iodate in rain water by n.a.a. Iodate is separated by anion exchange. The combination of n.a.a. and solvent extraction is used for the determination of five trace elements (V, Co, Cu, Zn and In) in 10-ml rain water samples. For V, Co and Cu this method is more sensitive and reproducible than instrumental n.a.a. The results of the analysis of eleven sequential 30-ml samples from the beginning of the shower are presented as an illustration of possible applications of the

  1. Neutron-activation analysis of routine mineral-processing samples

    International Nuclear Information System (INIS)

    Watterson, J.; Eddy, B.; Pearton, D.

    1974-01-01

    Instrumental neutron-activation analysis was applied to a suite of typical mineral-processing samples to establish which elements can be rapidly determined in them by this technique. A total of 35 elements can be determined with precisions (from the counting statistics) ranging from better than 1 per cent to approximately 20 per cent. The elements that can be determined have been tabulated together with the experimental conditions, the precision from the counting statistics, and the estimated number of analyses possible per day. With an automated system, this number can be as high as 150 in the most favourable cases [af

  2. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  3. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  4. Neutron activation analysis for measuring the unsaturation in edible oils

    International Nuclear Information System (INIS)

    Iskander, F.Y.

    1987-01-01

    Oil smears (2-10 mg) on a filter paper were directly brominated by bromine vapor, and the quantity of Br reacted with the lipid was determined by instrumental neutron activation analysis. The iodine value for commercially available almond, sunflower, peanut, soy and sesame oil were determined by the proposed method. The relative standard deviation associated with the measurements was less than 3%. No significant difference was observed between the iodine values determined by the proposed method and by one of the officially approved methods. The proposed method possesses the advantages of shortening reaction time and applicability to small sample size. (author)

  5. Creep analysis of fuel plates for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein

  6. Can glycogen be measured by in vivo neutron activation analysis?

    International Nuclear Information System (INIS)

    Sutcliffe, J.F.; Smith, A.H.; King, R.F.G.H.; Smith, M.A.

    1992-01-01

    The object of this note is to examine the feasibility of measuring liver glycogen using in vivo neutron activation analysis. The authors present equations which allow the mass of glycogen to be expressed in terms of the masses of oxygen, hydrogen, carbon and nitrogen. Using the most precise, published measurements of these elements, the standard deviation in the estimate of liver glycogen was 34 g. The magnitude of this error precluded observing changes in liver glycogen which are normally in the range 16 g to 72 g. However, this technique might be useful in detecting transient high concentrations of liver glycogen.(UK)

  7. Reliability analysis of neutron transport simulation using Monte Carlo method

    International Nuclear Information System (INIS)

    Souza, Bismarck A. de; Borges, Jose C.

    1995-01-01

    This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs

  8. Determination of thorium concentration in seawater by neutron activation analysis

    International Nuclear Information System (INIS)

    Huh, C.A.; Bacon, M.P.

    1985-01-01

    A sensitive neutron activation analysis method has been successfully developed to determine 232 Th concentration in seawater. The method involves both preirradiation and postirradiation radiochemical separations. The isotopes were separated from the samples and purified during the preirradiation chemistry. 233 Pa was extracted and counted after the irradiation. Yields were monitored with 230 Th and 231 Pa tracers. The separation and purification schemes include ion exchange chromatography and solvent extraction. By this method the authors have measured 232 Th concentrations in some seawater samples that are 1 order of magnitude lower than most previously reported values. 21 references, 3 figures, 2 tables

  9. Neutron activation analysis of manganese in teeth of Japanese adults

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Emiko [Nihon Univ., Tokyo. School of Dentistry

    1982-01-01

    In an investigation of the manganese (Mn) content of teeth in Japanese adults, neutron activation analysis was carried out of caries-free teeth, carious teeth and unerupted teeth gathered from three different districts of Japan. Regular logarithmic distribution of Mn in the dentin suggested that Mn had not been taken into account as an essential element of the teeth. Results of the study revealed no difference in Mn content among these districts, and between the caries-free teeth and the carious teeth, both in enamel and dentin. The Mn content of the enamel was about two times higher than that of the dentin.

  10. Instrumental neutron activation analysis of wheat bunt spores

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y G; Schmitt, R A [Oregon State Univ., Corvallis (USA). Dept. of Chemistry; Oregon State Univ., Corvallis (USA). Radiation Center); Trione, E J [Oregon State Univ., Corvallis (USA). Dept. of Botany; Laul, J C [Battelle Pacific Northwest Labs., Richland, WA (USA)

    1982-01-01

    The concentrations of seventeen elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Br, Rb, La, Sm) in two species of fungus which cause wheat bunt disease, Tilletia caries (DC.) Tul. and Tilletia controversa Kuehn, were determined by instrumental neutron activation analysis. A standard sequential INAA procedure was used. Differences in the K and Cl concentrations between these two species of spores are large and therefore can be used as a criterion of distinguishing between the two species of fungus.

  11. Limits of detection in instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Guinn, V.P.

    1990-01-01

    Lower limits of detection (LLODs), frequently referred to simply as limits of detection and abbreviated as LODs, often appear in the literature of analytical chemistry - for numerous different methods of elemental and/or molecular analysis. In this chapter, one particular method of quantitative elemental analysis, that of instrumental neutron activation analysis (INAA), is the subject discussed, with reference to LODs. Particularly in the literature of neutron activation analysis (NAA), many tables of 'interference-free' NAA LODs are available. Not all of these are of much use, because (1) for many the definition used for LOD is not clear, or reasonable, (2) for many, the analysis conditions used are not clearly specified, and (3) for many, the analysis conditions used are specified, but not very practicable for most laboratories. For NAA work, such tables of interference-free LODs are, in any case, only applicable to samples in which, at the time of counting, only one radionuclide is present to any significant extent in the activated sample. It is important to note that tables of INAA LODs, per se, do not exist - since the LOD for a given element, under stated analysis conditions, can vary by orders of magnitude, depending on the elemental composition of the matrix in which it is present. For any given element, its INAA LOD will always be as large as, and usually much larger than, its tabulated 'interference-free' NAA LOD - how much larger depending upon the elemental composition of the matrix in which it is present. As discussed in this chapter, however, an INAA computer program exists that can calculate realistic INAA LODs for any elements of interest, in any kind of specified sample matrix, under any given set of analysis conditions

  12. Neutron activation analysis of certified samples by the absolute method

    Science.gov (United States)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  13. Multielement neutron activation analysis of underground water samples

    International Nuclear Information System (INIS)

    Kusaka, Yuzuru; Tsuji, Haruo; Fujimoto, Yuzo; Ishida, Keiko; Mamuro, Tetsuo.

    1980-01-01

    An instrumental neutron activation analysis by gamma-ray spectrometry with high resolution and large volume Ge (Li) detectors followed by data processing with an electronic computer was applied to the multielemental analysis to elucidate the chemical qualities of the underground water which has been widely used in the sake brewing industries in Mikage, Uozaki and Nishinomiya districts, called as miyamizu. The evaporated residues of the water samples were subjected to the neutron irradiations in reactor for 1 min at a thermal flux of 1.5 x 10 12 n.cm -2 .sec -1 and for 30 hrs at a thermal flux of 9.3 x 10 11 n.cm -2 .sec -1 or for 5 hrs at a thermal flux of 3.9 x 10 12 n.cm -2 .sec -1 . Thus, 11 elements in the former short irradiation and 38 elements in the latter two kinds of long irradiation can be analyzed. Conventional chemical analysis including atomic absorption method and others are also applied on the same samples, and putting the all results together, some considerations concerning the geochemical meaning of the analytical values are made. (author)

  14. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Science.gov (United States)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  15. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-01-01

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176 Hf and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6 Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176 Hf and 178 Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little

  16. Capture analysis of element content of a substance with other neutron methods

    International Nuclear Information System (INIS)

    Kurbanov, B.I.

    2004-01-01

    Full text: Neutron analysis method of determining element composition have found wide range of applications in industry thanks to different types of interaction of neutron with substances /1/. With the aim of widening the range of problems to be solved, on the basis of the device /2/ for determining the element content of substance, possibilities of combining the method based on the use of neutron capture gamma-ray spectrometry with other neutron methods, in particular neutron activation analysis and neutron absorption analysis were studied. In this radionuclide source ( 252 Cf) with the yield of 1,5 x 10 7 neutron/sec is used. By means of using neutron capture gamma radiation spectrometry the possibilities of determining some elements (H, B, N, S etc. ), which are not determined by very widely used method, activation analysis. These elements can be determined by both the semiconductor and scintillation detectors with parameters fitting the manufacturing requirements. And for a number of elements ( B, Cl, Cd, Sm, Gd) very high limits of determination ( up to 10- 5 %) are possible using semiconductor Ge (Li) -detectors with high resolution. Possibility of determination of some 'well' activated elements ( K, Al, Fe, Mn, Ti, Sc etc.) in samples of ore and products of their processing using the neutron-activation analysis. For 1 hour of irradiation on the experimental device quite accurate analytical peak, of these elements are obtained, allowing to determine them qualitatively. However, with decreasing neutron yield of radionuclide source it becomes more difficult to achieve the necessary parameters both in neutron capture and activation analysis. Experimental works on determination of some elements with large cross-sections of capture ( B, Cd, Sm ) by absorption of neutrons in the investigated substance, i.e. using the neutron absorption analysis method with absence of other large capture cross section elements in the samples being studied

  17. A multilevel shape fit analysis of neutron transmission data

    International Nuclear Information System (INIS)

    Naguib, K.; Sallam, O.H.; Adib, M.

    1989-01-01

    A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Breit-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151 Eu, 153 Eu and natural Eu in the energy range 0.025-1 eV acquired a good result for the used technique of analysis. (author)

  18. Neutron activation analysis of high pure uranium using preconcentration

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Rakhimov, A.V.; Salimov, M.I.; Zinov'ev, V.G.

    2006-01-01

    Full text: Uranium and its compounds are used as nuclear fuel, and requirements for purity of initial uranium are very high. Therefore highly sensitive and multielemental analysis of uranium is required. One of such methods is neutron activation analysis (NAA). During irradiation of uranium by nuclear reactor neutrons the induced radioactivity of a sample is formed by uranium radionuclide 239 U (T 1/2 = 23,4 min.) and its daughter radionuclide 239 Np (T 1/2 = 2,39 d). Short-lived 239 U almost completely decays in 24 hours after irradiation and the radioactivity of the sample is mainly due to 239 Np and is more than 10 9 Bq for 0.1 g of uranium sample (F = 1*10 14 cm -2 s -1 , t irr . = 5 h). That is why nondestructive determination of the impurities is impossible and they should be separated from 239 Np. When irradiated uranium yields fission products - radionuclides of some elements with mass numbers 91-104 and 131-144. The main problem in NAA of uranium is to take into account correctly the influence of fission products on the analysis results. We have developed a radiochemical separation procedure for RNAA of uranium [1]. Comparing the results of analysis carried out by radiochemical NAA and instrumental NAA with preconcentration of trace elements can be used for evaluating the interference of fission products on uranium analysis results. Preconcentration of trace elements have been carried out by extraction chromatography in 'TBP - 6M HNO 3 ' system [1]. Experiments have shown that if 0.1 g uranium sample is taken for analysis (F = 1*10 14 cm -2 s -1 , t irr . =5 h) the apparent concentration of Y, Zr, Mo, Cs, La, Ce, Pr, Nd exceeds the true concentration by 2500-3000 times and so determination of these elements is not possible by radiochemical NAA. (author)

  19. Neutron activation analysis of trace elements in foodstuffs

    International Nuclear Information System (INIS)

    Schelenz, R.; Bayat, I.; Fischer, E.

    1976-05-01

    For the determination of trace elements in foodstuffs with the aid of neutron activation analysis the separation of volatile radionuclides after digestion of the sample is of special interest for radiochemical processing. A distillation procedure was developed to give reproducable results, however optimal conditions were not found for all volatile radionuclides studied. The required selective separation of Br-82 from the distillate was best achieved by the application of an ion-exchange column-chromatography technique. The computer programs for the evaluation of complex gamma spectra have been developed further. The automatic peak search and peak area determination is based on a computer program using the correlation technique and carried out with a mini-computer coupled with a multi-channel gamma spectrometer. The results, which are presented in 3 earlier reports relating to this research program, reveal the advantages and disadvantages of the individual steps of the radiochemical separation scheme. Before neutron activation analysis can be introduced on a routine basis, some aspects of the radiochemical process remain to be tested; these studies will be published in a fourth and final report. (orig.) [de

  20. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal, E-mail: ana_allves2008@hotmail.co [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10{sup 11}ncm{sup -2}s{sup -1}. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000mug.g{sup -1}. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  1. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Chung, Y. S.; Moon, J. H.; Sun, G. M.; Kim, S. H.; Baek, S. Y.; Lim, J. M.; Kim, H. R.

    2007-01-01

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future

  2. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal

    2009-01-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10 11 ncm -2 s -1 . The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g -1 . Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  3. The dependence of radiation damage analysis on neutron dosimetry

    International Nuclear Information System (INIS)

    Goland, A.N.; Parkin, D.M.

    1977-01-01

    The characteristics of defect production in neutron spectra can be determined by utilizing neutron cross section data (e.g. ENDF/B), detailed neutron spectral data and radiation damage models. The combination of neutron cross section and spectral data is a fundamental starting point in applying damage models. Calculations using these data and damage models show that there are significant differences in the way defects are produced in various neutron spectra. Nonelastic events dominate the recoil energy distribution in high-energy neutron sources such as those based upon fusion and deuteron-breakup reactions. Therefore, high-energy neutron cross sections must be measured or calculated to supplement existing data files. Radiation damage models can then be used to further characterize the diverse neutron spectra

  4. Nitrogen determination in wheat by neutron activation analysis using fast neutron flux from a thermal nuclear reactor

    International Nuclear Information System (INIS)

    Ramirez G, T.

    1976-01-01

    This is a study of the technique for the determination of nitrogen and other elements in wheat flour through activation analysis with fast neutrons from a thermal nuclear reactor. The study begins with an introduction about the basis of the analytical methods, the equipment used in activation analysis and a brief description of the neutrons source. In the study are included the experiments carried out in order to determine the flux form in the site of irradiation, the N-13 half life and the interference due to the sample composition. (author)

  5. Implementation of neutron activation analysis in the neutron multiplier CS-ISCTN (first part)

    International Nuclear Information System (INIS)

    Contreras, R.; Ixquiac, M.; Hernandez, O.; Herrera, E.F.; Diaz, O.; Lopez, R.; Alvarez, I.; Manso, M.V.; Padron, G.; D Alessandro, K.

    1997-01-01

    The detection limit of 32 elements are determined after experimental evaluation of the neutron flux components in the irradiation position of the neutron multiplier CS-ISCTN. The control of the thermal flux was carry up, comparing the experimental results obtained through three convention used determination of the reaction rate, with the theoretical obtained before

  6. The progress of neutron induced prompt gamma analysis technique in 1988-2002

    International Nuclear Information System (INIS)

    Liu Yuren; Jing Shiwei

    2003-01-01

    The new development of the neutron induced prompt gamma-ray analysis (NIPGA) technology in 1988-2002 are described. The pulse fast-thermal neutron activation analysis method, which utilizes the inelastic reaction and capture reaction jointly is employed to measure the elemental content in the material more efficiently. The lifetime of the neutron generator is more than 10000 h and the capability of HPGe, TeZeCd and MCA (multi-channel analyser) reaches the high level. At the same time, Monte Carlo Library least-square method is used to solve the nonlinearity problem in the PGNAA (Prompt Gamma Neutron Activation Analysis)

  7. Uranium analysis by neutron induced fissionography method using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Akyuez, T.; Tretyakova, S. P.; Guezel, T.; Akyuz, S.

    1999-01-01

    In this study total twenty samples (eight reference materials and twelve sediment samples) were analysed for their uranium content which is in the range of 1-17 μg/g, by neutron induced fissionography (NIF) method using solid state nuclear track detectors (SSNTDs) in comparison with the results of neutron activation analysis (NAA), delayed neutron counting (DNC) technique or fluorometric method. It is found that NIF method using SSNTDs is very sensitive for analysis of uranium

  8. Uranium analysis by neutron induced fissionography method using solid state nuclear track detectors

    CERN Document Server

    Akyuez, T; Guezel, T; Akyuz, S

    1999-01-01

    In this study total twenty samples (eight reference materials and twelve sediment samples) were analysed for their uranium content which is in the range of 1-17 mu g/g, by neutron induced fissionography (NIF) method using solid state nuclear track detectors (SSNTDs) in comparison with the results of neutron activation analysis (NAA), delayed neutron counting (DNC) technique or fluorometric method. It is found that NIF method using SSNTDs is very sensitive for analysis of uranium.

  9. New experimental research stand SVICKA neutron field analysis using neutron activation detector technique

    Science.gov (United States)

    Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert

    2018-04-01

    Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.

  10. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    International Nuclear Information System (INIS)

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-01-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  11. Geochemistry of single diamond crystals by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Damarupurshad, A.

    1995-02-01

    Neutron activation analysis is probably the most powerful technique, available to date, for the analysis of the trace elements in diamond. In this study the technique of neutron activation analysis has been modified and optimized for the analysis of single, small (0.01-0.5 carat), inclusion-bearing and inclusion-free diamonds. Instrumental neutron activation analysis was used to analyze for up to 40 different elements at the ppb and ppt levels in diamonds from Brazil, South Africa, Colorado and China. The data obtained was used to detect and understand the differences between diamonds from the eclogitic and peridotitic para geneses and between diamonds from the different localities. In this regard, two inter element ratios, i.e. Cr/Sc and Au/Ir ratios were found to be useful. It seems that diamonds from a particular locality or mine have a unique range of Cr/Sc ratios. Furthermore, the identity of the dominant silicate inclusion(s) can be deduced from the Cr/Sc ratio of the diamond, since each type of silicate inclusion has a different range of Cr/Sc ratios. Not only is the Cr/Sc ratio distinctive for silicate inclusions in diamonds, it is also distinctive for minerals co genetic with diamond, such as orange garnet, red garnet, chrome diopside and ortho pyroxene (macrocrysts) which were separated from kimberlites. Sulphide inclusions may also contain detectable quantities of Au and Ir and the ratios of these two elements can also be used to differentiate between diamonds of the two para geneses. Carbon isotope ratios of these eclogitic and peridotitic diamonds were also measured. The comparison of this with the Cr/Sc ratios revealed that the carbon isotope ratios of both para geneses overlap in a narrow range and do not show the clear separations seen with Cr/Sc and Au/Ir ratios. It can be suggested, therefore, on the basis of the suite of 61 diamonds analyzed in this study, that the Cr/Sc and Au/Ir ratios are much more useful tools to distinguish between diamonds

  12. Storage and pre-neutron-activation-analysis treatment for trace-element analysis in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1985-01-01

    The problems regarding storage and pre-neutron-activation-analysis treatment for the elements aluminum, calcium, vanadium, selenium, copper, iodine, zinc, manganese, and magnesium in a urine matrix are reviewed. The type of collection and storage procedure and pre-neutron activation analysis treatment of urine depend on the specific trace element; that is, its inherent physical and chemical properties. Specifically polyethylene in teflon containers are the most suitable for general determinations. Whether any preservative is added would depend upon the stability of the trace element and its tendency for surface adsorption. Preferably, preservatives should contain no radioactivatable elements for maximum efficacy. Freeze drying or packing urine shipments under dry ice needs to be explored on an individual basis. Each pre- or post-neutron activation analysis treatment is specific and optimized for the trace element analyzed

  13. Neutron activation analysis of medieval and early modern times ceramics

    International Nuclear Information System (INIS)

    Kies, A.; Reitsamer, G.; Bauer, W.

