WorldWideScience

Sample records for vh-mode evolution edge

  1. Poloidal rotation and the evolution of H-mode and VH-mode profiles

    International Nuclear Information System (INIS)

    Hinton, F.L.; Staebler, G.M.; Kim, Y.B.

    1993-12-01

    The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode

  2. Beta limits in H-modes and VH-modes in JET

    Energy Technology Data Exchange (ETDEWEB)

    Smeulders, P; Hender, T C; Huysmans, G; Marcus, F; Ali-Arshad, S; Alper, B; Balet, B; Bures, M; Deliyanakis, N; Esch, H de; Fshpool, G; Jarvis, O N; Jones, T T.C.; Ketner, W; Koenig, R; Lawson, K; Lomas, P; O` Brien, D; Sadler, G; Stok, D; Stubberfield, P; Thomas, P; Thomen, K; Wesson, J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Nave, M F [Universidade Tecnica, Lisbon (Portugal). Inst. Superior Tecnico

    1994-07-01

    In Hot-ion H- and VH-modes, the highest achieved beta was about 10% below the Troyon value in the best case of discharge 26087. The operational space of the high beta discharges obtained before March 1992 has been explored as function of the parameters H{sub ITER89P}, {beta}{sub n}, q{sub 95}, I{sub p}. Also, a limiting envelope on the fusion reactivity as a function of the average plasma pressure and beta has been observed with R{sub DD} related to {beta}{sub {phi}}{sup 2}.B{sub {phi}}{sup 4}. MHD stability analysis shows that the JET VH modes at the edge are in the second region for ballooning mode stability. The dependence of ballooning stability and the n=1 external kink on the edge current density is analyzed. (authors). 6 figs., 6 refs.

  3. VH mode accessibility and global H-mode properties in previous and present JET configurations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T T.C.; Ali-Arshad, S; Bures, M; Christiansen, J P; Esch, H P.L. de; Fishpool, G; Jarvis, O N; Koenig, R; Lawson, K D; Lomas, P J; Marcus, F B; Sartori, R; Schunke, B; Smeulders, P; Stork, D; Taroni, A; Thomas, P R; Thomsen, K [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs.

  4. Impurity penetration and transport during VH-mode on DIII-D

    International Nuclear Information System (INIS)

    Lippmann, S.I.; Evans, T.E.; Jackson, G.L.; West, W.P.

    1992-05-01

    A new modeling effort is made in order to understand the observed relatively low levels of impurity contamination during the VH-mode phase on DIII-D, as compared to those observed during the H-mode phase of selected discharges. The key element is the inclusion of the real 2-D flux surface geometry in the prediction of impurity penetration of sputtered atoms through the scrape-off layer into the core plasma. Of the elements which determine the impurity content in the plasma: sputtering yield, penetration, and core transport, the penetration through the scrape-off layer is found to be the most determinative factor. The low impurity content in VH-mode is attributed to the development of a scrape-off layer with higher density and temperature properties than those normally obtained in H-mode

  5. The role of electric field shear stabilization of turbulence in the H-mode to VH-mode transition in DIII-D

    International Nuclear Information System (INIS)

    Burrell, K.H.; Osborne, T.H.; Groebner, R.J.; Rettig, C.L.

    1993-01-01

    VH-mode plasma exhibit energy confinement times up to 2.4 times the DIII-D/JET H-mode scaling relation and up to 3.9 times the value given by ITER89-P L-mode scaling. If this confinement improvement can be exploited in reactor plasmas, smaller prototype reactors with significantly lower unit cost can be produced. Accordingly, understanding and optimizing the confinement improvement is of significant interest. One of the possible explanations for this bulk confinement improvement is stabilization of turbulence by shear in the radial electric field, similar to the present explanation for the confinement improvement at the extreme plasma edge at the L to H transition. Preliminary measurements have shown that the region of the plasma where the electric field gradient is steepest broadens when the plasma goes from H-mode to VH-mode. More recent measurements have confirmed this broadening and have shown that the change in the electric field gradient occurs prior to the change in the thermal transport. In addition, transport analysis shows that the electric field shear increases in the same region between magnetic flux coordinate p=0.6 and 0.9 where the local thermal transport decreases. Furthermore, far infra-red (FIR) scattering measurements have detected density fluctuations in the region around p=0.8 which could be responsible for enhanced transport and which disappear at the time that the electric shear increases. These fluctuations appear as bursts of density fluctuations in the 0.5 to 1.5 MHz range. The time between bursts increases as the electric field shear increases. Once these bursts disappear, the major change in confinement takes place in most discharges. When isolated bursts occur, the heat and angular momentum pulse connected with the burst are detectable on the plasma profile diagnostics. (author) 13 refs., 4 figs

  6. Evolution of Edge Pedestal Profiles Between ELMs

    Science.gov (United States)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  7. The role of the radial electric field in confinement and transport in H-mode and VH-mode discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Osborne, T.H.; Doyle, E.J.; Rettig, C.L.

    1993-08-01

    Measurements of the radial electric field, E r , with high spatial and high time resolution in H-mode and VH-mode discharges in the DIII-D tokamak have revealed the significant influence of the shear in E r on confinement and transport in these discharges. These measurements are made using the DIII-D Charge Exchange Recombination (CER) System. At the L-H transition in DIII-D plasmas, a negative well-like E r profile develops just within the magnetic separatrix. A region of shear in E r results, which extends 1 to 2 cm into the plasma from the separatrix. At the transition, this region of sheared E r exhibits the greatest increase in impurity ion poloidal rotation velocity and the greatest reduction in plasma fluctuations. A transport barrier is formed in this same region of E x B velocity shear as is signified by large increases in the observed gradients of the ion temperature, the carbon density, the electron temperature and electron density. The development of the region of sheared E r , the increase in impurity ion poloidal rotation, the reduction in plasma turbulence, and the transport barrier all occur simultaneously at the L-H transition. Measurements of the radial electric field, plasma turbulence, thermal transport, and energy confinement have been performed for a wide range of plasma conditions and configurations. The results support the supposition that the progression of improving confinement at the L-H transition, into the H-mode and then into the VH-mode can be explained by the hypothesis of the suppression of plasma turbulence by the increasing penetration of the region of sheared E x B velocity into the plasma interior

  8. Evolution of edge pedestal transport between edge-localized modes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, J.-P.; Stacey, W. M.; Mellard, S. C. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Groebner, R. J. [General Atomics, San Diego, California 92186 (United States)

    2015-02-15

    Evolution of measured profiles of densities, temperatures, and velocities in the edge pedestal region between successive ELM (edge-localized mode) events are analyzed and interpreted in terms of the constraints imposed by particle, momentum and energy balance in order to gain insights regarding the underlying evolution of transport processes in the edge pedestal between ELMs in a series of DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] discharges. The data from successive inter-ELM periods during an otherwise steady-state phase of the discharges were combined into a composite inter-ELM period for the purpose of increasing the number of data points in the analysis. Variation of diffusive and non-diffusive (pinch) particle, momentum, and energy transport over the inter-ELM period are interpreted using the GTEDGE code for discharges with plasma currents from 0.5 to 1.5 MA and inter-ELM periods from 50 to 220 ms. Diffusive transport is dominant for ρ < 0.925, while non-diffusive and diffusive transport are very large and nearly balancing in the sharp gradient region 0.925 < ρ < 1.0. During the inter-ELM period, diffusive transport increases slightly more than non-diffusive transport, increasing total outward transport. Both diffusive and non-diffusive transport have a strong inverse correlation with plasma current.

  9. The edge of neutral evolution in social dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, Jonas; Frey, Erwin [Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, D-80333 Muenchen (Germany); Reichenbach, Tobias [Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)], E-mail: jonas.cremer@physik.uni-muenchen.de

    2009-09-15

    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.

  10. The edge of neutral evolution in social dilemmas

    International Nuclear Information System (INIS)

    Cremer, Jonas; Frey, Erwin; Reichenbach, Tobias

    2009-01-01

    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.

  11. The non-linear evolution of edge localized modes

    International Nuclear Information System (INIS)

    Wenninger, Ronald

    2013-01-01

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  12. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  13. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    Directory of Open Access Journals (Sweden)

    Nikky Pathak

    2017-03-01

    Full Text Available The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP and Dual-Phase (DP steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition or drilled and then reamed (reamed edge condition. The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  14. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    Science.gov (United States)

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  15. Network evolution by nonlinear preferential rewiring of edges

    Science.gov (United States)

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  16. Manganese in photosynthetic oxygen evolution: An edge and EXAFS study

    International Nuclear Information System (INIS)

    Yachandra, V.K.; Guiles, R.D.; McDermott, A.; Britt, R.D.; Dexheimer, S.L.; Saver, K.; Klein, M.P.

    1985-01-01

    The authors edge studies have previously shown that the Mn edges in photosynthetic samples in the S 1 and S 2 states fall into the range for Mn III and Mn IV complexes, and that the K-edge energy increases appreciably on advancing S 1 to S 2 . This was the first evidence that manganese is directly involved in the storage of oxidizing equivalents. More recently, they have extended this result with better quality data from both spinach and a thermophilic cyanobacterium. The newer results show an interesting structure to the edges, including a 1s to 3d transition. The EXAFS results for spinach membranes show that the salient features of the Mn structure are the same in the S 1 and S 2 states. These features are a Mn neighbor at approx. =2.7 A and O or N neighbors at approx. =1.75 A and approx. =2.0 A. The EXAFS spectrum of the S 1 state of the thermophilic blue green algae are strikingly similar to that of spinach

  17. Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates.

    Directory of Open Access Journals (Sweden)

    Antoine Muller

    Full Text Available The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency.

  18. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Dunne, Michael G.

    2014-01-01

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  19. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, Michael G.

    2014-02-15

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  20. Study of plasma discharge evolution and edge turbulence with fast visible imaging in the Aditya tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Manchanda, R.; Chowdhuri, M.B.

    2015-01-01

    Study of discharge evolution through the different phases of a tokamak plasma shot viz., the discharge initiation, current ramp-up, current flat-top and discharge termination, is essential to address many inherent issues of the operation of a Tokamak. Fast visible imaging of the tokamak plasma can provide valuable insight in this regard. Further, edge turbulence is considered to be one of the quintessential areas of tokamak research as the edge plasma is at the immediate vicinity of the plasma core and plays vital role in the core plasma confinement. The edge plasma also bridges the core and the scrape off layer (SOL) of the tokamak and hence has a bearing on the particle and heat flux escaping the plasma column. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. Formation of the plasma column and its evolution are studied with the fast visible imaging in Aditya. Features of the ECRH and LHCD operations on Aditya will be discussed. 3D filaments can, be seen at the plasma edge all along the discharge and they get amplified in intensity at the plasma termination phase. Statistical analysis of these filaments, which are essentially plasma blobs will be presented. (author)

  1. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking.

    Directory of Open Access Journals (Sweden)

    Yuki Tsukada

    2008-11-01

    Full Text Available Advances in time-lapse fluorescence microscopy have enabled us to directly observe dynamic cellular phenomena. Although the techniques themselves have promoted the understanding of dynamic cellular functions, the vast number of images acquired has generated a need for automated processing tools to extract statistical information. A problem underlying the analysis of time-lapse cell images is the lack of rigorous methods to extract morphodynamic properties. Here, we propose an algorithm called edge evolution tracking (EET to quantify the relationship between local morphological changes and local fluorescence intensities around a cell edge using time-lapse microscopy images. This algorithm enables us to trace the local edge extension and contraction by defining subdivided edges and their corresponding positions in successive frames. Thus, this algorithm enables the investigation of cross-correlations between local morphological changes and local intensity of fluorescent signals by considering the time shifts. By applying EET to fluorescence resonance energy transfer images of the Rho-family GTPases Rac1, Cdc42, and RhoA, we examined the cross-correlation between the local area difference and GTPase activity. The calculated correlations changed with time-shifts as expected, but surprisingly, the peak of the correlation coefficients appeared with a 6-8 min time shift of morphological changes and preceded the Rac1 or Cdc42 activities. Our method enables the quantification of the dynamics of local morphological change and local protein activity and statistical investigation of the relationship between them by considering time shifts in the relationship. Thus, this algorithm extends the value of time-lapse imaging data to better understand dynamics of cellular function.

  2. Edge morphology evolution of graphene domains during chemical vapor deposition cooling revealed through hydrogen etching.

    Science.gov (United States)

    Zhang, Haoran; Zhang, Yanhui; Zhang, Yaqian; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Yu, Guanghui; Jin, Zhi; Liu, Xinyu

    2016-02-21

    During cooling, considerable changes such as wrinkle formation and edge passivation occur in graphene synthesized on the Cu substrate. Wrinkle formation is caused by the difference in the thermal expansion coefficients of graphene and its substrate. This work emphasizes the cooling-induced edge passivation. The graphene-edge passivation can limit the regrowth of graphene at the domain edge. Our work shows that silicon-containing particles tend to accumulate at the graphene edge, and the formation of these particles is related to cooling. Furthermore, a clear curvature can be observed at the graphene edge on the Cu substrate, indicating the sinking of the graphene edge into the Cu substrate. Both the sinking of the graphene edge and the accumulation of silicon-containing particles are responsible for edge passivation. In addition, two kinds of graphene edge morphologies are observed after etching, which were explained by different etching mechanisms that illustrate the changes of the graphene edge during cooling.

  3. Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J.H.; Kim, M.S. [Department of Printed Electronics Engineering, Sunchon National University, 315 Maegok, Sunchon, Jeonnam 540-950 (Korea, Republic of); Kim, S.I.; Seo, S.J. [POSCO Technical Research Laboratories, Gwangyang 545-090 (Korea, Republic of); Choi, S.-H., E-mail: shihoon@sunchon.ac.kr [Department of Printed Electronics Engineering, Sunchon National University, 315 Maegok, Sunchon, Jeonnam 540-950 (Korea, Republic of)

    2016-08-15

    The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching process revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.

  4. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  5. Lower-hybrid counter current drive for edge current density modification in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Nevins, W.M.; Porkolab, M.; Bonoli, P.T.; Harvey, R.W.

    1994-01-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g., with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results will be presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n e and T e , and launched wave spectrum will also be shown

  6. Time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Salar Elahi, A; Ghoranneviss, M

    2010-01-01

    An attempt is made to investigate the time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak. For this purpose, four magnetic pickup coils were designed, constructed and installed on the outer surface of the IR-T1 and then the Shafranov parameter (asymmetry factor) was obtained from them. On the other hand, also a diamagnetic loop was designed and installed on IR-T1 and poloidal beta was determined from it. Therefore, the internal inductance and effective edge safety factor were measured. Also, the time evolution of the energy confinement time was measured using the diamagnetic loop. Experimental results on IR-T1 show that the maximum energy confinement time (which corresponds to minimum collisions, minimum microinstabilities and minimum transport) is at low values of the effective edge safety factor (2.5 eff (a) i <0.72). The results obtained are in agreement with those obtained with the theoretical approach [1-5].

  7. Edge-rich MoS_2 Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst for Electrochemical Hydrogen Evolution

    International Nuclear Information System (INIS)

    Zhang, Nan; Ma, Weiguang; Wu, Tongshun; Wang, Haoyu; Han, Dongxue; Niu, Li

    2015-01-01

    Graphical abstract: For the first time polyaniline (PANI) was employed as an admirable substrate to construct the hierarchical integrative hybrid with MoS_2 (MoS_2/PANI) for hydrogen evolution reaction (HER), which achieved great active edges exposure and excellent HER performance. - Highlights: • PANI is first applied as the support of MoS_2 for enhanced HER performance. • Great active edges exposure of the hybrid significantly benefits the HER activity. • Superior HER activity and excellent stability of MoS_2/PANI have been achieved. - Abstract: Conductive polymer polyaniline (PANI) with abundant protonated sites which are beneficial to hydrogen evolution reaction (HER), was applied as the support of MoS_2 for enhanced HER performance for the first time. The novel three dimensional (3D) HER catalyst (MoS_2/PANI) was constructed with two dimensional (2D) MoS_2 building blocks rooting into the integrative nanowires. PANI nanofibers acted as excellent substrates for the uniform, dense and approximate vertical growth of MoS_2 nanosheets exposing abundant active edges. Consequently, excellent HER performance has been achieved with a low onset overpotential of 100 mV and a small Tafel slope of 45 mV dec"−"1. Most importantly, it only needed 200 and 247 mV overpotential to reach the current density of 30 and 100 mA/cm"2 respectively. Additionally, MoS_2/PANI has achieved superior stability over other MoS_2-polymer-based HER electrocatalyst. In general, for the first time, employing PANI for the construction of the edge-rich integrative hybrid has successfully achieved an outstanding HER performance.

  8. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan; Liang, Hanfeng; Zhu, Jiajie; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2017-01-01

    free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt

  9. Rapid evolution of parasite life history traits on an expanding range-edge.

    Science.gov (United States)

    Kelehear, Crystal; Brown, Gregory P; Shine, Richard

    2012-04-01

    Parasites of invading species undergoing range advance may be exposed to powerful new selective forces. Low host density in range-edge populations hampers parasite transmission, requiring the parasite to survive longer periods in the external environment before encountering a potential host. These conditions should favour evolutionary shifts in offspring size to maximise parasite transmission. We conducted a common-garden experiment to compare life history traits among seven populations of the nematode lungworm (Rhabdias pseudosphaerocephala) spanning from the parasite population core to the expanding range-edge in invasive cane toads (Rhinella marina) in tropical Australia. Compared to conspecifics from the population core, nematodes from the range-edge exhibited larger eggs, larger free-living adults and larger infective larvae, and reduced age at maturity in parasitic adults. These results support a priori predictions regarding adaptive changes in offspring size as a function of invasion history, and suggest that parasite life history traits can evolve rapidly in response to the selective forces exerted by a biological invasion. © 2012 Blackwell Publishing Ltd/CNRS.

  10. Near neutrality: leading edge of the neutral theory of molecular evolution.

    Science.gov (United States)

    Hughes, Austin L

    2008-01-01

    The nearly neutral theory represents a development of Kimura's neutral theory of molecular evolution that makes testable predictions that go beyond a mere null model. Recent evidence has strongly supported several of these predictions, including the prediction that slightly deleterious variants will accumulate in a species that has undergone a severe bottleneck or in cases where recombination is reduced or absent. Because bottlenecks often occur in speciation and slightly deleterious mutations in coding regions will usually be nonsynonymous, we should expect that the ratio of nonsynonymous to synonymous fixed differences between species should often exceed the ratio of nonsynonymous to synonymous polymorphisms within species. Many data support this prediction, although they have often been wrongly interpreted as evidence for positive Darwinian selection. The use of conceptually flawed tests for positive selection has become widespread in recent years, seriously harming the quest for an understanding of genome evolution. When properly analyzed, many (probably most) claimed cases of positive selection will turn out to involve the fixation of slightly deleterious mutations by genetic drift in bottlenecked populations. Slightly deleterious variants are a transient feature of evolution in the long term, but they have substantially affected contemporary species, including our own.

  11. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    International Nuclear Information System (INIS)

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-01-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of π* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), π*(CO), and ether C-O-C, σ*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the π*(CO) resonances disappeared while the σ*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the π* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface

  12. Evolution of Edge Pedestal Profiles Over the L-H Transition

    Science.gov (United States)

    Sayer, M. S.; Stacey, W. M.; Floyd, J. P.; Groebner, R. J.

    2012-10-01

    The detailed time evolution of thermal diffusivities, electromagnetic forces, pressure gradients, particle pinch and momentum transport frequencies (which determine the diffusion coefficient) have been analyzed during the L-H transition in a DIII-D discharge. Density, temperature, rotation velocity and electric field profiles at times just before and after the L-H transition are analyzed in terms of these quantities. The analysis is based on the fluid particle balance, energy balance, force balance and heat conduction equations, as in Ref. [1], but with much greater time resolution and with account for thermal ion orbit loss. The variation of diffusive and non-diffusive transport over the L-H transition is determined from the variation in the radial force balance (radial electric field, VxB force, and pressure gradient) and the variation in the interpreted diffusive transport coefficients. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 17, 112512 (2010).

  13. Temporal evolutions of electron temperature and density with edge localized mode in the JT-60U divertor plasma

    International Nuclear Information System (INIS)

    Nakano, T; Kubo, H; Asakura, N

    2010-01-01

    From the intensity ratios of the three He I lines measured at 20 kHz, the temporal evolutions of the electron temperature and density during and after the power and the particle flow into the divertor plasma caused by edge localized modes are determined. The electron temperature increases from 70 eV to 80 eV with increasing D α intensity. Then, at the peak of D α intensity, the electron temperature starts decreasing down to 60 eV. The electron density increases from 0.1 x 10 19 m -3 to 0.3 x 10 19 m -3 with increasing D α intensity, and then starts to decrease more gradually compared with the electron temperature after the peak of D α intensity. It is interpreted that the increase of the electron temperature is ascribed to the power and the particle flow into the divertor plasma, and that the decrease of the electron temperature and the increase of the electron density are ascribed to the ionization of the recycled neutrals, which consumes the electron energy and produces electrons.

  14. Measurements of the edge current evolution and comparison with neoclassical calculations during MAST H-modes using motional Stark effect

    NARCIS (Netherlands)

    de Bock, M. F. M.; Citrin, J.; Saarelma, S.; Temple, D.; Conway, N. J.; Kirk, A.; Meyer, H.; Michael, C. A.

    2012-01-01

    Edge localized modes (ELMs), that are present in most tokamak H-(high confinement) modes, can cause significant damage to plasma facing components in fusion reactors. Controlling ELMs is considered necessary and hence it is vital to understand the underlying physics. The stability of ELMs is

  15. Measurements of the edge current evolution and comparison with neoclassical calculations during MAST H-modes using motional Stark effect

    NARCIS (Netherlands)

    Bock, de M.F.M.; Citrin, J.; Saarelma, S.; Temple, D.; Conway, N.J.; Kirk, A.; Meyer, H.; Michael, C.A.

    2012-01-01

    Edge localized modes (ELMs), that are present in most tokamak H- (high confinement) modes, can cause significant damage to plasma facing components in fusion reactors. Controlling ELMs is considered necessary and hence it is vital to understand the underlying physics. The stability of ELMs is

  16. GPU accelerated edge-region based level set evolution constrained by 2D gray-scale histogram.

    Science.gov (United States)

    Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin

    2013-07-01

    Due to its intrinsic nature which allows to easily handle complex shapes and topological changes, the level set method (LSM) has been widely used in image segmentation. Nevertheless, LSM is computationally expensive, which limits its applications in real-time systems. For this purpose, we propose a new level set algorithm, which uses simultaneously edge, region, and 2D histogram information in order to efficiently segment objects of interest in a given scene. The computational complexity of the proposed LSM is greatly reduced by using the highly parallelizable lattice Boltzmann method (LBM) with a body force to solve the level set equation (LSE). The body force is the link with image data and is defined from the proposed LSE. The proposed LSM is then implemented using an NVIDIA graphics processing units to fully take advantage of the LBM local nature. The new algorithm is effective, robust against noise, independent to the initial contour, fast, and highly parallelizable. The edge and region information enable to detect objects with and without edges, and the 2D histogram information enable the effectiveness of the method in a noisy environment. Experimental results on synthetic and real images demonstrate subjectively and objectively the performance of the proposed method.

  17. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity.

    Science.gov (United States)

    Bentley, Cameron L; Kang, Minkyung; Maddar, Faduma M; Li, Fengwang; Walker, Marc; Zhang, Jie; Unwin, Patrick R

    2017-09-01

    Two dimensional (2D) semiconductor materials, such as molybdenum disulfide (MoS 2 ) have attracted considerable interest in a range of chemical and electrochemical applications, for example, as an abundant and low-cost alternative electrocatalyst to platinum for the hydrogen evolution reaction (HER). While it has been proposed that the edge plane of MoS 2 possesses high catalytic activity for the HER relative to the "catalytically inert" basal plane, this conclusion has been drawn mainly from macroscale electrochemical (voltammetric) measurements, which reflect the "average" electrocatalytic behavior of complex electrode ensembles. In this work, we report the first spatially-resolved measurements of HER activity on natural crystals of molybdenite, achieved using voltammetric scanning electrochemical cell microscopy (SECCM), whereby pixel-resolved linear-sweep voltammogram (LSV) measurements have allowed the HER to be visualized at multiple different potentials to construct electrochemical flux movies with nanoscale resolution. Key features of the SECCM technique are that characteristic surface sites can be targeted and analyzed in detail and, further, that the electrocatalyst area is known with good precision (in contrast to many macroscale measurements on supported catalysts). Through correlation of the local voltammetric response with information from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in a multi-microscopy approach , it is demonstrated unequivocally that while the basal plane of bulk MoS 2 (2H crystal phase) possesses significant activity, the HER is greatly facilitated at the edge plane ( e.g. , surface defects such as steps, edges or crevices). Semi-quantitative treatment of the voltammetric data reveals that the HER at the basal plane of MoS 2 has a Tafel slope and exchange current density ( J 0 ) of ∼120 mV per decade and 2.5 × 10 -6 A cm -2 (comparable to polycrystalline Co, Ni, Cu and Au), respectively, while the edge

  18. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    International Nuclear Information System (INIS)

    Diallo, A.; Battaglia, D. J.; Guttenfelder, W.; Groebner, R. J.; Osborne, T. H.; Snyder, P. B.; Rhodes, T. L.; Smith, D. R.; Canik, J. M.

    2015-01-01

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution including its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. The saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Thus, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant

  19. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Battaglia, D. J.; Guttenfelder, W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Groebner, R. J.; Osborne, T. H.; Snyder, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Rhodes, T. L. [Physics and Astronomy Department, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Smith, D. R. [Department of Engineering Physics, 1500 Engineering Dr., Madison, Wisconsin 53706 (United States); Canik, J. M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States)

    2015-05-15

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution including its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. The saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Thus, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.

  20. Initial results of H-mode edge pedestal turbulence evolution with quadrature reflectometer measurements on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [University of California, Los Angeles, CA 90095 (United States)]. E-mail: wangg@fusion.gat.com; Peebles, W.A. [University of California, Los Angeles, CA 90095 (United States); Doyle, E.J. [University of California, Los Angeles, CA 90095 (United States); Rhodes, T.L. [University of California, Los Angeles, CA 90095 (United States); Zeng, L. [University of California, Los Angeles, CA 90095 (United States); Nguyen, X. [University of California, Los Angeles, CA 90095 (United States); Osborne, T.H. [General Atomics, San Diego, CA 92186-5608 (United States); Snyder, P.B. [General Atomics, San Diego, CA 92186-5608 (United States); Kramer, G.J. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Groebner, R.J. [General Atomics, San Diego, CA 92186-5608 (United States); Burrell, K.H. [General Atomics, San Diego, CA 92186-5608 (United States); Leonard, A.W. [General Atomics, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Strait, E.J. [General Atomics, San Diego, CA 92186-5608 (United States)

    2007-06-15

    High-resolution quadrature reflectometer measurements of density fluctuation levels have been obtained on DIII-D for H-mode edge pedestal studies. Initial results are presented from the L-H transition to the first ELM for two cases: (i) a low pedestal beta discharge, in which density turbulence in the pedestal has little change during the ELM-free phase, and (ii) a high pedestal beta discharge in which both density and magnetic turbulence are observed to increase before the first ELM. These high beta data are consistent with the existence of electromagnetic turbulence suggested by some transport models. During Type-I ELM cycles, when little magnetic turbulence can be observed, pedestal turbulence increases just after an ELM crash and then decreases before next ELM strikes, in contrast to a drop after ELM crash and then it re-grows when strong magnetic turbulence shows similar behavior. Clear ELM precursors are observed on {<=}20% of Type-I ELMs observed to date.

  1. UniEdge: A first year transition program and its continued evolution through a reflective approach. A Practice Report

    Directory of Open Access Journals (Sweden)

    Ann Lefroy

    2014-03-01

    Full Text Available Phillipa Sturgess 14.00 800x600 The shift in Australian higher education policy to widen participation and ensure equity across all student cohorts has led to the need for specific, structured transition programs. The First Year Advisor Network at Murdoch University in Perth, Australia has designed and implemented a transition program for commencing students called UniEdge. The aims of the program are: (1 to help foster a sense of community for first year students; (2 to  make new students aware of the support services available; and (3 to improve the confidence and preparedness of new students. The program has received high praise from students, but rates of attendance have been problematic. By reflecting on student and staff feedback, the program has been adapted over multiple semesters, resulting in increased student attendance and therefore a greater impact on the first year experience at Murdoch University. Normal 0 false false false EN-AU X-NONE X-NONE

  2. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xianqing, E-mail: lxq@gxu.edu.cn [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Pan, Deyou; Lao, Ming; Liang, Shuiying [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Huang, Dan; Zhou, Wenzheng; Guo, Jin [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2017-05-15

    Highlights: • Structural evolution of FG during the molten-alkali treatment was studied. • XANES results reveal the transformation of surface functional groups of HFG. • The local and electronic structure of HFG can be tuned by varying the alkali-FG ratio. - Abstract: The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  3. Fault fluid evolution at the outermost edges of the southern Apennines fold-and-thrust belt, Italy

    Science.gov (United States)

    Agosta, Fabrizio; Belviso, Claudia; Cavalcante, Francesco; Vita Petrullo, Angela

    2017-04-01

    This work focuses on the structural architecture and mineralization of a high-angle, extensional fault zone that crosscuts the Middle Pleistocene tuffs and pyroclastites of the Vulture Volcano, southern Italy. This fault zone is topped by a few m-thick travertine deposit formed by precipitation, in a typical lacustrine depositional environment, from a fault fluid that included a mixed, biogenic- and mantle-derived CO2. The detailed analysis of its different mineralization can shed new lights into the shallow crustal fluid flow that took place during deformation of the outer edge of the southern Apennines fold-and-thrust belt. In fact, the study fault zone is interpreted as a shallow-seated, tear fault associated with a shallow thrust fault displacing the most inner portion of the Bradano foredeep basin infill, and was thus active during the latest stages of contractional deformation. Far from the fault zone, the fracture network is made up of three high-angle joint sets striking N-S, E-W and NW-SE, respectively. The former two sets can be interpreted as the older structural elements that pre-dated the latter one, which is likely due to the current stress state that affects the whole Italian peninsula. In the vicinity of the fault zone, a fourth joint high-angle set striking NE-SW is also present, which becomes the most dominant fracture set within the study footwall fault damage zone. Detailed X-ray diffraction analysis of the powder obtained from hand specimens representative of the multiple mineralization present within the fault zone, and in the surrounding volcanites, are consistent with circulation of a fault fluid that modified its composition with time during the latest stages of volcanic activity and contractional deformation. Specifically, veins infilled with and slickenside coated by jarosite, Opal A and/or goethite are found in the footwall fault damage zone. Based upon the relative timing of formation of the aforementioned joint sets, deciphered after

  4. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  5. Edge Detection,

    Science.gov (United States)

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  6. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    was originally introduced to enhance indoor qualities including light and view. Throughout the paper, it is argued that these ecological motives have grown to architectural and urban dimensions. The paper analyzes the characteristics and potentials of these dimensions and their interconnections. The paper...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... contribution to the street atmosphere and its effect on urban life. Bay balcony has been a common architectural element in Copenhagen’s residential buildings, since the end of the twenties. It is a domestic border with an architectural thickness combining window, door, windowsill and balcony. The bay balcony...

  7. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES.

    Science.gov (United States)

    Huang, Rixiang; Tang, Yuanzhi

    2016-09-01

    (Hydro)thermal treatments of sewage sludge is a promising option that can simultaneously target safe waste disposal, energy recovery, and nutrient recovery/recycling. The speciation of phosphorus (P) in sludge is of great relevance to P reclamation/recycling and soil application of sludge-derived products, thus it is critical to understand the effects of different treatment techniques and conditions on P speciation. This study systematically characterized P speciation (i.e. complexation and mineral forms) in chars derived from pyrolysis and hydrothermal carbonization (HTC) of municipal sewage sludges. Combined sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy analysis revealed the dependence of P transformation on treatment conditions and metal composition in the feedstocks. Pyrolysis of sludges decreased the relative abundance of phytic acid while increased the abundance of Al-associated P. HTC thoroughly homogenized and exposed P for interaction with various metals/minerals, with the final P speciation closely related to the composition/speciation of metals and their affinities to P. Results from this study revealed the mechanisms of P transformation during (hydro)thermal treatments of sewage sludges, and might be applicable to other biosolids. It also provided fundamental knowledge basis for the design and selection of waste management strategies for better P (re)cycling and reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images

    International Nuclear Information System (INIS)

    Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne

    1997-01-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK

  9. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge.

