WorldWideScience

Sample records for vessel-cord formation cell

  1. Direct formate fuel cells: A review

    Science.gov (United States)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  2. Rouleaux formation in sickle cell traits.

    Science.gov (United States)

    Obiefuna, P C

    1991-02-01

    Rouleaux formation of washed red blood cells (r.b.c.s) from subjects with sickle cell trait (HbAS) was measured by the rapid coagulation method. The r.b.c.s were suspended in the donor's native plasma or in 1.3% dextran in phosphate-buffered Ringer solution at pHs of 6.5, 7.4 and 8.2. HbAS cells showed more rouleaux formation than HbAA (normal) cells in plasma (P less than 0.005). Plasma fibrinogen concentration of HbAS and HbAA subjects did not differ significantly (mean 2.9, s.d. 0.7 g l-1 for both groups). In the dextran solution, HbAS cells were more aggregable at pH 6.5 but less at pH 8.2 than HbAA cells. There was no significant difference in dextran-induced aggregation between the two groups of cells at pH 7.4. The results suggest that HbAS subjects may be more prone to intravascular sludging and stasis and that this risk may be enhanced by reduction in pH of blood.

  3. Solar cell contact formation using laser ablation

    Science.gov (United States)

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  4. Organic Tandem Solar Cells: Design and Formation

    Science.gov (United States)

    Chen, Chun-Chao

    polyelectrolyte layer functioning as the surface dipole formation layer to provide better electrical contact with the photoactive layer. Due to the effectiveness of the conjugated polyelectrolyte layer, performance improvement was also observed. Furthermore, other issues regarding the semi-transparent tandem solar cells (e.g., photocurrent matching, exterior color tuning, and transparency tuning) are all explored to optimize best performance. In Chapter 5 and 6, the architectures of double- and triple-junction tandem solar cells are explored. Theoretically, triple-junction tandem solar cells with three photoactive absorbers with cascaded energy bandgaps have the potential to achieve higher performance, in comparison with double-junction tandem solar cells. Such expectations can be ascribed to the minimized carrier thermalization loss and further improved light absorption. However, the design of triple-junction solar cells often involves sophisticated multiple layer deposition as well as substantial optimization. Therefore, there is a lack of successful demonstrations of triple-junction solar cells outperforming the double-junction counterparts. To solve the incompatible issues related to the layer deposition in the fabrication, we proposed a novel architecture of inverted-structure tandem solar cells with newly designed interconnecting layers. Our design of interconnecting layers does not only focus on maintaining the orthogonal solution processing advantages, but also provides an excellent compatibility in the energy level alignment to allow different absorber materials to be used. Furthermore, we also explored the light management inside the double- and triple-junction tandem solar cells. The study of light management was carried out through optical simulation method based transfer matrix formalism. The intention is to obtain a balanced photocurrent output from each subcells inside the tandem solar cell, thus the minimal recombination loss at the contact of interconnecting

  5. Regulatory T cell identity: formation and maintenance

    OpenAIRE

    LI Xudong; Zheng, Ye

    2015-01-01

    T regulatory (Treg) cells are central to the maintenance of immune homeostasis. The transcription factor Foxp3 is essential for specifying the Treg cell lineage during development, and continued expression of Foxp3 in mature Treg cells is necessary for suppressive function. Treg cells can lose Foxp3 expression under certain conditions, and this is associated with autoimmune pathology. Here we review recent insights into the mechanisms that maintain Treg cell stability and function, and place ...

  6. Cholesterol inhibits entotic cell-in-cell formation and actomyosin contraction.

    Science.gov (United States)

    Ruan, Banzhan; Zhang, Bo; Chen, Ang; Yuan, Long; Liang, Jianqing; Wang, Manna; Zhang, Zhengrong; Fan, Jie; Yu, Xiaochen; Zhang, Xin; Niu, Zubiao; Zheng, You; Gu, Songzhi; Liu, Xiaoqing; Du, Hongli; Wang, Jufang; Hu, Xianwen; Gao, Lihua; Chen, Zhaolie; Huang, Hongyan; Wang, Xiaoning; Sun, Qiang

    2018-01-01

    Cell-in-cell structure is prevalent in human cancer, and associated with several specific pathophysiological phenomena. Although cell membrane adhesion molecules were found critical for cell-in-cell formation, the roles of other membrane components, such as lipids, remain to be explored. In this study, we attempted to investigate the effects of cholesterol and phospholipids on the formation of cell-in-cell structures by utilizing liposome as a vector. We found that Lipofectamine-2000, the reagent commonly used for routine transfection, could significantly reduce entotic cell-in-cell formation in a cell-specific manner, which is correlated with suppressed actomyosin contraction as indicated by reduced β-actin expression and myosin light chain phosphorylation. The influence on cell-in-cell formation was likely dictated by specific liposome components as some liposomes affected cell-in-cell formation while some others didn't. Screening on a limited number of lipids, the major components of liposome, identified phosphatidylethanolamine (PE), stearamide (SA), lysophosphatidic acid (LPA) and cholesterol (CHOL) as the inhibitors of cell-in-cell formation. Importantly, cholesterol treatment significantly inhibited myosin light chain phosphorylation, which resembles the effect of Lipofectamine-2000, suggesting cholesterol might be partially responsible for liposomes' effects on cell-in-cell formation. Together, our findings supporting a role of membrane lipids and cholesterol in cell-in-cell formation probably via regulating actomyosin contraction. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility.

    Science.gov (United States)

    Riemann, A; Schneider, B; Gündel, D; Stock, C; Gekle, M; Thews, O

    2016-01-01

    The tumor microenvironment is characterized by hypoxia, acidosis as well as other metabolic and biochemical alterations. Its role in cancer progression is increasingly appreciated especially on invasive capacity and the formation of metastasis. The effect of acidosis on metastasis formation of two rat carcinoma cell lines was studied in the animal model. In order to analyze the pH dependency of different steps of metastasis formation, invasiveness, cell adhesion and migration of AT-1 prostate cancer cells as well as possible underlying cell signaling pathways were studied in vitro. Acidosis significantly increased the formation of lung metastases of both tumor cell lines in vivo. In vitro, extracellular acidosis neither enhanced invasiveness nor affected cell adhesion to a plastic or to an endothelial layer. However, cellular motility was markedly elevated at pH 6.6 and this effect was sustained even when extracellular pH was switched back to pH 7.4. When analyzing the underlying mechanism, a prominent role of ROS in the induction of migration was observed. Signaling through the MAP kinases ERK1/2 and p38 as well as Src family kinases was not involved. Thus, cancer cells in an acidic microenvironment can acquire enhanced motility, which is sustained even if the tumor cells leave their acidic microenvironment e.g. by entering the blood stream. This increase depended on elevated ROS production and may contribute to the augmented formation of metastases of acidosis-primed tumor cells in vivo.

  8. A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering

    NARCIS (Netherlands)

    Tamulonis, C.; Postma, M.; Marlow, H.Q.; Magie, C.R.; de Jong, J.; Kaandorp, J.

    2011-01-01

    The gastrulation of Nematostella vectensis, the starlet sea anemone, is morphologically simple yet involves many conserved cell behaviors such as apical constriction, invagination, bottle cell formation, cell migration and zippering found during gastrulation in a wide range of more morphologically

  9. Sexual Biofilm Formation in Candida tropicalis Opaque Cells

    Science.gov (United States)

    Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.

    2014-01-01

    Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417

  10. The Formation of Germ Cell for Organizational Learning

    Science.gov (United States)

    Ivaldi, Silvia; Scaratti, Giuseppe

    2016-01-01

    Purpose: The aim of the paper is to analyze the process of "germ cell" formation by framing it as an opportunity for promoting organizational learning and transformation. The paper aims to specifically answer two research questions: Why does the "germ cell" have a pivotal role in organization's transformation? and Which…

  11. Cell-fusion method to visualize interphase nuclear pore formation.

    Science.gov (United States)

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Dispatches from the DMZ: Bottle Cell Formation During Xenopus Gastrulation

    OpenAIRE

    Lee, Jen-Yi

    2011-01-01

    Bottle cell-driven blastopore lip formation externally marks the initiation of gastrulation in amphibian embryos. The blastopore groove is formed when bottle cells undergo apical constriction and transform from cuboidal to flask-shaped. Apical constriction is sufficient to cause invagination and is a highly conserved mechanism for sheet bending and folding during morphogenesis; therefore, studying apical constriction in Xenopus bottle cells could provide valuable insight into this fundamental...

  13. solving the cell formation problem in group technology

    Directory of Open Access Journals (Sweden)

    Prafulla Joglekar

    2001-01-01

    Full Text Available Over the last three decades, numerous algorithms have been proposed to solve the work-cell formation problem. For practicing manufacturing managers it would be nice to know as to which algorithm would be most effective and efficient for their specific situation. While several studies have attempted to fulfill this need, most have not resulted in any definitive recommendations and a better methodology of evaluation of cell formation algorithms is urgently needed. Prima facie, the methodology underlying Miltenburg and Zhang's (M&Z (1991 evaluation of nine well-known cell formation algorithms seems very promising. The primary performance measure proposed by M&Z effectively captures the objectives of a good solution to a cell formation problem and is worthy of use in future studies. Unfortunately, a critical review of M&Z's methodology also reveals certain important flaws in M&Z's methodology. For example, M&Z may not have duplicated each algorithm precisely as the developer(s of that algorithm intended. Second, M&Z's misrepresent Chandrasekharan and Rajagopalan's [C&R's] (1986 grouping efficiency measure. Third, M&Z's secondary performance measures lead them to unnecessarily ambivalent results. Fourth, several of M&Z's empirical conclusions can be theoretically deduced. It is hoped that future evaluations of cell formation algorithms will benefit from both the strengths and weaknesses of M&Z's work.

  14. Cell Competition Drives the Formation of Metastatic Tumors in a Drosophila Model of Epithelial Tumor Formation

    DEFF Research Database (Denmark)

    Eichenlaub, Teresa; Cohen, Stephen M; Herranz, Héctor

    2016-01-01

    Cell competition is a homeostatic process in which proliferating cells compete for survival. Elimination of otherwise normal healthy cells through competition is important during development and has recently been shown to contribute to maintaining tissue health during organismal aging. The mechan......Cell competition is a homeostatic process in which proliferating cells compete for survival. Elimination of otherwise normal healthy cells through competition is important during development and has recently been shown to contribute to maintaining tissue health during organismal aging....... The mechanisms that allow for ongoing cell competition during adult life could, in principle, contribute to tumorigenesis. However, direct evidence supporting this hypothesis has been lacking. Here, we provide evidence that cell competition drives tumor formation in a Drosophila model of epithelial cancer. Cells...... of the Septin family protein Peanut. Cytokinesis failure due to downregulation of Peanut is required for tumorigenesis. This study provides evidence that the cellular mechanisms that drive cell competition during normal tissue growth can be co-opted to drive tumor formation and metastasis. Analogous mechanisms...

  15. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  16. CARBOHYDRATE-BASED CELL ADHESION: ANALYSIS OF SPHEROID FORMATION

    Directory of Open Access Journals (Sweden)

    Marco Antonio Vieira Macedo Grinet

    2017-04-01

    Full Text Available Carbohydrates are vast constituents of cell surfaces and in many systems where cell adhesion plays a critical role, carbohydrate binding proteins have been shown to bind to cell surface carbohydrates and participate in cell-cell interactions. Jurkat cells are suspension cells that grow in clumps and have 20.7 (± 2.2 hours of population doubling time (PDT. In this experiment, Jurkat cells are studied to compare the effects of wheat germ agglutinin (WGA lectin, and Maackia amurensis (MAA lectin, for clumping and spheroid formation studies, as well as carbohydrate analog solutions in ethanol (C2H6O Ac4ManNAc, and Ac5ManNTGc for concentration effect studies.

  17. Formation of a cylindrical bridge in cell division

    Science.gov (United States)

    Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.

    2007-11-01

    In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.

  18. Aggregation of red blood cells: From rouleaux to clot formation

    Science.gov (United States)

    Wagner, Christian; Steffen, Patrick; Svetina, Saša

    2013-06-01

    Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the adhesion mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the adhesion strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life-saving in the case of wound healing, but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.

  19. T cell-macrophage interactions and granuloma formation in vasculitis

    Directory of Open Access Journals (Sweden)

    Marc eHilhorst

    2014-09-01

    Full Text Available Granuloma formation, bringing into close proximity highly activated macrophages and T cells, is a typical event in inflammatory blood vessel diseases, and is noted in the name of several of the vasculitides. It is not known whether specific properties of the microenvironment in the blood vessel wall or the immediate surroundings of blood vessels contribute to granuloma formation and, in some cases, generation of multinucleated giant cells. Granulomas provide a specialized niche to optimize macrophage-T cell interactions, strongly activating both cell types. This is mirrored by the intensity of the systemic inflammation encountered in patients with vasculitis, often presenting with malaise, weight loss, fever and strongly upregulated acute phase responses. As a sophisticated and highly organized structure, granulomas can serve as an ideal site to induce differentiation and maturation of T cells. The granulomas possibly seed aberrant Th1 and Th17 cells into the circulation, which are known to be the main pathogenic cells in vasculitis. Through the induction of memory T cells, aberrant innate immune responses can imprint the host immune system for decades to come and promote chronicity of the disease process. Improved understanding of T cell-macrophage interactions will redefine pathogenic models in the vasculitides and provide new avenues for immunomodulatory therapy.

  20. Proteoglycans support proper granule formation in pancreatic acinar cells.

    Science.gov (United States)

    Aroso, Miguel; Agricola, Brigitte; Hacker, Christian; Schrader, Michael

    2015-10-01

    Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas.

  1. CPAP is required for cilia formation in neuronal cells

    Directory of Open Access Journals (Sweden)

    Kuo-Sheng Wu

    2012-04-01

    The primary cilium is a microtubule-based structure protruded from the basal body analogous to the centriole. CPAP (centrosomal P4.1-associated protein has previously been reported to be a cell cycle-regulated protein that controls centriole length. Mutations in CPAP cause primary microcephaly (MCPH in humans. Here, using a cell-based system that we established to monitor cilia formation in neuronal CAD (Cath.a-differentiated cells and hippocampal neurons, we found that CPAP is required for cilia biogenesis. Overexpression of wild-type CPAP promoted cilia formation and induced longer cilia. In contrast, an exogenously expressed CPAP-377EE mutant that lacks tubulin-dimer binding significantly inhibited cilia formation and caused cilia shortening. Furthermore, depletion of CPAP inhibited ciliogenesis and such effect was effectively rescued by expression of wild-type CPAP, but not by the CPAP-377EE mutant. Taken together, our results suggest that CPAP is a positive regulator of ciliogenesis whose intrinsic tubulin-dimer binding activity is required for cilia formation in neuronal cells.

  2. Flexible PMP Approach for Large-Size Cell Formation

    NARCIS (Netherlands)

    Goldengorin, Boris; Krushinsky, Dmitry; Slomp, Jannes

    2012-01-01

    Lately, the problem of cell formation (CF) has gained a lot of attention in the industrial engineering literature. Since it was formulated (more than 50 years ago), the problem has incorporated additional industrial factors and constraints while its solution methods have been constantly improving in

  3. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P muscle cells....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P cells in culture alone did not cause extracellular accumulation of adenosine. 4. Skeletal muscle cells were...

  4. Induced rouleaux formation in interspecies populations of red cells.

    Science.gov (United States)

    Sewchand, L; Canham, P B

    1976-08-01

    A study was made of rouleaux formation between erythrocytes of different species when suspended in Ringer solution with polyvinylpyrrolidone added (PVP with M.W 360 000, 4.0 G/L). PVP was shown previously to be a suitable asymmetric macromolecule for promoting rouleaux formation. For the present study fresh samples of blood were obtained from humans, cats, rats, mice, dogs, rabbits and guinea pigs. Initally homogenous populations of cells were allowed to form rouleaux in the microscope chamber for the purpose of determining the average cellular dimensions for each species. Subsequently red cells from two species at a time were mixed in equal proportions to assess the degree of preference for the cells of one species to form rouleaux among themselves rather than with cells of the other species. The sequencing of the cells in the mixed rouleaux which formed on the coverslip was determined from photomicrographs, using the previously determined knowledge of the cellular dimensions. Although the visual impression was that the rouleaux were composed of a random selection of cells from the mixed population, a preferencnstrated statisically in nine of the ten combinations tested. Only the rat-mouse mixture of cells was excepted, perhaps because these animals are closely related members of the same family.

  5. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation.

    Science.gov (United States)

    Adhikary, Gautam; Grun, Dan; Kerr, Candace; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan; Boucher, Shayne; Bickenbach, Jackie R; Hornyak, Thomas; Xu, Wen; Fisher, Matthew L; Eckert, Richard L

    2013-01-01

    Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.

  6. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation.

    Directory of Open Access Journals (Sweden)

    Gautam Adhikary

    Full Text Available Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.

  7. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    did not change intestinal tumour number or size distribution on either a low or high-fat diet. We therefore asked whether cells in the tumour stroma might explain the association between tumour formation and insulin resistance. To this end, we generated Apc(Min/+) mice with loss of insulin receptors......The risk of several cancers, including colorectal cancer, is increased in patients with obesity and type 2 diabetes, conditions characterised by hyperinsulinaemia and insulin resistance. Because hyperinsulinaemia itself is an independent risk factor for cancer development, we examined tissue...... in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte...

  8. Aroma formation by immobilized yeast cells in fermentation processes.

    Science.gov (United States)

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    Science.gov (United States)

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  10. Blockade of mast cell activation reduces cutaneous scar formation.

    Directory of Open Access Journals (Sweden)

    Lin Chen

    Full Text Available Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG, on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound.

  11. Evagination of cells controls bio-silica formation and maturation during spicule formation in sponges.

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    Full Text Available The enzymatic-silicatein mediated formation of the skeletal elements, the spicules of siliceous sponges starts intracellularly and is completed extracellularly. With Suberites domuncula we show that the axial growth of the spicules proceeds in three phases: (I formation of an axial canal; (II evagination of a cell process into the axial canal, and (III assembly of the axial filament composed of silicatein. During these phases the core part of the spicule is synthesized. Silicatein and its substrate silicate are stored in silicasomes, found both inside and outside of the cellular extension within the axial canal, as well as all around the spicule. The membranes of the silicasomes are interspersed by pores of ≈ 2 nm that are likely associated with aquaporin channels which are implicated in the hardening of the initial bio-silica products formed by silicatein. We can summarize the sequence of events that govern spicule formation as follows: differential GENETIC READOUT (of silicatein → FRACTAL ASSOCIATION of the silicateins → EVAGINATION of cells by hydro-mechanical forces into the axial canal → and finally PROCESSIVE BIO-SILICA POLYCONDENSATION around the axial canal. We termed this process, occurring sequentially or in parallel, BIO-INORGANIC SELF-ORGANIZATION.

  12. T Cell factor 1 represses CD8+ effector T cell formation and function.

    Science.gov (United States)

    Tiemessen, Machteld M; Baert, Miranda R M; Kok, Lianne; van Eggermond, Marja C J A; van den Elsen, Peter J; Arens, Ramon; Staal, Frank J T

    2014-12-01

    The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. CELL FORMATION IN GROUP TECHNOLOGY: A SIMILARITY ORDER CLUSTERING APPROACH

    Directory of Open Access Journals (Sweden)

    Godfrey C. Onwubolu

    2012-01-01

    Full Text Available Grouping parts into families which can be produced by a cluster of machine cells is the cornerstone of cellular manufacturing, which in turn is the building block for flexible manufacturing systems. Cellular manufacturing is a group technology (GT concept that has recently attracted the attention of manufacturing firms operating under jobshop environment to consider redesigning their manufacturing systems so as to take advantage of increased throughput, reduction in work-in-progress, set-up time, and lead times; leading to product quality and customer satisfaction. The paper presents a generalised approach for machine cell formation from a jobshop using similarity order clustering technique for preliminary cell grouping and considering machine utilisation for the design of nonintergrouping material handling using the single-pass heuristic. The work addresses the shortcomings of cellular manufacturing systems design and implementations which ignore machine utilisations, group sizes and intergroup moves.

  14. A microfluidic direct formate fuel cell on paper.

    Science.gov (United States)

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  16. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    Science.gov (United States)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  17. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    Science.gov (United States)

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473

  18. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.

    Science.gov (United States)

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D; Wong, Pak Kin

    2015-03-13

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression analysis and computational modelling to show that the leader cell identity is dynamically regulated by Dll4 signalling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signalling to dynamically regulate the density of leader cells during collective cell migration.

  19. Protective layer formation on magnesium in cell culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, V.; Virtanen, S., E-mail: virtanen@ww.uni-erlangen.de

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO{sub 2}). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37 °C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous

  20. Fabric-based alkaline direct formate microfluidic fuel cells.

    Science.gov (United States)

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-04-01

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm 2 ) and power (4.40 mW/cm 2 ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simulation of Cell Group Formation Regulated by Coordination Number, Cell Cycle and Duplication Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-08-01

    Full Text Available The effects of coordination number, a cell cycle and duplication frequency on cell-group formation have been investigated in a computer simulation. In the simulation, multiplication occurs in the last three steps of a cell cycle with a probability function to give variations in the interval. Each cell has a constant coordination number: four or six. When a cell gets surrounded by adjacent cells, its status changes from an active stage to a resting stage. Each cell repeats multiplication, and disappears when the times of multiplication reach to the limit. Variation was made in the coordination number, in the interval of multiplication and in the limited times of multiplication. The cells of the colony, which have the larger number of coordination, have reached the larger maximum population and disappeared earlier.

  2. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation

    Directory of Open Access Journals (Sweden)

    Dorothy A. Lerit

    2017-01-01

    Full Text Available The primordial germ cells (PGCs specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl, is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development.

  3. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    DEFF Research Database (Denmark)

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically...... gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P....... aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces....

  4. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.

    Science.gov (United States)

    Chen, Yu-Chih; Yoon, Euisik

    2017-01-01

    Three-dimensional (3D) cell culture is critical in studying cancer pathology and drug response. Though 3D cancer sphere culture can be performed in low-adherent dishes or well plates, the unregulated cell aggregation may skew the results. On contrary, microfluidic 3D culture can allow precise control of cell microenvironments, and provide higher throughput by orders of magnitude. In this chapter, we will look into engineering innovations in a microfluidic platform for high-throughput cancer cell sphere formation and review the implementation methods in detail.

  5. Protective layer formation on magnesium in cell culture medium.

    Science.gov (United States)

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  6. Back contact formation in thin cadmium telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haedrich, M., E-mail: mathias.haedrich@uni-jena.de; Heisler, C.; Reisloehner, U.; Kraft, C.; Metzner, H.

    2011-08-31

    We present a model describing the undesired roll-over which is a well-known phenomenon in the current-voltage characteristics of CdTe solar cells. Therein, the roll-over is ascribed to a Schottky barrier at the back contact which is effective as a reverse diode. The formation of this barrier is investigated depending on the CdTe absorber thickness as well as on the employed back contact metal. Computer simulations of the energy band diagram reveal that the back contact barrier can be reduced and even eliminated for sufficiently thin absorbers. The reason is the spatial overlap between the space-charge regions of the p-n heterojunction with the one of the back contact. This behaviour correlates with experimental current-voltage data of solar cells with a simple gold back contact. In the latter, the roll-over is considerable for absorbers with 3 to 5 {mu}m thickness, diminishes when the absorber thickness is reduced and finally vanishes when the absorber thickness is approximately 1 {mu}m. The investigations show that thickness reduction can be employed in order to suppress the roll-over phenomenon in CdTe solar cells.

  7. A model for rouleaux pattern formation of red blood cells.

    Science.gov (United States)

    Kobuchi, Y; Ito, T; Ogiwara, A

    1988-01-21

    Human red blood cells (RBCs) in a solution form rouleaux patterns under various conditions. The degree of rouleaux formation depends on, for example, the concentration and molecular weight of added large molecules. We present a two-dimensional discrete cellular space model in which an RBC is represented by a rectangle and differential adhesion is assumed among the longer (a-site), the shorter (b-site) sides of the rectangle and the solvent. The total sum of the adhesion energy is assumed to guide the step-by-step change of the model cell configuration and also define absolutely stable patterns. We compare the set of absolutely stable patterns and cell aggregate patterns for both actual and computer-simulated cases to obtain the basic validity of our framework. Then we proceed to assess the effects of added high polymers to the adhesion parameters. We first note that under suitable conditions, decrease in a-site-solvent affinity is necessary to have complex patterns rather than increase of a-a affinity. The hypothesis that addition of high polymers reduce the a-site-solvent affinity is concomitant with a newly proposed osmotic stress theory. The parameter fitting results for the experimental phase change curves can also be interpreted as supporting more the new theory than existing traditional explanations.

  8. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    Science.gov (United States)

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  9. A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering.

    Science.gov (United States)

    Tamulonis, Carlos; Postma, Marten; Marlow, Heather Q; Magie, Craig R; de Jong, Johann; Kaandorp, Jaap

    2011-03-01

    The gastrulation of Nematostella vectensis, the starlet sea anemone, is morphologically simple yet involves many conserved cell behaviors such as apical constriction, invagination, bottle cell formation, cell migration and zippering found during gastrulation in a wide range of more morphologically complex animals. In this article we study Nematostella gastrulation using a combination of morphometrics and computational modeling. Through this analysis we frame gastrulation as a non-trivial problem, in which two distinct cell domains must change shape to match each other geometrically, while maintaining the integrity of the embryo. Using a detailed cell-based model capable of representing arbitrary cell-shapes such as bottle cells, as well as filopodia, localized adhesion and constriction, we are able to simulate gastrulation and associate emergent macroscopic changes in embryo shape to individual cell behaviors. We have developed a number of testable hypotheses based on the model. First, we hypothesize that the blastomeres need to be stiffer at their apical ends, relative to the rest of the cell perimeter, in order to be able to hold their wedge shape and the dimensions of the blastula, regardless of whether the blastula is sealed or leaky. We also postulate that bottle cells are a consequence of cell strain and low cell-cell adhesion, and can be produced within an epithelium even without apical constriction. Finally, we postulate that apical constriction, filopodia and de-epithelialization are necessary and sufficient for gastrulation based on parameter variation studies. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation.

    Science.gov (United States)

    Sol-Foulon, Nathalie; Sourisseau, Marion; Porrot, Françoise; Thoulouze, Maria-Isabel; Trouillet, Céline; Nobile, Cinzia; Blanchet, Fabien; di Bartolo, Vincenzo; Noraz, Nelly; Taylor, Naomi; Alcover, Andres; Hivroz, Claire; Schwartz, Olivier

    2007-01-24

    HIV efficiently spreads in lymphocytes, likely through virological synapses (VSs). These cell-cell junctions share some characteristics with immunological synapses, but cellular proteins required for their constitution remain poorly characterized. We have examined here the role of ZAP-70, a key kinase regulating T-cell activation and immunological synapse formation, in HIV replication. In lymphocytes deficient for ZAP-70, or expressing a kinase-dead mutant of the protein, HIV replication was strikingly delayed. We have characterized further this replication defect. ZAP-70 was dispensable for the early steps of viral cycle, from entry to expression of viral proteins. However, in the absence of ZAP-70, intracellular Gag localization was impaired. ZAP-70 was required in infected donor cells for efficient cell-to-cell HIV transmission to recipients and for formation of VSs. These results bring novel insights into the links that exist between T-cell activation and HIV spread, and suggest that HIV usurps components of the immunological synapse machinery to ensure its own spread through cell-to-cell contacts.

  11. Black Silicon formation using dry etching for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Murias, D. [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Reyes-Betanzo, C., E-mail: creyes@inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Moreno, M.; Torres, A.; Itzmoyotl, A. [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Ambrosio, R.; Soriano, M. [Universidad Autonoma de Ciudad Juarez, Chihuahua (Mexico); Lucas, J. [Instituto Tecnologico de Tehuacan, Puebla (Mexico); Cabarrocas, P. Roca i [Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS, Palaiseau (France)

    2012-09-20

    A study on the formation of Black Silicon on crystalline silicon surface using SF{sub 6}/O{sub 2} and SF{sub 6}/O{sub 2}/CH{sub 4} based plasmas in a reactive ion etching (RIE) system is presented. The effect of the RF power, chamber pressure, process time, gas flow rates, and gas mixtures on the texture of silicon surface has been analyzed. Completely Black Silicon surfaces containing pyramid like structures have been obtained, using an optimized mask-free plasma process. Moreover, the Black Silicon surfaces have demonstrated average values of 1% and 4% for specular and diffuse reflectance respectively, feature that is suitable for the fabrication of low cost solar cells.

  12. Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells.

    Science.gov (United States)

    Yoon, Hee Hun; Bhang, Suk Ho; Shin, Jung-Youn; Shin, Jaehoon; Kim, Byung-Soo

    2012-10-01

    Autologous chondrocyte implantation is an effective treatment for damaged articular cartilage. However, this method involves surgical procedures that may cause further cartilage degeneration, and in vitro expansion of chondrocytes can result in dedifferentiation. Adipose-derived stem cells (ADSCs) may be an alternative autologous cell source for cartilage regeneration. In this study, we developed an effective method for large-scale in vitro chondrogenic differentiation, which is the procedure that would be required for clinical applications, and the subsequent in vivo cartilage formation of human ADSCs (hADSCs). The spheroid formation and chondrogenic differentiation of hADSCs were induced on a large scale by culturing hADSCs in three-dimensional suspension bioreactors (spinner flasks). In vitro chondrogenic differentiation of hADSCs was enhanced by a spheroid culture compared with a monolayer culture. The enhanced chondrogenesis was probably attributable to hypoxia-related cascades and enhanced cell-cell interactions in hADSC spheroids. On hADSCs loading in fibrin gel and transplantation into subcutaneous space of athymic mice for 4 weeks, the in vivo cartilage formation was enhanced by the transplantation of spheroid-cultured hADSCs compared with that of monolayer-cultured hADSCs. This study shows that the spheroid culture may be an effective method for large-scale in vitro chondrogenic differentiation of hADSCs and subsequent in vivo cartilage formation.

  13. Myosin-II dependent cell contractility contributes to spontaneous nodule formation of mesothelioma cells

    CERN Document Server

    Tárnoki-Zách, Julia; Méhes, Elod; Paku, Sándor; Neufeld, Zoltán; Hegedus, Balázs; Döme, Balázs; Czirok, Andras

    2015-01-01

    We demonstrate that characteristic nodules emerge in cultures of several malignant pleural mesothelioma (MPM) cell lines. Instead of excessive local cell proliferation, the nodules arise by Myosin II-driven cell contractility. The aggregation process can be prevented or reversed by suitable pharmacological inhibitors of acto-myosin contractility. A cell-resolved elasto-plastic model of the multicellular patterning process indicates that the morphology and size of the nodules as well as the speed of their formation is determined by the mechanical tension cells exert on their neighbors, and the stability of cell-substrate adhesion complexes. A linear stability analysis of a homogenous, self-tensioned Maxwell fluid indicates the unconditional presence of a patterning instability.

  14. SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.

    Science.gov (United States)

    Henry, S; Dievart, A; Divol, F; Pauluzzi, G; Meynard, D; Swarup, R; Wu, S; Gallagher, K L; Périn, C

    2017-05-01

    The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr mutant. Moreover, OsSHR1 and OsSHR2 expression in A. thaliana roots induced the formation of extra root cortical cell layers. In this article, we demonstrate that the overexpression of AtSHR and OsSHR2 in rice roots leads to plants with wide and short roots that contain a high number of extra cortical cell layers. We hypothesize that SHR genes share a conserved function in the control of cortical cell layer division and the number of ground tissue cell layers in land plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Regulation of germinal center, B-cell memory and plasma cell formation by histone modifiers

    Directory of Open Access Journals (Sweden)

    Kim eGood-Jacobson

    2014-11-01

    Full Text Available Understanding the regulation of antibody production and B-cell memory formation and function is core to finding new treatments for B-cell-derived cancers, antibody-mediated autoimmune disorders and immunodeficiencies. Progression from a small number of antigen-specific B-cells to the production of a large number of antibody-secreting cells is tightly regulated. Although much progress has been made in revealing the transcriptional regulation of B-cell differentiation that occurs during humoral immune responses, there are still many questions that remain unanswered. Recent work on the expression and roles of histone modifiers in lymphocytes has begun to shed light on this additional level of regulation. This review will discuss the recent advancements in understanding how humoral immune responses, in particular germinal centers and memory cells, are modulated by histone modifiers.

  16. Increased human hybridoma formation by electrofusion of human B cells with heteromyeloma SPAM-8 cells.

    Science.gov (United States)

    Panova, I; Gustafsson, B

    1995-06-01

    A fusion protocol was designed for the optimal production of hybridomas following electrofusion of human B cells with cells of the heteromyeloma fusion partner SPAM-8. Peripheral blood lymphocytes showed an average fusion efficiency of 0.4 x 10(-4) whereas Epstein-Barr virus-transformed B cells showed fusion efficiencies ranging from 6.2 x 10(-4) to 9.0 x 10(-4). Similar results were obtained with bone marrow-derived lymphocytes. Trypsin treatment of the cells prior to electrofusion further increased the fusion efficiency to 12.3 x 10(-4). In comparison, conventional polyethylene glycol-induced fusion resulted in a fusion efficiency of 0.8 x 10(-4). Thus, electrofusion of human B cells with SPAM-8 heteromyeloma cells introduced a 15-fold increase in hybridoma formation as compared to the conventional fusion method.

  17. Mind bomb 1 is required for pancreatic ß-cell formation

    DEFF Research Database (Denmark)

    Horn, Signe; Kobberup, Sune; Jørgensen, Mette C

    2012-01-01

    the insulin producing ß-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of ß-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and ß-cell formation. We found that endoderm...

  18. Distinguishing aggregate formation and aggregate clearance using cell based assays

    NARCIS (Netherlands)

    E. Eenjes, E.; J.M. Dragich; H. Kampinga (Harm); A. Yamamoto, A.

    2016-01-01

    textabstractThe accumulation of ubiquitinated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to diminished

  19. Foam cell formation of alveolar macrophages in Clara cell ablated mice inhaling crystalline silica.

    Science.gov (United States)

    Yatera, Kazuhiro; Morimoto, Yasuo; Kim, Heung-Nam; Myojo, Toshihiko; Mukae, Hiroshi

    2011-10-01

    We investigated the function of Clara cells in vivo during exposure to inhaled crystalline silica by morphological and immunohistochemical examination of intra-alveolar cells and alveolar macrophages in Clara cell-ablated mice. The Clara cells of male FVB/n mice (8-12 weeks old) were ablated by intraperitoneal administration of naphthalene (300 mg/kg). The mice were then exposed to crystalline silica (Min-U-Sil-5, 97.1 ± 9.5 mg/m³, 6 hours/day, 5 days/week) for up to two weeks. The lungs were assessed by morphometry, as well as by immunohistochemistry of CD36, lectin-like oxygenated low-density lipoprotein receptor (LOX)-1, and matrix metalloproteinases (MMPs) -2, -9 and -12. There was a significantly greater number of intra-alveolar cells in Clara cell-ablated mouse groups than in wild-type mouse groups that were exposed to crystalline silica. A marked number of foamy alveolar macrophages were only detected in the Clara cell-ablated group exposed to crystalline silica, indicating that Clara cells inhibit infiltration and foam cell formation of alveolar macrophages. Immunohistochemical analysis indicated that foamy alveolar macrophages in the Clara cell-ablated group that inhaled crystalline silica overexpress CD36 and LOX-1, indicating upregulation of scavenger receptors of alveolar macrophages. These cells also express MMP-2, -9 and -12, suggesting increased gelatinolytic and elastolytic activities. Our findings suggest that Clara cells not only inhibit infiltration of alveolar macrophages but also their phagocytotic and gelatinolytic functions in silica-induced pulmonary injury.

  20. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  1. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  2. MLO-Y4 osteocyte-like cells support osteoclast formation and activation.

    Science.gov (United States)

    Zhao, S; Zhang, Y Kato Y; Harris, S; Ahuja, S S; Bonewald, L F

    2002-11-01

    Osteocytes are terminally differentiated cells of the osteoblast lineage that have become embedded in mineralized matrix and may send signals that regulate bone modeling and remodeling. The hypothesis to be tested in this study is that osteocytes can stimulate and support osteoclast formation and activation. To test this hypothesis, an osteocyte-like cell line called MLO-Y4 and primary murine osteocytes were used in coculture with spleen or marrow cells. MLO-Y4 cells support osteoclast formation in the absence of 1,25-dihydroxyvitamin D3 [1,25(OD)2D3] or any other exogenous osteotropic factor. These cells alone stimulate osteoclast formation to the same extent or greater than adding 1,25(OH)2D3. Coaddition of 1,25(OH)2D3 with MLO-Y4 cells synergistically increased osteoclast formation. Optimal osteoclast formation and pit formation on dentine was observed with 200-1,000 MLO-Y4 cells per 0.75-cm2 well. No osteoclast formation was observed with 2T3, OCT-1, or MC3T3-E1 osteoblast cells (1,000 cells/well). Conditioned media from the MLO-Y4 cells had no effect on osteoclast formation, indicating that cell contact is necessary. Serial digestions of 2-week-old mouse calvaria yielded populations of cells that support osteoclast formation when cocultured with 1,25(OH)2D3 and marrow, but the population that remained in the bone particles supported the greatest number of osteoclasts with or without 1,25(OH)2D3. To examine the mechanism whereby these cells support osteoclast formation, the MLO-Y4 cells were compared with a series of osteoblast and stromal cells for expression of macrophage colony-stimulating factor (M-CSF), RANKL, and osteoprotegerin (OPG). MLO-Y4 cells express and secrete large amounts of M-CSF. MLO-Y4 cells express RANKL on their surface and their dendritic processes. The ratio of RANKL to OPG mRNA is greatest in the MLO-Y4 cells compared with the other cell types. RANK-Fc and OPG-Fc blocked the formation of osteoclasts by MLO-Y4 cells. These studies suggest

  3. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Patheja, Pooja, E-mail: pooja.patheja8@gmail.com [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra (India); Sahu, Khageswar [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India)

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  4. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation

    DEFF Research Database (Denmark)

    Sun, J; Zhang, J; Lindholt, Jes S.

    2009-01-01

    Mast cell chymase may participate in the pathogenesis of human abdominal aortic aneurysm (AAA), yet a direct contribution of this serine protease to AAA formation remains unknown.......Mast cell chymase may participate in the pathogenesis of human abdominal aortic aneurysm (AAA), yet a direct contribution of this serine protease to AAA formation remains unknown....

  5. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    Unknown

    2.1 Cell culture. RLE-6TN epithelial cells (ATCC Rockville, MD, USA) have been immortalized by transfection of rat alveolar type II cells with SV40 DNA (Driscoll et al 1995). Cells were maintained in Dulbecco's Modified .... candidate because it is bound to desferrioxamine with a stability constant near 1031. The hint that ...

  6. Kinetics of Linear Rouleaux Formation Studied by Visual Monitoring of Red Cell Dynamic Organization

    OpenAIRE

    Barshtein, G; Wajnblum, D.; Yedgar, S

    2000-01-01

    Red blood cells (RBCs) in the presence of plasma proteins or other macromolecules may form aggregates, normally in rouleaux formations, which are dispersed with increasing blood flow. Experimental observations have suggested that the spontaneous aggregation process involves the formation of linear rouleaux (FLR) followed by formation of branched rouleaux networks. Theoretical models for the spontaneous rouleaux formation were formulated, taking into consideration that FLR may involve both "po...

  7. 3D in vitro cell culture models of tube formation

    NARCIS (Netherlands)

    Zegers, M.M.P.

    2014-01-01

    Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the

  8. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  9. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    Science.gov (United States)

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  10. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R.; Grosso, Mariela F. del [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Behar, Moni [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); García Bermúdez, Gerardo, E-mail: ggb@tandar.cnea.gov.ar [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Escuela de Ciencia y Tecnología, UNSAM (Argentina)

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  11. Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors.

    Science.gov (United States)

    Rungarunlert, Sasitorn; Techakumphu, Mongkol; Pirity, Melinda K; Dinnyes, Andras

    2009-12-31

    Embryonic stem (ES) cells have the ability to differentiate into all germ layers, holding great promise not only for a model of early embryonic development but also for a robust cell source for cell-replacement therapies and for drug screening. Embryoid body (EB) formation from ES cells is a common method for producing different cell lineages for further applications. However, conventional techniques such as hanging drop or static suspension culture are either inherently incapable of large scale production or exhibit limited control over cell aggregation during EB formation and subsequent EB aggregation. For standardized mass EB production, a well defined scale-up platform is necessary. Recently, novel scenario methods of EB formation in hydrodynamic conditions created by bioreactor culture systems using stirred suspension systems (spinner flasks), rotating cell culture system and rotary orbital culture have allowed large-scale EB formation. Their use allows for continuous monitoring and control of the physical and chemical environment which is difficult to achieve by traditional methods. This review summarizes the current state of production of EBs derived from pluripotent cells in various culture systems. Furthermore, an overview of high quality EB formation strategies coupled with systems for in vitro differentiation into various cell types to be applied in cell replacement therapy is provided in this review. Recently, new insights in induced pluripotent stem (iPS) cell technology showed that differentiation and lineage commitment are not irreversible processes and this has opened new avenues in stem cell research. These cells are equivalent to ES cells in terms of both self-renewal and differentiation capacity. Hence, culture systems for expansion and differentiation of iPS cells can also apply methodologies developed with ES cells, although direct evidence of their use for iPS cells is still limited.

  12. Methanofullerene elongated nanostructure formation for enhanced organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Reyes, M. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico)], E-mail: reyesm@cactus.iico.uaslp.mx; Lopez-Sandoval, R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, CP 78216. San Luis Potosi (Mexico); Arenas-Alatorre, J. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000, Mexico, D.F. (Mexico); Garibay-Alonso, R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, CP 78216. San Luis Potosi (Mexico); Carroll, D.L. [Center for Nanotechnology and Molecular Materials, Department of Physics. Wake Forest University, Winston-Salem NC 27109 (United States); Lastras-Martinez, A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico)

    2007-11-01

    Using transmission electron microscopy (TEM) and Z-contrast imaging we have demonstrated elongated nanostructure formation of fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) within an organic host through annealing. The annealing provides an enhanced mobility of the PCBM molecules and, with good initial dispersion, allows for the formation of exaggerated grain growth within the polymer host. We have assembled these nanostructures within the regioregular conjugated polymer poly(3-hexylthiophene) (P3HT). This PCBM elongated nanostructure formation maybe responsible for the very high efficiencies observed, at very low loadings of PCBM (1:0.6, polymer to PCBM), in annealed photovoltaics. Moreover, our high resolution TEM and electron energy loss spectroscopy studies clearly show that the PCBM crystals remain crystalline and are unaffected by the 200-keV electron beam.

  13. On the formation of germ cells: The good, the bad and the ugly.

    Science.gov (United States)

    Chuva de Sousa Lopes, Susana M; Roelen, Bernard A J

    2010-03-01

    Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But "with great power, comes great responsibility", meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge. Copyright 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Statistical dynamics of spatial-order formation by communicating cells

    OpenAIRE

    Olimpio, Eduardo P.; Dang, Yiteng; Youk, Hyun

    2017-01-01

    Communicating cells can coordinate their gene expressions to form spatial patterns. 'Secrete-and-sense cells' secrete and sense the same molecule to do so and are ubiquitous. Here we address why and how these cells, from disordered beginnings, can form spatial order through a statistical mechanics-type framework for cellular communication. Classifying cellular lattices by 'macrostate' variables - 'spatial order paramete' and average gene-expression level - reveals a conceptual picture: cellul...

  15. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development

    NARCIS (Netherlands)

    Barker, N.; Rookmaaker, M.B.; Kujala, P.; Ng, A.; Leushacke, M.; Snippert, H.; van de Wetering, M.; Tan, S.; van Es, J.H.; Huch, M.; Poulsom, R.; Verhaar, M.C.; Peters, P.J.; Clevers, H.

    2012-01-01

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The

  16. Cell colony formation induced by Xenopus egg extract as a marker for improvement of cloned blastocyst formation in pig

    DEFF Research Database (Denmark)

    Liu, Ying; Østrup, Olga; Li, Juan

    2011-01-01

    Treatment with cytoplasmic extracts from Xenopus laevis eggs represents a potential tool for universal cellular reprogramming. However, the biochemical activity and quality of the extract vary from batch to batch. This study aimed to evaluate three different extract batches prepared by the same...... colonies in treated cells was counted on Day 7 after extract treatment and significant variability was detected between different batches of extract. Similarly, when using cells from colonies at Days 7 to 8 after treatment for handmade cloning, increased blastocyst formation rates were observed after...

  17. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells.

    Science.gov (United States)

    Fedorovich, Natalja E; Wijnberg, Hans M; Dhert, Wouter J A; Alblas, Jacqueline

    2011-08-01

    The organ- or tissue-printing approach, based on layered deposition of cell-laden hydrogels, is a new technique in regenerative medicine suitable to investigate whether mimicking the anatomical organization of cells, matrix, and bioactive molecules is necessary for obtaining or improving functional engineered tissues. Currently, data on performance of multicellular printed constructs in vivo are limited. In this study we illustrate the ability of the system to print intricate porous constructs containing two different cell types--endothelial progenitors and multipotent stromal cells--and show that these grafts retain heterogeneous cell organization after subcutaneous implantation in immunodeficient mice. We demonstrate that cell differentiation leading to the expected tissue formation occurs at the site of the deposited progenitor cell type. While perfused blood vessels are formed in the endothelial progenitor cell-laden part of the constructs, bone formation is taking place in the multipotent stromal cell-laden part of the printed grafts.

  18. The direct formate fuel cell with an alkaline anion exchange membrane

    Science.gov (United States)

    Bartrom, Amy M.; Haan, John L.

    2012-09-01

    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  19. Monocyte-derived dendritic cells upregulate extracellular catabolism of aggregated LDL upon maturation, leading to foam cell formation

    Science.gov (United States)

    Haka, Abigail S.; Singh, Rajesh K.; Grosheva, Inna; Hoffner, Haley; Capetillo-Zarate, Estibaliz; Chin, Harvey F.; Anandasabapathy, Niroshana; Maxfield, Frederick R.

