WorldWideScience

Sample records for vessel safety risk

  1. 33 CFR 151.1512 - Vessel safety.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vessel safety. 151.1512 Section... River § 151.1512 Vessel safety. Nothing in this subpart relieves the master of the responsibility for ensuring the safety and stability of the vessel or the safety of the crew and passengers, or any other...

  2. ADA access to passenger vessels : finding safety equivalence solutions for weathertight doors with coamings : Phase 2 : a risk management approach to reconfiguration design solutions

    Science.gov (United States)

    2005-03-01

    This report examines a risk management methodology to provide for both marine safety and disability access at weathertight doors into passenger accommodation spaces on U.S. passenger vessels. The Architectural and Transportation Barriers Compliance B...

  3. 15 CFR 970.205 - Vessel safety.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Vessel safety. 970.205 Section 970.205... safety. In order to provide a basis for the necessary determinations with respect to the safety of life... Safety of Life at Sea, 1974 (SOLAS 74) possesses current valid SOLAS 74 certificates; (2) That any...

  4. Guidelines for pressure vessel safety assessment

    Science.gov (United States)

    Yukawa, S.

    1990-04-01

    A technical overview and information on metallic pressure containment vessels and tanks is given. The intent is to provide Occupational Safety and Health Administration (OSHA) personnel and other persons with information to assist in the evaluation of the safety of operating pressure vessels and low pressure storage tanks. The scope is limited to general industrial application vessels and tanks constructed of carbon or low alloy steels and used at temperatures between -75 and 315 C (-100 and 600 F). Information on design codes, materials, fabrication processes, inspection and testing applicable to the vessels and tanks are presented. The majority of the vessels and tanks are made to the rules and requirements of ASME Code Section VIII or API Standard 620. The causes of deterioration and damage in operation are described and methods and capabilities of detecting serious damage and cracking are discussed. Guidelines and recommendations formulated by various groups to inspect for the damages being found and to mitigate the causes and effects of the problems are presented.

  5. Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng; Li, Hong Zhi [Dept. Structural Engineering, Tongji University, Shanghai (China)

    2017-08-15

    Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8–1.1g and 1.2–1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

  6. Preliminary Performance Analysis Program Development for Safety System with Safeguard Vessel

    International Nuclear Information System (INIS)

    Kang, Han-Ok; Lee, Jun; Park, Cheon-Tae; Yoon, Ju-Hyeon; Park, Keun-Bae

    2007-01-01

    SMART is an advanced modular integral type pressurized water reactor for a seawater desalination and an electricity production. Major components of the reactor coolant system such as the pressurizer, Reactor Coolant Pump (RCP), and steam generators are located inside the reactor vessel. The SMART can fundamentally eliminate the possibility of large break loss of coolant accidents (LBLOCAs), improve the natural circulation capability, and better accommodate and thus enhance a resistance to a wide range of transients and accidents. The safety goals of the SMART are enhanced through highly reliable safety systems such as the passive residual heat removal system (PRHRS) and the safeguard vessel coupled with the passive safety injection feature. The safeguard vessel is a steel-made, leak-tight pressure vessel housing the RPV, SIT, and the associated valves and pipelines. A primary function of the safeguard vessel is to confine any radioactive release from the primary circuit within the vessel under DBAs related to loss of the integrity of the primary system. A preliminary performance analysis program for a safety system using the safeguard vessel is developed in this study. The developed program is composed of several subroutines for the reactor coolant system, passive safety injection system, safeguard vessel including the pressure suppression pool, and PRHRS. A small break loss of coolant accident at the upper part of a reactor is analyzed and the results are discussed

  7. Safety vessels for explosive fusion reactor

    International Nuclear Information System (INIS)

    Mineev, V.

    1994-01-01

    The failure of several types of geometrically similar cylindrical and spherical steel and glass fibers vessels filled with water or air was investigated when an explosive charge of TNT was detonated in the center. Vessels had radius 50-1000 mm, thickness of walls 2-20%. The detonation on TNT imitated energy release. The parameter: K = M/mf is a measure of the strength of the vessel where M is the mass of the vessel, and mf is the mass of TNT for which the vessel fails. This demanded 2-4 destroyed and nondestroyed shots. It may be showed that: K=A/σ f where σ f is the fracture stress of the material vessel, and A = const = F(energy TNT, characteristic of elasticity of vessel material). The chief results are the following: (1) A similar increase in the geometrical dimensions of steel vessels by a factor of 10 leads to the increase of parameter K in about 5 times and to decrease of failure deformation in 7 times (scale effect). (2) For glass fibers, scale effect is absent. (3) This problem is solved in terms of theory energetic scale effect. (4) The concept of TNT equivalent explosive makes it possible to use these investigations to evaluate the response of safety vessels for explosive fusion reactor

  8. Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2017-08-01

    Full Text Available Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking and Limit State II (concrete crushing when the PGAs were in a range of 0.8–1.1g and 1.2–1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

  9. Reactor pressure vessels safety and reliability - certainty and uncertainty

    International Nuclear Information System (INIS)

    O'Neil, R.

    1977-01-01

    In the paper, it is suggested that the hazard to the population which would result from vessel failure rate of the order of 10 -6 to 10 -7 per vessel year could be acceptable to society on the basis of other natural and man-made risks. The paper considers the problems of demonstrating safety by calculation based on fracture mechanics, and indicates some of the uncertainties, and inconsistencies in the theory, particularly the effect of cracks in locally degraded volumes of material. The phenomenon of crack arrest is considered, and attention is drawn to the uncertainties as indicated at least by some tests. There is need for speedy resolution of this problem. The uncertainties in material properties, heat treatment and residual stresses are considered, and a proposed upper limit for residual defects ('original sin') is proposed. (orig.) [de

  10. Elimination of the risk of brittle fracture in thick welded pressure vessels

    International Nuclear Information System (INIS)

    Leymonie, C.; Genevray, R.

    1975-01-01

    The builder of welded pressure vessels faces the risk of brittle fracture throughout fabrication. He is forced to observe many precautions, in selecting the following: materials possessing good impact strength in the service conditions of the vessels; filler materials preventing transverse cracking of the welds: welding parameters preventing cold cracking. Fracture mechanics establish the relationships between material characteristics and critical defect size for a given set of service conditions. These principles must be expanded to increase the safety of thick pressure vessels. However, in order to derive maximum benefit, a major effort must be applied to increasing the effectiveness of nondestructive testing [fr

  11. 78 FR 42452 - Safety Zone; Kentucky Air National Guard Vessel for Parachute Rescue Jumpmaster Training, Lake...

    Science.gov (United States)

    2013-07-16

    ... only a few hours at a time during any 24 hour period. The majority of the training exercises will be... greatly reducing the likelihood of affecting transient recreational vessels. Additionally, the starting... Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an...

  12. Safety of steel vessel Magnox pressure circuits

    International Nuclear Information System (INIS)

    Stokoe, T.Y.; Bolton, C.J.; Heffer, P.J.H.

    1991-01-01

    The maintenance of pressure circuit integrity is fundamental to nuclear safety at the steel vessel Magnox stations. To confirm continued pressure circuit integrity the CEGB, as part of the Long Term Safety Review, has carried out extensive assessment and inspection in recent years. The assessment methods and inspection techniques employed are based on the most modern available. Reactor pressure vessel integrity is confirmed by a combination of arguments including safety factors inferred from the successful pre-service overpressure test, leak-before-break analysis and probabilistic assessment. In the case of other parts of the pressure circuits that are more accessible, comprising the boiler shells and interconnecting gas duct work, in-service inspection is a major element of the safety substantiation. The assessment and inspection techniques and the materials property data have been underpinned for many years by extensive research and development programmes and in-reactor monitoring of representative samples has also been undertaken. The paper summarises the work carried out to demonstrate the long term integrity of the Magnox pressure circuits and provides examples of the results obtained. (author)

  13. 77 FR 35271 - Safety Zone; NOAA Vessel Rueben Lasker Launch, Marinette, WI

    Science.gov (United States)

    2012-06-13

    ...-AA00 Safety Zone; NOAA Vessel Rueben Lasker Launch, Marinette, WI AGENCY: Coast Guard, DHS. ACTION... during the launching of the NOAA vessel, Rueben Lasker, on June 16, 2012. This temporary safety zone is... preceding paragraph, a 30 day notice period would also be impractical. B. Basis and Purpose The NOAA vessel...

  14. 78 FR 76751 - Safety Zone; Vessel Launch; Menominee River; Marinette, WI

    Science.gov (United States)

    2013-12-19

    ...-AA00 Safety Zone; Vessel Launch; Menominee River; Marinette, WI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the Menominee River in Marinette, Wisconsin. This zone is intended to restrict vessels from a portion of the Menominee...

  15. 77 FR 60042 - Safety Zone; Research Vessel SIKULIAQ Launch, Marinette, WI

    Science.gov (United States)

    2012-10-02

    ...: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the Menominee River in Marinette Wisconsin. This zone is intended to restrict vessels from a portion of Menominee River during the launching of the Research vessel SIKULIAQ, on October 13th, 2012. This temporary safety...

  16. Safety of nuclear pressure vessels and its regulatory aspects in France

    Energy Technology Data Exchange (ETDEWEB)

    de Torquat, G; Queniart, D; Barrachin, B; Roche, R

    1979-01-01

    Having outlined the basic French regulations governing the safety of both pressure vessels and also of nuclear installations in general the particular safety regulations covering prestressed concrete vessels for nuclear reactors are considered. The regulations now being prepared to cover heat transfer systems of water reactors are detailed under sections headed; general provisions, sizing, and construction.

  17. 77 FR 3115 - Safety Zone; Grain-Shipment Vessels, Columbia and Snake Rivers

    Science.gov (United States)

    2012-01-23

    ...-AA00 Safety Zone; Grain-Shipment Vessels, Columbia and Snake Rivers AGENCY: Coast Guard, DHS. ACTION... Terminal, Longview, WA, while they are located on the Columbia and Snake Rivers. This safety zone extends... on the Columbia and Snake rivers when vessels begin arriving at EGT, Longview, WA. Under 5 U.S.C. 553...

  18. Initiation and arrest - two approaches to pressure vessel safety

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Stepanek, S.

    1976-01-01

    The safety analysis is described of the reactor pressure vessel related to brittle fracture based on the fracture mechanics theory using two different approximations, i.e., the Crack Arrest Temperature (CAT) or Nil Ductility Temperature (NDT), and fracture toughness. The variation of CAT with stress was determined for different steel specimens of 120 to 200 mm in thickness. A diagram is shown of CAT variation with stress allowing the determination of crack arrest temperature for all types of commonly used steels independently of the NDT initial value. The diagram also shows that the difference between fracture transition elastic (FTE) and NDT depends on the type of material and determines the value of the ΔTsub(sigma) factor typical of the safety coefficient. The so-called fracture toughness reference value Ksub(IR) is recommended for the computation of pressure vessel criticality. Also shown is a defect analysis diagram which may be used for the calculation of pressure vessel safety prior to and during operation and which may also be used in making the decision on what crack sizes are critical, what cracks may be arrested and what cracks are likely to expand. The diagram is also important for the fact that it is material-independent and may be employed for the estimates of pre-operational and operational inspections and for pressure vessel life prediction. It is generally applicable to materials of greater thickness in the region where the validity of linear elastic fracture mechanics is guaranteed. (J.P.)

  19. Development of Safety Review Guide for the Periodic Safety Review of Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Park, Jeongsoon; Ko, Hanok; Kim, Seonjae; Jhung, Myungjo

    2013-01-01

    Aging management of the reactor vessel internals (RVIs) is one of the important issues for long-term operation of nuclear power plants (NPPs). Safety review on the assessment and management of the RVI aging is conducted through the process of a periodic safety review (PSR). The regulatory body should check that reactor facilities sustain safety functions in light of degradation due to aging and that the operator of a nuclear power reactor establishes and implements management program to deal with degradation due to aging in order to guarantee the safety functions and the safety margin as a result of PSR. KINS(Korea Institute of Nuclear Safety) has utilized safety review guides (SRG) which provide guidance to KINS staffs in performing safety reviews in order to assure the quality and uniformity of staff safety reviews. The KINS SRGs for the continued operation of pressurized water reactors (PWRs) published in 2006 contain areas of review regarding aging management of RVIs in chapter 2 (III.2.15, Appendix 2.0.1). However unlike the SRGs for the continued operation, KINS has not officially published the SRGs for the PSR of PWRs, but published them as a form of the research report. In addition to that, the report provides almost same review procedures for aging assessment and management of RVIs with the ones provided in the SRGs for the continued operation, it cannot provide review guidance specific to PSRs. Therefore, a PSR safety review guide should be developed for RVIs in PWRs. In this study, a draft PSR safety review guide for reactor vessel internals in PWRs is developed and provided. In this paper, a draft PSR safety review guide for reactor vessel internals (PSR SRG-RVIs) in PWRs is introduced and main contents of the draft are provided. However, since the PSR safety review guides for areas other than RVIs in the pressurized water reactors (PWRs) are expected to be developed in the near future, the draft PSR SRG-RVIs should be revisited to be compatible with

  20. Integral reactor vessel related to power reactor safety

    International Nuclear Information System (INIS)

    Widart, J.; Scailteur, A.

    1978-01-01

    Integral design applied to PWR pressure vessels allows to reach a high level of safety because: 1) it presents a better balance of the material in the geometry, resulting in an improved stress level (mainly faulted condition loadings); 2) location and geometry of the welds are designed in order to get a very sound pressure boundary of the upper part of the vessel; 3) the new location and geometry of the welds allow an easy ISI in such a way that ambiguity surrounding defect size or locaton is practically suppressed. (author)

  1. Prestressed cast iron pressure vessels as burst-proof pressure vessels for innovative nuclear applications

    International Nuclear Information System (INIS)

    Froehling, W.; Boettcher, A.; Bounin, D.; Steinwarz, W.; Geiss, M.; Trauth, M.

    2000-01-01

    The amendment to the German Atomic Energy Act from July 28, 1994 requires that events 'whose occurrence is practically excluded by the measures against damages', i.e. events of the category residual risk, must not necessitate far reaching protective measures outside the plant. For a conventional reactor pressure vessel, the residual risk consists in the very small probability of a catastrophic failure (formation of a large fracture opening, bursting of the vessel). With a prestressed cast iron vessel (PCIV), the formation of a large fracture opening or bursting of the vessel, respectively, is impossible due to its design properties. Against this background the possibility of the use of this type of pressure vessel for lightwater reactors has been studied in the frame of a 'Working Group for Innovative Nuclear Technology', founded by different research institutes and industrial companies. Furthermore, it has been studied whether the use of the PCIV support the realization of a corecatcher system. The results are presented in this report. Already many years earlier, Siempelkamp has performed industrial development and Forschungszentrum Juelich related experimental and theoretical safety research for the PCIV as an innovative, bust-proof pressure vessel concept. This development of the PCIV as well as its safety properties are also presented in a conclusive manner. (orig.) [de

  2. Safety margins of PWR irradiated vessels - The Chooz A issue

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, F; Barthelet, B [Electricite de France (EDF), 75 - Paris (France); Guilleret, J C

    1988-12-31

    In 1986, some irradiated specimen of CHOOZ A (SENA) vessel showed a significant excess of {delta} RTNDT to former previsions. The lack of data on one of the two irradiated shells, and discrepancies between dosimeters results and available previous fluence calculations whose accuracy was questionable, cause the safety authorities to require an important complementary work program before putting again the plant on the grid after 1987 fuel reloading. These works are presented and discussed. They lead to a state that a conservative to day value of the vessel RTNDT is 64 degrees Celsius and that there is no underclad defect in the vessel wall and welds. Then the plant was allowed to restart with certitude that vessel irradiation will not impair its lifetime. (author). 4 refs.

  3. Probabilistic Assessment of the Design and Safety of HSLA-100 Steel Confinement Vessels

    Energy Technology Data Exchange (ETDEWEB)

    R.M. Dolin

    2003-03-03

    This probabilistic approach for assessing the design and safety of the HSLA-100 steel confinement vessel used for a DynEx test involved the probability of failure for several scenarios, in which a fragment may penetrate the vessel. The samples involve vessel thicknesses of 1 inch, 2 inches, and 5.25 inches--the combined thicknesses of the 2 inch containment vessel and the 3.25 inch safety vessel. Two simulation approaches were used for each scenario to assess the probability of failure. The Likelihood of Occurrence method simultaneously models all likely fragment events of a test, for which the net probability of failure is the sum of all the fragment events. The Stochastic Sampling method determines the probability of a fragment perforation on the basis of a logical model and takes the overall probability that an experiment results in failure as the maximum probability for any fragment event. With margin and safety assessments taken into account, it was concluded that the one and two inch thicknesses by themselves are inadequate for containing a DynEx test. The 5.25 inch thickness was determined to be safe by the Likelihood of Occurrence method and nearly adequate by the Stochastic Sampling simulation.

  4. Demarcation of inland vessels' limit off Mormugao port region, India: A pilot study for the safety of inland vessels using wave modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Aboobacker, V.M.; Sudheesh, K.; Babu, M.T.; AshokKumar, A.

    The Ministry of Shipping desires to revise the inland vessels' limit (IVL) notification based on scientific rationale to improve the safety of vessels and onboard personnel. The Mormugao port region extending up to the Panaji was considered...

  5. Safety of light-water reactor pressure vessels against brittle fracture

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    The results are surveyed of research by SKODA Trust into brittle failure resistance of materials for WWER type reactor pressure vessels and into pressure vessel operating safety. Conditions are discussed in detail decisive for initiation, propagation and arrest of brittle fracture. The tests on the Cr-Mo-V type steel showed high resistance of the steel to the formation and the propagation of brittle fracture. They also confirmed the high operating reliability and the required service life of the steel. (B.S.)

  6. 78 FR 33224 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-06-04

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... Guard is establishing a temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in...

  7. 78 FR 57261 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-09-18

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the United...

  8. 76 FR 27897 - Security and Safety Zone Regulations, Large Passenger Vessel Protection, Captain of the Port...

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-0342] Security and Safety Zone Regulations, Large Passenger Vessel Protection, Captain of the Port Columbia River... will enforce the security and safety zone in 33 CFR 165.1318 for large passenger vessels operating in...

  9. Fracture risk assessment for the pressurized water reactor pressure vessel under pressurized thermal shock events

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2016-01-01

    Highlight: • The PTS loading conditions consistent with the USNRC's new PTS rule are applied as the loading condition for a Taiwan domestic PWR. • The state-of-the-art PFM technique is employed to analyze a reactor pressure vessel. • Novel flaw model and embrittlement correlation are considered in the study. • The RT-based regression formula of NUREG-1874 was also utilized to evaluate the failure risks of RPV. • For slightly embrittled RPV, the SO-1 type PTSs play more important role than other types of PTS. - Abstract: The fracture risk of the pressurized water reactor pressure vessel of a Taiwan domestic nuclear power plant has been evaluated according to the technical basis of the U.S.NRC's new pressurized thermal shock (PTS) screening criteria. The ORNL's FAVOR code and the PNNL's flaw models were employed to perform the probabilistic fracture mechanics analysis associated with plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule were applied as the loading conditions. Besides, an RT-based regression formula derived by the U.S.NRC was also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR pressure vessel has sufficient structural margin for the PTS attack until either the current license expiration dates or during the proposed extended operation periods.

  10. Safeguarding the nuclear safety of WWER-440 reactor pressure vessels at SKODA Plzen

    International Nuclear Information System (INIS)

    Hrbek, Z.

    1986-01-01

    The approach is described of the SKODA enterprise to safety assurance and to providing the reliability of WWER-440 reactor pressure vessels. The philosophy is analyzed of in-service inspection and determination of the residual service life of pressure vessels. This follows up on the so-called conception of basic safety whose main aim is to preclude failures at production stage by the selection of suitable material, namely by optimizing the choice of raw materials, of metallurgical procedures such as will lead to high purity of the pressure vessel material, by introducing multiple inspection in production, reducing the sensitivity of materials to technological operations, and by high-quality welds. The quality of in-service inspections is given by the use of technical diagnostic instruments of peak quality and of modern methods of nondestructive materials testing. The instruments and methods used are described. It is stated that the experience gained with in-service inspection will make it possible to draw up operating regulations and safety criteria for nuclear installations and own inspection regulations, this with regard to technical and economic factors. (Z.M.)

  11. 78 FR 68995 - Safety Zone: Vessel Removal From the Oakland Estuary, Alameda, CA

    Science.gov (United States)

    2013-11-18

    ...-AA00 Safety Zone: Vessel Removal From the Oakland Estuary, Alameda, CA AGENCY: Coast Guard, DHS. ACTION... waters of the Oakland Estuary just north of the Park Street Bridge in Alameda, CA in support of the Oakland Estuary Closure for the Vessel Removal Project on November 4, 2013 through November 22, 2013. This...

  12. TPE upgrade for enhancing operational safety and improving in-vessel tritium inventory assessment in fusion nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M., E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Taylor, C.N.; Moore-McAteer, L.; Pawelko, R.J. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Kolasinski, R.D.; Buchenauer, D.A. [Sandia National Laboratories, Hydrogen and Materials Science Department, Livermore, CA 94550 (United States); Cadwallader, L.C.; Merrill, B.J. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2016-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to evaluate in-vessel tritium inventory in the nuclear environment for fusion safety. The electrical upgrade were recently carried out to enhance operational safety and to improve plasma performance. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium and eliminating heat stress issue. In November 2015, the TPE successfully achieved first deuterium plasma via remote operation after a significant three-year upgrade. Simple linear scaling estimate showed that the TPE is expected to achieve Γ{sub i}{sup max} of >1.0 × 10{sup 23} m{sup −2} s{sup −1} and q{sub heat} of >1 MW m{sup −2} with new power supplies. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, FNSF, and DEMO for improving in-vessel tritium inventory assessment in fusion nuclear environment.

  13. 76 FR 31350 - Cruise Vessel Safety and Security Act of 2010, Available Technology

    Science.gov (United States)

    2011-05-31

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-0357] Cruise Vessel Safety and Security Act of 2010, Available Technology AGENCY: Coast Guard, DHS. ACTION: Notice of request for comments... Security and Safety Act of 2010(CVSSA), specifically related to video recording and overboard detection...

  14. Safety assessment of a multicavity prestressed concrete reactor vessel with hot liner

    Energy Technology Data Exchange (ETDEWEB)

    Lafitte, R.; Marchand, J. D. [Bonnard et Gardel, Ingenieurs-Conseil, Lausanne (Switzerland)

    1981-01-15

    The prestressed concrete reactor vessel of the high temperature reactor with helium turbine project differs from those realized up to this day by the important number of cavities, by the different cavity pressures and by a liner in contact with hot gas. For the cases of operating conditions, the computations can be based on an identical pressure in all the cavities. The overdimensioning of the vessel which results is not a determining factor at this stage of the project. The possible loss of leaktightness of the liner can introduce gas pressure into the walls of the vessel. The great thickness of the walls makes it impossible to withstand the resulting forces with prestressing in offering sufficient safety factor against collapse. It is thus important to design a drainage network largely dimensioned. The warm liner appears at this stage of the project too highly stressed by fatigue at the singularity points (ducts between cavities, angles). A solution is proposed which limits the variations of thermal stresses by using a steel with low coefficient of thermal expansion. The cavity closures, which are numerous and some with large dimensions are an important aspect of the vessel safety. A solution of reinforced concrete shell with independent liner is proposed.

  15. Safety assessment of a multicavity prestressed concrete reactor vessel with hot liner

    International Nuclear Information System (INIS)

    Lafitte, R.; Marchand, J.D.

    1981-01-01

    The prestressed concrete reactor vessel of the high temperature reactor with helium turbine project differs from those realized up to this day by the important number of cavities, by the different cavity pressures and by a liner in contact with hot gas. For the cases of operating conditions, the computations can be based on an identical pressure in all the cavities. The overdimensioning of the vessel which results is not a determining factor at this stage of the project. The possible loss of leaktightness of the liner can introduce gas pressure into the walls of the vessel. The great thickness of the walls makes it impossible to withstand the resulting forces with prestressing in offering sufficient safety factor against collapse. It is thus important to design a drainage network largely dimensioned. The warm liner appears at this stage of the project too highly stressed by fatigue at the singularity points (ducts between cavities, angles). A solution is proposed which limits the variations of thermal stresses by using a steel with low coefficient of thermal expansion. The cavity closures, which are numerous and some with large dimensions are an important aspect of the vessel safety. A solution of reinforced concrete shell with independent liner is proposed

  16. 77 FR 37600 - Safety Zone; Arctic Drilling and Support Vessels, Puget Sound, WA

    Science.gov (United States)

    2012-06-22

    ... 1625-AA00 Safety Zone; Arctic Drilling and Support Vessels, Puget Sound, WA AGENCY: Coast Guard, DHS... are underway in the Puget Sound Captain of the Port Zone. The safety zone is necessary to ensure the... Ensign Anthony P. LaBoy, Waterways Management Division, Coast Guard Sector Puget Sound; Coast Guard...

  17. 33 CFR 165.121 - Safety and Security Zones: High Interest Vessels, Narragansett Bay, Rhode Island.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones: High... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION... Guard District § 165.121 Safety and Security Zones: High Interest Vessels, Narragansett Bay, Rhode...

  18. 75 FR 14609 - Commercial Fishing Industry Vessel Safety Advisory Committee; Vacancies

    Science.gov (United States)

    2010-03-26

    ... which Chapter 45 of Title 46, U.S.C. applies and persons representing the marine insurance industry... Industry Vessel Safety Advisory Committee; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request for applications. SUMMARY: The Coast Guard seeks applications for membership on the Commercial Fishing Industry...

  19. Fatal occupational accidents in Danish fishing vessels 1989-2005

    DEFF Research Database (Denmark)

    Laursen, Lise Hedegaard; Hansen, Henrik L; Jensen, Olaf

    2008-01-01

    training for all fishermen and improved safety measures are needed, especially in the underscored areas of sea disasters concerning small vessels and occupational accidents on big vessels. Better registration of time at risk for fishermen is needed to validate the effect of the safety measures......./capsizing due to stability changes in rough weather and collisions; 39 fatal occupational accidents mainly occurred on the larger inspection obligated trawlers during fishing. In the remaining 14 other fatal accidents, the main causal factors were difficult embarking/disembarking conditions by darkness...... in foreign ports and alcohol intoxication. In the period 1995-2005, the overall incidence rate was 10 per 10,000 fishermen per year with no down-going trend during that period. The fatal accident rates are still too high, despite the efforts to reduce the risk. Increased focus on regular and repeated safety...

  20. Device for removing hydrogen gas from the safety containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Stiefel, M.

    1983-01-01

    The safe processing of all concentrations of gas mixtures should be possible with such a device using a thermal recombiner of compact construction. A recombiner consisting of a metal case and diverter sheets situated in it is heated by induction. The incoming pipe for the gas mixture enriched with hydrogen and the outgoing pipe for the gas mixture with low hydrogen content are connected together by a three way valve. The third connection to the safety valve takes the larger port of the gas mixture with low hydrogen content back to the safety containment vessel. Sufficient amount of the gas mixture with low hydrogen content is taken via the three way valve to the safety containment vessel to ensure that the hydrogen content of the gas mixture taken to the recombiner remains below the 4% by volume limit. (orig./PW)

  1. Risk-informed appendices G and E for section XI of the ASME Boiler and Pressure Vessel Code

    International Nuclear Information System (INIS)

    Carter, B; Spanner, J.; Server, W.; Gamble, R.; Bishop, B.; Palm, N.; Heinecke, C.

    2011-01-01

    Full text of publication follows: The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, contains two appendices (G and E) related to reactor pressure boundary integrity. Appendix G provides procedures for defining Service Level A and B pressure temperature limits for ferritic components in the reactor coolant pressure boundary. Recently, an alternative risk informed methodology has been developed for ASME Section XI, Appendix G. The alternative methodology provides simple procedures to define risk informed pressure temperature limits for Service Level A and B events, including leak testing and reactor start up and shut down for both pressurized water reactors (PWRs) and boiling water reactors (BWRs). Risk informed pressure temperature limits provide more operational flexibility, particularly for reactor pressure vessels (RPV) with relatively high irradiation levels and radiation sensitive materials. Appendix E of Section XI provides a methodology for assessing conditions when the Appendix G limits are exceeded. A similar risk informed methodology is being considered for Appendix E. The probabilistic fracture mechanics evaluations used to develop the risk informed relationships included appropriate material properties for the range of RPV materials in operating plants in the United States and operating history and system operational constraints in both BWRs and PWRs. The analysis results were used to define pressure temperature relationships that provide an acceptable level of risk, consistent with safety goals defined by the U.S. Nuclear Regulatory Commission. The alternative methodologies for Appendices G and E will provide greater operational flexibility, especially for Service Level A and B events that may adversely affect efficient and safe plant operation, such as low temperature over pressurization for PWRs and BWR leak testing. Overall, application of the risk informed appendices can result in increased plant

  2. Occupational Safety and Health Conditions Aboard Small- and Medium-Size Fishing Vessels: Differences among Age Groups.

    Science.gov (United States)

    Zytoon, Mohamed A; Basahel, Abdulrahman M

    2017-02-24

    Although marine fishing is one of the most hazardous occupations, research on the occupational safety and health (OSH) conditions aboard marine fishing vessels is scarce. For instance, little is known about the working conditions of vulnerable groups such as young and aging fishermen. The objective of the current paper is to study the OSH conditions of young and aging fishermen compared to middle-aged fishermen in the small- and medium-size (SM) marine fishing sector. A cross-sectional study was designed, and 686 fishermen working aboard SM fishing vessels were interviewed to collect information about their safety and health. The associations of physical and psychosocial work conditions with safety and health outcomes, e.g., injuries, illnesses and job satisfaction, are presented. The results of the current study can be utilized in the design of effective accident prevention and OSH training programs for the three age groups and in the regulation of working conditions aboard fishing vessels.

  3. Estimation of embrittlement damage risk at neutron embrittled vessel constructions

    International Nuclear Information System (INIS)

    Staevski, K.; Madzharov, D.; Detistov, P.; Petrova, T.

    1998-01-01

    In this work a methodology based on Damage mechanics criteria is proposed. This methodology serves for probability assessment of the brittle damage risk for the neutron embrittled vessel elements. The developed methodology is realised in RISK code and has been verified on the base of tough reliability of the pressure vessel, 'Kozloduy' NPP Unit 2. This investigation has been carried out at the given parameters of the possible defects on the vessel's weld 4 taking into account requirements of the western and Russian standards. The obtained values for ductile to brittle transition temperatures, defining the equipment life-time in the presence of maximal defect, are in good consistence with the experimentally determined ones. The analyses of results show that the pressure vessel of 'Kozloduy' NPP Unit 2 has got a high level of reliability from brittle damage risk point of view and that the western standards give more conservative evaluation. On the bases of the results a conclusion is made that the developed methodology enables analysing the influence of possible defects in the neutron embrittled elements on their to reliability and their remained life-time

  4. Minimizing risks of maritime oil transport by holistic safety strategies (MIMIC) Final report

    DEFF Research Database (Denmark)

    Haapasaari, Päivi Elisabet; Dahlbo, Kim; Aps, Robert

    the costeffectiveness of different types of risk control options in reducing the risks of oil accidents. The cost-effectiveness of the ENSI (Enhanced Navigation Support Information) service, compulsory pilotage, and improved crashworthiness of ships was evaluated. According to the results, the ENSI service is the most......, and the consequent oil outflow  - evaluated optional measures to control oil accident risks and produced a related decision support model  - developed tools for estimating the length of oiled shoreline after an accident  - developed tools for examining the recovery efficiency and optimal disposition of Finnish...... oil combating vessels and for forecasting the clean-up costs of oil spills  - improved operational tools for guiding oil combating activities  - identified and assessed security threats and pondered their connection to safety - analysed the prevailing regulatory system related to maritime safety...

  5. Risk-based safety indicators

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: The objectives of the risk-based indicator programme. The characteristics of the risk-based indicators. The objectives of risk-based safety indicators - in monitoring safety; in PSA applications. What indicators? How to produce the risk based indicators? PSA requirements

  6. 78 FR 55230 - Safety and Environmental Management System Requirements for Vessels on the U.S. Outer Continental...

    Science.gov (United States)

    2013-09-10

    ...\\ including the regulation of workplace safety and health.\\2\\ The Coast Guard's regulatory authority extends... 147 [Docket No. USCG-2012-0779] RIN 1625-AC05 Safety and Environmental Management System Requirements... a vessel-specific Safety and Environmental Management System (SEMS) that incorporates the management...

  7. The influence of chemistry concentration on the fracture risk of a reactor pressure vessel subjected to pressurized thermal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pin-Chiun [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China); Chou, Hsoung-Wei, E-mail: hwchou@iner.gov.tw [Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan, ROC (China); Ferng, Yuh-Ming [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2016-02-15

    Highlights: • Probabilistic fracture mechanics method was used to analyze a reactor pressure vessel. • Effects of copper and nickel contents on RPV fracture probability under PTS were investigated and discussed. • Representative PTS transients of Beaver Valley nuclear power plant were utilized. • The range of copper and nickel contents of the RPV materials were suggested. • With different embrittlement levels the dominated PTS category is different. - Abstract: The radiation embrittlement behavior of reactor pressure vessel shell is influenced by the chemistry concentration of metal materials. This paper aims to study the effects of copper and nickel content variations on the fracture risk of pressurized water reactor (PWR) pressure vessel subjected to pressurized thermal shock (PTS) transients. The probabilistic fracture mechanics (PFM) code, FAVOR, which was developed by the Oak Ridge National Laboratory in the United States, is employed to perform the analyses. A Taiwan domestic PWR pressure vessel assumed with varied copper and nickel contents of beltline region welds and plates is investigated in the study. Some PTS transients analyzed from Beaver Valley Unit 1 for establishing the U.S. NRC's new PTS rule are applied as the loading condition. It is found that the content variation of copper and nickel will significantly affect the radiation embrittlement and the fracture probability of PWR pressure vessels. The results can be regarded as the risk incremental factors for comparison with the safety regulation requirements on vessel degradation as well as a reference for the operation of PWR plants in Taiwan.

  8. Risk-based safety indicators

    International Nuclear Information System (INIS)

    Sedlak, J.

    2001-12-01

    The report is structured as follows: 1. Risk-based safety indicators: Typology of risk-based indicators (RBIs); Tools for defining RBIs; Requirements for the PSA model; Data sources for RBIs; Types of risks monitored; RBIs and operational safety indicators; Feedback from operating experience; PSO model modification for RBIs; RBI categorization; RBI assessment; RBI applications; Suitable RBI applications. 2. Proposal for risk-based indicators: Acquiring information from operational experience; Method of acquiring safety relevance coefficients for the systems from a PSA model; Indicator definitions; On-line indicators. 3. Annex: Application of RBIs worldwide. (P.A.)

  9. Safety of the pressure vessels of water reactors. Prevention of sudden failure

    International Nuclear Information System (INIS)

    Petrequin, P.; Barrachin, B.

    1975-01-01

    From the safety view point the primary circuit is considered as the essential barrier against the diffusion of radioactive products in the event of fuel element failure. The safety of the vessel itself, the failure of which is not accounted for in accident analyses, is based chiefly on a series of preventive measures such as the suitable choice of materials and manufacturing process, compliances with detailed specifications concerning tests and defect tolerances, supervision in service. All these points are examined in detail when the safety analysis is performed. In this context the Service de Recherches Metallurgiques Appliquees assists the Department de Surete Nucleaire in the study of special problems such as the prevention of sudden failure and the characterisation of steels as a function of working conditions, particularly neutron irradiation. The report is thus devoted mainly to the presentation of methods to prevent sudden failure, with special emphasis on the limits of application. Some results obtained at the Service de Recherches Metallurgiques Appliquees on steels typical of those used for water reactor vessels (A533 and A508Cl.3) are given by way of example. Part two concentrates on the role of various factors influencing embrittlement by irradiation [fr

  10. Thermal radiation from fireballs on failure of liquefied petroleum gas storage vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, T.; Hawksworth, S. [Health and Safety Executive, Health and Safety Lab., Buxton (United Kingdom); Gosse, A. [BG Technology, Loughborough (United Kingdom)

    2000-05-01

    Fire impingement on vessels containing pressure liquefied gases can result in catastrophic failure of the vessel leading to a Boiling Liquid Expanding Vapour Explosion (BLEVE). If the gas is flammable, this can result in the formation of very large fireballs. In safety assessments where catastrophic vessel failure is identified as a real possibility, the risk of death from a fireball tends to be higher than that from missiles or blast. Since many of the physical processes which take place in a BLEVE are scale dependent, a series of tests were undertaken at a large scale where 2 tonne propane vessels were taken to failure in a jet fire and the vessel response, mode of failure and consequence of failure characterised. The measurements taken by the Health and Safety Laboratory and BG Technology relating to fireball formation are described. (Author)

  11. Safety Climate, Perceived Risk, and Involvement in Safety Management

    OpenAIRE

    Kouabenan , Dongo Rémi; Ngueutsa , Robert ,; Safiétou , Mbaye

    2015-01-01

    International audience; This article examines the relationship between safety climate, risk perception and involvement in safety management by first-line managers (FLM). Sixty-three FLMs from two French nuclear plants answered a questionnaire measuring perceived workplace safety climate, perceived risk, and involvement in safety management. We hypothesized that a positive perception of safety climate would promote substantial involvement in safety management, and that this effect would be str...