    1985-01-01

    Provenience studies of medieval and early modern times ceramics from the Eastern Danube area of Austria have been performed by instrumental neutron activation analysis. All sherds examined were selected from pottery which was specially charactrized by pottery marks ('Cross Potent', 'Crossmark within a circle', 'Latin Cross', 'Cross Paty'). With respect to the chemical composition five different pottery groups could be evaluated by cluster analysis. Archaeological results: The'Cross Patent' was used by different potter's workshops whereas the 'Crossmark within a circle' was more likely restricted to one manufacture entre. The distribution of the 'Latin Cross' and The 'Cross Paty' over all five clusters indicated the usage of clay from different deposits. The assignment of the 'Cross Paty' exclusively to the area of Passau could be disproved. (Author)

  14. Neutron activation analysis for bulk and trace elements in urine

    International Nuclear Information System (INIS)

    Cornelis, R.; Speecke, A.; Hoste, J.

    1975-01-01

    Problems in sampling urine for trace element analysis by neutron activation are systematically examined. Collection, storage, sample preparation and contamination hazards during irradiation are studied in detail. Three different sizes of urine samples are prepared for analysis, depending on the concentration and nuclear properties of the elements, and suitable multielement doped urine standards are used. As, Br, Ca, Cl, Co, Cr, Cs, Cu, Hg, I, K, Mg, Mn, Na, Rb, Se and Zn are determined. The extreme care given to sample collection, use of ''ultra-clean'' vials, and work in a dust-free room allows consistent values to be obtained over long periods of time. A literature review of the amounts of forty elements present in urine per day is also given

  15. Study of trace impurities in heroin by neutron activation analysis

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Yang, J.H.; Ouyang, H.; Li, Z.J.; Chai, Z.F.; Zhu, J.; Xi'an JiaoTong Univ., Shaanxi; Zhao, J.Z.; Yu, Z.S.; Wang, J.

    2004-01-01

    Sixty-two heroin samples were analyzed for their contents of 15 trace elements (Au, Ba, Br, Ca, Ce, Co, Cr, Fe, La, Na, Sb, Sc, Sm, Th, and Zn) by neutron activation analysis (NAA). Large variations of elemental concentrations between samples were found to possess statistical significance. Of all the elements calcium was the most abundant element, followed by zinc and sodium. The concentrations of Au, Ce, Co, La, Sb, Sc, Sm, and Th in all the samples were below 1 μg x g -1 . Classification of these heroin samples was achieved by the application of hierarchical cluster analysis. The results show that NAA can provide useful information on the origin of the illicit drugs. (author)

  16. Microcomputer-based pneumatic controller for neutron activation analysis

    International Nuclear Information System (INIS)

    Byrd, J.S.; Sand, R.J.

    1976-10-01

    A microcomputer-based pneumatic controller for neutron activation analysis was designed and built at the Savannah River Laboratory for analysis of large numbers of geologic samples for locating potential supplies of uranium ore for the National Uranium Resource Evaluation program. In this system, commercially available microcomputer logic modules are used to transport sample capsules through a network of pressurized air lines. The logic modules are interfaced to pneumatic valves, solenoids, and photo-optical detectors. The system operates from programs stored in firmware (permanent software). It also commands a minicomputer and a hard-wired pulse height analyzer for data collection and bookkeeping tasks. The advantage of the system is that major system changes can be implemented in the firmware with no hardware changes. This report describes the hardware, firmware, and software for the electronics system

  17. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  18. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables

  19. Lower detectable limit of sulfur by fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shani, G; Cohen, D [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering

    1976-07-01

    For the purpose of air pollution research, the possibility of fast neutron activation analysis of sulfur was investigated. The only reaction that can be used for this purpose is S/sup 34/(n, p)P/sup 34/. A rabbit system was installed, synchronized with a 150 kV D-T neutron generator and an electronic analysing system. The whole system was operated so that the sample was irradiated for 10 sec and the 2.13 MeV ..gamma..-ray was counted for 10 sec. 5 samples were prepared containing sulfur from 0.5 to 0.1 g. Each measurement lasted 30 min and the activity was plotted as a function of sulfur weight. The relative error is increased very much when the amount of sulfur is below 0.1 g. This is what sets the lower detectable limit. Collection of more than 0.1 g of sulfur even during a long collection time means a very high SO/sub 2/ concentration in the air.

  20. Profile analysis of neutron powder diffraction data at ISIS

    International Nuclear Information System (INIS)

    David, W.I.F.; Ibberson, R.M.; Matthewman, J.C.

    1992-05-01

    The aim of this manual is to document the current suite of time-of-flight neutron powder diffraction profile refinement programs available to ISIS users. Aspects of data collation and normalisation specific to the individual diffraction instruments are dealt with elsewhere. It will be assumed the user has produced a suitable data file (.DAT file) containing the profile data consisting of point by point values of the corrected diffraction profile across the pattern. The analysis of neutron powder diffraction data at ISIS by profile refinement utilises a suite of ''in-house'' written and supported programs based on the Cambridge Crystallography Subroutine Library (CCSL). A quick scan through the CCSL manual will give the user a general feel for the procedure to adopt in the use of the library and hence of the profile codes. The instructions documented in this handbook are complementary to those in the more specialist CCSL manual, and consequently go into no great detail regarding technical details of any of the CCSL routines. The programs may be run from each individual user account, for example [USER01], once the appropriate login procedure has been set-up by the instrument scientists. The programs are mostly activated by one line commands and only a basic knowledge of a VAX editor should be required; details can be found in the ''VAX primer'' available from Computer Support. (Author)

  1. Reactor neutron activation analysis on reference materials from intercomparison runs

    International Nuclear Information System (INIS)

    Pantelica, A.; Salagean, M.

    2003-01-01

    A review of using the Instrumental Neutron Activation Analysis (INAA) technique in our laboratory to determine major, minor and trace elements in mineral and biological samples from international intercomparison runs organised by IAEA Vienna, IAEA-MEL Monaco, 'pb-anal' Kosice, INCT Warszawa and IPNT Krakow is presented. Neutron irradiation was carried out at WWR-S reactor in Bucharest (short and long irradiation) during 1982-1997 and at TRIGA reactor in Pitesti (long irradiation) during the later period. The following type of materials were analysed: soils, marine sediments, uranium phosphate ore, water sludge, copper flue dust, whey powder, yeast, cereal flour (rye and wheat), marine animal tissue (mussel, garfish and tuna fish), as well as vegetal tissue (seaweed, cabbage, spinach, alfalfa, algae, tea leaves and herbs). The following elements could be, in general, determined: Ag, As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Lu, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, W, Yb and Zn of long-lived radionuclides, as well as Al, Ca, Cl, Cu, Mg, Mn, and Ti of short-lived radionuclides. Data obtained in our laboratory for various matrix samples presented and compared with the intercomparison certified values. The intercomparison exercises offer to the participating laboratories the opportunity to test the accuracy of their analytical methods as well as to acquire valuable Reference Materials/ standards for future analytical applications. (authors)

  2. Fast neutron activation analysis using short-lived radionuclides

    International Nuclear Information System (INIS)

    Salma, I.; Zemplen-Papp, E.

    1993-01-01

    Fast neutron activation analysis experiments were performed to investigate the analytical possibilities and prospective utilization of short-lived activation products. A rapid pneumatic transfer system for use with neutron generators has been installed and applied for detecting radionuclides with a half-life from ∼300 ms to 20 s. The transport time for samples of total mass of 1-4 g is between 130 and 160 ms for pressurized air of 0.1-0.4 MPa. The reproducibility of transport times is less than 2%. The employed method of correcting time-dependent counting losses is based on the virtual pulse generator principle. The measuring equipment consists of CAMAC modules and a special gating circuit. Typical time distributions of counting losses are presented. The same 14 elements were studied by the conventional activation method (single irradiation and single counting) by both a typical pneumatic transport system (run time 3 s) and the fast pneumatic transport facility. Furthermore, the influence of the cyclic activation technique on the elemental sensitivities was investigated. (author) 15 refs.; 5 figs.; 3 tabs

  3. First research coordination meeting on reference database for neutron activation analysis. Summary report

    International Nuclear Information System (INIS)

    Firestone, R.B.; Trkov, A.

    2005-10-01

    Potential problems associated with nuclear data for neutron activation analysis were identified, the scope of the work to be undertaken was defined together with its priorities, and tasks were assigned to participants. Data testing and measurements refer to gamma spectrum peak evaluations, detector efficiency calibration, neutron spectrum characteristics and reference materials analysis. (author)

  4. Polarisation analysis of elastic neutron scattering using a filter spectrometer on a pulsed source

    International Nuclear Information System (INIS)

    Mayers, J.; Williams, W.G.

    1981-05-01

    The experimental and theoretical aspects of the polarisation analysis technique in elastic neutron scattering are described. An outline design is presented for a filter polarisation analysis spectrometer on the Rutherford Laboratory Spallation Neutron Source and estimates made of its expected count rates and resolution. (author)

  5. Calculational analysis of errors for various models of an experiment on measuring leakage neutron spectra

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Deeva, V.V.; Prokof'eva, Z.A.

    1990-01-01

    Analysis is made for the effect of mathematical model accuracy of the system concerned on the calculation results using the BRAND program system. Consideration is given to the impact of the following factors: accuracy of neutron source energy-angular characteristics description, various degrees of system geometry approximation, adequacy of Monte-Carlo method estimation to a real physical neutron detector. The calculation results analysis is made on the basis of the experiments on leakage neutron spectra measurement in spherical lead assemblies with the 14 MeV-neutron source in the centre. 4 refs.; 2 figs.; 10 tabs

  6. Technical Aspect for Operating Portable Prompt Gamma Neutron Activation Analysis (PGNAA) on Terengganu Inscribed Stone

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Hearie Hassan; Roslan Yahya

    2015-01-01

    Prompt Gamma Neutron Activation analysis (PGNAA) is a type of neutron activation analysis which can determined element with nearly no gamma ray decay after being irradiated by neutron sourced. Thus, element that cannot be determined by the conventional NAA for example H, B, N, Si and Cd, can be determine by PGNAA. This paper focuses on the technical working procedure for operating portable PGNAA in field work. The device is designed as a portable non-destructive investigation tool applying an isotopic neutron source (Cf-252) and a gamma-ray spectroscopy system for in-situ investigation. The studied have been carried out on Terengganu inscribed stone at Terengganu State Museum. (author)

  7. Neutron activation analysis detection limits using 252Cf sources

    International Nuclear Information System (INIS)

    DiPrete, D.P.; Sigg, R.A.

    2000-01-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux 252 Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an ∼6-mg 252 Cf NAA facility. The SRTC 252 Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [approximately2 x 10 7 n/cm 2 ·s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes

  8. Analysis of elements present in beers and brewing waters by neutron activation analysis

    International Nuclear Information System (INIS)

    Krausova, Ivana; Kucera, Jan; Dostalek, Pavel; Potesil, Vaclav

    2011-01-01

    Neutron activation analysis (NAA) was used for determination of Si, Na, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Rb, Cs, and La in Czech beers and brewing waters. The Si concentration in beer determined by the reaction 29 Si(n,p) 29 Al with fast neutrons confirmed that beer is an important Si source in human diet. Determination of other trace elements by NAA with the whole spectrum of reactor neutrons aimed at the feasibility of identification of Gambrinus beers brewed in various breweries. The elements Ca and V appeared to be the best candidates for this purpose. The concentrations of elements determined by NAA were also compared with the recommended daily element intake for humans. The accuracy of the method was proved by analysis of reference materials, specifically NIST SRM 2704 Buffalo River Sediment, NIST SRM 1633b Coal Fly Ash, and NIST SRM 1515 Apple Leaves. (author)

  9. Multielement analysis of archaic Chinese bronze and antique coins by fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y.H. (Academia Sinica, Lanzhou, Gansu (China). Inst. of Modern Physics); Pepelnik, R.; Fanger, H.U. (GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik)

    1990-01-01

    Samples of archaic bronze have been investigated by fast neutron activation analysis using both the absolute and relative method. The components Cu, Zn, Sn and Pb have been determined quantitatively. For the detection of lead via the short-lived isomeric state {sup 207m}Pb, cyclic activation and measurement technique was used with pneumatic sample transfer between detector and central irradiation position of the neutron tube. For non-destructive analysis of antique Chinese coins the samples had to be irradiated outside the neutron generator KORONA. The activation reactions, the evaluation of the elemental concentrations and the accuracy of the results are discussed. The data were corrected for {gamma}-ray self-absorption in the samples and summing of coincident {gamma}-rays in the detector. According to reported typical compositions of Chinese bronze from different dynasties, the age of the samples has been derived from the results obtained. (orig.).

  10. Analysis of the Neutron Generator and Target for the LSDTS System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius.

  11. Development of advanced sensing system for antipersonnel mines with neutron capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    2006-01-01

    Neutron induced prompt gamma-ray analysis (NPGA) for survey of antipersonnel landmines is developed. A concept of sensor system with compact strong accelerator neutron source, simulation of detection and simulation results by trial examinations are stated. The measurement principles, objects, system construction, development of compact accelerator neutron source and high performance neutron capture gamma-ray detector, simulation of detection of landmine are reported. It can detect 10.8 MeV gamma-rays and estimate the incident angle of gamma-ray. Schematic layouts of the compact accelerator neutron resource, the compact Compton gamma camera and sensor unit, the estimation principle of incident angle of gamma-ray, experiments and comparison between the experimental results and the estimation results, a preliminary trial experiment system for sensing antipersonnel mines with neutron capture gamma-ray analysis are illustrated. (S.Y.)

  12. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). 2010 Elsevier Ltd. All rights reserved.

  13. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source

    International Nuclear Information System (INIS)

    Coelho, Paulo Rogerio Pinto

    1979-01-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) 4 He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  14. Evaluation of new pharmaceuticals using in vivo neutron inelastic scattering and neutron activation analysis

    International Nuclear Information System (INIS)

    Kehayias, J.J.

    2000-01-01

    Nutritional status of patients can be evaluated by monitoring changes in body composition, including depletion of protein and muscle, adipose tissue distribution and changes in hydration status, bone or cell mass. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used to assess in vivo elements characteristic of specific body compartments. The fast neutrons are produced with a sealed deuterium-tritium (D-T) neutron generator. This method provides the most direct assessment of body composition. Non-bone phosphorus for muscle is measured by the 31 P(n,α) 28 Al reaction, and nitrogen for protein via the (n,2n) fast neutron reaction. Inelastic neutron scattering is used for the measurement of total body carbon and oxygen. Carbon is used to derive body fat, after subtracting carbon contributions due to protein, bone and glycogen. Carbon-to-oxygen (C/O) ratio is used to measure distribution of fat and lean tissue in the body and to monitor small changes of lean mass and its quality. In addition to evaluating the efficacy of new treatments, the system is used to study the mechanisms of lean tissue depletion with aging and to investigate methods for preserving function and quality of life in the elderly. (author)

  15. Epithermal neutron activation analysis for studying the environment

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Steinnes, E.

    1997-01-01

    Epithermal neutron activation analysis (ENAA) has certain advantages over the conventional instrumental analysis (INAA) in terms of improvement in precision and lowering of detection limits, reduction of high matrix activity and fission interferences if any. The current status and the applications of ENAA to environmental samples are reviewed. Experience in the use of ENAA in the monitoring of atmospheric depositions by means of moss-biomonitors at pulsed fast reactor IBR-2 in Dubna is summarized. INAA has shown to be useful for a number of sample types of interest in environmental studies, and should find more extensive use in this area. Analysis of airborne particulate matter is a case where ENAA should be particularly useful. A similar case where ENAA has shown strong performance is in the analysis of mosses used as biomonitors of atmospheric deposition, where 45 elements were determined. In this and other cases, however, induction-coupled plasma mass spectrometry is a very strong competitor, offering data for even more elements. A comparison of ENAA and ICP-MS for moss analysis is presented, and cases where ENAA is unique are discussed

  16. Development Of The Computer Code For Comparative Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Purwadi, Mohammad Dhandhang

    2001-01-01

    The qualitative and quantitative chemical analysis with Neutron Activation Analysis (NAA) is an importance utilization of a nuclear research reactor, and this should be accelerated and promoted in application and its development to raise the utilization of the reactor. The application of Comparative NAA technique in GA Siwabessy Multi Purpose Reactor (RSG-GAS) needs special (not commercially available yet) soft wares for analyzing the spectrum of multiple elements in the analysis at once. The application carried out using a single spectrum software analyzer, and comparing each result manually. This method really degrades the quality of the analysis significantly. To solve the problem, a computer code was designed and developed for comparative NAA. Spectrum analysis in the code is carried out using a non-linear fitting method. Before the spectrum analyzed, it was passed to the numerical filter which improves the signal to noise ratio to do the deconvolution operation. The software was developed using the G language and named as PASAN-K The testing result of the developed software was benchmark with the IAEA spectrum and well operated with less than 10 % deviation

  17. Neutron activation analysis of minerals from Cuddapah basin geological formations

    International Nuclear Information System (INIS)

    Nagendra Kumar, P.V.; Suresh Kumar, N.; Acharya, R.; Reddy, A.V.R.; Krishna Reddy, L.

    2014-01-01

    Green and yellow serpentines along with two associated minerals namely dolomite and intrusive rock dolerite obtained from the asbestos mines of Cuddapah basin, Andhra Pradesh, India were analyzed by k 0 -based neutron activation analysis (k 0 -NAA) method. Gold ( 197 Au) was used as the single comparator. Two reference materials namely USGS W-1 (geological) and IAEA Soil-7 (environmental) were analyzed as control samples to evaluate the accuracy of the method. A total of 21 elements present at major, minor and trace concentrations were determined in serpentines as well as associated minerals. The elemental concentrations were used for distinguishing and characterizing these minerals, and also to understand the extent of segregation of elements from the associated or host mineral rocks to serpentines. (author)

  18. Fast neutron activation analysis of fossil fuels and liquefaction products

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Khalil, S.R.; Koppenaal, D.W.