    2015-01-01

    Objective Although dendritic cells are known to play a role in atherosclerosis, few studies have examined the contribution of the wide variety of dendritic cell subsets. Accordingly, their roles in atherogenesis remain largely unknown. We investigated the ability of different dendritic cell subsets to become foam cells following contact with aggregated LDL (the predominant form of LDL found in atherosclerotic plaques). Approach and Results We demonstrate that both murine and human monocyte-derived dendritic cells use exophagy to degrade aggregated LDL, leading to foam cell formation, while monocyte-independent dendritic cells are unable to clear LDL aggregates by this mechanism. Exophagy is a catabolic process in which objects that cannot be internalized by phagocytosis (due to their size or association with extracellular structures) are initially digested in an extracellular acidic lytic compartment. Surprisingly, we found that monocyte-derived dendritic cells upregulate exophagy upon maturation. This contrasts various forms of endocytic internalization in dendritic cells, which decrease upon maturation. Finally, we show that our in vitro results are consistent with dendritic cell lipid accumulation in plaques of an ApoE−/− mouse model of atherosclerosis. Conclusions Our results show that monocyte-derived dendritic cells use exophagy to degrade aggregated LDL and become foam cells, while monocyte-independent dendritic cells are unable to clear LDL deposits. Further, we find that exophagy is upregulated upon dendritic cell maturation. Thus, exophagy-mediated foam cell formation in monocyte-derived dendritic cells could play a significant role in atherogenesis. PMID:26293468

  20. The co-injection of somatic cells with embryonic stem cells affects teratoma formation and the properties of teratoma-derived stem cell-like cells.

    Directory of Open Access Journals (Sweden)

    Seung Pyo Gong

    Full Text Available The aim of this study was to assess the biological reactions triggered by stem cell transplantation related to phenotypic alteration, host-to-cell response, chromosomal stability, transcriptional alteration, and stem cell-like cell re-expansion. B6CBAF1 mouse embryonic stem cells (ESCs were injected subcutaneously into homologous or heterologous (B6D2F1 recipients, and heterologous injections were performed with or without co-injection of B6D2F1 fetal fibroblasts. All homologous injections resulted in teratoma formation, whereas a sharp decrease in formation was detected after heterologous injection (100 vs. 14%; p<0.05. The co-injection of somatic cells in heterologous injections enhanced teratoma formation significantly (14 vs. 75%; p<0.05. Next, ESC-like cell colonies with the same genotype as parental ESCs were formed by culturing teratoma-dissociated cells. Compared with parental ESCs, teratoma-derived ESC-like cells exhibited significantly increased aneuploidy, regardless of homologous or heterologous injections. Repopulation of the parental ESCs was the main factor that induced chromosomal instability, whereas the co-injection of somatic cells did not restore chromosomal normality. Different genes were expressed in the parental ESCs and teratoma-derived ESC-like cells; the difference was larger with parental vs. heterologous than parental vs. homologous co-injections. The co-injection of somatic cells decreased this difference further. In conclusion, the host-to-cell interactions triggered by ESC transplantation could be modulated by co-injection with somatic cells. A mouse model using homologous or heterologous transplantation of stem cells could help monitor cell adaptability and gene expression after injection.

  1. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells.

    NARCIS (Netherlands)

    Niessen, F.B.; Schalkwijk, J.; Vos, H.; Timens, W.

    2004-01-01

    The exact pathogenesis of hypertrophic scar and keloid formation is still unknown and a good therapy to prevent or treat these scars is lacking. Because immunological processes seem to be important in excessive scar formation, immunological cells and parameters were studied in a standardized breast

  2. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells

    NARCIS (Netherlands)

    Niessen, FB; Schalkwijk, J; Vos, H; Timens, W

    The exact pathogenesis of hypertrophic scar and keloid formation is still unknown and a good therapy to prevent or treat these scars is lacking. Because immunological processes seem to be important in excessive scar formation, immunological cells and parameters were studied in a standardized breast

  3. The role of Rap1 in cell-cell junction formation

    NARCIS (Netherlands)

    Kooistra, M.R.H.

    2008-01-01

    Both epithelial and endothelial cells form cell-cell junctions at the cell-cell contacts to maintain tissue integrity. Proper regulation of cell-cell junctions is required for the organisation of the tissue and to prevent leakage of blood vessels. In endothelial cells, the cell-cell junctions are

  4. Cell formation by myxozoan species is not explained by dogma.

    Science.gov (United States)

    Morris, David J

    2010-08-22

    Eukaryotes form new cells through the replication of nuclei followed by cytokinesis. A notable exception is reported from the class Myxosporea of the phylum Myxozoa. This assemblage of approximately 2310 species is regarded as either basal bilaterian or cnidarian, depending on the phylogenetic analysis employed. For myxosporeans, cells have long been regarded as forming within other cells by a process referred to as endogenous budding. This would involve a nucleus forming endoplasmic reticulum around it, which transforms into a new plasma membrane, thus enclosing and separating it from the surrounding cell. This remarkable process, unique within the Metazoa, is accepted as occurring within stages found in vertebrate hosts, but has only been inferred from those stages observed within invertebrate hosts. Therefore, I conducted an ultrastructural study to examine how internal cells are formed by a myxosporean parasitizing an annelid. In this case, actinospore parasite stages clearly internalized existing cells; a process with analogies to the acquisition of endosymbiotic algae by cnidarian species. A subsequent examination of the myxozoan literature did not support endogenous budding, indicating that this process, which has been a central tenet of myxozoan developmental biology for over a century, is dogma.

  5. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    Science.gov (United States)

    Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie

    2015-01-01

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  6. Mechanical model of geometric cell and topological algorithm for cell dynamics from single-cell to formation of monolayered tissues with pattern.

    Science.gov (United States)

    Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie

    2015-01-01

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  7. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Sëma

    2015-05-14

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  8. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  9. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    Science.gov (United States)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  10. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Taru Sharma, G., E-mail: gts553@gmail.com [Reproductive Physiology Laboratory, Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P. (India); Dubey, Pawan K.; Verma, Om Prakash; Pratheesh, M.D.; Nath, Amar; Sai Kumar, G. [Reproductive Physiology Laboratory, Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P. (India)

    2012-08-03

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it

  11. Investigation of Contact Formation during Silicon Solar Cell Production

    Science.gov (United States)

    Mojrová, Barbora

    2016-05-01

    This article deals with the investigation of the influence of sintering conditions on the formation process of screen printed contacts on passivated boron doped P+ emitters. The experiment was focused on measuring of resistance changes of two thick film pastes during firing processes with different conditions. Two different temperature profiles were compared at an atmospheric concentration of O2. The influence of the O2 concentration on resistance was investigated for one profile. A rapid thermal processing furnace modified for in-situ resistance measurements was used. The change of resistance was measured simultaneously with the temperature.

  12. Formation and maintenance of the Golgi apparatus in plant cells.

    Science.gov (United States)

    Ito, Yoko; Uemura, Tomohiro; Nakano, Akihiko

    2014-01-01

    The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells. © 2014 Elsevier Inc. All rights reserved.

  13. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  14. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Wu, Xunwei; Meyer, Hannelore

    2005-01-01

    of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the Golgi...

  15. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum.

    Science.gov (United States)

    Hagimoto, Kazuya; Takami, Saki; Murakami, Fujio; Tanabe, Yasuto

    2017-03-01

    The striatum, the largest nucleus of the basal ganglia controlling motor and cognitive functions, can be characterized by a labyrinthine mosaic organization of striosome/matrix compartments. It is unclear how striosome/matrix mosaic formation is spatially and temporally controlled at the cellular level during striatal development. Here, by combining in vivo electroporation and brain slice cultures, we set up a prospective experimental system in which we differentially labeled striosome and matrix cells from the time of birth and followed their distributions and migratory behaviors. Our results showed that, at an initial stage of striosome/matrix mosaic formation, striosome cells were mostly stationary, whereas matrix cells actively migrated in multiple directions regardless of the presence of striosome cells. The mostly stationary striosome cells were still able to associate to form patchy clusters via attractive interactions. Our results suggest that the restricted migratory capability of striosome cells may allow them to cluster together only when they happen to be located in close proximity to each other and are not separated by actively migrating matrix cells. The way in which the mutidirectionally migrating matrix cells intermingle with the mostly stationary striosome cells may therefore determine the topographic features of striosomes. At later stages, the actively migrating matrix cells began to repulse the patchy clusters of striosomes, presumably enhancing the striosome cluster formation and the segregation and eventual formation of dichotomous homogeneous striosome/matrix compartments. Overall, our study reveals temporally distinct migratory behaviors of striosome/matrix cells, which may underlie the sequential steps of mosaic formation in the developing striatum. J. Comp. Neurol. 525:794-817, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Shi, Kaikai; Frary, Charles Edward

    2015-01-01

    expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...

  17. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown...

  18. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Beucken, J.J.J.P. van den; Bian, Z.; Fan, M.; Jansen, J.A.

    2009-01-01

    The objective of this study was to examine hard tissue formation of STRO-1-selected rat dental pulp-derived stem cells, seeded into a calcium phosphate ceramic scaffold, and implanted subcutaneously in mice. Previously, STRO-1 selection was used to obtain a mesenchymal stem cell progenitor

  19. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    Multiple myeloma is characterized by the accumulation of clonal malignant plasma cells in the bone marrow, which stimulates bone destruction by osteoclasts and reduces bone formation by osteoblasts. In turn, the changed bone microenvironment sustains survival of myeloma cells. Therefore, a challe...

  20. De novo formation of centrosomes in vertebrate cells arrested during S phase

    NARCIS (Netherlands)

    Khodjakov, A; Rieder, CL; Sluder, G; Cassels, G; Sibon, O; Wang, CL

    2002-01-01

    The centrosome usually replicates in a semiconservative fashion, i.e., new centrioles form in association with preexisting "maternal" centrioles. De novo formation of centrioles has been reported for a few highly specialized cell types but it has not been seen in vertebrate somatic cells. We find

  1. An integrated approach for the cell formation and layout design in cellular manufacturing systems

    NARCIS (Netherlands)

    Javadi, Babak; Jolai, Fariborz; Slomp, Jannes; Rabbani, Masoud; Tavakkoli-Moghaddam, Reza

    2013-01-01

    In this paper, a comprehensive model is presented for cell formation and layout design in cellular manufacturing systems (CMS). The proposed model incorporates an extensive coverage of important operational features and especially layout design aspects to determine optimal cell configuration and

  2. TRPM7 triggers Ca(2+) sparks and invadosome formation in neuroblastoma cells

    NARCIS (Netherlands)

    Visser, D.; Langeslag, M.; Kedziora, K.M.; Klarenbeek, J.; Kamermans, A.; Horgen, F.D.; Fleig, A.; Leeuwen, F.N. van; Jalink, K.

    2013-01-01

    Cell migration depends on the dynamic formation and turnover of cell adhesions and is tightly controlled by actomyosin contractility and local Ca(2+) signals. The divalent cation channel TRPM7 (Transient Receptor Potential cation channel, subfamily Melastatin, member 7) has recently received much

  3. Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation.

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    Full Text Available BACKGROUND: Cell plate formation during plant cytokinesis is facilitated by SNARE complex-mediated vesicle fusion at the cell-division plane. However, our knowledge regarding R-SNARE components of membrane fusion machinery for cell plate formation remains quite limited. METHODOLOGY/PRINCIPAL FINDINGS: We report the in vivo function of Arabidopsis VAMP721 and VAMP722, two closely sequence-related R-SNAREs, in cell plate formation. Double homozygous vamp721vamp722 mutant seedlings showed lethal dwarf phenotypes and were characterized by rudimentary roots, cotyledons and hypocotyls. Furthermore, cell wall stubs and incomplete cytokinesis were frequently observed in vamp721vamp722 seedlings. Confocal images revealed that green fluorescent protein-tagged VAMP721 and VAMP722 were preferentially localized to the expanding cell plates in dividing cells. Drug treatments and co-localization analyses demonstrated that punctuate organelles labeled with VAMP721 and VAMP722 represented early endosomes overlapped with VHA-a1-labeled TGN, which were distinct from Golgi stacks and prevacuolar compartments. In addition, protein traffic to the plasma membrane, but not to the vacuole, was severely disrupted in vamp721vamp722 seedlings by subcellular localization of marker proteins. CONCLUSION/SIGNIFICANCE: These observations suggest that VAMP721 and VAMP722 are involved in secretory trafficking to the plasma membrane via TGN/early endosomal compartment, which contributes substantially to cell plate formation during plant cytokinesis.

  4. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways.

    Science.gov (United States)

    Ni, Jing; Li, Yuanmin; Li, Weiming; Guo, Rong

    2017-10-10

    Foam cell formation and apoptosis are closely associated with atherosclerosis pathogenesis. We determined the effect of salidroside on oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation and apoptosis in THP1 human acute monocytic leukemia cells and investigated the associated molecular mechanisms. THP1-derived macrophages were incubated with salidroside for 5 h and then exposed to ox-LDL for 24 h to induce foam cell formation. Cytotoxicity, lipid deposition, apoptosis, and the expression of various proteins were tested using the CCK8 kit, Oil Red O staining, flow cytometry, and western blotting, respectively. Ox-LDL treatment alone promoted macrophage-derived foam cell formation, while salidroside treatment alone inhibited it (p salidroside treatment in a dose-dependent manner (p Salidroside dramatically upregulated nuclear factor erythroid 2-related factor 2, but had no effect on heme oxygenase-1 expression; moreover, it markedly downregulated ox-LDL receptor 1 and upregulated ATP-binding cassette transporter A1. Salidroside also obviously decreased the phosphorylation of JNK, ERK, p38 MAPK, and increased that of Akt. However, the total expression of these proteins was not affected. Based on our findings, we speculate that salidroside can suppress ox-LDL-induced THP1-derived foam cell formation and apoptosis, partly by regulating the MAPK and Akt signaling pathways.

  5. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation*

    OpenAIRE

    Bate, Clive; Nolan, William; Williams, Alun Edward

    2015-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI ...

  6. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    Science.gov (United States)

    Chlistunoff, Jerzy B [Los Alamos, NM; Lipp, Ludwig [Brookfield, CT; Gottesfeld, Shimshon [Niskayuna, NY

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  7. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Ákos T

    2014-01-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation. PMID:24694715

  8. The involvement of lethal giant larvae and Wnt signaling in bottle cell formation in Xenopus embryos.

    Science.gov (United States)

    Choi, Sun-Cheol; Sokol, Sergei Y

    2009-12-01

    Lethal giant larvae (Lgl) plays a critical role in establishment of cell polarity in epithelial cells. While Frizzled/Dsh signaling has been implicated in the regulation of the localization and activity of Lgl, it remains unclear whether specific Wnt ligands are involved. Here we show that Wnt5a triggers the release of Lgl from the cell cortex into the cytoplasm with the concomitant decrease in Lgl stability. The observed changes in Lgl localization were independent of atypical PKC (aPKC), which is known to influence Lgl distribution. In ectodermal cells, both Wnt5a and Lgl triggered morphological and molecular changes characteristic of apical constriction, whereas depletion of their functions prevented endogenous and ectopic bottle cell formation. Furthermore, Lgl RNA partially rescued bottle cell formation in embryos injected with a dominant negative Wnt5a construct. These results suggest a molecular link between Wnt5a and Lgl that is essential for apical constriction during vertebrate gastrulation.

  9. The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells.

    Science.gov (United States)

    Voronina, Svetlana; Collier, David; Chvanov, Michael; Middlehurst, Ben; Beckett, Alison J; Prior, Ian A; Criddle, David N; Begg, Malcolm; Mikoshiba, Katsuhiko; Sutton, Robert; Tepikin, Alexei V

    2015-02-01

    The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca(2+) concentration ([Ca(2+)]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as 'initiating' organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca(2+) influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca(2+) influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca(2+) entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca(2+) pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca(2+) elevation and endocytic vacuole formation.

  10. Putrescine controls the formation of Escherichia coli persister cells tolerant to aminoglycoside netilmicin.

    Science.gov (United States)

    Tkachenko, Alexander G; Kashevarova, Natalya M; Karavaeva, Elena A; Shumkov, Mikhail S

    2014-12-01

    Persisters are suggested to be the products of a phenotypic variability that are quasi-dormant forms of regular bacterial cells highly tolerant to antibiotics. Our previous investigations revealed that a decrease in antibiotic tolerance of Escherichia coli cells could be reached through the inhibition of key enzymes of polyamine synthesis (putrescine, spermidine). We therefore assumed that polyamines could be involved in persister cell formation. Data obtained in our experiments with the polyamine-deficient E. coli strain demonstrate that the formation of persisters tolerant to netilmicin is highly upregulated by putrescine in a concentration-dependent manner when cells enter the stationary phase. This period is also accompanied by dissociation of initially homogenous subpopulation of persister cells to some fractions differing in their levels of tolerance to netilmicin. With three independent experimental approaches, we demonstrate that putrescine-dependent upregulation of persister cell formation is mediated by stimulation of rpoS expression. Complementary activity of putrescine and RpoS results in ~ 1000-fold positive effect on persister cell formation. © 2014 Federation of European Microbiological Societies.

  11. Collective motion of cells mediates segregation and pattern formation in co-cultures.

    Directory of Open Access Journals (Sweden)

    Elod Méhes

    Full Text Available Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion.

  12. Inhibitory influences of tranilast on multinucleated giant cell formation from monocytes by supernatant of concanavalin A-stimulated mononuclear cells.

    Science.gov (United States)

    Mizuno, K; Okamoto, H; Horio, T

    2000-12-01

    Tranilast is an anti-allergic drug that inhibits the release of chemical mediators from mast cells. There have been cases-reports showing that tranilast is effective for the treatment of granulomatous diseases such as granuloma annulare and cutaneous sarcoidosis. Here we examined the in vitro effects of tranilast on the formation of multinucleated giant cells (MGCs) from human peripheral monocytes. Supernatant of concanavalin A (Con A)-stimulated mononuclear cells induced Langhans-type and foreign body-type MGCs and the addition of 10 or 100 microg/ml tranilast inhibited the formation of total MGCs and foreign body-type MGCs. Tranilast decreased the number of MGCs with 16cell sorting analysis showed that tranilast-treated monocytes had lower expressions of intercellular adhesion molecule-1 (ICAM-1). These findings suggest that tranilast is effective for cutaneous lesions in some cases of granulomatous disorders partly through a direct effect on monocyte/macrophage-lineage cells.

  13. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans

    Directory of Open Access Journals (Sweden)

    Girolamo Antonietta

    2011-05-01

    Full Text Available Abstract Background The MP65 gene of Candida albicans (orf19.1779 encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a mp65Δ mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation. Results The mp65Δ mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The mp65Δ mutant showed an activation of two MAPKs (Mkc1p and Cek1p, a high level of expression of two stress-related genes (DDR48 and SOD5, and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the mp65Δ mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion. Conclusions We demonstrate that the MP65 gene of Candida albicans plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus.

  14. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.

    Directory of Open Access Journals (Sweden)

    Stephen D Freeman

    Full Text Available During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.

  15. Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell.

    Science.gov (United States)

    Saarikangas, Juha; Caudron, Fabrice; Prasad, Rupali; Moreno, David F; Bolognesi, Alessio; Aldea, Martí; Barral, Yves

    2017-03-20

    In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane anchoring and the compartmentalization of the endoplasmic reticulum (ER) membrane confine protein deposit formation to aging cells during division. Supporting the idea that the age-dependent deposit forms through coalescence of smaller aggregates, two deposits rapidly merged when placed in the same cell by cell-cell fusion. The deposits localized to the ER membrane, primarily to the nuclear envelope (NE). Strikingly, weakening the diffusion barriers that separate the ER membrane into mother and bud compartments caused premature formation of deposits in the daughter cells. Detachment of the Hsp40 protein Ydj1 from the ER membrane elicited a similar phenotype, suggesting that the diffusion barriers and farnesylated Ydj1 functioned together to confine protein deposit formation to mother cells during division. Accordingly, fluorescence correlation spectroscopy measurements in dividing cells indicated that a slow-diffusing, possibly client-bound Ydj1 fraction was asymmetrically enriched in the mother compartment. This asymmetric distribution depended on Ydj1 farnesylation and intact diffusion barriers. Taking these findings together, we propose that ER-anchored Ydj1 binds deposit precursors and prevents them from spreading into daughter cells during division by subjecting them to the ER diffusion barriers. This ensures that the coalescence of precursors into a single deposit is restricted to the aging lineage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Heterotopic bone formation derived from multipotent stromal cells is not inhibited in aged mice.

    Science.gov (United States)

    Carbonneau, Cynthia L; Despars, Geneviève; Beaudry, Gaël Moquin; Benabdallah, Basma; Bouhanik, Saadallah; Dépôt, Josée; Moreau, Alain; Beauséjour, Christian M

    2014-08-01

    Decreased bone formation with age is believed to arise, at least in part, because of the influence of the senescent microenvironment. In this context, it is unclear whether multipotent stromal cell (MSC)-based therapies would be effective for the treatment of bone diseases. With the use of a heterotopic bone formation model, we investigated whether MSC-derived osteogenesis is impaired in aged mice compared with young mice. We found that bone formation derived from MSCs is not reduced in aged mice. These results are supported by the unexpected finding that conditioned media collected from ionizing radiation-induced senescent MSCs can stimulate mineralization and delay osteoclastogenesis in vitro. Overall, our results suggest that impaired bone formation with age is mainly cell-autonomous and provide a rationale for the use of MSC-based therapies for the treatment of bone diseases in the elderly. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Formation of N-Arylacylhydroxamic Acids from Nitroso Aromatic Compounds in Isolated Spinach Leaf Cells.

    Science.gov (United States)

    Yoshioka; Uematsu

    1998-02-16

    The formation of N-arylacetohydroxamic acids from nitroso aromatic compounds in the presence of pyruvate was investigated using isolated spinach leaf cells. The activity was enhanced by the addition of TPP, MgSO(4), and pyruvate, requirements for pyruvate dehydrogenase complex (PDHC). Measurement of the kinetic parameters revealed that the K(m) values of nitroso aromatic compounds tested were identical and that electron-donating ring substituents decreased the catalytic efficiency. The activation energy of the formation of N-phenylacetohydroxamic acid was lower than that reported for porcine heart PDHC. With alpha-oxo acids tested, alpha-oxobutyrate served as a substrate to give the corresponding N-phenylpropionylhydroxamic acid. The activity of spinach leaf cells in N-phenylacetohydroxamic acid formation was found in both mitochondria and chloroplasts. The contribution of chloroplast PDHC to total activity in the formation of N-phenylacetohydroxamic acid was estimated to be 50% under the conditions used.

  18. [The influence of cell surface hydrophobicity Candida sp. on biofilm formation on different biomaterials].

    Science.gov (United States)

    Ciok-Pater, Emilia; Gospodarek, Eugenia; Prazyńska, Małgorzata; Bogiel, Tomasz

    2009-01-01

    The ability of yeasts to form biofilm is believed to play an important role in patomechanism of fungal infection. Candida sp. is considered to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. Therefore this may lead to serious problems in patients with biomaterials used for diagnostic or therapeutic purposes. The aim of the study was to evaluate the influence of cell surface hydrophobicity (CSH) of Candida sp. on biofilm formation on different biomaterials. CSH was evaluated by two methods: Salt Aggregation Test (SAT) and Microbe Adhesion to Hydrocarbon Test (MATH). Biofilm formation on different biomaterials was measured by Richard's method after 72 hour incubation at 37 degrees C. Candida biofilm formation occurred more frequently in case of strains exhibiting hydrophobic than hydrophilic properties of cell surface. The statistically significant correlation between CSH and ability of biofilm formation on different biomaterials was observed (p < 0.05).

  19. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  20. Involvement of Sortase Anchoring of Cell Wall Proteins in Biofilm Formation by Streptococcus mutans

    OpenAIRE

    Lévesque, Céline M.; Voronejskaia, Elena; Huang, Yi-Chen Cathy; Mair, Richard W.; Ellen, Richard P.; Cvitkovitch, Dennis G.

    2005-01-01

    Streptococcus mutans is one of the best-known biofilm-forming organisms associated with humans. We investigated the role of the sortase gene (srtA) in monospecies biofilm formation and observed that inactivation of srtA caused a decrease in biofilm formation. Genes encoding three putative sortase-dependent proteins were also found to be up-regulated in biofilms versus planktonic cells and mutations in these genes resulted in reduced biofilm biomass.

  1. An improved model for nucleation-limited ice formation in living cells during freezing.

    Directory of Open Access Journals (Sweden)

    Jingru Yi

    Full Text Available Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF, our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1. We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN and volume-catalyzed nucleation (VCN. Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications.

  2. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  3. Pore formation on proliferating yeast Saccharomyces cerevisiae cell buds by HM-1 killer toxin.

    Science.gov (United States)

    Komiyama, T; Ohta, T; Urakami, H; Shiratori, Y; Takasuka, T; Satoh, M; Watanabe, T; Furuichi, Y

    1996-04-01

    The cytocidal effect of HM-1 produced by Hansenula mrakii on yeast Saccharomyces cerevisiae cells was studied. The HM-1 strongly inhibited the growth of S. cerevisiae cells at a low concentration (IC50: 2.1 x 10(-8) M) by reducing the number of viable cells. The killer action of HM-1 was most efficient when cells were actively proliferating. Cells in a resting state were resistant, but they became HM-1-sensitive after about 90 min of culturing at 30 degrees C, concomitantly with the increment of budding index. In association with the reduction of viable cell number, ultraviolet light-absorbing cellular components were discharged from sensitive cells. HM-1 molecules appear to bind to susceptible cells rather loosely since cells incubated with HM-1 were able to proliferate after having been washed. By phase-contrast light microscopy and scanning electron microscopy, discharge of cell material was observed at the budding portions of HM-1-treated cells. Addition of sorbitol to make the culture medium isotonic partially reduced the cell death induced by HM-1. These results suggest that HM-1 acts on the budding region of proliferating yeast cells, resulting in pore formation, leakage of cell material and eventual cell death.

  4. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites or CTCFL (CTCF-like is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1 and cancer stem cell markers (ABCG2, CD44 and ALDH1 genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7. Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  5. Macroautophagy and microautophagy in relation to vacuole formation in mesophyll cells of Dendrobium tepals.

    Science.gov (United States)

    van Doorn, Wouter G; Kirasak, Kanjana; Ketsa, Saichol

    2015-04-01

    Prior to flower opening, mesophyll cells at the vascular bundles of Dendrobium tepals showed a large increase in vacuolar volume, partially at the expense of the cytoplasm. Electron micrographs indicated that this increase in vacuolar volume was mainly due to vacuole fusion. Macroautophagous structures typical of plant cells were observed. Only a small part of the decrease in cytoplasmic volume seemed due to macroautophagy. The vacuoles contained vesicles of various types, including multilamellar bodies. It was not clear if these vacuolar inclusions were due to macroautophagy or microautophagy. Only a single structure was observed of a protruding vacuole, indicating microautophagy. It is concluded that macroautophagy occurs in these cells but its role in vacuole formation seems small, while a possible role of microautophagy in vacuole formation might be hypothesized. Careful labeling of organelle membranes seems required to advance our insight in plant macro- and microautophagy and their roles in vacuole formation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Plant metabolism and cell wall formation in space (microgravity) and on Earth

    Science.gov (United States)

    Lewis, Norman G.

    1994-01-01

    Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.

  7. BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2012-01-01

    Full Text Available Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9 in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's MDSCs were extracted by type I collagenase and trypsin methods, and BMP9 was introduced into MDSCs by infection with recombinant adenovirus. Effects of BMP9-induced osteogenetic differentiation of MDSCs were identified with alkaline phosphatase (ALP activity and expression of later marker. In stem-cell implantation assay, MDSCs have also shown valuable potential bone formation ability induced by BMP9 in rabbit radius defects repairing test. Taken together, our findings suggest that MDSCs are potentiated osteogenetic stem cells which can be induced by BMP9 to treat large segmental bone defects, nonunion fracture, and/or osteoporotic fracture.

  8. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Guchte, Adriana van de; Boyd, Jeffrey M

    2017-02-21

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone.

  9. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    Science.gov (United States)

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Associative memory cells: Formation, function and perspective [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Jin-Hui Wang

    2017-03-01

    Full Text Available Associative learning and memory are common activities in life, and their cellular infrastructures constitute the basis of cognitive processes. Although neuronal plasticity emerges after memory formation, basic units and their working principles for the storage and retrieval of associated signals remain to be revealed. Current reports indicate that associative memory cells, through their mutual synapse innervations among the co-activated sensory cortices, are recruited to fulfill the integration, storage and retrieval of multiple associated signals, and serve associative thinking and logical reasoning. In this review, we aim to summarize associative memory cells in their formation, features and functional impacts.

  11. Role of complex cadherins in cell-cell adhesion evaluated by spheroid formation in renal cell carcinoma cell lines.

    NARCIS (Netherlands)

    Shimazui, T.; Schalken, J.A.; Kawai, K.; Kawamoto, R.; Bockhoven, A. van; Oosterwijk, E.; Akaza, H.

    2004-01-01

    We have previously shown that renal cell carcinoma (RCC) cell lines expressed a complex set of cadherins, e.g. E-cadherin, N-cadherin and cadherin-6. It is also reported that E-cadherin and cadherin-6 have a predictive value for estimating a patient's prognosis in RCC. However, E-cadherin is

  12. In vitro enhancement of extracellular matrix formation as natural bioscaffold for stem cell culture

    Science.gov (United States)

    Naroeni, Aroem; Shalihah, Qonitha; Meilany, Sofy

    2017-02-01

    Growing cells in plastic with liquid media for in vitro study is very common but far from physiological. The use of scaffold materials is more biocompatible. Extracellular matrix provides tissue integrity which acts as a native scaffold for cell attachment and interaction, as well as it serves as a reservoir for growth factors. For this reason, we have developed natural scaffold from mice fibroblast to form a natural scaffold for stem cell culture. Fibroblasts were cultured under crowded condition and lysed to form natural scaffold. The natural scaffold formation was observed using immunofluorescence which then will be used and tested for stem cell propagation and differentiation.

  13. Passive Mechanical Forces Control Cell-Shape Change during Drosophila Ventral Furrow Formation

    Science.gov (United States)

    Polyakov, Oleg; He, Bing; Swan, Michael; Shaevitz, Joshua W.; Kaschube, Matthias; Wieschaus, Eric

    2014-01-01

    During Drosophila gastrulation, the ventral mesodermal cells constrict their apices, undergo a series of coordinated cell-shape changes to form a ventral furrow (VF) and are subsequently internalized. Although it has been well documented that apical constriction is necessary for VF formation, the mechanism by which apical constriction transmits forces throughout the bulk tissue of the cell remains poorly understood. In this work, we develop a computational vertex model to investigate the role of the passive mechanical properties of the cellular blastoderm during gastrulation. We introduce to our knowledge novel data that confirm that the volume of apically constricting cells is conserved throughout the entire course of invagination. We show that maintenance of this constant volume is sufficient to generate invagination as a passive response to apical constriction when it is combined with region-specific elasticities in the membranes surrounding individual cells. We find that the specific sequence of cell-shape changes during VF formation is critically controlled by the stiffness of the lateral and basal membrane surfaces. In particular, our model demonstrates that a transition in basal rigidity is sufficient to drive VF formation along the same sequence of cell-shape change that we observed in the actual embryo, with no active force generation required other than apical constriction. PMID:25140436

  14. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    Science.gov (United States)

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  15. Bilirubin inhibits neointima formation and vascular smooth muscle cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    Kelly J. Peyton

    2012-03-01

    Full Text Available Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic smooth muscle cells with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore bilirubin blocks proliferation and migration of human arterial smooth muscle cells and arrests smooth muscle cells in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease.

  16. Effects of Intercellular Junction Protein Expression on Intracellular Ice Formation in Mouse Insulinoma Cells

    Science.gov (United States)

    Higgins, Adam Z.; Karlsson, Jens O.M.

    2013-01-01

    The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell

  17. GATA6 is essential for endoderm formation from human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    J. B. Fisher

    2017-07-01

    Full Text Available Protocols have been established that direct differentiation of human pluripotent stem cells into a variety of cell types, including the endoderm and its derivatives. This model of differentiation has been useful for investigating the molecular mechanisms that guide human developmental processes. Using a directed differentiation protocol combined with shRNA depletion we sought to understand the role of GATA6 in regulating the earliest switch from pluripotency to definitive endoderm. We reveal that GATA6 depletion during endoderm formation results in apoptosis of nascent endoderm cells, concomitant with a loss of endoderm gene expression. We show by chromatin immunoprecipitation followed by DNA sequencing that GATA6 directly binds to several genes encoding transcription factors that are necessary for endoderm differentiation. Our data support the view that GATA6 is a central regulator of the formation of human definitive endoderm from pluripotent stem cells by directly controlling endoderm gene expression.

  18. Sequential Salinomycin Treatment Results in Resistance Formation through Clonal Selection of Epithelial-Like Tumor Cells

    Directory of Open Access Journals (Sweden)

    Florian Kopp

    2014-12-01

    Full Text Available Acquiring therapy resistance is one of the major obstacles in the treatment of patients with cancer. The discovery of the cancer stem cell (CSC–specific drug salinomycin raised hope for improved treatment options by targeting therapy-refractory CSCs and mesenchymal cancer cells. However, the occurrence of an acquired salinomycin resistance in tumor cells remains elusive. To study the formation of salinomycin resistance, mesenchymal breast cancer cells were sequentially treated with salinomycin in an in vitro cell culture assay, and the resulting differences in gene expression and salinomycin susceptibility were analyzed. We demonstrated that long-term salinomycin treatment of mesenchymal cancer cells resulted in salinomycin-resistant cells with elevated levels of epithelial markers, such as E-cadherin and miR-200c, a decreased migratory capability, and a higher susceptibility to the classic chemotherapeutic drug doxorubicin. The formation of salinomycin resistance through the acquisition of epithelial traits was further validated by inducing mesenchymal-epithelial transition through an overexpression of miR-200c. The transition from a mesenchymal to a more epithelial-like phenotype of salinomycin-treated tumor cells was moreover confirmed in vivo, using syngeneic and, for the first time, transgenic mouse tumor models. These results suggest that the acquisition of salinomycin resistance through the clonal selection of epithelial-like cancer cells could become exploited for improved cancer therapies by antagonizing the tumor-progressive effects of epithelial-mesenchymal transition.

  19. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    Science.gov (United States)

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications. © 2013 Wiley Periodicals, Inc.

  20. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  1. Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages.

    Science.gov (United States)

    Fujiwara, Yuko; Hama, Kotaro; Tsukahara, Makoto; Izumi-Tsuzuki, Ryosuke; Nagai, Toru; Ohe-Yamada, Mihoko; Inoue, Keizo; Yokoyama, Kazuaki

    2018-01-01

    Macrophage foam cells play critical roles in the initiation and development of atherosclerosis by synthesizing and accumulating cholesteryl ester (CE) in lipid droplets. However, in analyzing lipid metabolism in foam cell formation, studies have focused on the sterol group, and little research has been done on the acyl chains. Therefore, we adapted a model system using liposomes containing particular acyl chains and examined the effect of various acyl chains on foam cell formation. Of the phosphatidylserine (PS) liposomes tested containing PS, phosphatidylcholine, and cholesterol, we found that unsaturated (C18:1), but not saturated (C16:0 and C18:0), PS liposomes induced lipid droplet formation, indicating that foam cell formation depends on the nature of the acyl chain of the PS liposomes. Experiments on the uptake and accumulation of cholesterol from liposomes by adding [ 14 C]cholesterol suggested that foam cell formation could be induced only when cholesterol was converted to CE in the case of C18:1 PS liposomes. Both microscopic observations and metabolic analysis suggest that cholesterol incorporated into either C16:0 or C18:0 PS liposomes may stay intact after being taken in by endosomes. The [ 14 C]C18:1 fatty acyl chain in the C18:1 PS liposome was used to synthesize CE and triacylglycerol (TG). Interestingly, the [ 14 C]C16:0 in the C18:1 PS liposome was metabolized to sphingomyelin rather than being incorporated into either CE or TG, which could be because of enzymatic acyl chain selectivity. In conclusion, our results indicate that the acyl chain preference of macrophages could have some impact on their progression to foam cells.

  2. Plasmin promotes foam cell formation by increasing macrophage catabolism of aggregated low density lipoprotein

    Science.gov (United States)

    Haka, Abigail S.; Grosheva, Inna; Singh, Rajesh K.; Maxfield, Frederick R.

    2013-01-01

    Objective The plasmin/plasminogen system is involved in atherosclerosis. However, the mechanisms by which it stimulates disease are not fully defined. A key event in atherogenesis is the deposition of LDL on arterial walls where it is modified, aggregated and retained. Macrophages are recruited to clear the lipoproteins, and they become foam cells. The goal of this study was to assess the role of plasmin in macrophage uptake of aggregated LDL and foam cell formation. Approach and Results Plasminogen treatment of macrophages catabolizing aggregated LDL significantly accelerated foam cell formation. Macrophage interaction with aggregated LDL increased the surface expression of urokinase-type plasminogen activator receptor and plasminogen activator activity, resulting in increased ability to generate plasmin at the cell surface. The high local level of plasmin cleaves cell-associated aggregated LDL, allowing a portion of the aggregate to become sequestered in a nearly sealed, yet extracellular, acidic compartment. The low pH in the plasmin-induced compartment allows lysosomal enzymes, delivered via lysosome exocytosis, greater activity, resulting in more efficient cholesteryl ester hydrolysis and delivery of a large cholesterol load to the macrophage, thereby promoting foam cell formation. Conclusion These findings highlight a critical role for plasmin in the catabolism of aggregated LDL by macrophages and provide a new context for considering the atherogenic role of plasmin. PMID:23702659

  3. Plasmin promotes foam cell formation by increasing macrophage catabolism of aggregated low-density lipoprotein.

    Science.gov (United States)

    Haka, Abigail S; Grosheva, Inna; Singh, Rajesh K; Maxfield, Frederick R

    2013-08-01

    The plasmin/plasminogen system is involved in atherosclerosis. However, the mechanisms by which it stimulates disease are not fully defined. A key event in atherogenesis is the deposition of low-density lipoprotein (LDL) on arterial walls where it is modified, aggregated, and retained. Macrophages are recruited to clear the lipoproteins, and they become foam cells. The goal of this study was to assess the role of plasmin in macrophage uptake of aggregated LDL and foam cell formation. Plasminogen treatment of macrophages catabolizing aggregated LDL significantly accelerated foam cell formation. Macrophage interaction with aggregated LDL increased the surface expression of urokinase-type plasminogen activator receptor and plasminogen activator activity, resulting in increased ability to generate plasmin at the cell surface. The high local level of plasmin cleaves cell-associated aggregated LDL, allowing a portion of the aggregate to become sequestered in a nearly sealed, yet extracellular, acidic compartment. The low pH in the plasmin-induced compartment allows lysosomal enzymes, delivered via lysosome exocytosis, greater activity, resulting in more efficient cholesteryl ester hydrolysis and delivery of a large cholesterol load to the macrophage, thereby promoting foam cell formation. These findings highlight a critical role for plasmin in the catabolism of aggregated LDL by macrophages and provide a new context for considering the atherogenic role of plasmin.

  4. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.

    Science.gov (United States)

    Jin, Hye-Jin; Cho, Young-Ho; Gu, Jin-Mo; Kim, Jhingook; Oh, Yong-Soo

    2011-01-07

    This paper presents a multicellular spheroid chip capable of forming and extracting three-dimensional (3D) spheroids using removable cell trapping barriers. Compared to the conventional macro-scale spheroid formation methods, including spinning, hanging-drop, and liquid-overlay methods, the recent micro-scale spheroid chips have the advantage of forming smaller spheroids with better uniformity. The recent micro spheroid chips, however, have difficulties in extracting the spheroids due to fixed cell trapping barriers. The present spheroid chip, having two PDMS layers, uses removable cell trapping barriers, thereby making it easy to form and extract uniform and small-sized spheroids. We have designed, fabricated and characterized a 4 × 1 spheroid chip, where membrane cell trapping barriers are inflated at a pressure of 50 kPa for spheroid formation and are deflated at zero gauge pressure for simple and safe extraction of the spheroids formed. In this experimental study, the cell suspension of non-small lung cancer cells, H1650, is supplied to the fabricated spheroid chip in the pressure range 145-155 Pa. The fabricated spheroid chips collect the cancer cells in the cell trapping regions from the cell suspension at a concentration of 2 × 10(6) ml(-1), thus forming uniform 3D spheroids with a diameter of 197.2 ± 11.7 μm, after 24 h incubation at 5% CO(2) and 37°C environment. After the removal of the cell trapping barriers, the spheroids formed were extracted through the outlet ports at a cell inlet pressure of 5 kPa. The cells in the extracted spheroids showed a viability of 80.3 ± 7.7%. The present spheroid chip offers a simple and effective method of obtaining uniform and small-sized 3D spheroids for the next stage of cell-based biomedical research, such as gene expression analysis and spheroid inoculation in animal models.

  5. Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.

    Science.gov (United States)

    Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2016-08-01

    Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    NARCIS (Netherlands)

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the

  7. Platelet-derived growth factor BB enhances osteoclast formation and osteoclast precursor cell chemotaxis.

    Science.gov (United States)

    Li, Dian-Qi; Wan, Qi-Long; Pathak, Janak L; Li, Zu-Bing

    2017-07-01

    Enhanced osteoclast formation increases bone resorption, which triggers bone remodeling. Platelet-derived growth factor BB (PDGF-BB) enhances precursor cell homing, angiogenesis, and bone healing, and thereby could also treat osteoporosis. However, the effect of PDGF-BB on osteoclast formation is not fully understood. We investigated whether exogenous recombinant PDGF-BB directly affects osteoclast formation and osteoclast precursor cell chemotaxis. The murine monocyte-macrophage cell line RAW264.7 and bone-marrow-derived macrophages were cultured with recombinant mouse PDGF-BB with or without a platelet-derived growth factor receptor β inhibitor (AG-1295) or a Janus kinase 2 inhibitor (AG-490) to analyze the effect on osteoclastogenesis in vitro. PDGF-BB with or without AG-490 or AG-1295 was locally administrated in the mandibular fracture of 16-week-old Sprague Dawley rats (n = 18) for 1-2 weeks to analyze the effect on osteoclastogenesis in vivo. The effect of the treatments on osteoclast formation, osteoclast precursor cell migration, and expression of osteoclastogenic signaling molecules was analyzed. PDGF-BB enhanced osteoclast formation both in vitro and in vivo, but AG-490 and AG-1295 inhibited this effect. PDGF-BB enhanced phosphorylation of extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, and signal transducer and activator of transcription 3 (STAT3) in RAW264.7 cells. AG-490 inhibited PDGF-BB-induced STAT3 phosphorylation. PDGF-BB enhanced RAW264.7 cell migration and gene expression of osteoclastogenic signaling molecules (i.e., nuclear factor of activated T cells 1, dendrocyte-expressed seven transmembrane protein, and B-cell lymphoma 2), and treatment with AG-1295, AG-490, or S3I-201 (a STAT3 inhibitor) reduced this effect. PDGF-BB enhanced osteoclast formation, osteoclast precursor cell chemotaxis, and phosphorylation of STAT3, Akt, and ERK1/2. but AG-1295 and AG-490 reduced this effect. These findings reflect the complexity of

  8. Erythromycin inhibition of 50S ribosomal subunit formation in Escherichia coli cells

    National Research Council Canada - National Science Library

    Usary, Jerry; Champney, W. Scott

    2001-01-01

    ...‐type Escherichia coli cells and in an RNase E mutant strain. Pulse–chase labelling kinetics revealed a reduced rate of 50S subunit formation in both strains compared with 30S synthesis, which was unaffected by the antibiotic...

  9. Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions

    DEFF Research Database (Denmark)

    Silveira, Leonardo R.; Pereira-Da-Silva, Lucia; Juel, Carsten

    2003-01-01

    We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluoresce...

  10. Extrapulmonary colony formation after intravenous injection of tumour cells into heparin treated animals

    NARCIS (Netherlands)

    Maat, B.

    1978-01-01

    Recent data on extrapulmonary colony formation after heparin administration are inconclusive. A systemic study of this topic was undertaken with 4 experimental tumour systems and 2 distinct periods of reduced clotting capacity in rats and mice. I.v. injection of various numbers of tumour cells into

  11. PERP regulates enamel formation via effects on cell–cell adhesion and gene expression

    Science.gov (United States)

    Jheon, Andrew H.; Mostowfi, Pasha; Snead, Malcolm L.; Ihrie, Rebecca A.; Sone, Eli; Pramparo, Tiziano; Attardi, Laura D.; Klein, Ophir D.

    2011-01-01

    Little is known about the role of cell–cell adhesion in the development of mineralized tissues. Here we report that PERP, a tetraspan membrane protein essential for epithelial integrity, regulates enamel formation. PERP is necessary for proper cell attachment and gene expression during tooth development, and its expression is controlled by P63, a master regulator of stratified epithelial development. During enamel formation, PERP is localized to the interface between the enamel-producing ameloblasts and the stratum intermedium (SI), a layer of cells subjacent to the ameloblasts. Perp-null mice display dramatic enamel defects, which are caused, in part, by the detachment of ameloblasts from the SI. Microarray analysis comparing gene expression in teeth of wild-type and Perp-null mice identified several differentially expressed genes during enamel formation. Analysis of these genes in ameloblast-derived LS8 cells upon knockdown of PERP confirmed the role for PERP in the regulation of gene expression. Together, our data show that PERP is necessary for the integrity of the ameloblast–SI interface and that a lack of Perp causes downregulation of genes that are required for proper enamel formation. PMID:21285247

  12. Macrophage-specific inhibition of NF-κB activation reduces foam-cell formation

    NARCIS (Netherlands)

    Ferreira, V.; Dijk, K.W. van; Groen, A.K.; Vos, R.M.; Kaa, J. van der; Gijbels, M.J.J.; Havekes, L.M.; Pannekoek, H.

    2007-01-01

    Accumulation of lipid-laden macrophages is a hallmark of atherosclerosis. The relevance of the key transcription factor nuclear factor κB (NF-κB) for macrophage-derived foam-cell formation has not been unequivocally resolved. Transgenic mice lines were generated in which NF-κB activation is

  13. Free Energies of Formation Measurements on Solid-State Electrochemical Cells

    Science.gov (United States)

    Rollino, J. A.; Aronson, S.