  12. Fracture toughness requirements of reactor vessel material in evaluation of the safety analysis report of nuclear power plants

    International Nuclear Information System (INIS)

    Widia Lastana Istanto

    2011-01-01

    Fracture toughness requirements of reactor vessel material that must be met by applicants for nuclear power plants construction permit has been investigated in this paper. The fracture toughness should be described in the Safety Analysis Reports (SARs) document that will be evaluated by the Nuclear Energy Regulatory Agency (BAPETEN). Because BAPETEN does not have a regulations or standards/codes regarding the material used for the reactor vessel, especially in the fracture toughness requirements, then the acceptance criteria that applied to evaluate the fracture toughness of reactor vessel material refers to the regulations/provisions from the countries that have been experienced in the operation of nuclear power plants, such as from the United States, Japan and Korea. Regulations and standards used are 10 CFR Part 50, ASME and ASTM. Fracture toughness of reactor vessel materials are evaluated to ensure compliance of the requirements and provisions of the Regulatory Body and the applicable standards, such as ASME or ASTM, in order to assure a reliability and integrity of the reactor vessels as well as providing an adequate safety margin during the operation, testing, maintenance, and postulated accident conditions over the reactor vessel lifetime. (author)

  13. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1998-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  14. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y.; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  15. Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions

    Science.gov (United States)

    Fernandes, R.; Braunschweig, F.; Lourenço, F.; Neves, R.

    2016-02-01

    The technological evolution in terms of computational capacity, data acquisition systems, numerical modelling and operational oceanography is supplying opportunities for designing and building holistic approaches and complex tools for newer and more efficient management (planning, prevention and response) of coastal water pollution risk events. A combined methodology to dynamically estimate time and space variable individual vessel accident risk levels and shoreline contamination risk from ships has been developed, integrating numerical metocean forecasts and oil spill simulations with vessel tracking automatic identification systems (AIS). The risk rating combines the likelihood of an oil spill occurring from a vessel navigating in a study area - the Portuguese continental shelf - with the assessed consequences to the shoreline. The spill likelihood is based on dynamic marine weather conditions and statistical information from previous accidents. The shoreline consequences reflect the virtual spilled oil amount reaching shoreline and its environmental and socio-economic vulnerabilities. The oil reaching shoreline is quantified with an oil spill fate and behaviour model running multiple virtual spills from vessels along time, or as an alternative, a correction factor based on vessel distance from coast. Shoreline risks can be computed in real time or from previously obtained data. Results show the ability of the proposed methodology to estimate the risk properly sensitive to dynamic metocean conditions and to oil transport behaviour. The integration of meteo-oceanic + oil spill models with coastal vulnerability and AIS data in the quantification of risk enhances the maritime situational awareness and the decision support model, providing a more realistic approach in the assessment of shoreline impacts. The risk assessment from historical data can help finding typical risk patterns ("hot spots") or developing sensitivity analysis to specific conditions, whereas real

  16. Management of safety and risk at the HFIR [High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Glovier, H.A.

    1990-01-01

    This paper discusses the management of safety and risk at the High-Flux Isotope Reactor (HFIR), a category A research reactor at Oak Ridge National Laboratory (ORNL). The HFIR went critical in 1966 and operated at its designed 100 MW for 20 yr until it was shut down on November 14, 1986. It operated at a >90% availability and without significant event during this period. The result was a complacent management program lacking rigor. This complacency came to an end with the Chernobyl accident, which led to the appointment of an internal committee to assess the safety of ORNL reactor operations. This committee found that HFIR pressure vessel material specimens removed several years earlier had not been analyzed. This issue led to a general review of management practices that were found lacking in quality assurance, safety documentation, training process, and emergency planning, among others. Management accountability was lacking, as shown by design basis and safety analyses that were not up to data and by the fact that reactor operators whose requalification examinations had not been graded were allowed to continue operating the reactor over a long period of time. Between shutdown in 1986 and restart in April 1989, significant management changes and initiatives were made in the area of risk and safety management of ORNL reactors. These are presented briefly in this paper

  17. Effect of engineered safety features on the risk of hypothetical LMFBR accidents

    International Nuclear Information System (INIS)

    Cybulskis, P.

    1978-01-01

    The risks of hypothetical core-disruptive accidents in liquid-metal-cooled fast breeder reactors which involve meltthrough of the reactor vessel are compared for two plant designs: one design without specific provisions to accommodate such an accident and the other design with an ex-vessel core catcher and a cvity hot liner. The approach to risk analysis used is that developed in the Reactor Safety Study (WASH-1400). Since the probability of occurrence of such an event has not been evaluated, however, insight into the potential risk is gained only on a relative basis. The principal conclusions of this study are: (1) adding a core catcher--hot liner reduces the probabilty of accidents having major consequences; (2) the degree to which hot liner--core catcher systems can reduce the risk of melt-through accidents is limited by the failure probability of these systems; (3) fractional radioactive releases to the environment in the liquid-metal-cooled fast breeder reactor accidents considered are comparable to those from the light-water reactors evaluated in WASH-1400; (4) since sodium--concrete reactions are a dominant driving force during the accident, the integrity of the cavity liner is as important as the function of the core catcher; (5) there may be other accidents or paths to radioactive releases that are not affected by the addition of a hot liner--core catcher

  18. Earthquake-proof supporting structure in reactor vessel

    International Nuclear Information System (INIS)

    Sakurai, Akio; Sekine, Katsuhisa; Madokoro, Manabu; Katoono, Shin-ichi; Konno, Mutsuo; Suzuki, Takuro.

    1990-01-01

    Conventional earthquake-proof structure comprises a vessel vibration stopper integrated to a reactor vessel, powder for restricting the horizontal displacements, a safety vessel surrounds the outer periphery of the reactor vessel and a safety vessel vibration stopper integrated therewith, which are fixed to buildings. However, there was a problem that a great amount of stresses are generated in the base of the reactor vessel vibration stopper due to reaction of the powders which restrict thermal expansion. In order to remarkably reduce the reaction of the powers, powders are charged into a spaces formed between each of the reactor vessel vibration stopper, the safety vessel vibration stopper and the flexible member disposed between them. According to this constitution, the reactor vessel vibration stopper does not undergo a great reaction of the powers upon thermal expansion of the reactor vessel to moderate the generated stresses, maintain the strength and provide earthquake-proof supporting function. (N.H.)

  19. Test of safety injection supply by diesel generator under reactor vessel closed condition

    International Nuclear Information System (INIS)

    Zhang Hao; Bi Fengchuan; Che Junxia; Zhang Jianwen; Yang Bo

    2014-01-01

    The paper studied that the test of diesel generator full load take-up under the condition of actual safety injection and reactor vessel closed in Ningde nuclear project unit l. It is proved that test result accorded with design criteria, meanwhile, the test was removed from the key path of project schedule, which cut a huge cost. (authors)

  20. Safety Domain Measurement for Vessels in an Overtaking Situation

    Directory of Open Access Journals (Sweden)

    Hua-Zhi Hsu

    2014-12-01

    Full Text Available Marine traffic engineering has been pushed to the limits due to a rising demand in the shipping business. Merchant ships are growing dramatically, both in numbers and in size. To keep pace with current developments, automation seems to be one viable option when it comes to keeping ships running with fewer seafarers available. The aim of this paper is to monitor a modern day mariners’ performance while working in a tense situation. The objective is to define the size of the safety domain whilst overtaking a vessel. The approach was to assess the ship's domain area within a 3 nm wide traffic separation scheme by using a ship handling simulator. From the simulation results, an overtaking domain was determined as 1.36 nm long and 0.4 nm wide. Safety domains in real-life situations were experienced on a much smaller scale compared to the previous findings. The working load for this particular operation is expected to be stressful and highly skilled orientated.

  1. Risk management and safety culture

    International Nuclear Information System (INIS)

    Takano, K.

    2007-01-01

    Paper informs on the efforts to elaborate a feedback system for risk comprehensive evaluation and a system to improve structure safety foreseeing the possibility to control the latent risk, ensuring the qualitative evaluation of the safety level and improvement of safety culture in various branches of industry, first and foremost, in the electricity producing sector including the nuclear power industry [ru

  2. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1989-01-01

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  3. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    Science.gov (United States)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  4. 33 CFR 165.103 - Safety and Security Zones; LPG Vessel Transits in Portland, Maine, Captain of the Port Zone...

    Science.gov (United States)

    2010-07-01

    ... within a 500-yard radius of any Liquefied Petroleum Gas (LPG) vessel while it is moored at the LPG... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; LPG... and Security Zones; LPG Vessel Transits in Portland, Maine, Captain of the Port Zone, Portsmouth...

  5. Evaluation of the safety of hospitalized older adults as for the risk of falls

    Directory of Open Access Journals (Sweden)

    Nathalia de Araújo Sarges

    Full Text Available ABSTRACT Objective: To evaluate the safety of hospitalized older adults as for the risk of falls according to the parameters of the Morse Fall Scale. Method: Epidemiological, cross-sectional, prospective and descriptive study with n=75. Results: Average age of 71.3 years (SD±8.2; 58.7% male; 44% with low educational level; 38.7% hospitalized for cardiovascular diseases; average hospitalization of 10 days (SD±9.38; 78.7% with comorbidities; 61.3% with the calf circumference ≥ 31 cm; 62.7% were former smokers for more than 10 years; 65% did not drink alcohol; 100% did not have identification bracelet; 22.7% had similar names in the infirmary; 48% took up to five medicines; and 93.3% received some invasive procedure, especially the vessel puncture (65.3%. There was a high risk of falls in 52% of older adults. Conclusion: The results pointed to imminent risk of breach of patient safety, emphasizing the need for implementation of protocols and predictive scales such as the Morse scale.

  6. A strategy for the risk-based inspection of pressure safety valves

    International Nuclear Information System (INIS)

    Chien, C.-H.; Chen, C.-H.; Chao, Y.J.

    2009-01-01

    The purpose of a pressure safety valve (PSV) is to protect the life and safety of pressure vessels in a pressurized system. If a weakened PSV fails to function properly, a catastrophic event might occur if no other protective means are provided. By utilizing the as-received test data and statistical analysis of the aging conditions of PSVs in lubricant process units, a risk-based inspection (RBI) system was developed in this study. First of all, the characteristics of PSV were discussed from the practical viewpoint of engineering inspection and maintenance. The as-received test data, which shows obvious PSV damage, will be separated from the data used in the following statistical analysis. Then, the relationship between the aging conditions and the corresponding PSV parameters was analyzed by using the statistical technique-analysis of variance (ANOVA). Finally, a strategy for semi-quantitative RBI is proposed. Also, a definitive estimated inspection interval for every PSV is suggested. The outcome indicated most of the risks result from a few PSVs, for which the corresponding inspection intervals will be shorter than the 2 years in accordance with relative standards and local government regulations

  7. Proactive life extension of pressure vessels

    Science.gov (United States)

    Mager, Lloyd

    1998-03-01

    For a company to maintain its competitive edge in today's global market every opportunity to gain an advantage must be exploited. Many companies are strategically focusing on improved utilization of existing equipment as well as regulatory compliance. Abbott Laboratories is no exception. Pharmaceutical companies such as Abbott Laboratories realize that reliability and availability of their production equipment is critical to be successful and competitive. Abbott Laboratories, like many of our competitors, is working to improve safety, minimize downtime and maximize the productivity and efficiency of key production equipment such as the pressure vessels utilized in our processes. The correct strategy in obtaining these objectives is to perform meaningful inspection with prioritization based on hazard analysis and risk. The inspection data gathered in Abbott Laboratories pressure vessel program allows informed decisions leading to improved process control. The results of the program are reduced risks to the corporation and employees when operating pressure retaining equipment. Accurate and meaningful inspection methods become the cornerstone of a program allowing proper preventative maintenance actions to occur. Successful preventative/predictive maintenance programs must utilize meaningful nondestructive evaluation techniques and inspection methods. Nondestructive examination methods require accurate useful tools that allow rapid inspection for the entire pressure vessel. Results from the examination must allow the owner to prove compliance of all applicable regulatory laws and codes. At Abbott Laboratories the use of advanced NDE techniques, primarily B-scan ultrasonics, has provided us with the proper tools allowing us to obtain our objectives. Abbott Laboratories uses B-scan ultrasonics utilizing a pulse echo pitch catch technique to provide essential data on our pressure vessels. Equipment downtime is reduced because the nondestructive examination usually takes

  8. Considerations of the manner of accounting for fast fracture risk in the design of PWR vessels

    International Nuclear Information System (INIS)

    Pellissier-Tanon, A.; Grandemange, J.M.

    1986-01-01

    The French approach to the prevention of fast fracture in PWR vessels is to consider it as a whole and to choose the most convenient way to meet this general goal from an economic and technical point of view. According to this approach, there are no specific limits imposed on such factors as end of life RTsub(NDT) or neutron fluence, which are taken as criteria in other countries. The RCCM design and construction code specifications on chemical content and RTsub(NDT) for beltline and non-irradiated parts establish a sound basis for safety. However, for the most critical parts, the existence of large margins with respect to fast fracture is demonstrated by analysis for all second, third and fourth category design transients. To this aim, the RCCM code needs to demonstrate specified safety margins, depending on the transient category, for reference defects defined in kind and size, in order to bound realistically any defects which have a chance of occurring in the part during manufacture. This approach, which enables the disclosure of the influence of all significant design factors on fracture risk, ensures the most consistent way to improve design safety. (author)

  9. Considerations of the manner of accounting for fast fracture risk in the design of PWR vessels

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The French approach to the prevention of fast fracture in PWR vessels is to consider it as a whole and to choose the most convenient way to meet this general goal from an economic and technical point of view. According to this approach, there are no specific limits imposed on such factors as end of life RTsub(NDT) or neutron fluence, which are taken as criteria in other countries. The RCCM design and construction code specifications on chemical content and RTsub(NDT) for beltline and non-irradiated parts establish a sound basis for safety. However, for the most critical parts, the existence of large margins with respect to fast fracture is demonstrated by analysis for all second, third and fourth category design transients. To this aim, the RCCM code needs to demonstrate specified safety margins, depending on the transient category, for reference defects defined in kind and size, in order to bound realistically any defects which have a chance of occurring in the part during manufacture. This approach, which enables the disclosure of the influence of all significant design factors on fracture risk, ensures the most consistent way to improve design safety.

  10. Ensuring the nuclear safety of VVER-440 reactor pressure vessels in Skoda, Concern Enterprise, Plzen

    International Nuclear Information System (INIS)

    Hrbek, Z.

    1985-01-01

    Various types of routine inspections are described of reactor pressure vessels with the aim of identifying residual lifetime and overall safety. The inspection programme includes: choice of systems and instruments, type of tests, test frequency, safety criteria, measures to be taken in case of unsatisfactory results, documentation. The criteria are given for periodical inspections and requirements listed for instruments and equipment. The main three groups of tests are: visual inspection and dimension tests, surface inspection and volumetric inspection. Briefly described is some of the equipment used. (M.D.)

  11. Design of pressure vessels. Part 1

    International Nuclear Information System (INIS)

    Grandemange, J.M.

    2008-01-01

    The equipments and loops of PWR reactors are basically pressure vessels. Their specificities concern the integrity warranties that must be implemented considering their importance for the reactors safety. Thus, stress is put on the exhaustiveness of the prevention of in-service degradation and on the safety scenarios considered. The second specificity concerns the possibility of activation of wear and corrosion products during their flow inside the reactor core. This second aspect leads to some constraints on the choice of the materials used and on the surface coating of the inside wall of big components of the primary circuit. The aim of this document is to develop the general approach adopted for the design of the pressure vessels of PWR fluid loops, and to stress more particularly on the nuclear particularities of these equipments. Some extensions of these rules to high temperature resistant materials (FBR-type reactors) are also evoked. Content: General considerations: design basis of pressure vessels, risk analysis and design conditions, ruining paths and safety coefficients; 2 - damage prevention for excessive deformation: definitions, criteria; 3 - prevention of the plastic instability damage: definition, criteria; 4 - buckling prevention: definition and mechanisms, rules and criteria; 5 - prevention of progressive deformation damage: definitions, plastic adaptation, plastic accommodation, progressive deformation; 6 - prevention of fatigue damage: definitions, general prevention approach, design fatigue curves, analytic approach, particular aspects, analysis of zones with geometrical singularity; 7 - prevention of sudden rupture damage: fragile rupture and ductile tear, general approach, analytic criteria, irradiation and aging effects; 8 - other potential damages; 9 - conclusion. (J.S.)

  12. Assessing the port to port risk of vessel movements vectoring non-indigenous marine species within and across domestic Australian borders.

    Science.gov (United States)

    Campbell, Marnie L; Hewitt, Chad L

    2011-07-01

    Biofouling of vessels is implicated as a high risk transfer mechanism of non-indigenous marine species (NIMS). Biofouling on international vessels is managed through stringent border control policies, however, domestic biofouling transfers are managed under different policies and legislative arrangements as they cross internal borders. As comprehensive guidelines are developed and increased compliance of international vessels with 'clean hull' expectations increase, vessel movements from port to port will become the focus of biosecurity management. A semi-quantitative port to port biofouling risk assessment is presented that evaluates the presence of known NIMS in the source port and determines the likelihood of transfer based on the NIMS association with biofouling and environmental match between source and receiving ports. This risk assessment method was used to assess the risk profile of a single dredge vessel during three anticipated voyages within Australia, resulting in negligible to low risk outcomes. This finding is contrasted with expectations in the literature, specifically those that suggest slow moving vessels pose a high to extreme risk of transferring NIMS species.

  13. Safety assessment of in-vessel vapor explosion loads in next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)

    1998-12-01

    A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.

  14. Mitigating construction safety risks using prevention through design.

    Science.gov (United States)

    Gangolells, Marta; Casals, Miquel; Forcada, Núria; Roca, Xavier; Fuertes, Alba

    2010-04-01

    Research and practice have demonstrated that decisions made prior to work at construction sites can influence construction worker safety. However, it has also been argued that most architects and design engineers possess neither the knowledge of construction safety nor the knowledge of construction processes necessary to effectively perform Construction Hazards Prevention through Design (CHPtD). This paper introduces a quantitative methodology that supports designers by providing a way to evaluate the safety-related performance of residential construction designs using a risk analysis-based approach. The methodology compares the overall safety risk level of various construction designs and ranks the significance of the various safety risks of each of these designs. The methodology also compares the absolute importance of a particular safety risk in various construction designs. Because the methodology identifies the relevance of each safety risk at a particular site prior to the construction stage, significant risks are highlighted in advance. Thus, a range of measures for mitigating safety risks can then be implemented during on-site construction. The methodology is specially worthwhile for designers, who can compare construction techniques and systems during the design phase and determine the corresponding level of safety risk without their creative talents being restricted. By using this methodology, construction companies can improve their on-site safety performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Toward introduction of risk informed safety regulation. Nuclear Safety Commission taskforce's interim report

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear Safety Commission's taskforce on 'Introduction of Safety Regulation Utilizing Risk Information' completed the interim report on its future subjects and directions in December 2005. Although current safety regulatory activities have been based on deterministic approach, this report shows the risk informed approach is expected to be very useful for making nuclear safety regulation and assurance activities reasonable and also for appropriate allocation of regulatory resources. For introduction of risk informed regulation, it also recommends pileups of experiences with gradual introduction and trial of the risk informed approach, improvement of plant maintenance rules and regulatory requirements utilizing risk information, and establishment of framework to assure quality of risk evaluation. (T. Tanaka)

  16. Risk management and safety

    International Nuclear Information System (INIS)

    Niehaus, F.; Novegno, A.

    1985-01-01

    Risk assessment, including probabilistic analyses, has made great progress over the past decade. In spite of the inherent uncertainties it has now become possible to utilize methods and results for decision making at various levels. This paper will, therefore, review risk management in industrial installations, risk management for energy safety policy and prospects of risk management in highly industrialized areas. (orig.) [de

  17. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  18. Lowering risk score profile during PCI in multiple vessel disease is associated with low adverse events: The ERACI risk score.

    Science.gov (United States)

    Rodriguez, Alfredo E; Fernandez-Pereira, Carlos; Mieres, Juan; Pavlovsky, Hernan; Del Pozo, Juan; Rodriguez-Granillo, Alfredo M; Antoniucci, David

    2018-02-13

    In recent years angiographic risk scores have been introduced in clinical practice to stratify different levels of risk after percutaneous coronary interventions (PCI). The SYNTAX score included all intermediate lesions in vessels ≥1.5 mm, consequently, multiple stent implantation was required. Four years ago, we built a new angiographic score in order to guide PCI strategy avoiding stent deployment both in intermediate stenosis as in small vessels, therefore these were not scored (ERACI risk score). The purpose of this mini review is to validate the strategy of PCI guided by this scoring, taking into account long term follow up outcomes of two observational and prospective registries where this policy was used. With this new risk score we have modified risk profile of our patient's candidates for PCI or coronary artery bypass surgery lowering the risk and PCI. The simple exclusion of small vessels and intermediate stenosis from the revascularization approach resulted in clinical outcome comparable with the one of fractional flow reserve guided revascularization. Low events rate at late follow up observed in both studies was also in agreement with guided PCI by functional lesion assessment observed by Syntax II registry, where investigators found lower events rate in spite of a few number of stents implanted per patient. use of ERACI risk scores may significantly reclassify patients into a lower risk category and be associated with low adverse events rate. Copyright © 2018. Published by Elsevier Inc.

  19. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 1. Comprehending the vacuum vessel structure

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Nakahira, Masataka

    2006-01-01

    The functions, conditions and structure of vacuum vessel using tokamak fusion machines are explained. The structural standard and code of vacuum vessel, process of vacuum vessel design, and design of ITER vacuum vessel are described. Production and maintenance of ultra high vacuum, confinement of radioactive materials, support of machines in vessel and electromagnetic force, radiation shield, plasma vertical stability, one-turn electric resistance, high temperature baking heat and remove of nuclear heat, reduce of troidal ripple, structural standard, features of safety of nuclear fusion machines, subjects of structural standard of fusion vacuum vessel, design flow of vacuum vessel, establishment of radial build, selections of materials, baking and cooling method, basic structure, structure of special parts, shield structure, and of support structure, and example of design of structure, ITER, are stated. (S.Y.)

  20. Thermonuclear generation program: risks and safety

    International Nuclear Information System (INIS)

    Goes, Alexandre Gromann de Araujo

    1999-01-01

    This work deals with the fundamental concepts of risk and safety related to nuclear power generation. In the first chapter, a general evaluation of the various systems for energy generation and their environmental impacts is made. Some definitions for safety and risk are suggested, based on the already existing regulatory processes and also on the current tendencies of risk management. Aspects regarding the safety culture are commented. The International Nuclear Event Scale (INES), a coherent and clear mechanism of communication between nuclear specialists and the general public, is analyzed. The second chapter examines the thermonuclear generation program in Brazil and the role of the National Nuclear Energy Commission. The third chapter presents national and international scenarios in terms of safety and risks, available policies and the main obstacles for future development of nuclear energy and nuclear engineering, and strategies are proposed. In the last chapter, comments about possible trends and recommendations related to practical risk management procedures, taking into account rational criteria for resources distribution and risk reduction are made, envisaging a closer integration between nuclear specialists and the society as a whole, thus decreasing the conflicts in a democratic decision-making process

  1. Opinion of the IRSN on serviceability of the 900 MWe reactor vessel - Answers to demands of the Nuclear Permanent Department of December 2005 - Mechanical aspect

    International Nuclear Information System (INIS)

    2010-05-01

    As three demands had been made to EDF in December 2005 regarding the serviceability and more particularly the mechanical behaviour of the 900 MWe reactor vessels, this report discusses the evolution brought to models and proposed by EDF to correct the defect plasticity and take residual stresses into account. This discussion notably concerns the defect height and length range, and the admissible residual stress, but also the use of safety coefficients, transient application, fluence and the brittle-ductile transition temperature. This report from the French Nuclear Safety and Radioprotection Institute (IRSN) outlines the failure risks associated to the vessel in some specific nuclear power stations. Recommendations are made regarding the residual stress amplitude, the risk of fracture by cleavage, and actions to correct fracture risk margins on vessels which do not comply with regulatory criteria

  2. Mastery of risks and operating safety, risks and efficiencies

    International Nuclear Information System (INIS)

    2006-01-01

    A proper management of ones risks consists in acting to exert prevention and protection capacities against the negative consequences of an event, but also by committing oneself into an offensive approach allowing to improve efficiency, quality and availability. Safety and efficiencies are mutual reinforcing goals aiming at ensuring the perenniality of industries and services. The implementation of a risk management approach in an industrial environment allows to reach a better reactiveness and to increase the efficiency of a system by the mastery of organization and processes. The activities in concern are those of industries and services: transports, energy and environment, automotive industry, petrochemistry, chemistry, food, space, health, defense industries, telecommunication, mining industry, information systems, textile industry, finances.. The topics approached during this meeting treat of: the relevance of risk-abatement resources with respect to risks criticality; the consistent management of uncertainties with respect to stakes; the mastery of components aging and the expression of aging-dependent availability, maintenance and safety policies; the expression of obsolescence-related renewing policies; the operating safety tools and methods applied to complex and computerized-controlled systems; the integration of social, organizational and human factors in technical decisions and companies management; transverse and global risk analysis and decision-aid approaches; the vigilance culture; crisis anticipation and management; the experience feedback on technical and organisational aspects; efficiency and risk mastery indicators; cost/benefit approach in risk management, and economic intelligence approaches. Nineteen presentations have been selected which deal with the mastery of risks and the operating safety at nuclear facilities. (J.S.)

  3. Passive safety features of low sodium void worth metal fueled cores in a bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Chang, Y.I.; Marchaterre, J.F.; Wade, D.C.; Wigeland, R.A.; Kumaoka, Yoshio; Suzuki, Masao; Endo, Hiroshi; Nakagawa, Hiroshi

    1991-01-01

    A study has been performed on the passive safety features of low-sodium-void-worth metallic-fueled reactors with emphasis on using a bottom-supported reactor vessel design. The reactor core designs included self-sufficient types as well as actinide burners. The analyses covered the reactor response to the unprotected, i.e. unscrammed, transient overpower accident and the loss-of-flow accident. Results are given demonstrating the safety margins that were attained. 4 refs., 4 figs., 2 tabs

  4. 46 CFR 199.630 - Alternatives for passenger vessels in a specified service.

    Science.gov (United States)

    2010-10-01

    ... operating area including— (i) The scope and degree of the risks or hazards to which the vessel will be... commercial traffic; the presence of any unusual cargoes; and other similar factors; (iii) The port and...; and (iv) Environmental factors. (2) A comprehensive shipboard safety management and contingency plan...

  5. Inland Waterway Environmental Safety

    Science.gov (United States)

    Reshnyak, Valery; Sokolov, Sergey; Nyrkov, Anatoliy; Budnik, Vlad

    2018-05-01

    The article presents the results of development of the main components of the environmental safety when operating vessels on inland waterways, which include strategy selection ensuring the environmental safety of vessels, the selection and justification of a complex of environmental technical means, activities to ensure operation of vessels taking into account the environmental technical means. Measures to ensure environmental safety are developed on the basis of the principles aimed at ensuring environmental safety of vessels. They include the development of strategies for the use of environmental protection equipment, which are determined by the conditions for wastewater treatment of purified sewage and oily bilge water as well as technical characteristics of the vessels, the introduction of the process of the out-of-the-vessel processing of ship pollution as a technology for their movement. This must take into account the operating conditions of vessels on different sections of waterways. An algorithm of actions aimed at ensuring ecological safety of operated vessels is proposed.

  6. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  7. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  8. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165.1317 Section 165.1317 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS...

  9. 33 CFR 165.1318 - Security and Safety Zone Regulations, Large Passenger Vessel Protection, Portland, OR Captain of...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security and Safety Zone Regulations, Large Passenger Vessel Protection, Portland, OR Captain of the Port Zone 165.1318 Section 165.1318 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND...

  10. Safety culture' is integrating 'human' into risk assessment

    International Nuclear Information System (INIS)

    Sugimoto, Taiji

    2014-01-01

    Significance of Fukushima nuclear power accident requested reconsideration of safety standards, of which we had usually no doubt. Risk assessment standard (JIS B 9702), Which was used for repetition of database preparation and cumulative assessment, defined allowable risk and residual risk. However, work site and immediate assessment was indispensable beside such assessment so as to ensure safety. Risk of casualties was absolutely not acceptable in principle and judgments to approve allowable risk needed accountability, which was reminded by safety culture proposed by IAEA and also identified by investigation of organizational cause of Columbia accident. Actor of safety culture would be organization and individual, and mainly individual. Realization of safety culture was conducted by personnel having moral consciousness and firm sense of mission in the course of jobs and working daily with sweat pouring. Safety engineering/technology should have framework integrating human as such totality. (T. Tanaka)

  11. Discussion about risk-informed regulations on the nuclear safety

    International Nuclear Information System (INIS)

    Gu Yeyi

    2008-01-01

    The article introduces the background and status quo of regulations on the nuclear safety in China, and points out the inadequacies existing with the current regulations. The author explains the risk-informed safety management concerning its development, status quo, and achievements made, in an attempt to make out the trend of improving regulations on the nuclear safety through risk-informed methods. Combining the U.S. development program of establishing risk-informed regulations on the nuclear safety, the author narrates principles and features of the new regulations system, and provides suggestions for the promotion of risk-informed safety management and establishment of risk-informed regulations on the nuclear safety. (author)

  12. Pedestrian safety management using the risk-based approach

    Directory of Open Access Journals (Sweden)

    Romanowska Aleksandra

    2017-01-01

    Full Text Available The paper presents a concept of a multi-level pedestrian safety management system. Three management levels are distinguished: strategic, tactical and operational. The basis for the proposed approach to pedestrian safety management is a risk-based method. In the approach the elements of behavioural and systemic theories were used, allowing for the development of a formalised and repeatable procedure integrating the phases of risk assessment and response to the hazards of road crashes involving pedestrians. Key to the method are tools supporting pedestrian safety management. According to the risk management approach, the tools can be divided into two groups: tools supporting risk assessment and tools supporting risk response. In the paper attention is paid to selected tools supporting risk assessment, with particular emphasis on the methods for estimating forecasted pedestrian safety measures (at strategic, national and regional level and identification of particularly dangerous locations in terms of pedestrian safety at tactical (regional and local and operational level. The proposed pedestrian safety management methods and tools can support road administration in making rational decisions in terms of road safety, safety of road infrastructure, crash elimination measures or reducing the consequences suffered by road users (particularly pedestrians as a result of road crashes.

  13. Dams and Levees: Safety Risks

    Science.gov (United States)

    Carter, N. T.

    2017-12-01

    The nation's flood risk is increasing. The condition of U.S. dams and levees contributes to that risk. Dams and levee owners are responsible for the safety, maintenance, and rehabilitation of their facilities. Dams-Of the more than 90,000 dams in the United States, about 4% are federally owned and operated; 96% are owned by state and local governments, public utilities, or private companies. States regulate dams that are not federally owned. The number of high-hazard dams (i.e., dams whose failure would likely result in the loss of human life) has increased in the past decade. Roughly 1,780 state-regulated, high-hazard facilities with structural ratings of poor or unsatisfactory need rehabilitation. Levees-There are approximately 100,000 miles of levees in the nation; most levees are owned and maintained by municipalities and agricultural districts. Few states have levee safety programs. The U.S. Army Corps of Engineers (Corps) inspects 15,000 miles of levees, including levees that it owns and local levees participating in a federal program to assist with certain post-flood repairs. Information is limited on how regularly other levees are inspected. The consequence of a breach or failure is another aspect of risk. State and local governments have significant authority over land use and development, which can shape the social and economic impacts of a breach or failure; they also lead on emergency planning and related outreach. To date, federal dam and levee safety efforts have consisted primarily of (1) support for state dam safety standards and programs, (2) investments at federally owned dams and levees, and (3) since 2007, creation of a national levee database and enhanced efforts and procedures for Corps levee inspections and assessments. In Public Law 113-121, enacted in 2014, Congress (1) directed the Corps to develop voluntary guidelines for levee safety and an associated hazard potential classification system for levees, and (2) authorized support for the

  14. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    Science.gov (United States)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  15. Occupational health and safety: Designing and building with MACBETH a value risk-matrix for evaluating health and safety risks

    Science.gov (United States)

    Lopes, D. F.; Oliveira, M. D.; Costa, C. A. Bana e.

    2015-05-01

    Risk matrices (RMs) are commonly used to evaluate health and safety risks. Nonetheless, they violate some theoretical principles that compromise their feasibility and use. This study describes how multiple criteria decision analysis methods have been used to improve the design and the deployment of RMs to evaluate health and safety risks at the Occupational Health and Safety Unit (OHSU) of the Regional Health Administration of Lisbon and Tagus Valley. ‘Value risk-matrices’ (VRMs) are built with the MACBETH approach in four modelling steps: a) structuring risk impacts, involving the construction of descriptors of impact that link risk events with health impacts and are informed by scientific evidence; b) generating a value measurement scale of risk impacts, by applying the MACBETH-Choquet procedure; c) building a system for eliciting subjective probabilities that makes use of a numerical probability scale that was constructed with MACBETH qualitative judgments on likelihood; d) and defining a classification colouring scheme for the VRM. A VRM built with OHSU members was implemented in a decision support system which will be used by OHSU members to evaluate health and safety risks and to identify risk mitigation actions.

  16. Risk as a target of safety research

    International Nuclear Information System (INIS)

    Krueger, W.

    1986-01-01

    Job creation is not the idea behind the demand for risk studies to be intensified in safety research. Risks are not only a target safety research should investigate, they are a subject that actually can be most adequately investigated by safety research. Assuming a neutral position between irrational fears and interest-minded problem minimization, that is the central approach and the ethics of a safety scientist. The Babylonian confusion of terminology experienced after the Chernobyl accident is a good example proving the necessity of fostering the neutral professionalism in safety research. (orig./DG) [de

  17. Safety analysis, risk assessment, and risk acceptance criteria

    International Nuclear Information System (INIS)

    Jamali, K.

    1997-01-01

    This paper discusses a number of topics that relate safety analysis as documented in the Department of Energy (DOE) safety analysis reports (SARs), probabilistic risk assessments (PRA) as characterized primarily in the context of the techniques that have assumed some level of formality in commercial nuclear power plant applications, and risk acceptance criteria as an outgrowth of PRA applications. DOE SARs of interest are those that are prepared for DOE facilities under DOE Order 5480.23 and the implementing guidance in DOE STD-3009-94. It must be noted that the primary area of application for DOE STD-3009 is existing DOE facilities and that certain modifications of the STD-3009 approach are necessary in SARs for new facilities. Moreover, it is the hazard analysis (HA) and accident analysis (AA) portions of these SARs that are relevant to the present discussions. Although PRAs can be qualitative in nature, PRA as used in this paper refers more generally to all quantitative risk assessments and their underlying methods. HA as used in this paper refers more generally to all qualitative risk assessments and their underlying methods that have been in use in hazardous facilities other than nuclear power plants. This discussion includes both quantitative and qualitative risk assessment methods. PRA has been used, improved, developed, and refined since the Reactor Safety Study (WASH-1400) was published in 1975 by the Nuclear Regulatory Commission (NRC). Much debate has ensued since WASH-1400 on exactly what the role of PRA should be in plant design, reactor licensing, 'ensuring' plant and process safety, and a large number of other decisions that must be made for potentially hazardous activities. Of particular interest in this area is whether the risks quantified using PRA should be compared with numerical risk acceptance criteria (RACs) to determine whether a facility is 'safe.' Use of RACs requires quantitative estimates of consequence frequency and magnitude

  18. Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)

    Science.gov (United States)

    Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.

  19. Cooling system for the connecting rings of a fast neutron reactor vessel

    International Nuclear Information System (INIS)

    Martin, J.-P.; Malaval, Claude

    1974-01-01

    A description is given of a cooling system for the vessel connecting rings of a fast neutron nuclear reactor, particularly of a main vessel containing the core of the reactor and a volume of liquid metal coolant at high temperature and a safety vessel around the main vessel, both vessels being suspended to a rigid upper slab kept at a lower temperature. It is mounted in the annular space between the two vessels and includes a neutral gas circuit set up between the wall of the main vessel to be cooled and that of the safety vessel itself cooled from outer. The neutral gas system comprises a plurality of ventilators fitted in holes made through the thickness of the upper slab and opening on to the space between the two vessels. It also includes two envelopes lining the walls of these vessels, establishing with them small section channels for the circulation of the neutral gas cooled against the safety vessel and heated against the main vessel [fr

  20. Running Safety of Trains under Vessel-Bridge Collision

    Directory of Open Access Journals (Sweden)

    Yongle Li

    2015-01-01

    Full Text Available To optimize the sensor placement of the health monitoring system, the dynamic behavior of the train-bridge system subjected to vessel-collision should be studied in detail firstly. This study thus focuses on the characteristics of a train-bridge system under vessel-bridge collision. The process of the vessel-bridge collision is simulated numerically with a reliable finite element model (FEM. The dynamic responses of a single car and a train crossing a cable-stayed bridge are calculated. It is shown that the collision causes significant increase of the train’s lateral acceleration, lateral wheelset force, wheel unloading rate, and derailment coefficient. The effect of the collision on the train’s vertical acceleration is much smaller. In addition, parametric studies with various train’s positions, ship tonnage, and train speed are performed. If the train is closer to the vessel-bridge collision position or the ship tonnage is larger, the train will be more dangerous. There is a relatively high probability of running danger at a low speed, resulting from longer stay of the train on the bridge. The train’s position, the ship tonnage, and the train speed must be considered when determining the most adverse conditions for the trains running on bridges under vessel-bridge collision.