    Science.gov (United States)

    Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils

    2018-05-30

    We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

  10. Thermal evolution of the band edges of 6H-SiC: X-ray methods compared to the optical band gap

    International Nuclear Information System (INIS)

    Miedema, P.S.; Beye, M.; Könnecke, R.; Schiwietz, G.; Föhlisch, A.

    2014-01-01

    Highlights: • Conduction band minima (CBM) of 6H-SiC are estimated with Si 2p XAS. • Valence band maxima (VBM) of 6H-SiC are estimated with non-resonant Si 2p XES. • Temperature-dependent VBM and CBM of 6H-SiC show asymmetric band gap closing. • XAS, XES and RIXS band gap estimates are compared with the optical band gap. • XAS + XES versus optical band gap provides core-excitonic screening energies. - Abstract: The band gap of semiconductors like silicon and silicon carbide (SiC) is the key for their device properties. In this research, the band gap of 6H-SiC and its temperature dependence were analyzed with silicon 2p X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) allowing for a separate analysis of the conduction-band minimum (CBM) and valence-band maximum (VBM) components of the band gap. The temperature-dependent asymmetric band gap shrinking of 6H-SiC was determined with a valence-band slope of +2.45 × 10 −4 eV/K and a conduction-band slope of −1.334 × 10 −4 eV/K. The apparent asymmetry, e.g., that two thirds of the band-gap shrinking with increasing temperature is due to the VBM evolution in 6H-SiC, is similar to the asymmetry obtained for pure silicon before. The overall band gap temperature-dependence determined with XAS and non-resonant XES is compared to temperature-dependent optical studies. The core-excitonic binding energy appearing in the Si 2p XAS is extracted as the main difference. In addition, the energy loss of the onset of the first band in RIXS yields to values similar to the optical band gap over the tested temperature range

  11. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  12. Nanoindentation near the edge

    Science.gov (United States)

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  13. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  14. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  15. Edge colouring by total labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Stiebitz, M.

    2010-01-01

    We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, ..., k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its...

  16. Adobe Edge Quickstart Guide

    CERN Document Server

    Labrecque, Joseph

    2012-01-01

    Adobe Edge Quickstart Guide is a practical guide on creating engaging content for the Web with Adobe's newest HTML5 tool. By taking a chapter-by-chapter look at each major aspect of Adobe Edge, the book lets you digest the available features in small, easily understandable chunks, allowing you to start using Adobe Edge for your web design needs immediately. If you are interested in creating engaging motion and interactive compositions using web standards with professional tooling, then this book is for you. Those with a background in Flash Professional wanting to get started quickly with Adobe

  17. Adobe Edge Preview 3

    CERN Document Server

    Grover, Chris

    2011-01-01

    Want to use an Adobe tool to design animated web graphics that work on iPhone and iPad? You've come to the right book. Adobe Edge Preview 3: The Missing Manual shows you how to build HTML5 graphics using simple visual tools. No programming experience? No problem. Adobe Edge writes the underlying code for you. With this eBook, you'll be designing great-looking web elements in no time. Get to know the workspace. Learn how Adobe Edge Preview 3 performs its magic.Create and import graphics. Make drawings with Edge's tools, or use art you designed in other programs.Work with text. Build menus, lab

  18. Pavement edge treatment.

    Science.gov (United States)

    2013-01-01

    Four projects were built over two construction seasons using special devices attached to the paving machine that produces a 30 slope on the outside pavement edge instead of the near vertical drop-off common with conventional paving equipment. This ...

  19. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  20. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    International Nuclear Information System (INIS)

    Maqueda, Ricardo; Levinton, Fred M.

    2011-01-01

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  1. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  2. Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes

    International Nuclear Information System (INIS)

    Branicio, Paulo S; Jhon, Mark H; Gan, Chee Kwan; Srolovitz, David J

    2011-01-01

    It has been shown that the broken bonds of an unreconstructed graphene edge generate compressive edge stresses leading to edge warping. Here, we investigate edge energies and edge stresses of graphene nanoribbons with arbitrary orientations from armchair to zigzag, considering both flat and warped edge shapes in the presence and absence of hydrogen. We use the second generation reactive empirical bond order potential to calculate the edge energies and stresses for clean and hydrogenated edges. Using these energies, we perform a Wulff construction to determine the equilibrium shapes of flat graphene flakes as a function of hydrogen chemical potential. While edge stresses for clean, flat edges are compressive, they become tensile if allowed to warp. Conversely, we find that edge energies change little (∼1%) with edge warping. Hydrogenation of the edges virtually eliminates both the edge energy and edge stresses. For warped edges an approximately linear relationship is found between amplitudes and wavelengths. The equilibrium shape of a graphene flake is determined by the value of the hydrogen chemical potential. For very small (and large) values of it the flakes have a nearly hexagonal (dodecagon) shape with zigzag oriented edges, while for intermediate values graphene flakes are found with complex shapes

  3. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  4. High Speed Edge Detection

    Science.gov (United States)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  5. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  6. The Inner Urban Edge

    Science.gov (United States)

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  7. Swords with Blunt Edges

    Science.gov (United States)

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  8. ICRF edge modeling

    International Nuclear Information System (INIS)

    1991-01-01

    This report describes the technical progress for the DOE sponsored grant, ''ICRF Edge Modeling.'' An emphasis is placed on the progress since the Technical Progress Report (January 10, 1990) was submitted to the Department of Energy. The design of ICRF antennas for C-Mod and TFTR was investigated during this period. In addition, quasilinear models for electron heating were refined and applied to the design of ICRF antennas. The relevant professional activities sponsored by this grant are given. 4 refs., 11 figs

  9. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  10. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  11. Competing edge networks

    Science.gov (United States)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  12. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    Science.gov (United States)

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  13. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  14. Cheating on the edge.

    Directory of Open Access Journals (Sweden)

    Lee Alan Dugatkin

    2008-07-01

    Full Text Available We present the results of an individual agent-based model of antibiotic resistance in bacteria. Our model examines antibiotic resistance when two strategies exist: "producers"--who secrete a substance that breaks down antibiotics--and nonproducers ("cheats" who do not secrete, or carry the machinery associated with secretion. The model allows for populations of up to 10,000, in which bacteria are affected by their nearest neighbors, and we assume cheaters die when there are no producers in their neighborhood. Each of 10,000 slots on our grid (a torus could be occupied by a producer or a nonproducer, or could (temporarily be unoccupied. The most surprising and dramatic result we uncovered is that when producers and nonproducers coexist at equilibrium, nonproducers are almost always found on the edges of clusters of producers.

  15. Challenges in edge modeling

    International Nuclear Information System (INIS)

    Schneider, R.

    2007-01-01

    Fluid models like B2, UEDGE or EDGE2D are the working horses for scrape-off layer physics, both for design and experimental support. The concept of a numerical tokamak, aiming at a predictive code for ITER, triggers the need to re-assess the available tools and their necessary extensions. These additional physics issues will be summarized from a personal point-of-view. Depending on the specific problem, several complexity levels of scrape-off layer models will be needed. Therefore, a hierarchy of tools is necessary, which will be discussed. Furthermore, the experience existing in other scientific fields with multi-scale problems and modeling should be used. Here, the coupling of different length and time scales are in particular of interest for fusion problems. (author)

  16. Edge remap for solids

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  17. Playing on the edge

    DEFF Research Database (Denmark)

    Cermak-Sassenrath, Daniel

    2018-01-01

    and specific ways. For instance, gambling for money, party and drinking games, professional play and show sports, art installations, violent and military propaganda computer games, pervasive/mobile gaming, live-action role playing, festivals, performances, and games such as Ghosting and Planking. It is argued......Everything gets more interesting, challenging, or intense the closer it gets to the edge, and so does play. How edgy can play become and still be play? Based on Huizinga’s notion of play, this chapter discusses how a wide range of playful activities pushes the boundaries of play in different...... that in concert with a number of characteristics that mark an activity as play, play is essentially a subjective perspective and individual decision of the player. Huizinga calls this attitude the play spirit, which informs a player’s actions and is in turn sustained by them. Edgy digital or mobile games do...

  18. Competing edge networks

    International Nuclear Information System (INIS)

    Parsons, Mark; Grindrod, Peter

    2012-01-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails. -- Highlights: ► A model for edgewise-competing evolving network pairs is introduced. ► Defined competition equations yield to a mean field analysis. ► Multiple equilibrium states and different bifurcation types can occur. ► The system is sensitive to sparse initial conditions and near unstable equilibriums.

  19. Dynamics of edge currents in a linearly quenched Haldane model

    Science.gov (United States)

    Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit

    2018-03-01

    In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.

  20. Cutting Edge Localisation in an Edge Profile Milling Head

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    2015-01-01

    Wear evaluation of cutting tools is a key issue for prolonging their lifetime and ensuring high quality of products. In this paper, we present a method for the effective localisation of cutting edges of inserts in digital images of an edge profile milling head. We introduce a new image data set of

  1. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  2. Role of helical edge modes in the chiral quantum anomalous Hall state.

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2018-01-22

    Although indications are that a single chiral quantum anomalous Hall(QAH) edge mode might have been experimentally detected. There have been very many recent experiments which conjecture that a chiral QAH edge mode always materializes along with a pair of quasi-helical quantum spin Hall (QSH) edge modes. In this work we deal with a substantial 'What If?' question- in case the QSH edge modes, from which these QAH edge modes evolve, are not topologically-protected then the QAH edge modes wont be topologically-protected too and thus unfit for use in any applications. Further, as a corollary one can also ask if the topological-protection of QSH edge modes does not carry over during the evolution process to QAH edge modes then again our 'What if?' scenario becomes apparent. The 'how' of the resolution of this 'What if?' conundrum is the main objective of our work. We show in similar set-ups affected by disorder and inelastic scattering, transport via trivial QAH edge mode leads to quantization of Hall resistance and not that via topological QAH edge modes. This perhaps begs a substantial reinterpretation of those experiments which purported to find signatures of chiral(topological) QAH edge modes albeit in conjunction with quasi helical QSH edge modes.

  3. Edge turbulence and transport: Text and ATF modeling

    International Nuclear Information System (INIS)

    Ritz, C.P.; Rhodes, T.L.; Lin, H.; Rowan, W.L.; Bengtson, R.; Wootton, A.J.; Diamond, P.H.; Ware, A.S.; Thayer, D.R.

    1990-01-01

    We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave

  4. The edge of space time

    International Nuclear Information System (INIS)

    Hawking, S.

    1993-01-01

    What happened at the beginning of the expansion of the universe. Did space time have an edge at the Big Bang. The answer is that, if the boundary conditions of the universe are that it has no boundary, time ceases to be well-defined in the very early universe as the direction ''north'' ceases to be well defined at the North Pole of the Earth. The quantity that we measure as time has a beginning but that does not mean spacetime has an edge, just as the surface of the Earth does not have an edge at the North Pole. 8 figs

  5. Reduction of airfoil trailing edge noise by trailing edge blowing

    International Nuclear Information System (INIS)

    Gerhard, T; Carolus, T; Erbslöh, S

    2014-01-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length

  6. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  7. DAVs: Red Edge and Outbursts

    Science.gov (United States)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500Kred edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  8. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  9. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  10. Nonlinear magnetohydrodynamics of edge localized mode precursors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)

    2015-02-15

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.

  11. Probes for edge plasma studies of TFTR (invited)

    International Nuclear Information System (INIS)

    Manos, D.M.; Budny, R.V.; Kilpatrick, S.; Stangeby, P.; Zweben, S.

    1986-01-01

    Tokamak fusion test reactor (TFTR) probes are designed to study the interaction of the plasma with material surfaces such as the wall and limiters, and to study the transport of particles and energy between the core and edge. Present probe heads have evolved from prototypes in Princeton large torus (PLT), poloidal divertor experiment (PDX) [Princeton BETA experiment (PBX)], and the initial phase of TFTR operation. The newest heads are capable of making several simultaneous measurements and include Langmuir probes, heat flux probes, magnetic coils, rotating calorimeter fast ion probes, and sample exposure specimens. This paper describes these probe heads and presents some of the data they and their prototypes have acquired. The paper emphasizes measurement of transient plasma effects such as fast ion loss during auxiliary heating, the evolution of the edge plasma during heating, compression, and free expansion, and fluctuations in the edge plasma

  12. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji

    2011-10-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.

  13. The advanced smart grid edge power driving sustainability

    CERN Document Server

    Carvallo, Andres

    2011-01-01

    Placing emphasis on practical ""how-to"" guidance, this cutting-edge resource provides you with a first-hand, insider's perspective on the advent and evolution of smart grids in the 21st century (smart grid 1.0). You gain a thorough understanding of the building blocks that comprise basic smart grids, including power plant, transmission substation, distribution, and meter automation. Moreover, this forward-looking volume explores the next step of this technology's evolution. It provides a detailed explanation of how an advanced smart grid incorporates demand response with smart appliances and

  14. Revisited neoclassical transport theory for steep, collisional plasma edge profiles

    International Nuclear Information System (INIS)

    Rogister, A.L.

    1994-01-01

    Published neoclassical results are misleading as concerns the plasma edge for they do not adequately take the peculiar local conditions into account, in particular the fact that the density and temperature variation length-scales are quite small. Coupled novel neoclassical equations obtain, not only for the evolution of the density and temperatures, but also for the radial electric field and the evolution of the parallel ion momentum: gyro-stresses and inertia indeed upset the otherwise de facto ambipolarity of particle transport and a radial electric field necessarily builds up. The increased nonlinear character of these revisited neoclassical equations widens the realm of possible plasma behaviors. (author)

  15. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  16. New approach in two-dimensional fluid modeling of edge plasma transport with high intermittency due to blobs and edge localized modes

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2011-01-01

    A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.

  17. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  18. Improving color constancy by photometric edge weighting

    NARCIS (Netherlands)

    Gijsenij, A.; Gevers, T.; van de Weijer, J.

    2012-01-01

    Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images, such as material, shadow, and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant

  19. The knife-edge chamber

    International Nuclear Information System (INIS)

    Barasch, E.F.; Bowcock, T.J.V.; Drew, M.M.; Elliott, S.M.; Lee, B.; McIntyre, P.M.; Pang, Y.; Popovic, M.; Smith, D.D.

    1990-01-01

    In this paper the design for a new technology for particle track detectors is described. Using standard IC fabrication techniques, a pattern of microscopic knife edges and field-shaping electrodes can be fabricated on a silicon substrate. The knife-edge chamber uniquely offers attractive performance for the track chambers required for SSC detectors, for which no present technology is yet satisfactory. Its features include: excellent radiation hardness (10 Mrad), excellent spatial resolution (∼20 μm), short drift time (20 ns), and large pulse height (1 mV)

  20. At the edge of intonation

    DEFF Research Database (Denmark)

    Niebuhr, Oliver

    2012-01-01

    The paper is concerned with the 'edge of intonation' in a twofold sense. It focuses on utterance-final F0 movements and crosses the traditional segment-prosody divide by investigating the interplay of F0 and voiceless fricatives in speech production. An experiment was performed for German with four...

  1. Capillary Sharp Inner Edge Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Hošek, Jan; Studenovský, K.; Najdek, D.

    2009-01-01

    Roč. 19, č. 35 (2009), s. 19-25 ISSN 1584-5982. [MECAHITECH 09 /1./. Bukurešť, 08.10.2009-09.10.2009] R&D Projects: GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z20760514 Keywords : capillary * edge * manufacturing Subject RIV: JR - Other Machinery

  2. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  3. Edge-injective and edge-surjective vertex labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Regen, F.

    2010-01-01

    For a graph G = (V, E) we consider vertex-k-labellings f : V → {1,2, ,k} for which the induced edge weighting w : E → {2, 3,., 2k} with w(uv) = f(u) + f(v) is injective or surjective or both. We study the relation between these labellings and the number theoretic notions of an additive basis and ...

  4. Generalized Multi-Edge Analysis for K-Edge Densitometry

    International Nuclear Information System (INIS)

    Collins, M.

    1998-01-01

    In K-edge densitometry (KED), a continuous-energy x-ray beam is transmitted through a liquid sample. The actinide content of the sample can be measured through analysis of the transmitted portion of the x-ray beam. Traditional methods for KED analysis allow the simultaneous calculation of, at most, two actinide concentrations. A generalized multi-edge KED analytical method is presented, allowing up to six actinide concentrations to be calculated simultaneously. Applications of this method for hybrid KED/x-ray fluorescence (HKED) systems are discussed. Current HKED systems require the operator to know the approximate actinide content of each sample, and manually select the proper analysis mode. The new multi-edge KED technique allows rapid identification of the major actinide components in a sample, independent of actinide content. The proper HKED analysis mode can be selected automatically, without requiring sample content information from the user. Automatic HKED analysis would be especially useful in an analytical laboratory setting, where samples with truly unknown characteristics are encountered. Because this technique requires no hardware modifications, several facilities that use HKED may eventually benefit from this approach

  5. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  6. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  7. Gyrosheath near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Xiao, H.; Valanju, P.M.

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results

  8. Knife-edge seal for vacuum bagging

    Science.gov (United States)

    Rauschl, J. A.

    1980-01-01

    Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.

  9. Environmental Dataset Gateway (EDG) REST Interface

    Data.gov (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  10. Organizing on the Edge: Appreciation and Critique

    National Research Council Canada - National Science Library

    Scott, W. R

    2006-01-01

    .... Hayes, "Power to the Edge: Command, Control in the Information Age" (2003). The author places the "edge" perspective in the broader context of organizational studies, noting both its strengths and limitations...

  11. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  12. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  13. Energetics of highly kinked step edges

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    2010-01-01

    We have determined the step edge free energy, the step edge stiffness and dimensionless inverse step edge stiffness of the highly kinked < 010> oriented step on a (001) surface of a simple square lattice within the framework of a solid-on-solid model. We have found an exact expression for the step

  14. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...

  15. Genomes: At the edge of chaos with maximum information capacity

    Science.gov (United States)

    Kong, Sing-Guan; Chen, Hong-Da; Torda, Andrew; Lee, H. C.

    2016-12-01

    We propose an order index, ϕ, which quantifies the notion of “life at the edge of chaos” when applied to genome sequences. It maps genomes to a number from 0 (random and of infinite length) to 1 (fully ordered) and applies regardless of sequence length and base composition. The 786 complete genomic sequences in GenBank were found to have ϕ values in a very narrow range, 0.037 ± 0.027. We show this implies that genomes are halfway towards being completely random, namely, at the edge of chaos. We argue that this narrow range represents the neighborhood of a fixed-point in the space of sequences, and genomes are driven there by the dynamics of a robust, predominantly neutral evolution process.

  16. Rippling modes in the edge of a tokamak plasma

    International Nuclear Information System (INIS)

    Carreras, B.A.; Callen, J.D.; Gaffney, P.W.; Hicks, H.R.

    1982-02-01

    A promising resistive magnetohydrodynamic candidate for the underlying cause of turbulence in the edge of a tokamak plasma is the rippling instability. In this paper we develop a computational model for these modes in the cylindrical tokamak approximation and explore the linear growth and single-helicity quasi-linear saturation phases of the rippling modes for parameters appropriate to the edge of a tokamak plasma. Large parallel heat conduction does not stabilize these modes; it only reduces their growth rate by a factor scaling as k/sub parallel//sup -4/3/. Nonlinearly, individual rippling modes are found to saturate by quasi-linear flattening of the resistivity profile. The saturated amplitude of the modes scales as m/sup -1/, and the radial extent of these modes grows linearly with time due to radial Vector E x Vector B 0 convection. This evolution is found to be terminated by parallel heat conduction

  17. Rippling modes in the edge of a tokamak plasma

    International Nuclear Information System (INIS)

    Carreras, B.A.; Gaffney, P.W.; Hicks, H.R.; Callan, J.D.

    1982-01-01

    A promising resistive magnetohydrodynamic candidate for the underlying cause of turbulence in the edge of a tokamak plasma is the rippling instability. In this paper a computational model for these modes in the cylindrical tokamak approximation was developed and the linear growth and single-helicity quasi-linear saturation phases of the rippling modes for parameters appropriate to the edge of a tokamak plasma were explored. Large parallel heat conduction does not stabilize these modes; it only reduces their growth rate by a factor sacling as K/sup -4/3//sub parallel/. Nonlinearly, individual rippling modes are found to saturate by quasi-linear flattening of the resistivity profile. The saturated amplitude of the modes scales as m -1 , and the radial extent of these modes grows linearly with time due to radial E x B 0 convection. This evolution is found to be terminated by parallel heat conduction

  18. Integrated modelling of the edge plasma and plasma facing components

    International Nuclear Information System (INIS)

    Coster, D.P.; Bonnin, X.; Mutzke, A.; Schneider, R.; Warrier, M.

    2007-01-01

    Modelling of the interaction between the edge plasma and plasma facing components (PFCs) has tended to place more emphasis on either the plasma or the PFCs. Either the PFCs do not change with time and the plasma evolution is studied, or the plasma is assumed to remain static and the detailed interaction of the plasma and the PFCs are examined, with no back-reaction on the plasma taken into consideration. Recent changes to the edge simulation code, SOLPS, now allow for changes in both the plasma and the PFCs to be considered. This has been done by augmenting the code to track the time-development of the properties of plasma facing components (PFCs). Results of standard mixed-materials scenarios (base and redeposited C; Be) are presented

  19. Towards intrinsic magnetism of graphene sheets with irregular zigzag edges.

    Science.gov (United States)

    Chen, Lianlian; Guo, Liwei; Li, Zhilin; Zhang, Han; Lin, Jingjing; Huang, Jiao; Jin, Shifeng; Chen, Xiaolong

    2013-01-01

    The magnetism of graphene has remained divergent and controversial due to absence of reliable experimental results. Here we show the intrinsic magnetism of graphene edge states revealed based on unidirectional aligned graphene sheets derived from completely carbonized SiC crystals. It is found that ferromagnetism, antiferromagnetism and diamagnetism along with a probable superconductivity exist in the graphene with irregular zigzag edges. A phase diagram is constructed to show the evolution of the magnetism. The ferromagnetic ordering curie-temperature of the fundamental magnetic order unit (FMOU) is 820 ± 80 K. The antiferromagnetic ordering Neel temperature of the FMOUs belonging to different sublattices is about 54 ± 2 K. The diamagnetism is similar to that of graphite and can be well described by the Kotosonov's equation. Our experimental results provide new evidences to clarify the controversial experimental phenomena observed in graphene and contribute to a deeper insight into the nature of magnetism in graphene based system.

  20. Edge and coupled core/edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    1999-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal E x B drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB , the model predicts transitions to supersonic flow at the inboard midplane. 2D simulations show the importance of E x B flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  1. Edge and coupled core-edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    2001-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. 2D simulations show the importance of ExB flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  2. Mapping Catalytically Relevant Edge Electronic States of MoS2

    Science.gov (United States)

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  3. Image Edge Tracking via Ant Colony Optimization

    Science.gov (United States)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  4. K-edge densitometer (KED)

    Energy Technology Data Exchange (ETDEWEB)

    Sprinkle, J.K.; Hansen, W.J.

    1993-02-11

    In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.

  5. Instant Adobe Edge Inspect starter

    CERN Document Server

    Khan, Joseph

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This easy-to-understand Starter guide will get you up to speed with Adobe Edge Inspect quickly and with little effort.This book is for frontend web developers and designers who are developing and testing web applications targeted for mobile browsers. It's assumed that you have a basic understanding of creating web applications using HTML, CSS, and JavaScript, as well as being familiar with running web pages from local HTTP servers. Readers are a

  6. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas

    2016-01-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  7. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  8. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  9. A continuum theory of edge dislocations

    Science.gov (United States)

    Berdichevsky, V. L.

    2017-09-01

    dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.

  10. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  11. Magnetic signature of current carrying edge localized modes filaments on the Joint European Torus tokamak

    DEFF Research Database (Denmark)

    Migliucci, P.; Naulin, Volker

    2010-01-01

    Fast magnetic pickup coils are used in forward modeling to match parameters in a simple edge localized mode (ELM) filament model. This novel method allows us to determine key parameters for the evolution of the ELM filaments, as effective mode number, radial and toroidal velocities, and average c...

  12. Ethical decisions at the edge.

    Science.gov (United States)

    Gillett, Grant

    2008-05-01

    Medicine grows incrementally in its ability to treat patients and at the growing edge it poses problems about the appropriateness of treatments that are different from those where good practice conforms to widely agreed standards. The growth of access to medical knowledge and the diversity of contemporary theoretical and clinical medicine have spawned deep divisions in the profession and divergent opinions about what constitutes reasonable care. That hallmark of acceptable practice is also under pressures from the threat of litigation, a highly commercialised contemporary medical environment, patient demands based on medical journalism and the internet and the exponential growth of bio-medical technology. Patient empowerment can result in complaints arising in new and complex areas and expert opinion can often differ markedly depending on where on the medical spectrum the experts are aligned. This column lays out some broad-brush principles to assess the adequacy of medical advice in such a climate.

  13. Imaging edges of nanostructured graphene

    DEFF Research Database (Denmark)

    Kling, Jens; Cagliani, Alberto; Booth, T. J.

    Graphene, as the forefather of 2D-materials, attracts much attention due to its extraordinary properties like transparency, flexibility and outstanding high conductivity, together with a thickness of only one atom. However, graphene also possesses no band gap, which makes it unsuitable for many...... electronic applications like transistors. It has been shown theoretically that by nanostructuring pristine graphene, e.g. with regular holes, the electronic properties can be tuned and a band gap introduced. The size, distance and edge termination of these “defects” influence the adaptability....... Such nanostructuring can be done experimentally, but especially characterization at atomic level is a huge challenge. High-resolution TEM (HRTEM) is used to characterize the atomic structure of graphene. We optimized the imaging conditions used for the FEI Titan ETEM. To reduce the knock-on damage of the carbon atoms...

  14. Magnetohydrodynamic stability of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-01-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle

  15. Edge and line detection of complicated and blurred objects

    OpenAIRE

    Haugsdal, Kari

    2010-01-01

    This report deals with edge and line detection in pictures with complicated and/or blurred objects. It explores the alternatives available, in edge detection, edge linking and object recognition. Choice of methods are the Canny edge detection and Local edge search processing combined with regional edge search processing in the form of polygon approximation.

  16. Study of airfoil trailing edge bluntness noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc....

  17. Selective Electroless Silver Deposition on Graphene Edges

    DEFF Research Database (Denmark)

    Durhuus, D.; Larsen, M. V.; Andryieuski, Andrei

    2015-01-01

    We demonstrate a method of electroless selective silver deposition on graphene edges or between graphene islands without covering the surface of graphene. Modifications of the deposition recipe allow for decoration of graphene edges with silver nanoparticles or filling holes in damaged graphene...... on silica substrate and thus potentially restoring electric connectivity with minimal influence on the overall graphene electrical and optical properties. The presented technique could find applications in graphene based transparent conductors as well as selective edge functionalization and can be extended...

  18. Discursive Maps at the Edge of Chaos

    Science.gov (United States)

    2017-05-25

    Discursive Maps at the Edge of Chaos A Monograph by Major Mathieu Primeau Canadian Army, Royal Canadian Engineer School of Advanced Military...Master’s Thesis 3. DATES COVERED (From - To) JUN 2016 – MAY 2017 4. TITLE AND SUBTITLE Discursive Maps at the Edge of Chaos 5a. CONTRACT NUMBER 5b...meaning of boundaries and polarize conflict towards violence. The edge of chaos is the fine line between disorder and coherence. Discursive maps

  19. Edge effect on weevils and spiders

    OpenAIRE

    Horváth, R.; Magura, T.; Péter, G.; Tóthmérész, B.

    2002-01-01

    The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest...

  20. Detecting a many-body mobility edge with quantum quenches

    Directory of Open Access Journals (Sweden)

    Piero Naldesi, Elisa Ercolessi, Tommaso Roscilde

    2016-10-01

    Full Text Available The many-body localization (MBL transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from "extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations to "localized" (exhibiting area-law scaling of entanglement and fluctuations. The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using "quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.

  1. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  2. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  3. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  4. Object detection using categorised 3D edges

    DEFF Research Database (Denmark)

    Kiforenko, Lilita; Buch, Anders Glent; Bodenhagen, Leon

    2015-01-01

    is made possible by the explicit use of edge categories in the feature descriptor. We quantitatively compare our approach with the state-of-the-art template based Linemod method, which also provides an effective way of dealing with texture-less objects, tests were performed on our own object dataset. Our...... categorisation algorithm for describing objects in terms of its different edge types. Relying on edge information allow our system to deal with objects with little or no texture or surface variation. We show that edge categorisation improves matching performance due to the higher level of discrimination, which...

  5. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  6. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  7. Frontal dynamics at the edge of the Columbia River plume

    Science.gov (United States)

    Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba

    2018-02-01

    In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.

  8. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  9. Competitive edge through technological innovation

    International Nuclear Information System (INIS)

    Gottlieb, M.

    1997-01-01

    The vital role of advanced technology in natural gas cost reduction has been described. Among advanced technologies, seismic, drilling and fracturing technologies have been singled out as being the most important. Access to new supply frontiers (aided by the application of advanced technology), and more effective business strategies were considered as the other most influential factors in efficiently exploiting oil and gas resources. In view of predictions of substantially increased demand, advanced technology is poised to be even more important in the future. With this as background, an examination of the level of investment for the development of advanced technology revealed that energy industry R and D expenditures were lowest among industries in the U.S. (only 0.7 per cent of sales). It was concluded that notwithstanding industry's ability to improve output per R and D dollar invested, the achievement of the necessary technological advancements is a strategic imperative for both the industry and the U.S. as a whole. As far as the industry is concerned, its ability to maintain a competitive edge over competing energy forms, will be determined largely on the basis of its willingness to invest in future advanced technology development. 2 refs., 14 figs

  10. CMS kinematic edge from sbottoms

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peisi; Wagner, Carlos E. M.

    2015-01-01

    We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS Collaboration. In both scenarios, sbottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell sleptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the sbottoms, neutralinos, and sleptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for darkmatter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC

  11. LES tests on airfoil trailing edge serration

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform...

  12. Automatic Edging and Trimming of Hardwood Lumber

    Science.gov (United States)

    D. Earl Kline; Eugene M. Wengert; Philip A. Araman

    1990-01-01

    Studies have shown that there is a potential to increase hardwood lumber value by more than 20 percent through optimum edging and trimming. Even a small portion of this percentage can boost the profitability of hardwood lumber manufacturers substantially. The objective of this research project is to develop an automated system which would assist in correct edging and...

  13. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  14. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  15. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  16. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    Strachan, J.D.; Corrigan, G.

    2005-01-01

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  17. Magnetism of zigzag edge phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhili, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn [International Joint Research Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2014-09-15

    We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.

  18. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  19. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  20. Galactic evolution

    International Nuclear Information System (INIS)

    Pagel, B.

    1979-01-01

    Ideas are considered concerning the evolution of galaxies which are closely related to those of stellar evolution and the origin of elements. Using information obtained from stellar spectra, astronomers are now able to consider an underlying process to explain the distribution of various elements in the stars, gas and dust clouds of the galaxies. (U.K.)

  1. Darwinian evolution

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.; Spijkerboer, Hendrik Pieter; Koelewijn, Hans Peter

    2016-01-01

    Darwinian evolution is a central tenet in biology. Conventionally, the defi nition of Darwinian evolution is linked to a population-based process that can be measured by focusing on changes in DNA/allele frequencies. However, in some publications it has been suggested that selection represents a

  2. Red-edge position of habitable exoplanets around M-dwarfs.

    Science.gov (United States)

    Takizawa, Kenji; Minagawa, Jun; Tamura, Motohide; Kusakabe, Nobuhiko; Narita, Norio

    2017-08-08

    One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These "two-color" reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.

  3. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  4. Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures

    DEFF Research Database (Denmark)

    Engelund, Mads; Fürst, Joachim Alexander; Jauho, Antti-Pekka

    2010-01-01

    Control of the edge topology of graphene nanostructures is critical to graphene-based electronics. A means of producing atomically smooth zigzag edges using electronic current has recently been demonstrated in experiments [Jia et al., Science 323, 1701 (2009)]. We develop a microscopic theory...... for current-induced edge reconstruction using density functional theory. Our calculations provide evidence for localized vibrations at edge interfaces involving unpassivated armchair edges. We demonstrate that these vibrations couple to the current, estimate their excitation by Joule heating, and argue...

  5. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  6. Transverse energy circulation and the edge diffraction of an optical vortex beam.