    1972-01-01

    A simple experiment is proposed that can provide the student with some insight into the chemical properties of solids. It also demonstrates the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell. (DF)

  14. Neurofibromin Deficient Myeloid Cells are Critical Mediators of Aneurysm Formation In Vivo

    Science.gov (United States)

    Li, Fang; Downing, Brandon D.; Smiley, Lucy C.; Mund, Julie A.; DiStasi, Matthew R.; Bessler, Waylan K.; Sarchet, Kara N.; Hinds, Daniel M.; Kamendulis, Lisa M.; Hingtgen, Cynthia M.; Case, Jamie; Clapp, D. Wade; Conway, Simon J.; Stansfield, Brian K.; Ingram, David A.

    2014-01-01

    Background Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results Utilizing an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/−) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/− aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin, reduced aneurysm formation in Nf1+/− mice. Conclusion These data provide genetic and pharmacologic evidence that Nf1+/− myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target. PMID:24370551

  15. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis

    DEFF Research Database (Denmark)

    Hawkins, C L; Brown, B E; Davies, Michael Jonathan

    2001-01-01

    Activated leukocytes generate the potent oxidants HOCl and HOBr via the formation of H(2)O(2) and the release of peroxidase enzymes (myeloperoxidase, eosinophil peroxidase). HOCl and HOBr are potent microbiocidal agents, but excessive or misplaced production can cause tissue damage and cell lysis...

  16. Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration

    Directory of Open Access Journals (Sweden)

    Hai-Lang He

    2016-01-01

    Full Text Available Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK, an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC. Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1 and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34+/VEGFR-3+ endothelial progenitor cells (EPCs, and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34+/VEGFR-3+ EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources.

  17. Relating cell proliferation to in vivo bone formation in porous Ca/P scaffolds

    NARCIS (Netherlands)

    van Gaalen, S.M.; de Bruijn, J.D.; Wilson, C.E.; van Blitterswijk, C.A.; Verbout, A.J.; Alblas, J.; Dhert, W.J.A.|info:eu-repo/dai/nl/10261847X

    2010-01-01

    Relating cell proliferation to in vivo bone formation in porous Ca/P scaffolds Steven M. van Gaalen1,*, Joost D. de Bruijn2, Clayton E. Wilson3, Clemens A. van Blitterswijk3, Abraham J. Verbout1, Jacqueline Alblas1, Wouter J. A. Dhert1,4Article first published online: 2 FEB 2009 Abstract Most

  18. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation.

    Science.gov (United States)

    Cortiella, Joaquin; Niles, Jean; Cantu, Andrea; Brettler, Andrea; Pham, Anthony; Vargas, Gracie; Winston, Sean; Wang, Jennifer; Walls, Shannon; Nichols, Joan E

    2010-08-01

    We report here the first attempt to produce and use whole acellular (AC) lung as a matrix to support development of engineered lung tissue from murine embryonic stem cells (mESCs). We compared the influence of AC lung, Gelfoam, Matrigel, and a collagen I hydrogel matrix on the mESC attachment, differentiation, and subsequent formation of complex tissue. We found that AC lung allowed for better retention of cells with more differentiation of mESCs into epithelial and endothelial lineages. In constructs produced on whole AC lung, we saw indications of organization of differentiating ESC into three-dimensional structures reminiscent of complex tissues. We also saw expression of thyroid transcription factor-1, an immature lung epithelial cell marker; pro-surfactant protein C, a type II pneumocyte marker; PECAM-1/CD31, an endothelial cell marker; cytokeratin 18; alpha-actin, a smooth muscle marker; CD140a or platelet-derived growth factor receptor-alpha; and Clara cell protein 10. There was also evidence of site-specific differentiation in the trachea with the formation of sheets of cytokeratin-positive cells and Clara cell protein 10-expressing Clara cells. Our findings support the utility of AC lung as a matrix for engineering lung tissue and highlight the critical role played by matrix or scaffold-associated cues in guiding ESC differentiation toward lung-specific lineages.

  19. PDGFRB Promotes Liver Metastasis Formation of Mesenchymal-Like Colorectal Tumor Cells

    Directory of Open Access Journals (Sweden)

    Ernst J.A. Steller

    2013-02-01

    Full Text Available In epithelial tumors, the platelet-derived growth factor receptor B (PDGFRB is mainly expressed by stromal cells of mesenchymal origin. Tumor cells may also acquire PDGFRB expression following epithelial-to-mesenchymal transition (EMT, which occurs during metastasis formation. Little is known about PDGFRB signaling in colorectal tumor cells. We studied the relationship between PDGFRB expression, EMT, and metastasis in human colorectal cancer (CRC cohorts by analysis of gene expression profiles. PDGFRB expression in primary CRC was correlated with short disease-free and overall survival. PDGFRB was co-expressed with genes involved in platelet activation, transforming growth factor beta (TGFB signaling, and EMT in three CRC cohorts. PDGFRB was expressed in mesenchymal-like tumor cell lines in vitro and stimulated invasion and liver metastasis formation in mice. Platelets, a major source of PDGF, preferentially bound to tumor cells in a non-activated state. Platelet activation caused robust PDGFRB tyrosine phosphorylation on tumor cells in vitro and in liver sinusoids in vivo. Platelets also release TGFB, which is a potent inducer of EMT. Inhibition of TGFB signaling in tumor cells caused partial reversion of the mesenchymal phenotype and strongly reduced PDGFRB expression and PDGF-stimulated tumor cell invasion. These results suggest that PDGFRB may contribute to the aggressive phenotype of colorectal tumors with mesenchymal properties, most likely downstream of platelet activation and TGFB signaling.

  20. Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

    Science.gov (United States)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T; Darnell, Max C; Desai, Rajiv; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N; Mooney, David J.

    2015-01-01

    The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate1. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype2–4. Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials5–7, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. PMID:26366848

  1. The enamel matrix derivative (Emdogain) enhances human tongue carcinoma cells gelatinase production, migration and metastasis formation.

    Science.gov (United States)

    Laaksonen, Matti; Suojanen, Juho; Nurmenniemi, Sini; Läärä, Esa; Sorsa, Timo; Salo, Tuula

    2008-08-01

    Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment to regenerate lost connective tissue and to improve the attachment of the teeth. Gelatinases (MMP-2 and -9) have an essential role in the promotion and progression of oral cancer growth and metastasis formation. We studied the effects of EMD on human tongue squamous cell carcinoma (HSC-3) cells in vitro and in vivo. In vitro, EMD (100 microg/ml and 200 microg/ml) remarkably induced the MMP-2 and -9 production from HSC-3 cells analysed by zymography and enzyme-linked immunosorbent assay. EMD also slightly induced the MMP-2 and -9 production from benign human mucosal keratinocytes (HMK). Furthermore, EMD clearly induced the transmigration of HSC-3 cells but had no effect on the HMK migration in transwell assays. The in vitro wound closure of HSC-3 cells was notably accelerated by EMD, whereas it had only minor effect on the wound closure of HMKs. The migration of both cell lines was inhibited by a selective cyclic anti-gelatinolytic peptide CTT-2. EMD had no effect on HSC-3 cell proliferation or apoptosis and only a limited effect on cell attachment to various extracellular matrix components. The in vivo mice experiment revealed that EMD substantially induced HSC-3 xenograft metastasis formation. Our results suggest that the use of EMD for patients with oral mucosal carcinomas or premalignant lesions should be carefully considered, possibly avoided.

  2. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    Science.gov (United States)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  3. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  4. Effects of hematopoietic growth factors on in vitro colony formation by human megakaryocyte progenitor cells.

    Science.gov (United States)

    Lu, L; Bruno, E; Briddell, R A; Graham, C D; Brandt, J E; Hoffman, R

    1988-08-01

    In order to study the effects of recombinant and purified hematopoietic growth factors on megakaryocyte (MK) progenitor cells (CFU-MK), enriched populations of human CFU-MK were isolated utilizing fluorescence activated cell sorting after labelling of cells with monoclonal antibodies exhibiting specificity to the My10 (HPCA-1) antigen and the major histocompatibility (MHC) class II (HLA-DR) locus. The CFU-MK cloning efficiency (CE) was 1.1 +/- 0.5% for cells expressing both high densities of My10 and low densities of HLA-DR (My10 DR+). This procedure resulted in an 18 fold increase in CE over NALT- cells. The effects of natural or recombinant human hematopoietic growth factors including erythropoietin (Epo), thrombocytopoiesis stimulating factor (TSF), interleukin 1 alpha (IL-1 alpha), granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (CSF-1), and interleukin 3 (IL-3) on MK colony formation by My10 DR+ cells were determined utilizing a defined medium assay system. Neither Epo, TSF, CSF-1, IL-1 alpha nor G-CSF alone augmented MK colony formation above baseline (2.5 +/- 0.8 per 5 x 10(3) My10 DR+ cells plated). By contrast, the addition of GM-CSF and IL-3 each increased CFU-MK colony formation with maximal stimulation occurring following the addition of 200 units/ml of IL-3 and 100 units/ml of GM-CSF. At maximal concentration, IL-3 had a greater ability to promote megakaryocyte colony formation than GM-CSF.

  5. Loss of E-cadherin disrupts ovarian epithelial inclusion cyst formation and collective cell movement in ovarian cancer cells.

    Science.gov (United States)

    Choi, Pui-Wah; Yang, Junzheng; Ng, Shu-Kay; Feltmate, Colleen; Muto, Michael G; Hasselblatt, Kathleen; Lafferty-Whyte, Kyle; JeBailey, Lellean; MacConaill, Laura; Welch, William R; Fong, Wing-Ping; Berkowitz, Ross S; Ng, Shu-Wing

    2016-01-26

    Increased inclusion cyst formation in the ovary is associated with ovarian cancer development. We employed in vitro three-dimensional (3D) organotypic models formed by normal human ovarian surface epithelial (OSE) cells and ovarian cancer cells to study the morphologies of normal and cancerous ovarian cortical inclusion cysts and the molecular changes during their transitions into stromal microenvironment. When compared with normal cysts that expressed tenascin, the cancerous cysts expressed high levels of laminin V and demonstrated polarized structures in Matrigel; and the cancer cells migrated collectively when the cyst structures were positioned in a stromal-like collagen I matrix. The molecular markers identified in the in vitro 3D models were verified in clinical samples. Network analysis of gene expression of the 3D structures indicates concurrent downregulation of transforming growth factor beta pathway genes and high levels of E-cadherin and microRNA200 (miR200) expression in the cancerous cysts and the migrating cancer cells. Transient silencing of E-cadherin expression in ovarian cancer cells disrupted cyst structures and inhibited collective cell migration. Taken together, our studies employing 3D models have shown that E-cadherin is crucial for ovarian inclusion cyst formation and collective cancer cell migration.

  6. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  7. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Directory of Open Access Journals (Sweden)

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  8. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    Science.gov (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  9. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  10. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling

    Science.gov (United States)

    Arora, Pamma D.; Wang, Yongqiang; Bresnick, Anne; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts. PMID:25877872

  11. Cell Stratification, Spheroid Formation and Bioscaffolds Used to Grow Cells in Three Dimensional Cultures

    Directory of Open Access Journals (Sweden)

    Hana Hrebíková

    2015-12-01

    Full Text Available The cell culture became an invaluable tool for studying cell behaviour, development, function, gene expression, toxicity of compounds and efficacy of novel drugs. Although most results were obtained from cell cultivation in two-dimensional (2D systems, in which cells are grown in a monolayer, three-dimensional (3D cultures are more promising as they correspond closely to the native arrangement of cells in living tissues. In our study, we focused on three types of 3D in vitro systems used for cultivation of one cell type. Cell morphology, their spatial distribution inside of resulting multicellular structures and changes in time were analysed with histological examination of samples harvested at different time periods. In multilayered cultures of WRL 68 hepatocytes grown on semipermeable membranes and non-passaged neurospheres generated by proliferation of neural progenitor cells, the cells were tightly apposed, showed features of cell differentiation but also cell death that was observable in short-term cultures. Biogenic scaffolds composed of extracellular matrix of the murine tibial anterior muscle were colonized with C2C12 myoblasts in vitro. The recellularized scaffolds did not reach high cell densities comparable with the former systems but supported well cell anchorage and migration without any signs of cell regression.

  12. Tumor necrosis factor-α can induce Langhans-type multinucleated giant cell formation derived from myeloid dendritic cells.

    Science.gov (United States)

    Yasui, Kozo; Yashiro, Masato; Tsuge, Mitsuru; Kondo, Yohichi; Saito, Yukie; Nagaoka, Yoshiharu; Yamashita, Nobuko; Morishima, Tsuneo

    2011-11-01

    The formation of the rich cellular features of MGCs, where the nuclei are arranged circularly at the periphery of the cell (morphologically epithelioid; Langhans-type), is assumed to be associated with any granulomatous disease. The mechanism by which TNF controls the formation of human MGCs in vitro was investigated, focusing on the effect of the TNF-neutralizing antibody. Peripheral blood monocytes were isolated with mAb-coated immunologic magnetic beads and cultured for 10 days in the presence of 20 ng/mL GM-CSF and 10 ng/mL IL-4. These cells were further incubated in the presence of TNF-α with/without its blockade antibodies for 14 days. Myeloid DCs can be generated from peripheral blood monocytes, and both IL-4 and GM-CSF can provide sufficient stimulus for their differentiation. The formation of MGC can be induced in the presence of TNF-α. This reaction was prohibited by the presence of the TNF-neutralizing antibody but not by the presence of anti-TNF receptor II antibody. The activation of Rho and focal adhesion kinases induced by TNF-α stimulation might be linked to cell assembling and the formation of Langhans-type MGCs. MGCs can produce only small amounts of superoxide anions compared to isolated macrophages such as myeloid DCs. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  13. Formation of Nanoscale Bioimprints of Muscle Cells Using UV-Cured Spin-Coated Polymers

    Directory of Open Access Journals (Sweden)

    Fahmi Samsuri

    2009-01-01

    Full Text Available We report a nanoscale replication method suitable for biological specimens that has potential in single cell studies and in formation of 3D biocompatible scaffolds. Earlier studies using a heat-curable polydimethylsiloxane (PDMS or a UV-curable elastomer introduced Bioimprint replication to facilitate cell imaging. However, the replicating conditions for thermal polymerization are known to cause cell dehydration during curing. In this study, a UV-cured methacrylate copolymer was developed for use in creating replicas of living cells and was tested on rat muscle cells. Bioimprints of muscle cells were formed by spin coating under UV irradiation. The polymer replicas were then separated from the muscle cells and were analyzed under an Atomic Force Microscope (AFM, in tapping mode, because it has low tip-sample forces and thus will not destroy the fine structures of the imprint. The new polymer is biocompatible with higher replication resolution and has a faster curing process than other types of silicon-based organic polymers such as PDMS. High resolution images of the muscle cell imprints showed the micro-and nanostructures of the muscle cells, including cellular fibers and structures within the cell membranes. The AFM is able to image features at nanoscale resolution with the potential for recognizing abnormalities on cell membranes at early stages of disease progression.

  14. The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels.

    Science.gov (United States)

    Ngo, Mai T; Harley, Brendan A

    2017-09-22

    Glioblastoma (GBM) is the most common and deadly form of brain cancer. Interactions between GBM cells and vasculature in vivo contribute to poor clinical outcomes, with GBM-induced vessel co-option, regression, and subsequent angiogenesis strongly influencing GBM invasion. Here, elements of the GBM perivascular niche are incorporated into a methacrylamide-functionalized gelatin hydrogel as a means to examine GBM-vessel interactions. The complexity of 3D endothelial cell networks formed from human umbilical vein endothelial cells and normal human lung fibroblasts as a function of hydrogel properties and vascular endothelial growth factor (VEGF) presentation is presented. While overall length and branching of the endothelial cell networks decrease with increasing hydrogel stiffness and incorporation of brain-mimetic hyaluronic acid, it can be separately altered by changing the vascular cell seeding density. It is shown that covalent incorporation of VEGF supports network formation as robustly as continuously available soluble VEGF. The impact of U87-MG GBM cells on the endothelial cell networks is subsequently investigated. GBM cells localize in proximity to the endothelial cell networks and hasten network regression in vitro. Together, this in vitro platform recapitulates the close association between GBM cells and vessel structures as well as elements of vessel co-option and regression preceding angiogenesis in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration.

    Science.gov (United States)

    Yoon, Mi Young; Lee, Kang-Mu; Park, Yongjin; Yoon, Sang Sun

    2011-01-18

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.

  17. DAZL Expression Explains Origin and Central Formation of Primordial Germ Cells in Chickens.

    Science.gov (United States)

    Lee, Hyung Chul; Choi, Hee Jung; Lee, Hyo Gun; Lim, Jeong Mook; Ono, Tamao; Han, Jae Yong

    2016-01-01

    The timing and biological events associated with germ cell specification in chickens have not been determined yet. In this study, we report the origin of primordial germ cells (PGCs) and germ plasm dynamics through investigation of the expression of the chicken homolog of deleted in azoospermia-like (cDAZL) gene during germ cell specification. Asymmetric localization of germ plasm in the center of oocytes from preovulatory follicle stages leads to PGCs being formed in the center. During cleavage stages, DAZL expression pattern changes from a subcellular localization to a diffuse form before and after zygotic genome activation. Meanwhile, PGCs exhibit transcriptional active status during their specification. In addition, knockdown studies of cDAZL, which result in reduced proliferation, aberrant gene expression profiles, and PGC apoptosis in vitro, suggest its possible roles for PGC formation in chicken. In conclusion, DAZL expression reveals formation and initial positioning of PGCs in chickens.

  18. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development.

    Directory of Open Access Journals (Sweden)

    Ariane Willems

    2010-11-01

    Full Text Available The observation that mice with a selective ablation of the androgen receptor (AR in Sertoli cells (SC (SCARKO mice display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin. Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2. It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

  19. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells

    Science.gov (United States)

    Boyd, Nolan L.; Park, Heonyong; Yi, Hong; Boo, Yong Chool; Sorescu, George P.; Sykes, Michelle; Jo, Hanjoong

    2003-01-01

    Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.

  20. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium.

    Science.gov (United States)

    Bernardi, Martina; Adami, Valentina; Albiero, Elena; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2014-03-01

    Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Metformin increases mitochondrial energy formation in L6 muscle cell cultures.

    Science.gov (United States)

    Vytla, Veeravenkata S; Ochs, Raymond S

    2013-07-12

    A popular hypothesis for the action of metformin, the widely used anti-diabetes drug, is the inhibition of mitochondrial respiration, specifically at complex I. This is consistent with metformin stimulation of glucose uptake by muscle and inhibition of gluconeogenesis by liver. Yet, mitochondrial inhibition is inconsistent with metformin stimulation of fatty acid oxidation in both tissues. In this study, we measured mitochondrial energy production in intact cells adapting an in vivo technique of phosphocreatine (PCr) formation following energy interruption ("PCr recovery") to cell cultures. Metformin increased PCr recovery from either dinitrophenol (DNP) or azide in L6 cells. We found that metformin alone had no effect on cell viability as measured by total ATP concentration, trypan blue exclusion, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction. However, treatments with low concentrations of DNP or azide reversibly decreased ATP concentration. Metformin increased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction during recovery from either agent. Viability measured by trypan blue exclusion indicated that cells were intact under these conditions. We also found that metformin increased free AMP and, to a smaller extent, free ADP concentrations in cells, an action that was duplicated by a structurally unrelated AMP deaminase inhibitor. We conclude that, in intact cells, metformin can lead to a stimulation of energy formation, rather than an inhibition.

  2. Vesicle formation in the membrane of onion cells (Allium cepa) during rapid osmotic dehydration.

    Science.gov (United States)

    Assani, Akym; Moundanga, Sylvie; Beney, Laurent; Gervais, Patrick

    2009-12-01

    Optimization of osmotic dehydration in different plant cells has been investigated through the variation of parameters such as the nature of the sugar used, the concentration of osmotic solutions and the processing time. In micro-organisms such as the yeast, Saccharomyces cerevisiae, the exposure of a cell to a slow increase in osmotic pressure preserves cell viability after rehydration, while sudden dehydration involves a lower rate of cell viability, which could be due to membrane vesiculation. The aim of this work is to study cytoplasmic vesicle formation in onion epidermal cells (Allium cepa) as a function of the kinetics of osmotic pressure variation in the external medium. Onion epidermal cells were submitted either to an osmotic shock or to a progressive osmotic shift from an osmotic pressure of 2 to 24 MPa to induce plasmolysis. After 30 min in the treatment solution, deplasmolysis was carried out. Cells were observed by microscopy during the whole cycle of dehydration-rehydration. The application of an osmotic shock to onion cells, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for osmotic shift, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for 30 min, no vesicles were observed. Additionally, the absence of Hechtian strand connections led to the bursting of vesicles in the case of the osmotic shock. It is concluded that the kinetics of osmotic dehydration strongly influence vesicle formation in onion cells, and that Hechtian strand connections between protoplasts and exocytotic vesicles are a prerequisite for successful deplasmolysis. These results suggest that a decrease in the area-to-volume ratio of a cell could cause cell death following an osmotic shock.

  3. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation.

    Science.gov (United States)

    Von Offenberg Sweeney, Nicholas; Cummins, Philip M; Cotter, Eoin J; Fitzpatrick, Paul A; Birney, Yvonne A; Redmond, Eileen M; Cahill, Paul A

    2005-04-08

    Hemodynamic forces exerted by blood flow (cyclic strain, shear stress) affect the initiation and progression of angiogenesis; however, the precise signaling mechanism(s) involved are unknown. In this study, we examine the role of cyclic strain in regulating bovine aortic endothelial cell (BAEC) migration and tube formation, indices of angiogenesis. Considering their well-documented mechanosensitivity, functional inter-dependence, and involvement in angiogenesis, we hypothesized roles for matrix metalloproteinases (MMP-2/9), RGD-dependent integrins, and urokinase plasminogen activator (uPA) in this process. BAECs were exposed to equibiaxial cyclic strain (5% strain, 1Hz for 24h) before their migration and tube formation was assessed by transwell migration and collagen gel tube formation assays, respectively. In response to strain, both migration and tube formation were increased by 1.83+/-0.1- and 1.84+/-0.1-fold, respectively. Pertussis toxin, a Gi-protein inhibitor, decreased strain-induced migration by 45.7+/-32% and tube formation by 69.8+/-13%, whilst protein tyrosine kinase (PTK) inhibition with genistein had no effect. siRNA-directed attenuation of endothelial MMP-9 (but not MMP-2) expression/activity decreased strain-induced migration and tube formation by 98.6+/-41% and 40.7+/-31%, respectively. Finally, integrin blockade with cRGD peptide and siRNA-directed attenuation of uPA expression reduced strain-induced tube formation by 85.7+/-15% and 84.7+/-31%, respectively, whilst having no effect on migration. Cyclic strain promotes BAEC migration and tube formation in a Gi-protein-dependent PTK-independent manner. Moreover, we demonstrate for the first time a putative role for MMP-9 in both strain-induced events, whilst RGD-dependent integrins and uPA appear only to be involved in strain-induced tube formation.

  4. Macrophage Liver Kinase B1 Inhibits Foam Cell Formation and Atherosclerosis.

    Science.gov (United States)

    Liu, Zhaoyu; Zhu, Huaiping; Dai, Xiaoyan; Wang, Cheng; Ding, Ye; Song, Ping; Zou, Ming-Hui

    2017-10-13

    LKB1 (liver kinase B1) is a serine/threonine kinase and tumor suppressor, which regulates the homeostasis of hematopoietic cells and immune responses. Macrophages transform into foam cells upon taking-in lipids. No role for LKB1 in foam cell formation has previously been reported. We sought to establish the role of LKB1 in atherosclerotic foam cell formation. LKB1 expression was examined in human carotid atherosclerotic plaques and in western diet-fed atherosclerosis-prone Ldlr -/- and ApoE -/- mice. LKB1 expression was markedly reduced in human plaques when compared with nonatherosclerotic vessels. Consistently, time-dependent reduction of LKB1 levels occurred in atherosclerotic lesions in western diet-fed Ldlr -/- and ApoE -/- mice. Exposure of macrophages to oxidized low-density lipoprotein downregulated LKB1 in vitro. Furthermore, LKB1 deficiency in macrophages significantly increased the expression of SRA (scavenger receptor A), modified low-density lipoprotein uptake and foam cell formation, all of which were abolished by blocking SRA. Further, we found LKB1 phosphorylates SRA resulting in its lysosome degradation. To further investigate the role of macrophage LKB1 in vivo, ApoE -/- LKB1 fl/fl LysM cre and ApoE -/- LKB1 fl/fl mice were fed with western diet for 16 weeks. Compared with ApoE -/- LKB1 fl/fl wild-type control, ApoE -/- LKB1 fl/fl LysM cre mice developed more atherosclerotic lesions in whole aorta and aortic root area, with markedly increased SRA expression in aortic root lesions. We conclude that macrophage LKB1 reduction caused by oxidized low-density lipoprotein promotes foam cell formation and the progression of atherosclerosis. © 2017 American Heart Association, Inc.

  5. Involvement of cell surface sugars in recognition, attachment, and appressorium formation by a mycoparasite.

    Science.gov (United States)

    Manocha, M S; Chen, Y; Rao, N

    1990-11-01

    Fluorescein isothiocyanate labeled lectin binding techniques have revealed differences in the distribution pattern of glycosyl residues at the cell wall level between fungi that are hosts and those that are nonhosts of the mycoparasite Piptocephalis virginiana, and at the protoplast level between compatible and incompatible hosts. The cell wall of the compatible hosts (Choanephora cucurbitarum and Mortierella pusilla) and an incompatible host (Phascolomyces articulosus), as well as that of the mycoparasite itself, contains glucose and N-acetylglucosamine. However, the cell wall of a nonhost (Mortierella candelabrum) tested positive with lectins specific for various sugars, including not only glucose and N-acetylglucosamine, but also fucose, N-acetylgalactosamine, and galactose. These latter sugars could also be exposed at the surfaces of hosts and of the mycoparasite, but only after mild treatment with proteinase or when grown in a liquid culture. Pretreatment of the mycoparasite with glucose and N-acetylglucosamine inhibited its attachment to the host cell surface, but had no obvious effect on appressorium formation. On the other hand, appressorium formation was inhibited by heat treatment of host cell wall fragments which still permitted attachment, thus indicating that the factors responsible for attachment and for appressorium formation are different. The protoplast surfaces of compatible hosts contained all the sugars listed above and these protoplasts could attach to the germ tube of the mycoparasite. Only lectins specific for N-acetylglucosamine and for glucose were bound at the protoplast surface of the incompatible host; these protoplasts did not attach to the mycoparasite germ tube. Key words: mycoparasite, appressorium formation, lectins, host cell surface, attachment, protoplast surface.

  6. Trypanosoma cruzi: Entry Into Mammalian Host Cells and Parasitophorous Vacuole Formation

    Directory of Open Access Journals (Sweden)

    Emile Santos Barrias

    2013-08-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T.cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T.cruzi with phagocytic or non-phagocytic cell types, plasma membrane protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes and lysosomes, participate in the formation of the nascent parasithophorous vacuole (VP. Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the parasitophorous vacuole release from the host cell plasma membrane. This review focuses on the multiple pathways that T.cruzi can use to enter the host cells until complete VP formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss other mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair.

  7. PPARγ negatively regulates T cell activation to prevent follicular helper T cells and germinal center formation.

    Science.gov (United States)

    Park, Hong-Jai; Kim, Do-Hyun; Choi, Jin-Young; Kim, Won-Ju; Kim, Ji Yun; Senejani, Alireza G; Hwang, Soo Seok; Kim, Lark Kyun; Tobiasova, Zuzana; Lee, Gap Ryol; Craft, Joseph; Bothwell, Alfred L M; Choi, Je-Min

    2014-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates lipid and glucose metabolism. Although studies of PPARγ ligands have demonstrated its regulatory functions in inflammation and adaptive immunity, its intrinsic role in T cells and autoimmunity has yet to be fully elucidated. Here we used CD4-PPARγKO mice to investigate PPARγ-deficient T cells, which were hyper-reactive to produce higher levels of cytokines and exhibited greater proliferation than wild type T cells with increased ERK and AKT phosphorylation. Diminished expression of IκBα, Sirt1, and Foxo1, which are inhibitors of NF-κB, was observed in PPARγ-deficient T cells that were prone to produce all the signature cytokines under Th1, Th2, Th17, and Th9 skewing condition. Interestingly, 1-year-old CD4-PPARγKO mice spontaneously developed moderate autoimmune phenotype by increased activated T cells, follicular helper T cells (TFH cells) and germinal center B cells with glomerular inflammation and enhanced autoantibody production. Sheep red blood cell immunization more induced TFH cells and germinal centers in CD4-PPARγKO mice and the T cells showed increased of Bcl-6 and IL-21 expression suggesting its regulatory role in germinal center reaction. Collectively, these results suggest that PPARγ has a regulatory role for TFH cells and germinal center reaction to prevent autoimmunity.

  8. INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma.

    Science.gov (United States)

    Yang, N; Leung, E L-H; Liu, C; Li, L; Eguether, T; Jun Yao, X-J; Jones, E C; Norris, D A; Liu, A; Clark, R A; Roop, D R; Pazour, G J; Shroyer, K R; Chen, J

    2017-08-31

    Inturned (INTU), a cilia and planar polarity effector, performs prominent ciliogenic functions during morphogenesis, such as in the skin. INTU is expressed in adult tissues but its role in tissue maintenance is unknown. Here, we report that the expression of the INTU gene is aberrantly elevated in human basal cell carcinoma (BCC), coinciding with increased primary cilia formation and activated hedgehog (Hh) signaling. Disrupting Intu in an oncogenic mutant Smo (SmoM2)-driven BCC mouse model prevented the formation of BCC through suppressing primary cilia formation and Hh signaling, suggesting that Intu performs a permissive role during BCC formation. INTU is essential for intraflagellar transport A complex assembly during ciliogenesis. To further determine whether Intu is directly involved in the activation of Hh signaling downstream of ciliogenesis, we examined the Hh signaling pathway in mouse embryonic fibroblasts, which readily responds to the Hh pathway activation. Depleting Intu blocked Smo agonist-induced Hh pathway activation, whereas the expression of Gli2ΔN, a constitutively active Gli2, restored Hh pathway activation in Intu-deficient cells, suggesting that INTU functions upstream of Gli2 activation. In contrast, overexpressing Intu did not promote ciliogenesis or Hh signaling. Taken together, data obtained from this study suggest that INTU is indispensable during BCC tumorigenesis and that its aberrant upregulation is likely a prerequisite for primary cilia formation during Hh-dependent tumorigenesis.

  9. Thalidomide prevents formation of multinucleated giant cells (Langhans-type cells) from cultured monocytes: possible pharmaceutical applications for granulomatous disorders.

    Science.gov (United States)

    Yasui, K; Yashiro, M; Nagaoka, Y; Manki, A; Wada, T; Tsuge, M; Kondo, Y; Morishima, T

    2009-01-01

    Thalidomide is an effective drug for chronic inflammatory diseases, but the mechanism underlying its immunomodulatory action remains uncertain. Thalidomide has been reported to clinically improve chronic inflammatory granulomatous disorders. In such disorders, the granulomas consist of epithelioid cells, scattered lymphocytes and multinucleated giant cells (MNGC; Langhans-type cells). The present experimental approach permitted the reproduction of MNGC formation from peripheral blood monocytes and examination of thalidomides effect on it. MNGC can be effectively generated from monocytes cultured in the presence of interleukin-4 (IL-4) and macrophage colony-stimulating factor(M-CSF) for 14 days. Thalidomide can inhibit the formation of MNGC in a dose-dependent manner. MNGC formation was partly inhibited by the presence of neutralizing TNF-alpha antibody in the responses induced by IL-4 and M-CSF. Autocrinal TNF-alpha production and modulation of cadhelin expression to regulate cell adhesion might be involved in this inhibitory action of thalidomide. Our results support thalidomides clinical efficacy in the treatment of chronic granulomatous disorders (granulomatosis).

  10. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials.

    Science.gov (United States)

    Rao, Rameshwar R; Peterson, Alexis W; Ceccarelli, Jacob; Putnam, Andrew J; Stegemann, Jan P

    2012-06-01

    Co-cultures of endothelial cells (EC) and mesenchymal stem cells (MSC) in three-dimensional (3D) protein hydrogels can be used to recapitulate aspects of vasculogenesis in vitro. MSC provide paracrine signals that stimulate EC to form vessel-like structures, which mature as the MSC transition to the role of mural cells. In this study, vessel-like network formation was studied using 3D collagen/fibrin (COL/FIB) matrices seeded with embedded EC and MSC and cultured for 7 days. The EC:MSC ratio was varied from 5:1, 3:2, 1:1, 2:3 and 1:5. The matrix composition was varied at COL/FIB compositions of 100/0 (pure COL), 60/40, 50/50, 40/60 and 0/100 (pure FIB). Vasculogenesis was markedly decreased in the highest EC:MSC ratio, relative to the other cell ratios. Network formation increased with increasing fibrin content in composite materials, although the 40/60 COL/FIB and pure fibrin materials exhibited the same degree of vasculogenesis. EC and MSC were co-localized in vessel-like structures after 7 days and total cell number increased by approximately 70%. Mechanical property measurements showed an inverse correlation between matrix stiffness and network formation. The effect of matrix stiffness was further investigated using gels made with varying total protein content and by crosslinking the matrix using the dialdehyde glyoxal. This systematic series of studies demonstrates that matrix composition regulates vasculogenesis in 3D protein hydrogels, and further suggests that this effect may be caused by matrix mechanical properties. These findings have relevance to the study of neovessel formation and the development of strategies to promote vascularization in transplanted tissues.

  11. In silico analysis of microdomain-mediated trimer formation in the T cell membrane

    Science.gov (United States)

    Long, E.; Henderson, B.; Zaikin, A.

    2010-09-01

    We consider stochastic reaction-diffusion dynamics involved in the formation of a trimeric protein receptor complex, where diffusion is modulated by the presence of small, fixed membrane microdomains. Compartmentalisation of cell membrane signalling proteins may optimise signal transduction but previous modelling work suggests that signalling is only augmented if microdomains are highly mobile. Using a Gillespie algorithm-based spatial numerical simulation, we examine the effect of the presence, size and total coverage of microdomains, which either slow protein diffusion or trap proteins at their boundary. We examine scenarios where protein-protein interactions take place within microdomains, and also where interactions are favoured at the microdomain boundary. This model is motivated by the formation of the high-affinity receptor for the cytokine IL-2. Proliferation requires a threshold number of bound receptors, but pleiotropic effects of IL-2 on other cell types means that high ligand concentrations are undesirable. Hence, optimising T cell sensitivity to IL-2 is essential. In agreement with earlier models, we find that small microdomain sizes result in the greatest augmentation in receptor formation, but that static microdomains can also confer an increased sensitivity in the case of heterotrimeric receptor complex formation.

  12. Targeting cell surface HIV-1 Env protein to suppress infectious virus formation

    Science.gov (United States)

    Bastian, Arangassery Rosemary; Ang, Charles G.; Kamanna, Kantharaju; Shaheen, Farida; Huang, Yu-Hung; McFadden, Karyn; Duffy, Caitlin; Bailey, Lauren D.; Sundaram, Ramalingam Venkat Kalyana; Chaiken, Irwin

    2017-01-01

    HIV-1 Env protein is essential for host cell entry, and targeting Env remains an important antiretroviral strategy. We previously found that a peptide triazole thiol KR13 and its gold nanoparticle conjugate AuNP-KR13 directly and irreversibly inactivate the virus by targeting the Env protein, leading to virus gp120 shedding, membrane disruption and p24 capsid protein release. Here, we examined the consequences of targeting cell-surface Env with the virus inactivators. We found that both agents led to formation of non-infectious virus from transiently transfected 293T cells. The budded non-infectious viruses lacked Env gp120 but contained gp41. Importantly, budded virions also retained the capsid protein p24, in stark contrast to p24 leakage from viruses directly treated by these agents and arguing that the agents led to deformed viruses by transforming the cells at a stage before virus budding. We found that the Env inactivators caused gp120 shedding from the transiently transfected 293T cells as well as non-producer CHO-K1-gp160 cells. Additionally, AuNP-KR13 was cytotoxic against the virus-producing 293T and CHO-K1-gp160 cells, but not untransfected 293T or unmodified CHO-K1 cells. The results obtained reinforce the argument that cell-surface HIV-1 Env is metastable, as on virus particles, and provides a conformationally vulnerable target for virus suppression and infectious cell inactivation. PMID:28390972

  13. Golgi structure formation, function, and post-translational modifications in mammalian cells.

    Science.gov (United States)

    Huang, Shijiao; Wang, Yanzhuang

    2017-01-01

    The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.

  14. Coupled RNA polymerase II transcription and 3′ end formation with yeast whole-cell extracts

    OpenAIRE

    Mariconti, Luisa; Loll, Bernhard; Schlinkmann, Karola; Wengi, Agnieszka; Meinhart, Anton; Dichtl, Bernhard

    2010-01-01

    RNA polymerase II (RNAP II) transcription and pre-mRNA 3′ end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3′ end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of trans...

  15. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells

    Directory of Open Access Journals (Sweden)

    Jacob Eshel

    2008-02-01

    Full Text Available Abstract Background Swarming motility allows microorganisms to move rapidly over surfaces. The Gram-positive bacterium Paenibacillus vortex exhibits advanced cooperative motility on agar plates resulting in intricate colonial patterns with geometries that are highly sensitive to the environment. The cellular mechanisms that underpin the complex multicellular organization of such a simple organism are not well understood. Results Swarming by P. vortex was studied by real-time light microscopy, by in situ scanning electron microscopy and by tracking the spread of antibiotic-resistant cells within antibiotic-sensitive colonies. When swarming, P. vortex was found to be peritrichously flagellated. Swarming by the curved cells of P. vortex occurred on an extremely wide range of media and agar concentrations (0.3 to 2.2% w/v. At high agar concentrations (> 1% w/v rotating colonies formed that could be detached from the main mass of cells by withdrawal of cells into the latter. On lower percentage agars, cells moved in an extended network composed of interconnected "snakes" with short-term collision avoidance and sensitivity to extracts from swarming cells. P. vortex formed single Petri dish-wide "supercolonies" with a colony-wide exchange of motile cells. Swarming cells were coupled by rapidly forming, reversible and non-rigid connections to form a loose raft, apparently connected via flagella. Inhibitors of swarming (p-Nitrophenylglycerol and Congo Red were identified. Mitomycin C was used to trigger filamentation without inhibiting growth or swarming; this facilitated dissection of the detail of swarming. Mitomycin C treatment resulted in malcoordinated swarming and abortive side branch formation and a strong tendency by a subpopulation of the cells to form minimal rotating aggregates of only a few cells. Conclusion P. vortex creates complex macroscopic colonies within which there is considerable reflux and movement and interaction of cells. Cell

  16. Prevalence of heterotypic tumor/immune cell-in-cell structure in vitro and in vivo leading to formation of aneuploidy.

    Science.gov (United States)

    Chen, Yu-hui; Wang, Shan; He, Mei-fang; Wang, Yanyi; Zhao, Hua; Zhu, Han-yu; Yu, Xiao-min; Ma, Jian; Che, Xiao-juan; Wang, Ju-fang; Wang, Ying; Wang, Xiao-ning

    2013-01-01

    Cell-in-cell structures refer to a unique phenomenon that one living cell enters into another living cell intactly, occurring between homotypic tumor cells or tumor (or other tissue cells) and immune cells (named as heterotypic cell-in-cell structure). In the present study, through a large scale of survey we observed that heterotypic cell-in-cell structure formation occurred commonly in vitro with host cells derived from different human carcinomas as well as xenotypic mouse tumor cell lines. Most of the lineages of human immune cells, including T, B, NK cells, monocytes as well as in vitro activated LAK cells, were able to invade tumor cell lines. Poorly differentiated stem cells were capable of internalizing immune cells as well. More significantly, heterotypic tumor/immune cell-in-cell structures were observed in a higher frequency in tumor-derived tissues than those in adjacent tissues. In mouse hepatitis models, heterotypic immune cell/hepatocyte cell-in-cell structures were also formed in a higher frequency than in normal controls. After in vitro culture, different forms of internalized immune cells in heterotypic cell-in-cell structures were observed, with one or multiple immune cells inside host cells undergoing resting, degradation or mitosis. More strikingly, some internalized immune cells penetrated directly into the nucleus of target cells. Multinuclear cells with aneuploid nucleus were formed in target tumor cells after internalizing immune cells as well as in situ tumor regions. Therefore, with the prevalence of heterotypic cell-in-cell structures observed, we suggest that shielding of immune cells inside tumor or inflammatory tissue cells implies the formation of aneuploidy with the increased multinucleation as well as fine-tuning of microenvironment under pathological status, which may define distinct mechanisms to influence the etiology and progress of tumors.

  17. Prevalence of heterotypic tumor/immune cell-in-cell structure in vitro and in vivo leading to formation of aneuploidy.

    Directory of Open Access Journals (Sweden)

    Yu-hui Chen

    Full Text Available Cell-in-cell structures refer to a unique phenomenon that one living cell enters into another living cell intactly, occurring between homotypic tumor cells or tumor (or other tissue cells and immune cells (named as heterotypic cell-in-cell structure. In the present study, through a large scale of survey we observed that heterotypic cell-in-cell structure formation occurred commonly in vitro with host cells derived from different human carcinomas as well as xenotypic mouse tumor cell lines. Most of the lineages of human immune cells, including T, B, NK cells, monocytes as well as in vitro activated LAK cells, were able to invade tumor cell lines. Poorly differentiated stem cells were capable of internalizing immune cells as well. More significantly, heterotypic tumor/immune cell-in-cell structures were observed in a higher frequency in tumor-derived tissues than those in adjacent tissues. In mouse hepatitis models, heterotypic immune cell/hepatocyte cell-in-cell structures were also formed in a higher frequency than in normal controls. After in vitro culture, different forms of internalized immune cells in heterotypic cell-in-cell structures were observed, with one or multiple immune cells inside host cells undergoing resting, degradation or mitosis. More strikingly, some internalized immune cells penetrated directly into the nucleus of target cells. Multinuclear cells with aneuploid nucleus were formed in target tumor cells after internalizing immune cells as well as in situ tumor regions. Therefore, with the prevalence of heterotypic cell-in-cell structures observed, we suggest that shielding of immune cells inside tumor or inflammatory tissue cells implies the formation of aneuploidy with the increased multinucleation as well as fine-tuning of microenvironment under pathological status, which may define distinct mechanisms to influence the etiology and progress of tumors.

  18. Prevalence of Heterotypic Tumor/Immune Cell-In-Cell Structure In Vitro and In Vivo Leading to Formation of Aneuploidy

    Science.gov (United States)

    Chen, Yu-hui; Wang, Shan; He, Mei-fang; Wang, Yanyi; Zhao, Hua; Zhu, Han-yu; Yu, Xiao-min; Ma, Jian; Che, Xiao-juan; Wang, Ju-fang; Wang, Ying; Wang, Xiao-ning

    2013-01-01

    Cell-in-cell structures refer to a unique phenomenon that one living cell enters into another living cell intactly, occurring between homotypic tumor cells or tumor (or other tissue cells) and immune cells (named as heterotypic cell-in-cell structure). In the present study, through a large scale of survey we observed that heterotypic cell-in-cell structure formation occurred commonly in vitro with host cells derived from different human carcinomas as well as xenotypic mouse tumor cell lines. Most of the lineages of human immune cells, including T, B, NK cells, monocytes as well as in vitro activated LAK cells, were able to invade tumor cell lines. Poorly differentiated stem cells were capable of internalizing immune cells as well. More significantly, heterotypic tumor/immune cell-in-cell structures were observed in a higher frequency in tumor-derived tissues than those in adjacent tissues. In mouse hepatitis models, heterotypic immune cell/hepatocyte cell-in-cell structures were also formed in a higher frequency than in normal controls. After in vitro culture, different forms of internalized immune cells in heterotypic cell-in-cell structures were observed, with one or multiple immune cells inside host cells undergoing resting, degradation or mitosis. More strikingly, some internalized immune cells penetrated directly into the nucleus of target cells. Multinuclear cells with aneuploid nucleus were formed in target tumor cells after internalizing immune cells as well as in situ tumor regions. Therefore, with the prevalence of heterotypic cell-in-cell structures observed, we suggest that shielding of immune cells inside tumor or inflammatory tissue cells implies the formation of aneuploidy with the increased multinucleation as well as fine-tuning of microenvironment under pathological status, which may define distinct mechanisms to influence the etiology and progress of tumors. PMID:23555668

  19. Formation of AR-SMRT binding in prostate cancer cells treated with natural histone deacetylase inhibitor.

    Science.gov (United States)

    Trtková, Kateřina; Pašková, Lenka; Matiješčuková, Natálie; Kolář, Zdeněk

    2010-01-01

    Signaling through the androgen receptor (AR) plays a critical role in prostate cancer progression. The AR is a classical nuclear receptor (NR) providing a link between signaling molecule and transcription response. Histone deacetylase inhibitors (HDACI) have antiproliferative and proapoptotic effects on prostate cancer cells and their implication in silence AR signaling may have potential therapeutic use. We aimed to study the inhibitory effects of the corepressor SMRT (Silencing Mediator for Retinoid and Thyroid hormone receptors) which forms a complex together with nuclear receptor corepressor (N-CoR) and with histone deacetylase 3 (HDAC3) on AR activity. The androgen-sensitive prostate cancer cell line LNCaP and androgen-insensitive prostate cancer cell line C4-2 both AR-positive, and androgen-insensitive DU145 and PC3 prostate cancer cell lines were treated with two HDACIs, sodium butyrate (NaB) and/or trichostatin A (TSA). We amplified immunoprecipitated DNA by conventional PCR and in the following step we used the chromatin immunoprecipitation (ChIP) analysis coupled with quantitative PCR for monitoring NaB induced formation of AR-SMRT/N-CoR complex binding on the PSA promoter. The co-immunoprecipitation assay revealed increase in AR-SMRT formation in NaB treated cells. Simultaneously, the Western blot analysis showed a significant decrease in AR protein expression. Furthermore, we estimated the reduced presence of HDAC2 and HDAC3 proteins by NaB and TSA treatment in AR-negative DU145 cell line. In conclusion, the inhibitory effect of NaB on AR gene expression seems to be specific and unique for prostate cancer AR-positive cell lines and corresponds with its ability to stimulate AR-SMRT complex formation. We suggest that AR and SMRT/N-CoR corepressors may form a stable complex in vitro and NaB may facilitate the interaction between AR nuclear steroid receptor and SMRT corepressor protein.