  1. Safety Research Experiment Facility Project. Conceptual design report. Volume V. Reactor vessel and closure

    International Nuclear Information System (INIS)

    1975-12-01

    The Prestressed Concrete Reactor Vessel (PCRV) will serve as the primary pressure retaining structure for the Safety Research Experiment Facility (SAREF) reactor. The reactor core, control rod drive room, primary heat exchangers, and gas circulators will be located in cavities within the PCRV. The orientation of these cavities, except for the control rod drive room, will be similar to the high-temperature gas-cooled reactor (HTGR) designs that are currently proposed or under design. Due to the nature of this type of structure, all biological and radiological shielding requirements are incorporated into the basic vessel design. At the midcore plane there are three radially oriented slots that will extend from the outside surface of the PCRV to the reactor core liner. These slots will accommodate each of the fuel motion monitoring systems which will be part of the observation apparatus used with the loop experiments

  2. Concept of risk: risk assessment and nuclear safety

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1980-01-01

    The dissertation is a critical examination of risk assessment and its role in public policy. Nuclear power safety safety issues are selected as the primary source of illustrations and examples. The dissertation examines how risk assessment studies develop a concept of risk which becomes decisive for policy choices. Risk-assessment techniques are interpreted as instruments which secure an evaluation of risk which, in turn, figures prominently in technical reports on nuclear power. The philosophical critique is mounted on two levels. First, an epistemological critique surveys distinctions between the technical concept of risk and more familiar senses of risk. The critique shows that utilization of risk assessment re-structures the concept of risk. The technical concept is contrasted to the function of risk within a decision-maker's conceptual agenda and hierarchy of values. Second, an ethical critique exposes the value commitments of risk assessment recommendations. Although some of these values might be defended for policy decisions, the technical character of risk assessment obfuscates normative issues. Risk assessment is shown to be a form of factual enquiry which, nonetheless, represents a commitment to a specific selection of ethical and social values. Risk assessment should not be interpreted as a primary guide to decision unless the specific values incorporated into its concept of risk are stated explicitly and justified philosophically. Such a statement would allow value questions which have been sublimated by the factual tone of the analytic techniques to be debated on clear, social and ethical grounds

  3. Risk assessment of safety violations for coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Megan Orsulaka; Vladislav Kecojevicb; Larry Graysona; Antonio Nietoa [Pennsylvania State University, University Park, PA (United States). Dept of Energy and Mineral Engineering

    2010-09-15

    This article presents an application of a risk assessment approach in characterising the risks associated with safety violations in underground bituminous mines in Pennsylvania using the Mine Safety and Health Administration (MSHA) citation database. The MSHA database on citations provides an opportunity to assess risks in mines through scrutiny of violations of mandatory safety standards. In this study, quantitative risk assessment is performed, which allows determination of the frequency of occurrence of safety violations (through associated citations) as well as the consequences of them in terms of penalty assessments. Focus is on establishing risk matrices on citation experiences of mines, which can give early indication of emerging potentially serious problems. The resulting frequency, consequence and risk rankings present valuable tools for prioritising resource allocations, determining control strategies, and could potentially contribute to more proactive prevention of incidents and injuries.

  4. In service inspection of SUPERPHENIX 1 vessels: MIR

    International Nuclear Information System (INIS)

    Asty, M.; Viard, J.; Lerat, B.; Saglio, R.

    1985-01-01

    Although no in-service inspection constraints were imposed on the Phenix vessels, the Safety Authorities asked that the design of SUPERPHENIX 1 makes it possible to monitor throughout the lifetime of the reactor, surface and internal defects on the main vessel. A pool design and the presence of heat baffles inside the main vessel make access from the inside of the vessel impossible. Thus, an inspection can only be performed from the outside of the main vessel: the distance between the walls of the main and safety vessels is such that an inspection device can be introduced into the corresponding space. As the design of the reactor precludes radiographic inspection, the method which was selected for monitoring internal defects in the main vessel is ultrasonics. However, the anisotropic structure of austenitic stainless steel welds limits the performance of this technique. The authors present the in-service inspection device, MIR, which has been specially developed for the visual and ultrasonic examination of SUPERPHENIX 1 vessels

  5. ITER vacuum vessel design and electromagnetic analysis on in-vessel components

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.; Iizuka, T.

    1995-01-01

    Major functional requirements for the vacuum vessel are to provide the first safety barrier and to support electromagnetic loads due to plasma disruptions and vertical displacement events, and to withstand plausible accidents without losing confinement. A double wall structure concept has been developed for the vacuum vessel due to its beneficial characteristics from the viewpoints of structural integrity and electrical continuity. An electromagnetic analysis of the blanket modules and the vacuum vessel has been performed to investigate force distributions on in-vessel components. According to the vertical displacement events (VDE) scenario, which assumes a critical q-value of 1.5, the total downward vertical force, induced by coupling between the eddy current and external fields, is about 110 MN. We have performed a stress analysis for the vacuum vessel using the VDE disruption forces acting on the blankets, and a maximum stress intensity of 112 MPa was obtained in the vicinity of the lower support of the vessel. (orig.)

  6. F4E R and D programme and results on in-vessel dust and tritium

    International Nuclear Information System (INIS)

    Le Guern, F.; Gulden, W.; Ciattaglia, S.; Counsell, G.; Bengaouer, A.; Brinster, J.; Dabbene, F.; Denkevitz, A.; Jordan, T.; Kuznetsov, M.; Porfiri, M.T.; Redlinger, R.; Roblin, Ph.; Roth, J.; Segre, J.; Sugiyama, K.; Tkatschenko, I.; Xu, Z.

    2011-01-01

    In a Tokamak vacuum vessel, plasma-wall interactions can result in the production of radioactive dust and H isotopes (including tritium) can be trapped both in in-vessel material and in dust. The vacuum vessel represents the most important confinement barrier to this radioactive material. In the event of an accident involving ingress of steam to the vacuum vessel, hydrogen could be produced by chemical reactions with hot metal and dust. Hydrogen isotopes could also be desorbed from in-vessel components, e.g. cryopumps. In events where an ingress of air to the vacuum vessel occurs, reaction of the air with hydrogen and/or dust therefore cannot be completely excluded. Due to the radiological risks highlighted by the safety evaluation studies for ITER in normal conditions (e.g. in-vessel maintenance chronic release) and accidental ones (e.g. challenge of vacuum vessel tightness in the event of a hydrogen/dust explosion with air), limitations on the accumulation of dust and tritium in the vacuum vessel are imposed as well as controls over the maximum extent of the quantity of accidental air ingress. ITER IO has defined a strategy for the control of in-vessel dust and tritium inventories below the safety limits based primarily on the measurement and removal of dust and tritium. In this context, this paper will report on the efforts under F4E responsibility to develop a number of the new ITER baseline systems. In particular this paper, after a review of safety constraints and ITER strategy, provides the status of: (1) tasks being launched on diagnostics for in-vessel dust inventory measurement, (2) experiments to enrich the data about the effectiveness of desorption of tritium from Be at 350 o C (divertor baking aiming to release significant amount of tritium trapped in Be co-deposit), (3) on-going R and D programme (experimental and numerical simulation) at FZK, CEA and ENEA on in-vacuum vessel H2 dust explosion.

  7. Benchmarking Global Food Safety Performances: The Era of Risk Intelligence.

    Science.gov (United States)

    Valleé, Jean-Charles Le; Charlebois, Sylvain

    2015-10-01

    Food safety data segmentation and limitations hamper the world's ability to select, build up, monitor, and evaluate food safety performance. Currently, there is no metric that captures the entire food safety system, and performance data are not collected strategically on a global scale. Therefore, food safety benchmarking is essential not only to help monitor ongoing performance but also to inform continued food safety system design, adoption, and implementation toward more efficient and effective food safety preparedness, responsiveness, and accountability. This comparative study identifies and evaluates common elements among global food safety systems. It provides an overall world ranking of food safety performance for 17 Organisation for Economic Co-Operation and Development (OECD) countries, illustrated by 10 indicators organized across three food safety risk governance domains: risk assessment (chemical risks, microbial risks, and national reporting on food consumption), risk management (national food safety capacities, food recalls, food traceability, and radionuclides standards), and risk communication (allergenic risks, labeling, and public trust). Results show all countries have very high food safety standards, but Canada and Ireland, followed by France, earned excellent grades relative to their peers. However, any subsequent global ranking study should consider the development of survey instruments to gather adequate and comparable national evidence on food safety.

  8. Evaluation of the Structural Safety of a Vessel with Different Material(Cr-13)-Supplemented Screw Thread

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Hoon; Bae, Jun Ho; Kim, Chul [Pusan National University, Busan (Korea, Republic of)

    2015-04-15

    The dome and neck part of a vessel is generally formed by a hot spinning process with a seamless tube. However, as studies on and design data from the hot spinning process are insufficient, this process has been performed based on trial and error and the experiences of field engineers. Changes in the inner diameter from the bottom to the top of the neck have occurred mainly because of the characteristics of the hot spinning process due to the high-speed rotation of the rollers. In this study, a theoretical and finite element analysis of the vessel is conducted with different material(Cr-13)-supplemented screw threads for tapping and to reduce shape errors. Based on the results, the structural safety under the operating conditions is evaluated.

  9. Safety regulations: Implications of the new risk perspectives

    International Nuclear Information System (INIS)

    Aven, T.; Ylönen, M.

    2016-01-01

    The current safety regulations for industrial activities are to a large extent functionally oriented and risk-based (informed), expressing what to achieve rather than the means and solutions needed. They are founded on a probability-based perspective on risk, with the use of risk assessment, risk acceptance criteria and tolerability limits. In recent years several risk researchers have argued for the adoption of some new types of risk perspectives which highlight uncertainties rather than probabilities in the way risk is defined, the point being to better reflect the knowledge, and lack of knowledge, dimension of risk. The Norwegian Petroleum Safety Authority has recently implemented such a perspective. The new ISO standard 31000 is based on a similar thinking. In this paper we discuss the implications of these perspectives on safety regulation, using the oil & gas and nuclear industries as illustrations. Several suggestions for how to develop the current safety regulations in line with the ideas of the new risk perspectives are outlined, including some related to the use of risk acceptance criteria (tolerability limits). We also point to potential obstacles and incentives that the larger societal and institutional setting may impose on industry as regards the adoption of the new risk perspectives. - Highlights: • Some new types of risk perspectives have been promoted. • They have been implemented for example by the Norwegian Petroleum Safety Authority. • The paper studies the implication of these perspectives on the risk regulation. • Suggestions for how to develop the regulations are provided • Obstacles and incentives for the implementation of the perspectives are pointed to.

  10. Proximal Occlusion of Medium-Sized Vessels with the Penumbra Occlusion Device: A Study of Safety and Efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Jambon, E.; Petitpierre, F. [Pellegrin Hospital, Department of Radiology (France); Brizzi, V.; Dubuisson, V. [Pellegrin Hospital, Department of Surgery (France); Bras, Y. Le; Grenier, N.; Cornelis, F., E-mail: cornelisfrancois@gmail.com [Pellegrin Hospital, Department of Radiology (France)

    2017-02-15

    PurposeTo retrospectively investigate the safety and efficacy of hybrid proximal coiling of various medium-sized vessels (4 to 8 mm) using the Penumbra Occlusion Device (POD).Materials and MethodsFrom October 2014 to February 2016, 37 proximal embolizations were performed with PODs in 36 patients (mean age: 50.8, range: 10–86; 29 male, 7 female). Vessel occlusions were achieved under fluoroscopic guidance using a 2.7 French microcatheter. Among the 36 vessels targeted, 16 were splenic arteries, 11 renal arteries, 4 mesenteric arteries, 3 arteriovenous fistulae, 1 iliac artery, and 1 gonadal vein. Intermittent follow-up angiography was performed to assess the flow for final occlusion. Outcomes and complications were assessed by clinical and/or imaging follow-up.ResultsTo produce proximal occlusion of the intended vessels, the POD was used alone in 19 embolizations (51.4 %). In 12 procedures (32.4 %), POD was used as a coil constrainer to secure the coil construct. In 6 procedures (16.2 %), additional embolic devices were used to achieve vessel occlusion after initial POD deployment. After a mean follow-up of 3.2 months, no POD migration was observed but two complications occurred (5.4 %): one post embolic syndrome and one extensive infarction with splenic abscess.ConclusionThe POD system allows safe and effective proximal embolization of medium-sized vessels in a variety of clinical settings.

  11. Reducing the risk, managing safety.

    Science.gov (United States)

    Aldridge, Peter

    2016-02-01

    Fire safety in healthcare premises has always been a challenge to those that discharge this duty. Statutory compliance should be a matter of course, but in an ever increasingly challenged NHS, even this is not a given. While the NHS is driven by managing very complex risk to deliver cutting edge healthcare, providers cannot be risk averse. Which risk, however, takes priority? Here Peter Aldridge, fire and corporate services manager at Leeds Teaching Hospitals NHS Trust, and Secretary to the National Association of Healthcare Fire Officers (NAHFO)--which will this month and next jointly stage fire safety seminars with IHEEM; see page 8--considers the key issues, with input from a fire officer at a leading mental health and community Trust.

  12. Assessment of the Zaporizhya NPP unit 1 reactor pressure vessel safety

    International Nuclear Information System (INIS)

    Podkopaev, V.; Popov, V.; Zaritsky, N.

    1997-01-01

    This emergency situation had occurred at the ZNPP unit 1 while its being under ''hot shutdown'' in natural coolant circulation mode. The main difference between emergency situation and mode with improper setting of PPPD described in the ''Technical Safety Substantiation (TSS) is that this mode is being considered in the TSS under rated power of reactor with main circulation pumps (MCP) under operation. This difference is a substantial one. For this reason a necessity appeared to asses an integrity of referred reactor pressure vessel (RPV) under given emergency situation to judge whether results obtained meet the ND requirements (safety assessment). Under operation such RPV elements are being mostly affected as upper cooling, lower cowling, weld No. 3 weld No. 4 situated in front of core. These elements materials ageing process is the most intense one. Thus, this work was aimed at investigation of structure material behavior and RPV integrity assessment under thermal shock conditions while PPPD improper setting. At that time the most attention was drawn to above mentioned upper and lower cowlings along with welds No. 3 and 4. 5 refs, figs, 10 tabs

  13. Assessment of the Zaporizhya NPP unit 1 reactor pressure vessel safety

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, V; Popov, V; Zaritsky, N [State Scientific and Technical Centre on Nuclear and Radiation Safety (SSTC NRS), Kiev (Ukraine)

    1997-09-01

    This emergency situation had occurred at the ZNPP unit 1 while its being under ``hot shutdown`` in natural coolant circulation mode. The main difference between emergency situation and mode with improper setting of PPPD described in the ``Technical Safety Substantiation (TSS) is that this mode is being considered in the TSS under rated power of reactor with main circulation pumps (MCP) under operation. This difference is a substantial one. For this reason a necessity appeared to asses an integrity of referred reactor pressure vessel (RPV) under given emergency situation to judge whether results obtained meet the ND requirements (safety assessment). Under operation such RPV elements are being mostly affected as upper cooling, lower cowling, weld No. 3 weld No. 4 situated in front of core. These elements materials ageing process is the most intense one. Thus, this work was aimed at investigation of structure material behavior and RPV integrity assessment under thermal shock conditions while PPPD improper setting. At that time the most attention was drawn to above mentioned upper and lower cowlings along with welds No. 3 and 4. 5 refs, figs, 10 tabs.

  14. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 2: Reactor pressure vessel embrittlement and thermal annealing; Reactor vessel lower head integrity; Evaluation and projection of steam generator tube condition and integrity

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: reactor pressure vessel embrittlement and thermal annealing; reactor vessel lower head integrity; and evaluation and projection of steam generator tube condition and integrity. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 2: Reactor pressure vessel embrittlement and thermal annealing; Reactor vessel lower head integrity; Evaluation and projection of steam generator tube condition and integrity

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: reactor pressure vessel embrittlement and thermal annealing; reactor vessel lower head integrity; and evaluation and projection of steam generator tube condition and integrity. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  16. Issues regarding Risk Effect Analysis of Digitalized Safety Systems and Main Risk Contributors

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung-Cheol

    2008-01-01

    Risk factors of safety-critical digital systems affect overall plant risk. In order to assess this risk effect, a risk model of a digitalized safety system is required. This article aims to provide an overview of the issues when developing a risk model and demonstrate their effect on plant risk quantitatively. Research activities in Korea for addressing these various issues, such as the software failure probability and the fault coverage of self monitoring mechanism are also described. The main risk contributors related to the digitalized safety system were determined in a quantitative manner. Reactor protection system and engineered safety feature component control system designed as part of the Korean Nuclear I and C System project are used as example systems. Fault-tree models were developed to assess the failure probability of a system function which is designed to generate an automated signal for actuating both of the reactor trip and the complicated accident-mitigation actions. The developed fault trees were combined with a plant risk model to evaluate the effect of a digitalized system's failure on the plant risk. (authors)

  17. Follow-up Study of ITER Safety Analysis : Large In-vessel First Wall Pipe Break with Wet Confinement Bypass

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Previous researches have been analyzed risk assessments of fusion reactors that are dangerous in the severe accidents where the radioactive material released from confinement building to the environment. To simulate the severe accidents in ITER, a number of thermal hydraulics simulation codes were used. Before construction of the fusion reactor, to obtain ITER license about safety issue, MELCOR is chosen as one of the several codes to be used to perform ITER safety analyses. Qualification of the simulation code is to simulate the cooling system in ITER, the transport of radionuclides during design basis accidents (DBAs) including beyond design basis accidents (BDBAs). MELCOR is fully integrated code that models the accidents in Light Water Reactor (LWR). To analyze the accidents in ITER, MELCOR 1.8.2 version is modified. In the nuclear fusion system, the amount of released radioactive material is criteria for safety permission. Tritium (or tritiated water: HTO) and radioactive dust aerosol are the source of radioactive leakage. In the Generic Site Safety Report (GSSR) for the ITER plant, Table I lists the release guidelines for tritium and activation products for normal operation, incidents and accidents. Several accident analyses have been studied to know how much radioactive material could be released from the severe accidents. In the present work, The MELCOR input deck of large First Wall (FW) coolant leak (pipe break) is used to study and radioactive material leakage thorough bypass accident are studied to follow up the ITER safety analysis. In this research, follow-up study of the in-vessel inboard/inboard-outboard FW pipe break was analyzed to investigate the amount of leakage of radioactive aerosol. All of the accident cases released the lower amount of radioactive aerosol compared to the IAEA guide lines. In addition, the OBB pipe break made lower HTO aerosol leakage because of condensation of HTO and adsorption between coolant and aerosol.

  18. Resolution of the Task A-11 reactor-vessel materials-toughness safety issue. Appendices C-K

    International Nuclear Information System (INIS)

    1982-10-01

    The central problem in the unresolved safety issue A-11, Reactor Vessel Materials Toughness, was to provide guidance in performing analyses required by 10 CFR Part 50, Appendix G, Section V.C. for reactor pressure vessels (RPVs) which fail to meet the toughness requirement during service life as a result of neutron radiation embrittlement. Although the methods of linear-elastic fracture mechanics (LEFM) were adequate for low-temperature RPV problems, they were inapplicable under operating conditions because vessel steels, even those which exhibit less than 50 ft-lb of C/sub v/ energy, were relatively tough at temperatures where the impact energy reached its upper shelf values. A technical team of recognized experts was organized to assist the NRC staff in addressing the problem. Using the foundation of the tearing modulus concept, which had been developed under earlier NRC sponsorship, relationships were obtained which provided approximate solutions to the problem of RPV fracture with assumed beltline region flaws. The first paper of this report is a summary of the problem, the solutions, and the results of verification analyses. The details are provided in a series of appendices in Volumes I and II

  19. Safety methodology and risk targets

    International Nuclear Information System (INIS)

    Kazimi, M.S.

    1983-01-01

    In assessing the potential safety concerns of fusion, the experience from other energy sources lead to a variety of safety assessment approaches. The available approaches are: (1) The maximum possible accident approach; (2) The maximum credible accident approach; (3) The probabilistic total risk assessment. In the first approach, the mechanistic development of the events leading to the safety concern is ignored. Instead, the total radioactivity of the plant is assumed accessible to the public. Such an approach is obviously conservative and unrealistic. In the second approach a selection is made among the most severe of the possible accidents, and the progression of the accident is modeled as mechanistically as possible. In this case, the passive and active accident mitigation capabilities of the plant are taken into consideration. The result is expected to be that none or only a fraction of the total radioactivity can be released to the public. The adverse effect of this approach is to concentrate attention on a particular accident class, and perhaps not allow for other classes, a judgement that may later become undesirable. The probabilistic risk assessment requires the safety analysts to consider all classes of accidents and estimate both the probabilities of their occurrences and their consequences. Thus, the plant design in fact is subjected to a thorough investigation and the impact of alterations in design can be reflected in the total risk estimate. The disadvantage of this approach lies in the absence of well defined acceptable risk criteria as well as the large effect of public perception factors on the accepted risk. This paper will review the impact of application of these approaches in determination of the level of protection needed against activation product release to the atmosphere. (author)

  20. Big Data Risk Analysis for Rail Safety?

    OpenAIRE

    Van Gulijk, Coen; Hughes, Peter; Figueres-Esteban, Miguel; Dacre, Marcus; Harrison, Chris; HUD; RSSB

    2015-01-01

    Computer scientists believe that the enormous amounts of data in the internet will unchain a management revolution of uncanny proportions. Yet, to date, the potential benefit of this revolution is scantily investigated for safety and risk management. This paper gives a brief overview of a research programme that investigates how the new internet-driven data-revolution could benefit safety and risk management for railway safety in the UK. The paper gives a brief overview the current activities...

  1. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  2. 33 CFR 88.11 - Law enforcement vessels.

    Science.gov (United States)

    2010-07-01

    ... NAVIGATION RULES ANNEX V: PILOT RULES § 88.11 Law enforcement vessels. (a) Law enforcement vessels may display a flashing blue light when engaged in direct law enforcement or public safety activities. This... lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  3. On the Regulation of Life Safety Risk

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Vrouwenvelder, A.C.W.M.

    2015-01-01

    . Starting point is taken in a short outline of what is considered to comprise the present best practice rationale for life safety and health risk regulation. Thereafter, based on selected principal examples from different application areas, inconsistencies in present best practice risk quantification...... absolute level of individual life safety risk subject to assessment of acceptability. It is highlighted that a major cause of inconsistency in risk quantifications and comparisons originates from the fact that present regulations partly address societal activities and partly address applied technologies...

  4. Safety and security risk assessments--now demystified!

    Science.gov (United States)

    White, Donald E

    2011-01-01

    Safety/security risk assessments no longer need to spook nor baffle healthcare safety/security managers. This grid template provides at-at-glance quick lookup of the possible threats, the affected people and things, a priority ranking of these risks, and a workable solution for each risk. Using the standard document, spreadsheet, or graphics software already available on your computer, you can easily use a scientific method to produce professional looking risk assessments that get quickly understood by both senior managers and first responders alike!

  5. Resolution of the reactor vessel materials toughness safety issue; Task Action Plan A-11; Appendices C-K

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1981-09-01

    The central problem in the Unresolved Safety Issue A-11, 'Reactor Vessel Materials Toughness,' was to provide guidance in performing analyses for reactor pressure vessels (RPVs) which fail to meet the toughness requirements during service life as a result of neutron radiation embrittlement. A technical team of recognized experts was organized to assist the NRC staff in addressing the problem. Using the foundation of the tearing modulus concept, which has been developed under earlier NRC sponsorship, relationships were obtained which provided approximate solutions to the RPV fracture problem with assumed beltline region flaws. Volume I of this report is a brief presentation of the problem and the results; Volume II provides the detailed technical foundations

  6. 2011 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  7. 2013 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  8. Licensing experiences, risk assessment, demonstration test on nuclear fuel packages and design criteria for sea going vessel carrying spent fuel in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Ikeda, K.

    1978-01-01

    In Japan spent fuels from nuclear power plants shall be shipped to reprocessing plants by sea-going vessels. Atomic Energy Committee has initiated a board of experts to implement the assessment of environmental safety for sea transport. As a part of the assessment a study has been conducted by Central Research Institute of Electric Power Industry under sponsorship of Nuclear Safety Bureau, which is intended to guarantee the safety of sea transport. Nuclear Safety Bureau also has a program to carry out a long term demonstration test on spent fuel package using full scale package models. The test consists of drop, heat transfer, fire, collapse under high external pressure, immersion, shielding and subcritical test. The purpose of this test is to obtain the public acceptance and also to verify the adequacy of the safety analysis for nuclear fuel packages. In order to secure the safety of sea transport, the Ministry of Transportation has provided for the design criteria for sea-going vessel in the case of full load shipping, which aims to make minimum the probability of sinking at collision, grounding and other unforeseen accidents on the sea and also to retain the radiation exposure to crews as low as possible. The design criteria consists of the following items: (1) structural strength of vessel, (2) collision protective structure, (3) arrangement of holds, (4) stability after damage, (5) grounding protective structure, (6) cooling system, (7) tie-down equipment, (8) radiation inspection apparatus, (9) decontamination facilities, (10) emergency water flooding equipment for ship fire, (11) emergency electric sources, etc. Based on the design criteria a sea-going vessel names HINOURA-MARU has been reconstructed to transport spent fuel packages from nuclear power stations to the reprocessing plant

  9. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    Energy Technology Data Exchange (ETDEWEB)

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  10. Relocation work of temporary thermocouples for measuring the vessel cooling system in the safety demonstration test

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Shinohara, Masanori; Ono, Masato; Yanagi, Shunki; Tochio, Daisuke; Iigaki, Kazuhiko

    2012-05-01

    It is necessary to confirm that the temperature of water cooling panel of the vessel cooling system (VCS) is controlled under the allowable working temperature during the safety demonstration test because the water cooling panel temperature rises due to stop of cooling water circulation pumps. Therefore, several temporary thermocouples are relocated to the water cooling panel near the stabilizers of RPV and the side cooling panel outlet ring header of VCS in order to observe the temperature change of VCS. The relocated thermocouples can measure the temperature change with starting of the cooling water circulation pumps of VCS. So it is confirmed that the relocated thermocouples can observe the VCS temperature change in the safety demonstration test. (author)

  11. Mastery of risks and operational safety, risks and opportunities

    International Nuclear Information System (INIS)

    2004-01-01

    Creating socially useful richness is certainly the prime reason for companies to exist. Reaching this always moving target leads to seize opportunities and to take risks at the same time. For companies, risks and opportunities are two indissociable factors. Any decision making has to deal with an uncertain environment with random events of technological, economical, biological, human, environmental or natural origin. Because of the fear of uncertainty, risk acts as a brake to initiatives. In front of this problem, companies have to adopt a prevention policy based on a global and systemic approach, by identifying, evaluating, quantifying, sorting, mastering and managing unwanted events and by communicating about the way to treat them. In front of uncertainties, the operational safety, thanks to its methods and tools, supplies an incomparable contribution in the form of an help to any decision made with uncertainties. Operational safety contributes to the evaluation of costs and makes more realistic the economical estimations by taking into account the foreseeable and unforeseeable risks. The mastery of unwanted events, of their stakes and uncertainties, allows companies to carry out their projects in non-determined contexts and in a competitive environment. This colloquium concerns all socio-economical actors: industrialists, investors, decision makers, university and laboratory staffs, etc., who need a better evaluation of risks for a better mastery of their decisions in all sectors of activity. Seventeen papers of this conference, dealing with safety analysis and risk assessment at nuclear facilities and at other energy-related facilities, have been selected for Inis. (J.S.)

  12. Nuclear power plant pressure vessels. Inservice inspections

    International Nuclear Information System (INIS)

    1995-01-01

    The requirements for the planning and reporting of inservice inspections of nuclear power plant pressure vessels are presented. The guide specifically applies to inservice inspections of Safety class 1 and 2 nuclear power plant pressure vessels, piping, pumps and valves plus their supports and reactor pressure vessel internals by non- destructive examination methods (NDE). Inservice inspections according to the Pressure Vessel Degree (549/73) are discussed separately in the guide YVL 3.0. (4 refs.)

  13. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals

    International Nuclear Information System (INIS)

    2005-10-01

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The report addresses the reactor pressure vessel internals in BWRs. Maintaining the structural integrity of these reactor pressure vessel internals throughout NPP service life, in spite of several ageing mechanisms, is essential for plant safety

  14. Ensuring the quality of occupational safety risk assessment.

    Science.gov (United States)

    Pinto, Abel; Ribeiro, Rita A; Nunes, Isabel L

    2013-03-01

    In work environments, the main aim of occupational safety risk assessment (OSRA) is to improve the safety level of an installation or site by either preventing accidents and injuries or minimizing their consequences. To this end, it is of paramount importance to identify all sources of hazards and assess their potential to cause problems in the respective context. If the OSRA process is inadequate and/or not applied effectively, it results in an ineffective safety prevention program and inefficient use of resources. An appropriate OSRA is an essential component of the occupational safety risk management process in industries. In this article, we performed a survey to elicit the relative importance for identified OSRA tasks to enable an in-depth evaluation of the quality of risk assessments related to occupational safety aspects on industrial sites. The survey involved defining a questionnaire with the most important elements (tasks) for OSRA quality assessment, which was then presented to safety experts in the mining, electrical power production, transportation, and petrochemical industries. With this work, we expect to contribute to the main question of OSRA in industries: "What constitutes a good occupational safety risk assessment?" The results obtained from the questionnaire showed that experts agree with the proposed OSRA process decomposition in steps and tasks (taxonomy) and also with the importance of assigning weights to obtain knowledge about OSRA task relevance. The knowledge gained will enable us, in the near future, to build a framework to evaluate OSRA quality for industrial sites. © 2012 Society for Risk Analysis.

  15. Risk monitor - a tool for operational safety assessment risk monitor - user's manual

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Vinod, Gopika; Saraf, R.K.; Ghosh, A.K.

    2006-06-01

    Probabilistic Safety Assessment has become a key tool as on today to identify and understand Nuclear Power Plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk Monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk Monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear Power plant. Operation of Risk Monitor is based on PSA methods for assisting in day to day applications. Risk Monitoring programs can assess the risk profile and are used to optimize the operation of Nuclear Power Plants with respect to a minimum risk level over the operating time. This report presents the background activities of Risk Monitor, its application areas and the step by step procedure for the user.to interact with the software. This software can be used with the PSA model of any Nuclear Power Plant. (author)

  16. Nuclear power plant pressure vessels. Control of piping

    International Nuclear Information System (INIS)

    2000-01-01

    The guide presents requirements for the pipework of nuclear facilities in Finland. According to the section 117 of the Finnish Nuclear Energy Degree (161/88), the Radiation and Nuclear Safety Authority of Finland (STUK) controls the pressure vessels of nuclear facilities in accordance with the Nuclear Energy Act (990/87) and, to the extent applicable in accordance with the Act of Pressure Vessels (98/73) and the rules and regulations issued by the virtue of these. In addition STUK is an inspecting authority of pressure vessels of nuclear facilities in accordance with the Pressure Vessel Degree (549/1973). According to the section of the Pressure Vessel Degree, a pressure vessel is a steam boiler, pressure container, pipework of other such appliance in which the pressure is above or may come to exceed the atmospheric pressure. Guide YVL 3.0 describes in general terms how STUK controls pressure vessels. STUK controls Safety Class 1, 2 and 3 piping as well as Class EYT (non-nuclear) and their support structures in accordance with this guide and applies the provisions of the Decision of the Ministry of Trade and Industry on piping (71/1975) issued by virtue of the Pressure Vessel Decree

  17. Enhanced Maritime Safety through Diagnosis and Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2001-01-01

    Faults in steering, navigation instruments or propulsion machinery are serious on a marine vessel since the consequence could be loss of maneuvering ability, and imply risk of damage to vessel personnel or environment. Early diagnosis and accomodation of faults could enhance safety. Fault...... of properties of a falty system; means to determine remedial actions. The paper illustrates the techniques by two marine examples, sensor fusion for automatic steering and control of the main engine....

  18. Risk concepts in UK nuclear safety decision-making

    International Nuclear Information System (INIS)

    Brighton, P.W.M.

    2001-01-01

    This paper discusses the concept of risk as understood in the UK, with particular reference to the use of probabilistic safety assessment (PSA) in nuclear safety decision making. The way 'risk' appears in UK fundamental legislation means that the concept cannot be limited to evaluation of numerical probabilities of physical harm. Rather the focus is on doing all that is reasonably practicable to reduce risks: this entails applying relevant good practice and then seeking further safety measures until the money, time and trouble required are grossly disproportionate to the residual risk. PSA is used to inform rather than dictate such decisions. This approach is reinforced by considering how far any practical PSA can be said to measure risk. The behaviour of complex socio-technical systems such as nuclear power stations does not meet the conditions under which probability theory can be applied in an absolutely objective statistical sense. Risk is not an intrinsic real property of such systems. Rather PSA is a synthesis of data and subjective expert judgements, dependent on the extent of detailed knowledge of the plant. There are many other aspects of engineering judgement involved in safety decisions which cannot be so captured. (author)

  19. Risk based limits for Operational Safety Requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.

    1993-01-01

    OSR limits are designed to protect the assumptions made in the facility safety analysis in order to preserve the safety envelope during facility operation. Normally, limits are set based on ''worst case conditions'' without regard to the likelihood (frequency) of a credible event occurring. In special cases where the accident analyses are based on ''time at risk'' arguments, it may be desirable to control the time at which the facility is at risk. A methodology has been developed to use OSR limits to control the source terms and the times these source terms would be available, thus controlling the acceptable risk to a nuclear process facility. The methodology defines a new term ''gram-days''. This term represents the area under a source term (inventory) vs time curve which represents the risk to the facility. Using the concept of gram-days (normalized to one year) allows the use of an accounting scheme to control the risk under the inventory vs time curve. The methodology results in at least three OSR limits: (1) control of the maximum inventory or source term, (2) control of the maximum gram-days for the period based on a source term weighted average, and (3) control of the maximum gram-days at the individual source term levels. Basing OSR limits on risk based safety analysis is feasible, and a basis for development of risk based limits is defensible. However, monitoring inventories and the frequencies required to maintain facility operation within the safety envelope may be complex and time consuming

  20. Reducing catheter-related thrombosis using a risk reduction tool centered on catheter to vessel ratio.

    Science.gov (United States)

    Spencer, Timothy R; Mahoney, Keegan J

    2017-11-01

    In vascular access practices, the internal vessel size is considered important, and a catheter to vessel ratio (CVR) is recommended to assist clinicians in selecting the most appropriate-sized device for the vessel. In 2016, new practice recommendations stated that the CVR can increase from 33 to 45% of the vessels diameter. There has been evidence on larger diameter catheters and increased thrombosis risk in recent literature, while insufficient information established on what relationship to vessel size is appropriate for any intra-vascular device. Earlier references to clinical standards and guidelines did not clearly address vessel size in relation to the area consumed or external catheter diameter. The aim of this manuscript is to present catheter-related thrombosis evidence and develop a standardized process of ultrasound-guided vessel assessment, integrating CVR, Virchow's triad phenomenon and vessel health and preservation strategies, empowering an evidence-based approach to device placement. Through review, calculation and assessment on the areas of the 33 and 45% rule, a preliminary clinical tool was developed to assist clinicians make cognizant decisions when placing intravascular devices relating to target vessel size, focusing on potential reduction in catheter-related thrombosis. Increasing the understanding and utilization of CVRs will lead to a safer, more consistent approach to device placement, with potential thrombosis reduction strategies. The future of evidence-based data relies on the clinician to capture accurate vessel measurements and device-related outcomes. This will lead to a more dependable data pool, driving the relationship of catheter-related thrombosis and vascular assessment.

  1. The Analysis of the Causes of Emergencies on the Vessels

    Directory of Open Access Journals (Sweden)

    Alicja Mrozowska

    2017-12-01

    Full Text Available The article discusses the results of research conducted on the vessels, covering a wide spectrum of issues relating to the exploitation of vessels of various flags, as well as operating security and safety systems on board. The main aim of the study was to collect numbers of data directly from the crew, for examples: indicate by the crew marine areas with the greatest probability of occurrence of casualties and incidents, trying to the definition the causes of their occurrence, prevention actions used on board and analyses operating safety systems used on the various type of vessels. The analysis of research became the basis to identify strengths and weaknesses areas of the vessel operation. The author proposes a solution to be implemented on board and emphasizes meaning of safety management system.