    1982-01-01

    The problems associated with neutron absorption/thermalization, gamma-ray self-absorption, and variable irradiation and counting geometries associated with the composition, densities and physical states of the samples and standards of fossil fuels are considered. Two sets of liquid organic reagent primary standards and several solid standards are selected and evaluated for use in the determiation of oxygen and nitrogen in coals, coal conversion liquids, and residual solids. Analyses of a number of coals, conversion products and NBS reference standards are presented. Problems associated with selecting a reproducible pre-analysis drying procedure for oxygen determinations in coal and discussed. It is suggested that a brief freeze-drying procedure may result in minimal matrix alternation and yield reproducible values for bulk oxygen contents of coals

  19. Pollution studies of Saronikos Gulf, Greece, by neutron activation analysis

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1988-01-01

    Neutron activation analysis (NAA) with its great sensitivity for a large number of elements has been widely used for marine environmental studies Saronikos Gulf receives combined domestic and industrial effluents of the grater Athens area through the Athens sewage outfall (ASO) at Keratsini Bay, which also receives wastes from discrete industrial sources including a fertilizer plant. Such discharges usually contain high concentrations of heavy metals, which can be dangerous to marine ecosystems and humans. This paper is a review of research and monitoring studies of toxic and other trace elements in marine organisms, seawater, and sediments of Saronikos Gulf by NAA performed over the last 15 yr. The objectives of these studies were (a) to find the fates and pathways of toxic and other trace elements, (b) to estimate the extent of pollution, and (c) to pinpoint and distinguish pollution sources

  20. Neutron activation analysis on determination of arsenic in biological matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Silva, Maria Aparecida, E-mail: menezes@cdtn.br, E-mail: cida@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Aiming at giving support to the Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, an assessment related arsenic was carried out in two galvanising factories by means of hair and toenail samples analysis as biomonitors. The arsenic was determined in all matrixes from the factories where gold electrodeposition process was applied. This is because arsenic salts are usually added to gold bath to improve the metal covering. The high concentration results surprised the health surveillance professionals, and alerted for the need of assessing the influence of a long-term exposure. Studies concerning galvanising process have usually been developed broaching many aspects, but so far few works has pointed out the detection and measurement of other elements like arsenic. The k{sub 0}-Instrumental Neutron Activation method was applied confirming to be a suitable technique on determination of arsenic in biological matrixes. (author)

  1. Automated uranium analysis by delayed-neutron counting

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Loevborg, L.; Christiansen, E.M.

    1980-10-01

    Automated uranium analysis by fission-induced delayed-neutron counting is described. A short description is given of the instrumentation including transfer system, process control, irradiation and counting sites, and computer operations. Characteristic parameters of the facility (sample preparations, background, and standards) are discussed. A sensitivity of 817 +- 22 counts per 10 -6 g U is found using irradiation, delay, and counting times of 20 s, 5 s, and 10 s, respectively. Presicion is generally less than 1% for normal geological samples. Critical level and detection limits for 7.5 g samples are 8 and 16 ppb, respectively. The importance of some physical and elemental interferences are outlined. Dead-time corrections of measured count rates are necessary and a polynomical expression is used for count rates up to 10 5 . The presence of rare earth elements is regarded as the most important elemental interference. A typical application is given and other areas of application are described. (auther)

  2. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.

    2010-01-01

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  3. Applied research and development of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Bak, Sung Ryel; Park, Yong Chul; Kim, Young Ki; Chung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun

    2000-05-01

    This report is written for results of research and development as follows : improvement of neutron irradiation facilities, counting system and development of automation system and capsules for NAA in HANARO ; improvement of analytical procedures and establishment of analytical quality control and assurance system; applied research and development of environment, industry and human health and its standardization. For identification and standardization of analytical method, environmental biological samples and polymer are analyzed and uncertainity of measurement are estimated. Also data intercomparison and proficency test were performed. Using airborne particulate matter chosen as a environmental indicators, trace elemental concentrations of sample collected at urban and rural site are determined and then the calculation of statistics and the factor analysis are carried out for investigation of emission source. International cooperation research project was carried out for utilization of nuclear techniques.

  4. Applied research and development of neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Bak, Sung Ryel; Park, Yong Chul; Kim, Young Ki; Chung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun

    2000-05-01

    This report is written for results of research and development as follows : improvement of neutron irradiation facilities, counting system and development of automation system and capsules for NAA in HANARO ; improvement of analytical procedures and establishment of analytical quality control and assurance system; applied research and development of environment, industry and human health and its standardization. For identification and standardization of analytical method, environmental biological samples and polymer are analyzed and uncertainity of measurement are estimated. Also data intercomparison and proficency test were performed. Using airborne particulate matter chosen as a environmental indicators, trace elemental concentrations of sample collected at urban and rural site are determined and then the calculation of statistics and the factor analysis are carried out for investigation of emission source. International cooperation research project was carried out for utilization of nuclear techniques

  5. Neutron activation analysis of organohalogens in Chinese human hair

    International Nuclear Information System (INIS)

    Zhang, H.; Chai, Z.F.; Chinese Academy of Sciences, Beijing; Sun, H.B.; Xu, H.F.

    2007-01-01

    To effectively extract organohalogens from human hair, two factors, the extracting time and hair length on the extraction efficiency of organohalogens were studied by neutron activation analysis (NAA) and gas chromatograph-electron capture detector (GC-ECD), respectively. Furthermore, the concentrations of extractable organohalogens (EOX) and extractable persistent organohalogens (EPOX) in hair samples from angioma and control babies were also measured by the established method. The results indicated that the optimal Soxhlet-extraction time for EOX and EPOX in hair was from 8 to 11 hours, and the extraction efficiencies for organochlorine pesticides in hair were in the order of powder >2 mm>5 mm. Also, the mean levels of EOCl and EPOCl in hair of the angioma babies were significantly higher than those in the control babies (P EOCl EPOCl <0.05), which implied the possible relationship between the environmental pollution and angioma. (author)

  6. Neutron activation analysis on determination of arsenic in biological matrixes

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Silva, Maria Aparecida

    2013-01-01

    Aiming at giving support to the Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, an assessment related arsenic was carried out in two galvanising factories by means of hair and toenail samples analysis as biomonitors. The arsenic was determined in all matrixes from the factories where gold electrodeposition process was applied. This is because arsenic salts are usually added to gold bath to improve the metal covering. The high concentration results surprised the health surveillance professionals, and alerted for the need of assessing the influence of a long-term exposure. Studies concerning galvanising process have usually been developed broaching many aspects, but so far few works has pointed out the detection and measurement of other elements like arsenic. The k 0 -Instrumental Neutron Activation method was applied confirming to be a suitable technique on determination of arsenic in biological matrixes. (author)

  7. Semiautomatic exchanger of samples for carry out neutron activation analysis

    International Nuclear Information System (INIS)

    Aguilar H, F.; Quintana C, G.; Torres R, C. E.; Mejia J, J. O.

    2015-09-01

    In this paper the design methodology and implementation of a semiautomatic exchanger of samples for the Analysis Laboratory by Neutron Activation of the Reactor department is presented. Taking into account the antecedents, the necessities of improvement are described, as well as the equipment that previously contained the Laboratory. The project of the semiautomatic exchanger of samples was developed at Instituto Nacional de Investigaciones Nucleares, with its own technology to increase independence from commercial equipment. Each element of the semiautomatic exchanger of samples is described both in the design phase as construction. The achieved results are positive and encouraging for the fulfillment of the proposed objective that is to increase the capacity of the Laboratory. (Author)

  8. Neutron activation analysis of new botanical reference materials. Pt. 2

    International Nuclear Information System (INIS)

    Kucera, J.; Soukal, L.

    1993-01-01

    The certified, information, and other values of elemental contents were compared with results of neutron activation analysis (NAA) for the new Czechoslovak botanical reference materials (RMs) Green Algae 12-02-02, Lucerne 12-02-03, Wheat Bread Fluor 12-02-04, and Rye Bread Flour 12-02-05. These were prepared by the Institute of Radioecology and Applied Nuclear Techniques (IRANT), Kosice, and statistically evaluated after interlaboratory comparisons. For the majority of elements, a very good agreement was found between the IRANT values and the results of NAA. In several cases, however, significant differences were detected; possible analytical reasons for the differences and the suitability of a purely statistical evaluation of intercomparison results without analytical considerations for RM certification are discussed. (orig.)

  9. Neutronics analysis for integration of ITER diagnostics port EP10

    Energy Technology Data Exchange (ETDEWEB)

    Colling, Bethany, E-mail: bethany.colling@ccfe.ac.uk [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Department of Engineering, Lancaster University, Lancashire LA1 4YR (United Kingdom); Eade, Tim [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Joyce, Malcolm J. [Department of Engineering, Lancaster University, Lancashire LA1 4YR (United Kingdom); Pampin, Raul; Seyvet, Fabien [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Turner, Andrew [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Udintsev, Victor [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Shutdown dose rate calculations have been performed on an integrated ITER C-lite neutronics model with equatorial port 10. A ‘fully shielded’ configuration, optimised for a given set of diagnostic designs (i.e. shielding in all available space within the port plug drawers), results in a shutdown dose rate in the port interspace, from the activation of materials comprising equatorial port 10, in excess of 2000 μSv/h. Achieving dose rates of 100 μSv/h or less, as required in areas where hands-on maintenance can be performed, in the port interspace region will be challenging. A combination of methods will need to be implemented, such as reducing mass and/or the use of reduced activation steel in the port interspace, optimisation of the diagnostic designs and shielding of the port interspace floor. Further analysis is required to test these options and the ongoing design optimisation of the EP10 diagnostic systems.

  10. Neutron activation analysis of snow and ice in Antarctica

    International Nuclear Information System (INIS)

    Koyama, Mutsuo; Takada, Jitsuya; Inoue, J.; Issiki, K.; Nakayama, E.

    1988-01-01

    In order to minimize the possible contamination during storing and pre-treatment of such pure samples as ice and snow collected in Antarctica, trace elements in experimental tools such as bottles, beakers, tubings and filters were determined by neutron activation analysis. By using well certified tools, ice and snow samples from Antarctica and high mountains in China and in Japan were analyzed. Relative concentrations of volatile elements such as Zn, Cd, As, Sb or Ag to Al or Fe which are major components in the earth crust were found to be 10 to 1000 times higher than in the ordinary soil for the samples from Antarctica and Mt. Naimonanyi in China. (author) 5 refs.; 7 tabs

  11. Radiochemical neutron activation analysis of gold in geochemical samples

    International Nuclear Information System (INIS)

    Zilliacus, R.

    1983-01-01

    A fast method for the radiochemical neutron activation analysis of gold in geochemical samples is described. The method is intended for samples having background concentrations of gold. The method is based on the dissolution of samples with hydrofluoric acid and aqua regia followed by the dissolution of the fluorides with boric acid and hydrochloric acid. Gold is then adsorbed on activated carbon by filtrating the solution through a thin carbon layer. The activity measurements are carried out using a Ge(Li)-detector and a multichannel analyzer. The chemical yields of the separation determined by reirradiation vary between 60 and 90%. The detection limit of the method is 0.2 ng/g gold in rock samples. USGS standard rocks and exploration reference materials are analyzed and the results are presented and compared with literature data. (author)

  12. Instrumental Neutron Activation Analysis in archaeology interpretation beyond elemental abundance

    International Nuclear Information System (INIS)

    Bishop, Ronald L.

    2001-01-01

    Application of instrumental neutron activation analysis to the study of archaeological ceramics involves the determination of the source or sources used to produce pottery. Groups of relatively homogeneous elemental abundances are shown to be statically distinct from one another often leading to the assesment of what was locally produced and what was imported to a site. These assesment, however are among the most preliminary interpretations. Archaeology is concerned with the reasons for artificial distributions and how and why the distribution varied through time 3 reasons that include the social and political basis of ancient economics and how these responded to other factors, such as ideology. These objectives are addressed through the increasing refinement of compositional groups leading toward greater specificity of attribution. In so doing the role of analytical precision among other considerations groves in importance. This paper illustration some of these considerations with examples from the U.S. southwest, the Maya region of southern mexico, and lower central America

  13. Neutron activation analysis: A primary method of measurement

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Robert R., E-mail: robert.greenberg@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8395 (United States); Bode, Peter, E-mail: p.bode@tudelft.nl [Delft University of Technology, Delft (Netherlands); De Nadai Fernandes, Elisabete A., E-mail: lis@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Piracicaba, SP (Brazil)

    2011-03-15

    Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comite Consultatif pour la Quantite de Matiere - Metrologie en Chimie (CCQM, Consultative Committee on Amount of Substance - Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method.

  14. Determination of gallium in flint clay by neutron activation analysis

    International Nuclear Information System (INIS)

    Padova, A.; Even, O.

    1975-01-01

    Neutron activation analysis was applied to determine gallium traces in different flint clay samples found in Israel. The principal 835 KeV gamma ray of gallium-72 was measured with a 60 cm 2 Ge(Li) spectrometer in conjunction with a Packard 4000 channel analyzer and Wang table computer, model 720 C. Samples were weighed into polyethylene vials, sealed and inserted into polyethylene rabbit. Gallium metal and gallium oxide used as standards were similarly prepared for irradiation for 10 minutes in the I.R.R.I., at a thermal flux of 3.5x10 12 n/cm 2 sec. Careful calibration of the spectrometer and judicious choice of cooling time eliminate the influence of such elements as europium-152, and sodium-24 and make possible the determination of gallium without prior chemical separation. Representative Israel flint clay samples contain about 55 ppm gallium. (B.G.)

  15. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Sun, G. M.; Kim, S. H.; Baek, S. Y.; Lim, J. M.; Kim, H. R

    2007-01-15

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future.

  16. Confirmation of identity and detection limit in neutron activation analysis

    International Nuclear Information System (INIS)

    Yustina Tri Handayani; Slamet Wiyuniati; Tulisna

    2010-01-01

    Neutron Activation Analysis (NAA) based on neutron capture by nuclides. Of the various possibilities of radionuclides that occur, radionuclides and gamma radiation which provides the identity of the element were analyzed and the best sensitivity should be determined. Confirmation for elements in sediment samples was done theoretically and experimentally. The result of confirmation shows that Al, V, Cr K, Na, Ca and Zn were analyzed based on radionuclides of Al-28, V-52, Cr-51 , K-42, Na-24, Ca-48, Zn-65. Elements of Mg, Mn, Fe, Co were analyzed based on radionuclides of Mg-27, Mn-56, Fe-59, Co-60 through peak which the highest value of combined probability of radiation emission and efficiency. Cu can be analyzed through Cu-64 or Cu-66, but the second is more sensitive. Detection limit is determined at a certain measurement conditions carried out by a laboratory. Detection limit in the NAA is determined based on the Compton continue area by Curie method. The detection limit of Al, V, Ca, Mg, Mn, As, K, Na, Mg, Ce, Co, Cr, Fe, La, Sc, and Zn in sediment samples are 240, 27, 4750, 2600, 21, 3.3 , 75, 1.4, 1.8, 0.5, 2.7, 29, 1, 0.05, and 37 ppm. Analysis of Cu in sediments which concentrations of 98.6 ppm, Cu-66 is not detected. Tests using pure standard solutions of Cu obtained detection limit of 0.12 µg, or 7.9 ppm in samples of 15 mg. In general, the detection limit obtained was higher than the detection limit of the reference, it was caused by the differences in the sample matrix and analytical conditions. (author)

  17. Research on neutron noise analysis stochastic simulation method for α calculation

    International Nuclear Information System (INIS)

    Zhong Bin; Shen Huayun; She Ruogu; Zhu Shengdong; Xiao Gang

    2014-01-01

    The prompt decay constant α has significant application on the physical design and safety analysis in nuclear facilities. To overcome the difficulty of a value calculation with Monte-Carlo method, and improve the precision, a new method based on the neutron noise analysis technology was presented. This method employs the stochastic simulation and the theory of neutron noise analysis technology. Firstly, the evolution of stochastic neutron was simulated by discrete-events Monte-Carlo method based on the theory of generalized Semi-Markov process, then the neutron noise in detectors was solved from neutron signal. Secondly, the neutron noise analysis methods such as Rossia method, Feynman-α method, zero-probability method, and cross-correlation method were used to calculate a value. All of the parameters used in neutron noise analysis method were calculated based on auto-adaptive arithmetic. The a value from these methods accords with each other, the largest relative deviation is 7.9%, which proves the feasibility of a calculation method based on neutron noise analysis stochastic simulation. (authors)

  18. Texture analysis using angle dispersive neutron nuclear scattering

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1995-01-01

    This paper describes in detail the method of texture determination using neutron diffraction. The main advantages of neutron diffraction arise from the high penetration depth for most materials which is a factor of 10 2 -10 4 higher than for X-ray diffraction. Consequently neutron diffraction is an efficient tool for the investigation of global textures and coarse grained materials. Moreover, the measurement of large sample volumes gives excellent grain statistics, allows the influence of texture inhomogeneities to be neglected and allows the measurement of complete pole figures even of minority phases. A number of examples show the application of neutron diffraction to measure textures of metals, alloys, composites, intermetallic compounds and rocks. A detailed description of TEX-2 the neutron texture diffractometer at GKSS Research Centre is given which is completed by a comparison to other neutron texture diffractometers. (orig.) [de

  19. Selective data analysis for diamond detectors in neutron fields

    Directory of Open Access Journals (Sweden)

    Weiss Christina

    2017-01-01

    Full Text Available Detectors based on synthetic chemical vapor deposition diamond gain importance in various neutron applications. The superior thermal robustness and the excellent radiation hardness of diamond as well as its excellent electronic properties make this material uniquely suited for rough environments, such as nuclear fission and fusion reactors. The intrinsic electronic properties of single-crystal diamond sensors allow distinguishing various interactions in the detector. This can be used to successfully suppress background of γ-rays and charged particles in different neutron experiments, such as neutron flux measurements in thermal nuclear reactors or cross-section measurements in fast neutron fields. A novel technique of distinguishing background reactions in neutron experiments with diamond detectors will be presented. A proof of principle will be given on the basis of experimental results in thermal and fast neutron fields.

  20. Investigation of neutron guide systems: Analysis techniques and an experiment

    International Nuclear Information System (INIS)

    Kudryashev, V.A.