  20. [The mechanism of formation of the otoconia in the utricular supporting cells of the guinea pig].

    Science.gov (United States)

    Mori, N

    1997-02-01

    The mechanism of formation of the otocania in the utricular supporting cells of the guinea pig was investigated by means of an organ culture system using the potassium pyroantimonate (PA) precipitation method. The utricular otoconia and the secretory granules and mitochondria in the utricular supporting cells immediately after removal from the animal were positive to PA. When the specimens were treated with ethylene-glycol-0, 0-bis (2-aminoethyl)-N, N, N', N'-tetraacetic acid (EGTA) as a chelater prior to the PA staining, almost all deposits disappeared. This indicates that calcium is the main ion precipitated by the PA method. The utricules of the guinea pig were exposed to 30 mg of streptomycin sulfate per ml for 3 days in culture. The number of large lysosomes which contained vesicles and myeloid bodies in the supporting cells increased. On the other hand, the secretory granules were reduced in the cytoplasm of the supporting cells. Acid phosphatase activity in the lysosomes and the Golgi apparatus decreased. As a result of the PA treatment, these large lysosomes, especially the vesicles which were in them, contained a large quantity of calcium ion. From these findings, I conclude that the mechanism of formation of otoconia is as follows: The area of formation of otoconia is the supporting cells. Globular substances are the precursors of otoconia, and they contain calcium ion which was taken into the supporting cells. These globular substances are made in close relationship among the endplasmic reticula, secretory granules and lysosomes. They are secreted from the supporting cells and form the mature otoconia on the otoconial membrane.

  1. TH2 cells and their cytokines regulate formation and function of lymphatic vessels.

    Science.gov (United States)

    Shin, Kihyuk; Kataru, Raghu P; Park, Hyeung Ju; Kwon, Bo-In; Kim, Tae Woo; Hong, Young Kwon; Lee, Seung-Hyo

    2015-02-04

    Lymphatic vessels (LVs) are critical for immune surveillance and involved in the pathogenesis of diverse diseases. LV density is increased during inflammation; however, little is known about how the resolution of LVs is controlled in different inflammatory conditions. Here we show the negative effects of T helper type 2 (TH2) cells and their cytokines on LV formation. IL-4 and IL-13 downregulate essential transcription factors of lymphatic endothelial cells (LECs) and inhibit tube formation. Co-culture of LECs with TH2 cells also inhibits tube formation, but this effect is fully reversed by interleukin (IL)-4 and/or IL-13 neutralization. Furthermore, the in vivo blockade of IL-4 and/or IL-13 in an asthma model not only increases the density but also enhances the function of lung LVs. These results demonstrate an anti-lymphangiogenic function of TH2 cells and their cytokines, suggesting a potential usefulness of IL-4 and/or IL-13 antagonist as therapeutic agents for allergic asthma through expanding LV mediated-enhanced antigen clearance from the inflammatory sites.

  2. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ha Young, E-mail: hayoung@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Sang Doo [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baek, Suk-Hwan [Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Joon Hyuk [Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Cho, Kyung-Hyun [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Zabel, Brian A. [Palo Alto Institute for Research and Education, Veterans Affairs Hospital, Palo Alto, CA 94304 (United States); Bae, Yoe-Sik, E-mail: yoesik@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  3. Differentiation of mouse embryonic stem cells into endoderm without embryoid body formation.

    Directory of Open Access Journals (Sweden)

    Peter T W Kim

    Full Text Available Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes. Herein, we describe a protocol using all-trans-retinoic acid, basic fibroblast growth factor and dibutyryl cAMP (DBcAMP in the absence of embryoid body formation, for differentiation of murine embryonic stem cells into definitive endoderm that may serve as pancreatic precursors. The produced cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, and pancreas. Differentiated cells displayed increased Sox17 and Foxa2 expression consistent with definitive endoderm production. There was minimal production of Sox7, an extraembryonic endoderm marker, and Oct4, a marker of pluripotency. There was minimal mesoderm or neuroectoderm formation based on expression levels of the markers brachyury and Sox1, respectively. Various assays revealed that the cell clusters generated by this protocol express markers of the pancreatic lineage including insulin I, insulin II, C-peptide, PDX-1, carboxypeptidase E, pan-cytokeratin, amylase, glucagon, PAX6, Ngn3 and Nkx6.1. This protocol using all-trans-retinoic acid, DBcAMP, in the absence of embryoid bodies, generated cells that have features of definitive endoderm that may serve as pancreatic endocrine precursors.

  4. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis.

    Science.gov (United States)

    Ackers, Ian; Szymanski, Candice; Duckett, K Jordan; Consitt, Leslie A; Silver, Mitchell J; Malgor, Ramiro

    2018-02-20

    Wnt5a is a highly studied member of the Wnt family and recently has been implicated in the pathogenesis of atherosclerosis, but its precise role is unknown. Foam cell development is a critical process to atherosclerotic plaque formation. In the present study, we investigated the role of noncanonical Wnt5a signaling in the development of foam cells. Human carotid atherosclerotic tissue and THP-1-derived macrophages were used to investigate the contribution of Wnt5a signaling in the formation of foam cells. Immunohistochemistry was used to evaluate protein expression of scavenger receptors and noncanonical Wnt5a receptors [frizzled 5 (Fz5) and receptor tyrosine kinase-like orphan receptor 2 (Ror2)] in human atherosclerotic macrophages/foam cells. Changes in protein expression in response to Wnt5a stimulation/inhibition were determined by Western blot, and lipid accumulation was evaluated by fluorescent lipid droplet staining. Wnt5a (Pfoam cells within the plaque. In vitro studies revealed that Wnt5a significantly increased the expression of the lipid uptake receptor CD36 (P.05). rWnt5a also significantly increased lipid accumulation in THP-1 macrophages (Pfoam cells. Copyright © 2018. Published by Elsevier Inc.

  5. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge.

    Science.gov (United States)

    Arai, Shunto

    2015-12-07

    Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body's internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF) affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process.

  6. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge

    Directory of Open Access Journals (Sweden)

    Shunto Arai

    2015-12-01

    Full Text Available Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body’s internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process.

  7. A Site-Specific Phosphorylation of the Focal Adhesion Kinase Controls the Formation of Spheroid Cell Clusters

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Gosau, Martin; Kristensen, Lars Peter

    2014-01-01

    Human dental follicle cells (DFCs) are ectomesenchymal multipotent stem cells that form spheroid cell clusters (SCCs) under serum free medium cell culture conditions (SFM). Until today, molecular mechanisms for the formation of SCCs are unknown. In this study a quantitative phosphoproteomics...

  8. Ecdysone signalling and ovarian development in insects: from stem cells to ovarian follicle formation.

    Science.gov (United States)

    Belles, Xavier; Piulachs, Maria-Dolors

    2015-02-01

    Although a great deal of information is available concerning the role of ecdysone in insect oogenesis, research has tended to focus on vitellogenesis and choriogenesis. As such, the study of oogenesis in a strict sense has received much less attention. This situation changed recently when a number of observations carried out in the meroistic polytrophic ovarioles of Drosophila melanogaster started to unravel the key roles played by ecdysone in different steps of oogenesis. Thus, in larval stages, a non-autonomous role of ecdysone, first in repression and later in activation, of stem cell niche and primordial germ cell differentiation has been reported. In the adult, ecdysone stimulates the proliferation of germline stem cells, plays a role in stem cell niche maintenance and is needed non-cell-autonomously for correct differentiation of germline stem cells. Moreover, in somatic cells ecdysone is required for 16-cell cyst formation and for ovarian follicle development. In the transition from stages 8 to 9 of oogenesis, ecdysone signalling is fundamental when deciding whether or not to go ahead with vitellogenesis depending on the nutritional status, as well as to start border cell migration. This article is part of a Special Issue entitled: Nuclear receptors in animal development. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells.

    Science.gov (United States)

    Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu

    2017-11-15

    The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  11. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  12. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-12-01

    Full Text Available Hair cell (HC loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway.

  13. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation*

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. PMID:26553874

  14. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    Science.gov (United States)

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  16. Coupled RNA polymerase II transcription and 3' end formation with yeast whole-cell extracts.

    Science.gov (United States)

    Mariconti, Luisa; Loll, Bernhard; Schlinkmann, Karola; Wengi, Agnieszka; Meinhart, Anton; Dichtl, Bernhard

    2010-11-01

    RNA polymerase II (RNAP II) transcription and pre-mRNA 3' end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3' end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of transcription and processing in vitro enhanced pre-mRNA 3' end formation and reproduced requirements for poly(A) signals and polyadenylation factors. Unexpectedly, however, we show that in vitro transcripts lacked m⁷G-caps. Reconstitution experiments with CF IA factor assembled entirely from heterologous components suggested that the CTD interaction domain of the Pcf11 subunit was required for proper RNAP II termination but not 3' end formation. Moreover, we observed reduced termination activity associated with extracts prepared from cells carrying a mutation in the 5'-3' exonuclease Rat1 or following chemical inhibition of exonuclease activity. Thus, in vitro transcription coupled to pre-mRNA processing recapitulates hallmarks of poly(A)-dependent RNAP II termination. The in vitro transcription/processing system presented here should provide a useful tool to further define the role of factors involved in coupling.

  17. Coupled RNA polymerase II transcription and 3′ end formation with yeast whole-cell extracts

    Science.gov (United States)

    Mariconti, Luisa; Loll, Bernhard; Schlinkmann, Karola; Wengi, Agnieszka; Meinhart, Anton; Dichtl, Bernhard

    2010-01-01

    RNA polymerase II (RNAP II) transcription and pre-mRNA 3′ end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3′ end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of transcription and processing in vitro enhanced pre-mRNA 3′ end formation and reproduced requirements for poly(A) signals and polyadenylation factors. Unexpectedly, however, we show that in vitro transcripts lacked m7G-caps. Reconstitution experiments with CF IA factor assembled entirely from heterologous components suggested that the CTD interaction domain of the Pcf11 subunit was required for proper RNAP II termination but not 3′ end formation. Moreover, we observed reduced termination activity associated with extracts prepared from cells carrying a mutation in the 5′-3′ exonuclease Rat1 or following chemical inhibition of exonuclease activity. Thus, in vitro transcription coupled to pre-mRNA processing recapitulates hallmarks of poly(A)-dependent RNAP II termination. The in vitro transcription/processing system presented here should provide a useful tool to further define the role of factors involved in coupling. PMID:20810619

  18. High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide.

    Science.gov (United States)

    Peiró, C; Lafuente, N; Matesanz, N; Cercas, E; Llergo, J L; Vallejo, S; Rodríguez-Mañas, L; Sánchez-Ferrer, C F

    2001-08-01

    Alterations of the vessel structure, which is mainly determined by smooth muscle cells through cell growth and/or cell death mechanisms, are characteristic of diabetes complications. We analysed the influence of high glucose (22 mM) on cultured human aortic smooth muscle cell growth and death, as hyperglycaemia is considered one of the main factors involved in diabetic vasculopathy. Growth curves were performed over 96 h in medium containing 0.5% foetal calf serum. Cell number increased by 2 - 4 fold over the culture period in the presence of 5.5 mM (low) glucose, while a 20% reduction in final cell number was observed with high glucose. Under serum-free conditions, cell number remained constant in low glucose cultures, but a 40% decrease was observed in high glucose cultures, suggesting that high glucose may induce increased cell death rather than reduced proliferation. Reduced final cell number induced by high glucose was also observed after stimulation with 5 or 10% foetal calf serum. The possible participation of oxidative stress was investigated by co-incubating high glucose with different reactive oxygen species scavengers. Only catalase reversed the effect of high glucose. Intracellular H(2)O(2) content, visualized with 2',7'-dichlorofluorescein and quantified by flow cytometry, was increased after high glucose treatment. To investigate the cell death mechanism induced by high glucose, apoptosis and necrosis were quantified. No differences were observed regarding the apoptotic index between low and high glucose cultures, but lactate dehydrogenase activity was increased in high glucose cultures. In conclusion, high glucose promotes necrotic cell death through H(2)O(2) formation, which may participate in the development of diabetic vasculopathy.

  19. Cell-directed-assembly: directing the formation of nano/bio interfaces and architectures with living cells.

    Science.gov (United States)

    Baca, Helen K; Carnes, Eric C; Ashley, Carlee E; Lopez, DeAnna M; Douthit, Cynthia; Karlin, Shelly; Brinker, C Jeffrey

    2011-03-01

    The desire to immobilize, encapsulate, or entrap viable cells for use in a variety of applications has been explored for decades. Traditionally, the approach is to immobilize cells to utilize a specific functionality of the cell in the system. This review describes our recent discovery that living cells can organize extended nanostructures and nano-objects to create a highly biocompatible nano//bio interface [1]. We find that short chain phospholipids direct the formation of thin film silica mesophases during evaporation-induced self-assembly (EISA) [2], and that the introduction of cells alter the self-assembly pathway. Cells organize an ordered lipid-membrane that forms a coherent interface with the silica mesophase that is unique in that it withstands drying-yet it maintains accessibility to molecules introduced into the 3D silica host. Cell viability is preserved in the absence of buffer, making these constructs useful as standalone cell-based sensors. In response to hyperosmotic stress, the cells release water, creating a pH gradient which is maintained within the nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting-processes allowing patterning of cellular arrays-and even spatially-defined genetic modification. Recent advances in the understanding of nanotechnology and cell biology encourage the pursuit of more complex endeavors where the dynamic interactions of the cell and host material act symbiotically to obtain new, useful functions. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  20. Integrated sieving microstructures on microchannels for biological cell trapping and droplet formation.

    Science.gov (United States)

    Yue, Wanqing; Li, Cheuk-Wing; Xu, Tao; Yang, Mengsu

    2011-10-07

    We have developed a single step microfabrication method to prepare constriction microstructures on a PCB master by controlling the etching time of two microchannels separated by a finite distance that is easily attainable using imagesetters widely available in the printing industry. PDMS replica of the constriction structures present sieving microstructures (microsieves) that could be used for size-dependent trapping of microspheres, biological cells and the formation of water-in-oil droplets.

  1. Elastic energy of curvature-driven bump formation on red blood cell membrane.

    OpenAIRE

    Waugh, R.E.

    1996-01-01

    Model calculations were performed to explore quantitative aspects of the discocyte-echinocyte shape transformation in red blood cells. The shape transformation was assumed to be driven by changes in the preferred curvature of the membrane bilayer and opposed by the elastic shear rigidity of the membrane skeleton. The energy required for echinocyte bump formation was calculated for a range of bump shapes for different preferred curvatures. Energy minima corresponding to nonzero bump heights we...

  2. Cellular and Molecular Changes Associated with Onion Skin Formation Suggest Involvement of Programmed Cell Death

    Science.gov (United States)

    Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Fridman, Yael; Lers, Amnon; Eshel, Dani

    2017-01-01

    Skin formation of onion (Allium cepa L.) bulb involves scale desiccation accompanied by scale senescence, resulting in cell death and tissue browning. Understanding the mechanism of skin formation is essential to improving onion skin and bulb qualities. Although onion skin plays a crucial role in postharvest onion storage and shelf life, its formation is poorly understood. We investigated the mode of cell death in the outermost scales that are destined to form the onion skin. Surprisingly, fluorescein diacetate staining and scanning electron microscopy indicated that the outer scale desiccates from the inside out. This striking observation suggests that cell death in the outer scales, during skin formation, is an internal and organized process that does not derive only from air desiccation. DNA fragmentation, a known hallmark of programmed cell death (PCD), was revealed in the outer scales and gradually decreased toward the inner scales of the bulb. Transmission electron microscopy further revealed PCD-related structural alterations in the outer scales which were absent from the inner scales. De novo transcriptome assembly for three different scales: 1st (outer), 5th (intermediate) and 8th (inner) fleshy scales identified 2,542 differentially expressed genes among them. GO enrichment for cluster analysis revealed increasing metabolic processes in the outer senescent scale related to defense response, PCD processes, carbohydrate metabolism and flavonoid biosynthesis, whereas increased metabolism and developmental growth processes were identified in the inner scales. High expression levels of PCD-related genes were identified in the outer scale compared to the inner ones, highlighting the involvement of PCD in outer-skin development. These findings suggest that a program to form the dry protective skin exists and functions only in the outer scales of onion. PMID:28119713

  3. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation.

    Science.gov (United States)

    Tarafdar, Anuradha; Dobbin, Edwina; Corrigan, Pamela; Freeburn, Robin; Wheadon, Helen

    2013-01-01

    The generation of hematopoietic stem cells (HSCs) during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP) formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.

  4. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Anuradha Tarafdar

    Full Text Available The generation of hematopoietic stem cells (HSCs during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.

  5. Overexpression of KIFC1 and its association with spheroid formation in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Imai, Takeharu; Oue, Naohide; Yamamoto, Yuji; Asai, Ryuichi; Uraoka, Naohiro; Sentani, Kazuhiro; Yoshida, Kazuhiro; Yasui, Wataru

    2017-11-01

    Esophageal squamous cell carcinoma (ESCC) is one of the most common human cancers. We previously reported that KIFC1 is involved in gastric cancer pathogenesis and that KIFC1 plays an important role in gastric cancer spheroid colony formation. However, the significance of KIFC1 in ESCC has not been examined. In the present study, we analyzed the expression and distribution of KIFC1 in 132 ESCC cases by immunohistochemistry. In contrast to weak or no staining of KIFC1 in non-neoplastic mucosa, ESCC tissue showed stronger, more extensive KIFC1 staining. In total, 95 (72%) of 132 ESCC cases were positive for KIFC1. Immunostaining of ALDH1 was also performed, and KIFC1-positive ESCC cases were significantly frequently found in ALDH1-positive ESCC cases compared with ALDH1-negative ESCC cases. Spheroid colony formation is an effective method to characterize CSCs, thus we analyzed sphere number and size at 15days in ESCC cells downregulated for KIFC1 by siRNA transfection. Both the number and size of sphere from TE-1 cells were significantly reduced in KIFC1 siRNA-transfected TE-1 cells than in negative control siRNA-transfected cells. These results suggest that KIFC1 plays an important role in ESCC pathogenesis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. The plant cell cycle: Pre-Replication complex formation and controls.

    Science.gov (United States)

    Brasil, Juliana Nogueira; Costa, Carinne N Monteiro; Cabral, Luiz Mors; Ferreira, Paulo C G; Hemerly, Adriana S

    2017-01-01

    The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.

  7. WD40-repeat proteins in plant cell wall formation: current evidence and research prospects

    Directory of Open Access Journals (Sweden)

    Gea eGuerriero

    2015-12-01

    Full Text Available The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR proteins often function as molecular hubs mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico aproaches, such as analyses of co-expression, interactome and conserved gene neighbourhood. Notably, some WDR genes are frequently genomic neighbours of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CESAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed.

  8. Mechanisms of cyst formation in metastatic lymph nodes of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Mokhtari Sepideh

    2012-01-01

    Full Text Available Abstract Cystic change in metastatic lymph nodes occurs in certain types of tumors and mostly in squamous cell carcinoma of the head and neck. In the majority of cases, psuedocystic change is the mechanism of cyst formation. However, sometimes a true cyst cavity is formed. This occurrence is unexplained and some theories are introduced to explain it. In this paper, related articles and introduced concepts are reviewed and the best conclusions of present hypotheses are provided. Cystic SCC in cervical lymph node is now considered as a typical presentation of metastatic SCC arising in the oro/nasopharynx. True cystic cavities have eosinophilic fluid content and present active transport mechanism across the epithelium; Cytokeratin7 is also expressed in the lining of these cysts, which is an accepted marker of ductal differentiation. These are all strong evidences that show salivary gland type cells are present among tumor cells. In fact, some squamous cell carcinomas, especially those arising in Waldeyer's ring, originate from minor salivary glands. The other probability is that these tumors are cancers of transitional type and arise from transformed keratinocytes, which have intrinsic property for cyst formation. These malignant cells in lymph nodes, rather than primary sites, found the opportunity to express their parental property. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6838476096250792.

  9. Exogenous androstenedione induces formation of follicular cysts and premature luteinization of granulosa cells in the ovary.

    Science.gov (United States)

    Okutsu, Yuki; Itoh, Masanori T; Takahashi, Noriyuki; Ishizuka, Bunpei

    2010-02-01

    To investigate the effects of androstenedione on ovarian follicle development. Experimental study. University research laboratory. Female Wistar-Imamichi rats and BDF1 mice. Rats were injected with androstenedione. Ovarian follicles of mice were cultured in the presence of androstenedione. Ovarian morphology; ovarian cell types undergoing apoptosis; ovarian expression of cytochrome P450 aromatase (P450arom), cytochrome P450 side-chain cleavage (P450scc), and cyclin-dependent kinase inhibitor p27(kip1); serum levels of T, E(2), and P in rats; and ultrastructure of granulosa cells from cultured follicles of mice. In androstenedione-treated rat ovaries, follicular cysts were formed, and apoptotic cells were found in the inner part of granulosa cell layers of antral follicles. Androstenedione administration down-regulated expression of P450arom but up-regulated expression of P450scc and p27(Kip1) in the granulosa cells of antral follicles. Serum T levels were significantly increased in androstenedione-treated rats. In mouse follicles exposed to androstenedione, the granulosa cells contained abundant lipid droplets and mitochondria with complex tubular cristae. Excess androgen enhances apoptosis in the inner part of granulosa cell layers of antral follicles, resulting in the formation of follicular cysts. It is also demonstrated that androgen stimulates premature luteinization of granulosa cells. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi.

    Science.gov (United States)

    Daskalov, Asen; Heller, Jens; Herzog, Stephanie; Fleißner, André; Glass, N Louise

    2017-03-01

    For the majority of fungal species, the somatic body of an individual is a network of interconnected cells sharing a common cytoplasm and organelles. This syncytial organization contributes to an efficient distribution of resources, energy, and biochemical signals. Cell fusion is a fundamental process for fungal development, colony establishment, and habitat exploitation and can occur between hyphal cells of an individual colony or between colonies of genetically distinct individuals. One outcome of cell fusion is the establishment of a stable heterokaryon, culminating in benefits for each individual via shared resources or being of critical importance for the sexual or parasexual cycle of many fungal species. However, a second outcome of cell fusion between genetically distinct strains is formation of unstable heterokaryons and the induction of a programmed cell death reaction in the heterokaryotic cells. This reaction of nonself rejection, which is termed heterokaryon (or vegetative) incompatibility, is widespread in the fungal kingdom and acts as a defense mechanism against genome exploitation and mycoparasitism. Here, we review the currently identified molecular players involved in the process of somatic cell fusion and its regulation in filamentous fungi. Thereafter, we summarize the knowledge of the molecular determinants and mechanism of heterokaryon incompatibility and place this phenomenon in the broader context of biotropic interactions and immunity.

  11. CD4+ cell-dependent granuloma formation in humanized mice infected with mycobacteria

    Science.gov (United States)

    Heuts, Frank; Gavier-Widén, Dolores; Carow, Berit; Juarez, Julius; Wigzell, Hans; Rottenberg, Martin E.

    2013-01-01

    We have used humanized mice, in which human immune cells differentiate de novo from transplanted cord blood progenitor cells, to study the human immune responses to infection with Mycobacterium bovis bacillus Calmette–Guérin and Mycobacterium tuberculosis. Granulomas with a core containing giant cells, human CD68+ macrophages, and high bacilli numbers surrounded by a layer of CD3+ T cells and a fibrotic response encapsulating the lesions were observed in livers and lungs from bacillus Calmette–Guérin-infected humanized mice but not in nonhumanized infected controls. Paradoxically, humanized mice contained higher mycobacterial numbers in organs than nonhumanized controls. The enhancement of bacterial load was mediated by human CD4+ cells and associated to an increased expression of Programmed Death-1 protein and CD57 on T cells, molecules associated with inhibition and senescence. The lesions from mice depleted of CD4+ cells were scarcer, minimal, and irregular compared with those from mice depleted of CD8+ cells or nondepleted controls. Granulomas of bacillus Calmette–Guérin-infected humanized mice administered with a TNF-neutralizing TNF receptor fusion molecule preserved their structure, but contained higher levels of intracellular bacilli. Extended necrosis was observed in granulomas from M. tuberculosis- but not bacillus Calmette–Guérin-infected humanized mice. Our data indicate that humanized mice can be used as a model to study the formation and maintenance of human granuloma in tuberculosis and other infectious or noninfectious diseases. PMID:23559373

  12. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  13. Enhancement of hybridoma formation, clonability and cell proliferation in a nanoparticle-doped aqueous environment

    Directory of Open Access Journals (Sweden)

    Karnieli Ohad

    2008-01-01

    Full Text Available Abstract Background The isolation and production of human monoclonal antibodies is becoming an increasingly important pursuit as biopharmaceutical companies migrate their drug pipelines away from small organic molecules. As such, optimization of monoclonal antibody technologies is important, as this is becoming the new rate-limiting step for discovery and development of new pharmaceuticals. The major limitations of this system are the efficiency of isolating hybridoma clones, the process of stabilizing these clones and optimization of hybridoma cell secretion, especially for large-scale production. Many previous studies have demonstrated how perturbations in the aqueous environment can impact upon cell biology. In particular, radio frequency (RF irradiation of solutions can have dramatic effects on behavior of solutions, cells and in particular membrane proteins, although this effect decays following removal of the RF. Recently, it was shown that nanoparticle doping of RF irradiated water (NPD water produced a stabilized aqueous medium that maintained the characteristic properties of RF irradiated water for extended periods of time. Therefore, the ordering effect in water of the RF irradiation can now be studied in systems that required prolonged periods for analysis, such as eukaryotic cell culture. Since the formation of hybridoma cells involves the formation of a new membrane, a process that is affected by the surrounding aqueous environment, we tested these nanoparticle doped aqueous media formulations on hybridoma cell production. Results In this study, we tested the entire process of isolation and production of human monoclonal antibodies in NPD water as a means for further enhancing human monoclonal antibody isolation and production. Our results indicate an overall enhancement of hybridoma yield, viability, clonability and secretion. Furthermore, we have demonstrated that immortal cells proliferate faster whereas primary human fibroblasts

  14. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation.

    Directory of Open Access Journals (Sweden)

    Vicky Nicolaidou

    Full Text Available A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB, the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC, it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair.

  15. Identification of laminin α5 short arm peptides active for endothelial cell attachment and tube formation.

    Science.gov (United States)

    Kikkawa, Yamato; Sugawara, Yumika; Harashima, Nozomi; Fujii, Shogo; Ikari, Kazuki; Kumai, Jun; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi

    2017-07-01

    Laminin-511, a major component of endothelial basement membrane, consists of α5, β1, and γ1 chains. The short arm region of the α5 chain is a structural feature of endothelial laminins. In this study, we identified active sequences for human umbilical vein endothelial cells (HUVECs) using recombinant proteins and synthetic peptides. The short arm of the α5 chain contains three globular domains [laminin N-terminal globular domain, laminin 4 domain a, and laminin 4 domain b (LN, L4a, and L4b)] and three rod-like elements [laminin epidermal growth factor-like domain a, b, and c (LEa, LEb, and LEc)]. The cell attachment assay using recombinant proteins showed that RGD-independent cell attachment sites were localized in the α5LN-LEa domain. Further, we synthesized 70 peptides covering the amino acid sequences of the α5LN-LEa domain. Of the 70 peptides, A5-16 (mouse laminin α5 230-243: LENGEIVVSLVNGR) potently exhibited endothelial cell attachment activity. An active sequence analysis using N-terminally and C-terminally truncated A5-16 peptides showed that the nine-amino acid sequence IVVSLVNGR was critical for the endothelial cell attachment activity. Cell adhesion to the peptides was dependent on both cations and heparan sulfate. Further, the A5-16 peptide inhibited the capillary-like tube formation of HUVECs with the cells forming small clumps with short tubes. The eight-amino acid sequence EIVVSLVN in the A5-16 peptide was critical to inhibit HUVEC tube formation. This amino acid sequence could be useful for grafts and thus modulate endothelial cell behavior for vascular surgery. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  16. Ab-IL2 fusion proteins mediate NK cell immune synapse formation by polarizing CD25 to the target cell-effector cell interface.

    Science.gov (United States)

    Gubbels, Jennifer A A; Gadbaw, Brian; Buhtoiarov, Ilia N; Horibata, Sachi; Kapur, Arvinder K; Patel, Dhara; Hank, Jacquelyn A; Gillies, Stephen D; Sondel, Paul M; Patankar, Manish S; Connor, Joseph

    2011-12-01

    The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.

  17. Glioblastoma formation from cell population depleted of Prominin1-expressing cells.

    Directory of Open Access Journals (Sweden)

    Kenji Nishide

    2009-08-01

    Full Text Available Prominin1 (Prom1, also known as CD133 in human has been widely used as a marker for cancer stem cells (CSCs, which self-renew and are tumorigenic, in malignant tumors including glioblastoma multiforme (GBM. However, there is other evidence showing that Prom1-negative cancer cells also form tumors in vivo. Thus it remains controversial whether Prom1 is a bona fide marker for CSCs. To verify if Prom1-expressing cells are essential for tumorigenesis, we established a mouse line, whose Prom1-expressing cells can be eliminated conditionally by a Cre-inducible DTA gene on the Prom1 locus together with a tamoxifen-inducible CreER(TM, and generated glioma-initiating cells (GICs-LD by overexpressing both the SV40 Large T antigen and an oncogenic H-Ras(L61 in neural stem cells of the mouse line. We show here that the tamoxifen-treated GICs-LD (GICs-DTA form tumor-spheres in culture and transplantable GBM in vivo. Thus, our studies demonstrate that Prom1-expressing cells are dispensable for gliomagenesis in this mouse model.

  18. A hybrid multi-compartment model of granuloma formation and T cell priming in Tuberculosis

    Science.gov (United States)

    Marino, Simeone; El-Kebir, Mohammed; Kirschner, Denise

    2013-01-01

    Tuberculosis is a worldwide health problem with 2 billion people infected with Mycobacterium tuberculosis (Mtb, the bacteria causing TB). The hallmark of infection is the emergence of organized structures of immune cells forming primarily in the lung in response to infection. Granulomas physically contain and immunologically restrain bacteria that cannot be cleared. We have developed several models that spatially characterize the dynamics of the host–mycobacterial interaction, and identified mechanisms that control granuloma formation and development. In particular, we published several agent-based models (ABMs) of granuloma formation in TB that include many subtypes of T cell populations, macrophages as well as key cytokine and chemokine effector molecules. These ABM studies emphasize the important role of T-cell related mechanisms in infection progression, such as magnitude and timing of T cell recruitment, and macrophage activation. In these models, the priming and recruitment of T cells from the lung draining lymph node (LN) was captured phenomenologically. In addition to these ABM studies, we have also developed several multi-organ models using ODEs to examine trafficking of cells between, for example, the lung and LN. While we can predict temporal dynamic behaviors, those models are not coupled to the spatial aspects of granuloma. To this end, we have developed a multi-organ model that is hybrid: an ABM for the lung compartment and a non-linear system of ODE representing the lymph node compartment. This hybrid multi-organ approach to study TB granuloma formation in the lung and immune priming in the LN allows us to dissect protective mechanisms that cannot be achieved using the single compartment or multi-compartment ODE system. The main finding of this work is that trafficking of important cells known as antigen presenting cells from the lung to the lymph node is a key control mechanism for protective immunity: the entire spectrum of infection outcomes can

  19. Efficient Parallel Sorting for Migrating Birds Optimization When Solving Machine-Part Cell Formation Problems

    Directory of Open Access Journals (Sweden)

    Ricardo Soto

    2016-01-01

    Full Text Available The Machine-Part Cell Formation Problem (MPCFP is a NP-Hard optimization problem that consists in grouping machines and parts in a set of cells, so that each cell can operate independently and the intercell movements are minimized. This problem has largely been tackled in the literature by using different techniques ranging from classic methods such as linear programming to more modern nature-inspired metaheuristics. In this paper, we present an efficient parallel version of the Migrating Birds Optimization metaheuristic for solving the MPCFP. Migrating Birds Optimization is a population metaheuristic based on the V-Flight formation of the migrating birds, which is proven to be an effective formation in energy saving. This approach is enhanced by the smart incorporation of parallel procedures that notably improve performance of the several sorting processes performed by the metaheuristic. We perform computational experiments on 1080 benchmarks resulting from the combination of 90 well-known MPCFP instances with 12 sorting configurations with and without threads. We illustrate promising results where the proposal is able to reach the global optimum in all instances, while the solving time with respect to a nonparallel approach is notably reduced.

  20. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    Science.gov (United States)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-05-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  1. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    Science.gov (United States)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors

    DEFF Research Database (Denmark)

    Seminatore, Christine; Polentes, Jerome; Ellman, Ditte

    2010-01-01

    Risk of tumorigenesis is a major obstacle to human embryonic and induced pluripotent stem cell therapy. Likely linked to the stage of differentiation of the cells at the time of implantation, formation of teratoma/tumors can also be influenced by factors released by the host tissue. We have...... analyzed the relative effects of the stage of differentiation and the postischemic environment on the formation of adverse structures by transplanted human embryonic stem cell-derived neural progenitors....

  3. Insulin-induced formation of ruffling membranes of KB cells and its correlation with enhancement of amino acid transport

    OpenAIRE

    1984-01-01

    Insulin induced the formation of ruffling membranes in cultured KB cells (a cell strain derived from human epidermoid carcinoma) within 1- 2 min after its addition. The ruffled regions were stained strongly with antibody to actin but not that to tubulin. Pretreatment of KB cells with agents disrupting microfilaments (cytochalasins), but not with those disrupting microtubules (colcemid, nocodazole, and colchicine) completely inhibited the formation of ruffling membranes. Pretreatment of KB cel...

  4. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    OpenAIRE

    Serrano-Fujarte, Isela; L?pez-Romero, Everardo; Reyna-L?pez, Georgina Elena; Mart?nez-G?mez, Ma. Alejandrina; Vega-Gonz?lez, Arturo; Cu?llar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrati...

  5. Ex vivo analysis of the contribution of FGF10(+) cells to airway smooth muscle cell formation during early lung development.

    Science.gov (United States)

    El Agha, Elie; Kheirollahi, Vahid; Moiseenko, Alena; Seeger, Werner; Bellusci, Saverio

    2017-07-01

    Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10(+) ) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10(+) progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) culture system. FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time-lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10(+) lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell-fate decisions in the developing mouse lung. Developmental Dynamics 246:531-538, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation.

    Science.gov (United States)

    Noble, Amanda R; Maitland, Norman J; Berney, Daniel M; Rumsby, Martin G

    2018-01-01

    same specific PLD1 inhibitor significantly reduced colony formation. A new specific inhibitor of PLD1, which is well tolerated in mice, reduces PCa cell survival and thus has potential as a novel therapeutic agent to reduce prostate cancer progression. Increased PLD1 expression may contribute to the hyperplasia characteristic of BPH and in the progression of castrate-resistant PCa, where an expanding population of neuroendocrine-like cells express PLD1.

  7. TRIM28 epigenetic corepressor is indispensable for stable induced pluripotent stem cell formation.

    Science.gov (United States)

    Klimczak, Marta; Czerwińska, Patrycja; Mazurek, Sylwia; Sozańska, Barbara; Biecek, Przemysław; Mackiewicz, Andrzej; Wiznerowicz, Maciej

    2017-08-01

    Cellular reprogramming proceeds in a stepwise pathway initiated by binding and transcription of pluripotency factors followed by genome-wide epigenetic changes. Priming events, such as erasure of DNA methylation and chromatin remodeling determines the success of pluripotency acquisition later. Therefore, growing efforts are made to understand epigenetic regulatory network that makes reprogramming possible and efficient. Here, we analyze the role of transcriptional corepressor TRIM28, involved in heterochromatin formation, during the process of reprogramming of mouse somatic cells into induced pluripotent stem cells (iPS cells). We demonstrate that Trim28 knockdown (Trim28 KD) causes that emerging iPS cells differentiate immediately back into MEFs therefore they fail to yield stable iPS cell colonies. To better comprehend the mechanism of TRIM28 action in reprogramming, we performed a reverse-phase protein array (RPPA) using in excess of 300 different antibodies and compared the proteomic profiles of wild-type and Trim28 KD cells during reprogramming. We revealed the differences in the dynamics of reprogramming of wild-type and Trim28 KD cells. Interestingly, proteomic profile of Trim28 KD cells at the final stage of reprogramming resembled differentiated state rather than maintenance of pluripotency and self-renewal, strongly suggesting spontaneous differentiation of Trim28 KD cells back to their parental cell type. We also observed that action of TRIM28 in reprogramming is accompanied by differential enrichment of proteins involved in cell cycle, adhesion and stemness. Collectively, these results suggest that regulation of epigenetic modifications coordinated by TRIM28 plays a crucial role in reprogramming process. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. TRIM28 epigenetic corepressor is indispensable for stable induced pluripotent stem cell formation

    Directory of Open Access Journals (Sweden)

    Marta Klimczak

    2017-08-01

    Full Text Available Cellular reprogramming proceeds in a stepwise pathway initiated by binding and transcription of pluripotency factors followed by genome-wide epigenetic changes. Priming events, such as erasure of DNA methylation and chromatin remodeling determines the success of pluripotency acquisition later. Therefore, growing efforts are made to understand epigenetic regulatory network that makes reprogramming possible and efficient. Here, we analyze the role of transcriptional corepressor TRIM28, involved in heterochromatin formation, during the process of reprogramming of mouse somatic cells into induced pluripotent stem cells (iPS cells. We demonstrate that Trim28 knockdown (Trim28 KD causes that emerging iPS cells differentiate immediately back into MEFs therefore they fail to yield stable iPS cell colonies. To better comprehend the mechanism of TRIM28 action in reprogramming, we performed a reverse-phase protein array (RPPA using in excess of 300 different antibodies and compared the proteomic profiles of wild-type and Trim28 KD cells during reprogramming. We revealed the differences in the dynamics of reprogramming of wild-type and Trim28 KD cells. Interestingly, proteomic profile of Trim28 KD cells at the final stage of reprogramming resembled differentiated state rather than maintenance of pluripotency and self-renewal, strongly suggesting spontaneous differentiation of Trim28 KD cells back to their parental cell type. We also observed that action of TRIM28 in reprogramming is accompanied by differential enrichment of proteins involved in cell cycle, adhesion and stemness. Collectively, these results suggest that regulation of epigenetic modifications coordinated by TRIM28 plays a crucial role in reprogramming process.

  9. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available Zinc oxide nanoparticles (ZnO NPs are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm, with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  10. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.

  11. Two Distinct Processes of Bone-like Tissue Formation by Dental Pulp Cells after Tooth Transplantation

    Science.gov (United States)

    Yukita, Akira; Yoshiba, Kunihiko; Yoshiba, Nagako; Takahashi, Masafumi; Nakamura, Hiroaki

    2012-01-01

    Dental pulp is involved in the formation of bone-like tissue in response to external stimuli. However, the origin of osteoblast-like cells constructing this tissue and the mechanism of their induction remain unknown. We therefore evaluated pulp mineralization induced by transplantation of a green fluorescent protein (GFP)–labeled tooth into a GFP-negative hypodermis of host rats. Five days after the transplantation, the upper pulp cavity became necrotic; however, cell-rich hard tissue was observed adjacent to dentin at the root apex. At 10 days, woven bone-like tissue was formed apart from the dentin in the upper pulp. After 20 days, these hard tissues expanded and became histologically similar to bone. GFP immunoreactivity was detected in the hard tissue-forming cells within the root apex as well as in the upper pulp. Furthermore, immunohistochemical observation of α–smooth muscle actin, a marker for undifferentiated cells, showed a positive reaction in cells surrounding this bone-like tissue within the upper pulp but not in those within the root apex. Immunoreactivities of Smad4, Runx2, and Osterix were detected in the hard tissue-forming cells within both areas. These results collectively suggest that the dental pulp contains various types of osteoblast progenitors and that these cells might thus induce bone-like tissue in severely injured pulp. PMID:22899860

  12. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    Science.gov (United States)

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation.

    Science.gov (United States)

    Balashova, Olga A; Visina, Olesya; Borodinsky, Laura N

    2017-04-15

    Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that knockdown of folate receptor 1 (Folr1; also known as FRα) impairs neural tube formation and leads to NTDs. Folr1 knockdown in neural plate cells only is necessary and sufficient to induce NTDs. Folr1-deficient neural plate cells fail to constrict, resulting in widening of the neural plate midline and defective neural tube closure. Pharmacological inhibition of folate action by methotrexate during neurulation induces NTDs by inhibiting folate interaction with its uptake systems. Our findings support a model in which the folate receptor interacts with cell adhesion molecules, thus regulating the apical cell membrane remodeling and cytoskeletal dynamics necessary for neural plate folding. Further studies in this organism could unveil novel cellular and molecular events mediated by folate and lead to new ways of preventing NTDs. © 2017. Published by The Company of Biologists Ltd.

  14. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Hye-Jin [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Kyung-Ae [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Gwon, Mi-Ri; Jin Seong, Sook [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, Shin-Yoon [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Young-Ran, E-mail: yry@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  15. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation.

    Science.gov (United States)

    Haka, Abigail S; Barbosa-Lorenzi, Valéria C; Lee, Hyuek Jong; Falcone, Domenick J; Hudis, Clifford A; Dannenberg, Andrew J; Maxfield, Frederick R

    2016-06-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Epigallocatechin-3-gallate Reduces Scavenger Receptor A Expression and Foam Cell Formation in Human Macrophages.

    Science.gov (United States)

    Chen, Sy-Jou; Kao, Yung-Hsi; Jing, Li; Chuang, Yi-Ping; Wu, Wan-Lin; Liu, Shu-Ting; Huang, Shih-Ming; Lai, Jenn-Haung; Ho, Ling-Jun; Tsai, Min-Chien; Lin, Chin-Sheng

    2017-04-19

    Foam cells are formed when macrophages imbibe low-density lipoprotein (LDL) through scavenger receptors. Here we examined how epigallocatechin-3-gallate (EGCG) influences foam cell formation. We found that EGCG dose-dependently reduced oxidized LDL (oxLDL) uptake in THP-1 (10 μM, 20.0 ± 0.50, p < 0.05) and primary macrophages (134.6 ± 15.6, p < 0.05) and reduced intracellular cholesterol content in these cells, respectively (10 μM, 32.6 ± 0.14, p < 0.05; 31.7 ± 1.26, p < 0.05). EGCG treatment decreased scavenger receptor A expression, but not the expression of CD36 or of reverse cholesterol transporters. Moreover, EGCG stimulated translocation of the p50 and p65 subunits of NF-κB and enhanced NF-κB DNA-binding activity, thus suppressing SR-A promoter activity. EGCG's suppression of SR-A expression was blocked by the NF-κB inhibitor Bay. The present findings suggest that EGCG regulates NF-κB activity and thus suppresses SR-A expression, oxLDL uptake, and foam cell formation.

  17. Lumen Formation Is an Intrinsic Property of Isolated Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kenichiro Taniguchi

    2015-12-01

    Full Text Available We demonstrate that dissociated human pluripotent stem cells (PSCs are intrinsically programmed to form lumens. PSCs form two-cell cysts with a shared apical domain within 20 hr of plating; these cysts collapse to form monolayers after 5 days. Expression of pluripotency markers is maintained throughout this time. In two-cell cysts, an apical domain, marked by EZRIN and atypical PKCζ, is surrounded by apically targeted organelles (early endosomes and Golgi. Molecularly, actin polymerization, regulated by ARP2/3 and mammalian diaphanous-related formin 1 (MDIA, promotes lumen formation, whereas actin contraction, mediated by MYOSIN-II, inhibits this process. Finally, we show that lumenal shape can be manipulated in bioengineered micro-wells. Since lumen formation is an indispensable step in early mammalian development, this system can provide a powerful model for investigation of this process in a controlled environment. Overall, our data establish that lumenogenesis is a fundamental cell biological property of human PSCs.

  18. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Rajendra [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City (United States); Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of); Kim, Seong-Bin [Jeollanamdo Development Institute for Korean Traditional Medicine, Jangheung gun, Jeollanamdo (Korea, Republic of); Kim, Dong-Wook, E-mail: dbkim@mokpo.ac.kr [Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of)

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  19. Sustainability Formation of Machine Cells in Group Technology Systems Using Modified Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Adinarayanan Arunagiri

    2017-12-01

    Full Text Available The efficiency and sustainability of a cellular manufacturing system (CMS in batch type manufacturing is highly valued. This is done using a systematic method of equipment into machine cells, and components into part families, based on the suitable similar criteria. The present work discusses the cell formation problem, with the objective of minimizing the cumulative cell load variation and cumulative intercellular moves. The quantity of parts, operation sequences, processing time, capacity of machines, and workload of machineries were considered as parameters. For the grouping of equipment, the modified artificial bee colony (MABC algorithm is considered. The computational procedure of this approach is explained by using up to 40 machines and 100 part types. The result obtained from MABC is compared with the findings acquired from the genetic algorithm (GA and ant colony system (ACS in the literature.

  20. Geometrical Aspects During Formation of Compact Aggregates of Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Cardoso A.V.

    2002-01-01

    Full Text Available In the past forty years considerable progress has been achieved on the knowledge of human blood as a non-Newtonian shear-thinning suspension, whose initial state, that is at rest (stasis or at very low shear rates, has a gel-like internal structure which is destroyed as shear stress increases. The main goal of this communication is to describe the role of geometrical aspects during RBC (red blood cell aggregate formation, growth and compaction on naturally aggregate (porcine blood and non-aggregate (bovine blood samples. We consider how these aspects coupled with tension equilibrium are decisive to transform red cell linear roleaux to three-dimensional aggregates or clusters. Geometrical aspects are also crucial on the compaction of red blood cell aggregates. These densely packed aggregates could precipitate out of blood- either as dangerous deposits on arterial walls, or as clots which travel in suspension until they block some crucial capillary.

  1. Nitric oxide diffusion to red blood cells limits extracellular, but not intraphagosomal, peroxynitrite formation by macrophages.