  2. Safety risk management of underground engineering in China: Progress, challenges and strategies

    Directory of Open Access Journals (Sweden)

    Qihu Qian

    2016-08-01

    Full Text Available Underground construction in China is featured by large scale, high speed, long construction period, complex operation and frustrating situations regarding project safety. Various accidents have been reported from time to time, resulting in serious social impact and huge economic loss. This paper presents the main progress in the safety risk management of underground engineering in China over the last decade, i.e. (1 establishment of laws and regulations for safety risk management of underground engineering, (2 implementation of the safety risk management plan, (3 establishment of decision support system for risk management and early-warning based on information technology, and (4 strengthening the study on safety risk management, prediction and prevention. Based on the analysis of the typical accidents in China in the last decade, the new challenges in the safety risk management for underground engineering are identified as follows: (1 control of unsafe human behaviors; (2 technological innovation in safety risk management; and (3 design of safety risk management regulations. Finally, the strategies for safety risk management of underground engineering in China are proposed in six aspects, i.e. the safety risk management system and policy, law, administration, economy, education and technology.

  3. 75 FR 56015 - Vessel Inspection Alternatives

    Science.gov (United States)

    2010-09-15

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 46 CFR Part 8 Vessel Inspection Alternatives CFR... Certificate; (ii) International Tonnage Certificate; (iii) Cargo Ship Safety Construction Certificate; (iv) Cargo Ship Safety Equipment Certificate; and (v) International Oil Pollution Prevention Certificate; and...

  4. Analysis of stress in reactor core vessel under effect of pressure lose shock wave

    International Nuclear Information System (INIS)

    Li Yong; Liu Baoting

    2001-01-01

    High Temperature gas cooled Reactor (HTR-10) is a modular High Temperature gas cooled Reactor of the new generation. In order to analyze the safety characteristics of its core vessel in case of large rupture accident, the transient performance of its core vessel under the effect of pressure lose shock wave is studied, and the transient pressure difference between the two sides of the core vessel and the transient stresses in the core vessel is presented in this paper, these results can be used in the safety analysis and safety design of the core vessel of HTR-10. (author)

  5. University building safety index measurement using risk and implementation matrix

    Science.gov (United States)

    Rahman, A.; Arumsari, F.; Maryani, A.

    2018-04-01

    Many high rise building constructed in several universities in Indonesia. The high-rise building management must provide the safety planning and proper safety equipment in each part of the building. Unfortunately, most of the university in Indonesia have not been applying safety policy yet and less awareness on treating safety facilities. Several fire accidents in university showed that some significant risk should be managed by the building management. This research developed a framework for measuring the high rise building safety index in university The framework is not only assessed the risk magnitude but also designed modular building safety checklist for measuring the safety implementation level. The safety checklist has been developed for 8 types of the university rooms, i.e.: office, classroom, 4 type of laboratories, canteen, and library. University building safety index determined using risk-implementation matrix by measuring the risk magnitude and assessing the safety implementation level. Building Safety Index measurement has been applied in 4 high rise buildings in ITS Campus. The building assessment showed that the rectorate building in secure condition and chemical department building in beware condition. While the library and administration center building was in less secure condition.

  6. Efficiency and safety of bipolar vessel and tissue sealing in visceral surgery.

    Science.gov (United States)

    Overhaus, Marcus; Schaefer, Nico; Walgenbach, Klaus; Hirner, Andreas; Szyrach, Mara Natascha; Tolba, René Hany

    2012-11-01

    The aim of this study was to analyze the efficiency and safety of the bipolar tissue/vessel sealing and cutting device EnSeal(™) in comparison to the conventional clamp and ligation technique in visceral surgery. In an acute animal model, a part of the small bowel, a part of the colon and the kidneys were resected either with the conventional clamp and ligation technique or with EnSeal(™). Operation time, blood loss and blood parameters as well as the lateral thermal spread were evaluated. Small bowel, colon and kidney resection time with the EnSeal(™) device was shorter compared to the conventional clamp and ligation technique (small bowel: EnSeal(™): 4.7 ± 1.0 min vs. con: 35.1 ± 2.3 min; colon: EnSeal(™): 7.0 ± 1.4 min vs. con: 16.3 ± 1.5 min, kidney: EnSeal(™): 5.7 ± 1.3 min vs. con: 16.7 ± 3.7 min, p surgery with EnSeal(™) can be performed more efficiently in a shorter time, with significantly less blood loss, minimal thermal damage and without changes of blood parameters, indicating biological safety and integrity.

  7. EFFICIENT QUANTITATIVE RISK ASSESSMENT OF JUMP PROCESSES: IMPLICATIONS FOR FOOD SAFETY

    OpenAIRE

    Nganje, William E.

    1999-01-01

    This paper develops a dynamic framework for efficient quantitative risk assessment from the simplest general risk, combining three parameters (contamination, exposure, and dose response) in a Kataoka safety-first model and a Poisson probability representing the uncertainty effect or jump processes associated with food safety. Analysis indicates that incorporating jump processes in food safety risk assessment provides more efficient cost/risk tradeoffs. Nevertheless, increased margin of safety...

  8. Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions

    International Nuclear Information System (INIS)

    Favarò, Francesca M.; Saleh, Joseph H.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a staple in the engineering risk community, and it has become to some extent synonymous with the entire quantitative risk assessment undertaking. Limitations of PRA continue to occupy researchers, and workarounds are often proposed. After a brief review of this literature, we propose to address some of PRA's limitations by developing a novel framework and analytical tools for model-based system safety, or safety supervisory control, to guide safety interventions and support a dynamic approach to risk assessment and accident prevention. Our work shifts the emphasis from the pervading probabilistic mindset in risk assessment toward the notions of danger indices and hazard temporal contingency. The framework and tools here developed are grounded in Control Theory and make use of the state-space formalism in modeling dynamical systems. We show that the use of state variables enables the definition of metrics for accident escalation, termed hazard levels or danger indices, which measure the “proximity” of the system state to adverse events, and we illustrate the development of such indices. Monitoring of the hazard levels provides diagnostic information to support both on-line and off-line safety interventions. For example, we show how the application of the proposed tools to a rejected takeoff scenario provides new insight to support pilots’ go/no-go decisions. Furthermore, we augment the traditional state-space equations with a hazard equation and use the latter to estimate the times at which critical thresholds for the hazard level are (b)reached. This estimation process provides important prognostic information and produces a proxy for a time-to-accident metric or advance notice for an impending adverse event. The ability to estimate these two hazard coordinates, danger index and time-to-accident, offers many possibilities for informing system control strategies and improving accident prevention and risk mitigation

  9. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals: 2007 update

    International Nuclear Information System (INIS)

    2007-06-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that effective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) is one of the most important issues for plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. IAEA-TECDOC-1119 documents ageing assessment and management practices for PWR Reactor Vessel Internals (RVIs) that were current at the time of its finalization in 1997-1998. Safety significant operating events have occurred since the finalization of the TECDOC, e.g. irradiation assisted stress corrosion cracking (IASCC) of baffle-former bolts, which threatened the integrity of the vessel internals. In addition, concern of fretting wear of control rod guide tubes has been raised in Japan. These events led to new ageing management actions by both NPP operators and regulators. Therefore it was recognized that IAEA-TECDOC-1119 should be updated by incorporating those new events and their countermeasures. The objective of this report is to update relevant sections of the existing IAEA-TECDOC- 1119 in order to provide current ageing management guidance for PWR RVIs to all involved in the operation and regulation of PWRs and thus to help ensure PWR safety in IAEA Member States throughout their entire service life

  10. Influence of shock waves as a result of assumed vessel failure on parts of the plant relevant to safety

    International Nuclear Information System (INIS)

    Danisch, R.; Graubner, U.

    1981-01-01

    The shock wave induced rupture is of subordinate importance for the laying out of the parts of the plant relevant to safety. It is covered by the precautions for maximum potential earthquakes, aircraft crashes and chemical explosions. The failure of vessels in the power house (WAZUe, SPWB) as the result of a maximum potential earthquake is extremely improbable. If a combination of the stresses resulting from maximum potential earthquakes with the hypothetical stresses resulting from vessel failure is undertaken, it can be seen that the total stresses are only increased by a minimal amount, due to the quadratic averaging of less than 3%. (orig./DG) [de

  11. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  12. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  13. 2013 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  14. 2013 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  15. 2013 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  16. 2011 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  17. Nuclear station safety standardization from a risk concept

    International Nuclear Information System (INIS)

    Veksler, L.M.

    1986-01-01

    This paper presents a method of standardizing safety-system reliability on an entirely new basis: all hypothetical accidents are approximated as groups, for each of which one proposes permissible frequencies on the basis of the risk concept. In this risk concept, the ''average person'' is a person living near a nuclear station or working in it, who is of average age, average state of health, and so on. Therefore, the risk can be found by summing the estimated individual risks for a particular group in the population followed by division by the number of people in that group. Basic assumptions in deriving permissible safety-system reliability are presented. Estimated permissible failure probabilities are given to illustrate the proposed method and to refine the initial data. The probabilities may also be used to lay down the reliability requirements for safety systems in particular nuclear stations on the risk basis

  18. Applications of nuclear safety probabilistic risk assessment to nuclear security for optimized risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, S.K.; Harvey, S.B. [Amec Foster Wheeler, Toronto, Ontario (Canada)

    2016-06-15

    Critical infrastructure assets such as nuclear power generating stations are potential targets for malevolent acts. Probabilistic methodologies can be applied to evaluate the real-time security risk based upon intelligence and threat levels. By employing this approach, the application of security forces and other protective measures can be optimized. Existing probabilistic safety analysis (PSA) methodologies and tools employed. in the nuclear industry can be adapted to security applications for this purpose. Existing PSA models can also be adapted and enhanced to consider total plant risk, due to nuclear safety risks as well as security risks. By creating a Probabilistic Security Model (PSM), safety and security practitioners can maximize the safety and security of the plant while minimizing the significant costs associated with security upgrades and security forces. (author)

  19. Safety control and risk management

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1987-01-01

    The acceptable probability of major accidents in nuclear power is very small, and can not be determined from direct empirical evidence. Therefore, control of the level of safety is a complex problem. The difficulty is related to the fact that a variable, 'safety', which is not accessible to direct measurement, is to be tightly controlled. Control, therefore, depends on a systematic, analytical prediction of the target state, i.e., the level of safety, from indirect evidence. From a control theoretic point of view this means that safety is controlled by a system which includes openloop as well as closed loop control paths. The aim of the paper is to take a general systems view on the complex mechanisms involved in the control of safety of industrial installations like nuclear power. From this, the role of probabilistic risk analysis is evaluated and needs for further development discussed. (author)

  20. Risk-based rules for crane safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Stian [Section for Control Systems, DNV Maritime, 1322 Hovik (Norway)], E-mail: Stian.Ruud@dnv.com; Mikkelsen, Age [Section for Lifting Appliances, DNV Maritime, 1322 Hovik (Norway)], E-mail: Age.Mikkelsen@dnv.com

    2008-09-15

    The International Maritime Organisation (IMO) has recommended a method called formal safety assessment (FSA) for future development of rules and regulations. The FSA method has been applied in a pilot research project for development of risk-based rules and functional requirements for systems and components for offshore crane systems. This paper reports some developments in the project. A method for estimating target reliability for the risk-control options (safety functions) by means of the cost/benefit decision criterion has been developed in the project and is presented in this paper. Finally, a structure for risk-based rules is proposed and presented.

  1. Risk-based rules for crane safety systems

    International Nuclear Information System (INIS)

    Ruud, Stian; Mikkelsen, Age

    2008-01-01

    The International Maritime Organisation (IMO) has recommended a method called formal safety assessment (FSA) for future development of rules and regulations. The FSA method has been applied in a pilot research project for development of risk-based rules and functional requirements for systems and components for offshore crane systems. This paper reports some developments in the project. A method for estimating target reliability for the risk-control options (safety functions) by means of the cost/benefit decision criterion has been developed in the project and is presented in this paper. Finally, a structure for risk-based rules is proposed and presented

  2. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  3. [Post-marketing drug safety-risk management plan(RMP)].

    Science.gov (United States)

    Ezaki, Asami; Hori, Akiko

    2013-03-01

    The Guidance for Risk Management Plan(RMP)was released by the Ministry of Health, Labour and Welfare in April 2012. The RMP consists of safety specifications, pharmacovigilance plans and risk minimization action plans. In this paper, we outline post-marketing drug safety operations in PMDA and the RMP, with examples of some anticancer drugs.

  4. In-service inspection robot for PFBR main vessel- concept

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, S; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Div. of Remote Handling and Robotics

    1994-12-31

    In-service inspection (ISI) of critical components in a nuclear reactor is one of the foremost and important tasks which reveals the state of health of the system, thereby ensuring the safety of the plant, personnel and environment. Prototype Fast Breeder Reactor (PFBR) is designed as a pool type reactor. A safety vessel is provided in the design which envelopes the main reactor vessel. The ISI of the main vessel is mandatory and will be carried out by a robot which will operate on this annular gap. The design of the robot is such that it can crawl around the vessel and into the gap at the bottom of the vessel relying on friction grip. The mobile robot will carry a CCTV camera and the inspection technique packages into the interspace, position and orient these to carry out the ISI of the main vessel. The paper discusses about the design features of the robot including the gripping mechanism and the crawling sequence to perform ISI of the reactor vessel. 3 figs.

  5. In-service inspection robot for PFBR main vessel- concept

    International Nuclear Information System (INIS)

    Rajendran, S.; Ramakumar, M.S.

    1994-01-01

    In-service inspection (ISI) of critical components in a nuclear reactor is one of the foremost and important tasks which reveals the state of health of the system, thereby ensuring the safety of the plant, personnel and environment. Prototype Fast Breeder Reactor (PFBR) is designed as a pool type reactor. A safety vessel is provided in the design which envelopes the main reactor vessel. The ISI of the main vessel is mandatory and will be carried out by a robot which will operate on this annular gap. The design of the robot is such that it can crawl around the vessel and into the gap at the bottom of the vessel relying on friction grip. The mobile robot will carry a CCTV camera and the inspection technique packages into the interspace, position and orient these to carry out the ISI of the main vessel. The paper discusses about the design features of the robot including the gripping mechanism and the crawling sequence to perform ISI of the reactor vessel. 3 figs

  6. Risk, fear and public safety

    International Nuclear Information System (INIS)

    Siddall, E.

    1981-04-01

    Part 1 of the paper advocates a rational approach to public safety based on unbiassed quantitative assessment of overall risks and benefits of any technological activity. It shows that improved safety should be attainable at less cost than is the case at present. Part 2 offers an explanation of why so little has been achieved in this direction and outlines the major errors in present practices. Part 3 suggests what might realistically be done towards the achievement of some of the possible benefits. Factors which are important in the study of safety and evidence supporting the arguments are discussed in six appendices. It is urged that the scientific and technological community should improve its understanding of safety as a specialization and should endeavour to lead rather than follow in our present political system

  7. Application of probabilistic fracture mechanics to reactor pressure vessel safety assessment

    International Nuclear Information System (INIS)

    Venturini, V.; Pitner, P.

    1995-06-01

    Among all the components of a PWR (Pressurized Water Reactor) nuclear power plant, the reactor vessel is of major importance for safety. The integrity of this structure must be guaranteed in all circumstances, even in the case of the most severe accidents, and its mechanical state can be decisive for the lifetime of the plant. The brittle rupture would be the most important of all potential hazards if the irradiation effects were not consistent with predictions. The interest of having a reliable and precise method of evaluating the available safety margins and the integrity of this component led Electricite de France (EDF) to carry out a probabilistic fracture mechanics analysis. The probabilistic model developed by integration of the uncertainties in the usual fracture mechanics equations is presented. A special focus is made on the problem of coupling thermo-mechanical finite element calculations and reliability analysis. The use of a finite element code can be associated with prohibitive computation times when it is invoked numerous times during simulations sequences or complex iterative procedures. The response surface method is used. It provides an approximation of the response from a reduced number of original data. The global approach is illustrated on an example corresponding to a specific accidental transient. A validation of the obtained results is also carried out through the comparison with an equivalent model without coupling. (author)

  8. Categorization of reactor safety issues from a risk perspective

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the results of an effort to identify and rank reactor safety and risk issues identified from past Probabilistic Risk Assessments (PRAs) and other safety analyses. Because of the varied scope of these analyses, the list of issues may be incomplete. Nevertheless, those studies comprised ordered analyses to whatever their respective depths; hence, they warranted scrutiny for whatever insights they could reveal with respect to issue importance. The top-ranked issues in terms of their contribution to the uncertainty in risk are described in some detail. All of these risk issues are compared to the generic safety issues for completeness and omissions

  9. The safety assessment of radioactive material transpotation at sea

    International Nuclear Information System (INIS)

    Satoh, K.; Ozaki, S.; Watabe, N.; Fukuda, S.; Iida, T.; Miyao, S.; Noguchi, K.; Nakajima, K.

    1989-01-01

    Large quantities of low level wastes are prepared for transportation by special use vessels from each power plant to the storage facility at Rokkasho-mura in Aomori Prefecture. Large quantities of reprocessed wastes are also planned for return by similar vessels to the same place from France and the UK. In this paper the authors describe the safety assessment in hypothetical accident conditions during such mass transportation at sea. Although the possibilities of the sinking of the special use vessels as shown in figure 1 are considered to be very low on account of their double-hull structure, it is necessary to estimate the radiological risks of the transportation in order to obtain public acceptance. In this study, the following procedure is taken: (i) assumption of accident; (ii) establishment of safety assessment procedure; (iii) determination of source terms; (iv) diffusion calculation of radionuclide; (v) estimation of radiation exposure of the public

  10. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  11. Risk based maintenance to increase safety and decrease costs

    International Nuclear Information System (INIS)

    Phillips, J.H.

    2000-01-01

    Risk-Based techniques have been developed for commercial nuclear power plants for the last eight years by a team working through the ASME Center for Research and Technology Development (CRTD). System boundaries and success criteria is defined using the Probabilistic Risk Analysis or Probabilistic Safety Analysis developed to meet the Individual Plant Evaluation. Final ranking of components is by a plant expert panel similar to the one developed for the Maintenance Rule. Components are identified as being high risk-significant or low risk-significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of plants. Results from the first risk-based inspection pilot plant indicates safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. Pilot studies on risk-based testing indicate that about 60% of pumps and 25 to 30% of valves in plants are high safety-significant The reduction in inspection and testing reduces the person-rem exposure and resulting in further increases in safety. These techniques have been documented in publications by the ASME CRTD which are referenced. (author)

  12. Investigation of vessel traffic passing through the Aleutian Islands with discussion of risk factors that could lead to oil pollution

    International Nuclear Information System (INIS)

    Eley, D.

    2006-01-01

    The oil spill risks posed by marine vessels travelling the North Pacific route from North America to Asia were discussed with reference to the grounding and break-up of the bulk grain ship M/V Selendang Ayu at Unalaska Island in Alaska's Aleutian Islands. The challenge of gathering and categorizing vessel traffic data in the Aleutians was also discussed along with a review of methods for developing an accurate traffic study for this large, remote maritime region. The travelling route passes through, or lies in close proximity to large and valuable commercial fishing grounds as well as the Alaska Maritime National Wildlife Refuge. As most vessels remain in international waters, they do not report their presence to state and national authorities and are exempt from contingency planning requirements. This paper listed the factors affecting risk of damage from oil spills from marine vessels. These include the volume of oil carried; types of oil; proximity to environmentally sensitive areas; fate of spill; location of spill response equipment; number of vessels travelling through the area; time that vessels are in the area; type and age of vessels; environmental factors affecting sailing conditions; factors limiting rescue; and interaction with regulatory agencies. When considered as a whole, these factors can help in deciding the degree and type of contingency planning. In order to estimate traffic through the North Pacific route, the authors compared, combined and extrapolated information from similar datasets. The task involved 3 steps: (1) estimating the number of trans-Pacific voyages through the Aleutians, (2) estimating vessel type, and (3) estimating fuel oil carried by vessel type. It was determined that more than 2,700 ship voyages pass through the Aleutians every year, of which 50 carry a total of 800 million gallons of oil as cargo. It was noted that serious ship accidents occur so infrequently in remote areas that it was impossible to establish an accurate

  13. Failure rate data for fusion safety and risk assessment

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1993-01-01

    The Fusion Safety Program (FSP) at the Idaho National Engineering Laboratory (INEL) conducts safety research in materials, chemical reactions, safety analysis, risk assessment, and in component research and development to support existing magnetic fusion experiments and also to promote safety in the design of future experiments. One of the areas of safety research is applying probabilistic risk assessment (PRA) methods to fusion experiments. To apply PRA, we need a fusion-relevant radiological dose code and a component failure rate data base. This paper describes the FSP effort to develop a failure rate data base for fusion-specific components

  14. MIR: an in-service inspection device for Superphenix 1 vessels

    International Nuclear Information System (INIS)

    Asty, M.; Ceccato, S.; Lerat, B.; Viard, J.

    1986-06-01

    The main and safety vessels of SUPERPHENIX 1 were designed to allow in-service inspections. The remote controlled inspection device MIR was developed for this purpose. It allows both visual and ultrasonic examinations to be performed. Basically, MIR consists of a tetrahedral structure provided with four steering and traction wheels, two for each vessel. A computer assisted control system enables it to be driven to any position on either the main or safety vessels. Operating conditions are briefly reviewed and the main features of MIR presented

  15. Safety Goal, Multi-unit Risk and PSA Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joon-Eon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The safety goal is an answer of each country to the question 'How safe is safe enough?'. Table 1 shows some examples of the safety goal. However, many countries including Korea do not have the official safety goal for NPPs up to now since the establishment of safety goal is not just a technical issue but a very complex socio-technical issue. In establishing the safety goal for nuclear facilities, we have to consider various factors including not only technical aspects but also social, cultural ones. Recently, Korea is trying to establish the official safety goal. In this paper, we will review the relationship between the safety goal and Probabilistic Safety Assessment (PSA). We will also address some important technical issues to be considered in establishing the safety goal for NPPs from PSA point of view, i.e. a multi-unit risk issue and the uncertainty of PSA. In this paper, we reviewed some issues related to the safety goal and PSA. We believe that the safety goal is to be established in Korea considering the multi-unit risk. In addition, the relationship between the safety goal and PSA should be also defined clearly since PSA is the only way to answer to the question 'How safe is safe enough?'.

  16. Reactor vessel pressure transient protection for pressurized water reactors

    International Nuclear Information System (INIS)

    Zech, G.

    1978-09-01

    During the past few years the NRC has been studying the issue of protection of the reactor pressure vessels at Pressurized Water Reactors (PWRs) from transients when the vessels are at a relatively low temperature. This effort was prompted by concerns related to the safety margins available to vessel damage as a result of such events. Nuclear Reactor Regulation Category A Technical Activity No. A-26 was established to set forth the NRC plan for resolution of the generic aspects of this safety issue. The purpose of the report is to document the completion of this generic technical activity

  17. Risk and safety in the nuclear industry and conventional norms of society

    International Nuclear Information System (INIS)

    Tadmor, J.

    1977-01-01

    The societal acceptance of various risks is analyzed and rules of risk acceptance as a function of different parameters (e. g., expected benefit, intensity of effect) are spelled out. The monetary value of a human life is estimated, based on investments in safety of different human activities. The acceptable risks and safety investments in different human activities are then compared with risks and safety investments of the nuclear industry. Safety investments required to reduce radioactivity releases and risks from nuclear power stations to ALAP (as low as practiable) levels are taken as a study case. It is found that risks in the nuclear industry are several orders of magnitude lower and safety investments per human life saved are several orders of magnitude higher, as compared with risks and safety investments in other human activities

  18. Integrity of Magnox reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Flewitt, P.E.J.; Williams, G.H.; Wright, M.B.

    1992-01-01

    The background to the safety assessment of the steel reactor pressure vessels for Magnox power stations is reviewed. The evolved philosophy adopted for the 1991 safety cases prepared for the continued operation of four Magnox power stations operated by Nuclear Electric plc is described, together with different aspects of the multi-legged integrity argument. The main revisions to the materials mechanical property data are addressed together with the assessment methodology adopted and their implications for the overall integrity argument formulated for the continued safe operation of these reactor pressure vessels. (author)

  19. Applications of probabilistic risk analysis in nuclear criticality safety design

    International Nuclear Information System (INIS)

    Chang, J.K.

    1992-01-01

    Many documents have been prepared that try to define the scope of the criticality analysis and that suggest adding probabilistic risk analysis (PRA) to the deterministic safety analysis. The report of the US Department of Energy (DOE) AL 5481.1B suggested that an accident is credible if the occurrence probability is >1 x 10 -6 /yr. The draft DOE 5480 safety analysis report suggested that safety analyses should include the application of methods such as deterministic safety analysis, risk assessment, reliability engineering, common-cause failure analysis, human reliability analysis, and human factor safety analysis techniques. The US Nuclear Regulatory Commission (NRC) report NRC SG830.110 suggested that major safety analysis methods should include but not be limited to risk assessment, reliability engineering, and human factor safety analysis. All of these suggestions have recommended including PRA in the traditional criticality analysis

  20. Safety vs. reputation: risk controversies in emerging policy networks regarding school safety in the Netherlands

    NARCIS (Netherlands)

    Binkhorst, J.; Kingma, S.F.

    2012-01-01

    This article deals with risk controversies in emerging policy networks regarding school safety in the Netherlands. It offers a grounded account of the interpretations of school risks and safety measures by the various stakeholders of the policy network, in particular, schools, local government and

  1. System for cooling the upper wall of a nuclear reactor vessel

    International Nuclear Information System (INIS)

    Pailla, Henri; Schaller, Karl; Vidard, Michel.

    1974-01-01

    A system for cooling the upper wall of the main vessel of a fast neutron reactor is described. This vessel is suspended from an upper shield by the upper wall. It includes coils carrying a coolant which are immersed in an intermediate liquid bathing the wall and contained in a tank integral with the vessel. At least one of the two cooling and intermediate liquids is a liquid metal. The main vessel is contained in a safety vessel, the space between the main and safety vessels is occluded in its upper part by an insulating shield placed under the tank. There is a liquid metal seal between the upper wall and the upper shield under the tank. This system has been specially designed for sodium cooled fast neutron reactors [fr

  2. Vessel Monitoring Systems Study. Volume I - Technical Analysis.

    Science.gov (United States)

    1980-09-01

    In the Port and Tanker Safety Act of 1978 the U.S. Conress directed the Department of Transportation to performa a study on the desirability and feasibility of a shore-station system for monitoring vessels (including fishing vessels)offshore within t...

  3. Risk measures in living probabilistic safety assessment

    International Nuclear Information System (INIS)

    Holmberg, J.; Niemelae, I.

    1993-05-01

    The main objectives of the study are: to define risk measures and suggested uses of them in various living PSA applications for the operational safety management and to describe specific model features required for living PSA applications. The report is based on three case studies performed within the Nordic research project Safety Evaluation by Use of Living PSA and Safety Indicators. (48 refs., 11 figs., 17 tabs.)

  4. Risk-informed, performance-based safety-security interface

    International Nuclear Information System (INIS)

    Mrowca, B.; Eltawila, F.

    2012-01-01

    Safety-security interface is a term that is used as part of the commercial nuclear power security framework to promote coordination of the many potentially adverse interactions between plant security and plant safety. Its object is to prevent the compromise of either. It is also used to describe the concept of building security into a plant's design similar to the long standing practices used for safety therefore reducing the complexity of the operational security while maintaining or enhancing overall security. With this in mind, the concept of safety-security interface, when fully implemented, can influence a plant's design, operation and maintenance. It brings the approach use for plant security to one that is similar to that used for safety. Also, as with safety, the application of risk-informed techniques to fully implement and integrate safety and security is important. Just as designers and operators have applied these techniques to enhance and focus safety, these same techniques can be applied to security to not only enhance and focus the security but also to aid in the implementation of effective techniques to address the safety-security interfaces. Implementing this safety-security concept early within the design process can prevent or reduce security vulnerabilities through low cost solutions that often become difficult and expensive to retrofit later in the design and/or post construction period. These security considerations address many of the same issues as safety in ensuring that the response of equipment and plant personnel are adequate. That is, both safety and security are focused on reaching safe shutdown and preventing radiological release. However, the initiation of challenges and the progression of actions in response these challenges and even the definitions of safe shutdown can be considerably different. This paper explores the techniques and limitations that are employed to fully implement a risk-informed, safety-security interface

  5. 76 FR 38020 - Safety Zone; Bay Point Fireworks, Bay Point Marina; Marblehead, OH

    Science.gov (United States)

    2011-06-29

    ... environmental risk to health or risk to safety that may disproportionately affect children. Indian Tribal... Captain of the Port Detroit Zone on Lake Erie, Marblehead, Ohio. This Zone is intended to restrict vessels... interest because it would prevent the Captain of the Port Detroit from protecting the public from the...

  6. Analytical and computational methodology to assess the over pressures generated by a potential catastrophic failure of a cryogenic pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, I.; Fradera, J.; Jaskiewicz, F.; Lopez, D.; Hermosa, B.; Aleman, A.; Izquierdo, J.; Buskop, J.

    2014-07-01

    Idom has participated in the risk evaluation of Safety Important Class (SIC) structures due to over pressures generated by a catastrophic failure of a cryogenic pressure vessel at ITER plant site. The evaluation implements both analytical and computational methodologies achieving consistent and robust results. (Author)

  7. Analytical and computational methodology to assess the over pressures generated by a potential catastrophic failure of a cryogenic pressure vessel

    International Nuclear Information System (INIS)

    Zamora, I.; Fradera, J.; Jaskiewicz, F.; Lopez, D.; Hermosa, B.; Aleman, A.; Izquierdo, J.; Buskop, J.

    2014-01-01

    Idom has participated in the risk evaluation of Safety Important Class (SIC) structures due to over pressures generated by a catastrophic failure of a cryogenic pressure vessel at ITER plant site. The evaluation implements both analytical and computational methodologies achieving consistent and robust results. (Author)

  8. Safety in relation to risk and benefit

    International Nuclear Information System (INIS)

    Siddall, E.

    1985-01-01

    The proper definition and quantification of human safety is discussed and from this basis the historical development of our present very high standard of safety is traced. It is shown that increased safety is closely associated with increased wealth, and the quantitative relationship between then is derived from different sources of evidence. When this factor is applied to the production of wealth by industry, a safety benefit is indicated which exceeds the asserted risks by orders of magnitude. It is concluded that present policies and attitudes in respect to the safety of industry may be diametrically wrong. (orig.) [de

  9. Economic aspects of risk assessment in chemical safety

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, M F; Shannon, H S

    1986-05-01

    This paper considers how the economic aspects of risk assessment in chemical safety can be strengthened. Its main focus is on how economic appraisal techniques, such as cost-benefit and cost-effectiveness analysis, can be adapted to the requirements of the risk-assessment process. Following a discussion of the main methodological issues raised by the use of economic appraisal, illustrated by examples from the health and safety field, a number of practical issues are discussed. These include the consideration of the distribution of costs, effects and benefits, taking account of uncertainty, risk probabilities and public perception, making the appraisal techniques useful to the early stages of the risk-assessment process and structuring the appraisal to permit continuous feedback to the participants in the risk-assessment process. It is concluded that while the way of thinking embodied in economic appraisal is highly relevant to the consideration of choices in chemical safety, the application of these principles in formal analysis of risk reduction procedures presents a more mixed picture. The main suggestions for improvement in the analyses performed are the undertaking of sensitivity analyses of study results to changes in the key assumptions, the presentation of the distribution of costs and benefits by viewpoint, the comparison of health and safety measures in terms of their incremental cost per life-year (or quality-adjusted life-year) gained and the more frequent retrospective review and revision of the economic analyses that are undertaken.

  10. Preliminary risk assessment of the Integral Inherently-Safe Light Water Reactor

    International Nuclear Information System (INIS)

    McCarroll, Kellen R.; Lee, John C.; Manera, Annalisa; Memmott, Matthew J.; Ferroni, Paolo

    2017-01-01

    The Integral, Inherently Safe Light Water Reactor (I 2 S-LWR) concept seeks to significantly increase nuclear power plant safety. The project implements a safety-by-design philosophy, eliminating several initiating events and providing novel, passive safety systems at the conceptual phase. Pursuit of unparalleled safety employs an integrated development process linking design with deterministic and probabilistic safety analyses. Unique aspects of the I 2 S-LWR concept and design process present challenges to the probabilistic risk assessment (PRA), particularly regarding overall flexibility, auditability and resolution of results. Useful approaches to initiating events and conditional failures are presented. To exemplify the risk-informed design process using PRA, a trade-off study of two safety system configurations is presented. Although further optimization is required, preliminary results indicate that the I 2 S-LWR can achieve a core damage frequency (CDF) from internal events less than 1.01 × 10 −8 /ry, including reactor vessel ruptures. Containment bypass frequency due to primary heat exchanger rupture is found to be comparable to non-vessel rupture CDF.

  11. Comparison of Country Risk, Sustainability and Economic Safety Indices

    Directory of Open Access Journals (Sweden)

    Jelena Stankeviciene

    2014-03-01

    Full Text Available Country risk, sustainability an economic safety are becoming more important in the contemporary economic world. The aim of this paper is to present the importance of comparison formalisation of country risk, sustainability, and economic safety indices for strategic alignment. The work provides an analysis on the relationship between country risk, sustainability an economic safety in EU countries, based on statistical data. Investigations and calculations of rankings provided by Euromoney Country Risk Index, European Economic Sustainability Index as well as for Economic Security Index were made and the results of EU country ranking based on three criteria were provided. Furthermore, the data for the Baltic States was summarised and the corresponding index of consistency for random judgments was evaluated.

  12. Making the link between radiological assessment, nuclear safety assessment and environmental impact assessment, as applied to unloading of the Lepse spent fuel storage vessel

    International Nuclear Information System (INIS)

    Smith, Graham M.; Sneve, Malgorzata K.; Markarov, Valentine G.

    2000-01-01

    Planning and optimisation of radioactive waste management operations is a complicated task involving scientific, technical and social issues. There are many factors which have to be balanced, involving trade-offs such as those between safety now and long term safety; between protection of human health and protection of the environment as a whole; between protection of workers and protection of the public; and between mitigation of risks of major accidents and mitigation of routine low-level but certain to occur risks. Managing the spent fuel currently stored on the Lepse vessel in Murmansk offers as big a challenge as any other in this context. The Russian Federation state regulatory process imposes strict requirements on operators to demonstrate adequate safety, environmental and human health protection. Practically, however, there is little experience in Russia or elsewhere on how to combine all the issues referred to above within an overall assessment that leads to informed decision making. The paper will describe the components of assessment work being considered within the context of the regulatory planning of Lepse unloading operations. The scope will focus on radiation protection issues but also include non-radioactive pollution risks and other safety issues have to be taken into account if a truly optimal allocation and application of resources is to be made. Consideration will be given to radiation worker dose and other health risk assessments for routine operations, safety assessments of special operations such as spent fuel handling; and the radiological and other environmental and human health impacts of planned releases of effluents to the biosphere. The need to identify and collate particular relevant information will discussed and the links between the different components of the overall assessment will be identified with a view to improving the overall effectiveness of the assessment process. The problem of combining all the information coherently

  13. The role of risk assessment and safety analysis in integrated safety assessments

    International Nuclear Information System (INIS)

    Niall, R.; Hunt, M.; Wierman, T.E.

    1990-01-01

    To ensure that the design and operation of both nuclear and non- nuclear hazardous facilities is acceptable, and meets all societal safety expectations, a rigorous deterministic and probabilistic assessment is necessary. An approach is introduced, founded on the concept of an ''Integrated Safety Assessment.'' It merges the commonly performed safety and risk analyses and uses them in concert to provide decision makers with the necessary depth of understanding to achieve ''adequacy.'' 3 refs., 1 fig

  14. Risk and safety in the nuclear industry and conventional norms of society

    International Nuclear Information System (INIS)

    Tadmor, J.

    In the present study the societal acceptance of various risks is analyzed and rules of risk acceptance as a function of different parameters are spelled out. The monetary value of a human life is estimated, based on investments in safety of different human activities. The acceptable risks and safety investments in different human activities are then compared with risks and safety investments of the nuclear industry. Safety investments required to reduce the radioactivity releases and risks from nuclear power stations to ALAP levels are taken as a study case. It is found that risks in the nuclear industry are several orders of magnitude lower and safety investments per human life saved are several orders of magnitude higher, as compared with risks and safety investments in other human activities. It is also shown that the incremental safety investments needed to further reduce the radiation doses in the environment during normal and continuous operation of nuclear plants are extravagantly high as compared to safety investments in other human activities and in other facets of human life. Considering that there is a limit to the economic means available, societal expenditures for reducing risks should by spread, as much as possible, over all human activities to get the maximum return from investments. (B.G.)

  15. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION

    International Nuclear Information System (INIS)

    Dinh, Nam; Szilard, Ronaldo

    2009-01-01

    The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system's 'loading' and its 'capacity', plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons

  16. Long-Term Marine Traffic Monitoring for Environmental Safety in the Aegean Sea

    Science.gov (United States)

    Giannakopoulos, T.; Gyftakis, S.; Charou, E.; Perantonis, S.; Nivolianitou, Z.; Koromila, I.; Makrygiorgos, A.