    Science.gov (United States)

    Bekshaev, Aleksandr Ya; Mohammed, Kadhim A; Kurka, Ivan A

    2014-04-01

    Edge diffraction of a circular Laguerre-Gaussian beam represents an example of the optical vortex symmetry breakdown in which the hidden "vortex" energy circulation is partially transformed into the visible "asymmetry" form. The diffracted beam evolution is studied in terms of the irradiance moments and the moment-based parameters. In spite of the limited applicability of the moment-based formalism, we show that the "vortex" and "asymmetry" parts of the orbital angular momentum can still be reasonably defined for the hard-edge diffracted beams and retain their physical role of quantifying the corresponding forms of the transverse energy circulation.

  7. Power deposition on misaligned edges in COMPASS

    Directory of Open Access Journals (Sweden)

    R. Dejarnac

    2017-08-01

    Full Text Available If the decision is made not to apply a toroidal chamfer to tungsten monoblocks at ITER divertor vertical targets, exposed leading edges will arise as a result of assembly tolerances between adjacent plasma-facing components. Then, the advantage of glancing magnetic field angles for spreading plasma heat flux on top surfaces is lost at the misaligned edges with an interaction occurring at near normal incidence, which can drive melting for the expected inter-ELM heat fluxes. A dedicated experiment has been performed on the COMPASS tokamak to thoroughly study power deposition on misaligned edges using inner-wall limited discharges on a special graphite tile presenting gaps and leading edges directly viewed by a high resolution infra-red camera. The parallel power flux deducted from the unperturbed measurement far from the gap is fully consistent with the observed temperature increase at the leading edge, respecting the power balance. All the power flowing into the gap is deposited at the leading edge and no mitigation factor is required to explain the thermal response. Particle-in-cell simulations show that the ion Larmor smoothing effect is weak and that the power deposition on misaligned edges is well described by the optical approximation because of an electron dominated regime associated with non-ambipolar parallel current flow.

  8. AliEn - EDG Interoperability in ALICE

    CERN Document Server

    Bagnasco, S; Buncic, P; Carminati, F; Cerello, P G; Saiz, P

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and...

  9. Edge-Disjoint Fibonacci Trees in Hypercube

    Directory of Open Access Journals (Sweden)

    Indhumathi Raman

    2014-01-01

    Full Text Available The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers. In this paper, we prove that a hypercube of dimension h admits two edge-disjoint Fibonacci trees of height h, two edge-disjoint Fibonacci trees of height h-2, two edge-disjoint Fibonacci trees of height h-4 and so on, as subgraphs. The result shows that an algorithm with Fibonacci trees as underlying data structure can be implemented concurrently on a hypercube network with no communication latency.

  10. Natural and artificial spectral edges in exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  11. Adobe Edge Animate CC for dummies

    CERN Document Server

    Rohde, Michael

    2013-01-01

    The easy way to build HTML5 mobile and web apps using Adobe's new Edge Animate CC Edge Animate CC is an approachable WYSIWYG alternative for leveraging the power of languages like HTML5, CSS3, and JavaScript to design and develop for the web and mobile devices, even if you have no programming experience. Written by Michael Rohde, the book calls on this seasoned web developer's wealth of experience using Edge Animate CC, and a companion website includes all code from the book to help you apply what you learn as you go. Features an easy-to-use interface, with a propert

  12. Edge-Matching Problems with Rotations

    DEFF Research Database (Denmark)

    Ebbesen, Martin; Fischer, Paul; Witt, Carsten

    2011-01-01

    Edge-matching problems, also called puzzles, are abstractions of placement problems with neighborhood conditions. Pieces with colored edges have to be placed on a board such that adjacent edges have the same color. The problem has gained interest recently with the (now terminated) Eternity II...... puzzle, and new complexity results. In this paper we consider a number of settings which differ in size of the puzzles and the manipulations allowed on the pieces. We investigate the effect of allowing rotations of the pieces on the complexity of the problem, an aspect that is only marginally treated so...

  13. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  14. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    Science.gov (United States)

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  15. Flow distortion at a dense forest edge

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Bingöl, Ferhat; Mann, Jakob

    2014-01-01

    The flow near tall forest edges is complex, yet poorly described. A field experiment using two meteorological masts equipped with sonic anemometers and a horizontally staring lidar was performed upwind and downwind of the interface between an open flat farmland and a tall (hc = 24 m) beech forest......, relative to the measurements upwind of the edge. The lidar data taken at several positions between the masts at 1.25hc show that the minimum wind speed occurred just upwind of the edge. At the 1.25hc level, at the forest mast, the momentum flux (\\documentclass...... qualitatively be explained with the concept of eddy‐blocking by the canopy top, which could also explain the observed increase in lateral variance and the decrease in the vertical variance. Despite the short distance to the edge of approximately 1.5hc, the beginning of a new internal boundary layer was visible...

  16. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, Muhammad; Zhang, Qingyun; Schwingenschlö gl, Udo

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude

  17. Edge energies and shapes of nanoprecipitates.

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, John C.

    2006-01-01

    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  18. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  19. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  20. Cover Art: River's Edge: Downward, Outward, Upward

    Directory of Open Access Journals (Sweden)

    Jonee Kulman Brigham

    2017-10-01

    Full Text Available Artist's Statement for the cover art of IJPS volume 4, issue 3: River's Edge: Downward, Outward, Upward, 2015. Mixed Media: photograph, inkjet printed on presentation matte of colored pencil over photograph.

  1. Edge and core dynamics in harness

    International Nuclear Information System (INIS)

    Ball, R.

    2007-01-01

    Resistive kink oscillations in tokamak plasmas are usually treated as core localized events, yet there there are several mechanisms by which they may interact with the edge dynamics. This suggests that we may regulate edge oscillatory behaviour, or ELMs, by harnessing the natural or contrived sawtooth period and amplitude. In this work I investigate core-edge oscillatory entrainment through direct propagation of heat pulses, inductive coupling, and global higher order resonance effects. In the core of auxiliary heated tokamak plasmas the ineluctable rhythm of slow buildup and rapid conversion of potential energy governs electron and heat radial transport. The growth phase of the sawtooth is accompanied by significant reconnection, then during the collapse the temperature and density in the core fall dramatically. There is evidence from experiments in reversed field pinch devices that ensuing energy fluxes can affect flow shear and confinement at the edge. The basis for this study is the dynamical (BDS) model for edge plasma behavior that was derived from electrostatic resistive MHD equations. The BDS model reflects the major qualitative features of edge dynamics that have been observed, such as L-H transitions and associated ELMs, hysteresis, and spontaneous reversal of poloidal shear flow. Under poorly dissipative conditions the transient behavior of the model can exhibit period-doubling, blue-sky, homoclinic, and other exotic bifurcations. Thus we might ask questions such as: Is it possible to mode-lock the edge dynamics to the core sawteeth? Can we induce, or prevent, a change in direction of shear flow? What about MHD effects? Is core-edge communication one way or is there some feedback? In the simplest prototype for coupled core-edge dynamics I model the sawtooth crash as a periodic power input to the edge potential energy reservoir. This is effected by coupling the BDS model to the dynamical system u = u(1 - u 2 - x 2 ) - ω s x, x = x(1-u 2 -x 2 ) + ω s u

  2. Numerical simulation of edge plasma in tokamak

    International Nuclear Information System (INIS)

    Chen Yiping; Qiu Lijian

    1996-02-01

    The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)

  3. Edge on Impact Simulations and Experiments

    OpenAIRE

    Leavy, R. Brian; Clayton, John D.; Strack, O. Erik; Brannon, Rebecca M.; Strassburger, Elmar

    2013-01-01

    In the quest to understand damage and failure of ceramics in ballistic events, simplified experiments have been developed to benchmark behavior. One such experiment is known as edge on impact (EOI). In this experiment, an impactor strikes the edge of a thin square plate, and damage and cracking that occur on the free surface are captured in real time with high speed photography. If the material of interest is transparent, additional information regarding damage and wave mechanics within the s...

  4. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  5. Presheath profiles in simulated tokamak edge plasmas

    International Nuclear Information System (INIS)

    LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

    1988-04-01

    The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines

  6. What's happening at the edge of tokamaks

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1987-01-01

    Handling the power deposition at the walls of a plasma fusion device and controlling the particle fueling of the plasma originated the interest in the edge of the plasma by magnetic fusion scientists. Recently this interest has intensified because of clear evidence that the quality of the central plasma confinement depends in unexpected ways on details of how the edge plasma is managed. Significant efforts are being pursued to understand and exploit the improved plasma confinement observed in the 'H-mode' obtained with divertors and in the 'super-shots' obtained with low neutral particle flux from the edge of TFTR limiter plasmas. The controls, that determine whether or not these well-confined plasmas are obtained, are applied in the edge plasma where a wealth of atomic and molecular processes occur. A qualitative overview of current research related to plasma edge and desirable features is presented to guide thoughts about atomic processes to be included in modeling and interpreting the plasma edge of tokamaks. (orig.)

  7. Unsteady phenomena in the edge tone

    International Nuclear Information System (INIS)

    Paal, G.; Vaik, I.

    2007-01-01

    Despite its geometrical simplicity, the edge tone displays a remarkably complex behaviour. A plane jet oscillates around the wedge-shaped object with a relatively stable frequency and under certain circumstances emits an audible tone. This configuration plays a central role in the sound production of several wind instruments but occurs in industrial situations too. The flow exhibits various interesting nonlinear phenomena reported in the literature which are not entirely explained. In this paper, detailed high precision numerical simulations of the flow are reported under various conditions. Several phenomena are reproduced in agreement with the literature such as the existence of 'stages', the dependence of oscillation frequency on the outflow velocity and the orifice-edge distance within one stage, the pressure distribution on the edge surface, etc. A criterion for the appropriate time step for constant accuracy has been derived. The location of force action is surprisingly stable; it remains in a very narrow region of the wedge surface independently of the Reynolds number and the orifice-edge distance but it is much further behind the edge tip than reported in the literature. The various stages can coexist in different ways: jumping back and forth between stages or being superposed on each other. Regardless of the form, the first stage continues to be dominant even when the second and third stage appears. The question of disturbance propagation velocity and disturbance wavelength is also investigated. The development of higher harmonics of a single stage along the orifice-edge tip distance is presented

  8. Edge effect correction using ion beam figuring.

    Science.gov (United States)

    Yang, Bing; Xie, Xuhui; Li, Furen; Zhou, Lin

    2017-11-10

    The edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, as it can greatly reduce the key performance of the optical system. Ion beam figuring (IBF) has the advantage of no edge effect, so we can use it to remove high points on the edge and improve surface accuracy. The edge local correction method (ELCM) of IBF processes only the surface edge zone, and is very different from the current full caliber figuring method (FCFM). Therefore, it is necessary to study the ELCM of IBF. In this paper, the key factors of ELCM are analyzed, such as dwell time algorithm, edge data extension methods, and the outward dimension of the starting figuring point. At the same time, the distinctions between ELCM and FCFM are compared. Finally, a 142 mm diameter fused silica mirror is fabricated to verify the validity of the theoretical of ELCM. The experimental results indicate that the figuring precision and efficiency can be obviously improved by ELCM.

  9. Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs

    Directory of Open Access Journals (Sweden)

    Magda Dettlaff

    2016-01-01

    Full Text Available Given a graph \\(G=(V,E\\, the subdivision of an edge \\(e=uv\\in E(G\\ means the substitution of the edge \\(e\\ by a vertex \\(x\\ and the new edges \\(ux\\ and \\(xv\\. The domination subdivision number of a graph \\(G\\ is the minimum number of edges of \\(G\\ which must be subdivided (where each edge can be subdivided at most once in order to increase the domination number. Also, the domination multisubdivision number of \\(G\\ is the minimum number of subdivisions which must be done in one edge such that the domination number increases. Moreover, the concepts of paired domination and independent domination subdivision (respectively multisubdivision numbers are defined similarly. In this paper we study the domination, paired domination and independent domination (subdivision and multisubdivision numbers of the generalized corona graphs.

  10. Transaortic Alfieri Edge-to-Edge Repair for Functional Mitral Regurgitation.

    Science.gov (United States)

    Imasaka, Ken-Ichi; Tayama, Eiki; Morita, Shigeki; Toriya, Ryohei; Tomita, Yukihiro

    2018-03-01

    There is controversy about handling functional mitral regurgitation in patients undergoing aortic valve or proximal aortic operations. We describe a transaortic Alfieri edge-to-edge repair for functional mitral regurgitation that reduces operative excessive invasion and prolonged cardiopulmonary bypass time. Between May 2013 and December 2016, 10 patients underwent transaortic Alfieri edge-to-edge mitral repair. There were no operative deaths. The severity of mitral regurgitation immediately after the operation by transesophageal echocardiography was none or trivial in all patients. A transaortic Alfieri edge-to-edge repair for functional mitral regurgitation is a simple and safe approach. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Filament structures at the plasma edge on MAST

    International Nuclear Information System (INIS)

    Kirk, A; Ayed, N Ben; Counsell, G; Dudson, B; Eich, T; Herrmann, A; Koch, B; Martin, R; Meakins, A; Saarelma, S; Scannell, R; Tallents, S; Walsh, M; Wilson, H R

    2006-01-01

    The boundary of the tokamak core plasma, or scrape-off layer, is normally characterized in terms of average parameters such as density, temperature and e-folding lengths suggesting diffusive losses. However, as is shown in this paper, localized filamentary structures play an important role in determining the radial efflux in both L mode and during edge localized modes (ELMs) on MAST. Understanding the size, poloidal and toroidal localization and the outward radial extent of these filaments is crucial in order to calculate their effect on power loading both on the first wall and the divertor target plates in future devices. The spatial and temporal evolution of filaments observed on MAST in L-mode and ELMs have been compared and contrasted in order to confront the predictions of various models that have been proposed to predict filament propagation and in particular ELM energy losses

  12. Edge density profiles in high-performance JET plasmas

    International Nuclear Information System (INIS)

    Summers, D.D.R.; Viaccoz, B.; Vince, J.

    1997-01-01

    Detailed electron density profiles of the scrape-off layer in high-performance JET plasmas (plasma current, I p nbi ∝17 MW) have been measured by means of a lithium beam diagnostic system featuring high spatial resolution [Kadota (1978)[. Measurements were taken over a period of several seconds, allowing examination of the evolution of the edge profile at a location upstream from the divertor target. The data clearly show the effects of the H-mode transition - an increase in density near the plasma separatrix and a reduction in density scrape-off length. The profiles obtained under various plasma conditions are compared firstly with data from other diagnostics, located elsewhere in the vessel, and also with the predictions of an 'onion-skin' model (DIVIMP), which used, as initial parameters, data from an array of probes located in the divertor target. (orig.)

  13. Further results for crack-edge mappings by ray methods

    International Nuclear Information System (INIS)

    Norris, A.N.; Achenbach, J.D.; Ahlberg, L.; Tittman, B.R.

    1984-01-01

    This chapter discusses further extensions of the local edge mapping method to the pulse-echo case and to configurations of water-immersed specimens and transducers. Crack edges are mapped by the use of arrival times of edge-diffracted signals. Topics considered include local edge mapping in a homogeneous medium, local edge mapping algorithms, local edge mapping through an interface, and edge mapping through an interface using synthetic data. Local edge mapping is iterative, with two or three iterations required for convergence

  14. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  15. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands

    International Nuclear Information System (INIS)

    Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.

    2017-01-01

    Here, transition metal oxides show great promise as Earth-abundant catalysts for the oxygen evolution reaction in electrochemical water splitting. However, progress in the development of highly active oxide nanostructures is hampered by a lack of knowledge of the location and nature of the active sites. Here we show, through atom-resolved scanning tunnelling microscopy, X-ray spectroscopy and computational modelling, how hydroxyls form from water dissociation at under coordinated cobalt edge sites of cobalt oxide nanoislands. Surprisingly, we find that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the important assisting role of a water molecule in its own dissociation process on a metal oxide. Inspired by the experimental findings, we theoretically model the oxygen evolution reaction activity of cobalt oxide nanoislands and show that the nanoparticle metal edges also display favourable adsorption energetics for water oxidation under electrochemical conditions.

  16. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  17. Power spectrum weighted edge analysis for straight edge detection in images

    Science.gov (United States)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  18. Animal evolution

    DEFF Research Database (Denmark)

    Nielsen, Claus

    This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes it possi......This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes...

  19. Edge strength of CAD/CAM materials.

    Science.gov (United States)

    Pfeilschifter, Maria; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-05-16

    To investigate the edge force of CAD/CAM materials as a function of (a) material, (b) thickness, and (c) distance from the margin. Materials intended for processing with CAD/CAM were investigated: eight resin composites, one resin-infiltrated ceramic, and a clinically proven lithiumdisilicate ceramic (reference). To measure edge force (that is, load to failure/crack), plates (d = 1 mm) were fixed and loaded with a Vickers diamond indenter (1 mm/min, Zwick 1446) at a distance of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm from the edge. Edge force was defined as a loading force at a distance of 0.5 mm. The type of failure was determined. To investigate the influence of the thickness, all data were determined on 1-mm and 2-mm plates. To test the influence of bonding and an underlying dentin, individual 1-mm plates were bonded to a 1-mm-thick dentin-like (concerning modulus of elasticity) resin composite. For the 1-mm plates, edge force varied between 64.4 ± 24.2 N (Shofu Block HC) and 183.2 ± 63.3 N (ceramic reference), with significant (p ≤ 0.001) differences between the materials. For the 2-mm plates, values between 129.2 ± 32.5 N (Lava Ultimate) and 230.3 ± 67.5 N (Cerasmart) were found. Statistical comparison revealed no significant differences (p > 0.109) between the materials. Brilliant Crios (p = 0.023), Enamic (p = 0.000), Shofu Blocks HC (p = 0.009), and Grandio Bloc (p = 0.002) showed significantly different edge force between the 1-mm- and 2-mm-thick plates. The failure pattern was either cracking, (severe) chipping, or fracture. Material, material thickness, and distance from the edge impact the edge force of CAD/CAM materials. CAD/CAM materials should be carefully selected on the basis of their individual edge force and performance during milling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type i......+1, i=1,2,3,4. The first three types are equivalent to the absence of PC cycles, PC closed trails, and PC closed walks, respectively. While graphs of types 1, 2 and 3 can be recognized in polynomial time, the problem of recognizing graphs of type 4 is, somewhat surprisingly, NP-hard even for 2-edge-colored...... graphs (i.e., when only two colors are used). The same problem with respect to type 5 is polynomial-time solvable for all edge-colored graphs. Using the five types, we investigate the border between intractability and tractability for the problems of finding the maximum number of internally vertex...

  1. Infective endocarditis following transcatheter edge-to-edge mitral valve repair: A systematic review.

    Science.gov (United States)

    Asmarats, Lluis; Rodriguez-Gabella, Tania; Chamandi, Chekrallah; Bernier, Mathieu; Beaudoin, Jonathan; O'Connor, Kim; Dumont, Eric; Dagenais, François; Paradis, Jean-Michel; Rodés-Cabau, Josep

    2018-05-10

    To assess the clinical characteristics, management, and outcomes of patients diagnosed with infective endocarditis (IE) after edge-to-edge mitral valve repair with the MitraClip device. Transcatheter edge-to-edge mitral valve repair has emerged as an alternative to surgery in high-risk patients. However, few data exist on IE following transcatheter mitral procedures. Four electronic databases (PubMed, Google Scholar, Embase, and Cochrane Library) were searched for original published studies on IE after edge-to-edge transcatheter mitral valve repair from 2003 to 2017. A total of 10 publications describing 12 patients with definitive IE (median age 76 years, 55% men) were found. The mean logistic EuroSCORE/EuroSCORE II were 41% and 45%, respectively. The IE episode occurred early (within 12 months post-procedure) in nine patients (75%; within the first month in five patients). Staphylococcus aureus was the most frequent (60%) causal microorganism, and severe mitral regurgitation was present in all cases but one. Surgical mitral valve replacement (SMVR) was performed in most (67%) patients, and the mortality associated with the IE episode was high (42%). IE following transcatheter edge-to-edge mitral valve repair is a rare but life-threatening complication, usually necessitating SMVR despite the high-risk profile of the patients. These results highlight the importance of adequate preventive measures and a prompt diagnosis and treatment of this serious complication. © 2018 Wiley Periodicals, Inc.

  2. Size effect model for the edge strength of glass with cut and ground edge finishing

    NARCIS (Netherlands)

    Vandebroek, M.; Louter, C.; Caspeele, R.; Ensslen, F.; Belis, J.L.I.F.

    2014-01-01

    The edge strength of glass is influenced by the size of the surface (near the edge) which is subjected to tensile stresses. To quantify this size effect, 8 series of single layer annealed glass beam specimens (as-received glass) were subjected to in-plane four-point bending with linearly increased

  3. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    Science.gov (United States)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  4. Interpreting Brightness Asymmetries in Transition Disks: Vortex at Dead Zone or Planet-carved Gap Edges?

    Science.gov (United States)

    Regály, Zs.; Juhász, A.; Nehéz, D.

    2017-12-01

    Recent submillimeter observations show nonaxisymmetric brightness distributions with a horseshoe-like morphology for more than a dozen transition disks. The most-accepted explanation for the observed asymmetries is the accumulation of dust in large-scale vortices. Protoplanetary disks’ vortices can form by the excitation of Rossby wave instability in the vicinity of a steep pressure gradient, which can develop at the edges of a giant planet–carved gap or at the edges of an accretionally inactive zone. We studied the formation and evolution of vortices formed in these two distinct scenarios by means of two-dimensional locally isothermal hydrodynamic simulations. We found that the vortex formed at the edge of a planetary gap is short-lived, unless the disk is nearly inviscid. In contrast, the vortex formed at the outer edge of a dead zone is long-lived. The vortex morphology can be significantly different in the two scenarios: the vortex radial and azimuthal extensions are ∼1.5 and ∼3.5 times larger for the dead-zone edge compared to gap models. In some particular cases, the vortex aspect ratios can be similar in the two scenarios; however, the vortex azimuthal extensions can be used to distinguish the vortex formation mechanisms. We calculated predictions for vortex observability in the submillimeter continuum with ALMA. We found that the azimuthal and radial extent of the brightness asymmetry correlates with the vortex formation process within the limitations of α-viscosity prescription.

  5. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Zhang, Ruiqi; Yang, Chao; Yang, Jinlong

    2017-11-01

    Two-dimensional phosphorene with desirable optoelectronic properties (ideal band gap, high carrier mobility, and strong visible light absorption) is a promising metal-free photocatalyst for water splitting. However, the band edge positions of the valence band maximum (VBM) and conduction band maximum (CBM) of phosphorene are higher than the redox potentials in photocatalytic water splitting reactions. Thus, phosphorene can only be used as the photocathode for hydrogen evolution reaction as a low-efficiency visible-light-driven photocatalyst for hydrogen production in solar water splitting cells. Here, we propose a new mechanism to improve the photocatalytic efficiency of phosphorene nanoribbons (PNRs) by modifying their edges for full reactions in photocatalytic water splitting. By employing first-principles density functional theory calculations, we find that pseudohalogen (CN and OCN) passivated PNRs not only show desired VBM and CBM band edge positions induced by edge electric dipole layer, but also possess intrinsic optoelectronic properties of phosphorene, for both water oxidation and hydrogen reduction in photocatalytic water splitting without using extra energy. Furthermore, our calculations also predict that the maximum energy conversion efficiency of heterojunction solar cells consisting of different edge-modified PNRs can be as high as 20% for photocatalytic water splitting.

  6. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  7. Security Evolution.

    Science.gov (United States)

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  8. Cepheid evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1984-05-01

    A review of the phases of stellar evolution relevant to Cepheid variables of both Types I and II is presented. Type I Cepheids arise as a result of normal post-main sequence evolutionary behavior of many stars in the intermediate to massive range of stellar masses. In contrast, Type II Cepheids generally originate from low-mass stars of low metalicity which are undergoing post core helium-burning evolution. Despite great progress in the past two decades, uncertainties still remain in such areas as how to best model convective overshoot, semiconvection, stellar atmospheres, rotation, and binary evolution as well as uncertainties in important physical parameters such as the nuclear reaction rates, opacity, and mass loss rates. The potential effect of these uncertainties on stellar evolution models is discussed. Finally, comparisons between theoretical predictions and observations of Cepheid variables are presented for a number of cases. The results of these comparisons show both areas of agreement and disagreement with the latter result providing incentive for further research

  9. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  10. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  11. Performance of active edge pixel sensors

    Science.gov (United States)

    Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.

    2017-05-01

    To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  12. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, Muhammad

    2016-08-23

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light.

  13. Controllable edge feature sharpening for dental applications.

    Science.gov (United States)

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  14. Controllable Edge Feature Sharpening for Dental Applications

    Directory of Open Access Journals (Sweden)

    Ran Fan

    2014-01-01

    Full Text Available This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  15. Edge database analysis for extrapolation to ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Janeschitz, G.; Stambaugh, R.D.

    1999-01-01

    An edge database has been archived to facilitate cross-machine comparisons of SOL and edge pedestal characteristics, and to enable comparison with theoretical models with an aim to extrapolate to ITER. The SOL decay lengths of power, density and temperature become broader for increasing density and q 95 . The power decay length is predicted to be 1.4-3.5 cm (L-mode) and 1.4-2.7 cm (H-mode) at the midplane in ITER. Analysis of Type I ELMs suggests that each giant ELM on ITER would exceed the ablation threshold of the divertor plates. Theoretical models are proposed for the H-mode transition, for Type I and Type III ELMs and are compared with the edge pedestal database. (author)

  16. Long coherence times for edge spins

    Science.gov (United States)

    Kemp, Jack; Yao, Norman Y.; Laumann, Christopher R.; Fendley, Paul

    2017-06-01

    We show that in certain one-dimensional spin chains with open boundary conditions, the edge spins retain memory of their initial state for very long times, even at infinite temperature. The long coherence times do not require disorder, only an ordered phase. In the integrable Ising and XYZ chains, the presence of a strong zero mode means the coherence time is infinite. When Ising is perturbed by interactions breaking the integrability, the coherence time remains exponentially long in the perturbing couplings. We show that this is a consequence of an edge ‘almost’ strong zero mode that almost commutes with the Hamiltonian. We compute this operator explicitly, allowing us to estimate accurately the plateau value of edge spin autocorrelator.

  17. Preparation of edge states by shaking boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.C. [Department of Physics, Fuzhou University, Fuzhou 350002 (China); Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024 (China); Hou, S.C. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan (China); Wang, L.C. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Yi, X.X., E-mail: yixx@nenu.edu.cn [Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024 (China)

    2016-10-15

    Preparing topological states of quantum matter, such as edge states, is one of the most important directions in condensed matter physics. In this work, we present a proposal to prepare edge states in Aubry–André–Harper (AAH) model with open boundaries, which takes advantage of Lyapunov control to design operations. We show that edge states can be obtained with almost arbitrary initial states. A numerical optimalization for the control is performed and the dependence of control process on the system size is discussed. The merit of this proposal is that the shaking exerts only on the boundaries of the model. As a by-product, a topological entangled state is achieved by elaborately designing the shaking scheme.

  18. Edge effects in composites by moire interferometry

    Science.gov (United States)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  19. Properties of the tokamak edge plasma

    International Nuclear Information System (INIS)

    Wolff, H.

    1988-01-01

    A short review of some features of the edge plasma in limiter tokamaks is given. The limits of the simple one-dimensional scrape-off layer (SOL) model and the relation between the core plasma are discussed. Multifaceted asymmetric radiation from the edge (MARFE) phenomena and detached plasma are closely connected with the particle and energy balance of the SOL. Their occurrence is based on the relation of plasma parameters of the edge plasma to those of the core. Important problems of plasma wall interactions are the detection of the impurity sources and sinks and the study of the impurity transport and shielding. The non-uniform character of plasma wall interactions and their dependence on the discharge performance still renders difficult any theoretical forecast of impurity distribution and transport and calls for better diagnostics. (author)

  20. Leading-edge vortex lifts swifts.

    Science.gov (United States)

    Videler, J J; Stamhuis, E J; Povel, G D E

    2004-12-10

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60 degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Interactions with the flow were measured quantitatively with digital particle image velocimetry at Reynolds numbers realistic for the gliding flight of a swift between 3750 and 37,500. The results show that gliding swifts can generate stable leading-edge vortices at small (5 degrees to 10 degrees) angles of attack. We suggest that the flow around the arm-wings of most birds can remain conventionally attached, whereas the swept-back hand-wings generate lift with leading-edge vortices.

  1. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    Science.gov (United States)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  2. Physics-based edge evaluation for improved color constancy

    NARCIS (Netherlands)

    Gijsenij, A.; Gevers, T.; van de Weijer, J.

    2009-01-01

    Edge-based color constancy makes use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as shadow, geometry, material and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant

  3. Edge detection in landing budgerigars (Melopsittacus undulatus.

    Directory of Open Access Journals (Sweden)

    Partha Bhagavatula

    Full Text Available BACKGROUND: While considerable scientific effort has been devoted to studying how birds navigate over long distances, relatively little is known about how targets are detected, obstacles are avoided and smooth landings are orchestrated. Here we examine how visual features in the environment, such as contrasting edges, determine where a bird will land. METHODOLOGY/PRINCIPAL FINDINGS: Landing in budgerigars (Melopsittacus undulatus was investigated by training them to fly from a perch to a feeder, and video-filming their landings. The feeder was placed on a grey disc that produced a contrasting edge against a uniformly blue background. We found that the birds tended to land primarily at the edge of the disc and walk to the feeder, even though the feeder was in the middle of the disc. This suggests that the birds were using the visual contrast at the boundary of the disc to target their landings. When the grey level of the disc was varied systematically, whilst keeping the blue background constant, there was one intermediate grey level at which the budgerigar's preference for the disc boundary disappeared. The budgerigars then landed randomly all over the test surface. Even though this disc is (for humans clearly distinguishable from the blue background, it offers very little contrast against the background, in the red and green regions of the spectrum. CONCLUSIONS: We conclude that budgerigars use visual edges to target and guide landings. Calculations of photoreceptor excitation reveal that edge detection in landing budgerigars is performed by a color-blind luminance channel that sums the signals from the red and green photoreceptors, or, alternatively, receives input from the red double-cones. This finding has close parallels to vision in honeybees and primates, where edge detection and motion perception are also largely color-blind.

  4. Functional and Biomechanical Effects of the Edge-to-Edge Repair in the Setting of Mitral Regurgitation: Consolidated Knowledge and Novel Tools to Gain Insight into Its Percutaneous Implementation.

    Science.gov (United States)

    Sturla, Francesco; Redaelli, Alberto; Puppini, Giovanni; Onorati, Francesco; Faggian, Giuseppe; Votta, Emiliano

    2015-06-01

    Mitral regurgitation is the most prevalent heart valve disease in the western population. When severe, it requires surgical treatment, repair being the preferred option. The edge-to-edge repair technique treats mitral regurgitation by suturing the leaflets together and creating a double-orifice valve. Due to its relative simplicity and versatility, it has become progressively more widespread. Recently, its percutaneous version has become feasible, and has raised interest thanks to the positive results of the Mitraclip(®) device. Edge-to-edge features and evolution have stimulated debate and multidisciplinary research by both clinicians and engineers. After providing an overview of representative studies in the field, here we propose a novel computational approach to the most recent percutaneous evolution of the edge-to-edge technique. Image-based structural finite element models of three mitral valves affected by posterior prolapse were derived from cine-cardiac magnetic resonance imaging. The models accounted for the patient-specific 3D geometry of the valve, including leaflet compound curvature pattern, patient-specific motion of annulus and papillary muscles, and hyperelastic and anisotropic mechanical properties of tissues. The biomechanics of the three valves throughout the entire cardiac cycle was simulated before and after Mitraclip(®) implantation, assessing the biomechanical impact of the procedure. For all three simulated MVs, Mitraclip(®) implantation significantly improved systolic leaflets coaptation, without inducing major alterations in systolic peak stresses. Diastolic orifice area was decreased, by up to 58.9%, and leaflets diastolic stresses became comparable, although lower, to systolic ones. Despite established knowledge on the edge-to-edge surgical repair, latest technological advances make its percutanoues implementation a challenging field of research. The modeling approach herein proposed may be expanded to analyze clinical scenarios that

  5. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  6. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  7. Edge detection techniques for iris recognition system

    International Nuclear Information System (INIS)

    Tania, U T; Motakabber, S M A; Ibrahimy, M I

    2013-01-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate

  8. Radiative edge layers in limiter tokamaks

    International Nuclear Information System (INIS)

    Monier-Garbet, P.