    Science.gov (United States)

    Prolo, Carolina; Álvarez, María Noel; Ríos, Natalia; Peluffo, Gonzalo; Radi, Rafael; Romero, Natalia

    2015-10-01

    Macrophage-derived nitric oxide ((•)NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by (•)NO itself or (•)NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O(2)(•-)). In vivo, the facile extracellular diffusion of (•)NO as well as different competing consumption routes limit its bioavailability for the reaction with O(2)(•-) and, hence, peroxynitrite formation. In this work, we evaluated the extent by which (•)NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O(2)(•-) and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of (•)NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of (•)NO and O(2)(•-)-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of (•)NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O(2)(•-) reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of (•)NO and O(2)(•-)-forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, (

  2. Mast cell degranulation and de novo histamine formation contribute to sustained postexercise vasodilation in humans.

    Science.gov (United States)

    Romero, Steven A; McCord, Jennifer L; Ely, Matthew R; Sieck, Dylan C; Buck, Tahisha M; Luttrell, Meredith J; MacLean, David A; Halliwill, John R

    2017-03-01

    In humans, acute aerobic exercise elicits a sustained postexercise vasodilation within previously active skeletal muscle. This response is dependent on activation of histamine H1 and H2 receptors, but the source of intramuscular histamine remains unclear. We tested the hypothesis that interstitial histamine in skeletal muscle would be increased with exercise and would be dependent on de novo formation via the inducible enzyme histidine decarboxylase and/or mast cell degranulation. Subjects performed 1 h of unilateral dynamic knee-extension exercise or sham (seated rest). We measured the interstitial histamine concentration and local blood flow (ethanol washout) via skeletal muscle microdialysis of the vastus lateralis. In some probes, we infused either α-fluoromethylhistidine hydrochloride (α-FMH), a potent inhibitor of histidine decarboxylase, or histamine H1/H2-receptor blockers. We also measured interstitial tryptase concentrations, a biomarker of mast cell degranulation. Compared with preexercise, histamine was increased after exercise by a change (Δ) of 4.2 ± 1.8 ng/ml (P histamine in skeletal muscle increases with exercise and results from both de novo formation and mast cell degranulation. This suggests that exercise produces an anaphylactoid signal, which affects recovery, and may influence skeletal muscle blood flow during exercise.NEW & NOTEWORTHY Blood flow to previously active skeletal muscle remains elevated following an acute bout of aerobic exercise and is dependent on activation of histamine H1 and H2 receptors. The intramuscular source of histamine that drives this response to exercise has not been identified. Using intramuscular microdialysis in exercising humans, we show both mast cell degranulation and formation of histamine by histidine decarboxylase contributes to the histamine-mediated vasodilation that occurs following a bout of aerobic exercise. Copyright © 2017 the American Physiological Society.

  3. Effect of Genistein on vasculogenic mimicry formation by human uveal melanoma cells

    Directory of Open Access Journals (Sweden)

    Gu Haijuan

    2009-09-01

    Full Text Available Abstract Background Vasculogenic mimicry (VM was increasingly recognized as a form of aggressive melanoma acquiring blood supply. Genistein had attracted much attention as a potential anticancer agent. Therefore, we examined the effect of Genistein on VM in human uveal melanoma cells. Methods VM structure was detected by periodic acid-Schiff (PAS staining for uveal melanoma C918 cells cultured on the three-dimensional type I collagen gels after exposed to Genistein. We used reverse transcription polymerase chain reaction (RT-PCR and Western Blot analysis to examine the effect of Genistein on vascular endothelial cadherin (VE-cadherin mRNA and protein expression. The nude mice models of human uveal melanoma C918 cells were established to assess the number of VM using immunohistochemical and PAS double-staining. Results Genistein inhibited the survival of C918 cells in vitro. The ectopic model study showed that VM in tumor tissue sections were significantly reduced by Genistein in vivo. In vitro, the VM structure was found in control, 25 and 50 μM Genistein-treatment groups but not in 100 and 200 μM. RT-PCR and Western Blot showed that 100 and 200 μM concentration of Genistein could significantly decrease VE-cadherin mRNA and protein expression of C918 cells compared with control (P 0.05. Conclusion Genistein inhibits VM formation of uveal melanoma cells in vivo and in vitro. One possible underlying molecular mechanism by which Genistein could inhibit VM formation of uveal melanoma is related to down-regulation of VE-cadherin.

  4. Influence of cell-to-cell variability on spatial pattern formation

    NARCIS (Netherlands)

    Greese, B.; Wester, K.; Bensch, R.; Ronneberger, O.; Timmer, J.; Huulskamp, M.; Fleck, C.

    2012-01-01

    Many spatial patterns in biology arise through differentiation of selected cells within a tissue, which is regulated by a genetic network. This is specified by its structure, parameterisation and the noise on its components and reactions. The latter, in particular, is not well examined because it is

  5. IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation

    DEFF Research Database (Denmark)

    Hammer, Troels; Tritsaris, Katerina; Hübschmann, Martin V

    2009-01-01

    IL-20 is an arteriogenic cytokine that remodels collateral networks in vivo, and plays a role in cellular organization. Here, we investigate its role in lymphangiogenesis using a lymphatic endothelial cell line, hTERT-HDLEC, which expresses the lymphatic markers LYVE-1 and podoplanin. Upon stimul...

  6. Effect of coating Straumann Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation.

    Science.gov (United States)

    Mrozik, Krzysztof Marek; Gronthos, Stan; Menicanin, Danijela; Marino, Victor; Bartold, P Mark

    2012-06-01

    Periodontal tissue engineering requires a suitable biocompatible scaffold, cells with regenerative capacity, and instructional molecules. In this study, we investigated the capacity of Straumann Bone Ceramic coated with Straumann Emdogain, a clinical preparation of enamel matrix protein (EMP), to aid in hard tissue formation by post-natal mesenchymal stromal cells (MSCs) including bone marrow stromal cells (BMSCs) and periodontal ligament fibroblasts (PDLFs). MSCs were isolated and ex vivo-expanded from human bone marrow and periodontal ligament and, in culture, allowed to attach to Bone Ceramic in the presence or absence of Emdogain. Gene expression of bone-related proteins was investigated by real time RT-PCR for 72 h, and ectopic bone formation was assessed histologically in subcutaneous implants of Bone Ceramic containing MSCs with or without Emdogain in NOD/SCID mice. Alkaline phosphatase activity was also assessed in vitro, in the presence or absence of Emdogain. Collagen-I mRNA was up-regulated in both MSC populations over the 72-h time course with Emdogain. Expression of BMP-2 and the osteogenic transcription factor Cbfa-1 showed early stimulation in both MSC types after 24 h. In contrast, expression of BMP-4 was consistently down-regulated in both MSC types with Emdogain. Up-regulation of osteopontin and periostin mRNA was restricted to BMSCs, while higher levels of bone sialoprotein-II were observed in PDLFs with Emdogain. Furthermore, alkaline phosphatase activity levels were reduced in both BMSCs and PDLFs in the presence of Emdogain. Very little evidence was found for ectopic bone formation following subcutaneous implantation of MSCs with Emdogain-coated or -uncoated Bone Ceramic in NOD/SCID mice. The early up-regulation of several important bone-related genes suggests that Emdogain may have a significant stimulatory effect in the commitment of mesenchymal cells to osteogenic differentiation in vitro. While Emdogain inhibited AP activity and appeared

  7. The CD40-CD40L axis and IFN-γ play critical roles in Langhans giant cell formation.

    Science.gov (United States)

    Sakai, Hidemasa; Okafuji, Ikuo; Nishikomori, Ryuta; Abe, Junya; Izawa, Kazushi; Kambe, Naotomo; Yasumi, Takahiro; Nakahata, Tatsutoshi; Heike, Toshio

    2012-01-01

    The presence of Langhans giant cells (LGCs) is one of the signatures of systemic granulomatous disorders such as tuberculosis and sarcoidosis. However, the pathophysiological mechanism leading to LGC formation, especially the contribution of the T cells abundantly found in granulomas, has not been fully elucidated. To examine the role of T cells in LGC formation, a new in vitro method for the induction of LGCs was developed by co-culturing human monocytes with autologous T cells in the presence of concanavalin A (ConA). This system required close contact between monocytes and T cells, and CD4+ T cells were more potent than CD8+ T cells in inducing LGC formation. Antibody inhibition revealed that a CD40-CD40 ligand (CD40L) interaction and IFN-γ were essential for LGC formation, and the combination of exogenous soluble CD40L (sCD40L) and IFN-γ efficiently replaced the role of T cells. Dendritic cell-specific transmembrane protein (DC-STAMP), a known fusion-related molecule in monocytes, was up-regulated during LGC formation. Moreover, knock-down of DC-STAMP by siRNA inhibited LGC formation, revealing that DC-STAMP was directly involved in LGC formation. Taken together, these results demonstrate that T cells played a pivotal role in a new in vitro LGC formation system, in which DC-STAMP was involved, and occurred via a molecular mechanism that involved CD40-CD40L interaction and IFN-γ secretion.

  8. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds.

    Science.gov (United States)

    Ambre, Avinash H; Katti, Dinesh R; Katti, Kalpana S

    2013-09-01

    In this work, novel modified nanoclays were used to mineralize hydroxyapatite (HAP) mimicking biomineralization in bone. This in situ HAPclay was further incorporated into chitosan/polygalacturonic acid (Chi/PgA) scaffolds and films for bone tissue engineering. Differences in microstructure of the scaffolds were observed depending on the changes in processing of in situ HAPclay with ChiPgA biopolymer system. Response of human mesenchymal stem cells (hMSCs) on these scaffolds and films was studied using imaging and assays. SEM micrographs indicate that hMSCs were able to adhere to ChiPgA/in situ HAPclay scaffolds and phase contrast images indicated formation of mineralized nodules on ChiPgA/in situ HAPclay films in absence of osteogenic supplements used for differentiation of hMSCs. The formation of mineralized nodules by hMSCs was confirmed by positive staining of the nodules by Alizarin Red S dye. Viability and differentiation assays showed that ChiPgA/in situ HAPclay scaffolds were favorable for viability and differentiation of hMSCs. Unique two-stage cell seeding experiments were performed as a strategy to enhance tissue formation by hMSCs on ChiPgA/in situ HAPclay composite films. This work showed that biomaterials based on ChiPgA/in situ HAPclay composites can be used for bone tissue engineering applications and in situ nanoclay-HAP system mediates osteoinductive and osteoconductive response from hMSCs. Copyright © 2013 Wiley Periodicals, Inc.

  9. Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    Directory of Open Access Journals (Sweden)

    Nick Barker

    2012-09-01

    Full Text Available Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5+ve cells via in vivo lineage tracing. The appearance and localization of Lgr5+ve cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle’s loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.

  10. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest.

    Science.gov (United States)

    Castanheira, Sónia; Pérez-Martín, José

    2015-01-01

    Many of the most important plant diseases are caused by fungal pathogens that form specialized cell structures to breach the leaf surface as well as to proliferate inside the plant. To initiate pathogenic development, the fungus responds to a set of inductive cues. Some of them are of extracellular nature (environmental signals) while others respond to intracellular conditions (developmental signals). These signals have to be integrated into a single response that has as a major outcome changes in the morphogenesis of the fungus. The cell cycle regulation is pivotal during these cellular differentiations, and we hypothesized that cell cycle regulation would be likely to provide control points for infection development by fungal pathogens. Although efforts have been done in various fungal systems, there is still limited information available regarding the relationship of these processes with the induction of the virulence programs. Hence, the role of fungal cell cycle regulators -which are wide conserved elements- as true virulence factors, has yet to be defined. Here we discuss the recent finding that the formation of the appressorium, a structure required for plant penetration, in the corn smut fungus Ustilago maydis seems to be incompatible with an active cell cycle and, therefore genetic circuits evolved in this fungus to arrest the cell cycle during the growth of this fungus on plant surface, before the appressorium-mediated penetration into the plant tissue.

  11. N-Myc and L-Myc are essential for hair cell formation but not maintenance.

    Science.gov (United States)

    Kopecky, Benjamin J; Decook, Rhonda; Fritzsch, Bernd

    2012-11-12

    Sensorineural hearing loss results from damage to the hair cells of the organ of Corti and is irreversible in mammals. While hair cell regeneration may prove to be the ideal therapy after hearing loss, prevention of initial hair cell loss could provide even more benefit at a lower cost. Previous studies have shown that the deletion of Atoh1 results in embryonic loss of hair cells while the absence of Barhl1, Gfi1, and Pou4f3 leads to the progressive loss of hair cells in newborn mice. We recently reported that in the early embryonic absence of N-Myc (using Pax2-Cre), hair cells in the organ of Corti develop and remain until at least seven days after birth, with subsequent progressive loss. Thus, N-Myc plays a role in hair cell viability; however, it is unclear if this is due to its early expression in hair cell precursors and throughout the growing otocyst as it functions through proliferation or its late expression exclusively in differentiated hair cells. Furthermore, the related family member L-Myc is mostly co-expressed in the ear, including in differentiated hair cells, but its function has not been studied and could be partially redundant to N-Myc. To test for a long-term function of the Mycs in differentiated hair cells, we generated nine unique genotypes knocking out N-Myc and/or L-Myc after initial formation of hair cells using the well-characterized Atoh1-Cre. We tested functionality of the auditory and vestibular systems at both P21 and four months of age and under the administration of the ototoxic drug cisplatin. We conclude that neither N-Myc nor L-Myc is likely to play important roles in long-term hair cell maintenance. Therefore, it is likely that the late-onset loss of hair cells resulting from early deletion of the Mycs leads to an unsustainable developmental defect. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    Science.gov (United States)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  13. alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.

    Science.gov (United States)

    Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina

    2006-06-23

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.

  14. Live imaging of individual cell divisions in mouse neuroepithelium shows asymmetry in cilium formation and Sonic hedgehog response

    Directory of Open Access Journals (Sweden)

    Piotrowska-Nitsche Karolina

    2012-05-01

    Full Text Available Abstract Background Primary cilia are microtubule-based sensory organelles that play important roles in developmental signaling pathways. Recent work demonstrated that, in cell culture, the daughter cell that inherits the older mother centriole generates a primary cilium and responds to external stimuli prior to its sister cell. This asynchrony in timing of cilia formation could be especially critical during development as cell divisions are required for both differentiation and maintenance of progenitor cell niches. Methods Here we integrate several fluorescent markers and use ex vivo live imaging of a single cell division within the mouse E8.5 neuroepithelium to reveal both the formation of a primary cilium and the transcriptional response to Sonic hedgehog in the daughter cells. Results We show that, upon cell division, cilia formation and the Sonic hedgehog response are asynchronous between the daughter cells. Conclusions Our results demonstrate that we can directly observe single cell divisions within the developing neuroepithelium and concomitantly monitor cilium formation or Sonic hedgehog response. We expect this method to be especially powerful in examining whether cellular behavior can lead to both differentiation and maintenance of cells in a progenitor niche.

  15. Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format

    Science.gov (United States)

    Sherman, Sydney A.; Phillips, Jack K.; Costa, J. Tighe; Cho, Frances S.; Oungoulian, Sevan R.; Finan, John D.

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity with limited therapeutic options. Traumatic axonal injury (TAI) is an important component of TBI pathology. It is difficult to reproduce TAI in animal models of closed head injury, but in vitro stretch injury models reproduce clinical TAI pathology. Existing in vitro models employ primary rodent neurons or human cancer cell line cells in low throughput formats. This in vitro neuronal stretch injury model employs human induced pluripotent stem cell-derived neurons (hiPSCNs) in a 96 well format. Silicone membranes were attached to 96 well plate tops to create stretchable, culture substrates. A custom-built device was designed and validated to apply repeatable, biofidelic strains and strain rates to these plates. A high content approach was used to measure injury in a hypothesis-free manner. These measurements are shown to provide a sensitive, dose-dependent, multi-modal description of the response to mechanical insult. hiPSCNs transition from healthy to injured phenotype at approximately 35% Lagrangian strain. Continued development of this model may create novel opportunities for drug discovery and exploration of the role of human genotype in TAI pathology. PMID:27671211

  16. Ex vivo expanded autologous polyclonal regulatory T cells suppress inhibitor formation in hemophilia

    Directory of Open Access Journals (Sweden)

    Debalina Sarkar

    2014-01-01

    Full Text Available Adoptive cell therapy utilizing ex vivo expanded polyclonal CD4+CD25+FOXP3+ regulatory T cells (Treg is in use in clinical trials for the treatment of type 1 diabetes and prevention of graft versus host disease in bone marrow transplantation. Here, we seek to evaluate this approach in the treatment of inherited protein deficiencies, i.e., hemophilia, which is often complicated by antibody formation against the therapeutic protein. Treg from mice that express green fluorescent protein–marked FoxP3 were highly purified by two-step magnetic/flow sorting and ex vivo expanded 50- to 100-fold over a 2-week culture period upon stimulation with antibody-coated microbeads. FoxP3 expression was maintained in >80% of expanded Treg, which also expressed high levels of CD62L and CTLA-4. Transplanted Treg suppressed inhibitory antibody formation against coagulation factors VIII and IX in protein and gene therapies in strain-matched hemophilia A and B mice, including in mice with pre-existing antibodies. Although transplanted Treg became undetectable within 2 weeks, suppression persisted for >2 months. Additional studies suggested that antigen-specific suppression emerged due to induction of endogenous Treg. The outcomes of these studies support the concept that cell therapy with ex vivo expanded autologous Treg can be used successfully to minimize immune responses in gene and protein replacement therapies.

  17. Regulatory T cells prevent inducible BALT formation by dampening neutrophilic inflammation.

    Science.gov (United States)

    Foo, Shen Yun; Zhang, Vivian; Lalwani, Amit; Lynch, Jason P; Zhuang, Aowen; Lam, Chuan En; Foster, Paul S; King, Cecile; Steptoe, Raymond J; Mazzone, Stuart B; Sly, Peter D; Phipps, Simon

    2015-05-01

    Inducible BALT (iBALT) can amplify pulmonary or systemic inflammatory responses to the benefit or detriment of the host. We took advantage of the age-dependent formation of iBALT to interrogate the underlying mechanisms that give rise to this ectopic, tertiary lymphoid organ. In this study, we show that the reduced propensity for weanling as compared with neonatal mice to form iBALT in response to acute LPS exposure is associated with greater regulatory T cell expansion in the mediastinal lymph nodes. Ab- or transgene-mediated depletion of regulatory T cells in weanling mice upregulated the expression of IL-17A and CXCL9 in the lungs, induced a tissue neutrophilia, and increased the frequency of iBALT to that observed in neonatal mice. Remarkably, neutrophil depletion in neonatal mice decreased the expression of the B cell active cytokines, a proliferation-inducing ligand and IL-21, and attenuated LPS-induced iBALT formation. Taken together, our data implicate a role for neutrophils in lymphoid neogenesis. Neutrophilic inflammation is a common feature of many autoimmune diseases in which iBALT are present and pathogenic, and hence the targeting of neutrophils or their byproducts may serve to ameliorate detrimental lymphoid neogenesis in a variety of disease contexts. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus.

    Science.gov (United States)

    Treuner-Lange, Anke; Aguiluz, Kryssia; van der Does, Chris; Gómez-Santos, Nuria; Harms, Andrea; Schumacher, Dominik; Lenz, Peter; Hoppert, Michael; Kahnt, Jörg; Muñoz-Dorado, José; Søgaard-Andersen, Lotte

    2013-01-01

    Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z-ring at the division site. Here, we show that lack of the ParA-like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome-free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z-rings and incorrect positioning of the few Z-rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z-ring formation and is a spatial regulator of Z-ring formation and cell division. The cell cycle-dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z-ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z-ring formation to this position. © 2012 Blackwell Publishing Ltd.

  19. Genistein suppresses leptin-induced proliferation and migration of vascular smooth muscle cells and neointima formation.

    Science.gov (United States)

    Tsai, Yung-Chieh; Leu, Sy-Ying; Peng, Yi-Jen; Lee, Yen-Mei; Hsu, Chih-Hsiung; Chou, Shen-Chieh; Yen, Mao-Hsiung; Cheng, Pao-Yun

    2017-03-01

    Obesity is a strong risk factor for the development of cardiovascular diseases and is associated with a marked increase in circulating leptin concentration. Leptin is a peptide hormone mainly produced by adipose tissue and is regulated by energy level, hormones and various inflammatory mediators. Genistein is an isoflavone that exhibits diverse health-promoting effects. Here, we investigated whether genistein suppressed the atherogenic effect induced by leptin. The A10 cells were treated with leptin and/or genistein, and then the cell proliferation and migration were analysed. The reactive oxygen species (ROS) and proteins levels were also measured, such as p44/42MAPK, cell cycle-related protein (cyclin D1 and p21) and matrix metalloproteinase-2 (MMP-2). Immunohistochemistry and morphometric analysis were used for the neointima formation in a rat carotid artery injury model. Genistein (5 μM) significantly inhibited both the proliferation and migration of leptin (10 ng/ml)-stimulated A10 cells. In accordance with these finding, genistein decreased the leptin-stimulated ROS production and phosphorylation of the p44/42MAPK signal transduction pathway. Meanwhile, genistein reversed the leptin-induced expression of cyclin D1, and cyclin-dependent kinase inhibitor, p21. Genistein attenuated leptin-induced A10 cell migration by inhibiting MMP-2 activity. Furthermore, the leptin (0.25 mg/kg)-augmented neointima formation in a rat carotid artery injury model was attenuated in the genistein (5 mg/kg body weight)-treated group when compared with the balloon injury plus leptin group. Genistein was capable of suppressing the atherogenic effects of leptin in vitro and in vivo, and may be a promising candidate drug in the clinical setting. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. The Formation and Migration of Primordial Germ Cells in Mouse and Man.

    Science.gov (United States)

    De Felici, Massimo

    In most multicellular organisms, including mammals, germ cells are at the origin of new organisms and ensure the continuation of the genetic and epigenetic information across the generations.In the mammalian germ line, the primordial germ cells (PGCs) are the precursors of the primary oocytes and prospermatogonia of fetal ovaries and testes, respectively. In mammals such as the primates, in which the formation of the primary oocytes is largely asynchronous and occurs during a relatively long period, PGCs after the arrival into the XX gonadal ridges are termed oogonia which then become primary oocytes when entering into meiotic prophase I. In the fetal testes, germ cells derived from the PGCs after gonad colonization are termed prospermatogonia or gonocytes.One of the most fascinating aspect of the mammalian germline development is that it is probably the first cell lineage to be established in the embryo by epigenetic mechanisms and that these inductive events happen in extraembryonic tissues much earlier that gonad develop inside the embryo proper. Moreover, such events prepare the germ cells for totipotency through genetic and epigenetic regulations of their genome function. How this occurs remained a mystery until short time ago.In this chapter, I will report and discuss the most recent advances in the cellular and molecular mechanisms underlying the formation in extraembryonic tissues and migration of PGCs toward the gonadal ridges made primarily by studies carried out in the mouse with some perspective in the human. Established concepts about these processes will be only summarized when necessary since they are widely described and discussed in many excellent reviews; most of them are cited in the text below.

  1. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation

    Directory of Open Access Journals (Sweden)

    Lin Chih-Li

    2010-02-01

    Full Text Available Abstract Background Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. Methods & Results Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the existence of two distinct FACT-MCM subassemblies, FACT-MCM2/4/6/7 and FACT-MCM2/3/4/5. Both complexes possess DNA unwinding activity and are subject to cell cycle-dependent enzymatic regulation. Interestingly, analysis of functional attributes further suggests that they act at distinct, and possibly sequential, steps during origin establishment and replication initiation. Moreover, we show that the phosphorylation profile of the FACT-associated MCM4 undergoes a cell cycle-dependent change, which is directly correlated with the catalytic activity of the FACT-MCM helicase complexes. Finally, at the quaternary structure level, physical interaction between FACT and MCM complexes is generally dependent on persistent cell cycle and further stabilized upon S phase entry. Cessation of mitotic cycle destabilizes the complex formation and likely leads to compromised coordination and activities. Conclusions Together, our results correlate FACT-MCM functionally and temporally with S phase and DNA replication. They further demonstrate that enzymatic activities intrinsically important for DNA replication are tightly controlled at various levels, thereby ensuring proper progression of, as well as exit from, the cell cycle and ultimately euploid gene balance.

  2. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer.

    Directory of Open Access Journals (Sweden)

    Laura M Lopez-Sánchez

    Full Text Available The induction of polyploidy is considered the reproductive end of cells, but there is evidence that polyploid giant cancer cells (PGCCs contribute to cell repopulation during tumor relapse. However, the role of these cells in the development, progression and response to therapy in colon cancer remains undefined. Therefore, the main objective of this study was to investigate the generation of PGCCs in colon cancer cells and identify mechanisms of formation. Treatment of HCT-116 and Caco-2 colon cancer cells with the hypoxia mimic CoCl2 induced the formation of cells with larger cell and nuclear size (PGCCs, while the cells with normal morphology were selectively eliminated. Cytometric analysis showed that CoCl2 treatment induced G2 cell cycle arrest and the generation of a polyploid cell subpopulation with increased cellular DNA content. Polyploidy of hypoxia-induced PGCCs was confirmed by FISH analysis. Furthermore, CoCl2 treatment effectively induced the stabilization of HIF-1α, the differential expression of a truncated form of p53 (p47 and decreased levels of cyclin D1, indicating molecular mechanisms associated with cell cycle arrest at G2. Generation of PGCCs also contributed to expansion of a cell subpopulation with cancer stem cells (CSCs characteristics, as indicated by colonosphere formation assays, and enhanced chemoresistance to 5-fluorouracil and oxaliplatin. In conclusion, the pharmacological induction of hypoxia in colon cancer cells causes the formation of PGCCs, the expansion of a cell subpopulation with CSC characteristics and chemoresistance. The molecular mechanisms involved, including the stabilization of HIF-1 α, the involvement of p53/p47 isoform and cell cycle arrest at G2, suggest novel targets to prevent tumor relapse and treatment failure in colon cancer.

  3. Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors

    Directory of Open Access Journals (Sweden)

    Hayashi Katsuhiko

    2007-12-01

    Full Text Available Abstract Background The extraembryonic tissues, visceral endoderm (VE and extraembryonic ectoderm (ExE are known to be important for the induction of primordial germ cells (PGCs in mice via activation of the bone morphogenetic protein (BMP signalling pathway. We investigated whether the VE and ExE have a direct role in the specification of PGCs, or in an earlier event, namely the induction of the PGC precursors in the proximal posterior epiblast cells. Results We cultured embryonic day (E 5.75 to E7.0 mouse embryos in an explant-assay with or without extraembryonic tissues. The reconstituted pieces of embryonic and extraembryonic tissues were assessed for the formation of both PGC precursors and specified PGCs. For this, Blimp1:gfp and Stella:gfp transgenic mouse lines were used to distinguish between PGC precursors and specified PGC, respectively. We observed that the VE regulates formation of an appropriate number of PGC precursors between E6.25–E7.25, but it is not essential for the subsequent specification of PGCs from the precursor cells. Furthermore, we show that the ExE has a different role from that of the VE, which is to restrict localization of PGC precursors to the posterior part of the embryo. Conclusion We show that the VE and ExE have distinct roles in the induction of PGC precursors, namely the formation of a normal number of PGC precursors, and their appropriate localization during early development. However, these tissues do not have a direct role during the final stages of specification of the founder population of PGCs.

  4. MYB58 and MYB63 Are Transcriptional Activators of the Lignin Biosynthetic Pathway during Secondary Cell Wall Formation in Arabidopsis

    National Research Council Canada - National Science Library

    Jianli Zhou; Chanhui Lee; Ruiqin Zhong; Zheng-Hua Ye

    2009-01-01

    It has previously been shown that SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a key transcription factor regulating secondary cell wall formation, including the biosynthesis of cellulose, xylan, and lignin...

  5. KIF11 Is Required for Spheroid Formation by Oesophageal and Colorectal Cancer Cells.

    Science.gov (United States)

    Imai, Takeharu; Oue, Naohide; Sentani, Kazuhiro; Sakamoto, Naoya; Uraoka, Naohiro; Egi, Hiroyuki; Hinoi, Takao; Ohdan, Hideki; Yoshida, Kazuhiro; Yasui, Wataru

    2017-01-01

    Oesophageal squamous cell carcinoma (ESCC) and colorectal cancer (CRC) are common types of human cancer. Spheroid colony formation is used to characterize cancer stem cell (CSCs). In the present study, we analyzed the significance of kinesin family 11 (KIF11 in human ESCC and CRC. Expression of KIF11 in 105 ESCC and 100 CRC cases was determined using immunohistochemistry. RNA interference was used to inhibit KIF11 expression in ESCC and CRC cell lines. In total, 61 out of 105 (58%) ESCC and 62 out of 100 (62%) CRC cases were positive for KIF11. Expression of KIF11 was not associated with any clinicopathological characteristics. Both the number and size of spheres produced by from TE-5 ESCC cells and DLD-1 CRC cells were significantly reduced upon KIF11 siRNA transfection compared to negative control siRNA transfection. These results indicate that KIF11 plays an important role in CSCs of ESCC and CRC. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen

    Directory of Open Access Journals (Sweden)

    Arnaud Carpentier

    2016-05-01

    Full Text Available The establishment of protocols to differentiate human pluripotent stem cells (hPSCs including embryonic (ESC and induced pluripotent (iPSC stem cells into functional hepatocyte-like cells (HLCs creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli.

  7. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation

    Directory of Open Access Journals (Sweden)

    Susanne Cranz-Mileva

    2015-08-01

    Full Text Available Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments.

  8. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    Science.gov (United States)

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  9. Red blood cell storage increases hypoxia-induced nitric oxide bioavailability and methemoglobin formation in vitro and in vivo

    NARCIS (Netherlands)

    Almac, Emre; Bezemer, Rick; Hilarius-Stokman, Petra M.; Goedhart, Peter; de Korte, Dirk; Verhoeven, Arthur J.; Ince, Can

    2014-01-01

    In this study we investigated whether storage of red blood cells (RBCs) leads to alterations in nitrite reductase activity, hence in altered hypoxia-induced nitric oxide (NO) bioavailability and methemoglobin formation. Hypoxia-induced NO bioavailability and methemoglobin formation were measured in

  10. Histogen Layers Contributing to Adventitious Bud Formation Are Determined by their Cell Division Activities.

    Science.gov (United States)

    Nabeshima, Tomoyuki; Yang, Soo-Jung; Ohno, Sho; Honda, Keita; Deguchi, Ayumi; Doi, Motoaki; Tatsuzawa, Fumi; Hosokawa, Munetaka

    2017-01-01

    Saintpaulia ionantha is propagated by adventitious buds in horticulture, and periclinal chimeral cultivars are usually difficult to propagate. However, some periclinal chimeral cultivars can be propagated with adventitious buds, and the mechanism of which has been unknown. Striped flower cultivars "Kaname," "Concord," and "Monique" were used to investigate what causes flower color separation in adventitious shoot-derived plants by tissue culture. These cultivars were revealed to have mutated flavonoid 3', 5' hydroxylase (SiF3'5'H), WDR1 (SiWDR1), or flavonoid 3 hydroxylase (SiF3H), respectively, in their L1 layer. From our previous study using "Kaname," all flowers from adventitious shoots were colored pink, which was the epidermal color of mother plants' flowers. We used "Concrd" and "Monique" from which we obtained not only monochromatic-colored plants the same as the epidermal color of mother plants, but also plants with a monochromatic colored plants, same as the subepidermal color, and a striped flower color the same as mother plants. Histological observations revealed that epidermal cells divided actively at 14 d after culture and they were involved in the formation of adventitious shoots in the cultured leaf segments of "Kaname." On the other hand, in "Concord" and "Monique," the number of divided cells in the subepidermis was rather higher than that of epidermal cells, and subepidermal cells were sometimes involved in shoot formation. In addition, the plant and leaf size of L1-derived plants from "Concord" and "Monique" were non-vigorous and smaller than those derived from the subepidermal layer. In conclusion, periclinal chimeral cultivars of Saintpaulia can be divided into two types. One type has a high cell division activity in the L1 layer, from which only single flower-colored plants derived from L1 can be obtained as adventitious shoots. Another type has a low cell division activity in the L1 layer, from which striped flower-colored plants the same as

  11. Histogen Layers Contributing to Adventitious Bud Formation Are Determined by their Cell Division Activities

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nabeshima

    2017-10-01

    Full Text Available Saintpaulia ionantha is propagated by adventitious buds in horticulture, and periclinal chimeral cultivars are usually difficult to propagate. However, some periclinal chimeral cultivars can be propagated with adventitious buds, and the mechanism of which has been unknown. Striped flower cultivars “Kaname,” “Concord,” and “Monique” were used to investigate what causes flower color separation in adventitious shoot-derived plants by tissue culture. These cultivars were revealed to have mutated flavonoid 3′, 5′ hydroxylase (SiF3′5′H, WDR1 (SiWDR1, or flavonoid 3 hydroxylase (SiF3H, respectively, in their L1 layer. From our previous study using “Kaname,” all flowers from adventitious shoots were colored pink, which was the epidermal color of mother plants' flowers. We used “Concrd” and “Monique” from which we obtained not only monochromatic-colored plants the same as the epidermal color of mother plants, but also plants with a monochromatic colored plants, same as the subepidermal color, and a striped flower color the same as mother plants. Histological observations revealed that epidermal cells divided actively at 14 d after culture and they were involved in the formation of adventitious shoots in the cultured leaf segments of “Kaname.” On the other hand, in “Concord” and “Monique,” the number of divided cells in the subepidermis was rather higher than that of epidermal cells, and subepidermal cells were sometimes involved in shoot formation. In addition, the plant and leaf size of L1-derived plants from “Concord” and “Monique” were non-vigorous and smaller than those derived from the subepidermal layer. In conclusion, periclinal chimeral cultivars of Saintpaulia can be divided into two types. One type has a high cell division activity in the L1 layer, from which only single flower-colored plants derived from L1 can be obtained as adventitious shoots. Another type has a low cell division activity

  12. GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A

    1988-01-01

    The ability of the GABA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) to promote formation of low affinity GABA receptors on cerebellar granule cells was tested using primary cultures of these neurons. Granule cells were exposed to THIP (150 microM) for 6 hr after, respec...... cells expressed a high density of high affinity GABA receptors. It is concluded that the ability of THIP to promote formation of low affinity GABA receptors on cerebellar granule cells is restricted to an early developmental period....

  13. A cell-type-specific defect in border cell formation in the Acacia mangium root cap developing an extraordinary sheath of sloughed-off cells.

    Science.gov (United States)

    Endo, Izuki; Tange, Takeshi; Osawa, Hiroki

    2011-08-01

    Root caps release border cells, which play central roles in microbe interaction and root protection against soil stresses. However, the number and connectivity of border cells differ widely among plant species. Better understanding of key border-cell phenotype across species will help define the total function of border cells and associated genes. The spatio-temporal detachment of border cells in the leguminous tree Acacia mangium was investigated by using light and fluorescent microscopy with fluorescein diacetate, and their number and structural connectivity compared with that in soybean (Glycine max). Border-like cells with a sheet structure peeled bilaterally from the lateral root cap of A. mangium. Hydroponic root elongation partially facilitated acropetal peeling of border-like cells, which accumulate as a sheath that covers the 0- to 4-mm tip within 1 week. Although root elongation under friction caused basipetal peeling, lateral root caps were minimally trimmed as compared with hydroponic roots. In the meantime, A. mangium columella caps simultaneously released single border cells with a number similar to those in soybean. These results suggest that cell type-specific inhibitory factors induce a distinct defective phenotype in single border-cell formation in A. mangium lateral root caps.

  14. Mast cell chymase potentiates histamine-induced wheal formation in the skin of ragweed-allergic dogs.

    OpenAIRE

    Rubinstein, I; Nadel, J A; Graf, P D; Caughey, G H

    1990-01-01

    Skin mast cells release the neutral protease chymase along with histamine during degranulation. To test the hypothesis that chymase modulates histamine-induced plasma extravasation, we measured wheal formation following intradermal injection of purified mast cell chymase and histamine into the skin of ragweed-allergic dogs. We found that chymase greatly augments histamine-induced wheal formation. The magnitude of the potentiating effect increases with increasing doses of chymase and becomes m...

  15. Note on a comparative evaluation of nine well-known algorithms for solving the cell formation problem in group technology

    OpenAIRE

    Prafulla Joglekar; Q. B. Chung; Madjid Tavana

    2001-01-01

    Over the last three decades, numerous algorithms have been proposed to solve the work-cell formation problem. For practicing manufacturing managers it would be nice to know as to which algorithm would be most effective and efficient for their specific situation. While several studies have attempted to fulfill this need, most have not resulted in any definitive recommendations and a better methodology of evaluation of cell formation algorithms is urgently needed. Prima facie, the methodology u...

  16. v-Src-induced nuclear localization of YAP is involved in multipolar spindle formation in tetraploid cells.

    Science.gov (United States)

    Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2017-01-01

    The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cytopathic effect and plaque formation by arboviruses in a continuous cell line (XTC-2) from the toad Xenopus laevis.

    Science.gov (United States)

    Leake, C J; Varma, M G; Pudney, M

    1977-05-01

    Forty-six arboviruses were tested for c.p.e. and/or plaque formation in an amphibian cell line. C.p.e. was observed with a high proportion of the viruses tested. Comparative plaque assay, in the XTC-2 cells at 28 degrees C and Vero cells at 37 degrees C, suggests that these systems are comparable in sensitivity and susceptibility to infection. Practical uses of this cell line are discussed.

  18. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    Science.gov (United States)

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-07-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells.

  19. Replication independent formation of extrachromosomal circular DNA in mammalian cell-free system.

    Directory of Open Access Journals (Sweden)

    Zoya Cohen

    Full Text Available Extrachromosomal circular DNA (eccDNA is a pool of circular double stranded DNA molecules found in all eukaryotic cells and composed of repeated chromosomal sequences. It was proposed to be involved in genomic instability, aging and alternative telomere lengthening. Our study presents novel mammalian cell-free system for eccDNA generation. Using purified protein extract we show that eccDNA formation does not involve de-novo DNA synthesis suggesting that eccDNA is generated through excision of chromosomal sequences. This process is carried out by sequence-independent enzymes as human protein extract can produce mouse-specific eccDNA from high molecular weight mouse DNA, and vice versa. EccDNA production does not depend on ATP, requires residual amounts of Mg(2+ and is enhanced by double strand DNA breaks.

  20. A stochastic model for the cell formation problem considering machine reliability

    Science.gov (United States)

    Esmailnezhad, Bahman; Fattahi, Parviz; Kheirkhah, Amir Saman

    2015-03-01

    This paper presents a new mathematical model to solve cell formation problem in cellular manufacturing systems, where inter-arrival time, processing time, and machine breakdown time are probabilistic. The objective function maximizes the number of operations of each part with more arrival rate within one cell. Because a queue behind each machine; queuing theory is used to formulate the model. To solve the model, two metaheurstic algorithms such as modified particle swarm optimization and genetic algorithm are proposed. For the generation of initial solutions in these algorithms, a new heuristic method is developed, which always creates feasible solutions. Both metaheurstic algorithms are compared against global solutions obtained from Lingo software's branch and bound (B&B). Also, a statistical method will be used for comparison of solutions of two metaheurstic algorithms. The results of numerical examples indicate that considering the machine breakdown has significant effect on block structures of machine-part matrixes.

  1. Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway.

    Science.gov (United States)

    Yang, Yuyu; Li, Xueyan; Peng, Liying; An, Lin; Sun, Ningyuan; Hu, Xuewen; Zhou, Ping; Xu, Yong; Li, Ping; Chen, Jun

    2018-03-01

    NF-E2-related factor 2 (Nrf2) has been shown to be protective in atherosclerosis. The loss of Nrf2 in macrophages enhances foam cell formation and promotes early atherogenesis. Tanshindiol C (Tan C) is isolated from the root of Salvia miltiorrhiza Bge., a traditional Chinese medicine that has been used for the treatment of several cardiovascular diseases for many years. This study was aimed to test the potential role of Tan C against macrophage foam cell formation and to explore the underlying mechanism. Firstly, we observed that Tan C markedly suppressed oxidized low-density lipoprotein (oxLDL) induced macrophage foam cell formation. Then, we found that Tan C was an activator of both Nrf2 and Sirtuin 1 (Sirt1) in macrophages. Nrf2 and Sirt1 synergistically activated the transcription of anti-oxidant peroxiredoxin 1 (Prdx1) after Tan C treatment. More important, we demonstrated that silencing of Prdx1 promoted oxLDL-induced macrophage foam cell formation. Prdx1 upregulated adenosine triphosphate-binding cassette (ABC) transporter A1 (ABCA1) expression and decreased intracellular lipid accumulation. Furthermore, Tan C ameliorated oxLDL induced macrophage foam cell formation in a Prdx1-dependent manner. These observations suggest that Tan C protects macrophages from oxLDL induced foam cell formation via activation of Prdx1/ABCA1 signaling and that Prdx1 may be a novel target for therapeutic intervention of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Binglian Zheng

    2014-07-01

    Full Text Available In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1, a transcription factor, plays a key role in sperm cell formation by activating expression of several germline genes. But how DUO1 itself is activated and how sperm cell formation is initiated remain unknown. To expand our understanding of sperm cell formation, we characterized an ARID (AT-Rich Interacting Domain-containing protein, ARID1, that is specifically required for sperm cell formation in Arabidopsis. ARID1 localizes within nuclear bodies that are transiently present in the generative cell from which sperm cells arise, coincident with the timing of DUO1 activation. An arid1 mutant and antisense arid1 plants had an increased incidence of pollen with only a single sperm-like cell and exhibited reduced fertility as well as reduced expression of DUO1. In vitro and in vivo evidence showed that ARID1 binds to the DUO1 promoter. Lastly, we found that ARID1 physically associates with histone deacetylase 8 and that histone acetylation, which in wild type is evident only in sperm, expanded to the vegetative cell nucleus in the arid1 mutant. This study identifies a novel component required for sperm cell formation in plants and uncovers a direct positive regulatory role of ARID1 on DUO1 through association with histone acetylation.

  3. Ceramide 1-phosphate induces neointimal formation via cell proliferation and cell cycle progression upstream of ERK1/2 in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tack-Joong, E-mail: ktj@yonsei.ac.kr [Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 220-710 (Korea, Republic of); Kang, Yeo-Jin [Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 220-710 (Korea, Republic of); Lim, Yong [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lee, Hyoung-Woo [Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 220-710 (Korea, Republic of); College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bae, Kiho [Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 220-710 (Korea, Republic of); Lee, Youn-Sun; Yoo, Jae-Myung; Yoo, Hwan-Soo; Yun, Yeo-Pyo [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2011-08-15

    Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been implicated in the regulation of such vital pathophysiological functions as phagocytosis and inflammation, but there have been no reports ascribing a biological function to CERK in vascular disorders. Here the potential role of CERK/C1P in neointimal formation was investigated using rat aortic vascular smooth muscle cells (VSMCs) in primary culture and a rat carotid injury model. Exogenous C8-C1P stimulated cell proliferation, DNA synthesis, and cell cycle progression of rat aortic VSMCs in primary culture. In addition, wild-type CERK-transfected rat aortic VSMCs induced a marked increase in rat aortic VSMC proliferation and [{sup 3}H]-thymidine incorporation when compared to empty vector transfectant. C8-C1P markedly activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) within 5 min, and the activation could be prevented by U0126, a MEK inhibitor. Also, K1, a CERK inhibitor, decreased the ERK1/2 phosphorylation and cell proliferation on platelet-derived growth factor (PDGF)-stimulated rat aortic VSMCs. CERK expression and C1P levels were found to be potently increased during neointimal formation using a rat carotid injury model. However, ceramide levels decreased during the neointimal formation process. These findings suggest that C1P can induce neointimal formation via cell proliferation through the regulation of the ERK1/2 protein in rat aortic VSMCs and that CERK/C1P may regulate VSMC proliferation as an important pathogenic marker in the development of cardiovascular disorders.

  4. Carrier Formation Dynamics in Prototypical Organic Solar Cells as Investigated by Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2016-01-01

    Full Text Available Subpicosecond transient absorption spectroscopy is a powerful tool used to clarify the exciton and carrier dynamics within the organic solar cells (OSCs. In this review article, we introduce a method to determine the absolute numbers of the excitons and carriers against delay time (t only from the photoinduced absorption (PIA and electrochemically induced absorption (EIA spectra. Application of this method to rr-P3HT-, PTB7-, and SMDPPEH-based OSCs revealed common aspects of the carrier formation dynamics. First, the temporal evolution of the numbers of the excitons and carriers indicates that the late decay component of exciton does not contribute to the carrier formation process. This is probably because the late component has not enough excess energy to separate into the electron and hole across the donor/acceptor (D/A interface. Secondly, the spectroscopy revealed that the exciton-to-carrier conversion process is insensitive to temperature. This observation, together with the fast carrier formation time in OSCs, is consistent with the hot exciton picture.

  5. Polyiodides formation in solvent based Dye Sensitized Solar Cells under reverse bias stress

    Science.gov (United States)

    Agresti, Antonio; Pescetelli, Sara; Gatto, Emanuela; Venanzi, Mariano; Di Carlo, Aldo

    2015-08-01

    In this work we investigate electrolyte degradation mechanisms in a Dye Sensitized Solar Cell (DSSC), when stressed under forced reverse bias (RB) conditions. During the stress test, we observe a gradual and visually evident cluster shaped browning of platinised counter-electrode in contact with electrolyte solution; Raman spectroscopy confirms that the observed phenomena is due to formation of polyiodide ions and reveals an arose marked fluorescence background, stemming from new chemical species induced by RB stress test. Raman and fluorescence measurements on RB stressed model electrolyte solutions reveal that photoluminescence emission is mainly related to degradation mechanisms involving the I-/I3- redox couple. In fact, due to the RB stress, the redox couple is unbalanced and the formation of various associated structures between 1-methyl-3-propyl imidazolium iodide (PMII) ions is favored. This can be detected by observing the Red Edge Effect (REE) in fluorescence emission spectra of stressed solutions. Thus, polyiodides formation in RB stressed DSSCs could be added to the several depletion channels of triiodide anions and should be taken into account in designing new stable and efficient electrolytes.

  6. Metamorphosis of the Drosophila visceral musculature and its role in intestinal morphogenesis and stem cell formation.