    2015-04-01

    The Aegean Sea is characterized by an extremely high marine safety risk, mainly due to the significant increase of the traffic of tankers from and to the Black Sea that pass through narrow straits formed by the 1600 Greek islands. Reducing the risk of a ship accident is therefore vital to all socio-economic and environmental sectors. This paper presents an online long-term marine traffic monitoring work-flow that focuses on extracting aggregated vessel risks using spatiotemporal analysis of multilayer information: vessel trajectories, vessel data, meteorological data, bathymetric / hydrographic data as well as information regarding environmentally important areas (e.g. protected high-risk areas, etc.). A web interface that enables user-friendly spatiotemporal queries is implemented at the frontend, while a series of data mining functionalities extracts aggregated statistics regarding: (a) marine risks and accident probabilities for particular areas (b) trajectories clustering information (c) general marine statistics (cargo types, etc.) and (d) correlation between spatial environmental importance and marine traffic risk. Towards this end, a set of data clustering and probabilistic graphical modelling techniques has been adopted.

  17. Aspects of the state safety regulation dealing with management of radioactive wastes from nuclear vessels

    International Nuclear Information System (INIS)

    Markarov, Valentin G.

    1999-01-01

    According to this presentation, the Constitution of the Russian Federation states that nuclear power engineering and fissile materials are under the jurisdiction of the Russian Federation. But there is no federal law with detailed directions for radioactive waste (RW) management, which thus comes under the Federal law ''On Use of Atomic Energy''. This law defines the legal basis and principles of regulating the relations occurring during RW management and sets some general requirements. RW management safety is regulated by the federal norms and rules (1) Radiation Safety Norms (NRB-96), Basic Sanitary Rules (OSP-72, 87) and (3) Sanitary Rules for RW Management (SPORO-85), etc. A number of normative documents on RW management will be put in force in 1999. For work in the field of RW management, licence must in general be obtained from Gozatomnazdor of Russia. The conditions for receiving a license for the management of RW from vessels are presented

  18. 2013 West Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  19. 2011 West Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  20. 2013 Great Lakes Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  1. 2011 East Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  2. 2011 Great Lakes Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  3. Considerations on the manner to account for fast fracture risk in the design of PWR vessels

    International Nuclear Information System (INIS)

    Pellisier-Tanon, A.; Grandemange, J.M.

    1985-08-01

    The way followed in France for analyzing fast fracture resistance of PWR primary components is the one of a deterministic analysis with safety coefficients imposed in the fracture criteria. The study of margins towards fast fracture of the 900 MWe program vessels undertaken in 1982 includes parametric evaluations of the influence of essential variables. It has stimulated further thoughts on the level of safety to fix in the analysis methodology, on the orientations for the choice of safety factors and on the manner to introduce them in the analysis. A first chapter tries to characterize the French approach in comparison to those of other countries. A second chapter examines the manner according to which safety factors can be introduced in the deterministic analysis. It presents the principle for a logical approach accounting for the interdependency of all factors and variables. It establishes criteria for the selection of defect kind and size for the computation

  4. Demonstration of Risk Profiling for promoting safety in SME´s

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten; Duijm, Nijs Jan; Troen, Hanne

    2011-01-01

    Purpose – The purpose of this paper is to identify and assess the risks and potential risks that may lead to accidents. It aims to look at how to improve risk assessment within SMEs for the benefit of all staff. Design/methodology/approach – The research included results from a Dutch project which...... identifies accident risks and safety barriers that are presented in a huge database and risk calculator. The method was first to develop a simple way of accessing this enormous amount of data, second, to develop a tool to observe risks and safety barriers in SMEs and to investigate the usefulness...... of the developed tools in real life, third, to collect data on risks and safety barriers in SMEs for two occupations by following 20 people for three days each and to create a risk profile for each occupations. Findings – The result is a simple way to go through all types of risks for accidents – a tool for risk...

  5. Atomic risk insurance. Risk policy, safety production and expertise in Germany and the USA 1945 - 1986

    International Nuclear Information System (INIS)

    Wehner, Christoph

    2017-01-01

    The book covers the following chapters: (I) Between threat and promise: Political change and the corporate perception, the burden of the atomic bomb, promise of nuclear energy risk criticism in the pre-ecological phase, nuclear risk as investment restraint; (II) Risk policy at the insurability limit: hazard knowledge, safety production and insurance expertise in the German nuclear policy (1955-1962); (III) Risk policy beyond the catastrophe, insurability interpretation, concepts and conflicts (1957-1968); (IV) Scandalization of risk policy: safety production, confidence and expertise in the nuclear controversial debate (1969 - 1979); (V) Nuclear risk policy and the challenge of the ''risk society'' (1975-1986); (VI) From safety production to hazard probe: atomic energy And the change of insurance.

  6. Safety significance of ATR passive safety response attributes

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1990-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory was designed with some passive safety response attributes which contribute to the safety of the facility. The three passive safety attributes being evaluated in the paper are: 1) In-core and in-vessel natural convection cooling, 2) a passive heat sink capability of the ATR primary coolant system (PCS) for the transfer of decay power from the uninsulated piping to the confinement, and 3) gravity feed of emergency coolant makeup. The safety significance of the ATR passive safety response attributes is that the reactor can passively respond to most transients, given a reactor scram, to provide adequate decay power removal and a significant time for operator action should the normal active heat removal systems and their backup systems both fail. The ATR Interim Level 1 Probabilistic Risk Assessment (PRA) models and results were used to evaluate the significance to ATR fuel damage frequency (or probability) of the above three passive response attributes. The results of the evaluation indicate that the first attribute is a major safety characteristic of the ATR. The second attribute has a noticeable but only minor safety significance. The third attribute has no significant influence on the ATR firewater injection system (emergency coolant system)

  7. The influence of fire exposure on austenitic stainless steel for pressure vessel fitness-for-service assessment: Experimental research

    Science.gov (United States)

    Li, Bo; Shu, Wenhua; Zuo, Yantian

    2017-04-01

    The austenitic stainless steels are widely applied to pressure vessel manufacturing. The fire accident risk exists in almost all the industrial chemical plants. It is necessary to make safety evaluation on the chemical equipment including pressure vessels after fire. Therefore, the present research was conducted on the influences of fire exposure testing under different thermal conditions on the mechanical performance evolution of S30408 austenitic stainless steel for pressure vessel equipment. The metallurgical analysis described typical appearances in micro-structure observed in the material suffered by fire exposure. Moreover, the quantitative degradation of mechanical properties was investigated. The material thermal degradation mechanism and fitness-for-service assessment process of fire damage were further discussed.

  8. Online Monitoring of Composite Overwrapped Pressure Vessels (COPV)

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Figueiredo, Joana; Faria, Hugo

    2015-01-01

    product development, design and optimization, as well as to minimize the risks and improve the public acceptance. Within the scope of developing different COPV models for a wide range of operating pressures and applications, optical fiber Bragg grating (FBG) sensors were embedded in the liner......Composite overwrapped pressure vessels (COPV) have been increasingly pointed to as the most effective solution for high pressure storage of liquid and gaseous fluids. Reasonably high stiffness-to-weight ratios make them suitable for both static and mobile applications. However, higher operating...... pressures are sought continuously, to get higher energy densities in such storage systems, and safety aspects become critical. Thus, reliable design and test procedures are required to reduce the risks of undesired and unpredicted failures. An in-service health monitoring system may contribute to a better...

  9. RiskSOAP: Introducing and applying a methodology of risk self-awareness in road tunnel safety.

    Science.gov (United States)

    Chatzimichailidou, Maria Mikela; Dokas, Ioannis M

    2016-05-01

    Complex socio-technical systems, such as road tunnels, can be designed and developed with more or less elements that can either positively or negatively affect the capability of their agents to recognise imminent threats or vulnerabilities that possibly lead to accidents. This capability is called risk Situation Awareness (SA) provision. Having as a motive the introduction of better tools for designing and developing systems that are self-aware of their vulnerabilities and react to prevent accidents and losses, this paper introduces the Risk Situation Awareness Provision (RiskSOAP) methodology to the field of road tunnel safety, as a means to measure this capability in this kind of systems. The main objective is to test the soundness and the applicability of RiskSOAP to infrastructure, which is advanced in terms of technology, human integration, and minimum number of safety requirements imposed by international bodies. RiskSOAP is applied to a specific road tunnel in Greece and the accompanying indicator is calculated twice, once for the tunnel design as defined by updated European safety standards and once for the 'as-is' tunnel composition, which complies with the necessary safety requirements, but calls for enhancing safety according to what EU and PIARC further suggest. The derived values indicate the extent to which each tunnel version is capable of comprehending its threats and vulnerabilities based on its elements. The former tunnel version seems to be more enhanced both in terms of it risk awareness capability and safety as well. Another interesting finding is that despite the advanced tunnel safety specifications, there is still room for enriching the safe design and maintenance of the road tunnel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Integrating risk management and safety culture in a framework for risk informed decision making

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2009-01-01

    Operators and regulators of nuclear power plants agree on the importance of maintaining safety and controlling accident risks. Effective safety and risk management requires treatment of both technical and organizational components. Probabilistic Risk Assessment (PRA) provides tools for technical risk management. However, organizational factors are not treated in PRA, but are addressed using different approaches. To bring both components together, a framework of Risk Informed Decision Making (RIDM) is needed. The objective tree structure of the International Atomic Energy Agency (IAEA) is a promising approach to combine both elements. Effective collaboration involving regulatory and industry groups is needed to accomplish the integration. (author)

  11. Proposal of Ex-Vessel dosimetry for pressure vessel Atucha II

    International Nuclear Information System (INIS)

    Chiaraviglio, N.; Bazzana, S.

    2013-01-01

    Nuclear reactor dosimetry has the purpose of guarantee that changes in material mechanical properties of critical materials do not compromise the reactor safety. In PWR in which the top of the reactor vessel is open once a year, is possible to use Charpy specimens to measure the change in mechanical properties. Atucha II nuclear power plant is a reactor with on-line refueling so there is no access to the inside of the pressure vessel. Because of this, ex-vessel dosimetry must be performed and mechanical properties changes must be inferred from radiation damage estimations. This damage can be calculated using displacement per atom cross sections and a transport code such as MCNP. To increase results reliability it is proposed to make a neutron spectrum unfolding using activation dosimeters irradiated during one operation cycle of the power plant. In this work we present a dosimetry proposal for such end, made in base of unfolding procedures and experimental background. (author) [es

  12. Proposal for the improvement of IRD safety culture based on risk analysis

    International Nuclear Information System (INIS)

    Aguiar, L.A.; Ferreira, P.R.R.; Silveira, C.S.

    2017-01-01

    The Safety Culture (SC) is a concept about the relationship of individuals and organizations towards the safety in a specific activity. Any organization that carries out activities with risks has a SC, even at minimum levels. People perceive different types of radiation risks in very different ways, therefore, to identify and to analysis of the possible radiation risks resulting from normal operation or accident conditions is an important issue in order to improve the SC in organization. The main is to present guidelines for the improvement of the safety culture in the Institute of Radiation Protection and Dosimetry - IRD through on risk-based approach. The methodology proposed here is: A) select a division of the IRD for case study; B) assess the level of the 10 culture safety basic elements of the IRD division selected; C) conduct a survey of the hazards and risks associated with the various activities developed by the division; D) reassess the level of the 10 basic elements of CS; And E) analyze the results and correlate the impact of risk knowledge on safety culture improvement. The expected result is improvement the safety and of safety culture by understanding of radiation risks and hazards relating to work and to the working environment; and thus enforce a collective commitment to safety by teams and individuals and raise the safety culture to higher levels. (author)

  13. Proposal for the improvement of IRD safety culture based on risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L.A.; Ferreira, P.R.R. [Instituto de Radioproteção e Dosimetria (DIRAD/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silveira, C.S., E-mail: laguiar@ird.gov.br [Comissão Nacional de Energia Nuclear (DRS/CGMI/CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The Safety Culture (SC) is a concept about the relationship of individuals and organizations towards the safety in a specific activity. Any organization that carries out activities with risks has a SC, even at minimum levels. People perceive different types of radiation risks in very different ways, therefore, to identify and to analysis of the possible radiation risks resulting from normal operation or accident conditions is an important issue in order to improve the SC in organization. The main is to present guidelines for the improvement of the safety culture in the Institute of Radiation Protection and Dosimetry - IRD through on risk-based approach. The methodology proposed here is: A) select a division of the IRD for case study; B) assess the level of the 10 culture safety basic elements of the IRD division selected; C) conduct a survey of the hazards and risks associated with the various activities developed by the division; D) reassess the level of the 10 basic elements of CS; And E) analyze the results and correlate the impact of risk knowledge on safety culture improvement. The expected result is improvement the safety and of safety culture by understanding of radiation risks and hazards relating to work and to the working environment; and thus enforce a collective commitment to safety by teams and individuals and raise the safety culture to higher levels. (author)

  14. Discussion on the safety production risk managmeent of uranium mines

    International Nuclear Information System (INIS)

    Liu Bin; Luo Yun; Hu Penghua; Zhu Disi

    2009-01-01

    Based on the modern safety risk management theories and according to the actual situation, risk management for work safety in uranium mines is discussed from three aspects: risk identification,risk analysis and evaluation, and risk control. Referring to the '4M(Men,Machine,Medium,Management) factors' and 'Three types of hazards' theory, the classification of uranium mine accidents and risk factors are analyzed. In addition, the types and evaluation indexes of major risks of uranium mines as well as the 'spot, line, area' model of risk identification and analysis and the 'hierarchical' risk control mechanism are also studied. (authors)

  15. Therapeutic risk management of the suicidal patient: safety planning.

    Science.gov (United States)

    Matarazzo, Bridget B; Homaifar, Beeta Y; Wortzel, Hal S

    2014-05-01

    This column is the fourth in a series describing a model for therapeutic risk management of the suicidal patient. Previous columns presented an overview of the therapeutic risk management model, provided recommendations for how to augment risk assessment using structured assessments, and discussed the importance of risk stratification in terms of both severity and temporality. This final column in the series discusses the safety planning intervention as a critical component of therapeutic risk management of suicide risk. We first present concerns related to the relatively common practice of using no-suicide contracts to manage risk. We then present the safety planning intervention as an alternative approach and provide recommendations for how to use this innovative strategy to therapeutically mitigate risk in the suicidal patient.

  16. Risk assessment of safety data link and network communication in digital safety feature control system of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Son, Kwang Seop; Jung, Wondea; Kang, Hyun Gook

    2017-01-01

    Highlights: • Safety data communication risk assessment framework and quantitative scheme were proposed. • Fault-tree model of ESFAS unavailability due to safety data communication failure was developed. • Safety data link and network risk were assessed based on various ESF-CCS design specifications. • The effect of fault-tolerant algorithm reliability of safety data network on ESFAS unavailability was assessed. - Abstract: As one of the safety-critical systems in nuclear power plants (NPPs), the Engineered Safety Feature-Component Control System (ESF-CCS) employs safety data link and network communication for the transmission of safety component actuation signals from the group controllers to loop controllers to effectively accommodate various safety-critical field controllers. Since data communication failure risk in the ESF-CCS has yet to be fully quantified, the ESF-CCS employing data communication systems have not been applied in NPPs. This study therefore developed a fault tree model to assess the data link and data network failure-induced unavailability of a system function used to generate an automated control signal for accident mitigation equipment. The current aim is to provide risk information regarding data communication failure in a digital safety feature control system in consideration of interconnection between controllers and the fault-tolerant algorithm implemented in the target system. Based on the developed fault tree model, case studies were performed to quantitatively assess the unavailability of ESF-CCS signal generation due to data link and network failure and its risk effect on safety signal generation failure. This study is expected to provide insight into the risk assessment of safety-critical data communication in a digitalized NPP instrumentation and control system.

  17. Nuclear safety risk control in the outage of CANDU unit

    International Nuclear Information System (INIS)

    Wu Mingliang; Zheng Jianhua

    2014-01-01

    Nuclear fuel remains in the core during the outage of CANDU unit, but there are still nuclear safety risks such as reactor accidental criticality, fuel element failure due to inability to properly remove residual heat. Furthermore, these risks are aggravated by the weakening plant system configuration and multiple cross operations during the outage. This paper analyzes the phases where there are potential nuclear safety risks on the basis of the typical critical path arrangement of the outage of Qinshan NPP 3 and introduces a series of CANDU-specific risk control measures taken during the past plant outages to ensure nuclear safety during the unit outage. (authors)

  18. Analyses for passive safety of fusion reactor during ex-vessel loss of coolant accident

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Maki, Koichi; Uda, Tatuhiko; Seki, Yasushi; Aoki, Isao; Kunugi, Tomoaki.

    1995-01-01

    Passive safety of nuclear fusion reactors during ex-vessel Loss-of-Coolant Accidents (LOCAs) in the divertor cooling system has been investigated using a hybrid code, which can treat the interaction of the plasma and plasma facing components (PFCs). The code has been modified to include the impurity emission from PFCs with a diffusion model at the edge plasma. We assumed an ex-vessel LOCA of the divertor cooling system during the ignited operation in International Thermonuclear Experimental Reactor (ITER), in which a carbon-copper brazed divertor plate was employed in the Conceptual Design Activity (CDA). When a double-ended break occurs at the cold leg of the divertor cooling system, the impurity density in the main plasma becomes about twice within 2s after the LOCA due to radiation enhanced sublimation of graphite PFCs. The copper cooling tube of the divertor begins to melt at about 3s after the LOCA, even though the plasma is passively shut down at about 4s due to the impurity accumulation. It is necessary to apply other PFC materials, which can shorten the time period for passive shutdown, or an active shutdown system to keep the reactor structures intact for such rapid transient accident. (author)

  19. Occupational safety and health management and risk governance

    NARCIS (Netherlands)

    Dijkman, A.; Terwoert, J.

    2014-01-01

    The advancement in new technologies, substances and new ways of working make it necessary to look beyond traditional methods of risk management. General drivers to emerging occupational safety and health (OSH) risks are: globalisation; demographic changes; technical innovations; changes in risk

  20. Understanding Risk Tolerance and Building an Effective Safety Culture

    Science.gov (United States)

    Loyd, David

    2018-01-01

    Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.

  1. Estimating and controlling workplace risk: an approach for occupational hygiene and safety professionals.

    Science.gov (United States)

    Toffel, Michael W; Birkner, Lawrence R

    2002-07-01

    The protection of people and physical assets is the objective of health and safety professionals and is accomplished through the paradigm of anticipation, recognition, evaluation, and control of risks in the occupational environment. Risk assessment concepts are not only used by health and safety professionals, but also by business and financial planners. Since meeting health and safety objectives requires financial resources provided by business and governmental managers, the hypothesis addressed here is that health and safety risk decisions should be made with probabilistic processes used in financial decision-making and which are familiar and recognizable to business and government planners and managers. This article develops the processes and demonstrates the use of incident probabilities, historic outcome information, and incremental impact analysis to estimate risk of multiple alternatives in the chemical process industry. It also analyzes how the ethical aspects of decision-making can be addressed in formulating health and safety risk management plans. It is concluded that certain, easily understood, and applied probabilistic risk assessment methods used by business and government to assess financial and outcome risk have applicability to improving workplace health and safety in three ways: 1) by linking the business and health and safety risk assessment processes to securing resources, 2) by providing an additional set of tools for health and safety risk assessment, and 3) by requiring the risk assessor to consider multiple risk management alternatives.

  2. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Dinh, T.N. [Royal Institute of Technology (Sweden)

    2007-04-15

    The report summarizes activities conducted at the Division of Nuclear Power Safety, Royal Institute of Technology-Sweden (KTH-NPS) within the ExCoolSe project during the year 2005, which is a transition year for the KTH-NPS program. The ExCoolSe project supported by NKS contributes to the severe accident research at KTH-NPS concurrently supported by APRI, HSK and EU SARNET. The main objective in ExCoolSe project is to scrutinize research on risk-significant safety issues related to severe accident management (SAM) strategy adopted for Nordic BWR plants, namely the Ex-vessel Coolability and Energetic Steam explosion. The work aims to pave way toward building a tangible research framework to tackle these long-standing safety issues. Chapter 1 describes the project objectives and work description. Chapter 2 provides a critical assessment of research results obtained from several past programs at KTH. This includes review of key data, insights and implications from POMECO (Porous Media Coolability) program, COMECO (Corium Melt Coolability) program, SIMECO (Study of In-Vessel Melt Coolability) program, and MISTEE (Micro-Interactions in Steam Explosion Experiments) program. Chapter 3 discusses the rationale of the new research program focusing on the SAM issue resolution. The program emphasizes identification and qualification of physics-based limiting mechanisms for both in-vessel phenomena (melt progression and debris coolability in the lower head, vessel failure), and ex-vessel phenomena. Chapter 4 introduces research results from the newly established DEFOR (Debris Formation) program and the ongoing MISTEE program. The focus of DEFOR is fulfill an apparent gap in the contemporary knowledge of severe accidents, namely mechanisms which govern the debris bed formation and bed characteristics. The later control the debris bed coolability. In the MISTEE program, methods for image synchronization and data processing were developed and tested, which enable processing of

  3. Ex-vessel coolability and energetics of steam explosions in nordic light water reactors

    International Nuclear Information System (INIS)

    Park, H.S.; Dinh, T.N.

    2007-04-01

    The report summarizes activities conducted at the Division of Nuclear Power Safety, Royal Institute of Technology-Sweden (KTH-NPS) within the ExCoolSe project during the year 2005, which is a transition year for the KTH-NPS program. The ExCoolSe project supported by NKS contributes to the severe accident research at KTH-NPS concurrently supported by APRI, HSK and EU SARNET. The main objective in ExCoolSe project is to scrutinize research on risk-significant safety issues related to severe accident management (SAM) strategy adopted for Nordic BWR plants, namely the Ex-vessel Coolability and Energetic Steam explosion. The work aims to pave way toward building a tangible research framework to tackle these long-standing safety issues. Chapter 1 describes the project objectives and work description. Chapter 2 provides a critical assessment of research results obtained from several past programs at KTH. This includes review of key data, insights and implications from POMECO (Porous Media Coolability) program, COMECO (Corium Melt Coolability) program, SIMECO (Study of In-Vessel Melt Coolability) program, and MISTEE (Micro-Interactions in Steam Explosion Experiments) program. Chapter 3 discusses the rationale of the new research program focusing on the SAM issue resolution. The program emphasizes identification and qualification of physics-based limiting mechanisms for both in-vessel phenomena (melt progression and debris coolability in the lower head, vessel failure), and ex-vessel phenomena. Chapter 4 introduces research results from the newly established DEFOR (Debris Formation) program and the ongoing MISTEE program. The focus of DEFOR is fulfill an apparent gap in the contemporary knowledge of severe accidents, namely mechanisms which govern the debris bed formation and bed characteristics. The later control the debris bed coolability. In the MISTEE program, methods for image synchronization and data processing were developed and tested, which enable processing of

  4. 18F-fluoroethylcholine uptake in arterial vessel walls and cardiovascular risk factors. Correlation in a PET-CT study

    International Nuclear Information System (INIS)

    Foerster, Stefan; Rominger, A.; Cumming, P.; Bartenstein, P.; Hacker, M.; Saam, T.; Nikolaou, K.; Reiser, M.F.; Wolpers, S.; Univ. Muenchen

    2010-01-01

    Fluorine-labelled choline derivatives were recently suggested as agents for visualizing vulnerable atherosclerotic plaques. We therefore aimed to evaluate the association between 18 F-fluorethylcholine (FEC) uptake in the wall of large arteries, where calcification was also measured, with the presence of cardiovascular risk factors and occurrence of prior cardiovascular events. Detailed clinical information, including common cardiovascular risk factors, was obtained retrospectively in 60 prostate cancer patients examined with whole-body FEC PET-CT. In each patient, we calculated the mean blood pool-corrected SUV, as well as the mean target-to-background ratio (TBR), in addition to the sum of calcified plaques (CP sum ) from six major vessels: ascending and descending aorta, aortic arch, abdominal aorta, and both iliac arteries. As reported previously, the CP sum correlated significantly with cardiovascular risk factors, in contrast to mean SUV or TBR scores, which did not show any significance with the presence of cardiovascular risk factors. There was no correlation between CP sum , mean TBR or SUV, nor was there any significant association of CP sum , mean TBR or SUV with the prior occurrence of cardio- or cerebrovascular events. Contrary to a recent report, we found in our rather large cohort of elderly prostate cancer patients no significant association between FEC uptake in large vessels and atherosclerotic plaque burden, or the presence of cardiovascular risk factors. In line with prior reports on structural changes in vessels, increased calcified atherosclerotic plaque burden was strongly associated with the occurrence of common cardiovascular risk factors. (orig.)

  5. Contribution of materials investigations and operating experience of reactor vessel internals to PWRs' safety, performance and reliability

    International Nuclear Information System (INIS)

    Lemaire, E.; Monteil, N.; Jardin, N.; Doll, M.

    2015-01-01

    The Reactor Pressure Vessel Internals (RVI) include all the components inside the pressure vessel, except the nuclear fuel, the rod cluster assemblies and the instrumentation. The RVI consist of bolted and welded structures that are divided into two sub-assemblies: the upper internals which are removed at every refueling outage and the lower internals which are systematically removed for inspection at every 10-year outage. The main functions of the RVI are to position the core, to support it, and to provide a coolant flow by channeling the fluid. Moreover, the lower internals contribute to a neutron protection of the reactor pressure vessel by absorbing most of the neutron flux from the core. Depending on their location and material composition, the RVI components can face different ageing phenomena, that are actual or potential (such as wear, fatigue, stress corrosion cracking, irradiation assisted stress corrosion cracking, hardening and loss of ductility due to neutron irradiation, irradiation creep and irradiation swelling). EDF has developed a strategy for managing ageing and demonstrating the capacity of the RVI to perform their design functions over 40 years of operation. This overall approach is periodically revisited to take into account the most recent knowledge obtained from the following main topics: Safety Analyses, Research-Development programs, In-Service Inspection (ISI) results, Maintenance programs and Metallurgical Examinations. Based on continuous improvements in those fields, the goal of this paper is to present the way that materials investigations and operating experience obtained on RVI are managed by EDF to improve RVI safety, performance and reliability. It is shown that a perspective of 60 years of operation of RVI components is supported by large Research-Development efforts combined with field experience. (authors)

  6. Nuclear safety: risks and regulation

    International Nuclear Information System (INIS)

    Wood, W.C.

    1983-01-01

    Taking a fresh look at nuclear safety regulations, this study finds that the mandate and organization of the Nuclear Regulatory Commission (NRC) militate against its making sound decisions. The author criticizes failures to make hard decisions on societal risk, to clarify responsibility, and to implement cost-effective safety measures. Among his recommendations are reorganization of the NRC under a single authoritative administrator, separation of technical issues from social ones, and reform of the Price-Anderson Act. The author concludes that the worst eventuality would be to continue the current state of indecision. 161 references, 6 figures, 4 tables

  7. Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.

    Science.gov (United States)

    Nielsen, Morten Birkeland; Mearns, Kathryn; Matthiesen, Stig Berge; Eid, Jarle

    2011-10-01

    Using the Job Demands-Resources model (JD-R) as a theoretical framework, this study investigated the relationship between risk perception as a job demand and psychological safety climate as a job resource with regard to job satisfaction in safety critical organizations. In line with the JD-R model, it was hypothesized that high levels of risk perception is related to low job satisfaction and that a positive perception of safety climate is related to high job satisfaction. In addition, it was hypothesized that safety climate moderates the relationship between risk perception and job satisfaction. Using a sample of Norwegian offshore workers (N = 986), all three hypotheses were supported. In summary, workers who perceived high levels of risk reported lower levels of job satisfaction, whereas this effect diminished when workers perceived their safety climate as positive. Follow-up analyses revealed that this interaction was dependent on the type of risks in question. The results of this study supports the JD-R model, and provides further evidence for relationships between safety-related concepts and work-related outcomes indicating that organizations should not only develop and implement sound safety procedures to reduce the effects of risks and hazards on workers, but can also enhance other areas of organizational life through a focus on safety. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  8. Risk management for industrial safety

    International Nuclear Information System (INIS)

    Novogno, A.

    1989-01-01

    The catastrophic accidents which have occurred in the last decade, in both developed and developing countries, have drawn the attention of decision-makers in the safety area to the urgent necessity to assess and manage risks from hazardous industrial activities which are concentrated in large industrialized areas. The aim of this paper is to review experience gained in conducting studies in the area of 'comparisons of risks in energy systems' and on the practical application of 'cost effectiveness of risk reduction analysis among different energy systems' (case studies). It is also the aim of the paper to discuss and propose a general framework for defining an 'integrated approach' to risk assessment and management in highly industrialized regions within a country. (author)

  9. Physicians' and nurses' perceptions of patient safety risks in the emergency department.

    Science.gov (United States)

    Källberg, Ann-Sofie; Ehrenberg, Anna; Florin, Jan; Östergren, Jan; Göransson, Katarina E

    2017-07-01

    The emergency department has been described as a high-risk area for errors. It is also known that working conditions such as a high workload and shortage off staff in the healthcare field are common factors that negatively affect patient safety. A limited amount of research has been conducted with regard to patient safety in Swedish emergency departments. Additionally, there is a lack of knowledge about clinicians' perceptions of patient safety risks. Therefore, the purpose of this study was to describe emergency department clinicians' experiences with regard to patient safety risks. Semi-structured interviews were conducted with 10 physicians and 10 registered nurses from two emergency departments. Interviews were analysed by inductive content analysis. The experiences reflect the complexities involved in the daily operation of a professional practice, and the perception of risks due to a high workload, lack of control, communication and organizational failures. The results reflect a complex system in which high workload was perceived as a risk for patient safety and that, in a combination with other risks, was thought to further jeopardize patient safety. Emergency department staff should be involved in the development of patient safety procedures in order to increase knowledge regarding risk factors as well as identify strategies which can facilitate the maintenance of patient safety during periods in which the workload is high. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Managing risk in healthcare: understanding your safety culture using the Manchester Patient Safety Framework (MaPSaF).

    Science.gov (United States)

    Parker, Dianne

    2009-03-01

    To provide sufficient information about the Manchester Patient Safety Framework (MaPSaF) to allow healthcare professionals to assess its potential usefulness. The assessment of safety culture is an important aspect of risk management, and one in which there is increasing interest among healthcare organizations. Manchester Patient Safety Framework offers a theory-based framework for assessing safety culture, designed specifically for use in the NHS. The framework covers multiple dimensions of safety culture, and five levels of safety culture development. This allows the generation of a profile of an organization's safety culture in terms of areas of relative strength and challenge, which can be used to identify focus issues for change and improvement. Manchester Patient Safety Framework provides a useful method for engaging healthcare professionals in assessing and improving the safety culture in their organization, as part of a programme of risk management.

  11. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hoon; Chang, Soon Heung; Kim, Soo Hyung; Kim, Kee Poong; Lee, Hyoung Wook; Jang, Kwang Keol; Jeong, Yong Hoon; Kim, Sang Jin; Lee, Seong Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Park, Jae Hong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2001-03-15

    In this work, assessment system for methodology for reactor pressure vessel integrity is developed. Assessment system is make up of severe accident assessment code which can calculate the conditions of plant and structural analysis code which can assess the integrity of reactor vessel using given plant conditions. An assessment of cavity flooding using containment spray system has been done. As a result, by the containment spray, cavity can be flooded successfully and CCI can be reduced. The technical backgrounds for external vessel cooling and corium cooling on the cavity are summarized and provided in this report.

  12. Study of evaluation methods for in-vessel corium retention through external vessel cooling and safety of reactor cavity

    International Nuclear Information System (INIS)

    Huh, Hoon; Chang, Soon Heung; Kim, Soo Hyung; Kim, Kee Poong; Lee, Hyoung Wook; Jang, Kwang Keol; Jeong, Yong Hoon; Kim, Sang Jin; Lee, Seong Jin; Park, Jae Hong

    2001-03-01

    In this work, assessment system for methodology for reactor pressure vessel integrity is developed. Assessment system is make up of severe accident assessment code which can calculate the conditions of plant and structural analysis code which can assess the integrity of reactor vessel using given plant conditions. An assessment of cavity flooding using containment spray system has been done. As a result, by the containment spray, cavity can be flooded successfully and CCI can be reduced. The technical backgrounds for external vessel cooling and corium cooling on the cavity are summarized and provided in this report

  13. A risk-informed perspective on deterministic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wan, P.T.

    2009-01-01

    In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)

  14. Theories of risk and safety: what is their relevance to nursing?

    Science.gov (United States)

    Cooke, Hannah

    2009-03-01

    The aim of this paper is to review key theories of risk and safety and their implications for nursing. The concept of of patient safety has only recently risen to prominence as an organising principle in healthcare. The paper considers the wider social context in which contemporary concepts of risk and safety have developed. In particular it looks at sociological debates about the rise of risk culture and the risk society and their influence on the patient safety movement. The paper discusses three bodies of theory which have attempted to explain the management of risk and safety in organisations: normal accident theory, high reliability theory, and grid-group cultural theory. It examine debates between these theories and their implications for healthcare. It discusses reasons for the dominance of high reliability theory in healthcare and its strengths and limitations. The paper suggest that high reliability theory has particular difficulties in explaining some aspects of organisational culture. It also suggest that the implementation of high reliability theory in healthcare has involved over reliance on numerical indicators. It suggests that patient safety could be improved by openness to a wider range of theoretical perspectives.

  15. First insights into the functional role of vasicentric tracheids and parenchyma in eucalyptus species with solitary vessels: do they contribute to xylem efficiency or safety?

    Science.gov (United States)

    Barotto, Antonio José; Fernandez, María Elena; Gyenge, Javier; Meyra, Ariel; Martinez-Meier, Alejandro; Monteoliva, Silvia

    2016-12-01

    The relationship between hydraulic specific conductivity (k s ) and vulnerability to cavitation (VC) with size and number of vessels has been studied in many angiosperms. However, few of the studies link other cell types (vasicentric tracheids (VT), fibre-tracheids, parenchyma) with these hydraulic functions. Eucalyptus is one of the most important genera in forestry worldwide. It exhibits a complex wood anatomy, with solitary vessels surrounded by VT and parenchyma, which could serve as a good model to investigate the functional role of the different cell types in xylem functioning. Wood anatomy (several traits of vessels, VT, fibres and parenchyma) in conjunction with maximum k s and VC was studied in adult trees of commercial species with medium-to-high wood density (Eucalyptus globulus Labill., Eucalyptus viminalis Labill. and Eucalyptus camaldulensis Dehnh.). Traits of cells accompanying vessels presented correlations with functional variables suggesting that they contribute to both increasing connectivity between adjacent vessels-and, therefore, to xylem conduction efficiency-and decreasing the probability of embolism propagation into the tissue, i.e., xylem safety. All three species presented moderate-to-high resistance to cavitation (mean P 50 values = -2.4 to -4.2 MPa) with no general trade-off between efficiency and safety at the interspecific level. The results in these species do not support some well-established hypotheses of the functional meaning of wood anatomy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Formal safety assessment based on relative risks model in ship navigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Shenping [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: sphu@mmc.shmtu.edu.cn; Fang Quangen [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: qgfang@mmc.shmtu.edu.cn; Xia Haibo [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: hbxia@mmc.shmtu.edu.cn; Xi Yongtao [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: xiyt@mmc.shmtu.edu.cn

    2007-03-15

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice.

  17. Formal safety assessment based on relative risks model in ship navigation

    International Nuclear Information System (INIS)

    Hu Shenping; Fang Quangen; Xia Haibo; Xi Yongtao

    2007-01-01

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice

  18. Do we see how they perceive risk? An integrated analysis of risk perception and its effect on workplace safety behavior.

    Science.gov (United States)

    Xia, Nini; Wang, Xueqing; Griffin, Mark A; Wu, Chunlin; Liu, Bingsheng

    2017-09-01

    While risk perception is a key factor influencing safety behavior, the academia lacks specific attention to the ways that workers perceive risk, and thus little is known about the mechanisms through which different risk perceptions influence safety behavior. Most previous research in the workplace safety domain argues that people tend to perceive risk based on rational formulations of risk criticality. However, individuals' emotions can be also useful in understanding their perceptions. Therefore, this research employs an integrated analysis concerning the rational and emotional perspectives. Specifically, it was expected that the identified three rational ways of perceiving risk, i.e., perceived probability, severity, and negative utility, would influence the direct emotional risk perception. Furthermore, these four risk perceptions were all expected to positively but differently influence safety behavior. The hypotheses were tested using a sample of 120 construction workers. It was found that all the three rational risk perceptions significantly influenced workers' direct perception of risk that is mainly based on emotions. Furthermore, safety behavior among workers relied mainly on emotional perception but not rational calculations of risk. This research contributes to workplace safety research by highlighting the importance of integrating the emotional assessment of risk, especially when workers' risk perception and behavior are concerned. Suggested avenues for improving safety behavior through improvement in risk perception include being aware of the possibility of different ways of perceiving risk, promoting experience sharing and accident simulation, and uncovering risk information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An approach for risk informed safety culture assessment for Canadian nuclear power stations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2010-01-01

    One of the most important components of effective safety and risk management for nuclear power stations is a healthy safety culture. DNV has developed an approach for risk informed safety culture assessment that combines two complementary paradigms for safety and risk management: loss prevention - for preventing and intervening in accidents; and critical function management - for achieving safety and performance goals. Combining these two paradigms makes it possible to provide more robust systems for safety management and to support a healthy safety culture. This approach is being applied to safety culture assessment in partnership with a Canadian nuclear utility. (author)

  20. The spread model of food safety risk under the supply-demand disturbance.

    Science.gov (United States)

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors' influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of consumer rights protection and the level of legal protection of consumer rights on the risk spread of food safety. This model contributes to the explicit investigation of the influence relationship among supply-demand factors, the regulation behavioral choice of government, the behavioral choice of food supply chain members and food safety risk spread. And this paper provides a new viewpoint for considering food safety risk spread in the food supply chain, which has a great reference for food safety management.