    1991-01-01

    This paper discusses the in-depth study of the specific characteristics of the physical processes associated with the total reflection of neutrons from actual reflective coatings; the study of the process whereby neutrons transit a nonideal image channel with allowance for the aforementioned characteristics, and; the development of physical criteria and techniques for calculating the optimum geometry of a neutron guide source system based on the laws found to govern this transit process

  1. Analysis of Neutron Flux Using Monte Carlo Methods

    International Nuclear Information System (INIS)

    Picha, Roppon

    2007-08-01

    Full text: The energy profile of neutrons from a fission reactor core and a neutron irradiation setup are simulated. The neutron doses deposited inside casings of aluminum, cadmium, and tantalum are studied via MCNP simulations to estimate the doses received by materials with different types of shielding. It is found that the difference in dose reduction between cadmium and tantalum is most pronounced at the thermal energy region

  2. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  3. Object-oriented data analysis framework for neutron scattering experiments

    International Nuclear Information System (INIS)

    Suzuki, Jiro; Nakatani, Takeshi; Ohhara, Takashi; Inamura, Yasuhiro; Yonemura, Masao; Morishima, Takahiro; Aoyagi, Tetsuo; Manabe, Atsushi; Otomo, Toshiya

    2009-01-01

    Materials and Life Science Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC) is one of the facilities that provided the highest intensity pulsed neutron and muon beams. The MLF computing environment design group organizes the computing environments of MLF and instruments. It is important that the computing environment is provided by the facility side, because meta-data formats, the analysis functions and also data analysis strategy should be shared among many instruments in MLF. The C++ class library, named Manyo-lib, is a framework software for developing data reduction and analysis softwares. The framework is composed of the class library for data reduction and analysis operators, network distributed data processing modules and data containers. The class library is wrapped by the Python interface created by SWIG. All classes of the framework can be called from Python language, and Manyo-lib will be cooperated with the data acquisition and data-visualization components through the MLF-platform, a user interface unified in MLF, which is working on Python language. Raw data in the event-data format obtained by data acquisition systems will be converted into histogram format data on Manyo-lib in high performance, and data reductions and analysis are performed with user-application software developed based on Manyo-lib. We enforce standardization of data containers with Manyo-lib, and many additional fundamental data containers in Manyo-lib have been designed and developed. Experimental and analysis data in the data containers can be converted into NeXus file. Manyo-lib is the standard framework for developing analysis software in MLF, and prototypes of data-analysis softwares for each instrument are being developed by the instrument teams.

  4. Radioisotopic neutron transmission spectrometry: Quantitative analysis by using partial least-squares method

    International Nuclear Information System (INIS)

    Kim, Jong-Yun; Choi, Yong Suk; Park, Yong Joon; Jung, Sung-Hee

    2009-01-01

    Neutron spectrometry, based on the scattering of high energy fast neutrons from a radioisotope and slowing-down by the light hydrogen atoms, is a useful technique for non-destructive, quantitative measurement of hydrogen content because it has a large measuring volume, and is not affected by temperature, pressure, pH value and color. The most common choice for radioisotope neutron source is 252 Cf or 241 Am-Be. In this study, 252 Cf with a neutron flux of 6.3x10 6 n/s has been used as an attractive neutron source because of its high flux neutron and weak radioactivity. Pulse-height neutron spectra have been obtained by using in-house built radioisotopic neutron spectrometric system equipped with 3 He detector and multi-channel analyzer, including a neutron shield. As a preliminary study, polyethylene block (density of ∼0.947 g/cc and area of 40 cmx25 cm) was used for the determination of hydrogen content by using multivariate calibration models, depending on the thickness of the block. Compared with the results obtained from a simple linear calibration model, partial least-squares regression (PLSR) method offered a better performance in a quantitative data analysis. It also revealed that the PLSR method in a neutron spectrometric system can be promising in the real-time, online monitoring of the powder process to determine the content of any type of molecules containing hydrogen nuclei.

  5. The analysis and correction of neutron scattering effects in neutron imaging

    International Nuclear Information System (INIS)

    Raine, D.A.; Brenizer, J.S.

    1997-01-01

    A method of correcting for the scattering effects present in neutron radiographic and computed tomographic imaging has been developed. Prior work has shown that beam, object, and imaging system geometry factors, such as the L/D ratio and angular divergence, are the primary sources contributing to the degradation of neutron images. With objects smaller than 20--40 mm in width, a parallel beam approximation can be made where the effects from geometry are negligible. Factors which remain important in the image formation process are the pixel size of the imaging system, neutron scattering, the size of the object, the conversion material, and the beam energy spectrum. The Monte Carlo N-Particle transport code, version 4A (MCNP4A), was used to separate and evaluate the effect that each of these parameters has on neutron image data. The simulations were used to develop a correction algorithm which is easy to implement and requires no a priori knowledge of the object. The correction algorithm is based on the determination of the object scatter function (OSF) using available data outside the object to estimate the shape and magnitude of the OSF based on a Gaussian functional form. For objects smaller than 1 mm (0.04 in.) in width, the correction function can be well approximated by a constant function. Errors in the determination and correction of the MCNP simulated neutron scattering component were under 5% and larger errors were only noted in objects which were at the extreme high end of the range of object sizes simulated. The Monte Carlo data also indicated that scattering does not play a significant role in the blurring of neutron radiographic and tomographic images. The effect of neutron scattering on computed tomography is shown to be minimal at best, with the most serious effect resulting when the basic backprojection method is used

  6. Advantages of neutron scattering for biological structure analysis

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1975-01-01

    The advantages and disadvantages of neutron scattering for protein crystallography, scattering from oriented systems, and solution scattering are summarized. Techniques for minimizing the disadvantages are indicated

  7. Measurement of the neutron electric dipole moment: simultaneous spin analysis and preliminary data analysis

    International Nuclear Information System (INIS)

    Helaine, Victor

    2014-01-01

    In the framework of the neutron Electric Dipole Moment (nEDM) experiment at the Paul Scherrer Institut (Switzerland), this thesis deals with the development of a new system of spin analysis. The goal here is to simultaneously detect the two spin components of ultracold neutrons in order to increase the number of detected neutrons and therefore lower the nEDM statistical error. Such a system has been designed using Geant4-UCN simulations, built at LPC Caen and then tested as part of the experiment. In parallel to this work, the 2013 nEDM data taken at PSI have been analysed. Finally, methods to recover magnetic observables of first interest to control nEDM systematic errors have been studied and possible improvements are proposed. (author) [fr

  8. Analysis of some egyptian cosmetic samples by using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Medhat, M.E.; Hassan, M.F.; Ali, M.A.; Awaad, Z.

    2002-01-01

    A description of our neutron generator (NG) facility for neutron activation analysis is presented. As an example, the concentration of Na, Mg, Al, Si, K, Cl, Ca and Fe elements were determined in two domestic brands of face powder by using a beam of 14 MeV neutrons. An empirical expression for detector efficiency in terms of incident gamma ray energy and the source-detector distance has been obtained for a hyper pure germanium detector (HPGe) using different standard point sources. The comparison of the calculated efficiencies and the measured values in the energy range from 59.5 to 1332.2 keV and for source-to-detector distances of 5-30 cm show the agreement between the calculated values and the measured experimental values

  9. Design of a setup for {sup 252}Cf neutron source for storage and analysis purpose

    Energy Technology Data Exchange (ETDEWEB)

    Hei, Daqian [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Zhuang, Haocheng [Xi’an Middle School of Shanxi Province, Xi’an 710000 (China); Jia, Wenbao, E-mail: jiawenbao@163.com [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China); Cheng, Can; Jiang, Zhou; Wang, Hongtao [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Chen, Da [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China)

    2016-11-01

    {sup 252}Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg {sup 252}Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  10. Neutron Skin Thickness of 48Ca from a Nonlocal Dispersive Optical-Model Analysis

    Science.gov (United States)

    Mahzoon, M. H.; Atkinson, M. C.; Charity, R. J.; Dickhoff, W. H.

    2017-12-01

    A nonlocal dispersive optical-model analysis has been carried out for neutrons and protons in 48Ca. Elastic-scattering angular distributions, total and reaction cross sections, single-particle energies, the neutron and proton numbers, and the charge distribution have been fitted to extract the neutron and proton self-energies both above and below the Fermi energy. From the single-particle propagator resulting from these self-energies, we have determined the charge and neutron matter distributions in 48Ca. A best fit neutron skin of 0.249 ±0.023 fm is deduced, but values up to 0.33 fm are still consistent. The energy dependence of the total neutron cross sections is shown to have a strong sensitivity to the skin thickness.

  11. Simultaneous speciation neutron activation analysis for trace elements

    International Nuclear Information System (INIS)

    Chatt, A.; Kiceniuk, J.W.; Menendez Sanchez, W.; Bottaro, C.

    2006-01-01

    Among the various forms of neutron activation technique being developed in our laboratory, much emphasis has been placed over the last ten years or so on the development of simultaneous speciation neutron activation analysis (SSNAA). This technique can now be used for the simultaneous determination of various species of a number of elements. Almost all speciation techniques consist of two steps. The first step involves the separation of species from the sample followed by the second step of element-specific detection. A number of characteristic features of NAA, which other techniques normally do not possess, can be advantageously exploited in SSNAA. For example, SSNAA can be used for: (i) multielement speciation with high specificity, (ii) speciation of chemically dissimilar elements such as Cd, Mn and Se, (iii) speciation of elements such as Cl, Br and I which are rather difficult to determine by most other techniques, etc. We have developed SSNAA methods for assaying various arsenic species, namely As(III), As(V), dimethyl arsonic acid (DMA), monomethylarsinic acid (MMA), arsenobetaine (AsB), organically bound arsenic (OBAs), and lipid-soluble arsenic (LSAs) in marine fish samples. We have extended these methods to include simultaneous determination of various species of As, Sb and Se in water. We have also developed SSNAA methods employing biochemical techniques for the simultaneous separation, preconcentration and characterization of metalloproteins and protein-bound trace element species of As, Br, Cd, Cu, Mn, Se, and Zn. We have developed methods for the simultaneous separation and characterization of organohalogen compounds in fish. An overview of the SSNAA methods being developed in our laboratory will be presented. (author)

  12. Recent applications of neutron activation analysis in Korea

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myung; Kim Young Jin

    2004-01-01

    There are two purposes in this research; first aim is to promote the use of neutron activation analysis (NAA) as a utilization of nuclear research reactor in the field of air pollution studies through a routine and long-term monitoring. Other is to improve NAA with an experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and counting conditions. For the study on air pollution, airborne particulate matter (APM) for the fine (< 2.5 μm EAD) and coarse particle (2.5-10 μm EAD) fractions were collected using the Gent stacked filter unit low volume sampler and two types of Nuclepore polycarbonate filters. Air samples were collected at two regions (suburban and industrial site of Daejeon city in the Republic of Korea) from January to December 2002. Mass concentration and elemental black carbon of APM were measured and the concentration of 25 elements were determined by Instrumental NAA. Analytical quality control is carried out using three certified reference materials (CRM). The monitoring data were treated statistically to assess air pollution source and source apportionment. The results obtained from this project can be used to investigate source identification and apportionment and its trends, and to establish a more cost-effective method for national air quality management. Preliminary experiment for application of ko-standardization method has been carried out to determine the reactor neutron spectrum parameters, i.e.a and f-values as the main factors of irradiation quality at NAA no.1 irradiation hole on HANARO research reactor, to determine peak detection efficiency for the HP Ge(EG and G ORTEC, GEM 35185) detector for the use in the ko-experiments and to compare the measured concentration results with the certified values of some CRMs applying the experimentally determined ko-parameters. (author)

  13. Medical application of in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Zanzi, I.; Aloia, J.F.

    1978-01-01

    The clinical usefulness of total body neutron activation analysis (TBNAA) was clearly established at an IAEA panel meeting in Vienna in 1972. It is best demonstrated by the studies involving the measurement of total-body calcium. This measurement provides data useful for the diagnosis and management of metabolic bone disorders. It should be emphasized, however, that while most of the applications to date have involved calcium and phosphorus, the measurement of sodium, chlorine and nitrogen also appear to be useful clinically. Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+- 2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measure of total-body levels of these elements gives the clinician useful data upon which to design dialysis therapy. The measurement of bone changes in endocrine dysfunction has been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in-vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking

  14. Medical application of in vivo neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Zanzi, I.; Aloia, J.F.

    1978-01-01

    The clinical usefulness of total body neutron activation analysis (TBNAA) was clearly established at an IAEA panel meeting in Vienna in 1972. It is best demonstrated by the studies involving the measurement of total-body calcium. This measurement provides data useful for the diagnosis and management of metabolic bone disorders. It should be emphasized, however, that while most of the applications to date have involved calcium and phosphorus, the measurement of sodium, chlorine and nitrogen also appear to be useful clinically. Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+- 2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measure of total-body levels of these elements gives the clinician useful data upon which to design dialysis therapy. The measurement of bone changes in endocrine dysfunction has been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in-vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking.

  15. Using robust statistics to improve neutron activation analysis results

    International Nuclear Information System (INIS)

    Zahn, Guilherme S.; Genezini, Frederico A.; Ticianelli, Regina B.; Figueiredo, Ana Maria G.

    2011-01-01

    Neutron activation analysis (NAA) is an analytical technique where an unknown sample is submitted to a neutron flux in a nuclear reactor, and its elemental composition is calculated by measuring the induced activity produced. By using the relative NAA method, one or more well-characterized samples (usually certified reference materials - CRMs) are irradiated together with the unknown ones, and the concentration of each element is then calculated by comparing the areas of the gamma ray peaks related to that element. When two or more CRMs are used as reference, the concentration of each element can be determined by several different ways, either using more than one gamma ray peak for that element (when available), or using the results obtained in the comparison with each CRM. Therefore, determining the best estimate for the concentration of each element in the sample can be a delicate issue. In this work, samples from three CRMs were irradiated together and the elemental concentration in one of them was calculated using the other two as reference. Two sets of peaks were analyzed for each element: a smaller set containing only the literature-recommended gamma-ray peaks and a larger one containing all peaks related to that element that could be quantified in the gamma-ray spectra; the most recommended transition was also used as a benchmark. The resulting data for each element was then reduced using up to five different statistical approaches: the usual (and not robust) unweighted and weighted means, together with three robust means: the Limitation of Relative Statistical Weight, Normalized Residuals and Rajeval. The resulting concentration values were then compared to the certified value for each element, allowing for discussion on both the performance of each statistical tool and on the best choice of peaks for each element. (author)

  16. Optimization to improve precision in neutron activation analysis

    International Nuclear Information System (INIS)

    Yustina Tri Handayani

    2010-01-01

    The level of precision or accuracy required in analysis should be satisfied the general requirements and customer needs. In presenting the results of the analysis, the level of precision is expressed as uncertainty. Requirement general is Horwitz prediction. Factors affecting the uncertainty in the Neutron Activation Analysis (NAA) include the mass of sample, mass standards, concentration in standard, count of sample, count of standard and counting geometry. Therefore, to achieve the expected level of precision, these parameters need to be optimized. A standard concentration of similar materials is applied as a basis of calculation. In the calculation NIST SRM 2704 is applied for sediment samples. Mass of sample, irradiation time and cooling time can be modified to obtain the expected uncertainty. The prediction results show the level of precision for Al, V, Mg, Mn, K, Na, As, Cr, Co, Fe, and Zn eligible the Horwitz. The predictive the count and standard deviation for Mg-27 and Zn-65 were higher than the actual value occurred due to overlapping of Mg-27 and Mn-54 peaks and Zn-65 and Fe-59 peaks. Precision level of Ca is greater than the Horwitz, since the value of microscopic cross section, the probability of radiation emission of Ca-49 and gamma spectrometer efficiency at 3084 keV is relatively small. Increased precision can only be done by extending the counting time and multiply the number of samples, because of the fixed value. The prediction results are in accordance with experimental results. (author)

  17. Convergence analysis of neutronic/thermohydraulic coupling behavior of SCWR

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2013-01-01

    The neutronic/thermohydraulic coupling (N–T coupling) calculations play an important role in core design and stability analysis. The traditional iterative method is not applicable for some new reactors (such as supercritical water-cooled reactor) which have intense N–T coupling behavior. In this paper, the mathematical model of N–T coupling based on fixed point theory is established firstly, with the convergent criterion, which can show the real-time convergence situation of iteration. Secondly, the self-adaptive relaxation factor and corresponding algorithm are proposed. Thirdly, the convergence analysis of the method of self-adaptive relaxation factor and common relaxation iteration has been performed, based on three calculation examples of SCWR fuel assembly. The results show that the proposed algorithm can efficiently reduce the calculation time and be adapted to different coupling cases and different initial distribution. It is easy to program, providing convenience for reactor design and analysis. This research also provides the theoretical basis for further study of N–T coupling behavior of new reactors such as SCWR

  18. A Multilevel Shape Fit Analysis of Neutron Transmission Data

    Science.gov (United States)

    Naguib, K.; Sallam, O. H.; Adib, M.; Ashry, A.

    A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Briet-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151Eu, 153Eu and natural Eu in the energy range 0.025-1 eV accquired a good result for the used technique of analysis.Translated AbstractAnalyse von Neutronentransmissionsdaten mittels einer VielniveauformanpassungNeutronentransmissionsdaten werden in einer Vielniveauformanpassung analysiert. Dazu werden bereinigte Daten aus Flugzeitmessungen mit dem Rechnerprogramm SHAPE bearbeitet. Man erhält die Parameter der beobachteten Resonanzen im gemessenen Energiebereich. Die Formanpassung benutzt eine Briet-Wignerformel und berücksichtigt Linienverbreiterungen infolge sowohl der Meßeinrichtung als auch des Dopplereffekts. Als praktisches Beispiel werden 151Eu, 153Eu und natürliches Eu im Energiebereich 0.025 bis 1 eV mit guter Übereinstimmung theoretischer und experimenteller Werte behandelt.

  19. Automated gamma spectrometry and data analysis on radiometric neutron dosimeters

    International Nuclear Information System (INIS)

    Matsumoto, W.Y.