    Science.gov (United States)

    Aghajanian, Patrick; Takashima, Shigeo; Paul, Manash; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-12-01

    The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult. However, visceral muscles undergo a phase of remodeling that coincides with the metamorphosis of the intestinal epithelium. During the first day following puparium formation, both circular and longitudinal syncytial fibers dedifferentiate, losing their myofibrils and extracellular matrix, and dissociating into mononuclear cells ("secondary myoblasts"). Towards the end of the second day, this process is reversed, and between 48 and 72h after puparium formation, a structurally fully differentiated adult muscle layer has formed. We could not obtain evidence that cells apart from the dedifferentiated larval visceral muscle contributed to the adult muscle, nor does it appear that the number of adult fibers (or nuclei per fiber) is increased over that of the larva by proliferation. In contrast to the musculature, the intestinal epithelium is completely renewed during metamorphosis. The adult midgut epithelium rapidly expands over the larval layer during the first few hours after puparium formation; in case of the hindgut, replacement takes longer, and proceeds by the gradual caudad extension of a proliferating growth zone, the hindgut proliferation zone (HPZ). The subsequent

  7. Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells.

    Science.gov (United States)

    Pant, Kishor; Yadav, Ajay K; Gupta, Parul; Rathore, Abhishek Singh; Nayak, Baibaswata; Venugopal, Senthil K

    2016-10-06

    Hepatitis B Virus (HBV) utilizes several mechanisms to survive in the host cells and one of the main pathways being autophagosome formation. Humic acid (HA), one of the major components of Mineral pitch, is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. We hypothesized that HA could induce cell death and inhibit HBV-induced autophagy in hepatic cells. Incubation of Hep G2.2.1.5 cells (HepG2 cells stably expressing HBV) with HA (100 μM) inhibited both cell proliferation and autophagosome formation significantly, while apoptosis induction was enhanced. Western blot results showed that HA incubation resulted in decreased levels of beclin-1, SIRT-1 and c-myc, while caspase-3 and β-catenin expression were up-regulated. Western blot results showed that HA significantly inhibited the expression of HBx (3-fold with 50 μM and 5-fold with 100 μM) compared to control cells. When HA was incubated with HBx-transfected Hep G2 cells, HBx-induced autophagosome formation and beclin-1 levels were decreased. These data showed that HA induced apoptosis and inhibited HBV-induced autophagosome formation and proliferation in hepatoma cells.

  8. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  9. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa

    Science.gov (United States)

    Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A.; Jacobson, Aaron; Phinney, Brett S.; Dolan, David; Durbin-Johnson, Blythe P.; Antonova, Elena S.; Lindow, Steven E.; Mellema, Matthew S.; Goulart, Luiz R.; Dandekar, Abhaya M.

    2016-01-01

    Pierce’s disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease “PrtA” that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa. PMID:27492542

  10. A Sodium-Ion-Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base.

    Science.gov (United States)

    Li, Yinshi; Feng, Ying; Sun, Xianda; He, Yaling

    2017-05-15

    A barrier that limits the development of the conventional cation-exchange membrane direct liquid fuel cells (CEM-DLFCs) is that the CEM-DLFCs need additional base to offer both alkaline environment and charge carriers. Herein, we propose a Na+ -conducting direct formate fuel cell (Na-DFFC) that is operated in the absence of added base. A proof-of-concept Na-DFFC yields a peak power density of 33 mW cm-2 at 60 °C, mainly because the hydrolysis of sodium formate provides enough OH- and Na+ ions, proving the conceptual feasibility. Moreover, contrary to the conventional chlor-alkali process, this Na-DFFC enables to generate electricity and produce NaOH simultaneously without polluting the environment. The Na-DFFC runs stably during 13 hours of continuous operation at a constant current of 10 mA, along with a theoretical production of 195 mg NaOH. This work presents a new type of electrochemical conversion device that possesses a wide range of potential applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Influence of medicinal herbs decocted with different utensils on colony formation of gastric carcinoma cells.

    Science.gov (United States)

    Qiu, J X; Tang, L D; Zuo, J P; Yang, J K; Gao, W P; Chen, F Z; Zhang, W Y; Li, H J; Shen, K P

    1989-06-01

    In order to elucidate the different results obtained in cancer patients with similar condition and symptoms treated by the same medicinal herbs, an investigation of the utensils used for making decoctions was carried out. It was found that the decoction made by means of glassware, enamel and earthenware pots had the best effect of inhibiting the colony formation of human gastric carcinoma cells, the next were the decoctions made by means of unrefined iron pots, stainless steel pots and copper pots, and the worst was that made with aluminium pots. It was also found that there was no difference between the water contained in those utensils and normal saline in the influence on the colony formation of human gastric carcinoma cells. Therefore, it is believed that the difference in effect of the decoctions made by means of different kinds of utensils is not due to the trace dissolution of the utensil materials, but is most likely due to the occurrence of some chemical reactions while making the decoction. That the decoctions made by means of different utensils had different peak values in the absorption spectrum also supports this proposition.

  12. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    Full Text Available Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  13. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Science.gov (United States)

    Bedran, Telma Blanca Lombardo; Grignon, Louis; Spolidorio, Denise Palomari; Grenier, Daniel

    2014-01-01

    Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs) of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  14. Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells.

    Science.gov (United States)

    Kurtz-Chalot, Andréa; Villiers, Christian; Pourchez, Jérémie; Boudard, Delphine; Martini, Matteo; Marche, Patrice N; Cottier, Michèle; Forest, Valérie

    2017-06-01

    Nanoparticles (NP) physico-chemical features greatly influence NP/cell interactions. NP surface functionalization is often used to improve NP biocompatibility or to enhance cellular uptake. But in biological media, the formation of a protein corona adds a level of complexity. The aim of this study was to investigate in vitro the influence of NP surface functionalization on their cellular uptake and the biological response induced. 50nm fluorescent silica NP were functionalized either with amine or carboxylic groups, in presence or in absence of polyethylene glycol (PEG). NP were incubated with macrophages, cellular uptake and cellular response were assessed in terms of cytotoxicity, pro-inflammatory response and oxidative stress. The NP protein corona was also characterized by protein mass spectroscopy. Results showed that NP uptake was enhanced in absence of PEG, while NP adsorption at the cell membrane was fostered by an initial positively charged NP surface. NP toxicity was not correlated with NP uptake. NP surface functionalization also influenced the formation of the protein corona as the profile of protein binding differed among the NP types. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection.

    Science.gov (United States)

    Verplaetse, Emilie; Slamti, Leyla; Gohar, Michel; Lereclus, Didier

    2015-04-28

    Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host's death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. Bt is an entomopathogen found ubiquitously in the environment and is a widely used biopesticide. Studies performed at the population level suggest that the infection process of Bt includes three successive steps (virulence, necrotrophism, and sporulation) controlled by different regulators. This study aimed to determine how these phenotypes are activated at the

  16. Adipose-Derived Stem Cells Enhance Cancer Stem Cell Property and Tumor Formation Capacity in Lewis Lung Carcinoma Cells Through an Interleukin-6 Paracrine Circuit.

    Science.gov (United States)

    Lu, Jui-Hua; Wei, Hong-Jian; Peng, Bou-Yue; Chou, Hsin-Hua; Chen, Wei-Hong; Liu, Hen-Yu; Deng, Win-Ping

    2016-12-01

    Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.

  17. Multinucleated giant cell formation induced by IFN-gamma/IL-3 is associated with restriction of virulent Mycobacterium tuberculosis cell to cell invasion in human monocyte monolayers.

    Science.gov (United States)

    Byrd, T F

    1998-09-15

    One of the hallmarks of an effective immune response against Mycobacterium tuberculosis is the formation of granulomas containing multinucleated giant cells. IFN-gamma and interleukin-3 (IL-3) promote Langhans-type multinucleated giant cell formation and have been identified in T cell clones reacting to M. tuberculosis antigens. The ability of human monocytes treated with IFN-gamma and IL-3 to limit the spread of M. tuberculosis in an in vitro infection assay was examined. Monocytes were incubated with control medium, IFN-gamma, TNF-alpha, and calcitriol, a combination permissive to M. tuberculosis growth, or IFN-gamma and IL-3 and infected with a low inoculum of M. tuberculosis (Erdman). IFN-gamma/IL-3 treatment reduced M. tuberculosis CFU relative to both untreated and IFN-gamma/TNF-alpha/calcitriol-treated monocytes. Specifically, CFU were reduced by 79% at 14 days in the IFN-gamma/IL-3 treatment group relative to the IFN-gamma/TNF-alpha/calcitriol treatment group, an effect that was not due to toxic monocyte metabolites. M. tuberculosis growth restriction by IFN-gamma/IL-3-treated monocyte monolayers was associated with the development of Langhans-type multinucleated giant cells. At the light microscope level, dense growth of M. tuberculosis surrounded by a ring of nuclei localized to the center of individual cells. The intracellular location of M. tuberculosis was confirmed by electron microscopy. In contrast, monocyte monolayers treated with IFN-gamma/TNF-alpha/calcitriol consisted of a syncitium of cells containing monocyte aggregates. Nonlocalized linear arrays of M. tuberculosis were observed to be growing throughout such aggregates. These results suggest that physical sequestration of M. tuberculosis by Langhans-type multinucleated giant cells may limit cell to cell spread of this pathogen, thereby restricting growth. Copyright 1998 Academic Press.

  18. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  19. Differential Growth in Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement Cells.

    Science.gov (United States)

    Armour, William J; Barton, Deborah A; Law, Andrew M K; Overall, Robyn L

    2015-09-01

    Lobe development in the epidermal pavement cells of Arabidopsis thaliana cotyledons and leaves is thought to take place via tip-like growth on the concave side of lobes driven by localized concentrations of actin filaments and associated proteins, with a predicted role for cortical microtubules in establishing the direction of restricted growth at the convex side. We used homologous landmarks fixed to the outer walls of pavement cells and thin-plate spline analysis to demonstrate that lobes form by differential growth of both the anticlinal and periclinal walls. Most lobes formed within the first 24 h of the cotyledons unfurling, during the period of rapid cell expansion. Cortical microtubules adjacent to the periclinal wall were persistently enriched at the convex side of lobes during development where growth was anisotropic and were less concentrated or absent at the concave side where growth was promoted. Alternating microtubule-enriched and microtubule-free zones at the periclinal wall in neighboring cells predicted sites of new lobes. There was no particular arrangement of cortical actin filaments that could predict where lobes would form. However, drug studies demonstrate that both filamentous actin and microtubules are required for lobe formation. © 2015 American Society of Plant Biologists. All rights reserved.

  20. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management

    Science.gov (United States)

    Grandjean, Thomas; Barai, Anup; Hosseinzadeh, Elham; Guo, Yue; McGordon, Andrew; Marco, James

    2017-08-01

    It is crucial to maintain temperature homogeneity in lithium ion batteries in order to prevent adverse voltage distributions and differential ageing within the cell. As such, the thermal behaviour of a large-format 20 Ah lithium iron phosphate pouch cell is investigated over a wide range of ambient temperatures and C rates during both charging and discharging. Whilst previous studies have only considered one surface, this article presents experimental results, which characterise both surfaces of the cell exposed to similar thermal media and boundary conditions, allowing for thermal gradients in-plane and perpendicular to the stack to be quantified. Temperature gradients, caused by self-heating, are found to increase with increasing C rate and decreasing temperature to such an extent that 13.4 ± 0.7% capacity can be extracted using a 10C discharge compared to a 0.5C discharge, both at -10 °C ambient temperature. The former condition causes an 18.8 ± 1.1 °C in plane gradient and a 19.7 ± 0.8 °C thermal gradient perpendicular to the stack, which results in large current density distributions and local state of charge differences within the cell. The implications of these thermal and electrical inhomogeneities on ageing and battery pack design for the automotive industry are discussed.

  1. Differential Growth in Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement Cells

    Science.gov (United States)

    Barton, Deborah A.; Law, Andrew M.K.; Overall, Robyn L.

    2015-01-01

    Lobe development in the epidermal pavement cells of Arabidopsis thaliana cotyledons and leaves is thought to take place via tip-like growth on the concave side of lobes driven by localized concentrations of actin filaments and associated proteins, with a predicted role for cortical microtubules in establishing the direction of restricted growth at the convex side. We used homologous landmarks fixed to the outer walls of pavement cells and thin-plate spline analysis to demonstrate that lobes form by differential growth of both the anticlinal and periclinal walls. Most lobes formed within the first 24 h of the cotyledons unfurling, during the period of rapid cell expansion. Cortical microtubules adjacent to the periclinal wall were persistently enriched at the convex side of lobes during development where growth was anisotropic and were less concentrated or absent at the concave side where growth was promoted. Alternating microtubule-enriched and microtubule-free zones at the periclinal wall in neighboring cells predicted sites of new lobes. There was no particular arrangement of cortical actin filaments that could predict where lobes would form. However, drug studies demonstrate that both filamentous actin and microtubules are required for lobe formation. PMID:26296967

  2. Growth Factor Independence-1 (Gfi1) Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell Differentiation

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Nyeng, Pia; Xiao, Fan

    2015-01-01

    BACKGROUND & AIMS: The genetic specification of the compartmentalized pancreatic acinar/centroacinar unit is poorly understood. Growth factor independence-1 (Gfi1) is a zinc finger transcriptional repressor that regulates hematopoietic stem cell maintenance, pre-T-cell differentiation, formation...... of pancreatic acinar cells as well as the centroacinar cells (CACs) in Gfi1(-/-) mice when compared with wild-type littermates. Pancreatic endocrine differentiation, islet architecture, and function were unaffected. Organ domain patterning and the formation of ductal cells occurred normally during the murine...... of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1/Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. METHODS: Gfi1 knockout mice were analyzed at histological and molecular...

  3. Overexpression of Catalase in Vascular Smooth Muscle Cells Prevents the Formation of Abdominal Aortic Aneurysms

    Science.gov (United States)

    Parastatidis, Ioannis; Weiss, Daiana; Joseph, Giji; Taylor, W Robert

    2013-01-01

    Objective Elevated levels of oxidative stress have been reported in abdominal aortic aneurysms (AAA), but which reactive oxygen species (ROS) promotes the development of AAA remains unclear. Here we investigate the effect of the hydrogen peroxide (H2O2) degrading enzyme catalase on the formation of AAA. Approach and Results AAA were induced with the application of calcium chloride (CaCl2) on mouse infrarenal aortas. The administration of PEG-catalase, but not saline, attenuated the loss of tunica media and protected against AAA formation (0.91±0.1 mm vs. 0.76±0.09 mm). Similarly, in a transgenic mouse model, catalase over-expression in the vascular smooth muscle cells (VSMC) preserved the thickness of tunica media and inhibited aortic dilatation by 50% (0.85±0.14 mm vs. 0.57±0.08 mm). Further studies showed that injury with CaCl2 decreased catalase expression and activity in the aortic wall. Pharmacologic administration or genetic over-expression of catalase restored catalase activity and subsequently decreased matrix metalloproteinase activity. In addition, a profound reduction in inflammatory markers and VSMC apoptosis was evident in aortas of catalase over-expressing mice. Interestingly, as opposed to infusion of PEG-catalase, chronic over-expression of catalase in VSMC did not alter the total aortic H2O2 levels. Conclusions The data suggest that a reduction in aortic wall catalase activity can predispose to AAA formation. Restoration of catalase activity in the vascular wall enhances aortic VSMC survival and prevents AAA formation primarily through modulation of matrix metalloproteinase activity. PMID:23950141

  4. Differential effects of GLP-1 receptor agonist on foam cell formation in monocytes between non-obese and obese subjects.

    Science.gov (United States)

    Tanaka, Masashi; Matsuo, Yoshiyuki; Yamakage, Hajime; Masuda, Shinya; Terada, Yuko; Muranaka, Kazuya; Wada, Hiromichi; Hasegawa, Koji; Shimatsu, Akira; Satoh-Asahara, Noriko

    2016-02-01

    Monocytes/macrophages (Mϕ) transform into foam cells in the presence of oxidized-LDL (ox-LDL), releasing inflammatory mediators. The antiatherogenic role of a dipeptidyl peptidase-4 inhibitor is mediated, in part, through improving the unbalance of inflammatory (M1)/anti-inflammatory (M2) phenotypes in monocytes. In this study, we examined differential regulation of glucagon-like peptide-1 receptor (GLP-1R) signaling for antiatherogenesis in monocytes/Mϕ from normal-weight control subjects and obese patients. We evaluated the effects of exendin-4 (Ex-4), a GLP-1R agonist, on ox-LDL-stimulated foam cell formation, M1/M2 cytokine production, and organelle change in primary monocytes from control subjects and obese patients and human monocytic THP-1-derived Mϕ as well. Here we report that Ex-4 suppressed foam cell formation and M1 cytokine expression and, interestingly, induced indicators of autophagy in ox-LDL-stimulated monocytes from control subjects. The suppressing effects on foam cell formation by Ex-4 were reversed by a cAMP inhibitor. In contrast to control subjects, Ex-4 did not induce indicators of autophagy, but did induce foam cell formation and M1 cytokine expression in monocytes from obese patients. GLP-1R expression level was comparable between control subjects and obese patients. The effects of Ex-4 on inducing indicators of autophagy and suppressing foam cell formation were observed in THP-1 Mϕ. These data suggest that GLP-1R signaling induces autophagy, thereby suppressing foam cell formation in non-obese subjects. In obese patients, GLP-1R stimulation increased foam cell formation and IL-6, TNF-α, and IL-1β production. Such altered signaling in monocytes of obese patients may be involved in the development of atherosclerosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Inactivation of the small GTP binding protein Rho induces multinucleate cell formation and apoptosis in murine T lymphoma EL4.

    Science.gov (United States)

    Moorman, J P; Bobak, D A; Hahn, C S

    1996-06-01

    The small G-protein Rho regulates the actin microfilament-dependent cytoskeleton. Exoenzyme C3 of Clostridium botulinum ADP-ribosylates Rho at Asn41, a modification that functionally inactivates Rho. Using a Sindbis virus-based transient gene expression system, we studied the role of Rho in murine EL4 T lymphoma cells. We generated a double subgenomic infectious Sindbis virus (dsSIN:C3) recombinant which expressed C3 in >95% of EL4 cells. This intracellular C3 resulted in modification and inactivation of virtually all endogenous Rho. dsSIN:C3 infection led to the formation of multinucleate cells, likely by inhibiting the actin microfilament-dependent step of cytokinesis. Intriguingly, in spite of the inhibition of cytokinesis, karyokinesis continued, with the result that cells containing a nuclear DNA content as high as 16N (eight nuclei) were observed. In addition, dsSIN:C3-mediated inactivation of Rho was a potent activator of apoptosis in EL4 cells. To discern whether the formation of multinucleate cells was responsible for the activation of apoptosis, 5-fluorouracil (5-FUra) was used to induce cell cycle arrest. As expected, EL4 cells treated with 5-FUra were prevented from forming multinucleate cells upon infection with dsSIN:C3. dsSIN:C3 infection, however, still caused marked apoptosis in 5-FUra-treated cells, indicating that this activation of apoptosis was independent of multinucleate cell formation.

  6. Monocyte-Derived Dendritic Cells Upregulate Extracellular Catabolism of Aggregated Low-Density Lipoprotein on Maturation, Leading to Foam Cell Formation.

    Science.gov (United States)

    Haka, Abigail S; Singh, Rajesh K; Grosheva, Inna; Hoffner, Haley; Capetillo-Zarate, Estibaliz; Chin, Harvey F; Anandasabapathy, Niroshana; Maxfield, Frederick R

    2015-10-01

    Although dendritic cells are known to play a role in atherosclerosis, few studies have examined the contribution of the wide variety of dendritic cell subsets. Accordingly, their roles in atherogenesis remain largely unknown. We investigated the ability of different dendritic cell subsets to become foam cells after contact with aggregated low-density lipoprotein (LDL; the predominant form of LDL found in atherosclerotic plaques). We demonstrate that both murine and human monocyte-derived dendritic cells use exophagy to degrade aggregated LDL, leading to foam cell formation, whereas monocyte-independent dendritic cells are unable to clear LDL aggregates by this mechanism. Exophagy is a catabolic process in which objects that cannot be internalized by phagocytosis (because of their size or association with extracellular structures) are initially digested in an extracellular acidic lytic compartment. Surprisingly, we found that monocyte-derived dendritic cells upregulate exophagy on maturation. This contrasts various forms of endocytic internalization in dendritic cells, which decrease on maturation. Finally, we show that our in vitro results are consistent with dendritic cell lipid accumulation in plaques of an ApoE(-/-) mouse model of atherosclerosis. Our results show that monocyte-derived dendritic cells use exophagy to degrade aggregated LDL and become foam cells, whereas monocyte-independent dendritic cells are unable to clear LDL deposits. Furthermore, we find that exophagy is upregulated on dendritic cell maturation. Thus, exophagy-mediated foam cell formation in monocyte-derived dendritic cells could play a significant role in atherogenesis. © 2015 American Heart Association, Inc.

  7. The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans.

    Science.gov (United States)

    Chen, Xinyue; Zhang, Ruoyu; Takada, Ayako; Iwatani, Shun; Oka, Chiemi; Kitamoto, Toshitaka; Kajiwara, Susumu

    2017-02-01

    The fungal pathogen Candida albicans undergoes a transition from yeast cells to filamentous cells that is related to its pathogenicity. The complex multicellular processes involved in biofilm formation by this fungus also include this transition. In this work, we investigated the morphological role of the Bgl2 protein (Bgl2p) in the transition to filamentous cells during biofilm formation by C. albicans. Bgl2p has been identified as a β-1, 3-glucosyltransferase, and transcription of the CaBGL2 gene is upregulated during biofilm formation. We used scanning electron microscopy to observe the microstructure of a bgl2 null mutant during biofilm formation and found a delay in the transition to filamentous cells in the premature phase (24 hours) of biofilm formation. Deletion of the CaBGL2 gene led to a decrease in the expression of CPH2 and TEC1, which encode transcription factors required for the transition to the filamentous form. These findings indicate that Bgl2p plays a role in the transition to filamentous cells during biofilm formation by C. albicans. © 2016 Blackwell Verlag GmbH.

  8. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function.

    Science.gov (United States)

    Mitsopoulos, Panagiotis; Chang, Yu-Han; Wai, Timothy; König, Tim; Dunn, Stanley D; Langer, Thomas; Madrenas, Joaquín

    2015-05-01

    Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV(1-3) RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Segmentation and tracking of stem cells in time lapse microscopy to quantify dynamic behavioral changes during spheroid formation.

    Science.gov (United States)

    Jiang, Ching-Fen; Hsu, Shan-hui; Tsai, Ka-Pei; Tsai, Ming-Hong

    2015-06-01

    Dynamic behavior of stem cells during in vitro development is diverse. Previous cell tracking studies have focused more on cell proliferation than on cell aggregation. However, the enhancement of cell proliferation in association with cell aggregation has been reported. In a previous study, we also demonstrated that the aggregation of adult human mesenchymal stem cells to form three-dimensional (3D) cellular spheroids helped maintain the expression of stemness marker genes in the cells. However, the dynamic behavioral changes triggered by spheroid formation remain to be investigated. A scheme of image processing techniques is proposed to meet this need. A hybrid-thresholding technique was first developed for efficient segmentation of cell clusters, after which a cell tracking method based on pair-matching with topological constraints was designed. Two morphological indices were derived to track the timing of 3D spheroid formation during the cellular aggregation process. Five cell motility indices measured from single cells and 3D spheroids were then compared. After confirmation of more than 90% correspondence between the results obtained by manual tracking and the proposed methods, an analysis of cellular behavior reveals a significant increase in motility in association with spheroid formation, consistent with a previous report that used a gene expression approach. This study proposed a systematic image analysis method to quantify the dynamic behavior of stem cells for stemness evaluation during cell culturing in vitro. Results demonstrated the validity of the developed platform in investigation of the dynamic behavior of cell aggregation in stem cell cultures in vitro. © 2015 International Society for Advancement of Cytometry.

  10. Teratoma Formation by Human Embryonic Stem Cells is site-dependent and enhanced by the presence of Matrigel

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Harkness, Linda M; Frandsen, Ulrik

    2008-01-01

    When implanted into immunodeficient mice, human embryonic stem cells (hESC) give rise to teratoma, tumour-like formations containing tissues belonging to all three germ layers. The ability to form teratoma is a sine qua non characteristic of pluripotent stem cells. However, limited data...... of differentiated to un-differentiated tissues was significantly decreased suggesting defective pluripotency of the cells. In conclusion, subcutaneous implantation of hESC in presence of Matrigel appears to be the most efficient, reproducible and the easiest approach for teratoma formation by hESC. Also, teratoma...

  11. Cancer-associated peritoneal mesothelial cells lead the formation of pancreatic cancer peritoneal dissemination.

    Science.gov (United States)

    Abe, Toshiya; Ohuchida, Kenoki; Koikawa, Kazuhiro; Endo, Sho; Okumura, Takashi; Sada, Masafumi; Horioka, Kohei; Zheng, Biao; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Hashizume, Makoto; Nakamura, Masafumi

    2017-02-01

    The interaction between the cancer cells and the peritoneal mesothelial cells (PMCs) plays an important role in the peritoneal dissemination in several types of cancer. However, the role of PMCs in the peritoneal dissemination of pancreatic cancer remains unclear. In the present study, we investigated the interaction between the pancreatic cancer cells (PCCs) and the PMCs in the formation of peritoneal dissemination in vitro and in vivo. The tumor-stromal interaction of PCCs and PMCs significantly enhanced their mobility and invasiveness and enhanced the proliferation and anoikis resistance of PCCs. In a 3D organotypic culture model of peritoneal dissemination, co-culture of PCCs and PMCs significantly increased the cells invading into the collagen gel layer compared with mono-culture of PCCs. PMCs pre-invaded into the collagen gel, remodeled collagen fibers, and increased parallel fiber orientation along the direction of cell invasion. In the tissues of peritoneal dissemination of the KPC (LSL-KrasG12D/+; LSL-Trp53R172H/+;Pdx-1-Cre) transgenic mouse, the monolayer of PMCs was preserved in tumor-free areas, whereas PMCs around the invasive front of peritoneal dissemination proliferated and invaded into the muscle layer. In vivo, intraperitoneal injection of PCCs with PMCs significantly promoted peritoneal dissemination compared with PCCs alone. The present data suggest that the cancer-associated PMCs have important promoting roles in the peritoneal dissemination of PCCs. Therapy targeting cancer-associated PMCs may improve the prognosis of patients with pancreatic cancer.

  12. Of energy and survival incognito: a relationship between viable but non-culturable cells formation and inorganic polyphosphate and formate metabolism in Campylobacter jejuni.

    Science.gov (United States)

    Kassem, Issmat I; Chandrashekhar, Kshipra; Rajashekara, Gireesh

    2013-01-01

    Campylobacter jejuni is a Gram-negative food-borne bacterium that can cause mild to serious diseases in humans. A variety of stress conditions including exposure to formic acid, a weak organic acid, can cause C. jejuni to form viable but non-culturable cells (VBNC), which was proposed as a potential survival mechanism. The inability to detect C. jejuni VBNC using standard culturing techniques may increase the risk of exposure to foods contaminated with this pathogen. However, little is known about the cellular mechanisms and triggers governing VBNC formation. Here, we discuss novel mechanisms that potentially affect VBNC formation in C. jejuni and emphasize the impact of formic acid on this process. Specifically, we highlight findings that show that impairing inorganic polyphosphate (poly-P) metabolism reduces the ability of C. jejuni to form VBNC in a medium containing formic acid. We also discuss the potential effect of poly-P and formate metabolism on energy homeostasis and cognate VBNC formation. The relationship between poly-P metabolism and VBNC formation under acid stress has only recently been identified and may represent a breakthrough in understanding this phenomenon and its impact on food safety.

  13. GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1988-01-01

    The ability of the GABA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) to promote formation of low affinity GABA receptors on cerebellar granule cells was tested using primary cultures of these neurons. Granule cells were exposed to THIP (150 microM) for 6 hr after......, respectively, 4, 7, 10 and 14 days in culture. It was found that THIP treatment of 4- and 7-day-old cultures led to formation of low affinity GABA receptors, whereas such receptors could not be detected after THIP treatment in the older cultures (10 and 14 days) in spite of the fact that these cultured granule...... cells expressed a high density of high affinity GABA receptors. It is concluded that the ability of THIP to promote formation of low affinity GABA receptors on cerebellar granule cells is restricted to an early developmental period....

  14. Cell fusion as a mechanism for the formation of giant cells (Langhans' type). Autoradiographic findings in autoimmune tubulo-interstitial nephritis of the rat.

    Science.gov (United States)

    Thoenes, W; Sonntag, W; Heine, W D; Langer, K H

    1982-01-01

    The formation of multinuclear giant cells of the Langhans' type in tubulo-interstitial auto-immune nephritis in the rat has been investigated by means of autoradiography. While in the majority of giant cells all nuclei were radiolabeled, in a few both labeled and unlabeled nuclei were present. This latter finding represents strong evidence in favour of the hypothesis that giant cells do not form by endomitotic processes but rather through fusion of certain precursor cells. According to previous studies this precursor cell population consists mainly of epitheloid cells, i.e. modified monocytes.

  15. Donor-acceptor complex formation in evaporated small molecular organic photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Susarova, Diana K.; Troshin, Pavel A.; Lyubovskaya, Rimma N.; Razumov, Vladimir F. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, Moscow 142432 (Russian Federation); Hoeglinger, Doris; Koeppe, Robert; Serdar Sariciftci, N. [Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Babenko, Sergey D. [Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences (Branch), Semenov Prospect 1/10, Chernogolovka, Moscow 142432 (Russian Federation)

    2010-05-15

    Novel perylene diimide Py-PDI and naphthalene diimide Py-NDI possessing chelating pyridyl groups have been synthesized. The materials are comparatively investigated as electron acceptors in small molecular photovoltaic cells comprising zinc phthalocyanine ZnPc as an electron donor component. It was shown that these compounds form self-assembled coordination complexes with ZnPc in solution and co-evaporated solid blends. Py-PDI and Py-NDI used as electron acceptor materials in photovoltaic cells with donor ZnPc significantly outperform the reference materials, i.e. perylene and naphthalene diimides that possess no chelating pyridyl groups. Superior photovoltaic performance of Py-PDI and Py-NDI is explained by a complex formation between these compounds and ZnPc. Such interactions of donor and acceptor materials strongly improve photoinduced charge carrier generation. This gives great advantages not just for the construction of organic solar cells but also for organic photodetectors. The devices fabricated in this study are also useful as fast and highly sensitive photodetectors with response times of less than 10 microseconds as well as a strong photoconductive behavior under forward bias. (author)

  16. Neurl4 contributes to germ cell formation and integrity in Drosophila

    Directory of Open Access Journals (Sweden)

    Jennifer Jones

    2015-08-01

    Full Text Available Primordial germ cells (PGCs form at the posterior pole of the Drosophila embryo, and then migrate to their final destination in the gonad where they will produce eggs or sperm. Studies of the different stages in this process, including assembly of germ plasm in the oocyte during oogenesis, specification of a subset of syncytial embryonic nuclei as PGCs, and migration, have been informed by genetic analyses. Mutants have defined steps in the process, and the identities of the affected genes have suggested biochemical mechanisms. Here we describe a novel PGC phenotype. When Neurl4 activity is reduced, newly formed PGCs frequently adopt irregular shapes and appear to bud off vesicles. PGC number is also reduced, an effect exacerbated by a separate role for Neurl4 in germ plasm formation during oogenesis. Like its mammalian homolog, Drosophila Neurl4 protein is concentrated in centrosomes and downregulates centrosomal protein CP110. Reducing CP110 activity suppresses the abnormal PGC morphology of Neurl4 mutants. These results extend prior analyses of Neurl4 in cultured cells, revealing a heightened requirement for Neurl4 in germ-line cells in Drosophila.

  17. Resveratrol inhibits prostaglandin formation in IL-1β-stimulated SK-N-SH neuronal cells

    Directory of Open Access Journals (Sweden)

    Candelario-Jalil Eduardo

    2009-09-01

    Full Text Available Abstract Resveratrol, a polyphenol present in grapes and red wine, has been studied due to its vast pharmacological activity. It has been demonstrated that resveratrol inhibits production of inflammatory mediators in different in vitro and in vivo models. Our group recently demonstrated that resveratrol reduced the production of prostaglandin (PG E2 and 8-isoprostane in rat activated microglia. In a microglial-neuronal coculture, resveratrol reduced neuronal death induced by activated microglia. However, less is known about its direct roles in neurons. In the present study, we investigated the effects of resveratrol on interleukin (IL-1β stimulated SK-N-SH cells. Resveratrol (0.1-5 μM did not reduce the expression of cyclooxygenase (COX-2 and microsomal PGE2 synthase-1 (mPGES-1, although it drastically reduced PGE2 and PGD2 content in IL-1β-stimulated SK-N-SH cells. This effect was due, in part, to a reduction in COX enzymatic activity, mainly COX-2, at lower doses of resveratrol. The production of 8-iso-PGF2α, a marker of cellular free radical generation, was significantly reduced by resveratrol. The present work provides evidence that resveratrol reduces the formation of prostaglandins in neuroblastoma cells by reducing the enzymatic activity of inducible enzymes, such as COX-2, and not the transcription of the PG synthases, as demonstrated elsewhere.

  18. Microtubule Formation and Activities of Antioxidative Enzymes in PC12 Cells Exposed to Phosphatidylcholine Hydroperoxides

    Directory of Open Access Journals (Sweden)

    Yukako Yamanaka

    2012-11-01

    Full Text Available Aging increases free radical generation and lipid oxidation and, thereby, mediates neurodegenerative diseases. As the brain is rich in lipids (polyunsaturated fatty acids, the antioxidative system plays an important role in protecting brain tissues from oxidative injury. The changes in microtubule formation and antioxidative enzyme activities have been investigated in rat pheochromocytoma PC12 cells exposed to various concentrations of phosphatidylcholine hydroperoxides (PCOOH. We measured three typical antioxidative enzymes, superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT. The microtubule assembly system was dependent on the antioxidative enzyme system in cells exposed to oxidative stress. The activities of the three enzymes increased in a PCOOH exposure-dependent manner. In particular, the changes in the activity as a result of PCOOH exposure were similar in the three antioxidative enzymes. This is the first report indicating the compatibility between the tubulin-microtubule and antioxidative enzyme systems in cells that deteriorate as a result of phospholipid hydroperoxide administration from an exterior source. The descending order of sensitivity of the three enzymes to PCOOH is also discussed.

  19. A multi-cell, multi-scale model of vertebrate segmentation and somite formation.

    Directory of Open Access Journals (Sweden)

    Susan D Hester

    2011-10-01

    Full Text Available Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how events are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently. To test the consistency, integrability and combined explanatory power of current prevailing hypotheses, we built an integrated clock-and-wavefront model including submodels of the intracellular segmentation clock, intercellular segmentation-clock coupling via Delta/Notch signaling, an FGF8 determination front, delayed differentiation, clock-wavefront readout, and differential-cell-cell-adhesion-driven cell sorting. We identify inconsistencies between existing submodels and gaps in the current understanding of somitogenesis mechanisms, and propose novel submodels and extensions of existing submodels where necessary. For reasonable initial conditions, 2D simulations of our model robustly generate spatially and temporally regular somites, realistic dynamic morphologies and spontaneous emergence of anterior-traveling stripes of Lfng. We show that these traveling stripes are pseudo-waves rather than true propagating waves. Our model is flexible enough to generate interspecies-like variation in somite size in response to changes in the PSM growth rate and segmentation-clock period, and in the number and width of Lfng stripes in response to changes in the PSM growth rate, segmentation-clock period and PSM length.

  20. Kinetics of red blood cell rouleaux formation studied by light scattering

    Science.gov (United States)

    Szołna-Chodór, Alicja; Bosek, Maciej; Grzegorzewski, Bronisław

    2015-02-01

    Red blood cell (RBC) rouleaux formation was experimentally studied using a light scattering technique. The suspensions of RBCs were obtained from the blood of healthy donors. Hematocrit of the samples was adjusted ranging from 1% to 4%. Measurements of the intensity of the coherent component of light scattered by the suspensions were performed and the scattering coefficient of the suspensions was determined. The number of RBCs per rouleaux was obtained using anomalous diffraction theory. The technique was used to show the effect of time, hematocrit, and sample thickness on the process. The number of cells per rouleaux first increases linearly, reaches a critical value at ˜3 cells per rouleaux, and then a further increase in the rouleaux size is observed. The kinetic constant of the rouleaux growth in the linear region is found to be independent of hematocrit. The aggregation rate increases as the sample thickness increases. The time at which the critical region appears strongly decreases as the hematocrit of the suspension increases.

  1. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells.

    Science.gov (United States)

    Brasher, Megan I; Martynowicz, David M; Grafinger, Olivia R; Hucik, Andrea; Shanks-Skinner, Emma; Uniacke, James; Coppolino, Marc G

    2017-09-29

    Tumor cell invasion involves targeted localization of proteins required for interactions with the extracellular matrix and for proteolysis. The localization of many proteins during these cell-extracellular matrix interactions relies on membrane trafficking mediated in part by SNAREs. The SNARE protein syntaxin4 (Stx4) is involved in the formation of invasive structures called invadopodia; however, it is unclear how Stx4 function is regulated during tumor cell invasion. Munc18c is known to regulate Stx4 activity, and here we show that Munc18c is required for Stx4-mediated invadopodium formation and cell invasion. Biochemical and microscopic analyses revealed a physical association between Munc18c and Stx4, which was enhanced during invadopodium formation, and that a reduction in Munc18c expression decreases invadopodium formation. We also found that an N-terminal Stx4-derived peptide associates with Munc18c and inhibits endogenous interactions of Stx4 with synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2). Furthermore, expression of the Stx4 N-terminal peptide decreased invadopodium formation and cell invasion in vitro Of note, cells expressing the Stx4 N-terminal peptide exhibited impaired trafficking of membrane type 1 matrix metalloproteinase (MT1-MMP) and EGF receptor (EGFR) to the cell surface during invadopodium formation. Our findings implicate Munc18c as a regulator of Stx4-mediated trafficking of MT1-MMP and EGFR, advancing our understanding of the role of SNARE function in the localization of proteins that drive tumor cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Stimulators of mineralization limit the invasive phenotype of human osteosarcoma cells by a mechanism involving impaired invadopodia formation.

    Directory of Open Access Journals (Sweden)

    Anna Cmoch

    Full Text Available BACKGROUND: Osteosarcoma (OS is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis. RESULTS: In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2 and osteolytic-like (143B OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. CONCLUSIONS: Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma.

  3. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition.

    Science.gov (United States)

    He, Jiangping; Zhang, Guangya; Pang, Qi; Yu, Cong; Xiong, Jie; Zhu, Jing; Chen, Fengling

    2017-05-01

    SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway. © 2017 Federation of European Biochemical Societies.

  4. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation

    Science.gov (United States)

    Stem cells are important in the continuous formation of various tissues during postembryonic organogenesis. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed ...

  5. Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells

    DEFF Research Database (Denmark)

    Vind-Kezunovic, D.; Nielsen, C.H.; Wojewodzka, U.

    2008-01-01

    Ternary lipid compositions in model membranes segregate into large-scale liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. Here, we show mum-sized lipid domain separation leading to vesicle formation in unperturbed human HaCaT keratinocytes. Budding vesicles in the apical portion of the ...... mum-sized surfaces to cap-like budding vesicles. Thus living cells may utilize membrane line tension energies as a control mechanism of exocytic events Udgivelsesdato: 2008/11....... Based on these observations we describe the energetic requirements for plasma membrane vesiculation. We propose that the decrease in total 'L(o)/L(d)' boundary line tension arising from the coalescence of smaller L(d)-like domains makes it energetically favourable for L(d)-like domains to bend from flat...

  6. Semiconductor structural damage attendant to contact formation in III-V solar cells

    Science.gov (United States)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    In order to keep the resistive losses in solar cells to a minimum, it is often necessary for the ohmic contacts to be heat treated to lower the metal-semiconductor contact resistivity to acceptable values. Sintering of the contacts, however can result in extensive mechanical damage of the semiconductor surface under the metallization. An investigation of the detailed mechanisms involved in the process of contact formation during heat treatment may control the structural damage incurred by the semiconductor surface to acceptable levels, while achieving the desired values of contact resistivity for the ohmic contacts. The reaction kinetics of sintered gold contacts to InP were determined. It was found that the Au-InP interaction involves three consecutive stages marked by distinct color changes observed on the surface of the Au, and that each stage is governed by a different mechanism. A detailed description of these mechanisms and options to control them are presented.

  7. Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis.

    Science.gov (United States)

    Michael, Daryn R; Ashlin, Tim G; Davies, Charlotte S; Gallagher, Hayley; Stoneman, Thomas W; Buckley, Melanie L; Ramji, Dipak P

    2013-10-01

    A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-β, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-β-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Differential photoacoustic cell to study the wetting process during porous silicon formation

    Energy Technology Data Exchange (ETDEWEB)

    German Espinosa-Arbelaez, Diego [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Posgrado en Ciencia e Ingenieria de Materiales, Edificio de Posgrado, Coyoacan, CP 04530, Mexico D. F. (Mexico); Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blvd Juriquilla 3001, Campus Juriquilla, CP 76230, Queretaro, Qro. (Mexico); Velazquez-Hernandez, Ruben [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas, CP 76010, Queretaro, Qro (Mexico); Petricioli-Carranco, Julio; Quintero-Torres, Rafael; Rodriguez-Garcia, Mario Enrique [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blvd Juriquilla 3001, Campus Juriquilla, CP 76230, Queretaro, Qro. (Mexico)

    2011-06-15

    This paper shows the in-situ study of the wetting process in Silicon during anodization process using an electrochemical Differential photoacoustic Cell (DPC). The Photoacoustic amplitude and phase signals were obtained for samples in air, ethanol, ethanol/HF and finally air. According to these results ethanol is responsible for a mechanical contact reducing the superficial tension and ethanol/HF produce the removing of the SiO{sub x} and SiO{sub 2}species on the Silicon surface. It was found that the DPC is a powerful technique to study the wet surface before the formation of the porous silicon layer (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Biomimetic strategies for fracture repair: Engineering the cell microenvironment for directed tissue formation

    Directory of Open Access Journals (Sweden)

    Wollis J Vas

    2017-04-01

    Full Text Available Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing ability to recapitulate native tissue environments. This coupled with advances in the understanding of stem cell biology and technology has opened new avenues for regenerative strategies with true clinical translatability. These advances have provided the impetus to develop alternative approaches to enhance the fracture repair process. We provide an update on these advances, with a focus on the development of novel biomimetic approaches for bone regeneration and their translational potential.

  10. Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC).

    Science.gov (United States)

    Liu, Wei; Niu, Xiaojun; Chen, Weiyi; An, Shaorong; Sheng, Hong

    2017-04-01

    Phosphine (PH3) emission from conventional biological wastewater treatment is very inefficient (ng-μg m-3). In this work, we investigated the feasibility of promoting PH3 formation from inorganic phosphorus (IP) or organic phosphorus (OP) containing synthetic wastewater treatment by Microbial Electrolysis Cell (MEC) for the first time. Positive effect of applied potential on PH3 production was observed after methanogens was inhibited. The highest production of PH3 (1103.10 ± 72.02 ng m-3) was obtained in IP-fed MEC operated at -0.6 V, which was about 5-fold and 2-fold compared to that in open circuit experiment and OP-fed MEC, respectively. Meanwhile, PH3 formation corresponded positively with current density and alkaline phosphatase activity. This result showed that suitable potential could enhance the activity of relevant enzymes and boost the biosynthesis of PH3. Bacterial communities analysis based on high-throughput sequencing revealed that applied potential was conductive to the enrichment of phosphate-reducing organisms in contrast to the control test. These results provide a new idea for resource utilization of phosphorus in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells.

    Science.gov (United States)

    Touch, Narong; Hibino, Tadashi; Morimoto, Yuki; Kinjo, Nobutaka

    2017-12-01

    The method of improving bottom water environment using industrial wastes to suppress diffusion substances from bottom sediment has recently captured the attention of many researchers. In this study, wastewater discharge-derived sediment was used to examine an alternative approach involving the use of sediment microbial fuel cells (SMFCs) in relaxing the formation of hypoxic bottom water, and removing reduced substances from sediment. Concentrations of dissolved oxygen (DO) and other ions were measured in overlying water and sediment pore water with and without the application of SMFCs. The results suggest that SMFCs can markedly reduce hydrogen sulfide and manganese ion concentrations in overlying water, and decrease the depletions of redox potential and DO concentration. In addition, SMFCs can dissolve ferric compounds in the sediment and thereby release the ferric ion available to fix phosphate in the sediment. Our results indicate that SMFCs can be used as an alternative method to relax the formation of hypoxic bottom water and to remove reduced substances from the sediment, thus improving the quality of both water and sediment environments.

  12. Identification of red blood cell rouleaux formation using photoacoustic ultrasound spectroscopy

    Science.gov (United States)

    Kibria, Fayruz; Hysi, Eno; Strohm, Eric M.; Kolios, Michael C.

    2014-03-01

    Red blood cell (RBC) rouleaux formation is a reversible phenomenon that occurs during low blood flow and small shearing forces in circulation. Certain pathological conditions can alter the molecular constituents of blood and properties of the RBCs leading to enhanced rouleaux formation, which results in impaired perfusion and tissue oxygenation. In this study rouleaux were artificially generated using Dextran-70 and examined using a photoacoustic (PA) microscope. Individual rouleau were irradiated with a 532 nm pulsed laser focused to a 10 μm spot size, and the resulting PA signals recorded with a 200 MHz transducer. The laser and transducer were co-aligned, with the sample positioned between them. The frequency-domain PA ultrasound spectra were calculated for rouleaux with lengths ranging from 10 to 20 μm. For the rouleaux, a single spectral minimum at 269+/-4 MHz was observed. The spectral minima were in good agreement with a theoretical thermoelastic expansion model using an infinite length cylindrical absorber, bearing a diameter equivalent to an average human RBC (7.8 μm). These results suggest that PA ultrasound spectroscopy can be potentially used as a tool for monitoring blood samples for the presence of rouleaux.

  13. Modeling the PbI2 formation in perovskite solar cells using XRD/XPS patterns

    Science.gov (United States)

    Sohrabpoor, Hamed; Elyasi, Majid; Aldosari, Marouf; Gorji, Nima E.