  1. Quantitative risk assessment of digitalized safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Min; Lee, Sang Hun; Kang, Hym Gook [KAIST, Daejeon (Korea, Republic of); Lee, Seung Jun [UNIST, Ulasn (Korea, Republic of)

    2016-05-15

    A report published by the U.S. National Research Council indicates that appropriate methods for assessing reliability are key to establishing the acceptability of digital instrumentation and control (I and C) systems in safety-critical plants such as NPPs. Since the release of this issue, the methodology for the probabilistic safety assessment (PSA) of digital I and C systems has been studied. However, there is still no widely accepted method. Kang and Sung found three critical factors for safety assessment of digital systems: detection coverage of fault-tolerant techniques, software reliability quantification, and network communication risk. In reality the various factors composing digitalized I and C systems are not independent of each other but rather closely connected. Thus, from a macro point of view, a method that can integrate risk factors with different characteristics needs to be considered together with the micro approaches to address the challenges facing each factor.

  2. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    Science.gov (United States)

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  3. Stent-assisted coil embolization of aneurysms with small parent vessels: safety and efficacy analysis.

    Science.gov (United States)

    Kühn, Anna Luisa; Hou, Samuel Y; Puri, Ajit S; Silva, Christine F; Gounis, Matthew J; Wakhloo, Ajay K

    2016-06-01

    Stent-assisted coil embolization (SACE) is a viable therapeutic approach for wide-neck intracranial aneurysms. However, it can be technically challenging in small cerebral vessels (≤2 mm). To present our experience with stents approved for SACE in aneurysms with small parent arteries. All patients who underwent stent-assisted aneurysm treatment with either a Neuroform or an Enterprise stent device at our institution between June 2006 and October 2012 were identified. Additionally, we evaluated each patient's vascular risk factors, aneurysm characteristics (ruptured vs non-ruptured, incidental finding, recanalized) and follow-up angiography data. A total of 41 patients with 44 aneurysms met our criteria, including 31 women and 10 men. Most of the aneurysms were located in the anterior circulation (75%). Stent placement in vessels 1.2-2 mm in diameter was successful in 93.2%. Thromboembolic complications occurred in 6 cases and vessel straightening was seen in 1 case only. Initial nearly complete to complete aneurysm obliteration was achieved in 88.6%. Six-month follow-up angiography showed coil compaction in three cases, one asymptomatic in-stent stenosis and stent occlusion. Twelve to 20-months' follow-up showed stable coil compaction in two patients compared with previous follow-up, and aneurysm recanalization in two patients. Twenty-four to 36-months' follow-up showed further coil compaction in one of these patients and aneurysm recanalization in a previous case of stable coil compaction on mid-term follow-up. Our results suggest that SACE of aneurysms with small parent vessels is feasible in selected cases and shows good long-term patency rates of parent arteries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  5. The Concepts of Risk, Safety, and Security: Applications in Everyday Language.

    Science.gov (United States)

    Boholm, Max; Möller, Niklas; Hansson, Sven Ove

    2016-02-01

    The concepts of risk, safety, and security have received substantial academic interest. Several assumptions exist about their nature and relation. Besides academic use, the words risk, safety, and security are frequent in ordinary language, for example, in media reporting. In this article, we analyze the concepts of risk, safety, and security, and their relation, based on empirical observation of their actual everyday use. The "behavioral profiles" of the nouns risk, safety, and security and the adjectives risky, safe, and secure are coded and compared regarding lexical and grammatical contexts. The main findings are: (1) the three nouns risk, safety, and security, and the two adjectives safe and secure, have widespread use in different senses, which will make any attempt to define them in a single unified manner extremely difficult; (2) the relationship between the central risk terms is complex and only partially confirms the distinctions commonly made between the terms in specialized terminology; (3) whereas most attempts to define risk in specialized terminology have taken the term to have a quantitative meaning, nonquantitative meanings dominate in everyday language, and numerical meanings are rare; and (4) the three adjectives safe, secure, and risky are frequently used in comparative form. This speaks against interpretations that would take them as absolute, all-or-nothing concepts. © 2015 Society for Risk Analysis.

  6. Hazard Identification and Risk Assessment of Health and Safety Approach JSA (Job Safety Analysis) in Plantation Company

    Science.gov (United States)

    Sugarindra, Muchamad; Ragil Suryoputro, Muhammad; Tiya Novitasari, Adi

    2017-06-01

    Plantation company needed to identify hazard and perform risk assessment as an Identification of Hazard and Risk Assessment Crime and Safety which was approached by using JSA (Job Safety Analysis). The identification was aimed to identify the potential hazards that might be the risk of workplace accidents so that preventive action could be taken to minimize the accidents. The data was collected by direct observation to the workers concerned and the results were recorded on a Job Safety Analysis form. The data were as forklift operator, macerator worker, worker’s creeper, shredder worker, workers’ workshop, mechanical line worker, trolley cleaning workers and workers’ crepe decline. The result showed that shredder worker value was 30 and had the working level with extreme risk with the risk value range was above 20. So to minimize the accidents could provide Personal Protective Equipment (PPE) which were appropriate, information about health and safety, the company should have watched the activities of workers, and rewards for the workers who obey the rules that applied in the plantation.

  7. Human Health Risk Assessment and Safety Threshold of Harmful Trace Elements in the Soil Environment of the Wulantuga Open-Cast Coal Mine

    Directory of Open Access Journals (Sweden)

    Jianli Jia

    2015-11-01

    Full Text Available In this study, soil samples were collected from a large-scale open-cast coal mine area in Inner Mongolia, China. Arsenic (As, cadmium (Cd, beryllium (Be and nickel (Ni in soil samples were detected using novel collision/reaction cell technology (CCT with inductively-coupled plasma mass spectrometry (ICP-MS; collectively ICP-CCT-MS after closed-vessel microwave digestion. Human health risk from As, Cd, Be and Ni was assessed via three exposure pathways—inhalation, skin contact and soil particle ingestion. The comprehensive carcinogenic risk from As in Wulantuga open-cast coal mine soil is 6.29–87.70-times the acceptable risk, and the highest total hazard quotient of As in soils in this area can reach 4.53-times acceptable risk levels. The carcinogenic risk and hazard quotient of Cd, Be and Ni are acceptable. The main exposure route of As from open-cast coal mine soils is soil particle ingestion, accounting for 76.64% of the total carcinogenic risk. Considering different control values for each exposure pathway, the minimum control value (1.59 mg/kg could be selected as the strict reference safety threshold for As in the soil environment of coal-chemical industry areas. However, acceptable levels of carcinogenic risk are not unanimous; thus, the safety threshold identified here, calculated under a 1.00 × 10−6 acceptable carcinogenic risk level, needs further consideration.

  8. Risk and safety perception on urban and rural roads: Effects of environmental features, driver age and risk sensitivity.

    Science.gov (United States)

    Cox, Jolene A; Beanland, Vanessa; Filtness, Ashleigh J

    2017-10-03

    The ability to detect changing visual information is a vital component of safe driving. In addition to detecting changing visual information, drivers must also interpret its relevance to safety. Environmental changes considered to have high safety relevance will likely demand greater attention and more timely responses than those considered to have lower safety relevance. The aim of this study was to explore factors that are likely to influence perceptions of risk and safety regarding changing visual information in the driving environment. Factors explored were the environment in which the change occurs (i.e., urban vs. rural), the type of object that changes, and the driver's age, experience, and risk sensitivity. Sixty-three licensed drivers aged 18-70 years completed a hazard rating task, which required them to rate the perceived hazardousness of changing specific elements within urban and rural driving environments. Three attributes of potential hazards were systematically manipulated: the environment (urban, rural); the type of object changed (road sign, car, motorcycle, pedestrian, traffic light, animal, tree); and its inherent safety risk (low risk, high risk). Inherent safety risk was manipulated by either varying the object's placement, on/near or away from the road, or altering an infrastructure element that would require a change to driver behavior. Participants also completed two driving-related risk perception tasks, rating their relative crash risk and perceived risk of aberrant driving behaviors. Driver age was not significantly associated with hazard ratings, but individual differences in perceived risk of aberrant driving behaviors predicted hazard ratings, suggesting that general driving-related risk sensitivity plays a strong role in safety perception. In both urban and rural scenes, there were significant associations between hazard ratings and inherent safety risk, with low-risk changes perceived as consistently less hazardous than high-risk

  9. Developing a Risk Model for Fire in Passenger Ships - Based on Bayesian Belief Network

    OpenAIRE

    Dokmo, Hanne Bjørkås

    2016-01-01

    Passenger ships, especially cruise ships, are rapidly increasing in size. With larger vessels, comes a greater risk to the passengers if something where to happen. A fire on a passenger vessel can spread quickly, and with as much as thousands of people needing to be evacuated many things could go wrong. The issue of the safety on board is therefore crucial to consider, seeing as the consequences could be tremendous. There are three types of passenger ships; Passenger vessel, RoPax vessel and ...

  10. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  11. Chicago Sanitary and Ship Canal (CSSC) Marine Safety Risk Assessment

    Science.gov (United States)

    2013-12-01

    NMSRA National Maritime Strategic Risk Assessment NPRM Notice of Proposed Rulemaking PFD Personal flotation device PIW Person in the water PWC...barriers’ purpose is to limit the spread of various nuisance species, with a more-recent emphasis on preventing the “lake-ward” influx of silver and...crewmembers at risk of falling overboard, anyone on open decks was required to wear a Type 1 personal flotation device (PFD). • Commercial towing vessels

  12. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  13. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  14. [Adolescents, risk situations and road safety].

    Science.gov (United States)

    Meneses Falcón, Carmen; Gil García, Eugenia; Romo Avilés, Nuria

    2010-09-01

    Describe the risk behaviour relationships with road safety in adolescents. Cross-sectional descriptive study. Madrid and Andalusia Regions, representative samples. The sample included 3,612 in secondary school pupils from Madrid (n=1708) and Andalusia (n=1904). The survey was carried out during May and June 2007. The data collected included sociodemographic areas (age, sex, grade, father's profession, birth place, etc.) and risk situation and behaviour (risk behaviour as driver or passenger). 16.2% of the adolescents have been involved in a dangerous situation with motorcycles during the last year. 16.7% never use a helmet when riding a motorcycle and 62% do not wear one when riding a bicycle on the road; 17.4% frequently ride a motorcycle over the speed limit and 24.5% when driving a car. There are significant differences regarding sex, grade and region (Madrid or Andalusia). There are four factors which explain 62% of the variance: drug factor, speed factor, security factor and passenger factor. Two of these have twice the probability of having a dangerous situation when riding a motorcycle: drug factor (OR=1.96; 95% CI, 1.77-2.18) and the speed factor ((OR=2.13; 95% CI, 1.92-2.36). Adolescents in higher grades and living in Andalusia were less road safety conscious. This pattern should be taken into account when designing preventive actions in Road Safety Education. 2009 Elsevier España, S.L. All rights reserved.

  15. 2013 Gulf of Mexico Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  16. 2011 Gulf of Mexico Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  17. 2011 Pleasure Craft Sailing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  18. New method of safety assessment for pressure vessel of nuclear power plant--brief introduction of master curve approach

    International Nuclear Information System (INIS)

    Yang Wendou

    2011-01-01

    The new Master Curve Method is called as a revolutionary advance to the assessment of- reactor pressure vessel integrity in USA. This paper explains the origin, basis and standard of the Master Curve from the reactor pressure-temperature limit curve which assures the safety of nuclear power plant. According to the characteristics of brittle fracture which is greatly susceptible to the microstructure, the theory and the test method of the Master Curve as well as its statistical law which can be modeled using Weibull distribution are described in this paper. The meaning, advantage, application and importance of the Master Curve as well as the relation between the Master Curve and nuclear power safety are understood from the fitting formula for the fracture toughness database by Weibull distribution model. (author)

  19. 77 FR 65000 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-24

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... Use (ETASU) before CDER's Drug Safety and Risk Management Advisory Committee (DSaRM). The Agency plans...

  20. 78 FR 30929 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-23

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... (REMS) with elements to assure safe use (ETASU) before its Drug Safety and Risk Management Advisory...

  1. Development of reliability and probabilistic safety assessment program RiskA

    International Nuclear Information System (INIS)

    Wu, Yican

    2015-01-01

    Highlights: • There are four parts in the structure of RiskA. User input part lets users input the PSA model and some necessary data by GUI or model transformation tool. In calculation engine part, fault tree analysis, event tree analysis, uncertainty analysis, sensitivity analysis, importance analysis and failure mode and effects analysis are supplied. User output part outputs the analysis results, user customized reports and some other data. The last part includes reliability database, some other common tools and help documents. • RiskA has several advanced features. Extensible framework makes it easy to add any new functions, making RiskA to be a large platform of reliability and probabilistic safety assessment. It is very fast to analysis fault tree in RiskA because many advanced algorithm improvement were made. Many model formats can be imported and exported, which made the PSA model in the commercial software can be easily transformed to adapt RiskA platform. Web-based co-modeling let several users in different places work together whenever they are online. • The comparison between RiskA and other mature PSA codes (e.g. CAFTA, RiskSpectrum, XFTA) has demonstrated that the calculation and analysis of RiskA is correct and efficient. Based on the development of this code package, many applications of safety and reliability analysis of some research reactors and nuclear power plants were performed. The development of RiskA appears to be of realistic and potential value for academic research and practical operation safety management of nuclear power plants in China and abroad. - Abstract: PSA (probabilistic safety assessment) software, the indispensable tool in nuclear safety assessment, has been widely used. An integrated reliability and PSA program named RiskA has been developed by FDS Team. RiskA supplies several standard PSA modules including fault tree analysis, event tree analysis, uncertainty analysis, failure mode and effect analysis and reliability

  2. Bridging the Divide between Safety and Risk Management for your Project or Program

    Science.gov (United States)

    Lutomski, Mike

    2005-01-01

    This presentation will bridge the divide between these separate but overlapping disciplines and help explain how to use Risk Management as an effective management decision support tool that includes safety. Risk Management is an over arching communication tool used by management to prioritize and effectively mitigate potential problems before they concur. Risk Management encompasses every kind of potential problem that can occur on a program or project. Some of these are safety issues such as hazards that have a specific likelihood and consequence that need to be controlled and included to show an integrated picture of accepted) mitigated, and residual risk. Integrating safety and other assurance disciplines is paramount to accurately representing a program s or projects risk posture. Risk is made up of several components such as technical) cost, schedule, or supportability. Safety should also be a consideration for every risk. The safety component can also have an impact on the technical, cost, and schedule aspect of a given risk. The current formats used for communication of safety and risk issues are not consistent or integrated. The presentation will explore the history of these disciplines, current work to integrate them, and suggestions for integration for the future.

  3. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  4. 77 FR 75176 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-19

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug... being rescheduled due to the postponement of the October 29-30, 2012, Drug Safety and Risk Management... Committee: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide...

  5. Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects.

    Science.gov (United States)

    Aminbakhsh, Saman; Gunduz, Murat; Sonmez, Rifat

    2013-09-01

    The inherent and unique risks on construction projects quite often present key challenges to contractors. Health and safety risks are among the most significant risks in construction projects since the construction industry is characterized by a relatively high injury and death rate compared to other industries. In construction project management, safety risk assessment is an important step toward identifying potential hazards and evaluating the risks associated with the hazards. Adequate prioritization of safety risks during risk assessment is crucial for planning, budgeting, and management of safety related risks. In this paper, a safety risk assessment framework is presented based on the theory of cost of safety (COS) model and the analytic hierarchy process (AHP). The main contribution of the proposed framework is that it presents a robust method for prioritization of safety risks in construction projects to create a rational budget and to set realistic goals without compromising safety. The framework provides a decision tool for the decision makers to determine the adequate accident/injury prevention investments while considering the funding limits. The proposed safety risk framework is illustrated using a real-life construction project and the advantages and limitations of the framework are discussed. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  6. Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions

    Science.gov (United States)

    Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.

    2014-01-01

    Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.

  7. Preparing Safety Cases for Operating Outside Prescriptive Fatigue Risk Management Regulations.

    Science.gov (United States)

    Gander, Philippa; Mangie, Jim; Wu, Lora; van den Berg, Margo; Signal, Leigh; Phillips, Adrienne

    2017-07-01

    Transport operators seeking to operate outside prescriptive fatigue management regulations are typically required to present a safety case justifying how they will manage the associated risk. This paper details a method for constructing a successful safety case. The method includes four elements: 1) scope (prescriptive rules and operations affected); 2) risk assessment; 3) risk mitigation strategies; and 4) monitoring ongoing risk. A successful safety case illustrates this method. It enables landing pilots in 3-pilot crews to choose the second or third in-flight rest break, rather than the regulatory requirement to take the third break. Scope was defined using a month of scheduled flights that would be covered (N = 4151). These were analyzed in the risk assessment using existing literature on factors affecting fatigue to estimate the maximum time awake at top of descent and sleep opportunities in each break. Additionally, limited data collected before the new regulations showed that pilots flying at landing chose the third break on only 6% of flights. A prospective survey comparing subjective reports (N = 280) of sleep in the second vs. third break and fatigue and sleepiness ratings at top of descent confirmed that the third break is not consistently superior. The safety case also summarized established systems for fatigue monitoring, risk assessment and hazard identification, and multiple fatigue mitigation strategies that are in place. Other successful safety cases have used this method. The evidence required depends on the expected level of risk and should evolve as experience with fatigue risk management systems builds.Gander P, Mangie J, Wu L, van den Berg M, Signal L, Phillips A. Preparing safety cases for operating outside prescriptive fatigue risk management regulations. Aerosp Med Hum Perform. 2017; 88(7):688-696.

  8. Safety valve opening and closing operation monitor

    International Nuclear Information System (INIS)

    Kodama, Kunio; Takeshima, Ikuo; Takahashi, Kiyokazu.

    1981-01-01

    Purpose: To enable the detection of the closing of a safety valve when the internal pressure in a BWR type reactor is a value which will close the safety valve, by inputting signals from a pressure detecting device mounted directly at a reactor vessel and a safety valve discharge pressure detecting device to an AND logic circuit. Constitution: A safety valve monitor is formed of a pressure switch mounted at a reactor pressure vessel, a pressure switch mounted at the exhaust pipe of the escape safety valve and a logic circuit and the lide. When the input pressure of the safety valve is raised so that the valve and the pressure switch mounted at the exhaust pipe are operated, an alarm is indicated, and the operation of the pressure switch mounted at a pressure vessel is eliminated. If the safety valve is not reclosed when the vessel pressure is decreased lower than the pressure at which it is to be reclosed after the safety valve is operated, an alarm is generated by the logic circuit since both the pressure switches are operated. (Sekiya, K.)

  9. How to interpret safety critical failures in risk and reliability assessments

    International Nuclear Information System (INIS)

    Selvik, Jon Tømmerås; Signoret, Jean-Pierre

    2017-01-01

    Management of safety systems often receives high attention due to the potential for industrial accidents. In risk and reliability literature concerning such systems, and particularly concerning safety-instrumented systems, one frequently comes across the term ‘safety critical failure’. It is a term associated with the term ‘critical failure’, and it is often deduced that a safety critical failure refers to a failure occurring in a safety critical system. Although this is correct in some situations, it is not matching with for example the mathematical definition given in ISO/TR 12489:2013 on reliability modeling, where a clear distinction is made between ‘safe failures’ and ‘dangerous failures’. In this article, we show that different interpretations of the term ‘safety critical failure’ exist, and there is room for misinterpretations and misunderstandings regarding risk and reliability assessments where failure information linked to safety systems are used, and which could influence decision-making. The article gives some examples from the oil and gas industry, showing different possible interpretations of the term. In particular we discuss the link between criticality and failure. The article points in general to the importance of adequate risk communication when using the term, and gives some clarification on interpretation in risk and reliability assessments.

  10. Perception of risk from automobile safety defects.

    Science.gov (United States)

    Slovic, P; MacGregor, D; Kraus, N N

    1987-10-01

    Descriptions of safety engineering defects of the kind that compel automobile manufacturers to initiate a recall campaign were evaluated by individuals on a set of risk characteristic scales that included overall vehicle riskiness, manufacturer's ability to anticipate the defect, importance for vehicle operation, severity of consequences and likelihood of compliance with a recall notice. A factor analysis of the risk characteristics indicated that judgments could be summarized in terms of two composite scales, one representing the uncontrollability of the damage the safety defect might cause and the other representing the foreseeability of the defect by the manufacturer. Motor vehicle defects were found to be highly diverse in terms of the perceived qualities of their risks. Location of individual defects within the factor space was closely associated with perceived riskiness, perceived likelihood of purchasing another car from the same manufacturer, perceived likelihood of compliance with a recall notice, and actual compliance rates.

  11. ALARP considerations in criticality safety assessments

    International Nuclear Information System (INIS)

    Bowden, Russell L.; Barnes, Andrew; Thorne, Peter R.; Venner, Jack

    2003-01-01

    Demonstrating that the risk to the public and workers is As Low As Reasonably Practicable (ALARP) is a fundamental requirement of safety cases for nuclear facilities in the United Kingdom. This is embodied in the Safety Assessment Principles (SAPs) published by the Regulator, the essence of which is incorporated within the safety assessment processes of the various nuclear site licensees. The concept of ALARP within criticality safety assessments has taken some time to establish in the United Kingdom. In principle, the licensee is obliged to search for a deterministic criticality safety solution, such as safe geometry vessels and passive control features, rather than placing reliance on active measurement devices and plant administrative controls. This paper presents a consideration of some ALARP issues in relation to the development of criticality safety cases. The paper utilises some idealised examples covering a range of issues facing the criticality safety assessor, including new plant design, operational plant and decommissioning activities. These examples are used to outline the elements of the criticality safety cases and present a discussion of ALARP in the context of criticality safety assessments. (author)

  12. Impediments for the application of risk-informed decision making in nuclear safety

    International Nuclear Information System (INIS)

    Hahn, L.

    2001-01-01

    A broad application of risk-informed decision making in the regulation of safety of nuclear power plants is hindered by the lack of quantitative risk and safety standards as well as of precise instruments to demonstrate an appropriate safety. An additional severe problem is associated with the difficulty to harmonize deterministic design requirements and probabilistic safety assessment. The problem is strengthened by the vulnerability of PSA for subjective influences and the potential of misuse. Beside this scepticism the nuclear community is encouraged to intensify the efforts to improve the quality standards for probabilistic safety assessments and their quality assurance. A prerequisite for reliable risk-informed decision making processes is also a well-defined and transparent relationship between deterministic and probabilistic safety approaches. (author)

  13. Principles of Vessel Route Planning in Ice on the Northern Sea Route

    Directory of Open Access Journals (Sweden)

    Tadeusz Pastusiak

    2016-12-01

    Full Text Available A complex of ice cover characteristics and the season of the year were considered in relation to vessel route planning in ice-covered areas on the NSR. The criteria for navigation in ice - both year-round and seasonal were analyzed. The analysis of the experts knowledge, dissipated in the literature, allowed to identify some rules of route planning in ice-covered areas. The most important processes from the navigation point of view are the development and disintegration of ice, the formation and disintegration of fast ice and behavior of the ice massifs and polynyas. The optimal route is selected on basis of available analysis and forecast maps of ice conditions and ice class, draught and seaworthiness of the vessel. The boundary of the ice indicates areas accessible to vessels without ice class. Areas with a concentration of ice from 0 to 6/10 are used for navigation of vessels of different ice classes. Areas of concentration of ice from 7/10 up are eligible for navigation for icebreakers and vessels with a high ice class with the assistance of icebreakers. These rules were collected in the decision tree. Following such developed decision-making model the master of the vessel may take decision independently by accepting grading criteria of priorities resulting from his knowledge, experience and the circumstances of navigation. Formalized form of decision making model reduces risk of the "human factor" in the decision and thereby help improve the safety of maritime transport.

  14. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  15. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Kastenberg, William E.; Blandford, Edward; Kim, Lance

    2009-01-01

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public

  16. Nuclear safety culture and integrated risk management

    International Nuclear Information System (INIS)

    Joksimovich, V.; Orvis, D.D.

    1993-01-01

    A primary focus of nuclear safety is the prevention of large releases of radioactivity in the case of low-probability severe accidents. An analysis of the anatomy of nuclear (Chernobyl, Three Mile Island Unit 2) and nonnuclear (Challenger, Bhopal, Piper Alpha, etc.) severe accidents yields four broad categories of root causes: human (operating crew response), machine (design with its basic flaws), media (natural phenomena, operational considerations, political environment, commercial pressures, etc.)-providing triggering events, and management (basic organizational safety culture flaws). A strong management can minimize the contributions of humans, machines, and media to the risk arising from the operation of hazardous facilities. One way that management can have a powerful positive influence is through the establishment of a proper safety culture. The term safety culture is used as defined by the International Atomic Energy Agency's International Safety Advisory Group

  17. Risk allocation approach to reactor safety design and evaluation

    International Nuclear Information System (INIS)

    Gokcek, O.; Temme, M.I.; Derby, S.L.

    1978-01-01

    This paper describes a risk allocation technique used for determining nuclear power plant design reliability requirements. The concept of risk allocation-optimum choice of safety function reliabilities under a maximum risk constraint - is described. An example of risk allocation is presented to demonstrate the application of the methodology

  18. 33 CFR 96.220 - What makes up a safety management system?

    Science.gov (United States)

    2010-07-01

    ... system? 96.220 Section 96.220 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The...

  19. Effectiveness of In-Vessel Retention Strategies and Minimum Safety Injection Flow over Postulated Severe Accidents of OPR1000

    International Nuclear Information System (INIS)

    Kim, Sung Joong; Seo, Seungwon; Lee, Seongnyeon; KIm, Hwan Yeol; Ha, Kwang Soon; Park, Jonghwa; Park, Raejoon

    2013-01-01

    The objective of this study is first to evaluate various serious severe accident scenarios of OPR1000 with and without in-vessel retention strategies using MELCOR code. Second is to develop a mechanistic model of minimum safety injection flow using the thermal-hydraulic parameters of CET and collapsed water level obtained from the MELCOR simulation results. Effectiveness of RCS depressurization of OPR1000 is investigated for postulated severe accidents of SBLOCA, SBO, and TLOF. It is seen that timely operator action is important to achieve the best mitigation. Also The MELCOR simulation results of SBLOCA, SBO, and TLOFW are utilized to develop a model for minimum safety injection flow. The model suggests that if HPSI is available with RCS pressure lower than 120 bars, the core coolability can be guaranteed. In this study, several MELCOR simulations are conducted in search for effective in-vessel retention strategies over postulated severe accidents of SBLOCA, SBO, and TLOFW of OPR1000. Detailed accident sequences are presented and indicative parameters diagnosing the reactor thermal-hydraulic state are interrogated to provide useful information to the operator actions. To properly assist operator's action during the severe accident, the thermal-hydraulic parameters should be virtual, intuitive, and reliable. In addition, the parameters should be collected through the instrumentations close to the reactor core. In this regard, Core Exit Temperature (CET) and collapsed core water level are deemed as the commensurate parameters

  20. Effectiveness of In-Vessel Retention Strategies and Minimum Safety Injection Flow over Postulated Severe Accidents of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joong; Seo, Seungwon; Lee, Seongnyeon [Hanyang Univ., Seoul (Korea, Republic of); KIm, Hwan Yeol; Ha, Kwang Soon; Park, Jonghwa; Park, Raejoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The objective of this study is first to evaluate various serious severe accident scenarios of OPR1000 with and without in-vessel retention strategies using MELCOR code. Second is to develop a mechanistic model of minimum safety injection flow using the thermal-hydraulic parameters of CET and collapsed water level obtained from the MELCOR simulation results. Effectiveness of RCS depressurization of OPR1000 is investigated for postulated severe accidents of SBLOCA, SBO, and TLOF. It is seen that timely operator action is important to achieve the best mitigation. Also The MELCOR simulation results of SBLOCA, SBO, and TLOFW are utilized to develop a model for minimum safety injection flow. The model suggests that if HPSI is available with RCS pressure lower than 120 bars, the core coolability can be guaranteed. In this study, several MELCOR simulations are conducted in search for effective in-vessel retention strategies over postulated severe accidents of SBLOCA, SBO, and TLOFW of OPR1000. Detailed accident sequences are presented and indicative parameters diagnosing the reactor thermal-hydraulic state are interrogated to provide useful information to the operator actions. To properly assist operator's action during the severe accident, the thermal-hydraulic parameters should be virtual, intuitive, and reliable. In addition, the parameters should be collected through the instrumentations close to the reactor core. In this regard, Core Exit Temperature (CET) and collapsed core water level are deemed as the commensurate parameters.

  1. Assessing Risk-Based Performance Indicators in Safety-Critical Systems for Nuclear Power Plants

    OpenAIRE

    TONT Gabriela

    2011-01-01

    The paper proposes framework for a multidisciplinary nuclear risk and safety assessment by modeling uncertainty and combining diverse evidence provided in such a way that it could be used to represent an entire argument about a system's dependability. The identified safety issues are being treated by means of probabilistic safety assessment (PSA). The behavior simulation of power plant in thepresence of risk factors is analyzed from the vulnerability, risk and functional safety viewpoints, hi...

  2. Long-term safety and feasibility of three-vessel multimodality intravascular imaging in patients with ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Taniwaki, Masanori; Radu, Maria D; Garcia-Garcia, Hector M

    2015-01-01

    We assessed the feasibility and the procedural and long-term safety of intracoronary (i.c) imaging for documentary purposes with optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in patients with acute ST-elevation myocardial infarction (STEMI) undergoing primary PCI in the s......We assessed the feasibility and the procedural and long-term safety of intracoronary (i.c) imaging for documentary purposes with optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in patients with acute ST-elevation myocardial infarction (STEMI) undergoing primary PCI...... in the setting of IBIS-4 study. IBIS4 (NCT00962416) is a prospective cohort study conducted at five European centers including 103 STEMI patients who underwent serial three-vessel coronary imaging during primary PCI and at 13 months. The feasibility parameter was successful imaging, defined as the number...... of pullbacks suitable for analysis. Safety parameters included the frequency of peri-procedural complications, and major adverse cardiac events (MACE), a composite of cardiac death, myocardial infarction (MI) and any clinically-indicated revascularization at 2 years. Clinical outcomes were compared...

  3. Evaluation of severe accident risks and the potential for risk reduction: Grand Gulf, Unit 1. Draft for comment, February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Amos, C N [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Benjamin, A S; Kunsman, D M; Williams, D C [Sandia National Laboratories, Albuquerque, NM (United States); Boyd, G J; Lewis, S R [Safety and Reliability Optimization Services, Inc., Knoxville, TN (United States); Smith, L N [Science Applications International Corporation, Albuquerque, NM (United States)

    1987-04-01

    The Severe Accident Risk Reduction Program (SARRP) has completed a rebaselining of the risks to the public from a boiling water reactor with a Mark III containment (Grand Gulf, Unit 1). Emphasis was placed on determining the magnitude and character of the uncertainties, rather than focusing on a point estimate. The risk-reduction potential of a set of proposed safety option backfits was also studied, and their costs and benefits were also evaluated. It was found that the risks from internal events are generally low relative to previous studies; for example, most of the uncertainty range is lower than the point estimate of risk for the Peach Bottom plant in the Reactor Safety Study (RSS). However, certain unresolved issues cause the top of the uncertainty band to appear at a level that is comparable with the RSS point estimate. These issues include the diesel generator failure rate, iodine and cesium revolatilization after vessel breach and the possibility of reactor vessel pedestal failure caused by core debris attack. Some of the postulated safety options appear to be potentially cost effective for the Grand Gulf power plant, particularly when onsite accidents costs are included in the evaluation of benefits. Principally these include procedural modifications and relatively inexpensive hardware additions to insure core cooling in the event of a station blackout. This work supports the Nuclear Regulatory Commission's assessment of severe accidents in NUREG-1150. (author)

  4. Safety risk assessment for vertical concrete formwork activities in civil engineering construction.

    Science.gov (United States)

    López-Arquillos, Antonio; Rubio-Romero, Juan Carlos; Gibb, Alistair G F; Gambatese, John A

    2014-01-01

    The construction sector has one of the worst occupational health and safety records in Europe. Of all construction tasks, formwork activities are associated with a high frequency of accidents and injuries. This paper presents an investigation of the activities and related safety risks present in vertical formwork for in-situ concrete construction in the civil engineering sector. Using the methodology of staticized groups, twelve activities and ten safety risks were identified and validated by experts. Every safety risk identified in this manner was quantified for each activity using binary methodology according to the frequency and severity scales developed in prior research. A panel of experts was selected according to the relevant literature on staticized groups. The results obtained show that the activities with the highest risk in vertical formwork tasks are: Plumbing and leveling of forms, cutting of material, handling materials with cranes, and climbing or descending ladders. The most dangerous health and safety risks detected were falls from height, cutting and overexertion. The research findings provide construction practitioners with further evidence of the hazardous activities associated with concrete formwork construction and a starting point for targeting worker health and safety programmes.

  5. Mark III Containment vessel/annulus concrete design

    International Nuclear Information System (INIS)

    Chang, P.S.; Moussa, M.M.

    1981-01-01

    Recently, engineers have been considering the significant dynamic impact of safety/relief valve (S/RV) discharge loads on the containment structures, safety equipment, and piping systems in BWR type reactors. For a plant in the construction stage, extensive modifications will be made to qualify these new loads. The lower portion of the containment vessel serves as a suppression pool pressure boundary and is designed to sustain the effects of postulated loss of coolant accidents, seismic occurrences, S/RV discharge loads, and other effects. Extremely high spectral peak accelerations of the free-standing steel containment vessel can be obtained during the air dearing process of the S/RV discharge. Parametric studies indicated that a substantial reduction in response can be obtained by increasing the stiffness of the steel containment vessel in the lover area. A concrete backing configuration in the suppression pool area of Mark III Containment is proposed in this paper. A composite action is assumed between the steel containment vessel shell and the concrete section. The system is physically separated from the shield building. This approach warrants an early erection of the shield building and a late installation of piping systems in the containment vessel suppression pool area. Finite element analyses are performed by using ASHSD2 and EASE2 computer codes. The results of the analyses have shown the proposed stress criteria are satisfied. The approach pressented is justified to be a workable system for a new plant design. (orig./HP)

  6. Sailing Vessel Routing Considering Safety Zone and Penalty Time for Altering Course

    Directory of Open Access Journals (Sweden)

    Marcin Zyczkowski

    2017-06-01

    Full Text Available In this paper we introduce new model for simulation sea vessel routing. Besides a vessel types (polar diagram and weather forecast, travel security and the number of maneuvers are considered. Based on these data both the minimal travelling costs and the minimal processing time are found for different vessels and different routes. To test our model the applications SailingAssistance wad improved. The obtained results shows that we can obtain quite acceptable results.

  7. How employees perceive risks and safety in nuclear installations

    International Nuclear Information System (INIS)

    Barny, M.-H.; Brenot, J.; Moreau, A.

    1992-01-01

    Employees of the French centre of Saclay have been interviewed twice in November 1984 and March 1987 about their risks at the workplace, their views on safety, their protective attitudes, and also about the Chernobyl accident in the second survey. Perceived risks are compared, safety measures and protection teams are judged, importance of the Chernobyl accident is appreciated. Differences in perception between the various professional groups are pointed out. The main results are briefly presented hereafter. (author)

  8. TWRS safety and technical integration risk management plan

    International Nuclear Information System (INIS)

    Fordham, R.A.

    1996-01-01

    The objectives of the Tank Waste Remediation System (TWRS) Safety and Technical Integration (STI) programmatic risk management program are to assess, analyze, and handle risks associated with TWRS STI responsibilities and to communicate information about the actions being taken and the results to enable decision making. The objective of this TWRS STI Risk Management Plan is to communicate a consistent approach to risk management that will be used by the organization

  9. Assessment of Health, Safety and Environmental Risks of Zahedan City Gasoline Stations

    Directory of Open Access Journals (Sweden)

    S. Y. Far

    2018-04-01

    Full Text Available The purpose of this study was to assess the risk and determine the health, safety and environmental status of fuel stations in Zahedan. In this study, failure mode and effects analysis (FMEA method was used for risk assessment in accordance with the HSE guidelines, national and international standards and laws. In this cross-sectional study, 2 governmental stations and 6 active private stations were evaluated after the necessary coordination with the relevant units. As a result of risk assessment, 27 health risks, 55 safety risks and 22 environmental risks were identified. From among all the identified risks, 67 risks had a Risk Priority Number (RPN of less than 91, 31 risks had an RPN ranging between 91 and 201, and 6 risks had an RPN of over 201. The findings of the study indicated that compliance with the HSE requirements was 51.85%, in the area of health, 47.57% in the area of safety and 27.45% in the environmental area. Overall compliance with the HSE requirements was 42.54%. In order to distribute fuel considering health, reducing risk and increasing compliance with the requirements for safety improvement, health and environmental conditions of fuel supplies are essential.

  10. Prestressed concrete pressure vessels for boiling water reactors

    International Nuclear Information System (INIS)

    Menon, S.