    1997-01-01

    The characteristics of the highly radiative edge layers produced in the limiter configuration and with an open ergodic divertor are reviewed, with emphasis on the results obtained in TEXTOR and Tore Supra. In these two experiments an impurity injection technique is used to obtain highly radiating homogeneous peripheral layers. This requires that the peripheral radiation capability be maximized, while at the same time avoiding plasma core contamination; it is also necessary to insure the stability of the radiating layer. These physics issues, governing the success of the highly radiative edge scenario, are discussed. (orig.)

  9. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  10. X-point effect on edge stability

    International Nuclear Information System (INIS)

    Saarelma, S; Kirk, A; Kwon, O J

    2011-01-01

    We study the effects of the X-point configuration on edge localized mode (ELM) triggering peeling and ballooning modes using fixed boundary equilibria and modifying the plasma shape to approach the limit of a true X-point. The current driven pure peeling modes are asymptotically stabilized by the X-point while the stabilizing effect on ballooning modes depends on the poloidal location of the X-point. The coupled peeling-ballooning modes experience the elimination of the peeling component as the X-point is introduced. This can significantly affect the edge stability diagrams used to analyse the ELM triggering mechanisms.

  11. Edge Cut Domination, Irredundance, and Independence in Graphs

    OpenAIRE

    Fenstermacher, Todd; Hedetniemi, Stephen; Laskar, Renu

    2016-01-01

    An edge dominating set $F$ of a graph $G=(V,E)$ is an \\textit{edge cut dominating set} if the subgraph $\\langle V,G-F \\rangle$ is disconnected. The \\textit{edge cut domination number} $\\gamma_{ct}(G)$ of $G$ is the minimum cardinality of an edge cut dominating set of $G.$ In this paper we study the edge cut domination number and investigate its relationships with other parameters of graphs. We also introduce the properties edge cut irredundance and edge cut independence.

  12. Virulence evolution at the front line of spreading epidemics.

    Science.gov (United States)

    Griette, Quentin; Raoul, Gaël; Gandon, Sylvain

    2015-11-01

    Understanding and predicting the spatial spread of emerging pathogens is a major challenge for the public health management of infectious diseases. Theoretical epidemiology shows that the speed of an epidemic is governed by the life-history characteristics of the pathogen and its ability to disperse. Rapid evolution of these traits during the invasion may thus affect the speed of epidemics. Here we study the influence of virulence evolution on the spatial spread of an epidemic. At the edge of the invasion front, we show that more virulent and transmissible genotypes are expected to win the competition with other pathogens. Behind the front line, however, more prudent exploitation strategies outcompete virulent pathogens. Crucially, even when the presence of the virulent mutant is limited to the edge of the front, the invasion speed can be dramatically altered by pathogen evolution. We support our analysis with individual-based simulations and we discuss the additional effects of demographic stochasticity taking place at the front line on virulence evolution. We confirm that an increase of virulence can occur at the front, but only if the carrying capacity of the invading pathogen is large enough. These results are discussed in the light of recent empirical studies examining virulence evolution at the edge of spreading epidemics. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  13. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.

    Science.gov (United States)

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2013-01-14

    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  15. Edge currents in frustrated Josephson junction ladders

    Science.gov (United States)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  16. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  17. Edge maps: Representing flow with bounded error

    KAUST Repository

    Bhatia, Harsh

    2011-03-01

    Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Many analysis techniques rely on computing streamlines, a task often hampered by numerical instabilities. Approaches that ignore the resulting errors can lead to inconsistencies that may produce unreliable visualizations and ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with linear maps defined on its boundary. This representation, called edge maps, is equivalent to computing all possible streamlines at a user defined error threshold. In spite of this error, all the streamlines computed using edge maps will be pairwise disjoint. Furthermore, our representation stores the error explicitly, and thus can be used to produce more informative visualizations. Given a piecewise-linear interpolated vector field, a recent result [15] shows that there are only 23 possible map classes for a triangle, permitting a concise description of flow behaviors. This work describes the details of computing edge maps, provides techniques to quantify and refine edge map error, and gives qualitative and visual comparisons to more traditional techniques. © 2011 IEEE.

  18. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.

    2002-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma in a tokamak. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of standard neoclassical theory break down. This paper reviews recent extensions of neoclassical theory to treat this problem, in particular our own work, which focuses on the nonlinear aspects of transport in a plasma with heavy impurity ions. In this theory, the pressure and temperature gradients are allowed to be steeper than in conventional theory neoclassical theory, so that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. The impurity ions are then found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. (orig.)

  19. Nonlinear neoclassical theory for toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. We have extended the theory of neoclassical transport in an impure plasma with arbitrary cross section and aspect ratio to allow for steeper pressure and temperature gradients than are usually considered in the conventional theory. The gradients are allowed to be so large that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. In this case the impurity ions are found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. The theoretical predictions are compared with experimental data from several tokamaks. (orig.)

  20. The SKED: speckle knife edge detector

    International Nuclear Information System (INIS)

    Sharpies, S D; Light, R A; Achamfuo-Yeboah, S O; Clark, M; Somekh, M G

    2014-01-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device

  1. The SKED: speckle knife edge detector

    Science.gov (United States)

    Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.

    2014-06-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.

  2. Anomalous transport in the tokamak edge

    International Nuclear Information System (INIS)

    Vayakis, G.

    1991-04-01

    The tokamak edge has been studied with arrays of Langmuir and magnetic probes on the DITE and COMPASS-C devices. Measurements of plasma parameters such as density, temperature and radial magnetic field were taken in order to elucidate the character, effect on transport and origin of edge fluctuations. The tokamak edge is a strongly-turbulent environment, with large electrostatic fluctuation levels and broad spectra. The observations, including direct correlation measurements, are consistent with a picture in which the observed magnetic field fluctuations are driven by the perturbations in electrostatic parameters. The propagation characteristics of the turbulence, investigated using digital spectral techniques, appear to be dominated by the variation of the radial electric field, both in limiter and divertor plasmas. A shear layer is formed, associated in each case with the last closed flux surface. In the shear layer, the electrostatic wavenumber spectra are significantly broader. The predictions of a drift wave model (DDGDT) and of a family of models evolving from the rippling mode (RGDT group), are compared with experimental results. RGDT, augmented by impurity radiation effects, is shown to be the most reasonable candidate to explain the nature of the edge turbulence, only failing in its estimate of the wavenumber range. (Author)

  3. Edge Sheared Flows and Blob Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myra, J.; D' Ippolito, D.; Russell, D., E-mail: jrmyra@lodestar.com [Lodestar Research Corporation, Boulder (United States); Davis, W. M.; Zweben, S. [Princeton Plasma Physics Laboratory, Princeton (United States); Terry, J.; LaBombard, B. [Massachusetts Institute of Technology, Cambridge (United States)

    2012-09-15

    Full text: A study of sheared flows in the edge and scrape-off layer (SOL) and their interaction with blob-filaments is presented. Edge sheared flows are believed to be important for the L-H, and H-L transitions. Blob generation and dynamics impacts both the (near-separatrix) scrape-off-layer (SOL) width critical for power handling in the divertor, and the interaction of plasma in the far SOL with plasma-facing components. These topics are critical for ITER and future devices. A fluid-based 2D curvature-interchange model embedded in the SOLT code is employed to study these issues. Sheared binormal flows both regulate the power flux crossing the separatrix and control the character of emitted turbulence structures such as blob-filaments. At a critical power level (depending on parameters) the laminar flows containing intermittent, but bound, structures give way to full-blown blob emissions signifying a transition from quasi-diffusive to convective transport. In order to diagnose sheared flows in experiments and assess their interaction with blobs, a blob-tracking algorithm has been developed and applied to both NSTX and Alcator C-Mod data. Blob motion and ellipticity can be affected by sheared flows, and are diagnosed and compared with seeded blob simulations. A picture of the interaction of blobs and sheared flows is emerging from advances in the theory and simulation of edge turbulence, combined with ever-improving capabilities for edge diagnostics and their analysis. (author)

  4. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  5. Evaluation of alternative snow plow cutting edges.

    Science.gov (United States)

    2009-05-01

    With approximately 450 snow plow trucks, the Maine Department of Transportation (MaineDOT) uses in : excess of 10,000 linear feet of plow cutting edges each winter season. Using the 2008-2009 cost per linear : foot of $48.32, the Departments total co...

  6. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  7. Commercial Technology at the Tactical Edge

    Science.gov (United States)

    2013-06-01

    Software defined Networking ( SDN ), Autonomic Networking , and Cognitive Radios for Spectrum Sharing. Software defined ...www.opennetworking.org/. 41 Pan, P., “ Software Defined Network ( SDN ) Problem Statement and Use Cases for Data Center Applications,” IETF, 2011, http://tools.ietf.org/id...routinely at the tactical edge in the near future. These include software defined networking , autonomous networks , cognitive

  8. Acoustic streaming of a sharp edge.

    Science.gov (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  9. Edge-disjoint Hamiltonian cycles in hypertournaments

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2006-01-01

    We introduce a method for reducing k-tournament problems, for k >= 3, to ordinary tournaments, that is, 2-tournaments. It is applied to show that a k-tournament on n >= k + 1 + 24d vertices (when k >= 4) or on n >= 30d + 2 vertices (when k = 3) has d edge-disjoint Hamiltonian cycles if and only...

  10. Leading-Edge Vortex lifts swifts

    NARCIS (Netherlands)

    Videler, JJ; Stamhuis, EJ; Povel, GDE

    2004-01-01

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel.

  11. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  12. Robotic edge machining using elastic abrasive tool

    Science.gov (United States)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  13. Simultaneous embedding: edge orderings, relative positions, cutvertices

    NARCIS (Netherlands)

    Bläsius, T.; Karrer, A.; Rutter, I.

    A simultaneous embedding (with fixed edges) of two graphs (Formula presented.) and (Formula presented.) with common graph (Formula presented.) is a pair of planar drawings of (Formula presented.) and (Formula presented.) that coincide on G. It is an open question whether there is a polynomial-time

  14. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W; van Breugel, PB; Moors, EJ; Nieveen, JP

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m(-2), or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less

  15. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W.; Breugel, van P.B.; Moors, E.J.; Nieveen, J.P.

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W mm2, or 16 f the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than

  16. Plasma edge cooling during RF heating

    International Nuclear Information System (INIS)

    Suckewer, S.; Hawryluk, R.J.

    1978-01-01

    A new approach to prevent the influx of high-Z impurities into the core of a tokamak discharge by using RF power to modify the edge plasma temperature profile is presented. This concept is based on spectroscopic measurements on PLT during ohmic heating and ATC during RF heating. A one dimensional impurity transport model is used to interpret the ATC results

  17. Nudging Evolution?

    OpenAIRE

    Katharine N. Farrell; Andreas Thiel

    2013-01-01

    This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institut...

  18. Community Evolution

    OpenAIRE

    Saganowski, Stanisław; Bródka, Piotr; Kazienko, Przemysław

    2016-01-01

    The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire social network, extracted social groups and single individuals as well. One of the most interesting research topic is the network dynamics and dynamics of social groups in particular, it means analysis of group evolution over time. It is the natural step forward after social community extraction. Havi...

  19. The visibility of IQHE at sharp edges: experimental proposals based on interactions and edge electrostatics

    International Nuclear Information System (INIS)

    Erkarslan, U; Oylumluoglu, G; Grayson, M; Siddiki, A

    2012-01-01

    The influence of the incompressible strips on the integer quantized Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO) sample as an experimentally realizable sharp edge system. We propose a set of experiments to clarify the distinction between the large-sample limit when bulk disorder defines the IQHE plateau width and the small-sample limit smaller than the disorder correlation length, when self-consistent edge electrostatics define the IQHE plateau width. The large-sample or bulk quantized Hall (QH) regime is described by the usual localization picture, whereas the small-sample or edge regime is discussed within the compressible/incompressible strips picture, known as the screening theory of QH edges. Utilizing the unusually sharp edge profiles of the CEO samples, a Hall bar design is proposed to manipulate the edge potential profile from smooth to extremely sharp. By making use of a side-gate perpendicular to the two-dimensional electron system, it is shown that the plateau widths can be changed or even eliminated altogether. Hence, the visibility of IQHE is strongly influenced when adjusting the edge potential profile and/or changing the dc current direction under high currents in the nonlinear transport regime. As a second investigation, we consider two different types of ohmic contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal) contacts. We show that if the injection contacts are non-ideal, but still ohmic, it is possible to measure directly the non-quantized transport taking place at the bulk of the CEO samples. The results of the experiments we propose will clarify the influence of the edge potential profile and the quality of the contacts, under QH conditions. (paper)

  20. Unconventional quantized edge transport in the presence of inter-edge coupling in intercalated graphene

    OpenAIRE

    Li, Yuanchang

    2016-01-01

    It is generally believed that the inter-edge coupling destroys the quantum spin Hall (QSH) effect along with the gap opening at the Dirac points. Using first-principles calculations, we find that the quantized edge transport persists in the presence of inter-edge coupling in Ta intercalated epitaxial graphene on SiC(0001), being a QSH insulator with the non-trivial gap of 81 meV. In this case, the band is characterized by two perfect Dirac cones with different Fermi velocities, yet only one m...

  1. Mapping Forest Edge Using Aerial Lidar

    Science.gov (United States)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  2. Mortality after percutaneous edge-to-edge mitral valve repair: a contemporary review.

    Science.gov (United States)

    Kortlandt, Friso A; de Beenhouwer, Thomas; Swaans, Martin J; Post, Marco C; van der Heyden, Jan A S; Eefting, Frank D; Rensing, Benno J W M

    2016-04-01

    Percutaneous edge-to-edge mitral valve (MV) repair is a relatively new treatment option for mitral regurgitation (MR). After the feasibility and safety having been proved in low-surgical-risk patients, the use of this procedure has shifted more to the treatment of high-risk patients. With the absence of randomized controlled trials (RCT) for this particular subgroup, observational studies try to add evidence to the safety aspect of this procedure. These also provide short- and mid-term mortality figures. Several mortality predictors have been identified, which may help the optimal selection of patients who will benefit most from this technique. In this article we provide an overview of the literature about mortality and its predictors in patients treated with the percutaneous edge-to-edge device.

  3. Signatures of a Nonthermal Metastable State in Copropagating Quantum Hall Edge Channels

    Science.gov (United States)

    Itoh, Kosuke; Nakazawa, Ryo; Ota, Tomoaki; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa

    2018-05-01

    A Tomonaga-Luttinger (TL) liquid is known as an integrable system, in which a nonequilibrium many-body state survives without relaxing to a thermalized state. This intriguing characteristic is tested experimentally in copropagating quantum Hall edge channels at bulk filling factor ν =2 . The unidirectional transport allows us to investigate the time evolution by measuring the spatial evolution of the electronic states. The initial state is prepared with a biased quantum point contact, and its spatial evolution is measured with a quantum-dot energy spectrometer. We find strong evidence for a nonthermal metastable state in agreement with the TL theory before the system relaxes to thermal equilibrium with coupling to the environment.

  4. Edge-effect interactions in fragmented and patchy landscapes.

    Science.gov (United States)

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  5. Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering.

    Science.gov (United States)

    Chen, Bang-Bao; Ma, De-Kun; Ke, Qing-Ping; Chen, Wei; Huang, Shao-Ming

    2016-03-07

    Edges often play a role as active centers for catalytic reactions in some nanomaterials. Therefore it is highly desirable to enhance catalytic activity of a material through modulating the microstructure of the edges. However, the study associated with edge engineering is less investigated and still at its preliminary stage. Here we report that Cu2MoS4 nanosheets with indented edges can be fabricated through a simple chemical etching route at room temperature, using Cu2MoS4 nanosheets with flat ones as sacrifice templates. Taking the electrocatalytic hydrogen evolution reaction (HER), photocatalytic degradation of rhodamine B (RhB) and conversion of benzyl alcohol as examples, the catalytic activity of Cu2MoS4 indented nanosheets (INSs) obtained through edge engineering was comparatively studied with those of Cu2MoS4 flat nanosheets (FNSs) without any modification. The photocatalytic tests revealed that the catalytic active sites of Cu2MoS4 nanosheets were associated with their edges rather than basal planes. Cu2MoS4 INSs were endowed with larger electrochemically active surface area (ECSA), more active edges and better hydrophilicity through the edge engineering. As a result, the as-fabricated Cu2MoS4 INSs exhibited an excellent HER activity with a small Tafel slope of 77 mV dec(-1), which is among the best records for Cu2MoS4 catalysts. The present work demonstrated the validity of adjusting catalytic activity of the material through edge engineering and provided a new strategy for designing and developing highly efficient catalysts.

  6. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    OpenAIRE

    Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing den...

  7. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge.

    Science.gov (United States)

    Carroll, John M; Furman, Bradley T; Tettelbach, Stephen T; Peterson, Bradley J

    2012-07-01

    Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.

  8. Spin Glass Models of Syntax and Language Evolution

    OpenAIRE

    Siva, Karthik; Tao, Jim; Marcolli, Matilde

    2015-01-01

    Using the SSWL database of syntactic parameters of world languages, and the MIT Media Lab data on language interactions, we construct a spin glass model of language evolution. We treat binary syntactic parameters as spin states, with languages as vertices of a graph, and assigned interaction energies along the edges. We study a rough model of syntax evolution, under the assumption that a strong interaction energy tends to cause parameters to align, as in the case of ferromagnetic materials. W...

  9. Independent component analysis of edge information for face recognition

    CERN Document Server

    Karande, Kailash Jagannath

    2013-01-01

    The book presents research work on face recognition using edge information as features for face recognition with ICA algorithms. The independent components are extracted from edge information. These independent components are used with classifiers to match the facial images for recognition purpose. In their study, authors have explored Canny and LOG edge detectors as standard edge detection methods. Oriented Laplacian of Gaussian (OLOG) method is explored to extract the edge information with different orientations of Laplacian pyramid. Multiscale wavelet model for edge detection is also propos

  10. Edge-detect interpolation for direct digital periapical images

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  11. Edge states in a ferromagnetic honeycomb lattice with armchair boundaries

    Science.gov (United States)

    Pantaleón, Pierre A.; Xian, Y.

    2018-02-01

    We investigate the properties of magnon edge states in a ferromagnetic honeycomb lattice with armchair boundaries. In contrast with fermionic graphene, we find novel edge states due to the missing bonds along the boundary sites. After introducing an external on-site potential at the outermost sites we find that the energy spectra of the edge states are tunable. Additionally, when a non-trivial gap is induced, we find that some of the edge states are topologically protected and also tunable. Our results may explain the origin of the novel edge states recently observed in photonic lattices. We also discuss the behavior of these edge states for further experimental confirmations.

  12. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties.

    Science.gov (United States)

    Tan, Shu Min; Ambrosi, Adriano; Sofer, Zdenĕk; Huber, Štěpán; Sedmidubský, David; Pumera, Martin

    2015-05-04

    The layered structure of molybdenum disulfide (MoS2 ) is structurally similar to that of graphite, with individual sheets strongly covalently bonded within but held together through weak van der Waals interactions. This results in two distinct surfaces of MoS2 : basal and edge planes. The edge plane was theoretically predicted to be more electroactive than the basal plane, but evidence from direct experimental comparison is elusive. Herein, the first study comparing the two surfaces of MoS2 by using macroscopic crystals is presented. A careful investigation of the electrochemical properties of macroscopic MoS2 pristine crystals with precise control over the exposure of one plane surface, that is, basal plane or edge plane, was performed. These crystals were characterized thoroughly by AFM, Raman spectroscopy, X-ray photoelectron spectroscopy, voltammetry, digital simulation, and DFT calculations. In the Raman spectra, the basal and edge planes show anisotropy in the preferred excitation of E2g and A1g phonon modes, respectively. The edge plane exhibits a much larger heterogeneous electron transfer rate constant k(0) of 4.96×10(-5) and 1.1×10(-3)  cm s(-1) for [Fe(CN)6 ](3-/4-) and [Ru(NH3 )6 ](3+/2+) redox probes, respectively, compared to the basal plane, which yielded k(0) tending towards zero for [Fe(CN)6 ](3-/4-) and about 9.3×10(-4)  cm s(-1) for [Ru(NH3 )6 ](3+/2+) . The industrially important hydrogen evolution reaction follows the trend observed for [Fe(CN)6 ](3-/4-) in that the basal plane is basically inactive. The experimental comparison of the edge and basal planes of MoS2 crystals is supported by DFT calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  14. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model

    International Nuclear Information System (INIS)

    Zhang, M.-X.; Kelly, P.M.; Easton, M.A.; Taylor, J.A.

    2005-01-01

    The edge-to-edge matching model for describing the interfacial crystallographic characteristics between two phases that are related by reproducible orientation relationships has been applied to the typical grain refiners in aluminum alloys. Excellent atomic matching between Al 3 Ti nucleating substrates, known to be effective nucleation sites for primary Al, and the Al matrix in both close packed directions and close packed planes containing these directions have been identified. The crystallographic features of the grain refiner and the Al matrix are very consistent with the edge-to-edge matching model. For three other typical grain refiners for Al alloys, TiC (when a = 0.4328 nm), TiB 2 and AlB 2 , the matching only occurs between the close packed directions in both phases and between the second close packed plane of the Al matrix and the second close packed plane of the refiners. According to the model, it is predicted that Al 3 Ti is a more powerful nucleating substrate for Al alloy than TiC, TiB 2 and AlB 2 . This agrees with the previous experimental results. The present work shows that the edge-to-edge matching model has the potential to be a powerful tool in discovering new and more powerful grain refiners for Al alloys

  15. Chess Evolution Visualization.

    Science.gov (United States)

    Lu, Wei-Li; Wang, Yu-Shuen; Lin, Wen-Chieh

    2014-05-01

    We present a chess visualization to convey the changes in a game over successive generations. It contains a score chart, an evolution graph and a chess board, such that users can understand a game from global to local viewpoints. Unlike current graphical chess tools, which focus only on highlighting pieces that are under attack and require sequential investigation, our visualization shows potential outcomes after a piece is moved and indicates how much tactical advantage the player can have over the opponent. Users can first glance at the score chart to roughly obtain the growth and decline of advantages from both sides, and then examine the position relations and the piece placements, to know how the pieces are controlled and how the strategy works. To achieve this visualization, we compute the decision tree using artificial intelligence to analyze a game, in which each node represents a chess position and each edge connects two positions that are one-move different. We then merge nodes representing the same chess position, and shorten branches where nodes on them contain only two neighbors, in order to achieve readability. During the graph rendering, the nodes containing events such as draws, effective checks and checkmates, are highlighted because they show how a game is ended. As a result, our visualization helps players understand a chess game so that they can efficiently learn strategies and tactics. The presented results, evaluations, and the conducted user studies demonstrate the feasibility of our visualization design.

  16. GSGG edge cladding development: Final technical report

    International Nuclear Information System (INIS)

    Izumitani, T.; Meissner, H.E.; Toratani, H.

    1986-01-01

    The objectives of this project have been: (1) Investigate the possibility of chemical etching of GSGG crystal slabs to obtain increased strength. (2) Design and construct a simplified mold assembly for casting cladding glass to the edges of crystal slabs of different dimensions. (3) Conduct casting experiments to evaluate the redesigned mold assembly and to determine stresses as function of thermal expansion coefficient of cladding glass. (4) Clad larger sizes of GGG slabs as they become available. These tasks have been achieved. Chemical etching of GSGG slabs does not appear possible with any other acid than H 3 PO 4 at temperatures above 300 0 C. A mold assembly has been constructed which allowed casting cladding glass around the edges of the largest GGG slabs available (10 x 20 x 160 mm) without causing breakage through the annealing step

  17. Quantum nature of edge magnetism in graphene.

    Science.gov (United States)

    Golor, Michael; Wessel, Stefan; Schmidt, Manuel J

    2014-01-31

    It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the width of a nanoribbon determines whether the edge magnetism is on the classical side, on the quantum side, or in between. In the classical regime, decoherence is dominant and leads to static spin polarizations at the ribbon edges, which are well described by mean-field theories. The quantum Zeno effect is identified as the basic mechanism which is responsible for the spin polarization and thereby enables the application of graphene in spintronics. On the quantum side, however, the spin polarization is destroyed by dynamical processes. The great tunability of graphene magnetism thus offers a viable route for the study of the quantum-classical crossover.

  18. The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA

    Science.gov (United States)

    Bolatto, Alberto D.; Wong, Tony; Utomo, Dyas; Blitz, Leo; Vogel, Stuart N.; Sánchez, Sebastián F.; Barrera-Ballesteros, Jorge; Cao, Yixian; Colombo, Dario; Dannerbauer, Helmut; García-Benito, Rubén; Herrera-Camus, Rodrigo; Husemann, Bernd; Kalinova, Veselina; Leroy, Adam K.; Leung, Gigi; Levy, Rebecca C.; Mast, Damián; Ostriker, Eve; Rosolowsky, Erik; Sandstrom, Karin M.; Teuben, Peter; van de Ven, Glenn; Walter, Fabian

    2017-09-01

    We present interferometric CO observations, made with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer, of galaxies from the Extragalactic Database for Galaxy Evolution survey (EDGE). These galaxies are selected from the Calar Alto Legacy Integral Field Area (CALIFA) sample, mapped with optical integral field spectroscopy. EDGE provides good-quality CO data (3σ sensitivity {{{Σ }}}{mol}˜ 11 {M}⊙ {{pc}}-2 before inclination correction, resolution ˜1.4 kpc) for 126 galaxies, constituting the largest interferometric CO survey of galaxies in the nearby universe. We describe the survey and data characteristics and products, then present initial science results. We find that the exponential scale lengths of the molecular, stellar, and star-forming disks are approximately equal, and galaxies that are more compact in molecular gas than in stars tend to show signs of interaction. We characterize the molecular-to-stellar ratio as a function of Hubble type and stellar mass and present preliminary results on the resolved relations between the molecular gas, stars, and star-formation rate. We then discuss the dependence of the resolved molecular depletion time on stellar surface density, nebular extinction, and gas metallicity. EDGE provides a key data set to address outstanding topics regarding gas and its role in star formation and galaxy evolution, which will be publicly available on completion of the quality assessment.

  19. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  20. Emergent properties of patch shapes affect edge permeability to animals.

    Directory of Open Access Journals (Sweden)

    Vilis O Nams

    Full Text Available Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1 find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2 generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight. When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance.

  1. Spatiotemporal response of plasma edge density and temperature to non-axisymmetric magnetic perturbations at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Fischer, R; Fuchs, J C; McDermott, R; Rathgeber, S K; Suttrop, W; Wolfrum, E; Willensdorfer, M

    2012-01-01

    Non-axisymmetric magnetic perturbations (MPs) were successfully applied at ASDEX Upgrade to substantially reduce the plasma energy loss and peak divertor power load that occur concomitant with type-I edge localized modes (ELMs). The response of electron density edge profiles and temperature and pressure pedestal-top values to MPs are reported. ELM mitigation is observed above an edge density threshold and independent of the MPs being resonant or non-resonant with the edge safety factor. The edge electron collisionality appears not to be appropriate to separate mitigated from non-mitigated discharges for the present high-collisionality plasmas. No significant change in the position or gradient of the edge density profile could be observed for the transition into the ELM-mitigated phase, except from the effect of the three-dimensional MP field which leads to an apparent profile shift. An increase in the density and decrease in the temperature at the pedestal-top balance such that the pressure saturates at the value of the pre-mitigated phase. The plasma stored energy, the normalized plasma pressure, and the H-mode quality factor follow closely the evolution of the pedestal-top pressure and thus remain almost unaffected. The temporal evolution of the ion effective charge shows that the impurity content does not increase although flushing through type-I ELMs is missing. The type-I ELMs are replaced in the mitigated phase by small-scale and high-frequency edge perturbations. The effect of the small bursts on the density profile, which is correlated with a transient increase of the divertor thermoelectric current, is small compared with the effect of the type-I ELMs. The residual scatter of the profiles in the mitigated phase is small directly after the transition into the ELM-mitigated phase and increases again when the pressure saturates at the value of the pre-mitigated phase. (paper)

  2. Gaining the Edge: Connecting with the Millennials

    Science.gov (United States)

    2008-12-01

    Cleaver’s and Partridge’s) entered Americans’ living rooms nightly. The Osmond’s and Beatles captivated music of the Boomer’s youth. Powerful...AIR WAR COLLEGE AIR UNIVERSITY GAINING THE EDGE: CONNECTING WITH THE MILLENNIALS by Kay A. Smith, Lt Col, USAF A Research Report Submitted to... the Faculty In Partial Fulfillment of the Graduation Requirements 1 December 2008 DISCLAIMER The views expressed in this academic research

  3. Lived citizenship on the edge of society

    DEFF Research Database (Denmark)

    work. Drawing on the notion of intimate citizenship and an understanding of citizenship as socio-spatial, the theoretical framework addresses the challenges of enhancing the agency of social work clients and of promoting inclusive citizenship, and how these challenges are shaped by emotions, affect......, rationality, materiality, power relations, policies and managerial strategies. Lived Citizenship on the Edge of Society will be of interest to students and scholars across a range of disciplines including social policy and social work....

  4. Images of Edge Turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.J.; Bush, C.E.; Maqueda, R.; Munsat, T.; Stotler, D.; Lowrance, J.; Mastracola, V.; Renda, G.

    2004-01-01

    The 2-D structure of edge plasma turbulence has been measured in the National Spherical Torus Experiment (NSTX) by viewing the emission of the Da spectral line of deuterium. Images have been made at framing rates of up to 250,000 frames/sec using an ultra-high speed CCD camera developed by Princeton Scientific Instruments. A sequence of images showing the transition between L-mode and H-mode states is shown

  5. Transport in the tokamak plasma edge

    International Nuclear Information System (INIS)

    Vold, E.L.

    1989-01-01

    Experimental observations characterize the edge plasma or boundary layer in magnetically confined plasmas as a region of great complexity. Evidence suggests the edge physics plays a key role in plasma confinement although the mechanism remains unresolved. This study focuses on issues in two areas: observed poloidal asymmetries in the Scrape Off Layer (SOL) edge plasma and the physical nature of the plasma-neutral recycling. A computational model solves the coupled two dimensional partial differential equations governing the plasma fluid density, parallel and radial velocities, electron and ion temperatures and neutral density under assumptions of toroidal symmetry, ambipolarity, anomalous diffusive radial flux, and neutral-ion thermal equilibrium. Drift flow and plasma potential are calculated as dependent quantities. Computational results are compared to experimental data for the CCT and TEXTOR:ALT-II tokamak limiter cases. Comparisons show drift flux is a major component of the poloidal flow in the SOL along the tangency/separatrix. Plasma-neutral recycling is characterized in several tokamak divertors, including the C-MOD device using magnetic flux surface coordinates. Recycling is characterized by time constant, τ rc , on the order of tens of milliseconds. Heat flux transients from the core into the edge on shorter time scales significantly increase the plasma temperatures at the target and may increase sputtering. Recycling conditions in divertors vary considerably depending on recycled flux to the core. The high density, low temperature solution requires that the neutral mean free path be small compared to the divertor target to x-point distance. The simulations and analysis support H-mode confinement and transition models based on the recycling divertor solution bifurcation

  6. The transition-edge microbolometer (TREMBOL)

    International Nuclear Information System (INIS)

    Wentworth, S.M.; Neikirk, D.P.

    1990-01-01

    The TREMBOL (transition-edge microbolometer) and the composite TREMBOL are introduced as detectors for FIR imaging arrays. The TREMBOL uses a superconductor's sharp change in resistance at the normal conduction to superconduction transition. The structure of the composite TREMBOL enables heating of the individual detectors in an array up to their transition temperature, and can thus be used in multiplexing, which would be very advantageous for two-dimensional arrays. 23 refs

  7. Multi-scale Regions from Edge Fragments

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Andersen, Hans Jørgen

    2014-01-01

    In this article we introduce a novel method for detecting multi-scale salient regions around edges using a graph based image compression algorithm. Images are recursively decomposed into triangles arranged into a binary tree using linear interpolation. The entropy of any local region of the image......), their performance is comparable to SIFT (Lowe, 2004).We also show that when they are used together with MSERs (Matas et al., 2002), the performance of MSERs is boosted....

  8. Edge rotational magnons in magnonic crystals

    International Nuclear Information System (INIS)

    Lisenkov, Ivan; Kalyabin, Dmitry; Nikitov, Sergey

    2013-01-01

    It is predicted that in 2D magnonic crystals the edge rotational magnons of forward volume magnetostatic spin waves can exist. Under certain conditions, locally bounded magnons may appear within the crystal consisting of the ferromagnetic matrix and periodically inserted magnetic/non-magnetic inclusions. It is also shown that interplay of different resonances in 2D magnonic crystal may provide conditions for spin wave modes existence with negative group velocity

  9. Edge modelling for W7-X

    International Nuclear Information System (INIS)

    Schneider, R.; Borchardt, M.; Riemann, J.; Bonnin, X.; Nuehrenberg, J.; Mutzke, A.