    1983-01-01

    An automated gamma-ray spectrometry system was designed and implemented by the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory (HEDL) to analyze radiometric neutron dosimeters. Unattended, automatic, 24 hour/day, 7 day/week operation with online data analysis and mainframe-computer compatible magnetic tape output are system features. The system was used to analyze most of the 4000-plus radiometric monitors (RM's) from extensive reactor characterization tests during startup and initial operation of th Fast Flux Test Facility (FFTF). The FFTF, operated by HEDL for the Department of Energy, incorporates a 400 MW(th) sodium-cooled fast reactor. Aumomated system hardware consists of a high purity germanium detector, a computerized multichannel analyzer data acquisition system (Nuclear Data, Inc. Model 6620) with two dual 2.5 Mbyte magnetic disk drives plus two 10.5 inch reel magnetic tape units for mass storage of programs/data and an automated Sample Changer-Positioner (ASC-P) run with a programmable controller. The ASC-P has a 200 sample capacity and 12 calibrated counting (analysis) positions ranging from 6 inches (15 cm) to more than 20 feet (6.1 m) from the detector. The system software was programmed in Fortran at HEDL, except for the Nuclear Data, Inc. Peak Search and Analysis Program and Disk Operating System (MIDAS+)

  20. Determination of europium content in Li_2SiO_3(Eu) by neutron activation analysis using Am-Be neutron source

    International Nuclear Information System (INIS)

    Naik, Yeshwant; Tapase, Anant Shamrao; Mhatre, Amol; Datrik, Chandrashekhar; Tawade, Nilesh; Kumar, Umesh; Naik, Haladhara

    2016-01-01

    Circulardiscs of Li_2SiO_3 doped with europium were prepared and a new activation procedure for the neutron dose estimation in a breeder blanket of fusion reactor is described. The amount of europium in the disc was determined by neutron activation analysis (NAA) using an isotopic neutron source. The average neutron absorption cross section for the reaction was calculated using neutron distribution of the Am-Be source and available neutron absorption cross section data for the "1"5"1Eu(n,γ)"1"5"2"mEu reaction, which was used for estimation of europium in the pallet. The cross section of the elements varies with neutron energy, and the flux of the neutrons in each energy range seen by the nuclei under investigation also varies. Neutron distribution spectrum of the Am-Be source was worked out prior to NAA and the effective fractional flux for the nuclear reaction considered for the flux estimation was also determined. - Highlights: • Lithium meta-silicate is breeder materials for a fusion reactor. • Europium is used for neutron dose estimation in a breeder blanket. • It is important to determine amount of europium in lithium meta-silicate. • Amount of europium in lithium meta-silicate was determined by neutron activation and off-line gamma spectrometry.

  1. Comprehensive analysis of shielding effectiveness for HDPE, BPE and concrete as candidate materials for neutron shielding

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    In the compact accelerator based DD neutron generator, the deuterium ions generated by the ion source are accelerated after the extraction and bombarded to a deuterated titanium target. The emitted neutrons have typical energy of ∼2.45MeV. Utilization of these compact accelerator based neutron generators of yield up to 10 9 neutron/second (DD) is under active consideration in many research laboratories for conducting active neutron interrogation experiments. Requirement of an adequately shielded laboratory is mandatory for the effective and safe utilization of these generators for intended applications. In this reference, we report the comprehensive analysis of shielding effectiveness for High Density Polyethylene (HDPE), Borated Polyethylene (BPE) and Concrete as candidate materials for neutron shielding. In shielding calculations, neutron induced scattering and absorption gamma dose has also been considered along with neutron dose. Contemporarily any material with higher hydrogenous concentration is best suited for neutron shielding. Choice of shielding material is also dominated by practical issues like economic viability and availability of space. Our computational analysis results reveal that utilization of BPE sheets results in minimum wall thickness requirement for attaining similar range of attenuation in neutron and gamma dose. The added advantage of using borated polyethylene is that it reduces the effect of both neutron and gamma dose by absorbing neutron and producing lithium and alpha particle. It has also been realized that for deciding upon optimum thickness determination of any shielding material, three important factors to be necessarily considered are: use factor, occupancy factor and work load factor. (author)

  2. Analysis of neutron propagation from the skyshine port of a fusion neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, M. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan); Kaneko, J. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan)]. E-mail: kin@qe.eng.hokudai.ac.jp; Fujita, F. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan); Ochiai, K. [Japan Atomic Energy Institute, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Nishitani, T. [Japan Atomic Energy Institute, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Yoshida, S. [Tokai University, 1117 Kitakaname, Hirastuka, Kanagawa-ken 259-1292 (Japan); Sawamura, T. [Hokkaido University, Kita-8, Nishi-5, Kita-ku, Sapporo 080-8628 (Japan)

    2005-12-01

    The process of neutron leaking from a 14MeV neutron source facility was analyzed by calculations and experiments. The experiments were performed at the Fusion Neutron Source (FNS) facility of the Japan Atomic Energy Institute, Tokai-mura, Japan, which has a port on the roof for skyshine experiments, and a {sup 3}He counter surrounded with a polyethylene moderator of different thicknesses was used to estimate the energy spectra and dose distributions. The {sup 3}He counter with a 3-cm-thick moderator was also used for dose measurements, and the doses evaluated by the counter counts and the calculated count-to-dose conversion factor agreed with the calculations to within {approx}30%. The dose distribution was found to fit a simple analytical expression, D(r)=Q{sub D}exp(-r/{lambda}{sub D})r and the parameters Q{sub D} and {lambda}{sub D} are discussed.

  3. Residual stress analysis by neutron time-of-flight at a reactor source

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.; Schroder, J.

    1990-01-01

    Non-destructive neutron diffractometry for stress analysis will be a powerful experimental tool in material science research performed at the GKSS 5 MW reactor FRG-1. Arguments which show the advantages of the time-of-flight method are given and a suitable high-resolution neutron-efficient type of spectrometer is introduced. First results derived from this method are presented

  4. Incident spectrum determination for time-of-flight neutron powder diffraction data analysis

    International Nuclear Information System (INIS)

    Hodges, J. P.

    1998-01-01

    Accurate characterization of the incident neutron spectrum is an important requirement for precise Rietveld analysis of time-of-flight powder neutron diffraction data. Without an accurate incident spectrum the calculated model for the measured relative intensities of individual Bragg reflections will possess systematic errors. We describe a method for obtaining an accurate numerical incident spectrum using data from a transmitted beam monitor

  5. The analysis of nano structures based on small angle scattering of neutrons

    International Nuclear Information System (INIS)

    Len, Adel; Fuzi, Janos; Rosta, Laszlo; Harmat, Peter

    2014-01-01

    The paper describes the technology of small angle neutron scattering from neutron beam cooling to beam focusing and image processing. The applicability of the method is illustrated by sodium bubble analysis in tungsten, and investigation of the the effect of microbial transglutamase on casein micellas.

  6. Application of neutron-gamma analysis for determination of C/N ratio in compost

    Science.gov (United States)

    Neutron-gamma analysis is based on the acquisition of gamma rays from neutron irradiated study objects. The intensity and energy of the registered gamma rays gives information on the types and amounts of elements in the studied object. The use of this method for measurements of soil carbon demonstra...

  7. A file of reference data for multiple-element neutron activation analysis

    International Nuclear Information System (INIS)

    Kabina, L.P.; Kondurov, I.A.; Shesterneva, I.M.

    1983-12-01

    Data needed for planning neutron activation analysis experiments and processing their results are given. The decay schemes of radioactive nuclei formed in irradiation with thermal neutrons during the (n,γ) reaction taken from the international ENSDF file are used for calculating the activities of nuclei and for drawing up an optimum table for identifying gamma lines in the spectra measured. (author)

  8. Determination of manganese in some pyrolusite ores of Myanmar by neutron activation analysis

    International Nuclear Information System (INIS)

    Myint, U.; Swe, M.T.

    1994-01-01

    Manganese in pyrolusite ores from various regions of Myanmar was determined by thermal neutron activation analysis using an Am(Be) neutron source. The induced activities of 56 Mn were monitored by a γ-counting technique. (author) 2 refs.; 1 tab

  9. Determination of gold in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Myint U.; Sein Sein Yi

    1995-01-01

    Gold has been determined in two Myanmar indigenous medicines TMF 14 (Devaauthada), TMF 15 (Shwe Thwe Say) by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 411 keV of the 198 Au has been measured. (author). 2 refs., 1 fig., 1 tab

  10. Determination of manganese in some pyrolusite ores of Myanmar by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Swe, M T [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-05-17

    Manganese in pyrolusite ores from various regions of Myanmar was determined by thermal neutron activation analysis using an Am(Be) neutron source. The induced activities of [sup 56]Mn were monitored by a [gamma]-counting technique. (author) 2 refs.; 1 tab.

  11. Characteristic analysis on moderating material for obtaining epithermal neutron beam

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Da; Zhang Ying

    2000-01-01

    The one dimension discrete coordinates transport code ANISN was used to calculate three-group constants of 11 elements which could be used to consist moderating epithermal neutron material of beam. Moderating character of simple substances, compounds and mixtures consisted of the optimized elements analyzed three kinds of moderating materials were optimized for epithermal neutron beam

  12. Rapid uranium analysis by delayed neutron counting of neutron activated samples

    International Nuclear Information System (INIS)

    Papadopoulos, N.N.

    1985-01-01

    The uranium analyzer at the Nuclear Research Center ''Demokritos'' and the delayed neutron method have been used to determine the uranium content in lignite, in chemically enriched samples and in solutions of extractable uranium. The results are compared with data obtained by other methods. In the case of dissolved extractable uranium. The results are in good agreement with X-ray fluorescence data in the range 100 ppm to 2000 ppm while beyond these limits the discrepancies between neutron and spectrophotometric data are observed. The results for lignite samples are in good agreement with gamma spectrometric data. Discrepancies indicate that more extensive intercomparisons are needed to check the reliability of various methods

  13. Elemental analysis using temporal gating of a pulsed neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sudeep

    2018-02-20

    Technologies related to determining elemental composition of a sample that comprises fissile material are described herein. In a general embodiment, a pulsed neutron generator periodically emits bursts of neutrons, and is synchronized with an analyzer circuit. The bursts of neutrons are used to interrogate the sample, and the sample outputs gamma rays based upon the neutrons impacting the sample. A detector outputs pulses based upon the gamma rays impinging upon the material of the detector, and the analyzer circuit assigns the pulses to temporally-based bins based upon the analyzer circuit being synchronized with the pulsed neutron generator. A computing device outputs data that is indicative of elemental composition of the sample based upon the binned pulses.

  14. Application of instrumental neutron activation analysis and X-ray fluorescence analysis in art pieces investigation

    International Nuclear Information System (INIS)

    Panczyk, E.; Kierzek, J.; Walis, L.; Ligeza, M.

    1996-01-01

    The application of instrumental neutron activation analysis have been shown for the trace element identification in dyes of old painting and other art objects. The recognition of their composition is a important measure for attribution. Also the X-ray fluorescence analysis has been frequently used for examination of art objects. The age determination of the old chinese porcelain is a good example described in the paper. 20 refs, 4 figs

  15. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko

    2004-01-01

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  16. Neutron beam applications - Development of single crystal structure analysis technique using the HANARO neutron four circle diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Il Hwan; Kim, Moon Jib; Kim, Jin Gyu [Chungnam National University, Taejon (Korea)

    2000-04-01

    As the four circle diffractometer (FCD) has been set up in HANARO, it has become possible to study the single crystal structures by means of the neutron diffraction. Taking account of the geometry of the FCD, a program for the control of te FCD and neutron data acquisition operating under Windows' circumstance has been accomplished. Also, a computer program which can automatically measure the diffraction intensity data has been developed. All data obtained from the FCD are processed automatically for further work and a software for the single crystal structure analyses has been prepared. A KC1 single crystal was selected as first test sample for a structure analysis had been successfully performed on the FCD using in-house developed program and accordingly their functionings with precision were confirmed. For regular single crystal diffraction experiments, the structure analyses of chrysoberyl and Zr(Y)0{sub 1.87} single crystals were performed using both neutron and X-ray diffraction methods, and the result showed that the neutron diffraction work is superior to the X-ray one from the viewpoint of certain crystallographic information obtainable only from the former one. 24 refs., 15 figs., 15 tabs. (Author)

  17. Measurement and Analysis of Neutron Leakage Spectra from Pb and LBE Cylinders with D-T Neutrons

    Science.gov (United States)

    Chen, Size; Gan, Leting; Li, Taosheng; Han, Yuncheng; Liu, Chao; Jiang, Jieqiong; Wu, Yican

    2017-09-01

    For validating the current evaluated neutron data libraries, neutron leakage spectra from lead and lead bismuth eutectic (LBE) cylinders have been measured using an intense D-T pulsed neutron source with time-of-flight (TOF) method by Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS). The measured leakage spectra have been compared with the calculated ones using Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC) with the evaluated pointwise data of lead and bismuth processed from ENDF/B-VII.1, JEFF-3.1 and JENDL-4.0 libraries. This work shows that calculations of the three libraries are all generally consistent with the lead experimental result. For LBE experiment, the JEFF-3.1 and JENDL-4.0 calculations both agree well with the measurement. However, the result of ENDF/B-VII.1 fails to fit with the measured data, especially in the energy range of 5.5 and 7 MeV with difference more than 80%. Through sensitivity analysis with partial cross sections of 209Bi in ENDF/B-VII.1 and JEFF, the difference between the measurement and the ENDF/B-VII.1 calculation in LBE experiment is found due to the neutron data of 209Bi.

  18. Neutron activation analysis: a powerful tool in provenance investigations

    International Nuclear Information System (INIS)

    Meloni, Sandro; Oddone, Massimo

    2002-01-01

    It is well known that neutron activation analysis (NAA), both instrumental and destructive, allows the simultaneous determination of a number of elements, mostly trace elements, with high levels of precision and accuracy. These peculiar properties of NAA are very useful when applied to provenance studies, i.e. to the identification of the origin of raw materials with which artifacts had been manufactured in ancient times. Data reduction by statistical procedures, especially multivariate analysis techniques, provides a statistical 'fingerprint' of investigated materials, both raw materials and archaeological artifacts, that, upon comparison, allows the identification of the provenance of prime matters used for artifact manufacturing. Thus information on quarries and flows exploitation in the antiquity, on technological raw materials processing, on trade routes and about the circulation of fakes, can be obtained. In the present paper two case studies are reported. The first one deals with the identification of the provenance of clay used to make ceramic materials, mostly bricks and tiles, recovered from the excavation of a Roman 'villa' in Lomello (Roman name Laumellum) and of Roman settlings in Casteggio (Roman name Clastidium). Both sites are located in the Province of Pavia in areas called Lomellina and Oltrepo respectively. The second one investigates the origin of the white marble used to build medieval arks, Carolingian age, located in the church of San Felice, now property of the University of Pavia. Experimental set-up, analytical results and data reduction procedures are presented and discussed. (author)

  19. Determination of impurities in beryl by neutron activation analysis

    International Nuclear Information System (INIS)

    Swain, K.K.; Dalvi, Aditi A.; Ajith, Nicy

    2015-01-01

    Beryl is a chemically complex and highly compositionally variable gem-forming mineral found in a variety of locations worldwide. Pure beryl is colorless, but the presence of impurities imparts colors such as green, blue, yellow, red, and white. It is one of the most important gem minerals and the gems are named by their color. The impurities in beryl can be determined using various analytical techniques. Neutron activation analysis (NAA) is a sensitive technique for multielement analysis of geological samples. Four beryl samples, collected from Nayakund Mehandi Block, Parseoni, Maharashtra, were received from Geological Survey of India (GSI), Pune. Powdered samples (50-100 mg) along with comparators (IAEA Soil-7) were packed in aluminum foils, sealed in an aluminum container and irradiated for 7 days in tray rod facility of Dhruva reactor, BARC, Mumbai. After irradiation, samples were brought to laboratory. Samples were opened, transferred into polyethylene packets and weighed. Gamma activity measurements were carried out using 45% HPGe detector coupled to 8 k multi channel analyzer. For the determination of manganese, which produces relatively shorter lived activation product ( 56 Mn: T 1/2 = 2.56 h), samples were sealed in polyethylene pouches and irradiated in graphite reflector position of Critical facility reactor, BARC, Mumbai. Relative method of NAA was used for concentration calculations. IAEA reference material (RM), SL -1 (lake sediment) was analyzed for quality control. Percentage errors on the measured concentrations of the elements are within ± 8% with respect to the recommended/information values

  20. Instrumental determination of iodine in milk by neutron activation analysis

    International Nuclear Information System (INIS)

    Isaac Olive, K.; Chatt, A.

    2006-01-01

    Iodine is an essential trace element. It is related to thyroid functions and its deficiency or excess can be harmful. Deficiency of iodine leads to brain damage including cretinism, excess of iodine blocks the thyroid gland ultimately producing iodine deficiency as well. World Health Organization has set a daily iodine intake dose of 150 μg d -1 . Currently there are 740 million people in the world at risk of iodine deficiency disorders; therefore the monitoring of iodine intake is necessary. Although the iodized salt policy has been adopted in many countries, milk is also one of the major natural sources of iodine and it is also the principal food in children. Therefore, the determination of iodine in milk is needed. This work deals with the determination of iodine in milk by neutron activation analysis. Different methods of irradiation-counting are compared in terms of sensitivity and detection limits. The quantification of iodine was calculated using also two methods, the classic relative one and the standardization of k 0 parameter. A brief analysis of the uncertainty sources in the analytical method is also discussed.(Full text)

  1. Molecular neutron activation analysis of selenium metabolites in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Hansen, G.T.; Ebrahim, A.; Rack, E.P.

    1988-01-01

    Because of the biological importance of selenium in living biological systems, various analytical procedures have been developed for analysis of microquantities of elemental selenium, in urine, serum, and tissue. For urine selenium, these include atomic absorption spectrometry, solution absorption spectrometry, solution fluorescence spectrometry, volumetry, and neutron activation analysis. Of equal or greater importance is the determination of selenium metabolites present in urine for the purpose of describing the biological pathways for the metabolism of selenium in living organisms. While it is known from previous studies that trimethylselenonium ion (TMSe) is a major metabolite in urine, probably the result of reduction and methylation reaction, there are no definitive results in the literature indicating the nature or quantity of other selenium metabolic products in urine. Early techniques to measure TMSe levels in urine involved the use of the radiotracer 75 Se. Because of the long biological half-life of selenium and issues of radiation exposure, its use in humans has been limited. In this paper, the authors report the experimental procedure for the determination of total selenoamino acid concentration in urine and present total selenium values, and, where applicable, TMSe, SeO 2- 3 , and total selenoamino acid concentrations in the urine of normal and diseased subjects

  2. Development of a neutronic analysis code using data from Monju

    International Nuclear Information System (INIS)

    Rooijen, W.F.G. van; Yamano, N.; Shimazu, Y.