    2016-09-01

    The impact of prolonged irradiation and air humidity on the stability of perovskite solar cells is modeled using X-ray diffraction and X-ray photoelectron spectroscopy patterns reported in the literature. Light or air-moisture causes the formation of a thin PbI2 or oxide defective layers (in nanoscale) at the interface of perovskite/hole-transport-layer or at the junction with metallic back contact. This thin layer blocks the carrier transport/passivation at the interfaces and cause degradation of device parameters. Variation in thickness of defective layers, changes the XRD and XPS peaks. This allows detection and estimation of the type, crystallinity and thickness of the defective layer. A simple model is developed here to extract the thickness of such thin defective layers formed in nanometer scale at the back region of several perovskite devices. Based on this information, corrected energy band diagram of every device before and after degradation/aging is drawn and discussed in order to obtain insight into the carrier transport and charge collection at the barrier region. In addition, graphene contacted perovskite devices are investigated showing that honey-comb network of graphene contact reduces the effect of aging leading to formation of a thinner defective layer at the perovskite surface compared to perovskite devices with conventional inorganic contacts i.e. Au, Al.

  14. Subinhibitory concentrations of cell wall synthesis inhibitors promote biofilm formation of Enterococcus faecalis

    Science.gov (United States)

    Yu, Wen; Hallinen, Kelsey; Wood, Kevin

    Enterococcus faecalis are commonly associated with hospital acquired infections, because they readily form biofilms on instruments and medical devices. Biofilms are inherently more resistant to killing by antibiotics compared to planktonic bacteria, in part because of their heterogeneous spatial structure. Surprisingly, however, subminimal inhibitory concentrations (sub-MICs) of some antibiotics can actually promote biofilm formation. Unfortunately, much is still unknown about how low drug doses affect the composition and spatial structure of the biofilm. In this work, we investigate the effects of sub-MICs of ampicillin on the formation of E. faecalis biofilms. First, we quantified biofilm mass using crystal violet staining in polystyrene microtiter plates. We found that total biofilm mass is increased over a narrow range of ampicillin concentrations before ultimately declining at higher concentrations. Second, we show that sub-MICs of ampicillin can increase mass of E. faecalis biofilms while simultaneously increasing extracellular DNA/RNA and changing total number of viable cells under confocal microscopy. Further, we use RNA-seq to identify genes differentially expressed under sub-MICs of ampicillin. Finally, we show a mathematical model to explain this phenomenon. This work was funded by The Hartwell Foundation Individual Biomedical Research Award and NSF CAREER 1553208 to KBW.

  15. The crucial role of Activin A on the formation of primordial germ cell-like cells from skin-derived stem cells in vitro.

    Science.gov (United States)

    Sun, Rui; Sun, Yuan-Chao; Ge, Wei; Tan, Hui; Cheng, Shun-Feng; Yin, Shen; Sun, Xiao-Feng; Li, Lan; Dyce, Paul; Li, Julang; Yang, Xiao; Shi, Qing-Hua; Shen, Wei

    2015-01-01

    Primordial germ cells (PGCs) are founder cells of the germ cell lineage, and can be differentiated from stem cells in an induced system in vitro. However, the induction conditions need to be optimized in order to improve the differentiation efficiency. Activin A (ActA) is a member of the TGF-β super family and plays an important role in oogenesis and folliculogenesis. In the present study, we found that ActA promoted PGC-like cells (PGCLCs) formation from mouse skin-derived stem cells (SDSCs) in both embryoid body-like structure (EBLS) differentiation and the co-culture stage in a dose dependent manner. ActA treatment (100 ng/ml) during EBLS differentiation stage and further co-cultured for 6 days without ActA significantly increased PGCLCs from 53.2% to 82.8%, and as well as EBLS differentiation without ActA followed by co-cultured with 100 ng/ml ActA for 4 to 12 days with the percentage of PGCLCs increasing markedly in vitro. Moreover, mice treated with ActA at 100 ng/kg body weight from embryonic day (E) 5.5-12.5 led to more PGCs formation. However, the stimulating effects of ActA were interrupted by Smad3 RNAi, and in an in vitro cultured Smad3(-/-) mouse skin cells scenario. SMAD3 is thus likely a key effecter molecule in the ActA signaling pathway. In addition, we found that the expression of some epiblast cell markers, Fgf5, Dnmt3a, Dnmt3b and Wnt3, was increased in EBLSs cultured for 4 days or PGCLCs co-cultured for 12 days with ActA treatment. Interestingly, at 16 days of differentiation, the percentage of PGCLCs was decreased in the presence of ActA, but the expression of meiosis-relative genes, such as Stra8, Dmc1, Sycp3 and Sycp1, was increased. In conclusion, our data here demonstrated that ActA can promote PGCLC formation from SDSCs in vitro, at early stages of differentiation, and affect meiotic initiation of PGCLCs in later stages.

  16. A MULTI-OBJECTIVE GENETIC ALGORITHM APPROACH TO THE PROBABILISTIC MANUFACTURING CELL FORMATION PROBLEM

    Directory of Open Access Journals (Sweden)

    V. Jayakumar

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Due to customised products, shorter product life-cycles, and unpredictable patterns of demand, manufacturing industries are faced with stochastic production requirements. It is unlikely that the production requirements (product mix and demand are known exactly at the time of designing the manufacturing cell. However, a set of possible production requirements (scenarios with certain probabilities are known at the design stage. Though a large number of research works on manufacturing cells have been reported, very few have considered random product mix constraints at the design stage. This paper presents a nonlinear mixed-integer mathematical model for the cell formation problem with the uncertainty of the product mix for a single period. The model incorporates real-life parameters like alternate routing, operation sequence, duplicate machines, uncertain product mix, uncertain product demand, varying batch size, processing time, machine capacity, and various cost factors. A solution methodology for best possible cell formation using a genetic algorithm (GA is presented, and the computational procedure is illustrated for the case study undertaken.

    AFRIKAANSE OPSOMMING: Vanweë doelgemaakte produkte, korter produklewensiklusse en onvoorspelbare vraagpatrone, staar vervaardigingsindustrieë stochastiese produksiebehoeftes in die gesig. Dit is onwaarskynlik dat produksiebehoeftes (produkmengsel en vraag presies bekend sal wees wanneer die vervaardigingsel ontwerp word. Desnieteenstaande sal ‘n stel moontlike produksiebehoeftes (scenarios met bepaalde waarskynlikhede tog op hierdie stadium bekend wees. Alhoewel heelwat navorsing reeds op vervaardigingselle gedoen is, is daar weinig gerapporteer waar lukraak produkmengselrandvorwaardes by die ontwerpfase oorweeg is. Hierdie artikel hou ‘n nie-lineêre gemengde-heeltal- wiskundige model voor vir die selformasieprobleem met onsekerheid oor die produkmengsel in

  17. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Ju [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Kim, Soo Yeon [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Han, Seong Su [University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA (United States); Kim, Chan Woo [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Kumar, Sandeep [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Park, Byeoung Soo [Nanotoxtech Co., Ansan (Korea, Republic of); Lee, Sung Eun [Division of Applied Biology and Chemistry, Kyungpook National University, Daegu (Korea, Republic of); Yun, Yeo Pyo [College of Pharmacy, Chungbuk National University, Cheongju (Korea, Republic of); Jo, Hanjoong, E-mail: hjo@emory.edu [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Park, Young Hyun, E-mail: pyh012@sch.ac.kr [Department of Food Science and Nutrition, College of Natural Sciences, Soonchunhyang University, Asan (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  18. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Hsien [School of Nutrition, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Wang, Chi-Ping [Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Hui-Hsuan, E-mail: linhh@csmu.edu.tw [Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China)

    2013-10-15

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foam cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.

  19. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins.

    Science.gov (United States)

    Shimaya, M; Muneta, T; Ichinose, S; Tsuji, K; Sekiya, I

    2010-10-01

    We previously reported that more than 60% of synovial mesenchymal stem cells (MSCs) placed on osteochondral defects adhered to the defect within 10 min and promoted cartilage regeneration. The efficiency of adherence is considered to depend on the interaction between cells and extracellular matrix (ECM), in which integrins may play some important roles. Divalent cations such as calcium, magnesium, and manganese may affect functions of integrins, and the integrins may be involved in differentiation of MSCs. Among divalent cations, magnesium is used in clinical practice as a therapeutic agent and increases the affinity of integrin to ECM. In this study, we investigated whether magnesium enhanced adherence and chondrogenesis of synovial MSC through integrins. We performed assays for adherence of human synovial MSCs to collagen-coated slides, in vitro chondrogenesis, ex vivo assays for adherence of human synovial MSCs to osteochondral defect, and in vivo assays for adherence and cartilage formation of synovial MSCs in a rabbit osteochondral defect model. Magnesium increased adhesion of human synovial MSCs to collagen, and this effect was inhibited by neutralizing antibodies for integrin α3 and β1. Magnesium also promoted synthesis of cartilage matrix during in vitro chondrogenesis of synovial MSCs, which was diminished by neutralizing antibodies for integrin β1 but not for integrin α3. Ex vivo analyses demonstrated that magnesium enhanced adherence of human synovial MSCs to osteochondral defects. In vivo studies in rabbits showed that magnesium promoted adherence at 1 day and cartilage formation of synovial MSCs at 2 weeks. Magnesium enhanced adherence of synovial MSCs through integrins, which promoted synthesis of cartilage matrix at an early phase. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Endothelial marker-expressing stromal cells are critical for kidney formation.

    Science.gov (United States)

    Mukherjee, Elina; Maringer, Katherine; Papke, Emily; Bushnell, Daniel; Schaefer, Caitlin; Kramann, Rafael; Ho, Jacqueline; Humphreys, Benjamin D; Bates, Carlton; Sims-Lucas, Sunder

    2017-09-01

    Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice (Flk1fl/fl ) with Foxd1cre mice to generate Foxd1cre; Flk1fl/fl (Flk1ST-/- ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1ST-/- vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1ST-/- kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1ST-/- mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1ST-/- kidneys vs. Juvenile Flk1ST-/- kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1ST-/- mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages. Copyright © 2017 the American Physiological Society.

  1. Cell differentiation and tissue formation in the unique fruits of devil's claws (Martyniaceae).

    Science.gov (United States)

    Horbens, Melanie; Gao, Jie; Neinhuis, Christoph

    2014-06-01

    • Premise of the study: Martyniaceae are characterized by capsules with two upwardly curved, horn-shaped extensions representing morphologically specialized epizoochorous fruits. Because the capsules are assumed to cling to hooves and ankles of large mammals, fiber arrangement and tissue combinations within the endocarp ensuring proper attachment to the vector's feet during transport are of particular interest. In this first detailed anatomical investigation, the functional adaptation of the fruits and their implications for the specific dispersal mode are provided. The peculiar fiber arrangement may also be of interest for future biomimetic composite materials.• Methods: Endocarp anatomy and details of tissue differentiation were examined in fruits of Ibicella lutea and Proboscidea louisianica subsp. fragrans combining light microscopy, SEM, and x-ray microtomography analysis.• Key results: While tips of the extensions are predominantly reinforced by longitudinally oriented fibers, in the middle segment these fibers are densely packed in individual bundles entwined and separated by transversely elongated cells. Within the capsule wall, the fiber bundles are embedded in a dense mesh of transversely oriented fibers that circularly reinforce and protect the loculus. This fibrous pericarp tissue develops within few days by localized cell divisions and intrusive growth of primarily isodiametric parenchyma cells in the pistil.• Conclusions: The study allows insight into a unique and complex example of functionally driven cell growth and tissue formation. Long-horned fruits of Martyniaceae obviously are highly specialized to epizoochorous dispersal, pointing to primary vector-related seed dispersal. The highly ordered arrangement of fibers results in a great mechanical firmness. © 2014 Botanical Society of America, Inc.

  2. Fibronectin promotes proplatelet formation in the human megakaryocytic cell line UT-7/TPO.

    Science.gov (United States)

    Kawaguchi, Tatsuya; Hatano, Ryo; Yamaguchi, Kyoji; Nawa, Katsuhiko; Hashimoto, Ryuji; Yokota, Hiroshi

    2012-01-01

    We investigated PPF (proplatelet formation) in the human megakaryocytic cell line UT-7/TPO in vitro and signal transduction pathways responsible for PPF. The megakaryocytic cell lines are useful for studying megakaryocyte biology, although PPF is induced only in the presence of phorbol ester. TPO (thrombopoietin) stimulates megakaryocyte proliferation and differentiation; however, no PPF occurred in the megakaryocytic cell lines, even after the addition of TPO. Therefore, factors other than TPO may play an important role in the process of PPF. As PPF occurs in the bone marrow in vivo, we noted extracellular matrix proteins and found that soluble FN (fibronectin) induced potent PPF in UT-7/TPO without phorbol ester. A Western blot analysis showed that the expression of integrins was not increased by FN treatment. Anti-β1 antibody and the RGD (arginine-glycine-aspartate) peptide inhibited FN-induced PPF. This result indicates that the signal originated from integrin β1, which is essential to inducing PPF in UT-7/TPO. Results of the experiments using several inhibitors suggest that activation of the MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]-ERK and PI3K (phosphoinositide 3-kinase) pathways are necessary for PPF. The phosphorylation of ERK gradually increased for 2 h after the addition of soluble FN, which suggests that activation of ERK is essential for the initial induction of FN-induced PPF in UT-7/TPO. UT-7/TPO is a useful cell line that enables us to study the signals of PPF without effects of chemical compounds. © The Author(s) Journal compilation © 2012 Portland Press Limited

  3. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation.

    Science.gov (United States)

    Zhao, Bin; Zhang, Yijie; Han, Shichao; Zhang, Wei; Zhou, Qin; Guan, Hao; Liu, Jiaqi; Shi, Jihong; Su, Linlin; Hu, Dahai

    2017-04-01

    Wound healing is a highly orchestrated physiological process consisting of a complex events, and scarless wound healing is highly desired for the development and application in clinical medicine. Recently, we have demonstrated that human amniotic epithelial cells (hAECs) promoted wound healing and inhibited scar formation through a paracrine mechanism. However, exosomes (Exo) are one of the most important paracrine factors. Whether exosomes derived from human amniotic epithelial cells (hAECs-Exo) have positive effects on scarless wound healing have not been reported yet. In this study, we examined the role of hAECs-Exo on wound healing in a rat model. We found that hAECs, which exhibit characteristics of both embryonic and mesenchymal stem cells, have the potential to differentiate into all three germ layers. hAECs-Exo ranged from 50 to 150 nm in diameter, and positive for exosomal markers CD9, CD63, CD81, Alix, TSG101 and HLA-G. Internalization of hAECs-Exo promoted the migration and proliferation of fibroblasts. Moreover, the deposition of extracellular matrix (ECM) were partly abolished by the treatment of high concentration of hAECs-Exo (100 μg/mL), which may be through stimulating the expression of matrix metalloproteinase-1 (MMP-1). In vivo animal experiments showed that hAECs-Exo improved the skin wound healing with well-organized collagen fibers. Taken together, These findings represent that hAECs-Exo can be used as a novel hope in cell-free therapy for scarless wound healing.

  4. Induced hemocompatibility and bone formation as biological scaffold for cell therapy implant

    Directory of Open Access Journals (Sweden)

    Keng-Liang Ou

    2016-06-01

    Full Text Available Although stem cells can become almost any type of specialized cell in the human body and may have the potential to generate replacement cells for tissues and organs, the transplantation of these cells are hindered by immune rejection and teratoma formation. However, scientists have found a promising solution for these problems-they have discovered the ability to isolate stem cells from a patient’s umbilical cord blood or bone marrow. Even more recently, small stem cells, such as spore-like stem cells, Blastomere-Like Stem Cells (BLSCs, and Very-Small Embryonic-Like stem cells (VSELs isolated directly from the peripheral blood have beeninvestigated as a novel approach to stem cell therapy as they can be isolated directly from the peripheral blood. A newly-discovered population of multipotent stem cells in this class has been dubbed StemBios (SB cells. The potential therapeutic uses of such stem cells have been explored in many ways, one of which includes dental remodeling and construction. Using adult stem cells, scientists have engineered and cultivated teeth in mice that may one day be used for human implantation.It follows that such regeneration may be possible, to a certain degree, in human patients as well. This idea leads to the present study on the effect of SB cell therapy on early osseointegrationof dental implants. Titanium (Ti dental implants have been proven to be a reliable and predictable treatment for restoration of edentulous regions. The osseointegration process can be described in two stages: primary stability (mechanical stability and secondary stability (biological stability. The mechanical stabilization of the implant reflects the interaction between the bone density and the features of the implant designs and can be determined after implant insertion. Alternatively,the biological stabilization of the implant is a physiologic healing process. It is couple to the biological interaction between the external surface of the

  5. Inhibition of histone deacetylases induces formation of multipolar spindles and subsequent p53-dependent apoptosis in nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Yan, Min; Qian, Yuan-Min; Yue, Cai-Feng; Wang, Zi-Feng; Wang, Bi-Cheng; Zhang, Wei; Zheng, Fei-Meng; Liu, Quentin

    2016-07-12

    Histone deacetylases (HDACs) play crucial roles in the initiation and progression of cancer, offering a promising target for cancer therapy. HDACs inhibitor MGCD0103 (MGCD) exhibits effective anti-tumor activity by blocking proliferation and inducing cell death in malignant cells. However, the molecular mechanisms of HDACs inhibition induces cell death have not been well elucidated. In this study, we showed that MGCD effectively restored histone acetylation, suppressed cell growth and induced apoptosis in two-dimensional (2D) and three-dimensional (3D) cultured CNE1 and CNE2 nasopharyngeal carcinoma (NPC) cells. Importantly, MGCD arrested cell cycle at mitosis (M) phase with formation of multipolar spindles, which was associated with activated p53-mediated postmitotic checkpoint pathway to induce apoptotic cell death. Moreover, MGCD-induced apoptosis was decreased by inhibition of p53 using short interfering RNA (siRNA), suggesting that p53 was required for MGCD-induced cell apoptosis. Consistently, MGCD in combination with Nutlin-3, a MDM2 inhibitor showed synergistic effect on inducing apoptosis in 2D and 3D cultured CNE2 cells. Collectively, our data revealed that MGCD induced p53-dependent cell apoptosis following formation of multipolar spindles in NPC cells, suggesting the therapeutic potential of combinations of HDACs and MDM2 inhibitors for NPC treatment.

  6. Inhibition of Bim enhances replication of varicella-zoster virus and delays plaque formation in virus-infected cells.

    Science.gov (United States)

    Liu, Xueqiao; Cohen, Jeffrey I

    2014-01-01

    Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication.

  7. Epithelial Sheet Folding Induces Lumen Formation by Madin-Darby Canine Kidney Cells in a Collagen Gel

    Science.gov (United States)

    Ishida, Sumire; Tanaka, Ryosuke; Yamaguchi, Naoya; Ogata, Genki; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    Lumen formation is important for morphogenesis; however, an unanswered question is whether it involves the collective migration of epithelial cells. Here, using a collagen gel overlay culture method, we show that Madin-Darby canine kidney cells migrated collectively and formed a luminal structure in a collagen gel. Immediately after the collagen gel overlay, an epithelial sheet folded from the periphery, migrated inwardly, and formed a luminal structure. The inhibition of integrin-β1 or Rac1 activity decreased the migration rate of the peripheral cells after the sheets folded. Moreover, lumen formation was perturbed by disruption of apical-basolateral polarity induced by transforming growth factor-β1. These results indicate that cell migration and cell polarity play an important role in folding. To further explore epithelial sheet folding, we developed a computer-simulated mechanical model based on the rigidity of the extracellular matrix. It indicated a soft substrate is required for the folding movement. PMID:25170757

  8. Epithelial sheet folding induces lumen formation by Madin-Darby canine kidney cells in a collagen gel.

    Directory of Open Access Journals (Sweden)

    Sumire Ishida

    Full Text Available Lumen formation is important for morphogenesis; however, an unanswered question is whether it involves the collective migration of epithelial cells. Here, using a collagen gel overlay culture method, we show that Madin-Darby canine kidney cells migrated collectively and formed a luminal structure in a collagen gel. Immediately after the collagen gel overlay, an epithelial sheet folded from the periphery, migrated inwardly, and formed a luminal structure. The inhibition of integrin-β1 or Rac1 activity decreased the migration rate of the peripheral cells after the sheets folded. Moreover, lumen formation was perturbed by disruption of apical-basolateral polarity induced by transforming growth factor-β1. These results indicate that cell migration and cell polarity play an important role in folding. To further explore epithelial sheet folding, we developed a computer-simulated mechanical model based on the rigidity of the extracellular matrix. It indicated a soft substrate is required for the folding movement.

  9. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    Science.gov (United States)

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  10. Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium.

    Directory of Open Access Journals (Sweden)

    Tetsuro Tamaki

    Full Text Available BACKGROUND: Cellular cardiomyoplasty for myocardial infarction has been developed using various cell types. However, complete differentiation and/or trans-differentiation into cardiomyocytes have never occurred in these transplant studies, whereas functional contributions were reported. METHODS AND RESULTS: Skeletal muscle interstitium-derived CD34(+/CD45(- (Sk-34 cells were purified from green fluorescent protein transgenic mice by flowcytometory. Cardiac differentiation of Sk-34 cells was examined by in vitro clonal culture and co-culture with embryonic cardiomyocytes, and in vivo transplantation into a nude rat myocardial infarction (MI model (left ventricle. Lower relative expression of cardiomyogenic transcription factors, such as GATA-4, Nkx2-5, Isl-1, Mef2 and Hand2, was seen in clonal cell culture. However, vigorous expression of these factors was seen on co-culture with embryonic cardiomyocytes, together with formation of gap-junctions and synchronous contraction following sphere-like colony formation. At 4 weeks after transplantation of freshly isolated Sk-34 cells, donor cells exhibited typical cardiomyocyte structure with formation of gap-junctions, as well as intercalated discs and desmosomes, between donor and recipient and/or donor and donor cells. Fluorescence in situ hybridization (FISH analysis detecting the rat and mouse genomic DNA and immunoelectron microscopy using anti-GFP revealed donor-derived cells. Transplanted Sk-34 cells were incorporated into infarcted portions of recipient muscles and contributed to cardiac reconstitution. Significant improvement in left ventricular function, as evaluated by transthoracic echocardiography and micro-tip conductance catheter, was also observed. CONCLUSIONS AND SIGNIFICANCE: Skeletal muscle-derived multipotent Sk-34 cells that can give rise to skeletal and smooth muscle cells as reported previously, also give rise to cardiac muscle cells as multi-myogenic stem cells, and thus are a

  11. Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast.

    Science.gov (United States)

    Long, Allan P; Manneschmidt, Anna K; VerBrugge, Bobby; Dortch, Mary R; Minkin, Steven C; Prater, Keith E; Biggerstaff, John P; Dunlap, John R; Dalhaimer, Paul

    2012-05-01

    Cells sequester neutral lipids in bodies called lipid droplets. Thus, the formation and breakdown of the droplets are important for cellular metabolism; unfortunately, these processes are difficult to quantify. Here, we used time-lapse confocal microscopy to track the formation, movement and size changes of lipid droplets throughout the cell cycle in fission yeast Schizosaccharomyces pombe. In theory, the number of lipid droplets in these cells must increase for daughter cells to have the same number of droplets as the parent at a reference point in the cell cycle. We observed stable droplet formation events in G2 phase that were divided evenly between de novo formation of nascent droplets and fission of preexisting droplets. The observations that lipid droplet number is linked to the cell cycle and that droplets can form via fission were both new discoveries. Thus, we scrutinized each fission event for multiple signatures to eliminate possible artifacts from our microscopy. We augmented our time-lapse confocal microscopy with electron microscopy, which showed lipid droplet 'intermediates': droplets shaped like dumbbells that are potentially in transition states between two spherical droplets. Using these complementary microscopy techniques and also dynamic simulations, we show that lipid droplets can form by fission. © 2012 John Wiley & Sons A/S.

  12. IL-17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs.

    Science.gov (United States)

    Fleige, Henrike; Ravens, Sarina; Moschovakis, Georgios Leandros; Bölter, Jasmin; Willenzon, Stefanie; Sutter, Gerd; Häussler, Susanne; Kalinke, Ulrich; Prinz, Immo; Förster, Reinhold

    2014-04-07

    Ectopic lymphoid tissue, such as bronchus-associated lymphoid tissue (BALT) in the lung, develops spontaneously at sites of chronic inflammation or during infection. The molecular mechanisms underlying the neogenesis of such tertiary lymphoid tissue are still poorly understood. We show that the type of inflammation-inducing pathogen determines which key factors are required for the formation and maturation of BALT. Thus, a single intranasal administration of the poxvirus modified vaccinia virus Ankara (MVA) is sufficient to induce highly organized BALT with densely packed B cell follicles containing a network of CXCL13-expressing follicular DCs (FDCs), as well as CXCL12-producing follicular stromal cells. In contrast, mice treated with P. aeruginosa (P.a.) develop BALT but B cell follicles lack FDCs while still harboring CXCL12-positive follicular stromal cells. Furthermore, in IL-17-deficient mice, P.a.-induced BALT largely lacks B cells as well as CXCL12-expressing stromal cells, and only loose infiltrates of T cells are present. We show that Toll-like receptor pathways are required for BALT induction by P.a., but not MVA, and provide evidence that IL-17 drives the differentiation of lung stroma toward podoplanin-positive CXCL12-expressing cells that allow follicle formation even in the absence of FDCs. Taken together, our results identify distinct pathogen-dependent induction and maturation pathways for BALT formation.

  13. Membrane-Proximal Epitope Facilitates Efficient T Cell Synapse Formation by Anti-FcRH5/CD3 and Is a Requirement for Myeloma Cell Killing.

    Science.gov (United States)

    Li, Ji; Stagg, Nicola J; Johnston, Jennifer; Harris, Michael J; Menzies, Sam A; DiCara, Danielle; Clark, Vanessa; Hristopoulos, Maria; Cook, Ryan; Slaga, Dionysos; Nakamura, Rin; McCarty, Luke; Sukumaran, Siddharth; Luis, Elizabeth; Ye, Zhengmao; Wu, Thomas D; Sumiyoshi, Teiko; Danilenko, Dimitry; Lee, Genee Y; Totpal, Klara; Ellerman, Diego; Hötzel, Isidro; James, John R; Junttila, Teemu T

    2017-03-13

    The anti-FcRH5/CD3 T cell-dependent bispecific antibody (TDB) targets the B cell lineage marker FcRH5 expressed in multiple myeloma (MM) tumor cells. We demonstrate that TDBs trigger T cell receptor activation by inducing target clustering and exclusion of CD45 phosphatase from the synapse. The dimensions of the target molecule play a key role in the efficiency of the synapse formation. The anti-FcRH5/CD3 TDB kills human plasma cells and patient-derived myeloma cells at picomolar concentrations and results in complete depletion of B cells and bone marrow plasma cells in cynomolgus monkeys. These data demonstrate the potential for the anti-FcRH5/CD3 TDB, alone or in combination with inhibition of PD-1/PD-L1 signaling, in the treatment of MM and other B cell malignancies. Copyright © 2017 Genentech. Published by Elsevier Inc. All rights reserved.

  14. STAT3 regulates ABCA3 expression and influences lamellar body formation in alveolar type II cells.

    Science.gov (United States)

    Matsuzaki, Yohei; Besnard, Valérie; Clark, Jean C; Xu, Yan; Wert, Susan E; Ikegami, Machiko; Whitsett, Jeffrey A

    2008-05-01

    ATP-Binding Cassette A3 (ABCA3) is a lamellar body associated lipid transport protein required for normal synthesis and storage of pulmonary surfactant in type II cells in the alveoli. In this study, we demonstrate that STAT3, activated by IL-6, regulates ABCA3 expression in vivo and in vitro. ABCA3 mRNA and immunostaining were decreased in adult mouse lungs in which STAT3 was deleted from the respiratory epithelium (Stat3(Delta/Delta) mice). Consistent with the role of STAT3, intratracheal IL-6 induced ABCA3 expression in vivo. Decreased ABCA3 and abnormalities in the formation of lamellar bodies, the intracellular site of surfactant lipid storage, were observed in Stat3(Delta/Delta) mice. Expression of SREBP1a and 1c, SCAP, ABCA3, and AKT mRNAs was inhibited by deletion of Stat3 in type II cells isolated from Stat3(Delta/Delta) mice. The activities of PI3K and AKT were required for normal Abca3 gene expression in vitro. AKT activation induced SREBP expression and increased the activity of the Abca3 promoter in vitro, consistent with the role of STAT3 signaling, at least in part via SREBP, in the regulation of ABCA3. ABCA3 expression is regulated by IL-6 in a pathway that includes STAT3, PI3K, AKT, SCAP, and SREBP. Activation of STAT3 after exposure to IL-6 enhances ABCA3 expression, which, in turn, influences pulmonary surfactant homeostasis.

  15. Modes of rouleaux formation of human red blood cells in polyvinylpyrrolidone and dextran solutions.

    Science.gov (United States)

    Sewchand, L S; Canham, P B

    1979-11-01

    The mechanics by which normal human erythrocytes join on a plastic cover slip into two cell doublets and larger aggregates of rouleaux were studied microscopically. Polyvinylpyrrolidone (PVP-360) or dextran (DX-70 or DX-110) were used as the rouleau agents. The minimum concentration of the rouleau-inducing agents required to form doublets was 1 g/L for PVP-360 and 5 g/L for the DXs. Three modes of interaction were observed in Ringer's solution with PVP or DX, cresting and flipping (involving no intercellular sliding) and a sliding mode of doublet formation (involving less gravitational work and less cellular deformation). The sliding mechanism occurred in suspensions with the lower concentrations of the rouleau agent but was also observed when geometric constraints prevented the nonsliding interaction of larger groups of cells in the higher concentrations of the rouleau agent. The technique provides a sensitive index for studying the combined effect of cellular flexibility and intercellular adhesion. Significant changes were observed for reduced membrane surface charge or reduced ionic calcium.

  16. Whole Transcriptome Analysis of Notochord-Derived Cells during Embryonic Formation of the Nucleus Pulposus.

    Science.gov (United States)

    Peck, Sun H; McKee, Kendra K; Tobias, John W; Malhotra, Neil R; Harfe, Brian D; Smith, Lachlan J

    2017-09-05

    Recapitulation of developmental signals represents a promising strategy for treating intervertebral disc degeneration. During development, embryonic notochord-derived cells (NDCs) are the direct progenitors of cells that populate the adult nucleus pulposus (NP) and are an important source of secreted signaling molecules. The objective of this study was to define global gene expression profiles of NDCs at key stages of embryonic disc formation. NDCs were isolated from Shh-cre;ROSA:YFP mice at embryonic day 12.5 and postnatal day 0, representing opposite ends of the notochord to NP transformation. Differences in global mRNA abundance across this developmental window were established using RNA-Seq. Protein expression of selected molecules was confirmed using immunohistochemistry. Principal component analysis revealed clustering of gene expression at each developmental stage with more than 5000 genes significantly differentially expressed between E12.5 and P0. There was significantly lower mRNA abundance of sonic hedgehog pathway elements at P0 vs E12.5, while abundance of elements of the transforming growth factor-beta and insulin-like growth factors pathways, and extracellular matrix components including collagen 6 and aggrecan, were significantly higher at P0. This study represents the first transcriptome-wide analysis of embryonic NDCs. Results suggest signaling and biosynthesis of NDCs change dramatically as a function of developmental stage.

  17. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae.

    Science.gov (United States)

    Konto-Ghiorghi, Yoan; Mairey, Emilie; Mallet, Adeline; Duménil, Guillaume; Caliot, Elise; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2009-05-01

    were strongly impaired in biofilm formation. Surprisingly, the VWA domain involved in adherence to epithelial cells was not required for biofilm formation.

  18. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae.

    Directory of Open Access Journals (Sweden)

    Yoan Konto-Ghiorghi

    2009-05-01

    A and PilB mutants were strongly impaired in biofilm formation. Surprisingly, the VWA domain involved in adherence to epithelial cells was not required for biofilm formation.

  19. Sulforaphane suppresses PRMT5/MEP50 function in epidermal squamous cell carcinoma leading to reduced tumor formation.

    Science.gov (United States)

    Saha, Kamalika; Fisher, Matthew L; Adhikary, Gautam; Grun, Daniel; Eckert, Richard L

    2017-08-01

    Protein arginine methyltransferase 5 (PRMT5) cooperates with methylosome protein 50 (MEP50) to arginine methylate histone H3 and H4 to silence gene expression, and increased PRMT5 activity is associated with enhanced cancer cell survival. We have studied the role of PRMT5 and MEP50 in epidermal squamous cell carcinoma. We show that knockdown of PRMT5 or MEP50 results in reduced H4R3me2s formation, and reduced cell proliferation, invasion, migration and tumor formation. We further show that treatment with sulforaphane (SFN), a cancer preventive agent derived from cruciferous vegetables, reduces PRMT5 and MEP50 level and H4R3me2s formation, and this is associated with reduced cell proliferation, invasion and migration. The SFN-dependent reduction in PRMT5 and MEP50 level requires proteasome activity. Moreover, SFN-mediated responses are partially reversed by forced PRMT5 or MEP50 expression. SFN treatment of tumors results in reduced MEP50 level and H4R3me2s formation, confirming that that SFN impacts this complex in vivo. These studies suggest that the PRMT5/MEP50 is required for tumor growth and that reduced expression of this complex is a part of the mechanism of SFN suppression of tumor formation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Formation of tRNA granules in the nucleus of heat-induced human cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Ryu [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Mizuno, Rie [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Watanabe, Kazunori, E-mail: watanabe@ric.u-tokyo.ac.jp [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Ijiri, Kenichi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  1. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    Directory of Open Access Journals (Sweden)

    Treuner-Lange Anke

    2010-04-01

    Full Text Available Abstract Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate

  2. Effects of opioid and nonopioid analgesics on canine wheal formation and cultured human mast cell degranulation.

    Science.gov (United States)

    Schmidt-Rondon, Eric; Wang, Zhenping; Malkmus, Shelle A; Di Nardo, Anna; Hildebrand, Keith; Page, Linda; Yaksh, Tony L

    2017-10-27

    Mast cell (MC) degranulation has been implicated in the side effect profile of a variety of clinically useful agents. Thus, after intrathecal delivery, formation of space-occupying, meningeally-derived masses may be related to local MC degranulation. We systematically characterized degranulating effects of opioid and nonopioid analgesics on cutaneous flares in the dog and in primary human MC (hMC) cultures. Dogs were anesthetized with IV propofol and received intradermal (ID) injections (50μL). Flare diameters were measured at 30min. Drugs showing flare responses were tested after intramuscular (IM) cromolyn (10mg/kg), a MC stabilizer. Human primary MCs (human cord blood CD34+/CD45+ cells) were employed and β-hexosaminidase in cell-free supernatants were measured to assess degranulation. A significant skin flare for several classes of agents was observed including opioids, ziconotide, ketamine, ST-91, neostigmine, adenosine, bupivacaine, lidocaine, MK-801 and 48/80. Tizanidine, fentanyl, alfentanil, gabapentin and baclofen produced no flare. Flare produced by all ID agents, except adenosine, bupivacaine and lidocaine, was reduced by cromolyn. Naloxone had no effect upon opiate or 48/80 evoked flares. In hMC studies, 48/80 resulted in a concentration-dependent release of β-hexosaminidase. The rank order of drug-induced hMC β-hexosaminidase release was similar to that for flares. A variety of therapeutically useful drugs degranulate MCs. This action may account for side effects such as the intrathecal granuloma resulting from spinally-delivered opioids. This degranulating effect may be useful in predicting potential intrathecal toxicity in the development of novel agents. Copyright © 2017. Published by Elsevier Inc.

  3. Syndecan-1 displays a protective role in aortic aneurysm formation by modulating T cell-mediated responses.

    Science.gov (United States)

    Xiao, Jiantao; Angsana, Julianty; Wen, Jing; Smith, Sumona V; Park, Pyong Woo; Ford, Mandy L; Haller, Carolyn A; Chaikof, Elliot L

    2012-02-01

    Chronic inflammation drives progressive and pathological remodeling inherent to formation of abdominal aortic aneurysm (AAA). Syndecan-1 (Sdc-1) is a cell surface heparan sulfate proteoglycan that displays the capacity to modulate inflammatory processes within the vascular wall. In the current investigation, the role of Sdc-1 in AAA formation was examined using 2 models of experimental aneurysm induction, angiotensin II infusion and elastase perfusion. Sdc-1 deficiency exacerbated AAA formation in both experimental models and was associated with increased degradation of elastin, greater protease activity, and enhanced inflammatory cell recruitment into the aortic wall. Bone marrow transplantation studies indicated that deficiency of Sdc-1 in marrow-derived cells significantly contributed to AAA severity. Immunostaining revealed augmented Sdc-1 expression in a subset of AAA localized macrophages. We specifically characterized a higher percentage of CD4(+) T cells in Sdc-1-deficient AAA, and antibody depletion studies established the active role of T cells in aneurysmal dilatation. Finally, we confirmed the ability of Sdc-1 macrophage to modulate the inflammatory chemokine environment. These investigations identify cross-talk between Sdc-1-expressing macrophages and AAA-localized CD4(+) T cells, with Sdc-1 providing an important counterbalance to T-cell-driven inflammation in the vascular wall.

  4. Propranolol inhibits the proliferation, migration and tube formation of hemangioma cells through HIF-1α dependent mechanisms.

    Science.gov (United States)

    Chen, Y Z; Bai, N; Bi, J H; Liu, X W; Xu, G Q; Zhang, L F; Li, X Q; Huo, R

    2017-10-02

    The aim of this study was to investigate the mechanism of propranolol on the regression of hemangiomas. Propranolol-treated hemangioma tissues were collected and the expression of hypoxia inducible factor-1α (HIF-1α) was examined. We also established HIF-1α overexpression and knockdown hemangioma cells, and determined the effects of HIF-1α on the hemangioma cells proliferation, apoptosis, migration and tube formation. Significantly increased HIF-1α level was found in the hemangioma tissues compared to that in normal vascular tissues, whereas propranolol treatment decreased the HIF-1α level in hemangioma tissues in a time- and dose-dependent manner. Moreover, propranolol treatment significantly decreased cell proliferation, migration and tube formation as well as promoted cell apoptosis in HIF-1α overexpression and knockdown hemangioma cells. Propranolol suppressed the cells proliferation, migration and tube formation of hemangioma cells through HIF-1α dependent mechanisms. HIF-1α could serve as a novel target in the treatment of hemangiomas.

  5. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    Science.gov (United States)

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  6. Novel Mechanisms of Compromised Lymphatic Endothelial Cell Homeostasis in Obesity: The Role of Leptin in Lymphatic Endothelial Cell Tube Formation and Proliferation.

    Directory of Open Access Journals (Sweden)

    Akinori Sato

    Full Text Available Leptin is a hormone produced by adipose tissue that regulates various physiological processes. Recent studies have shown that the level of circulating leptin is elevated in obese patients and have suggested a relationship between obesity and postoperative lymphedema. However, the mechanisms by which postoperative lymphedema develops in obese patients and the mechanisms by which leptin regulates lymphatic endothelial cell homeostasis such as tube formation and cell proliferation remain unknown. Here we report that leptin regulates tube formation and cell proliferation in human dermal lymphatic endothelial cells (HDLECs by activation of the signal transducer and activator of transcription 3 pathway, which is downstream signaling of the leptin receptor. Additionally, we found that upregulation of suppressor of cytokine signaling 3 underlies the mechanisms by which a high dose of leptin inhibits cell proliferation and tube formation. Leptin also enhanced expression of the proinflammatory cytokine IL-6 in HDLECs. Interestingly, IL-6 rescues the compromised cell proliferation and tube formation caused by treatment with a high dose of leptin in an autocrine or paracrine manner. Taken together, our findings reveal a novel mechanism by which compromised HDLECs maintain their homeostasis during inflammation mediated by leptin and IL-6. Thus, regulating the level of leptin or IL-6 may be a viable strategy to reduce the incidence of postoperative lymphedema.

  7. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV.

    Science.gov (United States)

    Liu, Dongfang; Tian, Shuo; Zhang, Kai; Xiong, Wei; Lubaki, Ndongala Michel; Chen, Zhiying; Han, Weidong

    2017-12-01

    Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.

  8. Cellular control of abscess formation: role of T cells in the regulation of abscesses formed in response to Bacteroides fragilis.

    Science.gov (United States)

    Shapiro, M E; Kasper, D L; Zaleznik, D F; Spriggs, S; Onderdonk, A B; Finberg, R W

    1986-07-01

    Although abscesses are a major sequela of infection, little is known about which cellular events initiate and which prevent this pathologic response. These studies are the first to indicate a role for T cells in the important pathogenic process of abscess development and also in immunity to abscesses induced by Bacteroides fragilis. We have shown that T cells initiate the formation of abscesses in mice after i.p. challenge with B. fragilis. These T cells bear both Ly-1 and Ly-2 surface markers. Nude mice (which have been shown by others to have T cell or T cell precursors) are also able to form abscesses. Cyclophosphamide-treated mice (with depressed T cell function) were not capable of developing abscesses. Reconstitution with normal or nude mouse spleen cells restored this ability. However, reconstitution with anti-Thy-1.2-treated, anti-Ly-1, or anti-Ly-2-treated spleen cells (or a mixture of the two cell populations) failed to allow abscess formation after bacterial challenge. Immunity to abscesses caused by B. fragilis requires two T cells. The first Ly-1-2+ T cell has an IJ surface marker and has been shown to release a small m.w. soluble factor (ITF) that is antigen specific. Immunity to abscesses, however, depends on the interaction of ITF with a second Ly-1-2+ T cell, demonstrated in reconstitution experiments with nude mice. The data presented document a critical role for T cells in abscess induction and suggest the existence of a suppressor-like T cell circuit in immunity to abscesses.

  9. The Formation of Tight Tumor Clusters Affects the Efficacy of Cell Cycle Inhibitors: A Hybrid Model Study

    Science.gov (United States)

    Kim, MunJu; Reed, Damon; Rejniak, Katarzyna A.

    2014-01-01

    Cyclin-dependent kinases (CDKs) are vital in regulating cell cycle progression, and, thus, in highly proliferating tumor cells CDK inhibitors are gaining interest as potential anticancer agents. Clonogenic assay experiments are frequently used to determine drug efficacy against the survival and proliferation of cancer cells. While the anticancer mechanisms of drugs are usually described at the intracellular single-cell level, the experimental measurements are sampled from the entire cancer cell population. This approach may lead to discrepancies between the experimental observations and theoretical explanations of anticipated drug mechanisms. To determine how individual cell responses to drugs that inhibit CDKs affect the growth of cancer cell populations, we developed a spatially explicit hybrid agent-based model. In this model, each cell is equipped with internal cell cycle regulation mechanisms, but it is also able to interact physically with its neighbors. We model cell cycle progression, focusing on the G1 and G2/M cell cycle checkpoints, as well as on related essential components, such as CDK1, CDK2, cell size, and DNA damage. We present detailed studies of how the emergent properties (e.g., cluster formation) of an entire cell population depend on altered physical and physiological parameters. We analyze the effects of CDK1 and CKD2 inhibitors on population growth, time-dependent changes in cell cycle distributions, and the dynamic evolution of spatial cell patterns. We show that cell cycle inhibitors that cause cell arrest at different cell cycle phases are not necessarily synergistically super-additive. Finally, we demonstrate that the physical aspects of cell population growth, such as the formation of tight cell clusters versus dispersed colonies, alter the efficacy of cell cycle inhibitors, both in 2D and 3D simulations. This finding may have implications for interpreting the treatment efficacy results of in vitro experiments, in which treatment is

  10. Impact of flavonoids on matrix metalloproteinase secretion and invadopodia formation in highly invasive A431-III cancer cells.

    Directory of Open Access Journals (Sweden)

    Yo-Chuen Lin

    Full Text Available Metastasis is a major cause of mortality in cancer patients. Invadopodia are considered to be crucial structures that allow cancer cells to penetrate across the extracellular matrix (ECM by using matrix metalloproteinases (MMPs. Previously, we isolated a highly invasive A431-III subline from parental A431 cells by Boyden chamber assay. The A431-III cells possess higher invasive and migratory abilities, elevated levels of MMP-9 and an enhanced epithelial-mesenchymal transition (EMT phenotype. In this study, we discovered that A431-III cells had an increased potential to form invadopodia and an improved capacity to degrade ECM compared with the original A431 cells. We also observed enhanced phosphorylation levels of cortactin and Src in A431-III cells; these phosphorylated proteins have been reported to be the main regulators of invadopodia formation. Flavonoids, almost ubiquitously distributed in food plants and plant food products, have been documented to exhibit anti-tumor properties. Therefore, it was of much interest to explore the effects of flavonoid antioxidants on the metastatic activity of A431-III cells. Exposure of A431-III cells to two potent dietary flavonoids, namely luteolin (Lu and quercetin (Qu, caused inhibition of invadopodia formation and decrement in ECM degradation. We conclude that Lu and Qu attenuate the phosphorylation of cortactin and Src in A431-III cells. As a consequence, there ensues a disruption of invadopodia generation and the suppression of MMP secretion. These changes, in concert, bring about a reduction in metastasis.

  11. Formation and spreading of TDP-43 aggregates in cultured neuronal and glial cells demonstrated by time-lapse imaging.

    Directory of Open Access Journals (Sweden)

    Tomohiro Ishii

    Full Text Available TAR DNA-binding protein 43 (TDP-43 is a main constituent of cytoplasmic aggregates in neuronal and glial cells in cases of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We have previously demonstrated that adenovirus-transduced artificial TDP-43 cytoplasmic aggregates formation is enhanced by proteasome inhibition in vitro and in vivo. However, the relationship between cytoplasmic aggregate formation and cell death remains unclear. In the present study, rat neural stem cell lines stably transfected with EGFP- or Sirius-expression vectors under the control of tubulin beta III, glial fibrillary acidic protein, or 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter were differentiated into neurons, astrocytes, and oligodendrocytes, respectively, in the presence of retinoic acid. The differentiated cells were then transduced with adenoviruses expressing DsRed-tagged human wild type and C-terminal fragment TDP-43 under the condition of proteasome inhibition. Time-lapse imaging analyses revealed growing cytoplasmic aggregates in the transduced neuronal and glial cells, followed by collapse of the cell. The aggregates remained insoluble in culture media, consisted of sarkosyl-insoluble granular materials, and contained phosphorylated TDP-43. Moreover, the released aggregates were incorporated into neighboring neuronal cells, suggesting cell-to-cell spreading. The present study provides a novel tool for analyzing the detailed molecular mechanisms of TDP-43 proteinopathy in vitro.