    1979-12-01

    Following a general description of the Scandinavian cooperative project on prestressed concrete pressure vessels for boiling water reactors, detailed discussion is given in four appendices of the following aspects: the verification programme of tests and studies, the development and testing of a liner venting system, a preliminary safety philosophy and comparative assessment of cold and hot liners. Vessel failure probability is briefly discussed and some figures presented. The pressure gradients in the vessel wall resulting from various stipulated linear cracks, with a liner venting system are presented graphically. (JIW)

  11. Discounting the value of safety: effects of perceived risk and effort.

    Science.gov (United States)

    Sigurdsson, Sigurdur O; Taylor, Matthew A; Wirth, Oliver

    2013-09-01

    Although falls from heights remain the most prevalent cause of fatalities in the construction industry, factors impacting safety-related choices associated with work at heights are not completely understood. Better tools are needed to identify and study the factors influencing safety-related choices and decision making. Using a computer-based task within a behavioral economics paradigm, college students were presented a choice between two hypothetical scenarios that differed in working height and effort associated with retrieving and donning a safety harness. Participants were instructed to choose the scenario in which they were more likely to wear the safety harness. Based on choice patterns, switch points were identified, indicating when the perceived risk in both scenarios was equivalent. Switch points were a systematic function of working height and effort, and the quantified relation between perceived risk and effort was described well by a hyperbolic equation. Choice patterns revealed that the perceived risk of working at heights decreased as the effort to retrieve and don a safety harness increased. Results contribute to the development of computer-based procedure for assessing risk discounting within a behavioral economics framework. Such a procedure can be used as a research tool to study factors that influence safety-related decision making with a goal of informing more effective prevention and intervention strategies. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  12. Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks

    Science.gov (United States)

    Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris

    2015-01-01

    Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.

  13. N reactor individual risk comparison to quantitative nuclear safety goals

    International Nuclear Information System (INIS)

    Wang, O.S.; Rainey, T.E.; Zentner, M.D.

    1990-01-01

    A full-scope level III probabilistic risk assessment (PRA) has been completed for N reactor, a US Department of Energy (DOE) production reactor located on the Hanford Reservation in the state of Washington. Sandia National Laboratories (SNL) provided the technical leadership for this work, using the state-of-the-art NUREG-1150 methodology developed for the US Nuclear Regulatory Commission (NRC). The main objectives of this effort were to assess the risks to the public and to the on-site workers posed by the operation of N reactor, to identify changes to the plant that could reduce the overall risk, and to compare those risks to the proposed NRC and DOE quantitative safety goals. This paper presents the methodology adopted by Westinghouse Hanford Company (WHC) and SNL for individual health risk evaluation, its results, and a comparison to the NRC safety objectives and the DOE nuclear safety guidelines. The N reactor results, are also compared with the five NUREG-1150 nuclear plants. Only internal events are compared here because external events are not yet reported in the current draft NUREG-1150. This is the first full-scope level III PRA study with a detailed quantitative safety goal comparison performed for DOE production reactors

  14. 75 FR 75486 - Maritime Security Directive 104-6 (Rev. 4); Guidelines for U.S. Vessels Operating in High Risk...

    Science.gov (United States)

    2010-12-03

    ... Directive 104-6 (Rev. 4); Guidelines for U.S. Vessels Operating in High Risk Waters AGENCY: Coast Guard, DHS... Maritime Transportation Security Act (MTSA) on international voyages through or in designated high risk... MARSEC Directives are available at your local Captain of the Port (COTP) office. Phone numbers and...

  15. Risk prediction, safety analysis and quantitative probability methods - a caveat

    International Nuclear Information System (INIS)

    Critchley, O.H.

    1976-01-01

    Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)

  16. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the marine...

  17. 33 CFR 96.370 - What are the requirements for vessels of countries not party to Chapter IX of SOLAS?

    Science.gov (United States)

    2010-07-01

    ... vessel, or self-propelled mobile offshore drilling unit of 500 gross tons or more, operated in U.S... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS How Will Safety Management Systems Be Certificated and...

  18. A model for managing cold-related health and safety risks at workplaces.

    Science.gov (United States)

    Risikko, Tanja; Mäkinen, Tiina M; Påsche, Arvid; Toivonen, Liisa; Hassi, Juhani

    2003-05-01

    Cold conditions increase health and safety risks at work in several ways. The effects of cold have not been sufficiently taken into consideration in occupational safety and health practices. A systematic model and methods were developed for managing cold-related health and safety risks at workplaces. The development work was performed, in a context-bound manner, in pilot industries and workplaces. The model can be integrated into the company's occupational health and safety management system, such as OHSAS 18001. The cold risks are identified and assessed by using a checklist. The preventive measures are systematically planned in a written form specifically produced for cold workplaces. It includes the organisational and technical preventive measures, protective clothing and personal protective equipment, as well as training and information of the personnel. According to the model, all the workers, foremen, occupational safety personnel and occupational health care personnel are trained to recognise the cold risks and to conduct preventive actions. The developed model was evaluated in the context of cold outdoor (construction) and indoor work (fish processing), and by occupational health and safety professionals. According to the feedback, the model and methods were easy to use after a one-day introduction session. The continuum between the cold risk assessment and management worked well, although there was some overlap in the documentation. The cold risk management model and its methods form an essential part of ISO CD 15743 Strategy for risk assessment, management and work practice in cold environments.

  19. Patient safety risk factors in minimally invasive surgery : A validation study

    NARCIS (Netherlands)

    Rodrigues, S.P.; Ter Kuile, M.; Dankelman, J.; Jansen, F.W.

    2012-01-01

    This study was conducted to adapt and validate a patient safety (PS) framework for minimally invasive surgery (MIS) as a first step in understanding the clinical relevance of various PS risk factors in MIS. Eight patient safety risk factor domains were identified using frameworks from a systems

  20. The role of color sorting machine in reducing food safety risks

    Directory of Open Access Journals (Sweden)

    Eleonora Kecskes-Nagy

    2016-07-01

    Full Text Available It is the very difficult problem how we can decrease food safety risks in the product, which was polluted in process of cropping. According to professional literature almost the prevention is considered as an exclusive method to keep below safe level the content of DON toxin. The source of food safety in food chain is that the primary products suit the food safety requirements. It is a very difficult or sometimes it is not possible to correct food safety risk factors - which got into the products during cultivation - in the course of processing. Such factor is fusariotoxin in fodder and bread wheat. DON toxin is the most frequent toxin in cereals. The objective of the searching was to investigate, if it is possible to decrease DON toxin content of durum wheat and to minimize the food safety risk by application milling technology with good production practice and technological conditions. The samples were taken in the first phase of milling technology just before and after color sorting. According to measuring results Sortex Z+ optical sorting decreased DON toxin content of wheat. This mean that the food safety risks can be reduced by Sortex Z+ optical sorting machine. Our experiments proved if there is color sorting in the cleaning process preceding the milling of wheat then a part of the grain of wheat infected by Fusarium sp. can be selected. This improves the food safety parameters of given lot of wheat and decrease the toxin content. The flour made from contaminated grains of wheat can be a serious food safety risk. We would like to support scientifically the technical development of milling technology with our experimental data. Normal 0 21 false false false HU X-NONE X-NONE MicrosoftInternetExplorer4

  1. 33 CFR 96.230 - What objectives must a safety management system meet?

    Science.gov (United States)

    2010-07-01

    ... management system meet? 96.230 Section 96.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.230 What objectives must a safety...

  2. Food, Risk and Politics: Scare, scandal and crisis - insights into the risk politics of food safety

    OpenAIRE

    Randall, Ed J.

    2009-01-01

    This book is about the risk politics of food safety. Food-related risks regularly grab the headlines in ways that threaten reasoned debate and obstruct sensible policy making. The author explains why this is the case. He goes on to make the case for a properly informed and fully open public debate about food safety issues. He argues that this is the true antidote to the politics of scare, scandal and crisis.\\ud \\ud The book skilfully weaves together the many different threads of food safety a...

  3. Using a quantitative risk register to promote learning from a patient safety reporting system.

    Science.gov (United States)

    Mansfield, James G; Caplan, Robert A; Campos, John S; Dreis, David F; Furman, Cathie

    2015-02-01

    Patient safety reporting systems are now used in most health care delivery organizations. These systems, such as the one in use at Virginia Mason (Seattle) since 2002, can provide valuable reports of risk and harm from the front lines of patient care. In response to the challenge of how to quantify and prioritize safety opportunities, a risk register system was developed and implemented. Basic risk register concepts were refined to provide a systematic way to understand risks reported by staff. The risk register uses a comprehensive taxonomy of patient risk and algorithmically assigns each patient safety report to 1 of 27 risk categories in three major domains (Evaluation, Treatment, and Critical Interactions). For each category, a composite score was calculated on the basis of event rate, harm, and cost. The composite scores were used to identify the "top five" risk categories, and patient safety reports in these categories were analyzed in greater depth to find recurrent patterns of risk and associated opportunities for improvement. The top five categories of risk were easy to identify and had distinctive "profiles" of rate, harm, and cost. The ability to categorize and rank risks across multiple dimensions yielded insights not previously available. These results were shared with leadership and served as input for planning quality and safety initiatives. This approach provided actionable input for the strategic planning process, while at the same time strengthening the Virginia Mason culture of safety. The quantitative patient safety risk register serves as one solution to the challenge of extracting valuable safety lessons from large numbers of incident reports and could profitably be adopted by other organizations.

  4. Toward a Safety Risk-Based Classification of Unmanned Aircraft

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2016-01-01

    There is a trend of growing interest and demand for greater access of unmanned aircraft (UA) to the National Airspace System (NAS) as the ongoing development of UA technology has created the potential for significant economic benefits. However, the lack of a comprehensive and efficient UA regulatory framework has constrained the number and kinds of UA operations that can be performed. This report presents initial results of a study aimed at defining a safety-risk-based UA classification as a plausible basis for a regulatory framework for UA operating in the NAS. Much of the study up to this point has been at a conceptual high level. The report includes a survey of contextual topics, analysis of safety risk considerations, and initial recommendations for a risk-based approach to safe UA operations in the NAS. The next phase of the study will develop and leverage deeper clarity and insight into practical engineering and regulatory considerations for ensuring that UA operations have an acceptable level of safety.

  5. A risk informed safety classification for a Nordic NPP

    International Nuclear Information System (INIS)

    Jaenkaelae, K.

    2002-01-01

    The report describes a study to develop a safety classification proposal or classi- fication recommendations based on risks for selected equipment of a nuclear power plant. The application plant in this work is Loviisa NPP unit 1. The safety classification proposals are to be considered as an exercise in this pilot study and do not necessarily represent final proposals in a real situation. Comparisons to original safety classifications and technical specifications were made. The study concludes that it is possible to change safety classes or safety signifi- cances as considered in technical specifications and in in-service-inspections into both directions without endangering the safety or even by improving the safety. (au)

  6. Risk perception, risk management and safety assessment: what can governments do to increase public confidence in their vaccine system?

    Science.gov (United States)

    MacDonald, Noni E; Smith, Jennifer; Appleton, Mary

    2012-09-01

    For decades vaccine program managers and governments have devoted many resources to addressing public vaccine concerns, vaccine risk perception, risk management and safety assessment. Despite ever growing evidence that vaccines are safe and effective, public concerns continue. Education and evidence based scientific messages have not ended concerns. How can governments and programs more effectively address the public's vaccine concerns and increase confidence in the vaccine safety system? Vaccination hesitation has been attributed to concerns about vaccine safety, perceptions of high vaccine risks and low disease risk and consequences. Even when the public believes vaccines are important for protection many still have concerns about vaccine safety. This overview explores how heuristics affect public perception of vaccines and vaccine safety, how the public finds and uses vaccine information, and then proposes strategies for changes in the approach to vaccine safety communications. Facts and evidence confirming the safety of vaccines are not enough. Vaccine beliefs and behaviours must be shaped. This will require a shift in the what, when, how and why of vaccine risk and benefit communication content and practice. A change to a behavioural change strategy such as the WHO COMBI program that has been applied to disease eradication efforts is suggested. Copyright © 2011. Published by Elsevier Ltd.. All rights reserved.

  7. 2013 Pleasure Craft and Sailing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  8. A comparison of integrated safety analysis and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Damon, Dennis R.; Mattern, Kevin S.

    2013-01-01

    The U.S. Nuclear Regulatory Commission conducted a comparison of two standard tools for risk informing the regulatory process, namely, the Probabilistic Risk Assessment (PRA) and the Integrated Safety Analysis (ISA). PRA is a calculation of risk metrics, such as Large Early Release Frequency (LERF), and has been used to assess the safety of all commercial power reactors. ISA is an analysis required for fuel cycle facilities (FCFs) licensed to possess potentially critical quantities of special nuclear material. A PRA is usually more detailed and uses more refined models and data than an ISA, in order to obtain reasonable quantitative estimates of risk. PRA is considered fully quantitative, while most ISAs are typically only partially quantitative. The extension of PRA methodology to augment or supplant ISAs in FCFs has long been considered. However, fuel cycle facilities have a wide variety of possible accident consequences, rather than a few surrogates like LERF or core damage as used for reactors. It has been noted that a fuel cycle PRA could be used to better focus attention on the most risk-significant structures, systems, components, and operator actions. ISA and PRA both identify accident sequences; however, their treatment is quite different. ISA's identify accidents that lead to high or intermediate consequences, as defined in 10 Code of Federal Regulations (CFR) 70, and develop a set of Items Relied on For Safety (IROFS) to assure adherence to performance criteria. PRAs identify potential accident scenarios and estimate their frequency and consequences to obtain risk metrics. It is acceptable for ISAs to provide bounding evaluations of accident consequences and likelihoods in order to establish acceptable safety; but PRA applications usually require a reasonable quantitative estimate, and often obtain metrics of uncertainty. This paper provides the background, features, and methodology associated with the PRA and ISA. The differences between the

  9. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  10. Developing safety performance functions incorporating reliability-based risk measures.

    Science.gov (United States)

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Risk management model of winter navigation operations

    International Nuclear Information System (INIS)

    Valdez Banda, Osiris A.; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-01-01

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish–Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. - Highlights: •A model to assess and manage the risk of winter navigation operations is proposed. •The risks of oil spills in winter navigation in the Gulf of Finland are analysed. •The model assesses and prioritizes actions to control the risk of the operations. •The model suggests navigational training as the most efficient risk control option.

  12. Risk management for existing energy facilities. A global approach to numerical safety goals

    International Nuclear Information System (INIS)

    Pate-Cornell, M.E.

    1993-01-01

    This paper presents a structured set of numerical safety goals for risk management of existing energy facilities. The rationale behind these safety goals is based on principles of equity and economic efficiency. Some of the issues involved when using probabilistic risk analyses results for safety decisions are discussed. A brief review of existing safety targets and open-quotes floating numbersclose quotes is presented, and a set of safety goals for industrial risk management is proposed. Relaxation of these standards for existing facilities, the relevance of the lifetime of the plant, the treatment of uncertainties, and problems of failure dependencies are discussed briefly. 17 refs., 1 fig

  13. En bloc ligation of renal vessels is safe and reduces duration of surgery

    DEFF Research Database (Denmark)

    Azawi, Nessn Htum; Hult, Mariam Annalisa Skibsted; Dahl, Claus

    2016-01-01

    INTRODUCTION: Conventionally, individual ligation of the renal vessels with clips is performed during laparoscopic nephrectomy (LN). Concomitant ligation of the vessels is not a standard procedure due to an expected risk of stapler dysfunction and the development of arteriovenous fistulas (AVF......). Using the EndoGIA stapler 45/2.5 mm, we compared en bloc ligation with individual ligation during LN and nephroureterectomy (LNU) with a special focus on the development of AVF and technique safety. METHODS: This was a retrospective study of all patients undergoing LN or LNU at the Department of Urology......, Roskilde Hospital, Denmark, between January 2010 and April 2014. The follow-up period was minimum six months. RESULTS: A total of 228 patients underwent LN and 56 patients underwent LNU. In the LN group, 77 patients underwent en bloc ligation. The mean surgical time was significantly reduced to 89 minutes...

  14. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    Science.gov (United States)

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Understanding safety and production risks in rail engineering planning and protection.

    Science.gov (United States)

    Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia

    2009-07-01

    Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.

  16. Communicating on risk and safety in terms of awareness

    International Nuclear Information System (INIS)

    Hammar, L.; Andersson, Kjell

    1999-01-01

    'Safety awareness' is proposed as a possibly constructive concept for the purpose of promoting initiatives in nuclear safety work and gaining improved understanding when communicating on nuclear safety. Safety is thus conceived as resulting essentially from and actually constituting awareness of critical factors in regard of safety. The concept aims specifically at promoting the view of 'safety' as 'awareness of required conditions for being in control of risk'. It aims as well at making clearer sense in calling for constant improvement of safety, according to practice in a safety culture. This proposed view would be expected to lead to applying the usual types of safety criteria but offers the merit of attracting due attention to 'awareness goals' in process oriented safety management which are fundamental to maintaining and improving safety. Applications are discussed in regard of communicating on nuclear safety between decision-makers and the general public, developing and maintaining safety culture, integrating specialist expert contributions in over-all safety assessment, setting safety goals and using safety indicators

  17. Research and development of the prestressed concrete reactor vessel

    International Nuclear Information System (INIS)

    Shiozawa, Shoji; Omata, Ippei; Nakamura, Norio

    1975-01-01

    Compared with the steel reactor vessel, the prestressed concrete reactor vessel (PCRV) is said to be superior in safety and economy. One of the characteristics of the high temperature gas cooled reactor (HTGR) is the adoption of the PCRV instead of the steel reactor vessel to ensure safety. In order to improve safety characteristics, it is necessary for the PCRV to be provided with more reliable functions. When the multi-purpose HTGR or the gas cooled fast breeder reactor (GCFR) are realized in future, more severe conditions of technology will be imposed on the PCRV, and accordingly, technical developments are now increasingly required. IHI is now proceeding with the technical research and development on the PCRV, in which a basic study of its liner cooling system has already been completed. In this study applying a large cylindrical PCRV model, comparison was made between experimental data and analyses concerning the liner cooling system, and the results of analytical technique have been evaluated. The analytical technique established this time is applicable to the estimation of temperature distribution in the concrete of a large PCRV and also to the evaluation of the liner cooling system. (auth.)

  18. The Research on Safety Management Information System of Railway Passenger Based on Risk Management Theory

    Science.gov (United States)

    Zhu, Wenmin; Jia, Yuanhua

    2018-01-01

    Based on the risk management theory and the PDCA cycle model, requirements of the railway passenger transport safety production is analyzed, and the establishment of the security risk assessment team is proposed to manage risk by FTA with Delphi from both qualitative and quantitative aspects. The safety production committee is also established to accomplish performance appraisal, which is for further ensuring the correctness of risk management results, optimizing the safety management business processes and improving risk management capabilities. The basic framework and risk information database of risk management information system of railway passenger transport safety are designed by Ajax, Web Services and SQL technologies. The system realizes functions about risk management, performance appraisal and data management, and provides an efficient and convenient information management platform for railway passenger safety manager.

  19. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  20. 33 CFR 96.240 - What functional requirements must a safety management system meet?

    Science.gov (United States)

    2010-07-01

    ... a safety management system meet? 96.240 Section 96.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.240 What functional...

  1. Current issues and perspectives in food safety and risk assessment.

    Science.gov (United States)

    Eisenbrand, G

    2015-12-01

    In this review, current issues and opportunities in food safety assessment are discussed. Food safety is considered an essential element inherent in global food security. Hazard characterization is pivotal within the continuum of risk assessment, but it may be conceived only within a very limited frame as a true alternative to risk assessment. Elucidation of the mode of action underlying a given hazard is vital to create a plausible basis for human toxicology evaluation. Risk assessment, to convey meaningful risk communication, must be based on appropriate and reliable consideration of both exposure and mode of action. New perspectives, provided by monitoring human exogenous and endogenous exposure biomarkers, are considered of great promise to support classical risk extrapolation from animal toxicology. © The Author(s) 2015.

  2. A holistic approach to control process safety risks: Possible ways forward

    International Nuclear Information System (INIS)

    Pasman, H.J.; Knegtering, B.; Rogers, W.J.

    2013-01-01

    Pursuing process safety in a world of continuously increasing requirements is not a simple matter. Keeping balance between producing quality and volume under budget constraints while maintaining an adequate safety level proves time and time again a difficult task given that evidently major accidents cannot be avoided. Lack of resilience from an organizational point of view to absorb unwanted and unforeseen disturbances has in recent years been put forward as a major cause, while organizational erosive drift is shown to be responsible for complacency and degradation of safety attitude. A systems approach to safety provides a new paradigm with the promise of new comprehensive tools. At the same time, one realizes that risk assessment will fall short of identifying and quantifying all possible scenarios. First, human error is in most assessments not included. It is even argued that determining human failure probability by decomposing it to basic elements of error is not possible. Second, the crux of the systemic approach is that safety is an emergent property, which means the same holds for the technological aspect: risk is not fully predictable from failure of components. By surveying and applying recent literature, besides analysing, this paper proposes a way forward by considering resilience of a socio-technical system both from an organizational and a technical side. The latter will for a large part be determined by the plant design. Sufficient redundancy and reserve shall be kept to preserve sufficient resilience, but the question that rises is how. Available methods are risk assessment and process simulation. It is helpful that the relation between risk and resilience analysis has been recently defined. Also, in a preliminary study the elements of resilience of a process have become listed. In the latter, receiving and interpreting weak signals to boost situational awareness plays an important role. To maintain alertness on the functioning of a safety management

  3. Failure probability analysis on mercury target vessel

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro

    2005-03-01

    Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As a result, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10 -11 in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel by using mercury-leakage sensors. (author)

  4. Inherent Risk or Risky Decision? Coach's Failure to Use Safety Device an Assumed Risk

    Science.gov (United States)

    Dodds, Mark A.; Bochicchio, Kristi Schoepfer

    2013-01-01

    The court examined whether a coach's failure to implement a safety device during pitching practice enhanced the risk to the athlete or resulted in a suboptimal playing condition, in the context of the assumption of risk doctrine.

  5. Safety Evaluation Report: Development of Improved Composite Pressure Vessels for Hydrogen Storage, Lincoln Composites, Lincoln, NE, May 25, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Fort, III, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kallman, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maes, Miguel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skolnik, Edward G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiner, Steven C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-12-22

    Lincoln Composites operates a facility for designing, testing, and manufacturing composite pressure vessels. Lincoln Composites also has a U.S. Department of Energy (DOE)-funded project to develop composite tanks for high-pressure hydrogen storage. The initial stage of this project involves testing the permeation of high-pressure hydrogen through polymer liners. The company recently moved and is constructing a dedicated research/testing laboratory at their new location. In the meantime, permeation tests are being performed in a corner of a large manufacturing facility. The safety review team visited the Lincoln Composites site on May 25, 2010. The project team presented an overview of the company and project and took the safety review team on a tour of the facility. The safety review team saw the entire process of winding a carbon fiber/resin tank on a liner, installing the boss and valves, and curing and painting the tank. The review team also saw the new laboratory that is being built for the DOE project and the temporary arrangement for the hydrogen permeation tests.

  6. Comparison of API 510 pressure vessels inspection planning with API 581 risk-based inspection planning approaches

    International Nuclear Information System (INIS)

    Shishesaz, Mohammad Reza; Nazarnezhad Bajestani, Mohammad; Hashemi, Seyed Javad; Shekari, Elahe

    2013-01-01

    To ensure mechanical integrity, all pressure vessels shall be inspected at the intervals provided in inspection codes or based on a risk-based inspection (RBI) assessment. The RBI assessment may allow previously established inspection intervals to be extended. This paper describes the methodology, analysis and results of two RBI studies conducted on 293 pressure vessel components in two crude oil distillation units. Based on API RBI methodology in API 581 (2008), risk target concept was used for determining inspection dates. It was shown that when thinning is the major active damage, the RBI recommended intervals are as long as twice the API 510 intervals. This paper summarizes that, as a fundamental step in the risk calculation, RBI has a more defined methodology for evaluating equipment for multiple damage mechanisms and a more defined approach to specify the use of other inspection technologies beyond the traditional visual, ultrasonic, and radiography tests. -- Highlights: • RBI calculated inspection intervals are as long as twice of API 510 inspection code. • Two case studies verified the advantage of RBI in inspection planning. • RBI is a more reliable methodology when evaluating multiple damage mechanisms. • Damage factor calculations can be used for determining RSFa value in FFS assessments

  7. Sanitation health risk and safety planning in urban residential ...

    African Journals Online (AJOL)

    The aim of this review paper was to determine the best sanitation health risk and safety planning approach for sustainable management of urban environment. This was achieved by reviewing the concept of sanitation safety planning as a tool. The review adopted exploratory research approach and used secondary data ...

  8. Assessment of reactor vessel integrity (ARVI)

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R. E-mail: sehgal@ne.kth.se; Theerthan, A.; Giri, A.; Karbojian, A.; Willschuetz, H.G.; Kymaelaeinen, O.; Vandroux, S.; Bonnet, J.M.; Seiler, J.M.; Ikkonen, K.; Sairanen, R.; Bhandari, S.; Buerger, M.; Buck, M.; Widmann, W.; Dienstbier, J.; Techy, Z.; Kostka, P.; Taubner, R.; Theofanous, T.; Dinh, T.N

    2003-04-01

    The cost-shared project ARVI (assessment of reactor vessel integrity) involves a total of nine organisations from Europe and USA. The objective of the ARVI Project is to resolve the safety issues that remain unresolved for the melt vessel interaction phase of the in-vessel progression of a severe accident. The work consists of experiments and analysis development. Four tests were performed in the EC-FOREVER Programme, in which failure was achieved in-vessels employing the French pressure vessel steel. The tests were analysed with the commercial code ANSYS-Multiphysics, and the codes SYSTUS+ and PASULA, and quite good agreement was achieved for the failure location. Natural convection experiments in stratified pools have been performed in the SIMECO and the COPO facilities, which showed that much greater heat is transferred downwards for immiscible layers or before layers mix. A model for gap cooling and a set of simplified models for the system codes have been developed. MVITA code calculations have been performed for the Czech and Hungarian VVERs, towards evaluation of the in-vessel melt retention accident management scheme. Tests have been performed at the ULPU facility with organised flow for vessel external cooling. Considerable enhancement of the critical heat flux (CHF) was obtained. The ARVI Project has reached the halfway stage. This paper presents the results obtained thus far from the project.

  9. Crack propagation on spherical pressure vessels

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1975-01-01

    The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here

  10. Improving ICU risk management and patient safety.

    Science.gov (United States)

    Kielty, Lucy Ann

    2017-06-12

    Purpose The purpose of this paper is to describe a study which aimed to develop and validate an assessment method for the International Electrotechnical Commission (IEC) 80001-1 (IEC, 2010) standard (the Standard); raise awareness; improve medical IT-network project risk management processes; and improve intensive care unit patient safety. Design/methodology/approach An assessment method was developed and piloted. A healthcare IT-network project assessment was undertaken using a semi-structured group interview with risk management stakeholders. Participants provided feedback via a questionnaire. Descriptive statistics and thematic analysis was undertaken. Findings The assessment method was validated as fit for purpose. Participants agreed (63 per cent, n=7) that assessment questions were clear and easy to understand, and participants agreed (82 per cent, n=9) that the assessment method was appropriate. Participant's knowledge of the Standard increased and non-compliance was identified. Medical IT-network project strengths, weaknesses, opportunities and threats in the risk management processes were identified. Practical implications The study raised awareness of the Standard and enhanced risk management processes that led to improved patient safety. Study participants confirmed they would use the assessment method in future projects. Originality/value Findings add to knowledge relating to IEC 80001-1 implementation.

  11. Integral experiments on in-vessel coolability and vessel creep: results and analysis of the FOREVER-C1 test

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Nourgaliev, R.R.; Dinh, T.N.; Karbojian, A. [Division of Nuclear Power Safety, Royal Institute of Technology, Drottning Kristinas Vaeg., Stockholm (Sweden)

    1999-07-01

    This paper describes the FOREVER (Failure Of REactor VEssel Retention) experimental program, which is currently underway at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS). The objectives of the FOREVER experiments are to obtain data and develop validated models (i) on the melt coolability process inside the vessel, in the presence of water (in particular, on the efficacy of the postulated gap cooling to preclude vessel failure); and (ii) on the lower head failure due to the creep process in the absence of water inside and/or outside the lower head. The paper presents the experimental results and analysis of the first FOREVER-C1 test. During this experiment, the 1/10th scale pressure vessel, heated to about 900degC and pressurized to 26 bars, was subjected to creep deformation in a non-stop 24-hours test. The vessel wall displacement data clearly shows different stages of the vessel deformation due to thermal expansion, elastic, plastic and creep processes. The maximum displacement was observed at the lowermost region of the vessel lower plenum. Information on the FOREVER-C1 measured thermal characteristics and analysis of the observed thermal and structural behavior is presented. The coupled nature of thermal and mechanical processes, as well as the effect of other system conditions (such as depressurization) on the melt pool and vessel temperature responses are analyzed. (author)

  12. Risk Assessment in the UK Health and Safety System: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Karen Russ

    2010-09-01

    Full Text Available In the UK, a person or organisation that creates risk is required to manage and control that risk so that it is reduced 'So Far As Is Reasonably Practicable' (SFAIRP. How the risk is managed is to be determined by those who create the risk. They have a duty to demonstrate that they have taken action to ensure all risk is reduced SFAIRP and must have documentary evidence, for example a risk assessment or safety case, to prove that they manage the risks their activities create. The UK Health and Safety Executive (HSE does not tell organisations how to manage the risks they create but does inspect the quality of risk identification and management. This paper gives a brief overview of where responsibility for occupational health and safety lies in the UK, and how risk should be managed through risk assessment. The focus of the paper is three recent major UK incidents, all involving fatalities, and all of which were wholly avoidable if risks had been properly assessed and managed. The paper concludes with an analysis of the common failings of risk assessments and key actions for improvement.

  13. Risk Assessment in the UK Health and Safety System: Theory and Practice.

    Science.gov (United States)

    Russ, Karen

    2010-09-01

    In the UK, a person or organisation that creates risk is required to manage and control that risk so that it is reduced 'So Far As Is Reasonably Practicable' (SFAIRP). How the risk is managed is to be determined by those who create the risk. They have a duty to demonstrate that they have taken action to ensure all risk is reduced SFAIRP and must have documentary evidence, for example a risk assessment or safety case, to prove that they manage the risks their activities create. The UK Health and Safety Executive (HSE) does not tell organisations how to manage the risks they create but does inspect the quality of risk identification and management. This paper gives a brief overview of where responsibility for occupational health and safety lies in the UK, and how risk should be managed through risk assessment. The focus of the paper is three recent major UK incidents, all involving fatalities, and all of which were wholly avoidable if risks had been properly assessed and managed. The paper concludes with an analysis of the common failings of risk assessments and key actions for improvement.

  14. Emergency venting of pressure vessels

    International Nuclear Information System (INIS)

    Steinkamp, H.

    1995-01-01

    With the numerical codes developed for safety analysis the venting of steam vessel can be simulated. ATHLET especially is able to predict the void fraction depending on the vessel height. Although these codes contain a one-dimensional model they allow the description of complex geometries due to the detailed nodalization of the considered apparatus. In chemical reactors, however, the venting process is not only influenced by the flashing behaviour but additionally by the running chemical reaction in the vessel. Therefore the codes used for modelling have to consider the kinetics of the chemical reaction. Further multi-component systems and dissolving processes have to be regarded. In order to preduct the fluid- and thermodynamic process it could be helpful to use 3-dimensional codes in combination with the one-dimensional codes as used in nuclear industry to get a more detailed describtion of the running processes. (orig./HP)

  15. Analisis Remaining Life dan Penjadwalan Program Inspeksi pada Pressure Vessel dengan Menggunakan Metode Risk Based Inspection (RBI

    Directory of Open Access Journals (Sweden)

    Dyah Arina Wahyu Lillah

    2017-01-01

    Full Text Available Seiring perkembangan eksplorasi minyak dan gas bumi di dunia, perusahaan minyak dan gas di Indonesia juga turut berlomba-lomba untuk mendapatkan ladang minyak dan gas bumi sebanyak-banyaknya. Perkembangan ini turut dipengaruhi oleh aturan-aturan pemerintah mengenai keselamatan dan pencegahan bahaya baik pada unit yang dikelola maupun tenaga kerja pengelola. Untuk itu semua perlatan-peralatan (unit kerja harus dijamin kehandalaannya agar tidak menimbulkan bahaya baik bagi pekerja maupun lingkungan. Subjek penelitian dalam tugas akhir ini ialah pada pressure vessel yang dimiliki oleh Terminal LPG Semarang. Kemungkinan bahaya yang dapat menyebabkan kerusakan pada pressure vessel perlu dianalisis agar dapat meminimalkan resiko yang akan terjadi. Metode Risk Based Inspection (RBI diharapkan dapat meminimalkan resiko yang ada pada pressure vessel. Penilaian resiko dalam tugas akhir ini mengacu pada standar API RP 581. Untuk mengetahui besarnya resiko yang ada pada plant, maka terlebih dahulu harus dihitung besarnya probabilitas kegagalan dan konsekuensi apabila terjadi kegagalan. Langkah selanjutnya ialah membandingkan besarnya resiko yang didapat dengan target resiko yang dimiliki oleh perusahaan. Dari hasil perbandingan ini dapat diketahui tingkat resiko pressure vessel, sehingga dapat ditentukan jadwal inspeksi dan metode inspeksi yang tepat.

  16. Managing health and safety risks: Implications for tailoring health and safety management system practices.

    Science.gov (United States)

    Willmer, D R; Haas, E J

    2016-01-01

    As national and international health and safety management system (HSMS) standards are voluntarily accepted or regulated into practice, organizations are making an effort to modify and integrate strategic elements of a connected management system into their daily risk management practices. In high-risk industries such as mining, that effort takes on added importance. The mining industry has long recognized the importance of a more integrated approach to recognizing and responding to site-specific risks, encouraging the adoption of a risk-based management framework. Recently, the U.S. National Mining Association led the development of an industry-specific HSMS built on the strategic frameworks of ANSI: Z10, OHSAS 18001, The American Chemistry Council's Responsible Care, and ILO-OSH 2001. All of these standards provide strategic guidance and focus on how to incorporate a plan-do-check-act cycle into the identification, management and evaluation of worksite risks. This paper details an exploratory study into whether practices associated with executing a risk-based management framework are visible through the actions of an organization's site-level management of health and safety risks. The results of this study show ways that site-level leaders manage day-to-day risk at their operations that can be characterized according to practices associated with a risk-based management framework. Having tangible operational examples of day-to-day risk management can serve as a starting point for evaluating field-level risk assessment efforts and their alignment to overall company efforts at effective risk mitigation through a HSMS or other processes.

  17. Safety significance of ATR [Advanced Test Reactor] passive safety response attributes

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1989-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory was designed with some passive safety response attributes which contribute to the safety posture of the facility. The three passive safety attributes being evaluated in the paper are: (1) In-core and in-vessel natural convection cooling, (2) a passive heat sink capability of the ATR primary coolant system (PCS) for the transfer of decay power from the uninsulated piping to the confinement, and (3) gravity feed of emergency coolant makeup. The safety significance of the ATR passive safety response attributes is that the reactor can passively respond for most transients, given a reactor scram, to provide adequate decay power removal and a significant time for operator action should the normal active heat removal systems and their backup systems both fail. The ATR Interim Level 1 Probabilistic Risk Assessment (PRA) model ands results were used to evaluate the significance to ATR fuel damage frequency (or probability) of the above three passive response attributes. The results of the evaluation indicate that the first attribute is a major safety characteristic of the ATR. The second attribute has a noticeable but only minor safety significance. The third attribute has no significant influence on the ATR Level 1 PRA because of the diversity and redundancy of the ATR firewater injection system (emergency coolant system). 8 refs., 4 figs., 1 tab

  18. Generic analyses for evaluation of low Charpy upper-shelf energy effects on safety margins against fracture of reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-07-01

    Appendix G to 10 CFR Part 50 requires that reactor pressure vessel beltline material maintain Charpy upper-shelf energies of no less than 50 ft-lb during the plant operating life, unless it is demonstrated in a manner approved by the Nuclear Regulatory Commission (NRC), that lower values of Charpy upper-shelf energy provide margins of safety against fracture equivalent to those in Appendix G to Section XI of the ASME Code. Analyses based on acceptance criteria and analysis methods adopted in the ASME Code Case N-512 are described herein. Additional information on material properties was provided by the NRC, Office of Nuclear Regulatory Research, Materials Engineering Branch. These cases, specified by the NRC, represent generic applications to boiling water reactor and pressurized water reactor vessels. This report is designated as HSST Report No. 140

  19. Risk Classification and Risk-based Safety and Mission Assurance

    Science.gov (United States)

    Leitner, Jesse A.