    2015-01-01

    In recent years three major sets of modern evaluated nuclear data have become available: JENDL-4.0, JEFF-3.1.2 and ENDF/B-VII.1. The authors were involved with a research project to establish analysis method for a future commercial-scale LMFBR. This project focused on JENDL-4.0 and conventional Japanese codes. As a cross check, we decided to also apply the fast reactor code ERANOS. This necessitated to produce nuclear data (cross sections, etc) for the ERANOS code system, discussed in this paper. We developed a nuclear data processing system to produce cross sections, probability tables, delayed neutron data, and covariance data from the evaluated nuclear data files for ERANOS. A benchmark calculation on the MZA/MZB benchmark showed very satisfying results. Subsequently, we analyzed the prototype LMFBR Monju with ERANOS and our own sets of nuclear data. The results are very satisfactory. The results from ERANOS indicate that the target accuracies for nuclear data have not been met, although the three sets of evaluated nuclear data all performed very well in our analysis. In the future, the covariance on nuclear data should be reduced to meet the target accuracies on criticality and feedback coefficients. (author)

  3. Development of Distinction Method of Production Area of Ginsengs by Using a Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chung, Yong Sam; Sun, Gwang Min; Lee, Yu Na; Yoo, Sang Ho [KAERI, Daejeon (Korea, Republic of)

    2010-05-15

    Distinction of production area of Korean ginsengs has been tried by using neutron activation techniques such as an instrumental neutron activation analysis (INAA) and a prompt gamma activation analysis (PGAA). A distribution of elements has varied according to the part of plant clue to the difference of enrichment effect and influence from a soil where the plants have been grown. So correlation study between plants and soil has been an Issue. In this study, the distribution of trace elements within a Korean ginseng was investigated by using an instrumental neutron activation analysis

  4. Improving differential die-away analysis via the use of neutron poisons in detectors

    International Nuclear Information System (INIS)

    Jordan, Kelly A.; Vujic, Jasmina; Phillips, Emmanuel; Gozani, Tsahi

    2007-01-01

    Differential Die-Away Analysis (DDAA) is an active interrogation technique to detect special nuclear material (SNM). In DDAA, a pulsed neutron generator produces pulses of neutrons that are directed into a cargo to be interrogated. As each pulse passes through the cargo, the neutrons are thermalized and absorbed. If SNM is present, the thermalized neutrons from the source will cause fissions that produce a new source of neutrons. The number of thermal neutrons decay exponentially with the diffusion decay time of the inspected medium, on the order of hundreds of μs. An external neutron detector which is designed to detect only epithermal neutrons, will measure only a single decaying exponential when there is no SNM present, and two exponentials when SNM is present. This paper shows that in many cases, a gain in detection sensitivity can be realized by introducing a thermal neutron poison (such as boron) into the detector. This poison will reduce the efficiency of the detector, but decrease its decay time. A decreased decay time will cause the separation between the detector and fission signal exponentials to occur at an earlier time. There is a balance between efficiency and time constant for a detector. The boron concentration to achieve the maximum sensitivity, and its magnitude, will be different for different detector designs

  5. Procedures for multielement analysis using high-flux fast-neutron activation

    International Nuclear Information System (INIS)

    Williams, R.E.; Hopke, P.K.; Meyer, R.A.

    1981-06-01

    Improvements have been made in the rabbit system used for multi-element fast-neutron activation analysis at the Lawrence Livermore National Laboratory Rotating Target Neutron Source, RTNS-I. Procedures have been developed for the analysis of 20 to 25 elements in samples with an inorganic matrix and 10 to 15 elements in biological samples, without the need for prohibitively expensive, long irradiations. Results are presented for the analysis of fly ash, orchard leaves, and bovine liver

  6. Atlantic Richfield Hanford Company californium multiplier/delayed neutron counter safety analysis

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1976-08-01

    The Californium Multiplier (CFX) is a subcritical assembly of uranium surrounding 252 Cf spontaneously fissioning neutron sources; its function is to multiply the neutron flux to a level useful for activation analysis. This document summarizes the safety analysis aspects of the CFX, DNC, pneumatic transfer system, and instrumentation and to detail all the aspects of the total facility as a starting point for the ARHCO Safety Analysis Review. Recognized hazards and steps already taken to neutralize them are itemized

  7. Applications of neutron activation analysis in environmental science, biology and geoscience

    International Nuclear Information System (INIS)

    1992-01-01

    The applications of neutron activation analysis technique with high sensitivity, good accuracy, multielemental analysis and non-destruction of samples in hydrosphere, soil and lithosphere, atmosphere, cosmosphere and biosphere were introduced in this book. A large amount of research activities in this field during the 20 years and more carried out by Neutron Activation Analysis Laboratory, Institute of High Energy Physics, Academia Sinica, was summarized. A number of the data and information with important scientific significance was provided

  8. Non-destructive assay of fissile materials by detection and multiplicity analysis of spontaneous neutrons

    International Nuclear Information System (INIS)

    Prosdocimi, A.

    1979-01-01

    A method for determining the absolute reaction rate of nuclear events giving rise to neutron emission, according to their neutron multiplicity, is proposed. A typical application is the measurement of the (α, n) and spontaneous fission rates in a fissile material sample, particularly of Pu oxide composition. An analysis of random and correlated neutron pulses is carried out on the basis of sequential order without requiring any time interval analysis, then the primary nuclear events are sorted versus their neutron multiplicity. Suitable theoretical relationships enable to derive the absolute (α, n) and SF reaction rates when the physical parameters of the neutron detector and the multiplicity spectrumm of pulses are known. A typical device is described and the results of experiments leading to Pu-239 and Pu-240 assay are given

  9. Time-frequency feature analysis and recognition of fission neutrons signal based on support vector machine

    International Nuclear Information System (INIS)

    Jin Jing; Wei Biao; Feng Peng; Tang Yuelin; Zhou Mi

    2010-01-01

    Based on the interdependent relationship between fission neutrons ( 252 Cf) and fission chain ( 235 U system), the paper presents the time-frequency feature analysis and recognition in fission neutron signal based on support vector machine (SVM) through the analysis on signal characteristics and the measuring principle of the 252 Cf fission neutron signal. The time-frequency characteristics and energy features of the fission neutron signal are extracted by using wavelet decomposition and de-noising wavelet packet decomposition, and then applied to training and classification by means of support vector machine based on statistical learning theory. The results show that, it is effective to obtain features of nuclear signal via wavelet decomposition and de-noising wavelet packet decomposition, and the latter can reflect the internal characteristics of the fission neutron system better. With the training accomplished, the SVM classifier achieves an accuracy rate above 70%, overcoming the lack of training samples, and verifying the effectiveness of the algorithm. (authors)

  10. Structure analysis of liquids and disordered materials using pulsed neutron diffraction and total scattering

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2011-01-01

    Neutron diffraction·total scattering at pulsed neutron source is a powerful method to analyze the complex structure of disordered materials: liquids, glasses, amorphous materials and disordered crystals. The basic idea of the structure of disordered materials, the fundamental diffraction theory for disordered materials, and structure analysis of disordered materials using pulsed neutron diffraction·total scattering technique (TOF method) are described in detail. In addition, the precise information of the world highest class J-PARC MLF spallation neutron source and typical J-PARC neutron total scattering instrument NOVA are also given. Recent structural modelling methods of disordered materials such like reverse Monte Carlo (RMC) simulation method is briefly described using an example of the analysis of a typical disordered material silica glass. (author)

  11. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  12. Fire Hazard Analysis for the Cold Neutron Source System

    International Nuclear Information System (INIS)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-01

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area

  13. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    International Nuclear Information System (INIS)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H.

    2012-01-01

    This study shows the application of semi-absolute k 0 instrumental neutron activation analysis (k 0 -INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k 0 -INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  14. Statistical analysis of s-wave neutron reduced widths

    International Nuclear Information System (INIS)

    Pandita Anita; Agrawal, H.M.

    1992-01-01

    The fluctuations of the s-wave neutron reduced widths for many nuclei have been analyzed with emphasis on recent measurements by a statistical procedure which is based on the method of maximum likelihood. It is shown that the s-wave neutron reduced widths of nuclei follow single channel Porter Thomas distribution (x 2 -distribution with degree of freedom ν = 1) for most of the cases. However there are apparent deviations from ν = 1 and possible explanation and significance of this deviation is given. These considerations are likely to modify the evaluation of neutron cross section. (author)

  15. Using MCNP code for neutron and photon skyshine analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zharkov, V.P.; Dikareva, O.F.; Kartashev, I.A.; Kiselev, A.N.; Netecha, M.E. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Nomura, Y.; Tsubosaka, A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-03-01

    The MCNP Monte-Carlo code was used for the investigation of the sensitivity of neutron and neutron-induced secondary photon dose rate, total and thermal neutron fluxes and space-energy distributions to energy and angular distribution of radiation source, to thickness and composition of the ground, air density (including it changing with height), humidities of air and ground, thermalization effects, detector's dimension and its disposal above the ground level. The calculations were performed with the assumption that the source or released radiation into the atmosphere can be treated as a point source and the source containment structure has a negligible perturbation on the skyshine radiation field. (author)

  16. Speciation analysis of cobalt in foods by high-performance liquid chromatography and neutron activation analysis

    International Nuclear Information System (INIS)

    Muto, Toshio; Koyama, Motoko

    1994-01-01

    A combined method by coupling high-performance liquid chromatography (HPLC, as a separation method) with neutron activation analysis (as a detection method) have been applied to the speciation analysis of cobalt in daily foods (e.g. egg, fish and milk). Cobalt species including free cobalt, vitamin B 12 and protein-bound cobalt were separated with a preparative HPLC and a centrifuge. Subsequently, the determination of cobalt in the separated species was made by neutron activation analysis. The results showed that the content of the total cobalt in the foods was found to lie in the range 0.4-11ng/g(0.4-11ppb) based on wet weight. The compositions of free cobalt, vitamin B 12 and protein-bound cobalt were ranged 16-43%, 55-73%, 2.3-17%, respectively. These experimental evidences suggest that the combination of HPLC and neutron activation analysis is expected to be a useful tool for speciation analysis of trace elements in biological as well as environmental materials. (author)

  17. Utilization of neutrons in nuclear data measurements and bulk sample analysis

    International Nuclear Information System (INIS)

    Jonah, S. A.

    1995-01-01

    Experimental investigations were carried out with neutrons in the fields of neutron data measurements and bulk sample analysis based on the interactions of neutron interactions required in the investigations together with some salient features of the sources employed are enumerated. Excitation cross section curves and isomeric cross section ratio of 58 Ni(n,p) 58 Co m , g reaction over the neutron energy range of between 5 and 15 MeV were determined using the activation analysis technique in combination with high-resolution gamma spectroscopy. Characteristics of the incident neutrons produced via the D-T reaction of a neutron generator and D-D reaction of a cyclotron were determined experimentally to account for the contributing effects of background neutrons especially in the 5-13 MeV neutron energy range where existing data are scanty and rather discrepant. The measured data agree well with calculated data using nuclear models but deviate significantly from the recommended data based on existing literature data. The measured δ act and δ m /δ g data made it possible to determine the cross section curve for 58 Ni(n,p) 58 Co m reaction. Furthermore the flux density distributions of thermal and primary fast neutrons in different configurations of bulk samples consisting of water, graphite and coal together with the attenuation characteristics were determined by the activation analysis and pulse height response spectrometry techniques. From the results obtained, an experimental geometry has been proposed for on-line elemental analysis of coal and other minerals. Similarly the total hydrogen content and 0+C/H atomic ratio in household and motor oils as well as crude oil samples of different origins were measured by an improved experimental arrangement based on the thermal neutron reflection technique. A detection limit of 0.12 w % was obtained for hydrogen indicating the possible adaptation of this technique for quality control of petroleum products

  18. Use of research reactors for neutron activation analysis. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    2001-04-01

    Neutron activation analysis (NAA) is an analytical technique based on the measurement of characteristic radiation from radionuclides formed directly or indirectly by neutron irradiation of the material of interest. In the last three decades, neutron activation analysis has been found to be extremely useful in the determination of trace and minor elements in many disciplines. These include environmental analysis applications, nutritional and health related studies, geological as well as material sciences. The most suitable source of neutrons for NAA is a research reactor. There are several application fields in which NAA has a superior position compared to other analytical methods, and there are good prospects in developing countries for long term growth. Therefore, the IAEA is making concerted efforts to promote neutron activation analysis and at the same time to assist developing Member States in better utilization of their research reactors. The purpose of the meeting was to discuss the benefits and the role of NAA in applications and research areas that may contribute towards improving utilization of research reactors. The participants focused on five specific topics: (1) Current trends in NAA; (2) The role of NAA compared to other methods of chemical analysis; (3) How to increase the number of NAA users through interaction with industries, research institutes, universities and medical institutions; (4) How to reduce costs and to maintain quality and reliability; (5) NAA using low power research reactors. Neutron activation analysis in its various forms is still active and there are good prospects in developing countries for long-term growth. This can be achieved by a more effective use of existing irradiation and counting facilities, a better end-user focus, and perhaps marginal improvements in equipment and techniques. Therefore, it is recommended that the Member States provide financial and other assistance to enhance the effectiveness of their laboratories

  19. Neutron activation analysis as analytical tool of environmental issue

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2004-01-01

    Neutron activation analysis (NAA) ia applicable to the sample of wide range of research fields, such as material science, biology, geochemistry and so on. However, respecting the advantages of NAA, a sample with small amounts or a precious sample is the most suitable samples for NAA, because NAA is capable of trace analysis and non-destructive determination. In this paper, among these fields, NAA of atmospheric particulate matter (PM) sample is discussed emphasizing on the use of obtained data as an analytical tool of environmental issue. Concentration of PM in air is usually very low, and it is not easy to get vast amount of sample even using a high volume air sampling devise. Therefore, high sensitive NAA is suitable to determine elements in PM samples. Main components of PM is crust oriented silicate, and so on in rural/remote area, and carbonic materials and heavy metals are concentrated in PM in urban area, because of automobile exhaust and other anthropogenic emission source. Elemental pattern of PM reflects a condition of air around the monitoring site. Trends of air pollution can be traced by periodical monitoring of PM by NAA method. Elemental concentrations in air change by season. For example, crustal elements increase in dry season, and sea salts components increase their concentration when wind direction from sea is dominant. Elements that emitted from anthropogenic sources are mainly contained in fine portion of PM, and increase their concentration during winter season, when emission from heating system is high and air is stable. For further analysis and understanding of environmental issues, indicator elements for various emission sources, and elemental concentration ratios of some environmental samples and source portion assignment techniques are useful. (author)

  20. Neutron cross-sections database for amino acids and proteins analysis

    Energy Technology Data Exchange (ETDEWEB)

    Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin, E-mail: dante@ien.gov.br, E-mail: fferreira@ien.gov.br, E-mail: Chaffin@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rocha, Helio F. da, E-mail: hrocha@gbl.com.br [Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Pediatria

    2015-07-01

    Biological materials may be studied using neutrons as an unconventional tool of analysis. Dynamics and structures data can be obtained for amino acids, protein and others cellular components by neutron cross sections determinations especially for applications in nuclear purity and conformation analysis. The instrument used for this is the crystal spectrometer of the Instituto de Engenharia Nuclear (IEN-CNEN-RJ), the only one in Latin America that uses neutrons for this type of analyzes and it is installed in one of the reactor Argonauta irradiation channels. The experimentally values obtained are compared with calculated values using literature data with a rigorous analysis of the chemical composition, conformation and molecular structure analysis of the materials. A neutron cross-section database was constructed to assist in determining molecular dynamic, structure and formulae of biological materials. The database contains neutron cross-sections values of all amino acids, chemical elements, molecular groups, auxiliary radicals, as well as values of constants and parameters necessary for the analysis. An unprecedented analytical procedure was developed using the neutron cross section parceling and grouping method for data manipulation. This database is a result of measurements obtained from twenty amino acids that were provided by different manufactories and are used in oral administration in hospital individuals for nutritional applications. It was also constructed a small data file of compounds with different molecular groups including carbon, nitrogen, sulfur and oxygen, all linked to hydrogen atoms. A review of global and national scene in the acquisition of neutron cross sections data, the formation of libraries and the application of neutrons for analyzing biological materials is presented. This database has further application in protein analysis and the neutron cross-section from the insulin was estimated. (author)

  1. Neutron cross-sections database for amino acids and proteins analysis

    International Nuclear Information System (INIS)

    Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin; Rocha, Helio F. da

    2015-01-01

    Biological materials may be studied using neutrons as an unconventional tool of analysis. Dynamics and structures data can be obtained for amino acids, protein and others cellular components by neutron cross sections determinations especially for applications in nuclear purity and conformation analysis. The instrument used for this is the crystal spectrometer of the Instituto de Engenharia Nuclear (IEN-CNEN-RJ), the only one in Latin America that uses neutrons for this type of analyzes and it is installed in one of the reactor Argonauta irradiation channels. The experimentally values obtained are compared with calculated values using literature data with a rigorous analysis of the chemical composition, conformation and molecular structure analysis of the materials. A neutron cross-section database was constructed to assist in determining molecular dynamic, structure and formulae of biological materials. The database contains neutron cross-sections values of all amino acids, chemical elements, molecular groups, auxiliary radicals, as well as values of constants and parameters necessary for the analysis. An unprecedented analytical procedure was developed using the neutron cross section parceling and grouping method for data manipulation. This database is a result of measurements obtained from twenty amino acids that were provided by different manufactories and are used in oral administration in hospital individuals for nutritional applications. It was also constructed a small data file of compounds with different molecular groups including carbon, nitrogen, sulfur and oxygen, all linked to hydrogen atoms. A review of global and national scene in the acquisition of neutron cross sections data, the formation of libraries and the application of neutrons for analyzing biological materials is presented. This database has further application in protein analysis and the neutron cross-section from the insulin was estimated. (author)

  2. Neutron activation analysis of Californian and Japanese rice

    International Nuclear Information System (INIS)

    Stefan Badza; Tatjana Jevremovic

    2014-01-01

    The main motivation in studying different types of rice was to determine how processing of rice affects its mineral composition, and to compare how it affects rice dietary intake. Specifically the estimated difference in between the brown and white rice produced in Japan and California are studied. These various rice samples were analyzed using neutron activation analysis technique available at the Utah Nuclear Engineering Program (UNEP). Samples were prepared using novel technique developed at UNEP and submitted for short and long irradiation. The detected elements were As, Br, Cl, Cd, Mn, Na, K. The concentrations of Mn, K and Na are significantly higher in the brown then in the white rice, while As, Br and Cl have more homogeneous presence and therefore smaller difference in concentration. Elemental concentration was compared with The Institute of Medicine (IOM) in the United States values of recommended dietary allowance and Food and Drug Administration (FDA) limits for harmful elements. From these measurements, only the concentration of Mn in rice satisfies daily needs in the range set as defined by IOM. The concentrations of potentially harmful elements are lower than FDA limits. (author)

  3. Instrumental neutron activation analysis of tree rings for dendrochemical studies

    International Nuclear Information System (INIS)

    Schaumloffel, J.C.; Filby, R.H.