    2001-01-01

    The edge modelling activities for W7-X are summarized. The status of the new 3D SOL transport code BoRiS is presented, including an algorithm for calculation of magnetic coordinates and metric coefficients. In addition, the analysis of a toroidally averaged island topology with respect to the effect of drift and currents is discussed using the 2D B2-solps5.0 code. (author)

  10. ICRF/edge physics research on TEXTOR

    International Nuclear Information System (INIS)

    Oost, G. van; Nieuwenhove, R. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Weynants, R.R.; Dippel, K.H.; Finken, K.H.; Lie, Y.T.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Conn, R.W.; Corbett, W.J.; Goebel, D.M.; Moyer, R.A.; California Univ., Los Angeles

    1990-01-01

    Extensive investigations of ICRF-induced effects on the edge plasma and on plasma-wall interaction were conducted on TEXTOR under different wall- and limiter as well as plasma- and heating conditions. Several strong effects of ICRF on the edge parameters were observed on TEXTOR, such as density rise, instantaneous electron heating, modification of SOL profiles, influx of ligth and/or heavy impurities, increased heat flux to the limiters, and production of energetic ions in the SOL. The fast response time of some of the changes and the observation of a maximum in the SOL profile of electron temperature, heat flux and metal sputtering clearly demonstrated that RF power is directly absorbed in the SOL. Estimates of this power amount to several percent of the total RF power launched into the plasma. Plasma-wall interaction during ICRF was substantially reduced by an appropriate choice of the wall conditioning procedures (wall carbonization with liner at 400degC or, above all, boronization). As a result record low values of the radiated power fraction were achieved during ICRF and long pulse, high power, low impurity operation was possible. Further improvement was obtained by ICRF antenna phasing. When ICRF power is coupled to the plasma, several effects on the core and edge plasma influence the operation of the toroidal pump limiter ALT-II. Experimental and theoretical studies were performed to elucidate the mechanisms responsible for the ICRF-induced effects, including the propagation of plasma waves in the edge plasma and nonlinear phenomena such as parametric decay, important changes in the DC current between the antenna structure and the liner due to the sheath effect at the antennas, and the generation of waves at harmonics of the RF generator frequency. Radial profiles of the DC radial and poloidal electric fields as well as a localized RF electric field structure were measured in the SOL using a fast scanning probe. (orig.)

  11. Depth from Edge and Intensity Based Stereo.

    Science.gov (United States)

    1982-09-01

    a Mars Viking vehicle, and a random dotted coffee jar. Assessment of the algorithm is a bit difficult: it uses a fairly simple control structure with...correspondences. This use of an evaluation function estimator allowed the introduction of the extensive pruning of a branch and bound algorithm. Even with it...Figure 3-6). This is the edge reversal constraint, and was integral to the pruning . As it happens, this same constraint is the key to the use of the

  12. Canny edge-based deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-07

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  13. DIII-D edge physics database

    International Nuclear Information System (INIS)

    Jong, R.A.; Porter, G.D.; Hill, D.N.; Buchenauer, D.A.; Bramson, G.

    1992-03-01

    We have developed an edge-physics database containing data for the plasma in the divertor region and the scrape-off layer (SOL) for the DIII-D tokamak. The database provides many of the parameters necessary to model the power flow to the divertor and other plasma processes in the plasma edge. It will also facilitate the analysis of DIII-D data for comparison with other divertor tokamaks. In addition to the core plasma parameters, edge-specific data are included in this database. Initial results using the database show good agreement between the pressure profiles measured by the Langmuir probes and those determined from the Thomson data for the inner strike point, but not for the outer strike point region. We also find that the ratio of separatrix density to average core density, as well as the in/out asymmetry in the SOL power at the divertor in DIII-D do not agree with values currently assumed in modeling the International Thermonuclear Experimental Reactor (ITER)

  14. The edge plasma and divertor in TIBER

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.

    1987-10-16

    An open divertor configuration has been adopted for TIBER. Most recent designs, including DIII-D, NET and CIT use open configurations and rely on a dense edge plasma to shield the plasma from the gas produced at the neutralizer plate. Experiments on ASDEX, PDX, D-III, and recently on DIII-D have shown that a dense edge plasma can be produced by re-ionizing most of the gas produced at the plate. This high recycling mode allows a large flux of particles to carry the heat to the plate, so that the mean energy per particle can be low. Erosion of the plate can be greatly reduced if the average impact energy of the ions at the plate can be reduced to near or below the threshold for sputtering of the plate material. The present configuration allows part of the flux of edge plasma ions to be neutralized at the entrance to the pumping duct so that helium is pumped as well as hydrogen. 7 refs., 3 figs.

  15. Bilayer graphene: gap tunability and edge properties

    International Nuclear Information System (INIS)

    Castro, Eduardo V; Santos, J M B Lopes dos; Peres, N M R; Guinea, F; Castro Neto, A H

    2008-01-01

    Bilayer graphene - two coupled single graphene layers stacked as in graphite - provides the only known semiconductor with a gap that can be tuned externally through electric field effect. Here we use a tight binding approach to study how the gap changes with the applied electric field. Within a parallel plate capacitor model and taking into account screening of the external field, we describe real back gated and/or chemically doped bilayer devices. We show that a gap between zero and midinfrared energies can be induced and externally tuned in these devices, making bilayer graphene very appealing from the point of view of applications. However, applications to nanotechnology require careful treatment of the effect of sample boundaries. This being particularly true in graphene, where the presence of edge states at zero energy - the Fermi level of the undoped system - has been extensively reported. Here we show that also bilayer graphene supports surface states localized at zigzag edges. The presence of two layers, however, allows for a new type of edge state which shows an enhanced penetration into the bulk and gives rise to band crossing phenomenon inside the gap of the biased bilayer system.

  16. The edge plasma and divertor in TIBER

    International Nuclear Information System (INIS)

    Barr, W.L.

    1987-01-01

    An open divertor configuration has been adopted for TIBER. Most recent designs, including DIII-D, NET and CIT use open configurations and rely on a dense edge plasma to shield the plasma from the gas produced at the neutralizer plate. Experiments on ASDEX, PDX, D-III, and recently on DIII-D have shown that a dense edge plasma can be produced by re-ionizing most of the gas produced at the plate. This high recycling mode allows a large flux of particles to carry the heat to the plate, so that the mean energy per particle can be low. Erosion of the plate can be greatly reduced if the average impact energy of the ions at the plate can be reduced to near or below the threshold for sputtering of the plate material. The present configuration allows part of the flux of edge plasma ions to be neutralized at the entrance to the pumping duct so that helium is pumped as well as hydrogen. 7 refs., 3 figs

  17. Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2012-01-01

    The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

  18. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2007-04-15

    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  19. Scanning tunneling microscopy and spectroscopy studies of graphite edges

    International Nuclear Information System (INIS)

    Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, Hiroshi

    2005-01-01

    We studied experimentally and theoretically the electronic local density of states (LDOS) near single-step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the (3x3)R30 o and honeycomb superstructures extending over 3-4-bar nm both from the zigzag and armchair edges. Calculations based on a density-functional-derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20-bar meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the 'edge state' theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations

  20. Research on reducing the edge effect in magnetorheological finishing.

    Science.gov (United States)

    Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin

    2011-03-20

    The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.

  1. Environmental Dataset Gateway (EDG) CS-W Interface

    Data.gov (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  2. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Science.gov (United States)

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will

  3. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    Directory of Open Access Journals (Sweden)

    Nélida R Villaseñor

    Full Text Available With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula. We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1 habitat quality/preference, (2 species response with the proximity to the adjacent habitat, and (3 spillover extent/sensitivity to adjacent habitat boundaries. This

  4. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  5. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  6. Education Confronts Changing Demographics. The Challenge to Edge Cities.

    Science.gov (United States)

    Tushnet, Naida C.

    This monograph introduces a conference addressing the educational issues of the edge cities of the urban Pacific Southwest. Edge cities on the outside of urban cores (edge cities) are currently facing many of the problems formerly experienced only in urban areas. Of the 30 fastest-growing cities of over 100,000 residents in the country, 19 are…

  7. Polarimetric Edge Detector Based on the Complex Wishart Distribution

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Nielsen, Allan Aasbjerg

    2001-01-01

    polarimetric edge detector provides a constant false alarm rate and it utilizes the full polarimetric information. The edge detector has been applied to polarimetric SAR data from the Danish dual-frequency, airborne polarimetric SAR, EMISAR. The results show clearly an improved edge detection performance...

  8. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  9. Image-Based Edge Bundles : Simplified Visualization of Large Graphs

    NARCIS (Netherlands)

    Telea, A.; Ersoy, O.

    2010-01-01

    We present a new approach aimed at understanding the structure of connections in edge-bundling layouts. We combine the advantages of edge bundles with a bundle-centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph

  10. Gait alterations can reduce the risk of edge loading.

    Science.gov (United States)

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. The use of edge habitats by commuting and foraging bats

    NARCIS (Netherlands)

    Verboom, B.

    1998-01-01

    Travelling routes and foraging areas of many bat species are mainly along edge habitats, such as treelines, hedgerows, forest edges, and canal banks. This thesis deals with the effects of density, configuration, and structural features of edge habitats on the occurrence of bats. Four

  12. Edge and line oriented contour detection : State of the art

    NARCIS (Netherlands)

    Papari, Giuseppe; Petkov, Nicolai

    We present an overview of various edge and line oriented approaches to contour detection that have been proposed in the last two decades. By edge and line oriented we mean methods that do not rely on segmentation. Distinction is made between edges and contours. Contour detectors are divided in local

  13. Total edge irregularity strength of (n,t)-kite graph

    Science.gov (United States)

    Winarsih, Tri; Indriati, Diari

    2018-04-01

    Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .

  14. South African Identities on the Edge: Lauren Beukes's Moxyland ...

    African Journals Online (AJOL)

    We follow the work of various critics and argue that the text presents identity as fractured, riven and characterized by sharp edges. The edges in question refer to the boundaries of personal, corporeal, national and corporate identity. These edges may be considered symptomatic of the individual and social demands placed ...

  15. Bulk Versus Edge in the Quantum Hall Effect

    OpenAIRE

    Kao, Y. -C.; Lee, D. -H.

    1996-01-01

    The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.

  16. The effect of defocus on edge contrast sensitivity

    NARCIS (Netherlands)

    Jansonius, NM; Kooijman, AC

    The effect of optical blur (defocus) on edge contrast sensitivity was studied. Edge contrast sensitivity detoriates with fairly small amounts of blur (similar to 0.5 D) and is roughly reduced by half for each dioptre of blur. The effect of blur on edge contrast sensitivity equals the effect of blur

  17. How edge-reinforced random walk arises naturally

    NARCIS (Netherlands)

    Rolles, S.W.W.

    2003-01-01

    We give a characterization of a modified edge-reinforced random walk in terms of certain partially exchangeable sequences. In particular, we obtain a characterization of an edge-reinforced random walk (introduced by Coppersmith and Diaconis) on a 2-edge-connected graph. Modifying the notion of

  18. Relaxation of potential, flows, and density in the edge plasma of Castor tokamak

    International Nuclear Information System (INIS)

    Hron, M.; Weinzettl, V.; Dufkova, E.; Duran, I.; Stoeckel, J.; Hidalgo, C.

    2004-01-01

    Decay times of plasma flows and plasma profiles have been measured after a sudden biasing switch-off in experiments on the Castor tokamak. A biased electrode has been used to polarize the edge plasma. The edge plasma potential and flows have been characterized by means of Langmuir and Mach probes, the radiation was measured using an array of bolometers. Potential profiles and poloidal flows can be well fitted by an exponential decay time in the range of 10 - 30 μs when the electrode biasing is turned off in the Castor tokamak. The radiation shows a slower time scale (about 1 ms), which is linked to the evolution in the plasma density and particle confinement. (authors)

  19. Local structural disorder in REFeAsO oxypnictides by RE L3 edge XANES

    International Nuclear Information System (INIS)

    Xu, W; Chu, W S; Wu, Z Y; Marcelli, A; Di Gioacchino, D; Joseph, B; Iadecola, A; Bianconi, A; Saini, N L

    2010-01-01

    The REFeAsO (RE = La, Pr, Nd and Sm) system has been studied by RE L 3 x-ray absorption near edge structure (XANES) spectroscopy to explore the contribution of the REO spacers between the electronically active FeAs slabs in these materials. The XANES spectra have been simulated by full multiple scattering calculations to describe the different experimental features and their evolution with the RE size. The near edge feature just above the L 3 white line is found to be sensitive to the ordering/disordering of oxygen atoms in the REO layers. In addition, shape resonance peaks due to As and O scattering change systematically, indicating local structural changes in the FeAs slabs and the REO spacers due to RE size. The results suggest that interlayer coupling and oxygen order/disorder in the REO spacers may have an important role in the superconductivity and itinerant magnetism of the oxypnictides.

  20. End Late Paleozoic tectonic stress field in the southern edge of Junggar Basin

    Directory of Open Access Journals (Sweden)

    Wei Ju

    2012-09-01

    Full Text Available This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints. The direction of the maximum principal stress axes is interpreted to be NW–SE (about 325°, and the accommodated motion among plates is assigned as the driving force of this tectonic stress field. The average value of the stress index R′ is about 2.09, which indicates a variation from strike-slip to compressive tectonic stress regime in the study area during the end Late Paleozoic period. The reconstruction of the tectonic field in the southern edge of Junggar Basin provides insights into the tectonic deformation processes around the southern Junggar Basin and contributes to the further understanding of basin evolution and tectonic settings during the culmination of the Paleozoic.

  1. Role of impurity dynamics in resistivity-gradient-driven turbulence and tokamak edge plasma phenomena

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Terry, P.W.; Garcia, L.; Carreras, B.A.

    1986-03-01

    The role of impurity dynamics in resistivity gradient driven turbulence is investigated in the context of modeling tokamak edge plasma phenomena. The effects of impurity concentration fluctuations and gradients on the linear behavior of rippling instabilities and on the nonlinear evolution and saturation of resistivity gradient driven turbulence are studied both analytically and computationally. At saturation, fluctuation levels and particle and thermal diffusivities are calculated. In particular, the mean-square turbulent radial velocity is given by 2 > = (E 0 L/sub s/B/sub z/) 2 (L/sub/eta/ -1 + L/sub z -1 ) 2 . Thus, edged peaked impurity concentrations tend to enhance the turbulence, while axially peaked concentrations tend to quench it. The theoretical predictions are in semi-quantitative agreement with experimental results from the TEXT, Caltech, and Tosca tokamaks. Finally, a theory of the density clamp observed during CO-NBI on the ISX-B tokamak is proposed

  2. Canopy gap edge determination and the importance of gap edges for plant diversity

    Directory of Open Access Journals (Sweden)

    D. Salvador-Van Eysenrode

    2002-01-01

    Full Text Available Canopy gaps, i.e. openings in the forest cover caused by the fall of structural elements, are considered to be important for the maintenance of diversity and for the forest cycle. A gap can be considered as a young forest patch in the forest matrix, composed of interior surrounded by an edge, both enclosed by a perimeter. Much of the attention has been focused on the gap interior. However, at gap edges the spectrum of regeneration opportunities for plants may be larger than in the interior. Although definitions of gap are still discussed, any definition can describe it in an acceptable way, if justified, but defining edges is complicated and appropriate descriptors should be used. A method to determine gap interior and edge, using light as a descriptor, is presented with an example of gaps from a beech forest (Fagus sylvatica in Belgium. Also, the relevance and implications of gap edges for plant diversity and calculation of forest turnover is discussed.

  3. Implementing Edge Organizations: Exploiting Complexity. (Part 1: A Framework for the Characterization of Edge Organizations and their Environments)

    National Research Council Canada - National Science Library

    Alston, Anthony; Beautement, Patrick; Dodd, Lorraine

    2005-01-01

    ...), which would display exceptional agility. Key to implementing and employing Edge Organisations is achieving an understanding of the types of arrangements which would enable Edge Organisations to work in this manner...

  4. Irradiation instability at the inner edges of accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jeffrey; Artymowicz, Pawel, E-mail: fung@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2014-07-20

    An instability can potentially operate in highly irradiated disks where the disk sharply transitions from being radially transparent to opaque (the 'transition region'). Such conditions may exist at the inner edges of transitional disks around T Tauri stars and accretion disks around active galactic nuclei. We derive the criterion for this instability, which we term the 'irradiation instability', or IRI. We also present the linear growth rate as a function of β, the ratio between radiation force and gravity, and c{sub s}, the sound speed of the disk, obtained using two methods: a semi-analytic analysis of the linearized equations and a numerical simulation using the GPU-accelerated hydrodynamical code PEnGUIn. In particular, we find that IRI occurs at β ∼ 0.1 if the transition region extends as wide as ∼0.05r, and at higher β values if it is wider. This threshold value applies to c{sub s} ranging from 3% of the Keplerian orbital speed to 5%, and becomes higher if c{sub s} is lower. Furthermore, in the nonlinear evolution of the instability, disks with a large β and small c{sub s} exhibit 'clumping', extreme local surface density enhancements that can reach over 10 times the initial disk surface density.

  5. Effect of Internal and Edge Transport Barriers in ITER Simulations

    International Nuclear Information System (INIS)

    Pianroj, Y.; Onjun, T.; Suwanna, S.; Picha, R.; Poolyarat, N.

    2009-07-01

    Full text: Predictive simulations of ITER with the presence of both an edge transport barrier (ETB) and an internal transport barrier (ITB) are carried out using the BALDUR integrated predictive modeling code. In these simulations, the boundary is taken at the top of the pedestal, where the pedestal values are described using the theory-based pedestal models. These pedestal temperature models are based on three different pedestal width scalings: magnetic and flow shear stabilization (δ α ρ ζ 2 ), flow shear stabilization (δ α Root ρ Rq), and normalized poloidal pressure (δ α R Root βθ, ped). The pedestal width scalings are combined with a pedestal pressure gradient scaling based on ballooning mode limit to predict the pedestal temperature. A version of the semi-empirical Mixed Bohm/gyro Bohm (Mixed B/gB) core transport model that includes ITB effects is used to compute the evolution of plasma profiles and plasma performance, which defined by Fusion Q factor. The results from the cases excluding and including ITB are compared. The preliminary results show the Q value resulted from ITB-excluded simulation is less than the one with ITB included

  6. Ant-lepidopteran associations along African forest edges

    Science.gov (United States)

    Dejean, Alain; Azémar, Frédéric; Libert, Michel; Compin, Arthur; Hérault, Bruno; Orivel, Jérôme; Bouyer, Thierry; Corbara, Bruno

    2017-02-01

    Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.

  7. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  8. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles.

    Science.gov (United States)

    Magura, Tibor; Lövei, Gábor L; Tóthmérész, Béla

    2017-02-01

    Most edges are anthropogenic in origin, but are distinguishable by their maintaining processes (natural vs. continued anthropogenic interventions: forestry, agriculture, urbanization). We hypothesized that the dissimilar edge histories will be reflected in the diversity and assemblage composition of inhabitants. Testing this "history-based edge effect" hypothesis, we evaluated published information on a common insect group, ground beetles (Coleoptera: Carabidae) in forest edges. A meta-analysis showed that the diversity-enhancing properties of edges significantly differed according to their history. Forest edges maintained by natural processes had significantly higher species richness than their interiors, while edges with continued anthropogenic influence did not. The filter function of edges was also essentially different depending on their history. For forest specialist species, edges maintained by natural processes were penetrable, allowing these species to move right through the edges, while edges still under anthropogenic interventions were impenetrable, preventing the dispersal of forest specialists out of the forest. For species inhabiting the surrounding matrix (open-habitat and generalist species), edges created by forestry activities were penetrable, and such species also invaded the forest interior. However, natural forest edges constituted a barrier and prevented the invasion of matrix species into the forest interior. Preserving and protecting all edges maintained by natural processes, and preventing anthropogenic changes to their structure, composition, and characteristics are key factors to sustain biodiversity in forests. Moreover, the increasing presence of anthropogenic edges in a landscape is to be avoided, as they contribute to the loss of biodiversity. Simultaneously, edges under continued anthropogenic disturbance should be restored by increasing habitat heterogeneity.

  9. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    International Nuclear Information System (INIS)

    Mani, Arjun; Benjamin, Colin

    2016-01-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin–orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case. (paper)

  10. Om religion og evolution

    DEFF Research Database (Denmark)

    Geertz, Armin W.

    2011-01-01

    for kulturens kausale virkning på den menneskelige kognition og ikke mindst den hominine evolution. Ud fra, hvad vi ved om den menneskelige evolution, ses det, at den hominine evolution har en dybde, som sjældent medtænkes i teorier og hypoteser om den menneskelige evolution. Den menneskelige evolution er...

  11. First-principles study of graphene edge properties and flake shapes

    OpenAIRE

    Gan, Chee Kwan; Srolovitz, David J.

    2009-01-01

    We use density functional theory to determine the equilibrium shape of graphene flakes, through the calculation of the edge orientation dependence of the edge energy and edge stress of graphene nanoribbons. The edge energy is a nearly linear function of edge orientation angle; increasing from the armchair orientation to the zigzag orientation. Reconstruction of the zigzag edge lowers its energy to less than that of the armchair edge. The edge stress for all edge orientations is compressive, h...

  12. A portable and independent edge fluctuation diagnostic

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Ritz, C.P.; Wootton, A.J.

    1991-01-01

    The measurements of fluctuations and its associated transport with Langmuir probes have provided essential experimental information for some understanding of the turbulent transport. While such measurements have been conducted in the edge region of several tokamaks, only limited effort has been devoted to link and to consolidate these results: such effort can provide information for a more global understanding of the transport process. The purpose of this project is to provide a portable diagnostic facility to measure the edge turbulence on different devices, a signal processing package to analyze the data in a systematic manner and a database to consolidate the experimental results. The end product which provides a collection of information for the comparisons with the theoretical models may lead to a more global understanding of the transport process. A compact self contained portable system has been designed and developed to diagnose the edge plasma of devices with a wide range of sizes and configurations. The system is capable of measuring both the mean and the fluctuation quantities of density, temperature and potential from a standardized Langmuir probe array using a fast reciprocating probe drive. The system can also be used for other fluctuation diagnostics, such as magnetic probes, if necessary. The data acquisition and analysis is performed on a Macintosh 2fx which provides a user-friendly environment. The results obtained by the signal processing routines are stored in a tabloid format to allow comparative studies. The database is a core part of the portable signal analysis system. It allows a fast display of shot data versus each other, as well as comparison between different devices

  13. Edge Simulation Laboratory Progress and Plans

    International Nuclear Information System (INIS)

    Cohen, R

    2007-01-01

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began in fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, μ (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities

  14. Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface

    Science.gov (United States)

    Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin

    2018-05-01

    In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.

  15. Orientations of infinite graphs with prescribed edge-connectivity

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2016-01-01

    We prove a decomposition result for locally finite graphs which can be used to extend results on edge-connectivity from finite to infinite graphs. It implies that every 4k-edge-connected graph G contains an immersion of some finite 2k-edge-connected Eulerian graph containing any prescribed vertex...... set (while planar graphs show that G need not containa subdivision of a simple finite graph of large edge-connectivity). Also, every 8k-edge connected infinite graph has a k-arc-connected orientation, as conjectured in 1989....

  16. Antichiral Edge States in a Modified Haldane Nanoribbon

    Science.gov (United States)

    Colomés, E.; Franz, M.

    2018-02-01

    Topological phases of fermions in two dimensions are often characterized by chiral edge states. By definition, these propagate in opposite directions at the two parallel edges when the sample geometry is that of a rectangular strip. We introduce here a model which exhibits what we call "antichiral" edge modes. These propagate in the same direction at both parallel edges of the strip and are compensated by counterpropagating modes that reside in the bulk. General arguments and numerical simulations show that backscattering is suppressed even when strong disorder is present in the system. We propose a feasible experimental realization of a system showing such antichiral edge modes in transition metal dichalcogenide monolayers.

  17. Ion transport in turbulent edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Massachusetts Inst. of Tech., Cambridge, MA; Hazeltine, R.D.; Catto, P.J.

    1996-02-01

    Edge plasmas, such as the tokamak scrape-off layer, exist as a consequence of a balance between cross-field diffusion and parallel losses. The former is usually anomalous, and is widely thought to be driven by strong electrostatic turbulence. It is shown that the anomalous diffusion affects the parallel ion transport by giving rise to a new type of thermal force between different ion species. This force is parallel to the magnetic field, but arises entirely because of perpendicular gradients, and could be important for impurity retention in the tokamak divertor. (author)

  18. Modification of tokamak edge turbulence using feedback

    International Nuclear Information System (INIS)

    Richards, B.; Uckan, T.; Wootton, A.J.; Carreras, B.A.; Bengtson, R.D.; Hurwitz, P.; Li, G.X.; Lin, H.; Rowan, W.L.; Tsui, H.Y.W.; Sen, A.K.; Uglum, J.

    1994-01-01

    Using active feedback, the turbulent fluctuation levels have been reduced by as much as a factor of 2 in the edge of the Texas Experimental Tokamak (TEXT) [K. W. Gentle, Nucl. Fusion Technol. 1, 479 (1981)]. A probe system was used to drive a suppressor wave in the TEXT limiter shadow. A decrease in the local turbulence-induced particle flux has been seen, but a global change in the particle transport at the present time has not been observed. By changing the phase shift and gain of the feedback network, the amplitude of the turbulence was increased by a factor of 10

  19. Tensor voting for robust color edge detection

    OpenAIRE

    Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec

    2014-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...

  20. Refining Nodes and Edges of State Machines

    DEFF Research Database (Denmark)

    Hallerstede, Stefan; Snook, Colin

    2011-01-01

    State machines are hierarchical automata that are widely used to structure complex behavioural specifications. We develop two notions of refinement of state machines, node refinement and edge refinement. We compare the two notions by means of examples and argue that, by adopting simple conventions...... refinement theory and UML-B state machine refinement influences the style of node refinement. Hence we propose a method with direct proof of state machine refinement avoiding the detour via Event-B that is needed by UML-B....

  1. Viscosity in the edge of tokamak plasmas

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1993-05-01

    A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the ''short-radial-gradient-scale-length'' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates

  2. Plasma Edge Control in Tore Supra

    International Nuclear Information System (INIS)

    Evans, T.E.; Mioduszewski, P.K.; Foster, C.; Haste, G.; Horton, L.; Grosman, A.; Ghendrih, P.; Chatelier, M.; Capes, H.; Michelis, C. De; Fall, T.; Geraud, A.; Grisolia, C.; Guilhem, D.; Hutter, T.

    1990-01-01

    TORE SUPRA is a large superconducting tokamak designed for sustaining long inductive pulses (t∼ 30 s). In particular, all the first wall components have been designed for steady-state heat and particle exhaust, particle injection, and additional heating. In addition to these technological assets, a strict control of the plasma-wall interactions is required. This has been done at low power: experiments with ohmic heating have been mainly devoted to the pump limiter, ergodic divertor and pellet injection experiments. Some specific problems arising in large tokamaks are encountered; the pump limiter and the ergodic divertor yield the expected effects on the plasma edge. The effects on the bulk are discussed

  3. Laser Surface Hardening of Groove Edges

    Science.gov (United States)

    Hussain, A.; Hamdani, A. H.; Akhter, R.; Aslam, M.

    2013-06-01

    Surface hardening of groove-edges made of 3Cr13 Stainless Steel has been carried out using 500 W CO2 laser with a rectangular beam of 2.5×3 mm2. The processing speed was varied from 150-500 mm/min. It was seen that the hardened depth increases with increase in laser interaction time. A maximum hardened depth of around 1mm was achieved. The microhardness of the transformed zone was 2.5 times the hardness of base metal. The XRD's and microstructural analysis were also reported.

  4. Bending energy of buckled edge dislocations

    Science.gov (United States)

    Kupferman, Raz

    2017-12-01

    The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.

  5. A competitive edge in France around EDF?

    International Nuclear Information System (INIS)

    Glachant, J.M.; Saguan, M.

    2006-01-01

    The French electric reform displays a rather particular case of creation of a competitive market around a former very large integrated monopoly that retains all of its industrial assets. This new market is growing like a competitive edge around the former monopoly The prevailing operator, which has mainly nuclear and hydraulic production equipment, could withstand all pressures from competitors during the initial price decrease phase, without openly abusing its market power. As a result, apart from the hypothesis of gigantic public offerings, the French market trend towards an ordinary competitive system does not seem likely to happen soon or spontaneously. (authors)

  6. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  7. Thermal physics of transition edge sensor arrays

    International Nuclear Information System (INIS)

    Hoevers, H.F.C.

    2006-01-01

    Thermal transport in transition edge sensor (TES)-based microcalorimeter arrays is reviewed. The fundamentals of thermal conductance in Si 3 N 4 membranes are discussed and the magnitude of the electron-phonon coupling and Kapitza coupling in practical devices is summarized. Next, the thermal transport in high-stopping power and low-heat capacity absorbers, required for arrays of TES microcalorimeters, is discussed in combination with a performance analysis of detectors with mushroom-absorbers. Finally, the phenomenology of unexplained excess noise, observed in both Mo- and Ti-based TESs, is briefly summarized and related with the coupling of the TES to the heat bath

  8. Flow Control Over Sharp-Edged Wings

    Science.gov (United States)

    2007-07-01

    Gad-el-Hak (2001) as the ability to actively or passively manipulate a flow field to effect a desired change. The challenge is to achieve that change...combinations. Been able to independently control both is a great challenge . These requirements may appear too stringent for the sharp- edged airfoils...06 0𔄁 08 09 lic Vlc Figure 22: Pressure distributions for Model B at a=13 °. Stations I (left); 2 (right) 1 , -2 1 F - [12 1 -6a -16 08 -08 06 -06

  9. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case

    KAUST Repository

    Kuchment, Peter

    2012-06-21

    Precise asymptotics known for the Green\\'s function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case

    KAUST Repository

    Kuchment, Peter; Raich, Andrew

    2012-01-01

    Precise asymptotics known for the Green's function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

    Science.gov (United States)

    Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu

    2018-05-01

    The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.

  12. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    Science.gov (United States)

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  13. Plasmons on the edge of MoS2 nanostructures

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2014-01-01

    Using ab initio calculations we predict the existence of one-dimensional (1D), atomically confined plasmons at the edges of a zigzag MoS2 nanoribbon. The strongest plasmon originates from a metallic edge state localized on the sulfur dimers decorating the Mo edge of the ribbon. A detailed analysis...... of the dielectric function reveals that the observed deviations from the ideal 1D plasmon behavior result from single-particle transitions between the metallic edge state and the valence and conduction bands of the MoS2 sheet. The Mo and S edges of the ribbon are clearly distinguishable in calculated spatially...... resolved electron energy loss spectrum owing to the different plasmonic properties of the two edges. The edge plasmons could potentially be utilized for tuning the photocatalytic activity of MoS2 nanoparticles....

  14. Slim edges in double-sided silicon 3D detectors

    International Nuclear Information System (INIS)

    Povoli, M; Dalla Betta, G-F; Bagolini, A; Boscardin, M; Giacomini, G; Vianello, E; Zorzi, N

    2012-01-01

    Minimization of the insensitive edge area is one of the key requirements for silicon radiation detectors to be used in future silicon trackers. In 3D detectors this goal can be achieved with the active edge, at the expense of a high fabrication process complexity. In the framework of the ATLAS 3D sensor collaboration, we produced modified 3D silicon sensors with a double-sided technology. While this approach is not suitable to obtain active edges, because it does not use a support wafer, it allows for a new type of edge termination, the slim edge. In this paper we report on the development of the slim edge, from numerical simulations to design and testing, proving that it works effectively without increasing the fabrication complexity of silicon 3D detectors, and that it could be further optimized to reduce the insensitive edge region to less than 100 μm.

  15. Local Thermometry of Neutral Modes on the Quantum Hall Edge

    Science.gov (United States)

    Hart, Sean; Venkatachalam, Vivek; Pfeiffer, Loren; West, Ken; Yacoby, Amir

    2012-02-01

    A system of electrons in two dimensions and strong magnetic fields can be tuned to create a gapped 2D system with one dimensional channels along the edge. Interactions among these edge modes can lead to independent transport of charge and heat, even in opposite directions. Measuring the chirality and transport properties of these charge and heat modes can reveal otherwise hidden structure in the edge. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream along the edge of the heater, we can measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall physics.