  12. Deletion of Krüppel‐Like Factor 4 in Endothelial and Hematopoietic Cells Enhances Neointimal Formation Following Vascular Injury

    OpenAIRE

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-01

    Background Krüppel‐like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen‐inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is also expressed in non‐SMCs including endothelial cells (ECs), we determined if Tie2 promoter‐dependent...

  13. Three-Dimensional-Engineered Matrix to Study Cancer Stem Cells and Tumorsphere Formation: Effect of Matrix Modulus

    OpenAIRE

    Yang, Xiaoming; Samaneh K Sarvestani; Moeinzadeh, Seyedsina; He, Xuezhong; Jabbari, Esmaiel

    2012-01-01

    Maintenance of cancer stem cells (CSCs) is regulated by the tumor microenvironment. Synthetic hydrogels provide the flexibility to design three-dimensional (3D) matrices to isolate and study individual factors in the tumor microenvironment. The objective of this work was to investigate the effect of matrix modulus on tumorsphere formation by breast cancer cells and maintenance of CSCs in an inert microenvironment without the interference of other factors. In that regard, 4T1 mouse breast canc...

  14. Effect of VEGF-C siRNA and endostatin on ring formation and proliferation of esophageal squamous cell carcinoma lymphatic endothelial cells

    Directory of Open Access Journals (Sweden)

    Zheng YP

    2016-10-01

    Full Text Available Yuping Zheng,1–3,* Miaomiao Sun,4,* Jinyan Chen,1,2 Lulu He,1,2 Na Zhao,1,2 Kuisheng Chen1,2 1Pathology Department, The First Affiliated Hospital of Zhengzhou University, 2Henan Key Laboratory of Tumor Pathology, 3Pathology Department, The Second Hospital of Shandong University, Jinan, 4Pathology Department, Henan Tumor Hospital, Zhengzhou, People’s Republic of China *These authors contributed equally to this work Objective: To study the effects of vascular endothelial growth factor C small interfering RNA and endostatin on esophageal squamous cell carcinoma-related ring formation in vitro and proliferation of lymphatic endothelial cells.Materials and methods: KYSE150 cells were subjected to analysis of cell transfection and endostatin operation. The groups were as follows: negative group, blank group, negative plus endostatin group, endostatin group, SG1 group, SG2 group, SG1 plus endostatin group, and SG2 plus endostatin group. The esophageal cancer-related microlymphatic endothelial cells were three-dimensionally cultured. Cell Counting Kit-8 (CCK-8 assay was employed to detect cell proliferation.Results: The negative group’s three-dimensional culture result was the highest, followed by the blank group, negative plus endostatin group, endostatin group, SG2 group, SG1 group, SG1 plus endostatin group, and SG2 plus endostatin group. The quantity of living cells in the blank group was the highest, followed by the negative control, endostatin, SG2, SG1, negative plus endostatin, SG1 plus endostatin, and SG2 plus endostatin groups. Conclusion: Both vascular endothelial growth factor C small interfering RNA and endostatin could inhibit ring formation in esophageal squamous cell carcinoma and proliferation of lymphatic endothelial cells. Keywords: esophageal squamous carcinoma cells, esophageal cancer-associated lymphatic endothelial cells, VEGF-C, ring formation, proliferation

  15. Distinguishing aggregate formation and aggregate clearance using cell-based assays

    NARCIS (Netherlands)

    Eenjes, Evelien; Dragich, Joanna M.; Kampinga, Harm H.; Yamamoto, Ai

    2016-01-01

    The accumulation of ubiquitylated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to a diminished aggregate burden,

  16. Distinguishing aggregate formation and aggregate clearance using cell-based assays

    NARCIS (Netherlands)

    Eenjes, E. (Evelien); Dragich, J.M. (Joanna M.); H. Kampinga (Harm); Yamamoto, A. (Ai)

    2016-01-01

    textabstractThe accumulation of ubiquitylated proteinaceous inclusions represents a complex process, reflecting the disequilibrium between aggregate formation and aggregate clearance. Although decreasing aggregate formation or augmenting aggregate clearance will ultimately lead to a diminished

  17. Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Matsumoto, Rena; Uemura, Toshimasa; Xu, Zhefeng; Yamaguchi, Isamu; Ikoma, Toshiyuki; Tanaka, Junzo

    2015-08-01

    We studied the effect of fibril formation of fish scale collagen on the osteoblastic differentiation of human mesenchymal stem cells (hMSCs). We found that hMSCs adhered easily to tilapia scale collagen, which remarkably accelerated the early stage of osteoblastic differentiation in hMSCs during in vitro cell culture. Osteoblastic markers such as ALP activity, osteopontin, and bone morphogenetic protein 2 were markedly upregulated when the hMSCs were cultured on a tilapia collagen surface, especially in the early osteoblastic differentiation stage. We hypothesized that this phenomenon occurs due to specific fibril formation of tilapia collagen. Thus, we examined the time course of collagen fibril formation using high-speed atomic force microscopy. Moreover, to elucidate the effect of the orientation of fibril formation on the differentiation of hMSCs, we measured ALP activity of hMSCs cultured on two types of tilapia scale collagen membranes with different degrees of fibril formation. The ALP activity in hMSCs cultured on a fibrous collagen membrane was significantly higher than on a non-fibrous collagen membrane even before adding osteoblastic differentiation medium. These results showed that the degree of the fibril formation of tilapia collagen was essential for the osteoblastic differentiation of hMSCs. © 2014 Wiley Periodicals, Inc.

  18. Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach.

    Science.gov (United States)

    Riwaldt, Stefan; Bauer, Johann; Wehland, Markus; Slumstrup, Lasse; Kopp, Sascha; Warnke, Elisabeth; Dittrich, Anita; Magnusson, Nils E; Pietsch, Jessica; Corydon, Thomas J; Infanger, Manfred; Grimm, Daniela

    2016-04-08

    Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line) after a 24 h-exposure on the Random Positioning Machine (RPM) and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis) and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

  19. Stationary-phase genes upregulated by polyamines are responsible for the formation of Escherichia coli persister cells tolerant to netilmicin.

    Science.gov (United States)

    Tkachenko, Alexander G; Kashevarova, Natalya M; Tyuleneva, Elena A; Shumkov, Mikhail S

    2017-05-01

    Persisters are rare phenotypic variants of regular bacterial cells that survive lethal antibiotics or stresses owing to slowing down of their metabolism. Recently, we have shown that polyamine putrescine can upregulate persister cell formation in Escherichia coli via the stimulation of rpoS expression, encoding a master regulator of general stress response. We hypothesized that rmf and yqjD, the stationary-phase genes responsible for ribosome inactivation, might be good candidates for the similar role owing to their involvement in translational arrest and the ability to be affected by polyamines. Using reporter gene fusions or single and multiple knockout mutations in rpoS, rmf and yqjD genes, we show in this work that (i) E. coli polyamines spermidine and cadaverine can upregulate persistence, like putrescine; (ii) polyamine effects on persister cell formation are mediated through stimulation of expression of rpoS, rmf and yqjD genes; (iii) these genes are involved in persister cell formation sequentially in a dynamic fashion as cells enter the stationary phase. The data obtained in this work can be used to develop novel tools relying on a suppression of polyamine metabolism in bacteria to combat persister cells as an important cause of infections refractory to antibiotics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Lymph Node Stromal Cells Enhance Drug-Resistant Colon Cancer Cell Tumor Formation through SDF-1α/CXCR4 Paracrine Signaling

    Directory of Open Access Journals (Sweden)

    David A. Margolin

    2011-09-01

    Full Text Available Colorectal cancer (CRC is the third most common malignancy and the second leading cause of cancer-related deaths in America. Nearly two thirds of newly diagnosed CRC cases include lymph node (LN involvement, and LN metastasis is one of the strongest negative prognostic factors for CRC. It is thought that CRC tumors contain a small population of drug-resistant CRC tumor-initiating cells (Co-TICs that may be responsible for cancer recurrence. To evaluate the effects of the LN stromal cells on Co-TICs, we established a unique xenoplant model using CRC cells isolated by enzymatic digestion from consented patient specimens, HT-29 cells, HCA-7 cells, and LN stromal cell line HK cells. We found that HK cells and HK cell-conditioned media enhanced CRC tumor formation and tumor angiogenesis. Cells expressing CD133+ and the stromal cell-derived factor 1α (SDF-1α receptor CXCR4 were enriched in chemotherapeutic-resistant CRC cells. CD133+CXCR4+ Co-TICs isolated from patient specimens are more tumorigenic than unsorted tumor cells. Furthermore, the inhibitors specific to HK cell-derived SDF-1α reduced tumor formation and tumor angiogenesis. Our results have demonstrated a role for Co-TICs in tumor growth and defined the influence of LN stromal cells on Co-TICs. We have identified a major Co-TIC/LN microenvironment-specific mechanism for CRC resistance to chemotherapeutic agents and established experimental platforms for both in vitro and in vivo testing, indicating that SDF-1α and its receptor, CXCR4, may be targets for clinical therapy.

  1. BACTERIAL BIOFILM FORMATION VERSUS MAMMALIAN CELL GROWTH ON TITANIUM-BASED MONO- AND BI-FUNCTIONAL COATINGS

    NARCIS (Netherlands)

    Subbiahdoss, Guruprakash; Pidhatika, Bidhari; Coullerez, Geraldine; Charnley, Mirren; Kuijer, Roel; van der Mei, Henny C.; Textor, Marcus; Busscher, Henk J.

    2010-01-01

    Biomaterials-associated-infections (BAI) are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while

  2. Mast cell chymase potentiates histamine-induced wheal formation in the skin of ragweed-allergic dogs.

    Science.gov (United States)

    Rubinstein, I; Nadel, J A; Graf, P D; Caughey, G H

    1990-01-01

    Skin mast cells release the neutral protease chymase along with histamine during degranulation. To test the hypothesis that chymase modulates histamine-induced plasma extravasation, we measured wheal formation following intradermal injection of purified mast cell chymase and histamine into the skin of ragweed-allergic dogs. We found that chymase greatly augments histamine-induced wheal formation. The magnitude of the potentiating effect increases with increasing doses of chymase and becomes maximal approximately 30 min after administration. Injection of chymase without histamine does not evoke wheal formation. The chymase potentiation of histamine-induced skin responses is prevented completely by pretreatment with the H1-receptor antagonist pyrilamine, and is prevented by inactivation of chymase with soybean trypsin inhibitor, suggesting that both histamine and preserved catalytic activity are required for the effects of chymase. To examine the effects of histamine and chymase released in situ in further experiments, we measured wheal size following local degranulation of mast cells by intradermal injection of ragweed antigen or compound 48/80. We found that pretreatment with either soybean trypsin inhibitor or pyrilamine markedly reduces ragweed antigen- or 48/80-induced wheal formation, supporting the results obtained by injection of exogenous chymase and histamine. These findings suggest a novel and important proinflammatory role for chymase in modulating the effects of histamine on vascular permeability during mast cell activation. PMID:2384602

  3. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation.

    Science.gov (United States)

    Barshtein, G; Tamir, I; Yedgar, S

    1998-01-01

    The velocity of rouleaux formation (RF), as previously shown, increases with increasing dextran concentration up to a critical concentration (Ca), beyond which the addition of dextran reduces the RF velocity (RFV). de Gennes' model for polymer solutions suggests that dextrans exist in two conformations: a coil structure at low concentrations, which changes to a network beyond a critical concentration (C*). In the present study we examined the relation between Ca and C* for dextrans of different molecular weight, and found that they coincide. This suggests that the change in dextran behavior, from increasing to decreasing RFV, occurs when their conformation changes from coil to network. In addition, it has been reported that in dilute dextran solutions the intercellular distance (D) between RBC in rouleaux increases with the molecular weight of the dextran. We found that D correlates with Rf, the end-to-end distance of the polymer molecule, and for all dextrans D < or = 1.5 Rf. In accord with de Gennes' Model for polymers between surfaces, this corresponds to intercellular interaction with two overlapping surface-associated polymer layers, which may extend "tails" to interact with the opposing cells.

  5. Comparison of single and dual-platform assay formats for CD34+ haematopoietic progenitor cell enumeration

    NARCIS (Netherlands)

    Gratama, J. W.; Braakman, E.; Kraan, J.; Lankheet, P.; Levering, W. H.; van den Beemd, M. W.; van der Schoot, C. E.; Wijermans, P.; Preijers, F.

    1999-01-01

    Most techniques for CD34+ cell enumeration are dual platform assays. That is, they derive absolute numbers of CD34+ cells from either the flow cytometrically assessed per cent (%) CD34+ cells within the nucleated cells and/or the white blood cell count from a haematology cell analyser. Recently,

  6. Bortezomib Inhibits Giant Cell Tumor of Bone through Induction of Cell Apoptosis and Inhibition of Osteoclast Recruitment, Giant Cell Formation, and Bone Resorption.

    Science.gov (United States)

    Xu, Leqin; Luo, Jian; Jin, Rongrong; Yue, Zhiying; Sun, Peng; Yang, Zhengfeng; Yang, Xinghai; Wan, Wei; Zhang, Jishen; Li, Shichang; Liu, Mingyao; Xiao, Jianru

    2016-05-01

    Giant cell tumor of bone (GCTB) is a rare and highly osteolytic bone tumor that usually leads to an extensive bone lesion. The purpose of this study was to discover novel therapeutic targets and identify potential agents for treating GCTB. After screening the serum cytokine profiles in 52 GCTB patients and 10 normal individuals using the ELISA assay, we found that NF-κB signaling-related cytokines, including TNFα, MCP-1, IL1α, and IL17A, were significantly increased in GCTB patients. The results were confirmed by IHC that the expression and activity of p65 were significantly increased in GCTB patients. Moreover, all of the NF-κB inhibitors tested suppressed GCTB cell growth, and bortezomib (Velcade), a well-known proteasome inhibitor, was the most potent inhibitor in blocking GCTB cells growth. Our results showed that bortezomib not only induced GCTB neoplastic stromal cell (NSC) apoptosis, but also suppressed GCTB NSC-induced giant cell differentiation, formation, and resorption. Moreover, bortezomib specifically suppressed GCTB NSC-induced preosteoclast recruitment. Furthermore, bortezomib ameliorated GCTB cell-induced bone destruction in vivo As a result, bortezomib suppressed NF-κB-regulated gene expression in GCTB NSC apoptosis, monocyte migration, angiogenesis, and osteoclastogenesis. Particularly, the inhibitory effects of bortezomib were much better than zoledronic acid, a drug currently used in treating GCTB, in our in vitro experimental paradigms. Together, our results demonstrated that NF-κB signaling pathway is highly activated in GCTB, and bortezomib could suppress GCTB and osteolysis in vivo and in vitro, indicating that bortezomib is a potential agent in the treatment of GCTB. Mol Cancer Ther; 15(5); 854-65. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis

    Science.gov (United States)

    Lionakis, Michail S.; Nickerson, Kenneth W.

    2016-01-01

    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment. PMID:27727302

  8. Esterification of 24S-OHC induces formation of atypical lipid droplet-like structures, leading to neuronal cell death.

    Science.gov (United States)

    Takabe, Wakako; Urano, Yasuomi; Vo, Diep-Khanh Ho; Shibuya, Kimiyuki; Tanno, Masaki; Kitagishi, Hiroaki; Fujimoto, Toyoshi; Noguchi, Noriko

    2016-11-01

    The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Formation of transfer cells and H(+)-ATPase expression in tomato roots under P and Fe deficiency.

    Science.gov (United States)

    Schikora, Adam; Schmidt, Wolfgang

    2002-06-01

    In roots of tomato ( Lycopersicon esculentum Mill.), extranumerary root hairs and transfer cell-like wall ingrowth depositions in the rhizodermis were developed in response to P and Fe deficiency. Immunocytolocalization of the plasma membrane H(+)-ATPase in roots of P-deficient plants revealed no appreciable increase in H(+)-ATPase density relative to control plants. In transfer cells, immunogold labeling was considerably higher than in ordinary rhizodermal cells. H(+)-ATPase sites were asymmetrically distributed in cells with and without wall ingrowths under P-deficient conditions. A split-root study revealed that the frequency of transfer cells was higher in the low-P half of the root system, but the density of H(+)-ATPase molecules was enhanced only in the high-P half of the split roots, suggesting that formation of transfer cells was controlled directly by the external Pi concentration, whereas ATPase expression was regulated indirectly by the internal nutrient status of the plant. The role of hormones in the induction of transfer cells was investigated by treating plants with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or various ethylene antagonists. Transfer cells were induced by ACC to an extent similar to that observed after P or Fe starvation, but inhibitors of either ethylene synthesis or action did not decrease their frequency. These results suggest that ethylene was not required for the induction of transfer cells but changes in ethylene levels appeared to modulate the number of cells forming wall ingrowths. In roots of ethylene-insensitive Never-ripe tomato plants the frequency of transfer cells was rather increased than decreased under most growth conditions relative to the wild type, indicating that ethylene responsiveness played no critical role in the differentiation of transfer cells and that the transduction of signals ultimately leading to their formation was independent of the ethylene signaling cascade.

  10. Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity.

    Science.gov (United States)

    Rappa, Germana; Mercapide, Javier; Lorico, Aurelio

    2012-06-01

    Breast cancer progression involves cancer cell heterogeneity, with generation of invasive/metastatic breast cancer cells within populations of nonmetastatic cells of the primary tumor. Sequential genetic mutations, epithelial-to-mesenchymal transition, interaction with local stroma, and formation of hybrids between cancer cells and normal bone marrow-derived cells have been advocated as tumor progression mechanisms. We report herein the spontaneous in vitro formation of heterotypic hybrids between human bone marrow-derived multipotent stromal cells (MSCs) and two different breast carcinoma cell lines, MDA-MB-231 (MDA) and MA11. Hybrids showed predominantly mesenchymal morphological characteristics, mixed gene expression profiles, and increased DNA ploidy. Both MA11 and MDA hybrids were tumorigenic in immunodeficient mice, and some MDA hybrids had an increased metastatic capacity. Both in culture and as xenografts, hybrids underwent DNA ploidy reduction and morphological reversal to breast carcinoma-like morphological characteristics, while maintaining a mixed breast cancer-mesenchymal expression profile. Analysis of coding single-nucleotide polymorphisms by RNA sequencing revealed genetic contributions from both parental partners to hybrid tumors and metastasis. Because MSCs migrate and localize to breast carcinoma, our findings indicate that formation of MSC-breast cancer cell hybrids is a potential mechanism of the generation of invasive/metastatic breast cancer cells. Our findings reconcile the fusion theory of cancer progression with the common observation that breast cancer metastases are generally aneuploid, but not tetraploid, and are histopathologically similar to the primary neoplasm. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation.

    Science.gov (United States)

    An, Dong; Hao, Feng; Zhang, Fuqiang; Kong, Wei; Chun, Jerold; Xu, Xuemin; Cui, Mei-Zhen

    2017-09-01

    Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Vassiliev, Anton; Jensen, Jens Oluf

    2015-01-01

    Phosphoric acid and phosphoric acid doped polymer membranes are widely used as electrolytes in hydrogen based fuel cells operating at elevated temperatures. Such electrolytes have been explored for direct oxidation of methanol to further increase the versatility of the systems, however......, with demonstrated lifetimes of only a few days to weeks. In this work the methyl phosphate formation from the acid and methanol is identified and proposed to be a major mechanism for the cell degradation. Proton conductivity and fuel cell durability tests validate the mechanism at high methanol contents....

  13. Formation of 5-aminolevulinic-acid (ALA) induced protoporphyrin IX (PPIX) and photodynamic effectiveness in human urothelial cell lines

    Science.gov (United States)

    Seidl, Juergen; Krieg, Rene C.; Rauch, Joachim; Waidelich, Raphaela M.; Stepp, Herbert G.; Knuechel, Ruth

    2001-01-01

    Background: To optimize differential effectiveness of aminulevulinic acid (ALA)-induced protoporphyrin IX (PPIX)- mediated photodynamic therapy (PDT) on normal and tumor urothelial cells, aspects of PPIX formation and parameters responsible for treatment efficiency were examined in vitro. Material and Methods: Plateau phase cells of a bladder cancer and a normal urothelial cell line were incubated using various incubation conditions and analyzed with respect to their PPIX content and cellular sensitizer distribution. PDT was performed using incoherent light from a Xenon coldlight projector. Photo toxicity was investigated using flow cytometric analysis of propidium iodide exclusion and analysis of cell size and number. Results: Following 3h incubation intervals, both cell lines showed similar PPIX localization with an amount of sensitizer three times higher in RT4 tumor cells. 1h incubation times resulted in the same ratio of PPIX amount but lead to different cellular PPIX distribution. After 3h incubation, PDT resulted in complete tumor cell kill accomplished by a marked fraction of damaged normal urothelial cells. TR4 cell kill with significantly reduced damage of UROtsa cells could be achieved using 1h incubation times. Discussion: Besides sensitizer amount, cellular localization is crucial for PDT effectiveness. Differential effectiveness of tumor and normal cells can be enhanced utilizing the finding of different PPIX distribution after short incubation times.

  14. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    Directory of Open Access Journals (Sweden)

    Emma L. Wilkinson

    2016-10-01

    Full Text Available Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1 levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes.

  15. The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invadopodia formation.

    Science.gov (United States)

    Liu, Jianglan; Yue, Peng; Artym, Vira V; Mueller, Susette C; Guo, Wei

    2009-08-01

    Invadopodia are actin-rich membrane protrusions formed by tumor cells that degrade the extracellular matrix for invasion. Invadopodia formation involves membrane protrusions driven by Arp2/3-mediated actin polymerization and secretion of matrix metalloproteinases (MMPs) at the focal degrading sites. The exocyst mediates the tethering of post-Golgi secretory vesicles at the plasma membrane for exocytosis and has recently been implicated in regulating actin dynamics during cell migration. Here, we report that the exocyst plays a pivotal role in invadopodial activity. With RNAi knockdown of the exocyst component Exo70 or Sec8, MDA-MB-231 cells expressing constitutively active c-Src failed to form invadopodia. On the other hand, overexpression of Exo70 promoted invadopodia formation. Disrupting the exocyst function by siEXO70 or siSEC8 treatment or by expression of a dominant negative fragment of Exo70 inhibited the secretion of MMPs. We have also found that the exocyst interacts with the Arp2/3 complex in cells with high invasion potential; blocking the exocyst-Arp2/3 interaction inhibited Arp2/3-mediated actin polymerization and invadopodia formation. Together, our results suggest that the exocyst plays important roles in cell invasion by mediating the secretion of MMPs at focal degrading sites and regulating Arp2/3-mediated actin dynamics.

  16. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  17. Autophagy inhibition promotes 5-fluorouraci-induced apoptosis by stimulating ROS formation in human non-small cell lung cancer A549 cells.

    Directory of Open Access Journals (Sweden)

    Xiaohong Pan

    Full Text Available Chemotherapy is an important option for the treatment of various cancers including lung cancer. However, tumor resistance towards cytotoxic chemotherapy has become more common. It has been reported that autophagy is one of the processes contributing to this resistance. In the present study, we found that the anti-cancer drug 5-fluorouraci(5-FU could induce autophagy in A549 cells. 5-FU treatment could lead to the conversion of LC3 I/II, the up-regulation of Beclin-1, the down-regulation of p62 and the formation of acidic vesicular organelles (AVOs in A549 cells. Pre-treatment of cancer cells with 3-MA or siAtg7 could enhance 5-FU-induced apoptosis through the activation of caspases, and the caspase inhibitor z-VAD-fmk rescued the cell viability reduction. Furthermore, the inhibition of autophagy also stimulated ROS formation and scavenging of ROS by antioxidant NAC inhibited caspase-3 activity, prevented the release of cyt-c from mitochondria and eventually rescued cancer cells from 5-FU-mediated apoptosis. These results suggest that 5-FU-elicited autophagic response plays a protective role against cell apoptosis and the inhibition of autophagy could sensitize them to 5-FU-induced caspase-dependent apoptosis through the stimulation of ROS formation.

  18. Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hansen, Jorgen L. S.

    1993-01-01

    the potential for aggregate formation. In the laboratory, we examined variation in stickiness in five species of diatoms and two species of flagellates grown in batch cultures. We also investigated the production of particulate mucus by phytoplankton cells and its role in aggregate formation, and we studied...... the effects of solute exudates on cell stickiness. Four of the five diatoms investigated were significantly sticky, while one diatom and both of the flagellates were not sticky. Stickiness varied considerably within species. In the diatom Skeletonema costatum, the typical but not entirely consistent pattern...... was that stickiness decreased with age of the batch cultures. We were otherwise unable to establish consistent relationships between cell stickiness and the growth stage of the algae, environmental concentrations of inorganic nutrients, and abundances of suspended and epiphytic bacteria. We showed that the diatom S...

  19. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    Science.gov (United States)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0

  20. Danger signaling protein HMGB1 induces a distinct form of cell death accompanied by formation of giant mitochondria.

    Science.gov (United States)

    Gdynia, Georg; Keith, Martina; Kopitz, Jürgen; Bergmann, Marion; Fassl, Anne; Weber, Alexander N R; George, Julie; Kees, Tim; Zentgraf, Hans-Walter; Wiestler, Otmar D; Schirmacher, Peter; Roth, Wilfried

    2010-11-01

    Cells dying by necrosis release the high-mobility group box 1 (HMGB1) protein, which has immunostimulatory effects. However, little is known about the direct actions of extracellular HMGB1 protein on cancer cells. Here, we show that recombinant human HMGB1 (rhHMGB1) exerts strong cytotoxic effects on malignant tumor cells. The rhHMGB1-induced cytotoxicity depends on the presence of mitochondria and leads to fast depletion of mitochondrial DNA, severe damage of the mitochondrial proteome by toxic malondialdehyde adducts, and formation of giant mitochondria. The formation of giant mitochondria is independent of direct nuclear signaling events, because giant mitochondria are also observed in cytoplasts lacking nuclei. Further, the reactive oxygen species scavenger N-acetylcysteine as well as c-Jun NH(2)-terminal kinase blockade inhibited the cytotoxic effect of rhHMGB1. Importantly, glioblastoma cells, but not normal astrocytes, were highly susceptible to rhHMGB1-induced cell death. Systemic treatment with rhHMGB1 results in significant growth inhibition of xenografted tumors in vivo. In summary, rhHMGB1 induces a distinct form of cell death in cancer cells, which differs from the known forms of apoptosis, autophagy, and senescence, possibly representing an important novel mechanism of specialized necrosis. Further, our findings suggest that rhHMGB1 may offer therapeutic applications in treatment of patients with malignant brain tumors. ©2010 AACR.

  1. Poly-ε-caprolactone scaffold and reduced in vitro cell culture: beneficial effect on compaction and improved valvular tissue formation.

    Science.gov (United States)

    Brugmans, Marieke M C P; Driessen-Mol, Anita; Rubbens, Mirjam P; Cox, Martijn A J; Baaijens, Frank P T

    2015-12-01

    Tissue-engineered heart valves (TEHVs), based on polyglycolic acid (PGA) scaffolds coated with poly-4-hydroxybutyrate (P4HB), have shown promising in vivo results in terms of tissue formation. However, a major drawback of these TEHVs is compaction and retraction of the leaflets, causing regurgitation. To overcome this problem, the aim of this study was to investigate: (a) the use of the slowly degrading poly-ε-caprolactone (PCL) scaffold for prolonged mechanical integrity; and (b) the use of lower passage cells for enhanced tissue formation. Passage 3, 5 and 7 (P3, P5 and P7) human and ovine vascular-derived cells were seeded onto both PGA-P4HB and PCL scaffold strips. After 4 weeks of culture, compaction, tissue formation, mechanical properties and cell phenotypes were compared. TEHVs were cultured to observe retraction of the leaflets in the native-like geometry. After culture, tissues based on PGA-P4HB scaffold showed 50-60% compaction, while PCL-based tissues showed compaction of 0-10%. Tissue formation, stiffness and strength were increased with decreasing passage number; however, this did not influence compaction. Ovine PCL-based tissues did render less strong tissues compared to PGA-P4HB-based tissues. No differences in cell phenotype between the scaffold materials, species or cell passage numbers were observed. This study shows that PCL scaffolds may serve as alternative scaffold materials for human TEHVs with minimal compaction and without compromising tissue composition and properties, while further optimization of ovine TEHVs is needed. Reducing cell expansion time will result in faster generation of TEHVs, providing more rapid treatment for patients. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Interleukin-6 from Ovarian Mesenchymal Stem Cells Promotes Proliferation, Sphere and Colony Formation and Tumorigenesis of an Ovarian Cancer Cell Line SKOV3.

    Science.gov (United States)

    Ding, Dah-Ching; Liu, Hwan-Wun; Chu, Tang-Yuan

    2016-01-01

    The origin of the majority of epithelial ovarian cancers (EOC) is regarded as extraovarian, with the ovary being the secondary site. The aim of this study was to explore the possible role of ovarian mesenchymal stem cells (OvMSCs) and secreted IL-6 in the development of EOC. OvMSCs were derived from normal ovarian stroma. Cell surface markers and differentiation capability were determined. The effects of IL-6 and conditioned medium of OvMSCs on the malignant phenotype of SKOV3 ovarian cancer cells were tested, and the status of STAT3 and ERK phosphorylation was investigated. OvMSCs had similar surface marker profiles as bone marrow mesenchymal stem cells, i.e., CD44 (+), CD90 (+) and CD45 (-), and was readily inducible to osteogenic, adipogenic and chondrogenic differentiation. OvMSCs secreted an extremely high level (>2500 pg/ml) of IL-6. Treatment of SKOV3 cells with conditioned media from OvMSCs increased cell proliferation, tumor sphere formation and anchorage independent growth, and resulted in activation of STAT3 but not ERK. Coinjection of OvMSCs with SKOV3 cell enhanced tumorigenesis in NOD-SCID mice. All of these behaviors were blocked by IL-6 receptor blocking antibody administered in vitro or in vivo. The OvMSCs alone injected into mice had no tumor growth after 3 months. By secreting high levels of IL-6, OvMSCs enhance the proliferation, sphere and colony formation and tumorigenesis of SKOV3 cells.

  3. Effects of cell-attachment and extracellular matrix on bone formation in vivo in collagen-hydroxyapatite scaffolds.

    Directory of Open Access Journals (Sweden)

    Max M Villa

    Full Text Available Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.

  4. Predicting the distribution of spiral waves from cell properties in a developmental-path model of Dictyostelium pattern formation.

    Directory of Open Access Journals (Sweden)

    Daniel Geberth

    2009-07-01

    Full Text Available The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers. This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path.

  5. Active and energy-dependent rapid formation of cell aggregates in the thermophilic photosynthetic bacterium Chloroflexus aggregans.

    Science.gov (United States)

    Hanada, Satoshi; Shimada, Keizo; Matsuura, Katsumi

    2002-03-05

    The thermophilic filamentous phototroph Chloroflexus aggregans was able to form a bacterial mat-like dense cell aggregate rapidly. The aggregate formation, which was observed in growing cells in a liquid medium in a bottle, occurred every time within 20-30 min after the cells were dispersed by shaking. The aggregation depended on the energy supplied by photosynthesis or respiration. Cells aggregated most rapidly under temperature and pH conditions that support maximum growth. The aggregation was also accelerated by the addition of 3-isobutyl-1-methylxanthine that inhibits cyclic 3',5'-AMP phosphodiesterase. Microscopic observation revealed that the bacterium has a fast gliding mobility (1-3 microm s(-1)). The distinctive cell aggregation of C. aggregans was due to this rapid gliding movement.

  6. Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells.

    Science.gov (United States)

    Kim, Seung Joon; Wan, Qiaoqiao; Cho, Eunhye; Han, Bumsoo; Yoder, Mervin C; Voytik-Harbin, Sherry L; Na, Sungsoo

    2014-01-24

    Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans.

    Science.gov (United States)

    Chen, Angela; Contreras, Lydia M; Keitz, Benjamin K

    2017-09-15

    The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation.IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms

  8. Cell fate establishment during early development of cyprinid fishes, with special emphasis on the formation of the primordial germ cells

    NARCIS (Netherlands)

    Gevers, P.

    1992-01-01

    Cell fates can be established either by preformation or by epigenesis. With respect to primordial germ cells (PGCs) it has been shown that the Amphibia exhibit both types of cell fate establishment. Therefore, it is important to study the germ cell origin of the evolutionary lower class of

  9. Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development.

    Science.gov (United States)

    Weissman, Irving L

    2015-07-21

    It is obvious that natural selection operates at the level of individuals and collections of individuals. Nearly two decades ago we showed that in multi-individual colonies of protochordate colonial tunicates sharing a blood circulation, there exists an exchange of somatic stem cells and germline stem cells, resulting in somatic chimeras and stem cell competitions for gonadal niches. Stem cells are unlike other cells in the body in that they alone self-renew, so that they form clones that are perpetuated for the life of the organism. Stem cell competitions have allowed the emergence of competitive somatic and germline stem cell clones. Highly successful germline stem cells usually outcompete less successful competitors both in the gonads of the genotype partner from which they arise and in the gonads of the natural parabiotic partners. Therefore, natural selection also operates at the level of germline stem cell clones. In the colonial tunicate Botryllus schlosseri the formation of natural parabionts is prevented by a single-locus highly polymorphic histocompatibility gene called Botryllus histocompatibility factor. This limits germline stem cell predation to kin, as the locus has hundreds of alleles. We show that in mice germline stem cells compete for gonad niches, and in mice and humans, blood-forming stem cells also compete for bone marrow niches. We show that the clonal progression from blood-forming stem cells to acute leukemias by successive genetic and epigenetic events in blood stem cells also involves competition and selection between clones and propose that this is a general theme in cancer.

  10. Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk.

    Science.gov (United States)

    Markovà, Eva; Malmgren, Lars O G; Belyaev, Igor Y

    2010-03-01

    It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemias and tumors, including gliomas. We studied whether microwaves from mobile telephones of the Global System for Mobile Communication (GSM) and the Universal Global Telecommunications System (UMTS) induce DSBs or affect DSB repair in stem cells. We analyzed tumor suppressor TP53 binding protein 1 (53BP1) foci that are typically formed at the sites of DSB location (referred to as DNA repair foci) by laser confocal microscopy. Microwaves from mobile phones inhibited formation of 53BP1 foci in human primary fibroblasts and mesenchymal stem cells. These data parallel our previous findings for human lymphocytes. Importantly, the same GSM carrier frequency (915 MHz) and UMTS frequency band (1947.4 MHz) were effective for all cell types. Exposure at 905 MHz did not inhibit 53BP1 foci in differentiated cells, either fibroblasts or lymphocytes, whereas some effects were seen in stem cells at 905 MHz. Contrary to fibroblasts, stem cells did not adapt to chronic exposure during 2 weeks. The strongest microwave effects were always observed in stem cells. This result may suggest both significant misbalance in DSB repair and severe stress response. Our findings that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells may be important for cancer risk assessment and indicate that stem cells are the most relevant cellular model for validating safe mobile communication signals.

  11. Fetal Bone Marrow-Derived Mesenchymal Stem/Stromal Cells Enhance Humanization and Bone Formation of BMP7 Loaded Scaffolds.

    Science.gov (United States)

    Shafiee, Abbas; Baldwin, Jeremy G; Patel, Jatin; Holzapfel, Boris M; Fisk, Nicholas M; Khosrotehrani, Kiarash; Hutmacher, Dietmar W

    2017-09-01

    Tissue engineered constructs built with human cells capable of generating a bone-like organ within the mouse have attracted considerable interest over the past decade. Here, we aimed to compare the utility of human mesenchymal stem/stromal cells (MSC) isolated from fetal term placenta (fPL-MSC) and fetal first trimester bone marrow (fBM-MSC) in a polycaprolactone scaffold/BMP7-based model in nude mice. Furthermore, fPL-MSC were co-seeded with fetal placenta-derived endothelial colony forming cells (ECFC) to assess the impact of ECFC on fPL-MSC osteogenesis. X-ray radiography and micro computed tomography analyses showed enhanced bone formation in all BMP7 groups; however there was no difference after 2 months in bone formation between scaffolds seeded with fPL-MSC alone or combination of ECFC and fPL-MSC. Of interest, fBM-MSC showed the highest level of bone formation. Additionally, endochondral ossification contributed in generation of bone in fBM-MSC. Histological analysis showed the primary role of BMP in generation of cortical and trabecular bone, and the recruitment of hematopoietic cells to the scaffolds. Current in vivo engineered bone organs can potentially be used for drug screening or as models to study bone tissue development in combination with haematopoiesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    Science.gov (United States)

    Serrano-Fujarte, Isela; Reyna-López, Georgina Elena; Martínez-Gámez, Ma. Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient. PMID:25705688

  13. Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress.

    Science.gov (United States)

    Serrano-Fujarte, Isela; López-Romero, Everardo; Reyna-López, Georgina Elena; Martínez-Gámez, Ma Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  14. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Isela Serrano-Fujarte

    2015-01-01

    Full Text Available The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs. Biofilms were observed by scanning electron microscopy (SEM and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%, C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%, while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  15. TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation

    Directory of Open Access Journals (Sweden)

    Nicole A. Hofmann

    2014-11-01

    Full Text Available Anandamide (N-arachidonyl ethanolamide, AEA is an endogenous cannabinoid that is involved in various pathological conditions, including cardiovascular diseases and tumor-angiogenesis. Herein, we tested the involvement of classical cannabinoid receptors (CBRs and the Ca2+-channel transient receptor potential vanilloid 1 (TRPV1 on cellular AEA uptake and its effect on endothelial cell proliferation and network-formation. Uptake of the fluorescence-labeled anandamide (SKM4-45-1 was monitored in human endothelial colony-forming cells (ECFCs and a human endothelial-vein cell line (EA.hy926. Involvement of the receptors during AEA translocation was determined by selective pharmacological inhibition (AM251, SR144528, CID16020046, SB366791 and molecular interference by TRPV1-selective siRNA-mediated knock-down and TRPV1 overexpression. We show that exclusively TRPV1 contributes essentially to AEA transport into endothelial cells in a Ca2+-independent manner. This TRPV1 function is a prerequisite for AEA-induced endothelial cell proliferation and network-formation. Our findings point to a so far unknown moonlighting function of TRPV1 as Ca2+-independent contributor/regulator of AEA uptake. We propose TRPV1 as representing a promising target for development of pharmacological therapies against AEA-triggered endothelial cell functions, including their stimulatory effect on tumor-angiogenesis.

  16. Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings

    Science.gov (United States)

    Onder, Sakip; Calikoglu-Koyuncu, Ayse Ceren; Torun Kose, Gamze; Kazmanli, Kursat; Kok, Fatma Nese; Urgen, Mustafa

    2017-07-01

    TiN and (Ti,Mg)N thin film coatings were deposited on Ti substrates by an arc-physical vapor deposition technique. The effect of cell presence on hydroxyapatite (HA) formation was investigated using surfaces with four different Mg contents (0, 8.1, 11.31, and 28.49 at.%). Accelerated corrosion above 10 at.% Mg had a negative effect on the performance in terms of both cell proliferation and mineralization. In the absence of cells, Mg-free TiN coatings and low-Mg (8.1 at.%)-doped (Ti,Mg)N surfaces led to an early HA deposition (after 7 days and 14 days, respectively) in cell culture medium (DMEM), but the crystallinity was low. More crystalline HA structures were obtained in the presence of the cells. HA deposits with an ideal Ca/P ratio were obtained at least a week earlier, at day 14, in TiN and low-Mg (8.1 at.%)-doped (Ti,Mg)N compared with that of high-Mg-containing surfaces (>10 at.%). A thicker mineralized matrix was formed on low-Mg (8.1 at.%)-doped (Ti,Mg)N relative to that of the TiN sample. Low-Mg doping (<10 at.%) into TiN coatings resulted in better cell proliferation and thicker mineralized matrix formation, so it could be a promising alternative for hard tissue applications.

  17. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications.

    Science.gov (United States)

    Kumar, Sachin; Raj, Shammy; Kolanthai, Elayaraja; Sood, A K; Sampath, S; Chatterjee, Kaushik

    2015-02-11

    Toward designing the next generation of resorbable biomaterials for orthopedic applications, we studied poly(ε-caprolactone) (PCL) composites containing graphene. The role, if any, of the functionalization of graphene on mechanical properties, stem cell response, and biofilm formation was systematically evaluated. PCL composites of graphene oxide (GO), reduced GO (RGO), and amine-functionalized GO (AGO) were prepared at different filler contents (1%, 3%, and 5%). Although the addition of the nanoparticles to PCL markedly increased the storage modulus, this increase was largest for GO followed by AGO and RGO. In vitro cell studies revealed that the AGO and GO particles significantly increased human mesenchymal stem cell proliferation. AGO was most effective in augmenting stem cell osteogenesis leading to mineralization. Bacterial studies revealed that interaction with functionalized GO induced bacterial cell death because of membrane damage, which was further accentuated by amine groups in AGO. As a result, AGO composites were best at inhibiting biofilm formation. The synergistic effect of oxygen containing functional groups and amine groups on AGO imparts the optimal combination of improved modulus, favorable stem cell response, and biofilm inhibition in AGO-reinforced composites desired for orthopedic applications. This work elucidates the importance of chemical functionalization of graphene in polymer composites for biomedical applications.

  18. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury.

    Science.gov (United States)

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-27

    Krüppel-like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen-inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is also expressed in non-SMCs including endothelial cells (ECs), we determined if Tie2 promoter-dependent deletion of Klf4 in ECs and hematopoietic cells affected injury-induced neointimal formation. Klf4 conditional knockout (cKO) mice were generated by breeding Tie2-Cre mice and Klf4 floxed mice, and their phenotype was analyzed after carotid ligation injury. Results showed that injury-induced repression of SMC differentiation markers was unaffected by Tie2 promoter-dependent Klf4 deletion. However, of interest, neointimal formation was significantly enhanced in Klf4-cKO mice 21 days following carotid injury. Moreover, Klf4-cKO mice exhibited an augmented proliferation rate, enhanced accumulation of macrophages and T lymphocytes, and elevated expression of cell adhesion molecules including vascular cell adhesion molecule-1 (Vcam1) and E-selectin in injured arteries. Mechanistic analyses in cultured ECs revealed that Klf4 inhibited tumor necrosis factor-α-induced expression of Vcam1 through blocking the binding of nuclear factor-κB to the Vcam1 promoter. These results provide evidence that Klf4 in non-SMCs such as ECs regulates neointimal formation by repressing arterial inflammation following vascular injury.

  19. Deletion of Krüppel‐Like Factor 4 in Endothelial and Hematopoietic Cells Enhances Neointimal Formation Following Vascular Injury

    Science.gov (United States)

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-01

    Background Krüppel‐like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen‐inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is also expressed in non‐SMCs including endothelial cells (ECs), we determined if Tie2 promoter‐dependent deletion of Klf4 in ECs and hematopoietic cells affected injury‐induced neointimal formation. Methods and Results Klf4 conditional knockout (cKO) mice were generated by breeding Tie2‐Cre mice and Klf4 floxed mice, and their phenotype was analyzed after carotid ligation injury. Results showed that injury‐induced repression of SMC differentiation markers was unaffected by Tie2 promoter‐dependent Klf4 deletion. However, of interest, neointimal formation was significantly enhanced in Klf4‐cKO mice 21 days following carotid injury. Moreover, Klf4‐cKO mice exhibited an augmented proliferation rate, enhanced accumulation of macrophages and T lymphocytes, and elevated expression of cell adhesion molecules including vascular cell adhesion molecule–1 (Vcam1) and E‐selectin in injured arteries. Mechanistic analyses in cultured ECs revealed that Klf4 inhibited tumor necrosis factor‐α–induced expression of Vcam1 through blocking the binding of nuclear factor‐κB to the Vcam1 promoter. Conclusions These results provide evidence that Klf4 in non‐SMCs such as ECs regulates neointimal formation by repressing arterial inflammation following vascular injury. PMID:24470523

  20. Influence of culture heterogeneity in cell surface charge on adhesion and biofilm formation by Enterococcus faecalis

    NARCIS (Netherlands)

    van Merode, Annet E.J.; van der Mei, HC; Busscher, HJ; Krom, BP

    Biofilm formation is an increasing problem in medicine, due to the intrinsic resistance of microorganisms in the biofilm mode of growth against the host immune system and antimicrobial therapy. Adhesion is an important step in biofilm formation, influenced, among other factors, by the surface

  1. Bioinspired seeding of biomaterials using three dimensional microtissues induces chondrogenic stem cell differentiation and cartilage formation under growth factor free conditions

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Moreira Teixeira, Liliana; Bolander, J.; Ji, W.; Vanspauwen, B.; Lammertyn, J.; Schrooten, J.; Luyten, F.P.

    2016-01-01

    Cell laden biomaterials are archetypically seeded with individual cells and steered into the desired behavior using exogenous stimuli to control growth and differentiation. In contrast, direct cell-cell contact is instructive and even essential for natural tissue formation. Namely, microaggregation

  2. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells.

    Science.gov (United States)

    She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B

    2016-01-01

    Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.

  3. Controlling Factors of Cell Design on Large-format Li-ion Battery Safety During Nail Penetration

    Directory of Open Access Journals (Sweden)

    Qing eWang

    2015-08-01

    Full Text Available In this paper we investigate the controlling design parameters of large-format Li-ion batteries on safety while undergoing nail penetration. We have identified three critical design parameters that control the safety during the nail penetration process: nail diameter, single sheet foil area, and cell capacity.Using commercial AutoLion software, we have investigated two typical design problems related to the selection of cell thickness and aspect ratio, namely: (1 the safety ramifications of increasing cell capacity via greater cell thickness for a fixed footprint, and (2 the effect of aspect ratio, or single sheet foil size, on safety at a given capacity. For a fixed footprint, our results indicate that the safety of the cell can be predicted by (Qcell Dnail^-0.5. For a given cell capacity, our results indicate that typically a larger single sheet foil area leads to a greater likelihood for thermal runaway due to its effect of making the heating more local in nature; however, for small cells (~ 5Ah and large nails (~ 20mm, the greater aspect ratio can lead to a safer cell, as the greater surface area strongly cools the global heating of the cell.

  4. Three-dimensional-engineered matrix to study cancer stem cells and tumorsphere formation: effect of matrix modulus.

    Science.gov (United States)

    Yang, Xiaoming; Sarvestani, Samaneh K; Moeinzadeh, Seyedsina; He, Xuezhong; Jabbari, Esmaiel

    2013-03-01

    Maintenance of cancer