    1996-01-01

    Instrumental neutron activation analysis (INAA) was employed to determine zinc, cadmium and potassium concentrations in the growth rings of ponderosa pine (Pinus ponderosa Dougl.) trees growing along the shores of Lake Roosevelt in Washington State, U.S.A. where mineral processing activities have resulted in high burdens of zinc and cadmium in the lake sediments. The tree growing along the contaminated waterway display elevated concentrations of zinc in its growth rings relative to a tree growing along an uncontaminated tributary of Lake Roosevelt. Cadmium concentrations in the growth rings from both sites are similar from 1988 to 1993. Water quality data indicate an increased concentration of cadmium in the lake from 1984 to 1988. The increased concentrations of cadmium in the lake water were reflected in apparent increases in concentrations of cadmium in individual rings of the tree sampled at the contaminated site. This suggests that translocation of cadmium in the sapwood of heartwood-forming species does not occur in the short term, and thus may not be a limiting factor in using trees as environmental monitors for cadmium. In addition, five-year tree ring segments were analyzed and subsequently reanalyzed as individual single-year ring segments. The analytical data obtained for the pooled individual rings are essentially the same as for the five-year segments, demonstrating the utility of NAA for dendrochemical studies. (author). 24 refs., 5 figs., 2 tabs

  4. Elementary concentration of Peruibe black mud by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Ponciano, Ricardo; Silva, Paulo S.C da, E-mail: jeffkoy@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The Peruibe Black Mud is used in therapies such as psoriasis, peripheral dermatitis, acne, seborrehea, myalgia arthritis and rheumatic non-articular processes. This material is characterized by is fine organic matter particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is considered natural, it may not be free of possible adverse health effects, like toxic chemical elements, when used for therapeutic purposes. In the therapeutic treatments involving clays, clays are used in mud form also called peloids, obtained by maturation process. Five in natura and three maturated Black Mud samples were collected in Peruibe city, Sao Paulo State, Brazil. To investigate the distribution of major, trace and rare earth elements in the in natura and maturated clays that constitute the Peruibe Black Mud, neutron activation analysis (NAA) was used. A comparison between in natura and maturated mud shows that major, trace and rare earth elements follow the same order in both types. Generally, the concentrations in the maturated mud are slightly lower than in natura mud. Enrichment on the upper continental crust could be observed for the elements As, Br, Sb and Se, in these types of mud. (author)

  5. Trace elements in coloured opals using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    McOrist, G.D.; Smallwood, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs.

  6. Inorganic constituents in herbal medicine by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN- SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The demand for herbal medicines is growing worldwide. The expansion of interest has required the standardization of the sector with implementation and constant review of technical standards for production and marketing of these medicines in order to ensure the safe use, therapeutic efficacy and quality of the products. According to data from the World Health Organization, approximately 80% of world population has resorted to the benefits of certain herbs with therapeutic action popularly recognized. Despite the vast flora and the extensive use of medicinal plants by the population, it is a consensus that scientific studies on the subject are insufficiency. Therefore, it is necessary to stimulate such studies in view of the importance of the results of both individual and social field. The determination of major, minor and trace elements and the research of metabolic processes and their impacts on human health are of great importance due to the growth of environmental pollution that directly affects the plants and therefore the phytotherapics. Therefore, the objective of this work was to determine the content of inorganic constituents in herbal medicine: moisture, total ash and the elements As, Ba, Br, Ca, Cs, Co, Cr, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in order to verify the quality of the products. It was observed that the elemental concentrations varied in a wide range from plant to plant and elements with higher concentrations were Ba, Fe, Cr and Zn. (author)

  7. Uranium in coral skeletons determined by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Ohde, S.; Hossain, M.M.M.; Ozaki, H.; Masuzawa, T.

    2003-01-01

    A simple and non-destructive method has been proposed for the routine determination of uranium by epithermal neutron activation analysis in coral skeletons. Using a cadmium capsule, about 0.1-0.2 g samples were irradiated for 6 hours in the Triga Mark II Reactor. Measurements of γ-ray ( 239 Np via 239 U) were performed with each sample and standard after cooling for about three days. Compared with a non-destructive thermal NAA, the present method was found to improve the sensitivity because it reduced the intense Compton background induced by 24 Na. Uranium in coral standards was determined within 2% of analytical precision. The data obtained for the carbonate standards are mostly consistent with reported values. The present method could be usefully applied to determine uranium contents in fossil corals from the Funafuti Atoll in the Pacific. The distribution of uranium between seawater and coral skeletons is also discussed in order to understand the environmental media in which the coral grew. (author)

  8. Status of neutron activation analysis in developing countries

    International Nuclear Information System (INIS)

    Chatt, A.

    1996-01-01

    The 60th anniversary of the discovery of neutron activation analysis (NAA) by Hevesy and Levi is being celebrated in 1996. With the availability of nuclear reactors capable of producing fluxes of the order of 10 12 to 10 14 n/cm 2 s, the development of high-resolution and high-efficiency conventional and anticoincidence gamma-ray detectors, multichannel pulse-height analyzers, and personal computer-based softwares, NAA has become an extremely valuable analytical technique, especially for the simultaneous determinations of multielement concentrations. This technique can be used in a number of ways, depending on the nature of the matrix, the major elements in the sample, and on the elements of interest. In most cases, several elements can be determined without any chemical pretreatment of the sample; the technique is then called instrumental NAA (INAA). In other cases, an element can be concentrated from an interfering matrix prior to irradiation; the technique is then termed preconcentration NAA (PNAA). In opposite instances, the irradiation is followed by a chemical separation of the desired element; the technique is then called radiochemical NAA (RNAA). All three forms of NAA can provide elemental concentrations of high accuracy and precision with excellent sensitivity. The number of research reactors in developing countries has increased steadily from 17 in 1955 through 71 in 1975 to 89 in 1995. Low flux reactors such as SLOWPOKE and the Chinese MNSR are primarily used for NAA

  9. Trace elements in coloured opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Smallwood, A.

    1996-01-01

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs

  10. Neutron activation analysis of lipsticks using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Mirsa, G.; Mittal, V.K.

    2004-01-01

    Neutron activation analysis with gamma-ray spectrometry was used to measure the concentrations of various elements in lipsticks of popular Indian and foreign brands. The aim of the present work was to study the possibility of existence of trace elements in samples of lipsticks (the ingredients of which are mostly organic in nature) and to see whether trace elements could distinguish lipsticks of different Indian and foreign brands from the forensic point of view apart from their inter-se differentiation. In the different samples of lipsticks that were analysed the following elements were detected: Au, Ba, Br, Ca, Cs, Fe, Na, Ru, Sb, Sc, Ta, Yb, Zn, Rb and Se. It was found that inter-se differentiation of lipsticks was possible on the basis of concentrations of trace elements and their profile. Concentration of bromine in samples of lipsticks identified lipsticks of different Indian brands. Samples of lipsticks of Indian and foreign brands could be differentiated on the basis of concentrations of cesium, antimony and scandium which were found to be higher in foreign brands as compared to those in Indian brands. (authors)

  11. Radiochemical separation and their application to neutron activation analysis technique

    International Nuclear Information System (INIS)

    Turel, Z.R.

    2013-01-01

    The present paper discusses the development of some new, rapid and selective method for the radiochemical separation and estimation of elements such as, Co(II) 2-3 , Ir(III) 4 , Au(III) 5 , Pt(IV), Pd(II), Os(IV) 6 , Cu(II), Ag(I), Mo(VI), Ni(II), Zn(II), Cd(II), Hg(II), Cs(I), Sb(III), La(III), Sc(III) etc. using various reagents. Various parameters such as pH, time of equilibrium, effect of anions and cations, effect of reagent etc. has been determined employing tracers of the elements under consideration and will be discussed. The method is made highly selective by the use of appropriate masking agent. The stoichiometry of metal reagent is determined by the substoichiometric method. Some examples of multielemental radiochemical separation methods thus developed which have been applied in determining the elements by radiochemical thermal neutron activation analysis will be presented and discussed. The implications of the results on the reference system will also be accounted. Statistical evaluation with reference to accuracy, precision and sensitivity will also be presented

  12. Neutron activation analysis of an iranian cigarette and its smoke

    International Nuclear Information System (INIS)

    Abedinzadeh, Z.; Razeghi, M.; Parsa, B.

    1977-01-01

    Non-destructive neutron activation analysis, employing a high-resolution Ge(Li)detector, was applied to determine the concentration of 24 trace elements in the tobacco of the Zarrin cigarette which is commercially made in Iran. These elements are: Na, K, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Au, Hg and Th. The smokes from the combustion of this tobacco and of the cigarette paper were also analysed for these elements and the percentage transference values were calculated. The concentration of some of the trace elements in Zarrin cigarette tobacco obtained in this work from the pooled tobacco sample have significantly changed in comparison with the results obtained in the earlier observations based on individual cigarettes. Aside from the differences which may occur due to different sampling methods, this may be attributed to the variations in specific brands of commercial cigarettes over a period of time. The fact of particular importance is that the concentrations of Se, Hg and Sb in Zarrin cigarette tobacco have almost increased by a factor of 2,3 and 10, respectively. However, the levels of some elements such as K, Fe, Rb, Cs, Ce, Sm, Tb, Hf and Th have remained fairly constant during the two observation periods. (T.G.)

  13. Instrumental neutron activation analysis of carbonatites from Homa Mountain, Kenya

    International Nuclear Information System (INIS)

    Ohde, S.

    2004-01-01

    Twenty eight (major and trace) elements including eight rare earth elements (REEs) in African carbonatite samples were determined by instrumental neutron activation analysis. The geochemical behavior of trace elements was studied in relation to the order of carbonatite intrusion from C1 to C4 through C2 and C3 at Homa Mountain, Kenya. The enrichment of Mn, Fe, Sr, Ba, Th, U and REE is found in the sixteen carbonatites examined in this study. The general increase in the concentrations of Na, Sc, Mn, Sb, Ba, Th, U and REE occurs from C1 to C4 through C2 and C2c, but C3 carbonatite shows a different pattern. The C3 carbonatite is extraordinarily enriched in Mn, Fe and Ba and is highly enriched in Cr, As, Sb and Th. The chondrite-normalized REE distribution pattern of the C3 carbonatite is not rich in the light REE. Strong fractionation between light and heavy REEs is found in the carbonatites, and moderate fractionation in the two alkalic igneous rock samples. In order to evaluate partitioning of REEs into carbonate, oxide and other mineral fractions, a selective chemical leaching technique on carbonatites was applied and is discussed. (author)

  14. Trace elements in coloured opals using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    McOrist, G D; Smallwood, A [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs.

  15. Study of nutritional supplements using neutron activation analysis

    International Nuclear Information System (INIS)

    Reis, Rogerio Alves de Sousa; Saiki, Mitiko

    2005-01-01

    The increasing consumption of nutritional supplements among the people mainly aiming at the replacement of nutrients and minerals in the organism has led the commercialization of a great number of brands of these products. Consequently the quality control of these products is of great interest to verify if their element contents agree the values presented in labels or in the instructions for their uses. In this study the elements Ca, Co, Cr, Cu, Fe, K, Na, Se and Zn were analyzed in multimineral supplements and vitamins samples using neutron activation analysis method. The results obtained compared with the values of the labels of nutritional supplements presented good agreement. For quality control of the analytical data, certified reference materials NIST 1400 Bone Ash and NIST 1633b Coal Fly Ash provided by National Institute of Standards and Technology were analysed. Accuracy and precision of the results were evaluated and Z score values obtained were lower than 2 indicating that the data found are within the certified values at 95% of significance level. (author)

  16. Characterization of Brazilian commercial milks by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Santos, L.G.C.; De Nadai Fernandes, E.A.; Tagliaferro, F.S.; Bacchi, M.A.

    2008-01-01

    Aiming at the determination of toxic and essential elements in Brazilian commercial bovine milk, 25 ultra high temperature (UHT) milk samples were acquired in the local market of Piracicaba, SP. The samples were freeze-dried and analyzed by instrumental neutron activation analysis (INAA) allowing the determination of Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn. When the results were expressed as concentration (mg x l -1 ) no significant differences were found. However, considering the dry matter, results showed a clear difference between the mass fractions (mg x kg -1 d.w.) of skim milk and whole milk for the elements Br, Ca, K, Na, Rb and Zn, indicating that the removal of fat caused a concentration effect in the dry matter of skim milks. Discrepancies were found between the concentrations of Ca and Na measured by INAA and the values informed in the labels. Ca showed variations within 30% for most samples, while concentrations of Na were up to 190% higher than informed values. The sample preparation and the INAA procedure were appropriate for the determination of Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn in milk samples. (author)

  17. The role of neutron activation analysis in nutritional biomonitoring programs

    International Nuclear Information System (INIS)

    Iyengar, V.

    1988-01-01

    Nutritional biomonitoring is a multidisciplinary task and an integral part of a more general bioenvironmental surveillance. In its comprehensive form, it is a combination of biological, environmental, and nutrient monitoring activities. Nutrient monitoring evaluates the input of essential nutrients required to maintain vital bodily functions; this includes vigilance over extreme fluctuations of nutrient intake in relation to the recommended dietary allowances and estimated safe and adequate daily dietary intakes and adherence to the goals of provisional tolerance limits. Environmental monitoring assesses the external human exposure via ambient pathways, namely, air, water, soil, food, etc. Biological monitoring quantifies a toxic agent and its metabolites in representative biologic specimens of an exposed organ to identify health effects. In practice, coordinating all three components of a nutritional biomonitoring program is complex, expensive, and tedious. Experience gained from the US National Health and Nutrition Examination Surveys demonstrates the problems involved. By far the most critical challenge faced here is the question of analytical quality control, particularly when trace element determinations are involved. Yet, measures to ensure reliability of analytical data are mandatory, and there are no short-cuts to this requirement. The purpose of this presentation is to elucidate the potential of neutron activation analysis (NAA) in nutritional biomonitoring activities

  18. Inorganic constituents in herbal medicine by neutron activation analysis

    International Nuclear Information System (INIS)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da

    2011-01-01

    The demand for herbal medicines is growing worldwide. The expansion of interest has required the standardization of the sector with implementation and constant review of technical standards for production and marketing of these medicines in order to ensure the safe use, therapeutic efficacy and quality of the products. According to data from the World Health Organization, approximately 80% of world population has resorted to the benefits of certain herbs with therapeutic action popularly recognized. Despite the vast flora and the extensive use of medicinal plants by the population, it is a consensus that scientific studies on the subject are insufficiency. Therefore, it is necessary to stimulate such studies in view of the importance of the results of both individual and social field. The determination of major, minor and trace elements and the research of metabolic processes and their impacts on human health are of great importance due to the growth of environmental pollution that directly affects the plants and therefore the phytotherapics. Therefore, the objective of this work was to determine the content of inorganic constituents in herbal medicine: moisture, total ash and the elements As, Ba, Br, Ca, Cs, Co, Cr, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in order to verify the quality of the products. It was observed that the elemental concentrations varied in a wide range from plant to plant and elements with higher concentrations were Ba, Fe, Cr and Zn. (author)

  19. Instrumental neutron activation analysis of prehistoric and ancient bone remains

    International Nuclear Information System (INIS)

    Vasidov, A.; Osinskaya, N.S.; Khatamov, Sh.; Rakhmanova, T.

    2008-01-01

    Instrumental neutron activation analysis (INAA) was used to study the element contents in bones of prehistoric dinosaurs and bones of an ancient bear and an archantrop (ancient person), which were found on the territory of Uzbekistan. Concentrations of more than 25 elements were in the range of 0.043-3600 mg/kg. Multielement analyses of bone and soil samples were carried out by INAA using the WWR-SM research nuclear reactor. Results of measurements have shown that in the dinosaurs bones the concentration of the rare earth elements (REEs) were within 280-3200 mg/kg; the uranium content reached a very high value, up to 180 mg/kg, while in soils coating the dinosaurs bones this content was 4.2 mg/kg; in the bones of the archantrop it was 1.53 mg/kg and in the bones of a standard person its amount is less than 0.016 mg/kg. (author)

  20. Neutron activation analysis and provenance study of Tupiguarani Tradition pottery

    International Nuclear Information System (INIS)

    Faria, Gleikam Lopes de Oliveira; Menezes, Maria Angela de B.C.; Ribeiro, Loredana; Jacome, Camila

    2009-01-01

    Archaeology can fill the gap between ancient population and modern society elucidating the evidences found in archaeological sites. The fingerprint identified, that is the chemical composition of the ceramics, can help understanding this connection between the past and the present. The Tupiguarani Tradition vestiges found by archaeologists will be a way to know about the last two millennia of the Brazilian prehistory. This archaeological site is located along the coast of the Brazilian State of Espirito Santo, where the main evidence is a pretty ceramic with the occurrence of plastic and painted decoration. When the Portuguese settlers arrived in this region, in sixteenth century, several Missoes Jesuiticas (Jesuitical Missions) were built along the Brazilian coast. In spite of living within the Mission and been catechized, the Indians kept on producing traditional handicraft, as the decorated ceramic, however, they introduced European elements to the decoration. During the research expeditions made to the archaeological site of the Tupiguarani Tradition, many sherds were found. The identification and classification of ceramics through a multielemental chemistry analysis will be used to determine if they have the same origin. This paper shows the first elemental concentration results of the sherds collected from archaeological site determined at CDTN/CNEN, Belo Horizonte, Minas Gerais, using the TRIGA Mark I IPR-R1 nuclear reactor, applying the neutron activation technique, k 0 -method. (author)

  1. Essential trace elements in edible mushrooms by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Patricia L.C.; Maihara, Vera A.; Castro, Lilian P. de [Instituto de Pesquisa e Energetica e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: patricialandim@ig.com.br; vmaihara@ipen.br; lilian.Pavanelli@terra.com.br; Figueira, Rubens C.L. [Universidade Cruzeiro do Sul, Sao Paulo, SP (Brazil)]. E-mail: figueiraru@yahoo.com.br

    2007-07-01

    Mushrooms are excellent nutritional sources since they provide proteins, fibers and mineral, such as K, P, Fe. They have also been the focus of medical research. In Brazil mushrooms are not consumed in large quantities by the general population since people know little about the nutritional and medicinal benefits that mushrooms offer. Hence, this study intends to contribute to a better understanding of the essential element content in edible mushrooms, which are currently commercialized in Sao Paulo state. Br Fe, K, Na and Zn concentrations were determined by Instrumental Neutron Activation Analysis in the following mushroom species: Shitake (Lentinus edodes), Shimeji (Pleurotus ssp), Paris Champignon (Agaricus bisporus), Hiratake ( Pleurotus ssp) and Eringue (Pleurotus Eryngu. The mushroom samples were acquired from commercial establishments in the city of Sao Paulo and directly from the producers. Essential element contents in mushrooms varied between Br 0.03 to 4.1 mg/kg; Fe 20 to 267 mg/kg; K 1.2 to 5.3 g/kg, Na 10 to 582 mg/kg and Zn 60 to 120 mg/kg. The results confirm that mushrooms can be considered a good source of K, Fe and Zn. The low Na level is a good nutritional benefit for the consumer. (author)

  2. Present status of neutron activation analysis in environmental research

    International Nuclear Information System (INIS)

    Steinnes, E.