  16. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    DEFF Research Database (Denmark)

    Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun

    2014-01-01

    characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase......The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...

  17. Using new edges for anomaly detection in computer networks

    Science.gov (United States)

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  18. Edge states in quantum Hall effect in graphene

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miransky, V.A.; Sharapov, S.G.; Shovkovy, I.A.

    2008-01-01

    We review recent results concerning the spectrum of edge states in the quantum Hall effect in graphene. In particular, special attention is paid to the derivation of the conditions under which gapless edge states exist in the spectrum of graphene with 'zigzag' and 'armchair' edges. It is found that in the case of a half-plane or a ribbon with zigzag edges, there are gapless edge states only when a spin gap dominates over a Dirac mass gap. In the case of a half-plane with an armchair edge, the existence of the gapless edge states depends on the specific type of Dirac mass gaps. The implications of these results for the dynamics in the quantum Hall effect in graphene are discussed

  19. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  20. Mechanical basis of morphogenesis and convergent evolution of spiny seashells

    KAUST Repository

    Chirat, R.; Moulton, D. E.; Goriely, A.

    2013-01-01

    Convergent evolution is a phenomenon whereby similar traits evolved independently in not closely related species, and is often interpreted in functional terms. Spines in mollusk seashells are classically interpreted as having repeatedly evolved as a defense in response to shell-crushing predators. Here we consider the morphogenetic process that shapes these structures and underlies their repeated emergence. We develop a mathematical model for spine morphogenesis based on the mechanical interaction between the secreting mantle edge and the calcified shell edge to which the mantle adheres during shell growth. It is demonstrated that a large diversity of spine structures can be accounted for through small variations in control parameters of this natural mechanical process. This physical mechanism suggests that convergent evolution of spines can be understood through a generic morphogenetic process, and provides unique perspectives in understanding the phenotypic evolution of this second largest phylum in the animal kingdom.

  1. Mechanical basis of morphogenesis and convergent evolution of spiny seashells

    KAUST Repository

    Chirat, R.

    2013-03-25

    Convergent evolution is a phenomenon whereby similar traits evolved independently in not closely related species, and is often interpreted in functional terms. Spines in mollusk seashells are classically interpreted as having repeatedly evolved as a defense in response to shell-crushing predators. Here we consider the morphogenetic process that shapes these structures and underlies their repeated emergence. We develop a mathematical model for spine morphogenesis based on the mechanical interaction between the secreting mantle edge and the calcified shell edge to which the mantle adheres during shell growth. It is demonstrated that a large diversity of spine structures can be accounted for through small variations in control parameters of this natural mechanical process. This physical mechanism suggests that convergent evolution of spines can be understood through a generic morphogenetic process, and provides unique perspectives in understanding the phenotypic evolution of this second largest phylum in the animal kingdom.

  2. Converging social classes through humanized urban edges

    Science.gov (United States)

    Abuan, M. V.; Galingan, Z. D.

    2017-10-01

    Urban open spaces are created to be used by people. It is a place of convergence and social activity. However, these places have transformed into places of divergence. When spaces become dehumanized, it separates social classes. As a result, underused spaces contribute to urban decay. Particularly an urban edge, the JP Rizal Makati Waterfront Area is the center of this paper. The JP Rizal Makati Waterfront Area is a waterfront development situated along the banks of one of Metro Manila’s major water thoroughfare --- Pasig River. The park and its physical form, urban design and landscape tend to deteriorate over time --- creating a further division of social convergence. Social hostility, crime, negligent maintenance and poor urban design are contributing factors to this sprawling decay in what used to be spaces of bringing people together. Amidst attempts to beautify and renew this portion of Makati City’s edge, the urban area still remains misspent.This paper attempts to re-humanize the waterfront development. It uses the responsive environment design principles to be able to achieve this goal.

  3. Edge detection and texture classification by cuttlefish.

    Science.gov (United States)

    Zylinski, Sarah; Osorio, Daniel; Shohet, Adam J

    2009-12-14

    Cephalopod mollusks including octopus and cuttlefish are adept at adaptive camouflage, varying their appearance to suit the surroundings. This behavior allows unique access into the vision of a non-human species because one can ask how these animals use spatial information to control their coloration pattern. There is particular interest in factors that affect the relative levels of expression of the Mottle and the Disruptive body patterns. Broadly speaking, the Mottle is displayed on continuous patterned surfaces whereas the Disruptive is used on discrete objects such as pebbles. Recent evidence from common cuttlefish, Sepia officinalis, suggests that multiple cues are relevant, including spatial scale, contrast, and depth. We analyze the body pattern responses of juvenile cuttlefish to a range of checkerboard stimuli. Our results suggest that the choice of camouflage pattern is consistent with a simple model of how cuttlefish classify visual textures, according to whether they are Uniform or patterned, and whether the pattern includes visual edges. In particular, cuttlefish appear to detect edges by sensing the relative spatial phases of two spatial frequency components (e.g., fundamental and the third harmonic Fourier component in a square wave). We discuss the relevance of these findings to vision and camouflage in aquatic environments.

  4. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  5. LES tests on airfoil trailing edge serration

    International Nuclear Information System (INIS)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x10 6 . In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device. (paper)

  6. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  7. Nudging Evolution?

    Directory of Open Access Journals (Sweden)

    Katharine N. Farrell

    2013-12-01

    Full Text Available This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institutional "fit" might play a role in helping to develop better understanding of the social components of interlinkages between the socioeconomic-cultural and ecological dynamics of social-ecological systems. Two clearly discernible patterns provide a map of this Special Feature: (1 One pattern is the authors' positions regarding the place and role of normativity within their studies and assessment of institutional fit. Some place this at the center of their studies, exploring phenomena endogenous to the process of defining what constitutes institutional fit, whereas others take the formation of norms as a phenomenon exogenous to their study. (2 Another pattern is the type of studies presented: critiques and elaborations of the theory, methods for judging qualities of fit, and/or applied case studies using the concept. As a body of work, these contributions highlight that self-understanding of social-ecological place, whether explicit or implicit, constitutes an important part of the study object, i.e., the role of institutions in social-ecological systems, and that this is, at the same time, a crucial point of reference for the scholar wishing to evaluate what constitutes institutional fit and how it might be brought into being.

  8. Frequencies of the Edge-Magnetoplasmon Excitations in Gated Quantum Hall Edges

    Science.gov (United States)

    Endo, Akira; Koike, Keita; Katsumoto, Shingo; Iye, Yasuhiro

    2018-06-01

    We have investigated microwave transmission through the edge of quantum Hall systems by employing a coplanar waveguide (CPW) fabricated on the surface of a GaAs/AlGaAs two-dimensional electron gas (2DEG) wafer. An edge is introduced to the slot region of the CPW by applying a negative bias Vg to the central electrode (CE) and depleting the 2DEG below the CE. We observe peaks attributable to the excitation of edge magnetoplasmons (EMP) at a fundamental frequency f0 and at its harmonics if0 (i = 2,3, \\ldots ). The frequency f0 increases with decreasing Vg, indicating that EMP propagates with higher velocity for more negative Vg. The dependence of f0 on Vg is interpreted in terms of the variation in the distance between the edge state and the CE, which alters the velocity by varying the capacitive coupling between them. The peaks are observed to continue, albeit with less clarity, up to the regions of Vg where 2DEG still remains below the CE.

  9. Strength on cut edge and ground edge glass beams with the failure analysis method

    Directory of Open Access Journals (Sweden)

    Stefano Agnetti

    2013-10-01

    Full Text Available The aim of this work is the study of the effect of the finishing of the edge of glass when it has a structural function. Experimental investigations carried out for glass specimens are presented. Various series of annealed glass beam were tested, with cut edge and with ground edge. The glass specimens are tested in four-point bending performing flaw detection on the tested specimens after failure, in order to determine glass strength. As a result, bending strength values are obtained for each specimen. Determining some physical parameter as the depth of the flaw and the mirror radius of the fracture, after the failure of a glass element, it could be possible to calculate the failure strength of that.The experimental results were analyzed with the LEFM theory and the glass strength was analyzed with a statistical study using two-parameter Weibull distribution fitting quite well the failure stress data. The results obtained constitute a validation of the theoretical models and show the influence of the edge processing on the failure strength of the glass. Furthermore, series with different sizes were tested in order to evaluate the size effect.

  10. Optimizing edge detectors for robust automatic threshold selection : Coping with edge curvature and noise

    NARCIS (Netherlands)

    Wilkinson, M.H.F.

    The Robust Automatic Threshold Selection algorithm was introduced as a threshold selection based on a simple image statistic. The statistic is an average of the grey levels of the pixels in an image weighted by the response at each pixel of a specific edge detector. Other authors have suggested that

  11. Edge effects on the electronic properties of phosphorene nanoribbons

    International Nuclear Information System (INIS)

    Peng, Xihong; Copple, Andrew; Wei, Qun

    2014-01-01

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p z orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  12. Edge effects on the electronic properties of phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xihong, E-mail: xihong.peng@asu.edu [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); Copple, Andrew [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Wei, Qun [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China)

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  13. Transport Mechanisms Governing initial Leading-Edge Vortex Development on a Pitching Wing

    Science.gov (United States)

    Wabick, Kevin; Berdon, Randall; Buchholz, James; Johnson, Kyle; Thurow, Brian

    2017-11-01

    The formation and evolution of Leading Edge Vortices (LEVs) are ubiquitous in natural fliers and maneuvering wings, and have a profound impact on aerodynamic loads. The formation of an LEV is experimentally investigated on a pitching flat-plate wing of aspect-ratio 2, and dimensionless pitch rates of k = Ωc / 2 U of 0.1, 0.2, and 0.5, at a Reynolds number of 104. The sources and sinks of vorticity that contribute to the growth and evolution of the LEV are investigated at spanwise regions of interest, and their relative balance is compared to other wing kinematics, and the case of a two-dimensional pitching wing. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  14. On the edge between tradition and innovation

    DEFF Research Database (Denmark)

    Marchetti, Emanuela; Nandhakumar, Joe

    2011-01-01

    system of values, creating a “double bind” dynamics (Bateson 1972), which denies a clear way to succeed in achieving innovation and a new organizational identity. Therefore, innovation practices are confined within safe spaces, that we call innovation enclosures, such as temporary/thematic exhibitions...... cannot succeed, if it is not supported by a favourable global network, providing a negotiation space (Law and Callon 1992). Starting from this theory, we analyze the case of two local museums, in order to gain insights into museum innovation and the emerging interplay with traditional practices. We...... investigate also how external pressure from a network, apparently supporting innovation, may instead create a conflicting system of values, compromising the emergence of a negotiation space and hindering the innovation process. Our study suggests that museum innovation is still unsettled, on the edge between...

  15. The Two Edge Knife of Decentralization

    Directory of Open Access Journals (Sweden)

    Ahmad Khoirul Umam

    2011-07-01

    Full Text Available A centralistic government model has become a trend in a number of developing countries, in which the ideosycretic aspect becomes pivotal key in the policy making. The situation constitutes authoritarianism, cronyism, and corruption. To break the impasse, the decentralized system is proposed to make people closer to the public policy making. Decentralization is also convinced to be the solution to create a good governance. But a number of facts in the developing countries demonstrates that decentralization indeed has ignite emerges backfires such as decentralized corruption, parochialism, horizontal conflict, local political instability and others. This article elaborates the theoretical framework on decentralization's ouput as the a double-edge knife. In a simple words, the concept of decentralization does not have a permanent relationship with the creation of good governance and development. Without substantive democracy, decentralization is indeed potential to be a destructive political instrument threating the state's future.

  16. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    In conventional neoclassical theory, the density and temperature gradients are not allowed to be as steep as frequently observed in the tokamak edge. In this paper the theory of neoclassical transport in a collisional, impure plasma is extended to allow for steeper profiles than normally assumed. The dynamics of highly charged impurity ions then becomes nonlinear, which affects the transport of all species. As earlier found in the banana regime, when the bulk plasma gradients are large the impurity ions undergo a poloidal redistribution, which reduces their parallel friction with the bulk ions and suppresses the neoclassical ion particle flux. The neoclassical confinement is thus improved in regions with large radial gradients. When the plasma is collisional and the gradients are large, the impurities accumulate on the inboard side of the torus

  17. Visible imaging of edge fluctuations in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Medley, S.S.

    1989-03-01

    Images of the visible light emission from the inner wall region of TFTR have been made using a rapidly gated, intensified TV camera. Strong ''filamentation'' of the neutral deuterium Dα light is observed when the camera gating time is <100 μsec during neutral-beam-heated discharges. These turbulent filaments vary in position randomly vs. time and have a poloidal wavelength of ∼3-5 cm which is much shorter than their parallel wavelength of ∼100 cm. A second and new type of edge fluctuation phenomenon, which we call a ''merfe,'' is also described. Merfes are a regular poloidal pattern of toroidally symmetric, small-scale marfes which move away from the inner midplane during the current decay after neutral beam injection. Some tentative interpretations of these two phenomena are presented. 27 refs., 8 figs

  18. Study of edge turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Sarazin, Y.

    1997-01-01

    The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.)

  19. Edge instability in incompressible planar active fluids

    Science.gov (United States)

    Nesbitt, David; Pruessner, Gunnar; Lee, Chiu Fan

    2017-12-01

    Interfacial instability is highly relevant to many important biological processes. A key example arises in wound healing experiments, which observe that an epithelial layer with an initially straight edge does not heal uniformly. We consider the phenomenon in the context of active fluids. Improving upon the approximation used by Zimmermann, Basan, and Levine [Eur. Phys. J.: Spec. Top. 223, 1259 (2014), 10.1140/epjst/e2014-02189-7], we perform a linear stability analysis on a two-dimensional incompressible hydrodynamic model of an active fluid with an open interface. We categorize the stability of the model and find that for experimentally relevant parameters, fingering instability is always absent in this minimal model. Our results point to the crucial role of density variation in the fingering instability in tissue regeneration.

  20. Transition edge sensor series array bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J, E-mail: joern.beyer@ptb.d [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)

    2010-10-15

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  1. A dynamics investigation into edge plasma turbulence

    International Nuclear Information System (INIS)

    Thomsen, H.

    2002-08-01

    The present experimental work investigates plasma turbulence in the edge region of magnetized high-temperature plasmas. A main topic is the turbulent dynamics parallel to the magnetic field, where hitherto only a small data basis existed, especially for very long scale lengths in the order of ten of meters. A second point of special interest is the coupling of the dynamics parallel and perpendicular to the magnetic field. This anisotropic turbulent dynamics is investigated by two different approaches. Firstly, spatially and temporally high-resolution measurements of fluctuating plasma parameters are investigated by means of two-point correlation analysis. Secondly, the propagation of signals externally imposed into the turbulent plasma background is studied. For both approaches, Langmuir probe arrays were utilized for diagnostic purposes. (orig.)

  2. Edge fluctuation studies in Heliotron J

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Chechkin, V.V.; Ohashi, K.; Sorokovoy, E.L.; Chechkin, A.V.; Gonchar, V.Yu.; Takahashi, K.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Yamamoto, S.; Sano, F.; Kondo, K.; Nishino, N.; Kawazome, H.; Shidara, H.; Kaneko, S.; Fukagawa, Y.; Morita, Y.; Nakazawa, S.; Nishio, S.; Tsuboi, S.; Yamada, M.

    2005-01-01

    Low frequency and small-scale fluctuations of density and potential near the last closed flux surface are investigated by using Langmuir probes for the second harmonic ECH plasmas in a helical-axis heliotron device, Heliotron J. The existence of a plasma layer with a radial electric field shear was indicated near the last closed flux surface. Near this layer, the reversal of phase velocity and de-correlation of the fluctuations were observed. On the other hand, it is suggested that a considerable fraction of the fluctuation induced particle flux is carried off through the intermittent events. Preliminary analyses to classify the PDFs of the ion-saturation current fluctuation as stable Levy distributions demonstrate that the Levy index decreases from the inner to the outer region of edge plasma, suggesting that the PDFs near the boundary region of Heliotron J are nearly Gaussian, whereas at the outer regions of plasma they become strongly non-Gaussian

  3. Theory of edge plasma in a spheromak

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1998-01-01

    Properties of the edge plasma in the SSPX spheromak during the plasma formation and sustainment phases are discussed. For the breakdown and formation phase, the main emphasis is on the analysis of possible plasma contamination by impurities from the electrodes of the plasma gun (helicity injector). The issue of an azimuthally uniform breakdown initiation is also discussed. After the plasma settles down in the main vacuum chamber, one has to sustain the current between the electrodes, in order to continuously inject helicity. We discuss properties of the plasma on the field lines intersecting the electrodes. We conclude that the thermal balance of this plasma is maintained by Joule heating competing with parallel heat losses to the electrodes. The resulting plasma temperature is in the range of 15 - 30 eV. Under the expected operational conditions, the ''current'' velocity of the electrons is only slightly below their thermal velocity. Implications of this observation are briefly discussed

  4. Cleaved-edge-overgrowth nanogap electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc, E-mail: m.tornow@tu-bs.de [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 M{Omega} range with k{Omega} lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  5. Cleaved-edge-overgrowth nanogap electrodes.

    Science.gov (United States)

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  6. The transition-edge EBIT microcalorimeter spectrometer

    Science.gov (United States)

    Betancourt-Martinez, Gabriele L.; Adams, Joseph; Bandler, Simon; Beiersdorfer, Peter; Brown, Gregory; Chervenak, James; Doriese, Randy; Eckart, Megan; Irwin, Kent; Kelley, Richard; Kilbourne, Caroline; Leutenegger, Maurice; Porter, F. S.; Reintsema, Carl; Smith, Stephen; Ullom, Joel

    2014-07-01

    The Transition-edge EBIT Microcalorimeter Spectrometer (TEMS) is a 1000-pixel array instrument to be delivered to the Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory (LLNL) in 2015. It will be the first fully operational array of its kind. The TEMS will utilize the unique capabilities of the EBIT to verify and benchmark atomic theory that is critical for the analysis of high-resolution data from microcalorimeter spectrometers aboard the next generation of x-ray observatories. We present spectra from the present instrumentation at EBIT, as well as our latest results with time-division multiplexing using the current iteration of the TEMS focal plane assembly in our test platform at NASA/GSFC.

  7. Edge localized modes control: experiment and theory

    International Nuclear Information System (INIS)

    Becoulet, M.; Huysmans, G.; Thomas, P.; Joffrin, E.; Rimini, F.; Monier-Garbet, P.; Grosman, A.; Ghendrih, P.; Parail, V.; Lomas, P.; Matthews, G.; Wilson, H.; Gryaznevich, M.; Counsell, G.; Loarte, A.; Saibene, G.; Sartori, R.; Leonard, A.; Snyder, P.; Evans, T.; Gohil, P.; Moyer, R.; Kamada, Y.; Oyama, N.; Hatae, T.; Kamiya, K.; Degeling, A.; Martin, Y.; Lister, J.; Rapp, J.; Perez, C.; Lang, P.; Chankin, A; Eich, T.; Sips, A.; Stober, J.; Horton, L.; Kallenbach, A.; Suttrop, W.; Saarelma, S.; Cowley, S.; Loennroth, J.; Shimada, M.; Polevoi, A.; Federici, G.

    2005-01-01

    The paper reviews recent theoretical and experimental results focussing on the identification of the key factors controlling ELM energy and particle losses both in natural ELMs and in the presence of external controlling mechanisms. Present experiment and theory pointed out the benefit of the high plasma shaping, high q 95 and high pedestal density in reducing the ELM affected area and conductive energy losses in Type I ELMs. Small benign ELMs regimes in present machines (EDA, HRS, Type II, Grassy, QH, Type III in impurity seeded discharges at high δ ) and their relevance for ITER are reviewed. Recent studies of active control of ELMs using stochastic boundaries, small pellets and edge current generation are presented

  8. Vortex dynamics in superconducting transition edge sensors

    Science.gov (United States)

    Ezaki, S.; Maehata, K.; Iyomoto, N.; Asano, T.; Shinozaki, B.

    2018-02-01

    The temperature dependence of the electrical resistance (R-T) and the current-voltage (I-V) characteristics has been measured and analyzed in a 40 nm thick Ti thin film, which is used as a transition edge sensor (TES). The analyses of the I-V characteristics with the vortex-antivortex pair dissociation model indicate the possible existence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconducting Ti thin films. We investigated the noise due to the vortices' flow in TESs. The values of the current noise spectral density in the TESs were estimated by employing the vortex dynamics caused by the BKT transition in the Ti thin films. The estimated values of the current noise spectral density induced by the vortices' flow were in respectable agreement with the values of excess noise experimentally observed in the TESs with Ti/Au bilayer.

  9. Transition edge sensor series array bolometer

    International Nuclear Information System (INIS)

    Beyer, J

    2010-01-01

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  10. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru [Belgorod State National Research University, Pobedy street 85, Belgorod 308015 (Russian Federation); Leont' eva-Smirnova, Maria, E-mail: smirnova@bochvar.ru [Bochvar High-Technology Research Institute of Inorganic Materials, ul. Rogova 5, Moscow 123098 (Russian Federation)

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  11. AN N-BODY INTEGRATOR FOR GRAVITATING PLANETARY RINGS, AND THE OUTER EDGE OF SATURN'S B RING

    International Nuclear Information System (INIS)

    Hahn, Joseph M.; Spitale, Joseph N.

    2013-01-01

    A new symplectic N-body integrator is introduced, one designed to calculate the global 360° evolution of a self-gravitating planetary ring that is in orbit about an oblate planet. This freely available code is called epi i nt, and it is distinct from other such codes in its use of streamlines to calculate the effects of ring self-gravity. The great advantage of this approach is that the perturbing forces arise from smooth wires of ring matter rather than discreet particles, so there is very little gravitational scattering and so only a modest number of particles are needed to simulate, say, the scalloped edge of a resonantly confined ring or the propagation of spiral density waves. The code is applied to the outer edge of Saturn's B ring, and a comparison of Cassini measurements of the ring's forced response to simulations of Mimas's resonant perturbations reveals that the B ring's surface density at its outer edge is σ 0 = 195 ± 60 g cm –2 , which, if the same everywhere across the ring, would mean that the B ring's mass is about 90% of Mimas's mass. Cassini observations show that the B ring-edge has several free normal modes, which are long-lived disturbances of the ring-edge that are not driven by any known satellite resonances. Although the mechanism that excites or sustains these normal modes is unknown, we can plant such a disturbance at a simulated ring's edge and find that these modes persist without any damping for more than ∼10 5 orbits or ∼100 yr despite the simulated ring's viscosity ν s = 100 cm 2 s –1 . These simulations also indicate that impulsive disturbances at a ring can excite long-lived normal modes, which suggests that an impact in the recent past by perhaps a cloud of cometary debris might have excited these disturbances, which are quite common to many of Saturn's sharp-edged rings

  12. Influence of edge roughness on graphene nanoribbon resonant tunnelling diodes

    International Nuclear Information System (INIS)

    Liang Gengchiau; Khalid, Sharjeel Bin; Lam, Kai-Tak

    2010-01-01

    The edge roughness effects of graphene nanoribbons on their application in resonant tunnelling diodes with different geometrical shapes (S, H and W) were investigated. Sixty samples for each 5%, 10% and 15% edge roughness conditions of these differently shaped graphene nanoribbon resonant tunnelling diodes were randomly generated and studied. Firstly, it was observed that edge roughness in the barrier regions decreases the effective barrier height and thickness, which increases the broadening of the quantized states in the quantum well due to the enhanced penetration of the wave-function tail from the electrodes. Secondly, edge roughness increases the effective width of the quantum well and causes the lowering of the quantized states. Furthermore, the shape effects on carrier transport are modified by edge roughness due to different interfacial scattering. Finally, with the effects mentioned above, edge roughness has a considerable impact on the device performance in terms of varying the peak-current positions and degrading the peak-to-valley current ratio.

  13. Fast and accurate edge orientation processing during object manipulation

    Science.gov (United States)

    Flanagan, J Randall; Johansson, Roland S

    2018-01-01

    Quickly and accurately extracting information about a touched object’s orientation is a critical aspect of dexterous object manipulation. However, the speed and acuity of tactile edge orientation processing with respect to the fingertips as reported in previous perceptual studies appear inadequate in these respects. Here we directly establish the tactile system’s capacity to process edge-orientation information during dexterous manipulation. Participants extracted tactile information about edge orientation very quickly, using it within 200 ms of first touching the object. Participants were also strikingly accurate. With edges spanning the entire fingertip, edge-orientation resolution was better than 3° in our object manipulation task, which is several times better than reported in previous perceptual studies. Performance remained impressive even with edges as short as 2 mm, consistent with our ability to precisely manipulate very small objects. Taken together, our results radically redefine the spatial processing capacity of the tactile system. PMID:29611804

  14. Edge Minority Heating Experiment in Alcator C-Mod

    International Nuclear Information System (INIS)

    Zweben, S.J.; Terry, J.L.; Bonoli, P.; Budny, R.; Chang, C.S.; Fiore, C.; Schilling, G.; Wukitch, S.; Hughes, J.; Lin, Y.; Perkins, R.; Porkolab, M.; Alcator C-Mod Team

    2005-01-01

    An attempt was made to control global plasma confinement in the Alcator C-Mod tokamak by applying ion cyclotron resonance heating (ICRH) power to the plasma edge in order to deliberately create a minority ion tail loss. In theory, an edge fast ion loss could modify the edge electric field and so stabilize the edge turbulence, which might then reduce the H-mode power threshold or improve the H-mode barrier. However, the experimental result was that edge minority heating resulted in no improvement in the edge plasma parameters or global stored energy, at least at power levels of P RF (le) 5.5 MW. A preliminary analysis of these results is presented and some ideas for improvement are discussed

  15. Edge detection based on computational ghost imaging with structured illuminations

    Science.gov (United States)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  16. Optimal Scale Edge Detection Utilizing Noise within Images

    Directory of Open Access Journals (Sweden)

    Adnan Khashman

    2003-04-01

    Full Text Available Edge detection techniques have common problems that include poor edge detection in low contrast images, speed of recognition and high computational cost. An efficient solution to the edge detection of objects in low to high contrast images is scale space analysis. However, this approach is time consuming and computationally expensive. These expenses can be marginally reduced if an optimal scale is found in scale space edge detection. This paper presents a new approach to detecting objects within images using noise within the images. The novel idea is based on selecting one optimal scale for the entire image at which scale space edge detection can be applied. The selection of an ideal scale is based on the hypothesis that "the optimal edge detection scale (ideal scale depends on the noise within an image". This paper aims at providing the experimental evidence on the relationship between the optimal scale and the noise within images.

  17. Application and Analysis of Wavelet Transform in Image Edge Detection

    Institute of Scientific and Technical Information of China (English)

    Jianfang gao[1

    2016-01-01

    For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.

  18. Edge effect modeling of small tool polishing in planetary movement

    Science.gov (United States)

    Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng

    2018-03-01

    As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects

  19. Subharmonic edge waves on a large, shallow island

    Science.gov (United States)

    Foda, Mostafa A.

    1988-08-01

    Subharmonic resonance of edge waves by incident and reflected waves has been studied thus far for the case of a plane infinite beach. The analysis will be extended here to the case of a curved coastline, with a large radius of curvature and slowly varying beach slope in the longshore direction. It will be shown that the effects of such slow beach slope changes on a propagating edge wave are similar to the familiar shoaling effects on incident waves. The case of subharmonic edge wave generation on large shallow islands will be discussed in detail. The nonlinear analysis will show that within a certain range of island sizes, the generation mechanism can produce a stable standing edge wave around the island. For larger islands the solution disintegrates into two out-of-phase envelopes of opposite-going edge waves. For still larger islands, the generated progressive edge waves become unstable to sideband modulations.

  20. Acoustic analog of monolayer graphene and edge states

    International Nuclear Information System (INIS)

    Zhong, Wei; Zhang, Xiangdong

    2011-01-01

    Acoustic analog of monolayer graphene has been designed by using silicone rubber spheres of honeycomb lattices embedded in water. The dispersion of the structure has been studied theoretically using the rigorous multiple-scattering method. The energy spectra with the Dirac point have been verified and zigzag edge states have been found in ribbons of the structure, which are analogous to the electronic ones in graphene nanoribbons. The guided modes along the zigzag edge excited by a point source have been numerically demonstrated. The open cavity and 'Z' type edge waveguide with 60 o corners have also been realized by using such edge states. -- Highlights: → Acoustic analog of monolayer graphene has been designed. → The energy spectra with the Dirac point have been verified. → The zigzag edge states have been found in ribbons of the structure. → The guided modes excited by a point source have been demonstrated. → The open cavity and 'Z' type edge waveguide have been realized.

  1. Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    The present work considers incompressible flow over a 2D airfoil with a deformable trailing edge. The aerodynamic characteristics of an airfoil with a trailing edge flap is numerically investigated using computational fluid dynamics. A novel hybrid immersed boundary (IB) technique is applied...... to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...... results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing edge flap and flow control using trailing edge flap is an efficient way to regulate the aerodynamic loading on airfoils....

  2. Edge localized modes and edge pedestal in NBI and ICRF heated H, D and T-plasmas in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Lingertat, J.; Barnsley, R.

    1998-12-01

    Based on experiments carried out in JET in D:T mixtures varying from 100:0 to 5:95 and those carried out in hydrogen plasmas, the isotopic mass dependence of ELM parameters and the edge pedestal pressure in neutral beam (NBI) and ion cyclotron resonance (ICRF) heated H-mode plasmas is presented. The ELM frequency is found to decrease with the atomic mass number both in ICRH and NBI discharges. However, the frequency in the case of ICRH is about 8 - 10 times higher than in the NBI case. Assuming that ELMs occur at a critical edge pressure gradient, limited by the ballooning instability, the scaling of the maximum edge pressure is most consistent with the assumption that the width of the transport barrier scales as the ion poloidal Larmor radius governed by the average energy of fast ions at the edge. The critical edge pressure in NBI heated discharges increases with the isotopic mass which. is consistent with the higher deduced width of the edge transport, barrier in tritium than in deuterium and hydrogen. The critical edge pressure in ICRH discharges is smaller, presumably, due to the smaller fast-ion contribution to the edge region. As a consequence of the edge pressure scaling with isotopic mass, the edge operational space in the n e - T e diagram increases with operation in tritium. If the evidence that the edge pedestal width is governed by the average energy of fast ions in the edge prevails, the pedestal in ITER would be controlled by the slowing down energy spectrum of α-particles in the edge. (author)

  3. Modeling SOL evolution during disruptions

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Cohen, R.H.; Crotinger, J.A.

    1996-01-01

    We present the status of our models and transport simulations of the 2-D evolution of the scrape-off layer (SOL) during tokamak disruptions. This evolution is important for several reasons: It determines how the power from the core plasma is distributed on material surfaces, how impurities from those surfaces or from gas injection migrate back to the core region, and what are the properties of the SOL for carrying halo currents. We simulate this plasma in a time-dependent fashion using the SOL transport code UEDGE. This code models the SOL plasma using fluid equations of plasma density, parallel momentum (along the magnetic field), electron energy, ion energy, and neutral gas density. A multispecies model is used to follow the density of different charge-states of impurities. The parallel transport is classical but with kinetic modifications; these are presently treated by flux limits, but we have initiated more sophisticated models giving the correct long-mean-free path limit. The cross-field transport is anomalous, and one of the results of this work is to determine reasonable values to characterize disruptions. Our primary focus is on the initial thermal quench phase when most of the core energy is lost, but the total current is maintained. The impact of edge currents on the MHD equilibrium will be discussed

  4. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    Science.gov (United States)

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption- Edge -Modulated Transmission Spectra for Water Contaminant...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption- Edge -Modulated Transmission Spectra for Water Contaminant Monitoring...contaminants, within a volume of sampled solution, requires sufficient sensitivity. The present study examines the sensitivity of absorption- edge

  5. Edge irregular total labellings for graphs of linear size

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Miškuf, J.

    2009-01-01

    As an edge variant of the well-known irregularity strength of a graph G = (V, E) we investigate edge irregular total labellings, i.e. functions f : V ∪ E → {1, 2, ..., k} such that f (u) + f (u v) + f (v) ≠ f (u) + f (u v) + f (v) for every pair of different edges u v, u v ∈ E. The smallest possi...

  6. Strain-tuning of edge magnetism in zigzag graphene nanoribbons.

    Science.gov (United States)

    Yang, Guang; Li, Baoyue; Zhang, Wei; Ye, Miao; Ma, Tianxing

    2017-09-13

    Using the determinant quantum Monte-Carlo method, we elucidate the strain tuning of edge magnetism in zigzag graphene nanoribbons. Our intensive numerical results show that a relatively weak Coulomb interaction may induce a ferromagnetic-like behaviour with a proper strain, and the edge magnetism can be enhanced greatly as the strain along the zigzag edge increases, which provides another way to control graphene magnetism even at room temperature.

  7. Evolution of Linux operating system network

    Science.gov (United States)

    Xiao, Guanping; Zheng, Zheng; Wang, Haoqin

    2017-01-01

    Linux operating system (LOS) is a sophisticated man-made system and one of the most ubiquitous operating systems. However, there is little research on the structure and functionality evolution of LOS from the prospective of networks. In this paper, we investigate the evolution of the LOS network. 62 major releases of LOS ranging from versions 1.0 to 4.1 are modeled as directed networks in which functions are denoted by nodes and function calls are denoted by edges. It is found that the size of the LOS network grows almost linearly, while clustering coefficient monotonically decays. The degree distributions are almost the same: the out-degree follows an exponential distribution while both in-degree and undirected degree follow power-law distributions. We further explore the functionality evolution of the LOS network. It is observed that the evolution of functional modules is shown as a sequence of seven events (changes) succeeding each other, including continuing, growth, contraction, birth, splitting, death and merging events. By means of a statistical analysis of these events in the top 4 largest components (i.e., arch, drivers, fs and net), it is shown that continuing, growth and contraction events occupy more than 95% events. Our work exemplifies a better understanding and describing of the dynamics of LOS evolution.

  8. Design of a Control System for Quality Maintenance on Cutting Edges of Files Production

    Directory of Open Access Journals (Sweden)

    E. Seabra

    2000-01-01

    Full Text Available The file cutting edges are the most important parameter that influence the performance of the filing operation. The practice shows that the most efficient way of generating these cutting edges is by penetration, by blow, of a cutting tool, which creates a plastic deformation on the file body. The penetration depth is probably the most important factor of the final quality of a file. In the existing machines of files manufacturing, this depth is manually adjusted by the operator, using specific mechanism. This means that files are manufactured on an empirical basis, relying on subjective factors, that do not allow to keep constant quality level of the production. In a research work, being developed in the University of Minho, it is intended to eliminate the subjectivity factors by the means of the evolution of the present “all-mechanical” system to a “mechatronic” one. In this paper, which is related with that research work, it presented a study of a round files production machine, regarding the identification, as well as the categorisation, of the operating parameters that affect the cutting edges production. They are, as well, defined and quantified those factors that influence the final quality of a round file.

  9. Mapping the gas-to-dust ratio in the edge-on spiral galaxy IC2531

    Science.gov (United States)

    Baes, Maarten; Gentile, Gianfranco; Allaert, Flor; Kuno, Nario; Verstappen, Joris

    2012-04-01

    The gas-to-dust ratio is an important diagnostic of the chemical evolution of galaxies, but unfortunately, there are only a few unbiased studies of the gas-to-dust ratio within galaxies and among different galaxies. We want to take advantage of the revolutionary capabilities of the Herschel Space Observatory and the special geometry of edge-on spiral galaxies to derive accurate gas and dust mass profiles in the edge-on spiral galaxy IC2531, the only southern galaxy from a sample of large edge-on spirals observed with Herschel. We already have a wealth of ancillary data and detailed radiative transfer modelling at our disposal for this galaxy, and now request CO observations to map the molecular gas distribution. With our combined dataset, we will investigate the radial behaviour of the gas-to-dust ratio, compare it with the properties of the stellar population and the dark matter distribution, and test the possibility to use the far-infrared emission from dust to determine the total ISM mass in galaxies.

  10. Theory and theory-based models for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Mahajan, S.M.; Yoshida, Z.; Dorland, W.; Rogers, B.N.; Bateman, G.; Kritz, A.H.; Pankin, A.; Voitsekhovitch, I.; Onjun, T.; Snyder, S.

    2005-01-01

    Theories for equilibrium and stability of H-modes, and models for use within integrated modeling codes with the objective of predicting the height, width and shape of the pedestal at the edge of H-mode plasmas in tokamaks, as well as the onset and frequency of Edge Localized Modes (ELMs), are developed. A theory model for relaxed plasma states with flow, which uses two-fluid Hall-MHD equations, predicts that the natural scale length of the pedestal is the ion skin depth and the pedestal width is larger than the ion poloidal gyro-radius, in agreement with experimental observations. Computations with the GS2 code are used to identify micro-instabilities, such as electron drift waves, that survive the strong flow shear, diamagnetic flows, and magnetic shear that are characteristic of the pedestal. Other instabilities on the pedestal and gyro-radius scale, such as the Kelvin-Helmholtz instability, are also investigated. Time-dependent integrated modeling simulations are used to follow the transition from L-mode to H-mode and the subsequent evolution of ELMs as the heating power is increased. The flow shear stabilization that produces the transport barrier at the edge of the plasma reduces different modes of anomalous transport and, consequently, different channels of transport at different rates. ELM crashes are triggered in the model by pressure-driven ballooning modes or by current-driven peeling modes. (author)

  11. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors.

    Science.gov (United States)

    Wu, Di; Li, Xiao; Luan, Lan; Wu, Xiaoyu; Li, Wei; Yogeesh, Maruthi N; Ghosh, Rudresh; Chu, Zhaodong; Akinwande, Deji; Niu, Qian; Lai, Keji

    2016-08-02

    The understanding of various types of disorders in atomically thin transition metal dichalcogenides (TMDs), including dangling bonds at the edges, chalcogen deficiencies in the bulk, and charges in the substrate, is of fundamental importance for TMD applications in electronics and photonics. Because of the imperfections, electrons moving on these 2D crystals experience a spatially nonuniform Coulomb environment, whose effect on the charge transport has not been microscopically studied. Here, we report the mesoscopic conductance mapping in monolayer and few-layer MoS2 field-effect transistors by microwave impedance microscopy (MIM). The spatial evolution of the insulator-to-metal transition is clearly resolved. Interestingly, as the transistors are gradually turned on, electrical conduction emerges initially at the edges before appearing in the bulk of MoS2 flakes, which can be explained by our first-principles calculations. The results unambiguously confirm that the contribution of edge states to the channel conductance is significant under the threshold voltage but negligible once the bulk of the TMD device becomes conductive. Strong conductance inhomogeneity, which is associated with the fluctuations of disorder potential in the 2D sheets, is also observed in the MIM images, providing a guideline for future improvement of the device performance.

  12. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    2000-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge MHD instabilities and plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. The article examines these phenomena and their interaction. (author)

  13. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  14. Calculation of the Capture Edge in the OGMS Superconducting Separator

    International Nuclear Information System (INIS)

    Kozak, S.

    1998-01-01

    Many ferromagnetic particles, that should be deflected, are captured on the wall of an OGMS (Open Gradient Magnetic Separation) separator. This ferromagnetic material influences magnetic and hydrodynamic conditions in the separator working area. The problem how to calculate the capture edge can be defined as the search for the geometry of a nonlinear system at known boundary conditions. The boundary conditions on the capture edge are the function of the capture edge geometry. The experimental results of the separation recovery are given. The capture edge calculation has been performed by FLUX 2D and the results are presented. (author)

  15. An Edge Rotation and Temperature Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Biewer, T.M.; Bell, R.E.; Feder, R.; Johnson, D.W.; Palladino, R.W.

    2003-01-01

    A new diagnostic for the National Spherical Torus Experiment (NSTX) is described whose function is to measure ion rotation and temperature at the plasma edge. The diagnostic is sensitive to C III, C IV, and He II intrinsic emission, covering a radial region of 15 cm at the extreme edge of the outboard midplane. Thirteen chords are distributed between toroidal and poloidal views, allowing the toroidal and poloidal rotation and temperature of the plasma edge to be simultaneously measured with 10 ms resolution. Combined with the local pressure gradient and the EFIT code reconstructed magnetic field profile, the edge flow gives a measure of the local radial electric field

  16. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    1999-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper examines these phenomena and their interaction. (author)

  17. ON f-EDGE COVER-COLOURING OF SIMPLE GRAPHS

    Institute of Scientific and Technical Information of China (English)

    Song Huimin; Liu Guizhen

    2005-01-01

    An f-edge cover-colouring of a graph G = (V, E) is an assignment of colours to the edges of G such that every colour appears at each vertex υ∈ V at least f(υ) times.The maximum number of colours needed to f-edge cover colour G is called the f-edge cover chromatic index of G, denoted by χfc(G). This paper gives that min[d(ν)-1/f(ν)] ≤χfc(G) ≤min[d(υ)/f(υ)].

  18. Study on edge-extraction of remote sensing image

    International Nuclear Information System (INIS)

    Wen Jianguang; Xiao Qing; Xu Huiping

    2005-01-01

    Image edge-extraction is an important step in image processing and recognition, and also a hot spot in science study. In this paper, based on primary methods of the remote sensing image edge-extraction, authors, for the first time, have proposed several elements which should be considered before processing. Then, the qualities of several methods in remote sensing image edge-extraction are systematically summarized. At last, taking Near Nasca area (Peru) as an example the edge-extraction of Magmatic Range is analysed. (authors)

  19. Numerical studies of edge localized instabilities in tokamaks

    International Nuclear Information System (INIS)

    Wilson, H.R.; Snyder, P.B.; Huysmans, G.T.A.; Miller, R.L.

    2002-01-01

    A new computational tool, edge localized instabilities in tokamaks equilibria (ELITE), has been developed to help our understanding of short wavelength instabilities close to the edge of tokamak plasmas. Such instabilities may be responsible for the edge localized modes observed in high confinement H-mode regimes, which are a serious concern for next step tokamaks because of the high transient power loads which they can impose on divertor target plates. ELITE uses physical insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper describes the theoretical formalism which forms the basis for the code

  20. The sharp edge: a frequent radiographic sign in neonatal pneumothorax

    International Nuclear Information System (INIS)

    Oestreich, A.E.

    1987-01-01

    The sharp edge sign, an unusually sharply defined silhouette of the heart and/or hemidiaphragm on frontal radiographs of the supine neonate, has been valuable in the initial recognition of pneumothorax. In a prospective study of 50 neonatal pneumothoraces, a sharp edge sign was present on the initial pneumothorax film 49 times. In seven of these, only the hemidiaphragm showed a sharp edge, while the heart margin was superimposed on the vertebral column. Greater awareness of the sharp edge sign would promote earlier recognition of neonatal pneumothorax. 6 refs.; 3 figs

  1. Optimizing 3D Triangulations to Recapture Sharp Edges

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    2006-01-01

    In this report, a technique for optimizing 3D triangulations is proposed. The method seeks to minimize an energy defined as a sum of energy terms for each edge in a triangle mesh. The main contribution is a novel per edge energy which strikes a balance between penalizing dihedral angle yet allowing...... sharp edges. The energy is minimized using edge swapping, and this can be done either in a greedy fashion or using simulated annealing. The latter is more costly, but effectively avoids local minima. The method has been used on a number of models. Particularly good results have been obtained on digital...

  2. On the Total Edge Irregularity Strength of Generalized Butterfly Graph

    Science.gov (United States)

    Dwi Wahyuna, Hafidhyah; Indriati, Diari

    2018-04-01

    Let G(V, E) be a connected, simple, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ: V(G) ∪ E(G) → {1, 2, …, k} of a graph G is a total k-labeling such that the weights calculated for all edges are distinct. The weight of an edge uv in G, denoted by wt(uv), is defined as the sum of the label of u, the label of v, and the label of uv. The total edge irregularity strength of G, denoted by tes(G), is the minimum value of the largest label k over all such edge irregular total k-labelings. A generalized butterfly graph, BFn , obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has 2n + 1 vertices and 4n ‑ 2 edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BFn , for n > 2. The result is tes(B{F}n)=\\lceil \\frac{4n}{3}\\rceil .

  3. A Computational Framework for Experimentation with Edge Organizations

    National Research Council Canada - National Science Library

    Ramsey, Marc S; Levitt, Raymond E

    2005-01-01

    .... Traditional project modeling tools cannot adequately represent the critical impact of information and knowledge flows, nor the importance of developing trust between workers in Edge organizations...

  4. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  5. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    International Nuclear Information System (INIS)

    Zakharov, L.E.

    2010-01-01

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the (delta)-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  6. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    2001-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper examines these phenomena and their interaction. (author)

  7. Edge detection in digital images using Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Marjan Kuchaki Rafsanjani

    2015-11-01

    Full Text Available Ant Colony Optimization (ACO is an optimization algorithm inspired by the behavior of real ant colonies to approximate the solutions of difficult optimization problems. In this paper, ACO is introduced to tackle the image edge detection problem. The proposed approach is based on the distribution of ants on an image; ants try to find possible edges by using a state transition function. Experimental results show that the proposed method compared to standard edge detectors is less sensitive to Gaussian noise and gives finer details and thinner edges when compared to earlier ant-based approaches.

  8. Testing the Topological Nature of the Fractional Quantum Hall Edge

    International Nuclear Information System (INIS)

    Jolad, Shivakumar; Jain, Jainendra K.

    2009-01-01

    We carry out numerical diagonalization for much larger systems than before by restricting the fractional quantum Hall (FQH) edge excitations to a basis that is exact for a short-range interaction and very accurate for the Coulomb interaction. This enables us to perform substantial tests of the predicted universality of the edge physics. Our results suggest the possibility that the behavior of the FQH edge is intrinsically nonuniversal, even in the absence of edge reconstruction, and therefore may not bear a sharp and unique relation to the nature of the bulk FQH state

  9. Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Lindner, Netanel; Berg, Erez

    2013-01-01

    revealed phenomena that cannot be characterized by analogy to the topological classification framework for static systems. In particular, in driven systems in two dimensions (2D), robust chiral edge states can appear even though the Chern numbers of all the bulk Floquet bands are zero. Here, we elucidate...... the crucial distinctions between static and driven 2D systems, and construct a new topological invariant that yields the correct edge-state structure in the driven case. We provide formulations in both the time and frequency domains, which afford additional insight into the origins of the “anomalous” spectra...... that arise in driven systems. Possibilities for realizing these phenomena in solid-state and cold-atomic systems are discussed....

  10. Shear flows at the tokamak edge and their interaction with edge-localized modes

    International Nuclear Information System (INIS)

    Aydemir, A. Y.

    2007-01-01

    Shear flows in the scrape-off layer (SOL) and the edge pedestal region of tokamaks are shown to arise naturally out of transport processes in a magnetohydrodynamic model. In quasi-steady-state conditions, collisional resistivity coupled with a simple bootstrap current model necessarily leads to poloidal and toroidal flows, mainly localized to the edge and SOL. The role of these flows in the grad-B drift direction dependence of the power threshold for the L (low) to H (high) transition, and their effect on core rotation, are discussed. Theoretical predictions based on symmetries of the underlying equations, coupled with computational results, are found to be in agreement with observations in Alcator C-Mod [Phys. Plasmas 12, 056111 (2005)]. The effects of these self-consistent flows on linear peeling/ballooning modes and their nonlinear consequences are also examined

  11. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2017-01-01

    Full Text Available This article presents a numerical investigation of the effects of leading-edge protuberances on airfoil stall and post-stall performance. An improved delayed detached eddy simulation (IDDES method was adopted. As a result, to clarify the effects of ‘bi-periodic’ phenomenon around stall region, it was found that the flow separation at troughs was the main inducement of aerodynamic lift degradation within pre-stall regime and the flow pattern where vortices diverged was predominant. It was also found that the variations in flow patterns led to the gentle stall process. Furthermore, to study the statistical characteristics of unsteady vortex shedding, corresponding spectrum characteristics were also analyzed from another perspective, suggesting that the vortex shedding frequency was higher where vortices converged. Eventually, the improved performances of tubercled airfoil within post-stall regime could be attributed to the strong streamwise vortices generated by the leading-edge protuberances. Deploying the methods of vortex dynamics, the generation and evolution of the streamwise vortices were depicted. It turned out that the primary and secondary vortices were induced by spanwise pressure gradient at airfoil surface; meanwhile, vortex stretching played a key role in primary vortex evolution, which initially enhanced the strength of vortices corresponding to the acceleration of streamwise velocity.

  12. Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds

    Science.gov (United States)

    Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.

    2017-03-01

    A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.

  13. Edge localized modes control: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Bedoulet, M.; Huysmans, G.; Thomas, P.; Joffrin, E.; Rimini, F.; Monier-Garbet, P.; Grosman, A.; Ghendrih, P. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V.; Lomas, P.; Matthews, G.; Wilson, H.; Gryaznevich, M.; Gonsell, G.; Loarte, A.; Saibene, G.; Sartori, R.; Leonard, A.; Snyder, P.; Evans, T.; Gohil, P.; Burell, H.; Moyer, R.; Kamada, Y.; Oyama, N.; Hatae, T.; Degeling, A.; Martin, Y.; Lister, J.; Rapp, J.; Perez, C.; Lang, P.; Chankin, A.; Eich, T.; Sips, A.; Stober, J.; Horton, L.; Kallenbach, A.; Suttrop, W.; Saarelma, S.; Cowley, S.; Lonnroth, J.; Kamiya, K.; Shimada, M.; Polevoi, A.; Federici, G

    2004-07-01

    modelling (JETTO) demonstrated that the edge plasma current increase in ramp-up phase can lead to the destabilization of peeling modes, in agreement with ideal MHD stability models. Experiments on TCV demonstrated the possibility of triggering ELMs with a frequency imposed by rapid vertical plasma displacements induced by control coils. This effect is attributed to the induction of an edge current and hence the destabilization of peeling modes. (authors)

  14. Edge localized modes control: experiment and theory

    International Nuclear Information System (INIS)

    Bedoulet, M.; Huysmans, G.; Thomas, P.; Joffrin, E.; Rimini, F.; Monier-Garbet, P.; Grosman, A.; Ghendrih, P.; Parail, V.; Lomas, P.; Matthews, G.; Wilson, H.; Gryaznevich, M.; Gonsell, G.; Loarte, A.; Saibene, G.; Sartori, R.; Leonard, A.; Snyder, P.; Evans, T.; Gohil, P.; Burell, H.; Moyer, R.; Kamada, Y.; Oyama, N.; Hatae, T.; Degeling, A.; Martin, Y.; Lister, J.; Rapp, J.; Perez, C.; Lang, P.; Chankin, A.; Eich, T.; Sips, A.; Stober, J.; Horton, L.; Kallenbach, A.; Suttrop, W.; Saarelma, S.; Cowley, S.; Lonnroth, J.; Kamiya, K.; Shimada, M.; Polevoi, A.; Federici, G.

    2004-01-01

    The paper reviews recent theoretical and experimental results focusing on the identification of the key factors controlling ELM (energy localized mode) energy and particle losses both in natural ELMs and in the presence of external controlling mechanisms. The theoretical description of the most studied Type-I ELMs is progressing from linear MHD stability analysis for peeling and ballooning modes to the non-linear explosive models and transport codes. Present theories cannot predict the ELM size self-consistently, however they pointed out the benefit of the high plasma shaping, high q 95 and high pedestal density in reducing the ELM affected area. The experimental data also suggest that the conductive energy losses in Type-I ELM can be controlled by working in specific plasma conditions. In particular, the existence of purely convective small Type-I ELMs regimes at high q 95 (>4.5) with ΔW ELM /W ped <5% was demonstrated in high triangularity (δ ∼ 0.5) plasmas in JET. Small benign ELMs regimes in present machines (EDA, HRS, Type-II, grassy, QH, Type-III in impurity seeded discharges at high δ and their relevance for ITER parameters are reviewed briefly. The absence of already developed ITER relevant high confinement scenarios with acceptable ELMs has motivated recent intensive experimental and theoretical studies of active control of ELMs. The possibility of suppression of Type-I ELMs in H-mode scenarios at constant confinement was demonstrated in DIII-D experiments with a stochastic boundary created by external coils. It has been demonstrated in AUG that small pellets can trigger Type-I ELMs with a frequency imposed by the pellet injector. Pellet induced ELMs are similar to the intrinsic Type-I ELMs with the same frequency. At the same time the confinement degradation due to the fuelling can be minimized with pellets small as compared to the gas injection. Recent plasma current ramp experiments (JET, COMPASS-D) and modelling (JETTO) demonstrated that the edge

  15. Wisps in the outer edge of the Keeler Gap

    Science.gov (United States)

    Tiscareno, Matthew S.; Arnault, Ethan G.

    2015-11-01

    Superposed upon the relatively smooth outer edge of the Keeler Gap are a system of "wisps," which appear to be ring material protruding inward into the gap, usually with a sharp trailing edge and a smooth gradation back to the background edge location on the leading side (Porco et al. 2005, Science). The radial amplitude of wisps is usually 0.5 to 1 km, and their azimuthal extent is approximately a degree of longitude (~2400 km). Wisps are likely caused by an interplay between Daphnis (and perhaps other moons) and embedded moonlets within the ring, though the details remain unclear.Aside from the wisps, the Keeler Gap outer edge is the only one of the five sharp edges in the outer part of Saturn's A ring that is reasonably smooth in appearance (Tiscareno et al. 2005, DPS), with occultations indicating residuals less than 1 km upon a possibly non-zero eccentricity (R.G. French, personal communication, 2014). The other four (the inner and outer edges of the Encke Gap, the inner edge of the Keeler Gap, and the outer edge of the A ring itself) are characterized by wavy structure at moderate to high spatial frequencies, with amplitudes ranging from 2 to 30 km (Tiscareno et al. 2005, DPS).We will present a catalogue of wisp detections in Cassini images. We carry out repeated gaussian fits of the radial edge location in order to characterize edge structure and visually scan those fitted edges in order to detect wisps. With extensive coverage in longitude and in time, we will report on how wisps evolve and move, both within an orbit period and on longer timescales. We will also report on the frequency and interpretation of wisps that deviate from the standard morphology. We will discuss the implications of our results for the origin and nature of wisps, and for the larger picture of how masses interact within Saturn's rings.

  16. Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D

    Science.gov (United States)

    Ashourvan, Arash; Grierson, B. A.; Battaglia, D. J.; Haskey, S. R.; Stoltzfus-Dueck, T.

    2018-05-01

    In a recent kinetic model of edge main-ion (deuterium) toroidal velocity, intrinsic rotation results from neoclassical orbits in an inhomogeneous turbulent field [T. Stoltzfus-Dueck, Phys. Rev. Lett. 108, 065002 (2012)]. This model predicts a value for the toroidal velocity that is co-current for a typical inboard X-point plasma at the core-edge boundary (ρ ˜ 0.9). Using this model, the velocity prediction is tested on the DIII-D tokamak for a database of L-mode and H-mode plasmas with nominally low neutral beam torque, including both signs of plasma current. Values for the flux-surface-averaged main-ion rotation velocity in the database are obtained from the impurity carbon rotation by analytically calculating the main-ion—impurity neoclassical offset. The deuterium rotation obtained in this manner has been validated by direct main-ion measurements for a limited number of cases. Key theoretical parameters of ion temperature and turbulent scale length are varied across a wide range in an experimental database of discharges. Using a characteristic electron temperature scale length as a proxy for a turbulent scale length, the predicted main-ion rotation velocity has a general agreement with the experimental measurements for neutral beam injection (NBI) powers in the range PNBI balanced—but high powered—NBI, the net injected torque through the edge can exceed 1 Nm in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Using the theory modeled—and now tested—velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER.

  17. Morphodynamics and stratigraphic architecture of shelf-edge deltas subject to constant vs. dynamic environmental forcings

    Science.gov (United States)

    Straub, K. M.

    2017-12-01

    When deltas dock at the edge of continental margins they generally construct thick stratigraphic intervals and activate channelized continental slope systems. Deposits of shelf-edge deltas have the capacity to store detailed paleo-environmental records, given their location in the source to sink system. However, present day highstand sea-level conditions have pushed most deltaic systems well inbound of their shelf-edges, making it difficult to study their space-time dynamics and resulting stratigraphic products. Several competing theories describe how deltas and their downslope environments respond to sea-level cycles of varying magnitude and periodicity. We explore these hypotheses in a physical experiment where the topographic evolution of a coupled delta and downdip slope system was monitored at high temporal and spatial resolution. The experiment had three stages. In the first stage a delta aggraded at the shelf-edge under constant water and sediment supply, in addition to a constant generation of accommodation through a sea-level rise. In the second stage the sediment transport system responded to low magnitude and high frequency sea-level cycles. Finally, in the third stage the transport system responded to a high magnitude and long period sea-level cycle. In each stage, fine sediment from the input grain size distribution and dissolved salt in the input water supply promoted plunging hyperpycnal flows. Specifically, we compare the mean and temporal variability of the sediment delivered to the slope system between stages. In addition, we compare stratigraphic architecture and sediment sizes delivered to the slope system in each stage. These results are used to improve inversion of slope deposits for paleo-environmental forcings.

  18. The effect of edge and impurities sites properties on their localized states in semi-infinite zigzag edged 2D honeycomb graphene sheet

    OpenAIRE

    Ahmed, Maher

    2011-01-01

    In this work, the tridiagonal method is used to distinguish between edges modes and area modes to study the edge sites properties effect on edge localized states of semi-infinite zigzag 2D honeycomb graphene sheet. The results show a realistic behavior for the dependance of edge localized states of zigzag graphene on the edge sites properties which explaining the experimental results of measured local density of states at the edge of graphene, while at the same time removing the inconsistence...

  19. Position-sensitive transition-edge sensors

    International Nuclear Information System (INIS)

    Iyomoto, N.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.A.; Figueroa-Feliciano, E.; Finkbeiner, F.M.; Kelley, R.L.; Kilbourne, C.A.; Lindeman, M.A.; Murphy, K.; Porter, F.S.; Saab, T.; Sadleir, J.E.; Talley, D.J.

    2006-01-01

    We report the latest results from our development of Position-Sensitive Transition-edge sensors (PoSTs), which are one-dimensional imaging spectrometers. In PoSTs with segmented Au absorbers, we obtained 8eV energy resolution on K Kα lines, which is consistent to the baseline energy resolution and the design values, on all of the nine pixels, by choosing the best combination of the thermal conductance in absorbers and in links that connects the absorbers. The pulse decay time of 193μs is fast enough for our purpose. In a PoST with a continuous Bi/Cu absorber, by dividing the events into 63 effective pixels, we obtained energy resolutions of 16eV at the center 'pixel', which is comparable to the baseline energy resolution, and 33eV at the outer 'pixel'. The degradation of the energy resolution in the outer 'pixel' is due to position dependence, which we can cancel out by dividing the events into smaller 'pixels' when we have sufficient X-ray events

  20. Mobile Edge Computing Empowers Internet of Things

    Science.gov (United States)

    Ansari, Nirwan; Sun, Xiang

    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods are validated via extensive simulations.

  1. Edge Thomson scattering on RFX-mod

    International Nuclear Information System (INIS)

    Alfier, A.; Pasqualotto, R.

    2006-01-01

    Electron temperature and density profiles of the RFX-mod experiment are characterized by edge gradients typically steeper than the flatter central region. The main Thomson scattering (TS) diagnostic which measures 84-point profiles along a diameter is mainly devoted to cover the core region. A second TS system has been developed to measure 12-point profiles in the external region 0.8< r/a<1, with a spatial resolution of 1 cm. It uses a single shot ruby laser. Input and collection optics share the same vacuum port and they are mounted on one optical bench, which allows offline aligning the system before connecting it to the vessel. The scattered signal is collected by a row of 12 fibers, while 4 fibers on the sides are used to check the alignment and measure the plasma light. The fibers, arranged in a 4x4 pattern, are fed into a four channel filter spectrometer and the spectrum is detected by a GaAs intensified charge-coupled device camera. The filters are arranged in a zigzag geometry, such that only one detector is needed

  2. Optimization of transition-edge calorimeter performance

    International Nuclear Information System (INIS)

    Ullom, J.N.; Beall, J.A.; Doriese, W.B.; Duncan, W.D.; Ferreira, L.; Hilton, G.C.; Irwin, K.D.; O'Neil, G.C.; Reintsema, C.D.; Vale, L.R.; Zink, B.L.

    2006-01-01

    Calorimeters that exploit the superconducting-to-normal transition are used to detect individual photons from near-infrared to γ-ray wavelengths. Across this wide range, absorption efficiency, speed, and energy resolution are key performance parameters. Here, we describe recent improvements in the resolution of X-ray and γ-ray transition-edge sensors (TESs). Using the measured dependencies of the high-frequency unexplained noise in TESs, we have optimized the design of our TES X-ray sensors and achieved FWHM energy resolutions of 2.4 eV at 5.9 keV in Constellation-X style sensors and ∼2.9 eV at 5.9 keV in larger sensors suitable for materials analysis. We have also achieved a FWHM energy resolution of 42 eV at 103 keV in a TES calorimeter optimized for the detection of hard X-rays and γ-rays

  3. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity† †Electronic supplementary information (ESI) available: Movies S1 to S4: spatially resolved LSV-SECCM movies obtained from the electrocatalytic HER on the surface of bulk MoS2. Fig. S1 to S14: XRD, XPS, Raman, SEM and OM characterization of MoS2; SEM images of the nanopipets; WCA measurements; LSVs and Tafel plots obtained from the HER on MoS2. See DOI: 10.1039/c7sc02545a Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Kang, Minkyung; Maddar, Faduma M.; Li, Fengwang; Walker, Marc; Zhang, Jie

    2017-01-01

    Two dimensional (2D) semiconductor materials, such as molybdenum disulfide (MoS2) have attracted considerable interest in a range of chemical and electrochemical applications, for example, as an abundant and low-cost alternative electrocatalyst to platinum for the hydrogen evolution reaction (HER). While it has been proposed that the edge plane of MoS2 possesses high catalytic activity for the HER relative to the “catalytically inert” basal plane, this conclusion has been drawn mainly from macroscale electrochemical (voltammetric) measurements, which reflect the “average” electrocatalytic behavior of complex electrode ensembles. In this work, we report the first spatially-resolved measurements of HER activity on natural crystals of molybdenite, achieved using voltammetric scanning electrochemical cell microscopy (SECCM), whereby pixel-resolved linear-sweep voltammogram (LSV) measurements have allowed the HER to be visualized at multiple different potentials to construct electrochemical flux movies with nanoscale resolution. Key features of the SECCM technique are that characteristic surface sites can be targeted and analyzed in detail and, further, that the electrocatalyst area is known with good precision (in contrast to many macroscale measurements on supported catalysts). Through correlation of the local voltammetric response with information from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in a multi-microscopy approach, it is demonstrated unequivocally that while the basal plane of bulk MoS2 (2H crystal phase) possesses significant activity, the HER is greatly facilitated at the edge plane (e.g., surface defects such as steps, edges or crevices). Semi-quantitative treatment of the voltammetric data reveals that the HER at the basal plane of MoS2 has a Tafel slope and exchange current density (J 0) of ∼120 mV per decade and 2.5 × 10–6 A cm–2 (comparable to polycrystalline Co, Ni, Cu and Au), respectively, while the edge

  4. Helium transport and exhaust studies in enhanced confinement regimes in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Burrell, K.H.; Finkenthal, D.F.; Gohil, P.; Groebner, R.J.

    1995-02-01

    A better understanding of helium transport in the plasma core and edge in enhanced confinement regimes is now emerging from recent experimental studies on DIII-D. Overall, the results are encouraging. Significant helium exhaust (τ* He /τ E ∼ 11) has been obtained in a diverted, ELMing H-mode plasma simultaneous with a central source of helium. Detailed analysis of the helium profile evolution indicates that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium transport properties of the plasma. Perturbative helium transport studies using gas puffing have shown that D He /X eff ∼1 in all confinement regimes studied to date (including H-mode and VH-mode). Furthermore, there is no evidence of preferential accumulation of helium in any of these regimes. However, measurements in the core and pumping plenum show a significant dilution of helium as it flows from the plasma core to the pumping plenum. Such dilution could be the limiting factor in the overall removal rate of helium in a reactor system

  5. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  6. Quantization of edge currents for continuous magnetic operators

    CERN Document Server

    Kellendonk, J

    2003-01-01

    For a magnetic Hamiltonian on a half-plane given as the sum of the Landau operator with Dirichlet boundary conditions and a random potential, a quantization theorem for the edge currents is proven. This shows that the concept of edge channels also makes sense in presence of disorder. Moreover, gaussian bounds on the heat kernel and its covariant derivatives are obtained.