    1984-01-01

    Neutron activation analysis, in spite of its many advantageous features, is less widely used than some alternative trace element techniques, and has been losing ground during the last decade. In the environmental field however there are still many problems which can be solved in a better way by the contribution of NAA. The combination of multi-element capability and high accuracy is of great importance in many studies related to atmospheric trace elements. Also in aquatic studies NAA still has a significant role to play. Applications to soils, sediments, and plant material have so far been limited, but there is a place for further development. The scope of NAA in environmental research may be extended by further use of pre-irradiation separations. NAA is particularly important in the certification of analytical reference materials in the environmental field. In future applications of NAA an appropriate combination with other analytical techniques will often be a requisite for success. The general future of NAA is dependent on the availability of nuclear reactors, radiochemical laboratoties and appropriate competence. 21 references

  3. Neutron activation analysis method - international ring test for proficiency assessment

    International Nuclear Information System (INIS)

    Barbos, D.; Bucsa, A. F.

    2016-01-01

    The main objective of this test is to assess the quality control of analytical procedures for soils and plants which is of utmost importance to produce reliable and reproducible analytical data. For this purpose first, second, and third line quality control measures are taken in analytical laboratories. For first line control certified reference materials (CRM's) are preferred. However, the number and matrix variation in CRM's for environmental analytical research is still very limited. For second line control internal reference samples are often used, but again here the values for many element and parameter concentrations are questionable since almost no check versus CRM's is possible. For third line control participation in laboratory-evaluating exchange programs is recommended. This article contains the results achieved by our neutron activation analysis laboratory after irradiation experiment of soil and vegetation samples in TRIGA Reactor. All the samples were irradiated in the same location of the reactor in roughly similar conditions. (authors)

  4. Elemental analysis of fertilizer by fast neutron activation

    International Nuclear Information System (INIS)

    Bodart, F.; Deconninck, G.

    1977-01-01

    A simple and accurate technique has been developed to analyse commercial fertilizers for phosphorus, potassium, chlorine, magnesium and silicon. The method is based on fast-neutron activation using a neutron flux of 2x10 11 neutrons/second. The optimum analytical conditions are tabulated. After irradiation, the sample is measured on a conventional counting system including a Ge(Li) detector (10% efficiency and 2 keV resolution for 60 Co) and a multichannel analyser. Monitor foils radioactivity are measured separately at the same time with a 2''x2''NaI detector coupled with a single channel analyser and a scaler. Fast neutron activation has proved to be a fast, simple, reliable and low cost analytical technique for the determination of phosphorus, silicon, potassium, magnesium and chlorine in fertilizers. Not less than five phosphorus determinations are possible in one hour, while two potassium, magnesium and chlorine determinations are made at the same time. (T.G.)

  5. Analysis of inelastic neutron scattering results on model compounds ...

    Indian Academy of Sciences (India)

    Vibrational spectroscopy; nitrogenous bases; inelastic neutron scattering. PACS No. ... obtain good quality, high resolution results in this region. Here the .... knowledge of the character of each molecular transition as well as the calculated.

  6. Surface analysis of Borkron glass for neutron optics applications

    International Nuclear Information System (INIS)

    Farnoux, B.; Maaza, M.; Maaza, M.; Samuel, F.; Sella, C.

    1991-01-01

    Grazing Angle Neutron Reflectometry, Optical and Mechanical Roughness Profilometry techniques have been used to study the effects of the polishing operations on the surface of Borkron Schott glass (special borosilicate glass for neutron optics applications) as the polishing tool pressure P and the mean grain size of the polishing powder Φ. The neutron reflectivity investigations have shown that there is formation of a layer at the surface glass substrate. This layer is less dense than the bulk substrate and its thickness is around 60A. The optical and mechanical profilometry measurements have shown that both roughness and waviness decrease with P and Φ. All the experimental results show a good correlation between the neutron refractive index, the thickness and the roughness of the surface layer and the waviness of the glass surface with the two mechanical polishing parameters. The previous techniques have been completed by Secondary Ion Mass Spectroscopy and Atomic Force Microscopy measurements

  7. Preliminary study of elemental analysis of hydroxyapatite used neutron activation analysis method

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Rina Mulyaningsih

    2010-01-01

    Preliminary study has been carried out elemental analysis of hydroxyapatite synthesized using the method of neutron activation analysis. Hydroxyapatite is the main component constituent of bones and teeth which can be synthesized from limestone and phosphoric acid. Hydroxyapatite can be used as a bone substitute material and human and animal teeth. Tests on the metal content is necessary to prevent the risk of damage to bones and teeth due to contamination. Results of analysis using neutron activation analysis method with samples irradiated at the neutron flux 10"3 n.det"-"1cm"-"2 for one minute, the impurities of Al (48.60±6.47 mg/kg), CI (38.00±7.47 mg/kg), Mn (1.05±0.19 mg/kg), and Mg (2095.30±203.66 mg/kg), were detected, whereas with irradiation time for 10 minutes and 40 minutes with a time decay of three days there were K (103.89 ± 26.82 mg/kg), Br (1617.06 ± 193.66 mg/kg), and Na (125.10±9.57 mg/kg). These results indicate that there is impurity Al, CI, Mn, Mg, Br, K and Na, although in very small amounts and do not cause damage to bones and teeth. (author)

  8. Etude de la diagraphie neutron du granite de Beauvoir. Effet neutron des altérations et de la matrice du granite. Calibration granite. Porosité totale à l'eau et porosité neutron Analysis of the Beauvoir Granite Neutron Log. Neutron Effect of Alterations and of the Granite Matrix. Granite Calibration. Total Water Porosity and Neutron Porosity

    Directory of Open Access Journals (Sweden)

    Galle C.

    2006-11-01

    chemical analysis to evaluate the PorosityN(ox thermal neutron porosity linked to neutron capture (Schlumberger's Nuclear Parameter Code, SNUPAR. A calibration curve (Fig. 1 between the (Sigmamac macroscopic capture cross-section and the PorosityN neutron porosity enabled us to determine the PorosityN(ox neutron capture porosity for all samples. The macroscopic capture cross-section of the Beauvoir granite, compared to other rocks (Table 2, is very high, about 86 cu. For the Beauvoir granite, the neutron capture porosity was estimated at about 2. 7% (Table 4. The lithium, with Li2O contents varying from 0. 3 to 1. 7%, is the one element which accounts for 85% of this effect (Table 3. Although the response of a neutron tool is not linear for low porosities (especially lower than 5% and although in some cases the neutron effect of the matrix highly depends on the hydrogen index (close imbrication of neutron slowing and capture phenomena, we restored the PorosityNR total neutron porosity of the Beauvoir granite by stacking n, PorosityN(OH- and PorosityN(ox linearly. This porosity is 9% on the average. For this granite, the PorosityNma neutron matrix effect (PorosityNma = PorosityN(OH- + PorosityN(ox is significant and accounts for 75% of the PorosityNR total neutron porosity corresponding to about 7%. This porosity thus cannot be neglected if the objective is to obtain representative water content values of the granite from neutron porosity log. This is why the second part of our project took up the problem of calibrating neutron tool for analyzing a granitic formation. For the Beauvoir granite, the neutron porosity data were obtained from standard calibration in limestone blocks. As the neutron effect of the granite matrix was not negligible, we performed our own calibration using seven granite samples with a perfectly well-known total neutron porosity (free water content and neutron matrix effect. We determined a PorosityNg granitecalibration neutron porosity. For this, the

  9. Neutronic and nuclear post-test analysis of MEGAPIE

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, L.; Aebersold, H. U.; Berg, K.; Eikenberg, J.; Filges, U.; Groeschel, F.; Luethy, M.; Ruethi, M.; Scazzi, S.; Tobler, L.; Wagner, W.; Wernli, B. [Paul Scherrer Institute (PSI), Villigen (Switzerland); Panebianco, S.; David, J.-C.; Dore, D.; Lemaire, S.; Leray, S.; Letourneau, A.; Michel-Sendis, F.; Prevost, A.; Ridikas, D.; Stankunas, G. [CEA, Centre de Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette (France); Toussaint, J.-C. [CEA, Centre de Saclay, IRFU/Service d' Ingenierie des Systemes, Gif-sur-Yvette (France); Eid, M. [CEA, Centre de Saclay, DEN/DM2S/SERMA, Gif-sur-Yvette (France); Latge, C. [CEA, Centre de Cadarache, DEN/DTN/DIR, Saint Paul Lez, Durance (France); Konobeyev, A. Yu.; Fischer, U. [Institut fuer Reaktorsichereit, Forschungszentrum Karlsruhe Gmbh, Karlsruhe (Germany); Thiolliere, N.; Guertin, A. [SUBATECH Laboratory, CNRS/IN2P3-EMN-University, Nantes (France); Buchillier, T.; Bailat, C. [Institut universitaire de radiophysique appliquee (IRA), Lausanne (Switzerland)

    2008-12-15

    The MEGAwatt PIlot Experiment (MEGAPIE) project was started in 2000 to design, build and operate a liquid metal spallation neutron target at the power level of 1 MW. The project is an important step in the roadmap towards the demonstration of the Accelerator-Driven System (ADS) concept and for high power molten metal targets in general. In an ADS the spallation target is placed inside a sub-critical reactor core. The role of the spallation target is to provide the extra neutrons needed by the sub-critical core to keep the reactor working. Since an ADS is a fast neutron system, there is no moderation and the spallation neutron spectrum is therefore a typical fast spectrum. For a sub-critical core with k{sub eff} = 0.95, a strong neutron source is needed, and in the roadmap an accelerator current higher than 10 mA is indicated as baseline parameter for the experimental ADS. The choice of the accelerator current and energy depends primarily on the number of neutrons that need to be generated, and that are used to drive the reactor. With the 590 MeV cyclotron delivering a continuous beam on target with a current up to 1.8 mA, SINQ was chosen for the MEGAPIE experiment as the most powerful spallation neutron source in the world, with a proton beam power on target that can reach 1 MW. Up to MEGAPIE all SINQ targets were based on a bundle of heavy material rods (full zircaloy, steel rods filled with Pb, zircaloy rods filled with Pb) cooled by a flow of heavy water. For the MEGAPIE target a loop of about 82 litres of lead-bismuth eutectic (LBE) circulates enclosed by a steel structure. The target is about 5 m long and the LBE is made circulating by means of a main electromagnetic pump. The neutronic performance was deduced from flux measurements done at different positions and distances from the spallation target, because the neutron yield (number of neutrons per incoming proton) cannot be directly measured. The presence of the heavy water moderator in the SINQ facility

  10. Stress analysis of feeder bends using neutrons: new results and cumulative impacts

    Energy Technology Data Exchange (ETDEWEB)

    Banks, D.; Donaberger, R. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Leitch, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Rogge, R.B. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2014-07-01

    Neutron diffraction has played a vital role in stress analysis of bends in carbon steel pipes, known as feeder pipes, in CANDU reactors. Due to incidents of cracking of feeders, extensive R&D programs to manage feeder cracking have been implemented over about ten years. We review the cumulative impacts of this research from the view point of the stress analysis using neutrons, and present new results by examining a feeder bend with a partial crack both experimentally using neutron diffraction and theoretically using a finite element model. (author)

  11. Provenance study of ancient Chinese Yaozhou porcelain by neutron activation analysis

    International Nuclear Information System (INIS)

    Li, R.W.; Zhao, W.J.; Li, G.X.; Xie, J.Z.; Guo, M.; Gao, Z.Y.; Feng, S.L.; Fan, D.Y.; Zhang, Y.; Cai, Z.F.; Zhuo, Z.X.

    2004-01-01

    The glaze samples of ancient Chinese Yaozhou porcelain were analyzed by neutron activation analysis (NAA). The contents of 29 elements for each sample were measured. the scattergram of the coloring elements shows some informations of soueces of raw materials. (authors)

  12. Utilization and facility of neutron activation analysis in HANARO research reactor

    International Nuclear Information System (INIS)

    Chung, Y.S.; Chung, Y.J.; Moon, J.H.

    1998-01-01

    The facilities of neutron activation analysis within a multi-purpose research reactor (HANARO) are described and the main applications of Neutron activation analysis (NAA) in Korea are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system, are installed at three irradiation holes. One irradiation hole is lined with a cadmium tube for epithermal-nal NAA. The performance of the NAA facility was examined to identify the characteristics of tube transfer system, irradiation sites and polyethylene irradiation capsule. The available thermal neutron flux with each irradiation site are in the range of 3.9x10 13 -1.6x10 14 n/cm 2 ·s and cadmium ratios are 15-250. Neutron activation analysis has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials and various polymers for research and development. Analytical services and the latest analytical results are summarized. (author)

  13. Utilization and facility of neutron activation analysis in HANARO research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y S; Chung, Y J; Moon, J H [Korea Atomic Energy Research Institute, P.O.Box 105 Yusong, 305-600, Taejon (Korea, Republic of)

    1998-07-01

    The facilities of neutron activation analysis within a multi-purpose research reactor (HANARO) are described and the main applications of Neutron activation analysis (NAA) in Korea are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system, are installed at three irradiation holes. One irradiation hole is lined with a cadmium tube for epithermal-nal NAA. The performance of the NAA facility was examined to identify the characteristics of tube transfer system, irradiation sites and polyethylene irradiation capsule. The available thermal neutron flux with each irradiation site are in the range of 3.9x10{sup 13}-1.6x10{sup 14} n/cm{sup 2}{center_dot}s and cadmium ratios are 15-250. Neutron activation analysis has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials and various polymers for research and development. Analytical services and the latest analytical results are summarized. (author)

  14. Determination of toxic elements in tobacco by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yaprak, G.; Cam, N.F.

    1998-01-01

    The concentration of toxic elements in the tobacco of six different brands of domestic and two brands of imported cigarettes heavily smoked in Turkey were determined using instrumental neutron activation analysis (INAA)

  15. Minor and trace elements in melanins determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Kochanska-Dziurowicz, A.A.; Wilczok, T.; Mosulishvili, L.; Kharabadze, N.

    1986-01-01

    The presence of Au, Br, Sb, Ag, Fe, Zn, Co, Cr, Ni, Hg and Sn determined by neutron activation analysis was demonstrated in melanins isolated from human dark hair, banana peels or prepared synthetically from tyrosine. (author)

  16. The use of neutron activation analysis in environmental pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, A.M.; Gill, S.K.; Salleh, S. [University Technology Malaysia, Dept. of Chemistry, Johor (Malaysia); Akyil, S. [Ege University, Institute of Nuclear Sciences, Izmir (Turkey); Hamzah, S.; Rahman, S.A.; Wood, A.K.H. [Malaysia Institute of Nuclear Technology Research, PUSPATI Complex, Bangi, Selangor (Malaysia)

    2001-11-01

    Environmental samples and localized species from a marine environment, water samples for public drinking, sediment core samples from a polluted marine environment, soil samples from tin-tailing dump sites, air particulate matter and leachates from landfills were analyzed for their trace, toxic elemental contents, chemical species and natural radioactivity in an attempt to assess the safety levels of these pollutants in these matrices by means of instrumental neutron activation analysis (INAA) and other related nuclear techniques. Complementary techniques such as the graphite furnace atomic absorption spectrometry (GFAAS), ICP-MS, ion chromatography and pre-concentration steps particularly in the speciation studies were also incorporated in these studies for specific elemental determinations prior to irradiation in a neutron flux of about 5.1 x 10{sup 8} n.m{sup -2}.s{sup -1} from a TRIGA Mk.II reactor. Pre-concentration of the chemical species of As and Se was done using a mixture of ammonium pyrrolidinethiocarbamatechloroform (APDTC-CHCl{sub 3}) while activated carbon derived from agricultural wastes was used in the iodine speciation. Some of the specific chemical species have to be separated prior to the final quantitative determination to reduce interference and enhance the sensitivity of the INAA technique. These include arsenic, selenium and iodine species present in various matrices. The more toxic inorganic arsenic, selenium, iodine and a host of other trace elements were detected in these samples by quantifying their respective {gamma}-rays emitted from the radioisotopes. The amounts of As(III) present vary from about 1.8 ng/g to 15.5 ng/g in localized marine species, 0.1 ng/g to more than 5.0 ng/g in treated public drinking water while the more toxic inorganic Se (IV) is present in the range of 1.5 {mu}g/L to about 4.5 {mu}g/L. The distribution patterns of pollutants were presented on maps and deductions were made from these patterns to address pollution

  17. Neutron techniques

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1986-01-01

    The way in which neutrons interact with matter such as slowing-down, diffusion, neutron absorption and moderation are described. The use of neutron techniques in industry, in moisture gages, level and interface measurements, the detection of blockages, boron analysis in ore feedstock and industrial radiography are discussed. (author)

  18. Elemental analysis of two Egyptian iron ores and produced industrial iron samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Sroor, A.; Abdel-Basset, N.; Abdel-Haleem, A.S.; Hassan, A.M.

    2001-01-01

    Elemental analysis of two iron ores and initial industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were performed by the instrumental neutron activation analysis technique. Five samples of each type were irradiated for 48 h in a thermal neutron flux of 4x10 12 n/cm 2 s in the first Egyptian research reactor ET-RR-1. Also, the Pneumatic Irradiation Rabbit System (PIRS), attached to the reactor ET-RR-1 in Inshass, was used to measure short-life elements. The γ-ray spectra were obtained with a hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. Implications of the elemental concentration values obtained are presented

  19. Analytical methods for analysis of neutron cross sections of amino acids and proteins

    International Nuclear Information System (INIS)

    Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin; Carvalheira, Luciana; Rocha, Hélio F. da

    2017-01-01

    Two unpublished analytical processes were developed at IEN-CNEN-RJ for the analysis of neutron cross sections of chemical compounds and complex molecules, the method of data parceling and grouping (P and G) and the method of data equivalence and similarity (E and S) of cross-sections. The former allows the division of a complex compound or molecule so that the parts can be manipulated to construct a value of neutron cross section for the compound or the entire molecule. The second method allows by comparison obtain values of neutron cross-sections of specific parts of the compound or molecule, as the amino acid radicals or its parts. The processes were tested for the determination of neutron cross-sections of the 20 human amino acids and a small database was built for future use in the construction of neutron cross-sections of proteins and other components of the human being cells, also in other industrial applications. (author)

  20. Analytical methods for analysis of neutron cross sections of amino acids and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin; Carvalheira, Luciana, E-mail: dante@ien.gov.br, E-mail: fferreira@ien.gov.br, E-mail: Chaffin@ien.gov.br, E-mail: luciana@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rocha, Hélio F. da, E-mail: helionutro@gmail.com.br [Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Pediatria

    2017-07-01

    Two unpublished analytical processes were developed at IEN-CNEN-RJ for the analysis of neutron cross sections of chemical compounds and complex molecules, the method of data parceling and grouping (P and G) and the method of data equivalence and similarity (E and S) of cross-sections. The former allows the division of a complex compound or molecule so that the parts can be manipulated to construct a value of neutron cross section for the compound or the entire molecule. The second method allows by comparison obtain values of neutron cross-sections of specific parts of the compound or molecule, as the amino acid radicals or its parts. The processes were tested for the determination of neutron cross-sections of the 20 human amino acids and a small database was built for future use in the construction of neutron cross-sections of proteins and other components of the human being cells, also in other industrial applications. (author)