  7. Edge states of a three-dimensional topological insulator

    International Nuclear Information System (INIS)

    Deb, Oindrila; Sen, Diptiman; Soori, Abhiram

    2014-01-01

    We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi 2 Se 3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states. (paper)

  8. Surface versus Edge-Based Determinants of Visual Recognition.

    Science.gov (United States)

    Biederman, Irving; Ju, Ginny

    1988-01-01

    The latency at which objects could be identified by 126 subjects was compared through line drawings (edge-based) or color photography (surface depiction). The line drawing was identified about as quickly as the photograph; primal access to a mental representation of an object can be modeled from an edge-based description. (SLD)

  9. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  10. Electron transport in edge-disordered graphene nanoribbons

    DEFF Research Database (Denmark)

    Saloriutta, Karri; Hancock, Y.; Karkkainen, Asta

    2011-01-01

    Ab initio methods are used to study the spin-resolved transport properties of graphene nanoribbons (GNRs) that have both chemical and structural edge disorder. Oxygen edge adsorbates on ideal and protruded ribbons are chosen as representative examples, with the protrusions forming the smallest...

  11. Parallel Algorithms for Switching Edges in Heterogeneous Graphs.

    Science.gov (United States)

    Bhuiyan, Hasanuzzaman; Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-06-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.

  12. Attenuation studies near K-absorption edges using Compton ...

    Indian Academy of Sciences (India)

    The results are consistent with theoretical values derived from the XCOM package. Keywords. Photon interaction; 241Am; gamma ray attenuation; Compton scattering; absorption edge; rare earth elements. PACS Nos 32.80.-t; 32.90.+a. 1. Introduction. Photon interaction studies at energies around the absorption edge have ...

  13. Chinese Postman Problem on edge-colored multigraphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    It is well-known that the Chinese Postman Problem on undirected and directed graphs is polynomial-time solvable. We extend this result to edge-colored multigraphs. Our result is in sharp contrast to the Chinese Postman Problem on mixed graphs, i.e., graphs with directed and undirected edges, for ...

  14. Developing guidelines for repairing severe edge failures : technical report.

    Science.gov (United States)

    2014-04-01

    This report presents various edge failures, the methods used by districts to repair them, and the results of the : repair. While there was no clear consensus on the best treatment of in-situ material for pavements with edge : failures, the districts ...

  15. Dilation-optimal edge deletion in polygonal cycles

    NARCIS (Netherlands)

    Ahn, H.K.; Farshi, M.; Knauer, C.; Smid, M.H.M.; Wang, Y.; Tokuyama, T.

    2007-01-01

    Let C be a polygonal cycle on n vertices in the plane. A randomized algorithm is presented which computes in O(n log3 n) expected time, the edge of C whose removal results in a polygonal path of smallest possible dilation. It is also shown that the edge whose removal gives a polygonal path of

  16. The ship edge feature detection based on high and low threshold for remote sensing image

    Science.gov (United States)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  17. Effective Hamiltonian for protected edge states in graphene

    International Nuclear Information System (INIS)

    Winkler, R.; Deshpande, H.

    2017-01-01

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for both zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.

  18. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  19. Isotropic covariance functions on graphs and their edges

    DEFF Research Database (Denmark)

    Anderes, E.; Møller, Jesper; Rasmussen, Jakob Gulddahl

    We develop parametric classes of covariance functions on linear networks and their extension to graphs with Euclidean edges, i.e., graphs with edges viewed as line segments or more general sets with a coordinate system allowing us to consider points on the graph which are vertices or points...... on an edge. Our covariance functions are defined on the vertices and edge points of these graphs and are isotropic in the sense that they depend only on the geodesic distance or on a new metric called the resistance metric (which extends the classical resistance metric developed in electrical network theory...... functions in the spatial statistics literature (the power exponential, Matérn, generalized Cauchy, and Dagum classes) are shown to be valid with respect to the resistance metric for any graph with Euclidean edges, whilst they are only valid with respect to the geodesic metric in more special cases....

  20. Strain-activated edge reconstruction of graphene nanoribbons

    KAUST Repository

    Cheng, Yingchun

    2012-02-17

    The edge structure and width of graphene nanoribbons (GNRs) are crucial factors for the electronic properties. A combination of experiment and first-principles calculations allows us to determine the mechanism of the hexagon-hexagon to pentagon-heptagon transformation. GNRs thinner than 2 nm have been fabricated by bombardment of graphene with high-energetic Au clusters. The edges of the GNRs are modified in situ by electron irradiation. Tensile strain along the edge decreases the transformation energy barrier. Antiferromagnetism and a direct band gap are found for a zigzag GNR, while a fully reconstructed GNR shows an indirect band gap. A GNR reconstructed on only one edge exhibits ferromagnetism. We propose that strain is an effective method to tune the edge and, therefore, the electronic structure of thin GNRs for graphene-based electronics.

  1. Strain-activated edge reconstruction of graphene nanoribbons

    KAUST Repository

    Cheng, Yingchun; Han, Yu; Schwingenschlö gl, Udo; Wang, H. T.; Zhang, Xixiang; Zhu, Y. H.; Zhu, Zhiyong

    2012-01-01

    The edge structure and width of graphene nanoribbons (GNRs) are crucial factors for the electronic properties. A combination of experiment and first-principles calculations allows us to determine the mechanism of the hexagon-hexagon to pentagon-heptagon transformation. GNRs thinner than 2 nm have been fabricated by bombardment of graphene with high-energetic Au clusters. The edges of the GNRs are modified in situ by electron irradiation. Tensile strain along the edge decreases the transformation energy barrier. Antiferromagnetism and a direct band gap are found for a zigzag GNR, while a fully reconstructed GNR shows an indirect band gap. A GNR reconstructed on only one edge exhibits ferromagnetism. We propose that strain is an effective method to tune the edge and, therefore, the electronic structure of thin GNRs for graphene-based electronics.

  2. Near-edge X-ray absorption fine structure studies of Cr{sub 1−x}M{sub x}N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mahbubur Rahman, M. [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Duan, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Xie, Zonghan [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); School of Engineering, Edith Cowan University, WA 6027 (Australia); Wu, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Amri, Amun [Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Cowie, Bruce [Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168 (Australia); Yin, Chun-Yang [Chemical and Analytical Sciences, Murdoch University, Murdoch, WA 6150 (Australia)

    2013-11-25

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr{sub 1−x}M{sub x}N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings.

  3. Full-waveform data for building roof step edge localization

    Science.gov (United States)

    Słota, Małgorzata

    2015-08-01

    Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.

  4. Diagnosing phenotypes of single-sample individuals by edge biomarkers.

    Science.gov (United States)

    Zhang, Wanwei; Zeng, Tao; Liu, Xiaoping; Chen, Luonan

    2015-06-01

    Network or edge biomarkers are a reliable form to characterize phenotypes or diseases. However, obtaining edges or correlations between molecules for an individual requires measurement of multiple samples of that individual, which are generally unavailable in clinical practice. Thus, it is strongly demanded to diagnose a disease by edge or network biomarkers in one-sample-for-one-individual context. Here, we developed a new computational framework, EdgeBiomarker, to integrate edge and node biomarkers to diagnose phenotype of each single test sample. By applying the method to datasets of lung and breast cancer, it reveals new marker genes/gene-pairs and related sub-networks for distinguishing earlier and advanced cancer stages. Our method shows advantages over traditional methods: (i) edge biomarkers extracted from non-differentially expressed genes achieve better cross-validation accuracy of diagnosis than molecule or node biomarkers from differentially expressed genes, suggesting that certain pathogenic information is only present at the level of network and under-estimated by traditional methods; (ii) edge biomarkers categorize patients into low/high survival rate in a more reliable manner; (iii) edge biomarkers are significantly enriched in relevant biological functions or pathways, implying that the association changes in a network, rather than expression changes in individual molecules, tend to be causally related to cancer development. The new framework of edge biomarkers paves the way for diagnosing diseases and analyzing their molecular mechanisms by edges or networks in one-sample-for-one-individual basis. This also provides a powerful tool for precision medicine or big-data medicine. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  5. ESIM: Edge Similarity for Screen Content Image Quality Assessment.

    Science.gov (United States)

    Ni, Zhangkai; Ma, Lin; Zeng, Huanqiang; Chen, Jing; Cai, Canhui; Ma, Kai-Kuang

    2017-10-01

    In this paper, an accurate full-reference image quality assessment (IQA) model developed for assessing screen content images (SCIs), called the edge similarity (ESIM), is proposed. It is inspired by the fact that the human visual system (HVS) is highly sensitive to edges that are often encountered in SCIs; therefore, essential edge features are extracted and exploited for conducting IQA for the SCIs. The key novelty of the proposed ESIM lies in the extraction and use of three salient edge features-i.e., edge contrast, edge width, and edge direction. The first two attributes are simultaneously generated from the input SCI based on a parametric edge model, while the last one is derived directly from the input SCI. The extraction of these three features will be performed for the reference SCI and the distorted SCI, individually. The degree of similarity measured for each above-mentioned edge attribute is then computed independently, followed by combining them together using our proposed edge-width pooling strategy to generate the final ESIM score. To conduct the performance evaluation of our proposed ESIM model, a new and the largest SCI database (denoted as SCID) is established in our work and made to the public for download. Our database contains 1800 distorted SCIs that are generated from 40 reference SCIs. For each SCI, nine distortion types are investigated, and five degradation levels are produced for each distortion type. Extensive simulation results have clearly shown that the proposed ESIM model is more consistent with the perception of the HVS on the evaluation of distorted SCIs than the multiple state-of-the-art IQA methods.

  6. Information theoretic analysis of canny edge detection in visual communication

    Science.gov (United States)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  7. Transcatheter Treatment of Tricuspid Regurgitation Using Edge-to-Edge Repair: Procedural Results, Clinical Implications and Predictors for Success.

    Science.gov (United States)

    Lurz, Philipp; Besler, Christian; Noack, Thilo; Forner, Anna Flo; Bevilacqua, Carmine; Seeburger, Joerg; Rommel, Karl-Philipp; Blazek, Stephan; Hartung, Philipp; Zimmer, Marion; Mohr, Friedrich; Schuler, Gerhard; Linke, Axel; Ender, Joerg; Thiele, Holger

    2018-04-10

    To analyze the feasibility, safety and effectiveness of Tricuspid valve (TV) repair using the MitraClip system in patients at high surgical risk. Forty-two elderly high-risk patients (76.8±7.3 years, EuroScore II 8.1±5.7) with isolated TR or combined TR and mitral regurgitation (MR) underwent edge-to-edge repair of the TV (n=11) or combined edge-to-edge repair of the TV and mitral valve (n=31). Procedural details, success rate, impact on TR severity and predictors for success at 30 day follow-up were analyzed. Successful edge-to-edge repair of TR was achieved in 35/42 patients (83%, 68 clips in total, 94% in the anteroseptal commissure, 6% in the posteroseptal commissure). In 5 patients, grasping of the leaflets was impossible and two patients had no decrease in TR after clipping. In those with procedural success, clipping of the TV led to a reduction in effective regurgitant orifice area by -62,5 % (from 0.8±0.4 to 0.3±0.2 cm2; pEdge-to-edge repair of the TV is feasible with promising reduction in TR, which could result in clinical improvement.

  8. Six-month outcome after transcatheter edge-to-edge repair of severe tricuspid regurgitation in patients with heart failure.

    Science.gov (United States)

    Orban, Mathias; Besler, Christian; Braun, Daniel; Nabauer, Michael; Zimmer, Marion; Orban, Martin; Noack, Thilo; Mehilli, Julinda; Hagl, Christian; Seeburger, Joerg; Borger, Michael; Linke, Axel; Thiele, Holger; Massberg, Steffen; Ender, Joerg; Lurz, Philipp; Hausleiter, Jörg

    2018-06-01

    Severe tricuspid regurgitation (TR) is common in patients with right-sided heart failure (HF) and causes substantial morbidity and mortality. Treatment options beyond medical therapy are limited for high-risk patients. Transcatheter edge-to-edge tricuspid valve (TV) repair showed procedural safety and short-term efficacy. Impact on mid-term outcome is unclear. This dual-centre observational study evaluates the mid-term safety, efficacy and clinical outcome after edge-to-edge TV repair for severe TR in patients with HF. Overall, 50 patients with right-sided HF and severe TR were treated with the transcatheter edge-to-edge repair technique; 14 patients were treated for isolated TR and 36 patients for combined mitral regurgitation (MR) and TR. At 6-month follow-up (available for 98% of patients), a persistent reduction of at least one echocardiographic TR grade was achieved in 90% of patients and New York Heart Association class improved in 79% of patients. The 6-minute walk distance increased by 44% (+84 m, P edge-to-edge TV repair for severe TR is safe and effective in reducing TR. It appears to be associated with improved clinical outcome in the majority of patients. © 2018 The Authors. European Journal of Heart Failure © 2018 European Society of Cardiology.

  9. Microcalorimetry and the transition-edge sensor

    Science.gov (United States)

    Lindeman, Mark Anton

    2000-10-01

    Many scientific and industrial applications call for quantum-efficient high-energy-resolution microcalorimeters for the measurement of x rays. The applications driving the development of these detectors involve the measurement of faint sources of x rays in which few photons reach the detector. Interesting astrophysical applications for these microcalorimeters include the measurement of composition and temperatures of stellar atmospheres and diffuse interstellar plasmas. Other applications of microcalorimeter technology include x-ray fluorescence (XRF) measurements of industrial or scientific samples. We are attempting to develop microcalorimeters with energy resolutions of several eV because many sources (such as celestial plasmas) contain combinations of elements producing emission lines spaced only a few eV apart. Our microcalorimeters consist of a metal-film absorber (250mum x 250mum x 3mum of copper) coupled to a superconducting transition-edge-sensor (TES) thermometer. This microcalorimeter demonstrated an energy resolution of 42 eV (FWHM) at 6 keV, excellent linearity, and showed no evidence of position dependent response. The response of our microcalorimeters depends both on the temperature of the microcalorimeter and on the electrical current conducted through the TES thermometer. We present a microcalorimeter model that extends previous microcalorimeter theory to include additional current dependent effects. The model makes predictions about the effects of various forms of noise. In addition, the model helps us to understand what measurements are useful for characterizing TES microcalorimeters. While the energy resolution we obtained was quite good (twice as good as conventional semiconductor-based x-ray detectors), the obtained resolution was not as good as expected, due to excess noise from fluctuations in the TES thermometer. The energy resolution of future TES microcalorimeters can be improved by redesigning the calorimeters to minimize the noise due

  10. Fingerprinting the type of line edge roughness

    Science.gov (United States)

    Fernández Herrero, A.; Pflüger, M.; Scholze, F.; Soltwisch, V.

    2017-06-01

    Lamellar gratings are widely used diffractive optical elements and are prototypes of structural elements in integrated electronic circuits. EUV scatterometry is very sensitive to structure details and imperfections, which makes it suitable for the characterization of nanostructured surfaces. As compared to X-ray methods, EUV scattering allows for steeper angles of incidence, which is highly preferable for the investigation of small measurement fields on semiconductor wafers. For the control of the lithographic manufacturing process, a rapid in-line characterization of nanostructures is indispensable. Numerous studies on the determination of regular geometry parameters of lamellar gratings from optical and Extreme Ultraviolet (EUV) scattering also investigated the impact of roughness on the respective results. The challenge is to appropriately model the influence of structure roughness on the diffraction intensities used for the reconstruction of the surface profile. The impact of roughness was already studied analytically but for gratings with a periodic pseudoroughness, because of practical restrictions of the computational domain. Our investigation aims at a better understanding of the scattering caused by line roughness. We designed a set of nine lamellar Si-gratings to be studied by EUV scatterometry. It includes one reference grating with no artificial roughness added, four gratings with a periodic roughness distribution, two with a prevailing line edge roughness (LER) and another two with line width roughness (LWR), and four gratings with a stochastic roughness distribution (two with LER and two with LWR). We show that the type of line roughness has a strong impact on the diffuse scatter angular distribution. Our experimental results are not described well by the present modelling approach based on small, periodically repeated domains.

  11. Microcalorimetry and the transition-edge sensor

    International Nuclear Information System (INIS)

    Lindeman, M A

    2000-01-01

    Many scientific and industrial applications call for quantum-efficient high-energy-resolution microcalorimeters for the measurement of x rays. The applications driving the development of these detectors involve the measurement of faint sources of x rays in which few photons reach the detector. Interesting astrophysical applications for these microcalorimeters include the measurement of composition and temperatures of stellar atmospheres and diffuse interstellar plasmas. Other applications of microcalorimeter technology include x-ray fluorescence (XRF) measurements of industrial or scientific samples. We are attempting to develop microcalorimeters with energy resolutions of several eV because many sources (such as celestial plasmas) contain combinations of elements producing emission lines spaced only a few eV apart. Our microcalorimeters consist of a metal-film absorber (250 (micro)m x 250(micro)m x 3 (micro)m of copper) coupled to a superconducting transition-edge-sensor (TES) thermometer. This microcalorimeter demonstrated an energy resolution of 42 eV (FWHM) at 6 keV, excellent linearity, and showed no evidence of position dependent response. The response of our microcalorimeters depends both on the temperature of the microcalorimeter and on the electrical current conducted through the TES thermometer. We present a microcalorimeter model that extends previous microcalorimeter theory to include additional current dependent effects. The model makes predictions about the effects of various forms of noise. In addition, the model helps us to understand what measurements are useful for characterizing TES microcalorimeters. While the energy resolution we obtained was quite good (twice as good as conventional semiconductor-based x-ray detectors), the obtained resolution was not as good as expected, due to excess noise from fluctuations in the TES thermometer. The energy resolution of future TES microcalorimeters can be improved by redesigning the calorimeters to

  12. Influence of Wafer Edge Geometry on Removal Rate Profile in Chemical Mechanical Polishing: Wafer Edge Roll-Off and Notch

    Science.gov (United States)

    Fukuda, Akira; Fukuda, Tetsuo; Fukunaga, Akira; Tsujimura, Manabu

    2012-05-01

    In the chemical mechanical polishing (CMP) process, uniform polishing up to near the wafer edge is essential to reduce edge exclusion and improve yield. In this study, we examine the influences of inherent wafer edge geometries, i.e., wafer edge roll-off and notch, on the CMP removal rate profile. We clarify the areas in which the removal rate profile is affected by the wafer edge roll-off and the notch, as well as the intensity of their effects on the removal rate profile. In addition, we propose the use of a small notch to reduce the influence of the wafer notch and present the results of an examination by finite element method (FEM) analysis.

  13. The evolution of cooperation on geographical networks

    Science.gov (United States)

    Li, Yixiao; Wang, Yi; Sheng, Jichuan

    2017-11-01

    We study evolutionary public goods game on geographical networks, i.e., complex networks which are located on a geographical plane. The geographical feature effects in two ways: In one way, the geographically-induced network structure influences the overall evolutionary dynamics, and, in the other way, the geographical length of an edge influences the cost when the two players at the two ends interact. For the latter effect, we design a new cost function of cooperators, which simply assumes that the longer the distance between two players, the higher cost the cooperator(s) of them have to pay. In this study, network substrates are generated by a previous spatial network model with a cost-benefit parameter controlling the network topology. Our simulations show that the greatest promotion of cooperation is achieved in the intermediate regime of the parameter, in which empirical estimates of various railway networks fall. Further, we investigate how the distribution of edges' geographical costs influences the evolutionary dynamics and consider three patterns of the distribution: an approximately-equal distribution, a diverse distribution, and a polarized distribution. For normal geographical networks which are generated using intermediate values of the cost-benefit parameter, a diverse distribution hinders the evolution of cooperation, whereas a polarized distribution lowers the threshold value of the amplification factor for cooperation in public goods game. These results are helpful for understanding the evolution of cooperation on real-world geographical networks.

  14. Inlet Geomorphology Evolution

    Science.gov (United States)

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  15. The evolution of senescence in the tree of life

    DEFF Research Database (Denmark)

    Salguero-Gómez, Roberto

    The existing theories on the evolution of senescence assume that senescence is inevitable in all organisms. However, recent studies have shown that this is not necessarily true. A better understanding of senescence and its underlying mechanisms could have far-reaching consequences for conservation...... and eco-evolutionary research. This book is the first to offer interdisciplinary perspectives on the evolution of senescence in many species, setting the stage for further developments. It brings together new insights from a wide range of scientific fields and cutting-edge research done on a multitude...

  16. Numerical simulation of the anomalous transport at the plasma-edge

    International Nuclear Information System (INIS)

    Pohn, E.

    2001-03-01

    In addition to the classical transport which is caused by Coloumb-collisions two further transport mechanisms take place in an inhomogeneous magnetically confined thermonuclear fusion-plasma, the neoclassical and the anomalous transport. The anomalous transport is caused by collective motion of the plasma-particles respectively turbulence and essentially affects the energy-confinement-time of the plasma. The energy-confinement-time in turn constitutes an important criterion with respect to the feasibility of using nuclear fusion for energy production. The anomalous transport is theoretically not yet well understood. By means of numerical simulations of the anomalous transport in the plasma edge, it is the intention of this work to contribute to the understanding of this transport mechanism. The Vlasov-Poisson-system constitutes the starting point for all performed simulations. This system consists of kinetic equations, which model for each particle-species the motion of the particles composing the plasma in six-dimensional phase-space. A coupling of these kinetic equations occurs due to the Poisson-equation, resulting in a nonlinear system of differential equations. The time evolution of this system was calculated numerically. On the one hand, simulations were performed where the whole velocity-space was retained. This fully-kinetic model was applied for the spatially one- as well as two-dimensional case. In the one-dimensional case only the radial direction of the plasma-edge was modeled, i.e. the direction along which the plasma joins to the vacuum. When performing the spatially two-dimensional simulations, in addition the poloidal direction has been regarded. A second set of simulations was performed using a gyro-kinetic model. In this model only the velocity-component parallel to the magnetic field vector is retained. The components perpendicular to the magnetic field vector, which are responsible for the gyration of particles, are omitted from phase-space but

  17. High Precision Edge Detection Algorithm for Mechanical Parts

    Directory of Open Access Journals (Sweden)

    Duan Zhenyun

    2018-04-01

    Full Text Available High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  18. Thumbnail Image with Blurry Edge Information Utilizing Half Factor Rules

    Directory of Open Access Journals (Sweden)

    Boon Tatt Koik

    2014-01-01

    Full Text Available Thumbnail image with blurry edge information has attracted much attention in recent years. Thumbnail image, which is a tiny version of the original image, enables user to scan through a large proportion of image data for elimination of blurry image or picking up a sharp and a nice image in user’s perspective. The thumbnail image is being utilized commonly in camera, smart phone, and other computing devices. In this paper, a method to embed blurry edge information in thumbnail images is proposed. This method is straight forward and simple to be implemented in electronic products. The image will undergo edge width measurement process by finding the local maximum and local minimum locations based on its edge magnitude. This is obtained after the implementation of horizontal and vertical first order derivatives of the original high resolution input image. The blur edges will be emphasized by utilizing edge width information during downsampling process to enable users to identify blurry edge image distinctively. Experimental results show a satisfactory outcome in embedding blurry characteristics of the original image to thumbnail image on the proposed method.

  19. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  20. High Precision Edge Detection Algorithm for Mechanical Parts

    Science.gov (United States)

    Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui

    2018-04-01

    High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  1. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  2. An edge index for the quantum spin-Hall effect

    International Nuclear Information System (INIS)

    Prodan, Emil

    2009-01-01

    Quantum spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take the generic values 0 and 2, in line with the Z 2 topological classification of time-reversal invariant systems. The result gives an effective tool for the investigation of the edge structure in quantum spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge. (fast track communication)

  3. Low scatter edge blackening compounds for refractive optical elements

    International Nuclear Information System (INIS)

    Lewis, I.T.; Telkamp, A.R.; Ledebuhr, A.G.

    1989-01-01

    This paper reports on low scatter edge blackening compounds for refractive optical elements. Perkin-Elmer's Applied Optics Operation recently delivered several prototype wide-field-of-view (WFOV), F/2.8, 250 mm efl, near diffraction limited, concentric lenses toLawrence Livermore National Laboratory (LLNL). In these lenses, special attention was paid to reducing stray light to allow viewing of very dim objects. Because of the very large FOV, the use of a long baffle to eliminate direct illumination of lens edges was not practical. With the existing relatively short baffle design, one-bounce stray light paths off the element edges are possible. The scattering off the inside edges thus had to be kept to an absolute minimum. While common means for blackening the edges of optical elements are easy to apply and quite cost effective for normal lens assemblies, their blackening effect is limited by the Fresnel reflection due to the index of refraction mismatch at the glass boundary. At high angles of incidence, total internal reflection (TIR) might occur ruining the effect of the blackening process. An index-match absorbing medium applied to the edges of such elements is the most effective approach for reducing the amount of undesired light reflection or scattered off these edges. The presence of such a medium provides an extended path outside the glass boundary in which an absorptive non-scattering dye can be used to eliminate light that might otherwise have propagated to the focal plane

  4. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  5. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    International Nuclear Information System (INIS)

    Xu, Haoran; Yang, Hua; Liu, Chao; Shen, Wenzhong; Zhu, Weijun

    2014-01-01

    The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL methods at a chord Reynolds number of 3 × 10 6 . The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils with larger maximum thickness to chord length, the increment of lift is larger than that of relatively thinner airfoils when the thickness of blunt trailing edge is increased from 5% to 10% chord length. But too large lift can cause abrupt stall which is profitless for power output. The transient characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase. The transient calculations over-predict the lift at large angles of attack and drag at all angles of attack than the steady calculations which is likely to be caused by the artificial restriction of the flow in two dimensions

  6. K-edge Radiography and applications to Cultural Heritage

    OpenAIRE

    Albertin, Fauzia

    2011-01-01

    The present work of thesis is focused on application of X-ray K-edge technique to paintings. This technique allows one to achieve a topographic map of a pigment on the whole surface of the painting. The digital acquisition of radiographic images by using monochromatic X-ray beams allows to take advantage of the sharp rise of X-ray absorption coefficient of the elements, the K-edge discontinuity. Working at different energies, bracketing the K-edge peak, allows recognition ...

  7. Engineering topological edge states in two dimensional magnetic photonic crystal

    Science.gov (United States)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  8. Color and neighbor edge directional difference feature for image retrieval

    Institute of Scientific and Technical Information of China (English)

    Chaobing Huang; Shengsheng Yu; Jingli Zhou; Hongwei Lu

    2005-01-01

    @@ A novel image feature termed neighbor edge directional difference unit histogram is proposed, in which the neighbor edge directional difference unit is defined and computed for every pixel in the image, and is used to generate the neighbor edge directional difference unit histogram. This histogram and color histogram are used as feature indexes to retrieve color image. The feature is invariant to image scaling and translation and has more powerful descriptive for the natural color images. Experimental results show that the feature can achieve better retrieval performance than other color-spatial features.

  9. An improved computing method for the image edge detection

    Institute of Scientific and Technical Information of China (English)

    Gang Wang; Liang Xiao; Anzhi He

    2007-01-01

    The framework of detecting the image edge based on the sub-pixel multi-fractal measure (SPMM) is presented. The measure is defined, which gives the sub-pixel local distribution of the image gradient. The more precise singularity exponent of every pixel can be obtained by performing the SPMM analysis on the image. Using the singularity exponents and the multi-fractal spectrum of the image, the image can be segmented into a series of sets with different singularity exponents, thus the image edge can be detected automatically and easily. The simulation results show that the SPMM has higher quality factor in the image edge detection.

  10. Effect of random edge failure on the average path length

    Energy Technology Data Exchange (ETDEWEB)

    Guo Dongchao; Liang Mangui; Li Dandan; Jiang Zhongyuan, E-mail: mgliang58@gmail.com, E-mail: 08112070@bjtu.edu.cn [Institute of Information Science, Beijing Jiaotong University, 100044, Beijing (China)

    2011-10-14

    We study the effect of random removal of edges on the average path length (APL) in a large class of uncorrelated random networks in which vertices are characterized by hidden variables controlling the attachment of edges between pairs of vertices. A formula for approximating the APL of networks suffering random edge removal is derived first. Then, the formula is confirmed by simulations for classical ER (Erdoes and Renyi) random graphs, BA (Barabasi and Albert) networks, networks with exponential degree distributions as well as random networks with asymptotic power-law degree distributions with exponent {alpha} > 2. (paper)

  11. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  12. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  13. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  14. In situ time-resolved X-ray near-edge absorption spectroscopy of selenite reduction by siderite

    International Nuclear Information System (INIS)

    Badaut, V.; Schlegel, M.L.; Descostes, M.; Moutiers, G.

    2012-01-01

    The reduction oxidation-reaction between aqueous selenite (SeO 3 2- ) and siderite (FeCO 3 (s)) was monitored by in situ, time-resolved X-ray absorption near-edge structure (XANES) spectroscopy at the selenium K edge in a controlled electrochemical environment. Spectral evolutions showed that more than 60% of selenite was reduced at the siderite surface after 20 h of experiment, at which time the reaction was still incomplete. Fitting of XANES spectra by linear combination of reference spectra showed that selenite reaction with siderite is essentially a two-step process, selenite ions being immobilized on siderite surface prior to their reduction. A kinetic model of the reduction step is proposed, allowing to identify the specific contribution of surface reduction. These results have strong implications for the retention of selenite by corrosion products in nuclear waste repositories and in a larger extent for the fate of selenium in the environment. (authors)

  15. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell.

    Science.gov (United States)

    Neilson, Matthew P; Mackenzie, John A; Webb, Steven D; Insall, Robert H

    2010-11-01

    In this paper we present a computational tool that enables the simulation of mathematical models of cell migration and chemotaxis on an evolving cell membrane. Recent models require the numerical solution of systems of reaction-diffusion equations on the evolving cell membrane and then the solution state is used to drive the evolution of the cell edge. Previous work involved moving the cell edge using a level set method (LSM). However, the LSM is computationally very expensive, which severely limits the practical usefulness of the algorithm. To address this issue, we have employed the parameterised finite element method (PFEM) as an alternative method for evolving a cell boundary. We show that the PFEM is far more efficient and robust than the LSM. We therefore suggest that the PFEM potentially has an essential role to play in computational modelling efforts towards the understanding of many of the complex issues related to chemotaxis.

  16. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  17. The End-to-end Demonstrator for improved decision making in the water sector in Europe (EDgE)

    Science.gov (United States)

    Wood, Eric; Wanders, Niko; Pan, Ming; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohinni; Prudhomme, Christel; Houghton-Carr, Helen

    2017-04-01

    High-resolution simulations of water resources from hydrological models are vital to supporting important climate services. Apart from a high level of detail, both spatially and temporally, it is important to provide simulations that consistently cover a range of timescales, from historical reanalysis to seasonal forecast and future projections. In the new EDgE project commissioned by the ECMWF (C3S) we try to fulfill these requirements. EDgE is a proof-of-concept project which combines climate data and state-of-the-art hydrological modelling to demonstrate a water-oriented information system implemented through a web application. EDgE is working with key European stakeholders representative of private and public sectors to jointly develop and tailor approaches and techniques. With these tools, stakeholders are assisted in using improved climate information in decision-making, and supported in the development of climate change adaptation and mitigation policies. Here, we present the first results of the EDgE modelling chain, which is divided into three main processes: 1) pre-processing and downscaling; 2) hydrological modelling; 3) post-processing. Consistent downscaling and bias corrections for historical simulations, seasonal forecasts and climate projections ensure that the results across scales are robust. The daily temporal resolution and 5km spatial resolution ensure locally relevant simulations. With the use of four hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), uncertainty between models is properly addressed, while consistency is guaranteed by using identical input data for static land surface parameterizations. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been created in collaboration with the end-user community of the EDgE project. The final product of this project is composed of 15 years of seasonal forecast and 10 climate change projections, all combined with four hydrological

  18. Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos

    Science.gov (United States)

    Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting

    2017-03-01

    This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.

  19. Edge loading of plasma facing components in fusion devices

    International Nuclear Information System (INIS)

    Mohanti, R.; Deksnis, E.; Lomas, P.; Pick, M.

    1993-03-01

    The new poloidal and the inner wall guard limiter tiles of the Joint European Torus Experiment (JET) have been shaped to maximise power handling capability. The existing design of the divertor tiles of JET have been modified to reduce edge exposure. All of these components consist of discrete tiles with finite gaps. Under the assumption that the particle power flow is along field lines, the leading edges of the tiles are exposed due to field line penetration between gaps. The peak loading of these tiles to be at the edges. The report presents a generalised solution to the edge problem which indicates the steps required to shape the tiles for maximum power handling capability. (Author)

  20. Waters Edge Land Company, LLC - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against Waters Edge Land Company, LLC, a business located at 10800 Farley St. Overland Park, KS, for alleged violations located