    2014-01-01

    Recent activities to revamp and emphasize the need to streamline processes and activities for Class D missions across the agency have led to various interpretations of Class D, including the lumping of a variety of low-cost projects into Class D. Sometimes terms such as Class D minus are used. In this presentation, mission risk classifications will be traced to official requirements and definitions as a measure to ensure that projects and programs align with the guidance and requirements that are commensurate for their defined risk posture. As part of this, the full suite of risk classifications, formal and informal will be defined, followed by an introduction to the new GPR 8705.4 that is currently under review.GPR 8705.4 lays out guidance for the mission success activities performed at the Classes A-D for NPR 7120.5 projects as well as for projects not under NPR 7120.5. Furthermore, the trends in stepping from Class A into higher risk posture classifications will be discussed. The talk will conclude with a discussion about risk-based safety and mission assuranceat GSFC.

  20. Effect of radiation damage on operating safety of steel pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Vacek, M.; Havel, S.; Stoces, B.; Brumovsky, M.

    1980-01-01

    The effects are assessed of the environment upon mechanical properties of steel used generally for pressure vessels of light water nuclear reactors. Changes caused by radiation affect the reliability of vessels. Deterioration of steel properties is mainly due to neutron radiation. The article deals with factors bearing upon damage and with methods allowing to evaluate the reliability of vessels and predict their service life. Operating reliability of vessels is very unfavourably affected by planned and accidental reactor transients. (author)

  1. Selection of tolerable risk criteria for dam safety decision making

    International Nuclear Information System (INIS)

    Nielsen, N.M.; Hartford, D.N.D.; MacDonald, T.F.

    1994-01-01

    Risk assessment has received increasing attention in recent years as a means of aiding decision making on dams by providing systematic and rational methods for dealing with risk and uncertainty. Risk assessment is controversial and decisions affecting risk to life are the most controversial. Tolerable criteria, based on the risks that society is prepared to accept in order to avoid excessive costs, set bounds within which risk-based decisions may be made. The components of risk associated with dam safety are addressed on an individual basis and criteria established for each component, thereby permitting flexibility in the balance between component risk and avoiding the problems of placing a monetary value on life. The guiding principle of individual risk is that dams do not impose intolerable risks on any individual. A risk to life of 1 in 10 4 per annum is generally considered the maximum tolerable risk. When considering societal risk, the safety of a dam should be proportional to the consequences of its failure. Risks of financial losses beyond the corporation's ability to finance should be so low as to be considered negligible. 17 refs., 3 figs

  2. 76 FR 2402 - Maritime Security Directive 104-6 (Rev 5); Guidelines for U.S. Vessels Operating in High Risk Waters

    Science.gov (United States)

    2011-01-13

    ... Directive 104-6 (Rev 5); Guidelines for U.S. Vessels Operating in High Risk Waters AGENCY: Coast Guard, DHS... designated high risk waters, and provides additional counter-piracy guidance and mandatory measures for these... MARSEC Directives are available at your local Captain of the Port (COTP) office. Phone numbers and...

  3. Elastic plastic buckling of elliptical vessel heads

    International Nuclear Information System (INIS)

    Alix, M.; Roche, R.L.

    1981-08-01

    The risks of buckling of dished vessel head increase when the vessel is thin walled. This paper gives the last results on experimental tests of 3 elliptical heads and compares all the results with some empirical formula dealing with elastic and plastic buckling

  4. Safety analyses for transient behavior of plasma and in-vessel components during plasma abnormal events in fusion reactor

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    Safety analyses on plasma abnormal events have been performed using a hybrid code of a plasma dynamics model and a heat transfer model of in-vessel components. Several abnormal events, e.g., increase in fueling rate, were selected for the International Thermonuclear Experimental Reactor (ITER) and transient behavior of the plasma and the invessel components during the events was analyzed. The physics model for safety analysis was conservatively prepared. In most cases, the plasma is terminated by a disruption or it returns to the original operation point. When the energy confinement improves by a factor of 2.0 in the steady state, which is a hypothetical assumption under the present plasma data, the maximum fusion power reaches about 3.3 GW at about 3.6 s and the plasma is terminated due to a disruption. However, the results obtained in this study show the confinement boundary of ITER can be kept almost intact during the abnormal plasma transients, as long as the cooling system works normally. Several parametric studies are needed to comprehend the overpower transient including structure behavior, since many uncertainties are connected to the filed of the plasma physics. And, future work will need to discuss the burn control scenario considering confinement mode transition, system specifications, experimental plans and safety regulations, etc. to confirm the safety related to the plasma anomaly. (author)

  5. German data for risk based fire safety assessment

    International Nuclear Information System (INIS)

    Roewekamp, M.; Berg, H.P.

    1998-01-01

    Different types of data are necessary to perform risk based fire safety assessments and, in particular, to quantify the fire event tree considering the plant specific conditions. Data on fire barriers, fire detection and extinguishing, including also data on secondary effects of a fire, have to be used for quantifying the potential hazard and damage states. The existing German database on fires in nuclear power plants (NPPs) is very small. Therefore, in general generic data, mainly from US databases, are used for risk based safety assessments. Due to several differences in the plant design and conditions generic data can only be used as conservative assumptions. World-wide existing generic data on personnel failures in case of fire fighting have only to be adapted to the plant specific conditions inside the NPP to be investigated. In contrary, unavailabilities of fire barrier elements may differ strongly depending on different standards, testing requirements, etc. In addition, the operational behaviour of active fire protection equipment may vary depending on type and manufacturer. The necessity for more detailed and for additional plant specific data was the main reason for generating updated German data on the operational behaviour of active fire protection equipment/features in NPPs to support risk based fire safety analyses being recommended to be carried out as an additional tool to deterministic fire hazard analyses in the frame of safety reviews. The results of these investigations revealed a broader and more realistic database for technical reliability of active fire protection means, but improvements as well as collection of further data are still necessary. (author)

  6. Nursing involvement in risk and patient safety management in Primary Care.

    Science.gov (United States)

    Coronado-Vázquez, Valle; García-López, Ana; López-Sauras, Susana; Turón Alcaine, José María

    Patient safety and quality of care in a highly complex healthcare system depends not only on the actions of professionals at an individual level, but also on interaction with the environment. Proactive risk management in the system to prevent incidents and activities targeting healthcare teams is crucial in establishing a culture of safety in centres. Nurses commonly lead these safety strategies. Even though safety incidents are relatively infrequent in primary care, since the majority are preventable, actions at this level of care are highly effective. Certification of services according to ISO standard 9001:2008 focuses on risk management in the system and its use in certifying healthcare centres is helping to build a safety culture amongst professionals. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  7. Onshore preparedness for hazardous chemical marine vessel accidents: A case study

    Directory of Open Access Journals (Sweden)

    Faisel T. Illiyas

    2016-09-01

    Full Text Available Hazardous and noxious substances (HNS are widely transported in marine vessels to reach every part of the world. Bulk transportation of hazardous chemicals is carried out in tank container–carrying cargo ships or in designed vessels. Ensuring the safety of HNS containers during maritime transportation is critically important as the accidental release of any substance may be lethal to the on-board crew and marine environment. A general assumption in maritime accidents in open ocean is that it will not create any danger to the coastal population. The case study discussed in this article throws light on the dangers latent in maritime HNS accidents. An accident involving an HNS-carrying marine vessel in the Arabian Sea near the coast of Yemen became a safety issue to the coastal people of Kasargod District of Kerala, India. The ship carried more than 4000 containers, which were lost to the sea in the accident. Six HNS tank containers were carried by the waves and shored at the populated coast of Kasargod, more than 650 nautical miles east from the accident spot. The unanticipated sighting of tank containers in the coast and the response of the administration to the incident, the hurdles faced by the district administration in handling the case, the need for engaging national agencies and lessons learned from the incident are discussed in the article. This case study has proven that accidents in the open ocean have the potential to put the coastal areas at risk if the on-board cargo contains hazardous chemicals. Littoral nations, especially those close to the international waterlines, must include hazardous chemical spills to their oil spill contingency plans.

  8. Concept of a Prestressed Cast Iron Pressure Vessel for a Modular High Temperature Reactor

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang; Bounin, Dieter

    2014-01-01

    High Temperature Reactors (HTR) are representing one of the most interesting solutions for the upcoming generation of nuclear technology, especially with view to their inherent safety characteristics. To complete the safety concept of such plants already in the first phase of the technical development, Prestressed Cast Iron Pressure Vessels (PCIV) instead of the established forged steel reactor pressure vessels have been considered under the aspect of safety against bursting. A longterm research and development work, mainly performed in Germany, showed the excellent features of this technical solution. Diverse prototypic vessels were tested and officially proven. Design studies confirmed the feasibility of such a vessel concept also for Light Water Reactor types, too. The main concept elements of such a burst-proof vessel are: Strength and tightness functions are structurally separated. The tensile forces are carried by the prestressing systems consisting of a large number of independent wires. Compressive forces are applied to the vessel walls and heads. These are segmented into blocks of ductile cast iron. All cast iron blocks are prestressed to high levels of compression. The sealing function is assigned to a steel liner fixed to the cast iron blocks. The prestressing system is designed for an ultimate pressure of 2.3 times the design pressure. The prestress of the lids is designed for gapping at a much smaller pressure. Therefore, a drop of pressure will always occur before loss of strength (“leakage before failure”). In addition to these safety features further technical as well as economic aspects generate favorable assessment criteria: high design flexibility, feasibility of large vessel diameters; advantageous conditions for transport, assembly and decommissioning due to the segmented construction; advantage of workshop manufacturing; high-level quality control of components. Nowadays, considering the globally newly standardized safety requirements

  9. 33 CFR 96.250 - What documents and reports must a safety management system have?

    Science.gov (United States)

    2010-07-01

    ... safety management system have? 96.250 Section 96.250 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.250 What documents and...

  10. Efficient Vessel Tracking  with Accuracy Guarantees

    DEFF Research Database (Denmark)

    Redoutey, Martin; Scotti, Eric; Jensen, Christian Søndergaard

    2008-01-01

    Safety and security are top concerns in maritime navigation, particularly as maritime traffic continues to grow and as crew sizes are reduced. The Automatic Identification System (AIS) plays a key role in regard to these concerns. This system, whose objective is in part to identify and locate ves...... accuracies at lower communication costs. The techniques employ movement predictions that are shared between vessels and the VTS. Empirical studies with a prototype implementation and real vessel data demonstrate that the techniques are capable of significantly improving the AIS....

  11. Resolution of the Task A-11 reactor-vessel materials-toughness safety issue. Part I. Main report. Part II. Staff responses to public comments, and Appendices A and B

    International Nuclear Information System (INIS)

    Johnson, R.

    1982-10-01

    This report provides the NRC position with respect to the reactor pressure vessel safety analysis required according to the rules given in the Code of Federal Regulations, Title 10 (10 CFR). An analysis is required whenever neutron irradiation reduces the Charpy V-notch upper shelf energy level in the vessel steel to 50 ft-lb or less. Task A-11 was needed because the available engineering methodology for such an analysis utilized linear elastic fracture mechanics principles, which could not fully account for the plastic deformation or stable crack extension expected at upper shelf temperatures. The Task A-11 goal was to develop an elastic-plastic fracture mechanics methodology, applicable to the beltline region of a pressurized water reactor vessel, which could be used in the required safety analysis. The goal was achieved with the help of a team of recognized experts. Part I of this volume contains the For Comment NUREG-0744, originally published in September 1981 and edited to accommodate comments from the public and the NRC staff. Edited segments are noted by vertical marginal lines. Part II of this volume contains the staff's responses to, and resolution of, the public comments received

  12. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  13. Pressure vessel for a BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To prevent the retention of low temperature water and also prevent the thermal fatigue of the pressure vessel by making large the curvature radius of a pressure vessel of a feed water sparger fitting portion and accelerating the mixing of low-temperature water at the feed water sparger base and in-pile hot water. Constitution: The curvature radius of the corner of the feed water sparger fitting portion in a pressure vessel is formed largely. In-pile circulating water infiltrates up to the base portion of the feed water sparger to carry outside low-temperature water at the base part, which is mixed with in-pile hot water. Accordingly, low temperature water does not stay at the base portion of the feed water sparger and generation of thermal fatigue in the pressure vessel can be prevented and the safety of the BWR type reactor can be improved. (Yoshino, Y.)

  14. Some aspects of reactor pressure vessel integrity

    International Nuclear Information System (INIS)

    Korosec, D.; Vojvodic, G.J.

    1996-01-01

    Reactor pressure vessel of the pressurized water reactor nuclear power plant is the subject of extreme interest due to the fact that presents the pressure boundary of the reactor coolant system, which is under extreme thermal, mechanical and irradiation effects. Reactor pressure vessel by itself prevents the release of fission products to the environment. Design, construction and in-service inspection of such component is governed by strict ASME rules and other forms of administrative control. The reactor pressure vessel in nuclear power plant Kriko is designed and constructed in accordance with related ASME rules. The in-service inspection program includes all requests presented in ASME Code section XI. In the present article all major requests for the periodic inspections of reactor pressure vessel and fracture mechanics analysis are discussed. Detailed and strict fulfillment of all prescribed provisions guarantee the appropriate level of nuclear safety. (author)

  15. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  16. Heavy-Section Steel Technology Program intermediate-scale pressure vessel tests

    International Nuclear Information System (INIS)

    Bryan, R.H.; Merkle, J.G.; Smith, G.C.; Whitman, G.D.

    1977-01-01

    The tests of intermediate-size vessels with sharp flaws permitted the comparison of experimentally observed behavior with analytical predictions of the behavior of flawed pressure vessels. Fracture strains estimated by linear elastic fracture mechanics (LEFM) were accurate in the cases in which the flaws resided in regions of high transverse restraint and the fracture toughness was sufficiently low for unstable fracture to occur prior to yielding through the vessel wall. When both of these conditions were not present, unstable fracture did occur, always preceded by stable crack growth; and the cylinders with flaws initially less than halfway through the wall attained gross yield prior to burst. Predictions of failure pressure of the vessels with flawed nozzles, based upon LEFM estimates of failure strain, were very conservative. LEFM calculations of critical load were based upon small-specimen fracture toughness test data. Whenever gross yielding preceded failure, the actual strains achieved were considerably greater than the estimated strains at failure based on LEFM. In such cases the strength of the vessel may be no longer dependent upon plane-strain fracture toughness but upon the capacity of the cracked section to carry the imposed load stably in the plastic range. Stable crack growth, which has not been predictable quantitatively, is an important factor in elastic-plastic analysis of strength. The ability of the flawed vessels to attain gross yield in unflawed sections has important qualitative implications on pressure vessel safety margins. The gross yield condition occurs in light-water-reactor pressure vessels at about 2 x design pressure. The intermediate vessel tests that demonstrated a capacity for exceeding this load confirm that the presumed margin of safety is not diminished by the presence of flaws of substantial size, provided that material properties are adequate

  17. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  18. Report on probabilistic safety assessment (PSA) quality assurance in utilization of risk information

    International Nuclear Information System (INIS)

    2006-12-01

    Recently in Japan, introduction of nuclear safety regulations using risk information such as probabilistic safety assessment (PSA) has been considered and utilization of risk information in the rational and practical measures on safety assurance has made a progress to start with the operation or inspection area. The report compiled results of investigation and studies of PSA quality assurance in risk-informed activities in the USA. Relevant regulatory guide and standard review plan as well as issues and recommendations were reviewed for technical adequacy and advancement of probabilistic risk assessment technology in risk-informed decision making. Useful and important information to be referred as issues in PSA quality assurance was identified. (T. Tanaka)

  19. Risk-based configuration control: Application of PSA in improving technical specifications and operational safety

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Vesely, W.E.

    1992-01-01

    Risk-based configuration control is the management of component configurations using a risk perspective to control risk and assure safety. A configuration, as used here, is a set of component operability statuses that define the state of a nuclear power plant. If the component configurations that have high risk implications do not occur, then the risk from the operation of nuclear power plants would be minimal. The control of component configurations, i.e., the management of component statuses, to minimize the risk from components being unavailable, becomes difficult, because the status of a standby safety system component is often not apparent unless it is tested. Controlling plant configuration from a risk-perspective can provide more direct risk control and also more operational flexibility by allowing looser controls in areas unimportant to risk. Risk-based configuration control approaches can be used to replace parts of nuclear power plant Technical Specifications. With the advances in probabilistic safety assessment (PSA) technology, such approaches to improve Technical Specifications and operational safety are feasible. In this paper, we present an analysis of configuration risks, and a framework for risk-based configuration control to achieve the desired control of risk-significant configurations during plant operation

  20. 46 CFR 91.60-5 - Cargo Ship Safety Construction Certificate.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cargo Ship Safety Construction Certificate. 91.60-5... VESSELS INSPECTION AND CERTIFICATION Certificates Under International Convention for Safety of Life at Sea, 1974 § 91.60-5 Cargo Ship Safety Construction Certificate. (a) All vessels on an international voyage...

  1. 46 CFR 189.60-10 - Cargo Ship Safety Equipment Certificate.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Cargo Ship Safety Equipment Certificate. 189.60-10... VESSELS INSPECTION AND CERTIFICATION Certificates Under International Convention for Safety of Life at Sea, 1974 § 189.60-10 Cargo Ship Safety Equipment Certificate. (a) All vessels on an international voyage...

  2. 46 CFR 189.60-5 - Cargo Ship Safety Construction Certificate.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Cargo Ship Safety Construction Certificate. 189.60-5... VESSELS INSPECTION AND CERTIFICATION Certificates Under International Convention for Safety of Life at Sea, 1974 § 189.60-5 Cargo Ship Safety Construction Certificate. (a) All vessels on an international voyage...

  3. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessels

    International Nuclear Information System (INIS)

    2005-10-01

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. This report addresses the reactor pressure vessel (RPV) in BWRs. Maintaining the structural integrity of this RPV throughout NPP service life in spite of several ageing mechanisms is essential for plant safety

  4. Vitamin D Status in Small Vessel and Large Vessel Ischemic Stroke Patients: A Case–control Study

    Directory of Open Access Journals (Sweden)

    Navid Manouchehri

    2017-01-01

    Full Text Available Background: Vitamin D insufficiency is a globally widespread issue. Recent studies have reported a high prevalence of Vitamin D deficiency in Middle-East countries. Studies have shown negative effects of Vitamin D deficiency on endothelium and related diseases such as ischemic brain stroke. Here, we assessed Vitamin D status in patients with different types of ischemic brain stroke and control group. Materials and Methods: Seventy-five patients (49.3% small vessel, 50.7% large vessel and 75 controls, matched for age (68.01 ± 10.94 vs. 67.64 ± 10.24 and sex (42 male and 33 female were recruited. 25(OH D levels were measured by Chemiluminescence immunoassay. 25(OH D status was considered as severely, moderately, or mildly deficient and normal with 25(OH D levels of less than 5, 5-10, 10-16, and> 16 ng/ml, respectively. Results: Mean ± standard error concentration of 25(OH D in cases and controls were 17.7 ± 1.5 and 26.9 ± 1.6 (P = 0.0001, respectively. Mild, moderate, and severe Vitamin D deficiency were observed in 10.8%, 32.4%, 8.1% vs. 34.3%, 31.5%, 9.5% of small vessel and large vessel group, respectively. 21.7% of the controls were Vitamin D deficient. Vitamin D deficiency was significantly associated with higher risk for ischemic stroke, (P = 0.000, OR = 7.17, 95% confidence interval: 3.36–15.29. 25(OH D levels were significantly higher in control group comparing to small vessel (26.9 ± 1.6 vs. 20.59 ± 2.6 P < 0.05 and large vessel (26.9 ± 1.6 vs. 13.4 ± 1.3 P < 0.001 stroke patients. Small vessel group had significantly higher levels of Vitamin D than large vessel (P < 0.05. Conclusion: Vitamin D deficiency significantly increases the risk of ischemic stroke, favoring the types with the pathogenesis of large vessel strokes.

  5. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals

    International Nuclear Information System (INIS)

    1999-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety, which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), and water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant

  6. 46 CFR 26.03-1 - Safety orientation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Safety orientation. 26.03-1 Section 26.03-1 Shipping... Requirements § 26.03-1 Safety orientation. (a) Before getting underway on any uninspected passenger vessel, the... this subpart engaged in tender service at yacht clubs and marinas, and vessels being demonstrated for a...

  7. Why consumers behave as they do with respect to food safety and risk information

    DEFF Research Database (Denmark)

    Verbeke, Wim; Frewer, Lynn J.; Scholderer, Joachim

    2007-01-01

    rankings. The aim of this contribution is to provide a better understanding to food risk analysts of why consumers behave as they do with respect to food safety and risk information. This paper presents some cases of seemingly irrational and inconsistent consumer behaviour with respect to food safety...... and risk information and provides explanations for these behaviours based on the nature of the risk and individual psychological processes. Potential solutions for rebuilding consumer confidence in food safety and bridging between lay and expert opinions towards food risks are reviewed. These include......In recent years, it seems that consumers are generally uncertain about the safety and quality of their food and their risk perception differs substantially from that of experts. Hormone and veterinary drug residues in meat persist to occupy a high position in European consumers' food concern...

  8. Design of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-01-01

    The ITER vacuum vessel is a major safety barrier and must support electromagnetic loads during plasma disruptions and vertical displacement events (VDE) and withstand plausible accidents without losing confinement.The vacuum vessel has a double wall structure to provide structural and electrical continuity in the toroidal direction. The inner and outer shells and poloidal stiffening ribs between them are joined by welding, which gives the vessel the required mechanical strength. The space between the shells will be filled with steel balls and plate inserts to provide additional nuclear shielding. Water flowing in this space is required to remove nuclear heat deposition, which is 0.2-2.5% of the total fusion power. The minor and major radii of the tokamak are 3.9 m and 13 m respectively, and the overall height is 15 m. The total thickness of the vessel wall structure is 0.4-0.7 m.The inboard and outboard blanket segments are supported from the vacuum vessel. The support structure is required to withstand a large total vertical force of 200-300 MN due to VDE and to allow for differential thermal expansion.The first candidate for the vacuum vessel material is Inconel 625, due to its higher electric resistivity and higher yield strength, even at high temperatures. Type 316 stainless steel is also considered a vacuum vessel material candidate, owing to its large database and because it is supported by more conventional fabrication technology. (orig.)

  9. Gas-cooled fast reactor safety - and overview and status of the U.S. program

    International Nuclear Information System (INIS)

    Torri, A.; Buttemer, D.R.

    1981-01-01

    In the revised GCFR Safety Program Plan a quantitative risk limit line has been adopted to establish requirements for the safety related functions and systems. The risk limit line is derived from an interpretation of NRC established licensing requirements, including those for LMFBR's. Multiple barriers to the progression of accident sequences are defined in the form of six Lines of Protection (LOPs). LOPs-1 to 3 are dedicated to accident prevention and represent the normal operating systems, the dedicated safety systems and the inherent design features, respectively. LOPs-4 to 6 are dedicated to the mitigation of core melt accident consequences and include in-vessel accident containment, secondary containment integrity and radiological attenuation, respectively. Cumulative frequency limits and consequence limits are established for each LOP. Design features associated with each LOP are described and the results of supporting safety analyses are summarized. (author)

  10. An Autopsy Checklist: A Monitor of Safety and Risk Management.

    Science.gov (United States)

    Shkrum, Michael James; Kent, Jessica

    2016-09-01

    Any autopsy has safety and risk management issues, which can arise in the preautopsy, autopsy, and postautopsy phases. The London Health Sciences Department of Pathology and Laboratory Medicine Autopsy Checklist was developed to address these issues. The current study assessed 1 measure of autopsy safety: the effectiveness of the checklist in documenting pathologists' communication of the actual or potential risk of blood-borne infections to support staff. Autopsy checklists for cases done in 2012 and 2013 were reviewed. The frequency of communication, as recorded in checklists, by pathologists to staff of previously diagnosed blood-borne infections (hepatitis B/C and human immunodeficiency virus) or the risk of infection based on lifestyle (eg, intravenous drug abuse) was tabulated. These data were compared with medical histories of the deceased and circumstances of their deaths described in the final autopsy reports. Information about blood-borne infections was recorded less frequently in the checklists compared with the final reports. Of 4 known human immunodeficiency virus cases, there was no checklist documentation in 3. All 11 hand injuries were documented. None of these cases had known infectious risks. The Autopsy Checklist is a standardized means of documenting safety and risk issues arising during the autopsy process, but its effectiveness relies on accurate completion.

  11. Information About Dynamics of the Sea Surface as a Means to Improve Safety of the Unmanned Vessel at Sea

    Directory of Open Access Journals (Sweden)

    Przyborski Marek

    2016-12-01

    Full Text Available One of the fundamental states of the sea surface is its heave. Despite of years of the intense scientific inquiry, no clear understanding of the influence of this aspect on the dynamics of the sea environment has emerged. The separation of two nearby fluid elements which one may observed for example as a free floating of small objects on the sea surface (rescuers on the rough sea or small research vessels is caused by the interaction of different components. On the other hand one may say that the heave of the sea is also a summary interaction of a few components describing the dynamics of the sea. Therefore it is the most important aspect, which influenced the dispersion phenomenon. This observation has important consequences for many different problems as for example conducting Search and Rescue missions and using unmanned ships. We would like to present results of our experiment focused on finding the answer to question about nature of the heave of the sea and its influence on safety of Unmanned Surface Vessels (USV.

  12. 46 CFR 189.60-15 - Cargo Ship Safety Radio Certificate.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Cargo Ship Safety Radio Certificate. 189.60-15 Section... VESSELS INSPECTION AND CERTIFICATION Certificates Under International Convention for Safety of Life at Sea, 1974 § 189.60-15 Cargo Ship Safety Radio Certificate. Every vessel equipped with a radio installation...

  13. 46 CFR 91.60-10 - Cargo Ship Safety Equipment Certificate.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cargo Ship Safety Equipment Certificate. 91.60-10... VESSELS INSPECTION AND CERTIFICATION Certificates Under International Convention for Safety of Life at Sea, 1974 § 91.60-10 Cargo Ship Safety Equipment Certificate. (a) All vessels on an international voyage are...

  14. Report of the DHS Small Vessel Security Institute

    National Research Council Canada - National Science Library

    Brownstein, Charles; Baker, John; Hull, Peter; Minogue, Nicholas; Murphy, George; Winston, Phyllis

    2007-01-01

    The purpose of the National Small Vessel Security Summit (NSVSS) was to engage private, commercial and government stakeholders in discussions on a range of issues involving the security risks posed by small vessels in the U.S...

  15. Outage Risk Assessment and Management (ORAM) technology to improve outage safety and economics

    International Nuclear Information System (INIS)

    Kalra, S.P.

    2004-01-01

    The Electric Power Research Institute (EPRI) has undertaken an aggressive program, called ORAM (Outage Risk Assessment and Management), to provide utilities with tools and technology to assist in managing risk during the planning and conduct of outages. The ORAM program consists of the following 6 steps: i) Perform utility surveys and visits on shutdown risk management needs, ii) Perform probabilistic shutdown safety assessments (PSSAs) to identify generic insights that can be incorporated into risk management guidelines and identify selected areas for the development of contingency actions, iii) Develop risk management guidelines (RMG's) that provide a systematic approach to the planning and conduct of outages from a safety perspective. Incorporate insights from the shutdown safety assessments and other operating experience into the RMG's. iv) Develop selected contingency actions including a thermalhydraulic tool kit to address higher risk time periods and activities identified in the shutdown safety assessments, v) Develop computer software that integrates all of the above capability into an easy to use tool for effective shutdown operation management for utilities, vi) Provide assistance in the transfer of this technology and the application of these tools. This paper briefly describes the technical approach and tools developed under EPRI's ORAM program and its applications for improving outage safety and economics. (author)

  16. Making sense of fishermen's risk perception

    DEFF Research Database (Denmark)

    Knudsen, Fabienne; Grøn, Sisse

    2010-01-01

    , trips and falls. The fieldwork offered an in situ insight into the way fishermen perceive their work and the risks they face, as well as their views of an outsider. Through empirical examples derived from our research and other studies, we show that fishermen’s risk perception can be explained...... by the need to adopt coping strategies, ie compromises and resilience in an environment marked by uncertainty and unpredictability. The difference between lay and expert knowledge is particularly salient in the case of safety researchers and fishermen. In order to make sense of the fishermen’s risk perception......In this paper we reflect on the possible reasons for the acceptability of risk in sea fishing and the implications they may have for safety actions and interventions. The data presented in the paper were collected during three trips at sea on fishing vessels in connection with a study of slips...

  17. Evaluation of a coolant injection into the in-vessel with a RCS depressurization by using SCDAP/RELAP5

    International Nuclear Information System (INIS)

    Rae-Joon, Park; Sang-Baik, Kim; Hee-Dong, Kim

    2007-01-01

    As part of the evaluations of a severe accident management strategy, a coolant injection in the vessel with a reactor coolant system (RCS) depressurization has been evaluated by using the SCDAP/RELAP5 computer code. Two high pressure sequences of a small break loss of coolant accident (LOCA) without safety injection (SI) and a total loss of feed water (LOFW) accident have been analyzed in optimized power reactor OPR-1000. The SCDAP/RELAP5 results have shown that only one train operation of a high pressure safety injection at 30,000 seconds with a RCS depressurization by using one condenser dump valve at 6 minutes after an entrance of the severe accident management guidance prevents a reactor vessel failure for the small break LOCA without SI. In this case, only train operation of the low pressure safety injection (LPSI) without the high pressure safety injection (HPSI) does not prevent a reactor vessel failure. Only one train operation of the HPSI at 20,208 seconds with a RCS depressurization by using two safety depressurization system valves at 40 minutes after an initial opening of the safety relief valve prevents a reactor vessel failure for the total LOFW. (authors)

  18. Health, Safety and Environmental Risk Assessment in Laboratory Sites

    Directory of Open Access Journals (Sweden)

    2012-05-01

    Full Text Available Introduction: ”Exposing to danger” or in other words, “risk” is a process which is led to an uncertain result in every field. Project risks are uncertain contingent events or situations that if they occur will have positive or negative effects on project’s objectives. Todays, research and educational process and more complicated and the professional risk management become much more difficult, as a result. .Material and Method: In this research, the health and safety issues have been studied and analyzed using ISO 14121 and the environmental issues by EMEA to determine the risk level separately for research laboratories and to prioritize corrective measure in each field (school. .Result: The finding in this study showed that from all the main risks within the rage of 38-86 percent have been decreased. Moreover average of the risk level for the health, safety and environment cases showed a significant decrease (Pvalue<0.0001 by implement controlling and protective countermeasures compariy to the priority state without any measures. . Conclusion: The risk assessment with hazards control strategy based on ISO 14121 is a compatible method in laboratory site as universities and other reasearch sites.

  19. Development of Risk Assessment Matrix for NASA Engineering and Safety Center

    Science.gov (United States)

    Malone, Roy W., Jr.; Moses, Kelly

    2004-01-01

    This paper describes a study, which had as its principal goal the development of a sufficiently detailed 5 x 5 Risk Matrix Scorecard. The purpose of this scorecard is to outline the criteria by which technical issues can be qualitatively and initially prioritized. The tool using this score card has been proposed to be one of the information resources the NASA Engineering and Safety Center (NESC) takes into consideration when making decisions with respect to incoming information on safety concerns across the entire NASA agency. The contents of this paper discuss in detail each element of the risk matrix scorecard, definitions for those elements and the rationale behind the development of those definitions. This scorecard development was performed in parallel with the tailoring of the existing Futron Corporation Integrated Risk Management Application (IRMA) software tool. IRMA was tailored to fit NESC needs for evaluating incoming safety concerns and was renamed NESC Assessment Risk Management Application (NAFMA) which is still in developmental phase.

  20. Governance implications of nanomaterials companies’ inconsistent risk perceptions and safety practices

    International Nuclear Information System (INIS)

    Engeman, Cassandra D.; Baumgartner, Lynn; Carr, Benjamin M.; Fish, Allison M.; Meyerhofer, John D.; Satterfield, Terre A.; Holden, Patricia A.; Harthorn, Barbara Herr

    2012-01-01

    Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders’ perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated “lack of information” as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders’ reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.

  1. Governance implications of nanomaterials companies' inconsistent risk perceptions and safety practices

    Science.gov (United States)

    Engeman, Cassandra D.; Baumgartner, Lynn; Carr, Benjamin M.; Fish, Allison M.; Meyerhofer, John D.; Satterfield, Terre A.; Holden, Patricia A.; Harthorn, Barbara Herr

    2012-03-01

    Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders' perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated "lack of information" as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders' reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.

  2. Risk perception, safety goals and regulatory decision-making

    International Nuclear Information System (INIS)

    Hoegberg, Lars

    1998-01-01

    Deciding on 'how safe is safe enough?' includes value judgements with implications of an ethical and political nature. As regulators are accountable to governments, parliaments and the general public, regulatory decision-making should be characterized by transparency with respect to how such value judgements are reflected in risk assessments and regulatory decisions. Some approaches in this respect are discussed in the paper, based on more than fifteen years of experience in nuclear regulatory decision-making. Issues discussed include: (1) risk profiles and safety goals associated with severe reactor accidents--individual health risks, societal risks and risk of losing investments; (2) risk profile-based licensing of the Swedish SFR final disposal facility for low and intermediate level radioactive waste

  3. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE R AND P REACTOR VESSELS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-05-24

    The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning (D and D). D and D activities consist primarily of immobilizing contaminated components and structures in a grout-like formulation. Aluminum corrodes very rapidly when it comes in contact with the alkaline grout materials and as a result produces hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS and T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary. Various options exist for the type of grout material that may be used for D and D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or Portland cement groupt (pH 12.5). The assessment concluded that either ceramicrete or the silica fume grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters does not provide a margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. It is recommended that this grout not be utilized for this task. The R-reactor vessel cotnains significantly less aluminum based on current facility process knowledge, surface observations, and drawings. Therefore, a Portland cement grout may be considered for grouting operations as well as the other grout formulations. For example, if the grout fill rate is less than 1 inch/min and the grout temperature is maintained at 70 C or less, the risk of hydrogen accumulation during fill

  4. Protection of environment, health and safety using risk management

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, G [Ghafari Associates, Inc. 17101 Michegan Avenue Dearborn, MI 48126-2736 (United States); Kummler, R H [Department of Chemical engineering Wayne Stae University Detroit, MI 48202 (United States); louvar, J [Research Services Basf Corporation Wyandotte, MI 48192 (United States)

    1997-12-31

    Section 304 of the 1990 clean air amendments (CAAA) directed the US occupational safety and health administration (OSFA) to develop a chemical process safety standard to protect workers on-site from accidents involving hazardous substances. OSHA issued 29 CFR 1910.119, process safety management of Highly hazardous chemicals (PSM) in 1992. Section 112 r of the CAAA further mandated that a standard be developed to protect the environment from accidental releases of hazardous substances. The US environmental protection agency (EPA) proposed such a standard in 1993 (58 Fr 54190) and revised their proposal in 1995). The final rule for risk management and accidental release prevention is more comprehensive and extensive than OSHA`s PSM standard. In this paper we will discuss the concepts of both programs, the classes of substances that would trigger a facility`s need for compliance and review the regulations for risk management.

  5. Protection of environment, health and safety using risk management

    International Nuclear Information System (INIS)

    Abraham, G.; Kummler, R.H.; louvar, J.

    1996-01-01

    Section 304 of the 1990 clean air amendments (CAAA) directed the US occupational safety and health administration (OSFA) to develop a chemical process safety standard to protect workers on-site from accidents involving hazardous substances. OSHA issued 29 CFR 1910.119, process safety management of Highly hazardous chemicals (PSM) in 1992. Section 112 r of the CAAA further mandated that a standard be developed to protect the environment from accidental releases of hazardous substances. The US environmental protection agency (EPA) proposed such a standard in 1993 (58 Fr 54190) and revised their proposal in 1995). The final rule for risk management and accidental release prevention is more comprehensive and extensive than OSHA's PSM standard. In this paper we will discuss the concepts of both programs, the classes of substances that would trigger a facility's need for compliance and review the regulations for risk management

  6. Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA)

    DEFF Research Database (Denmark)

    Leuschner, R. G. K.; Robinson, T. P.; Hugas, M.

    2010-01-01

    Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA) to notified biological agents aiming at simplifying risk assessments across different scientific Panels and Units. The aim of this review is to outline the implementation...... and value of the QPS assessment for EFSA and to explain its principles such as the unambiguous identity of a taxonomic unit, the body of knowledge including potential safety concerns and how these considerations lead to a list of biological agents recommended for QPS which EFSA keeps updated through...

  7. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  8. Safety device for nuclear reactors

    International Nuclear Information System (INIS)

    Gruhl, H.

    1974-01-01

    The safety device is used to capture fragments of the lid of a pressure vessel when this vessel ruptures. It consists of a catcher structure attached to the concrete vessel, which is open at the top, and surrounding the pressure vessel. The catcher structure in this case may be designed as a ring installed very close to the concrete vessel, as a closure plate or may be made of transverse beams arranged parallel to each other. It is anchored either rigidly or elastically to the concrete vessel by means of springs or to the foundation by means of steel stretching members. (DG) [de

  9. Use of risk information to safety regulation. Fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    A procedure of ISA (Integrated Safety Analysis) for uranium fuel fabrication/enrichment facilities has been under the development aiming to utilize risk information for safety regulations in this project. Activities in the fiscal year 2012 are summarized in the paper. There are two major activities in the year. First one is a study on ISA procedure for external events such as earthquakes. Second one is that for chemical consequences such as UF6 and HF. Other than the activities a fundamental study on a policy of utilizing risk information was conducted. The outline and results are provided in the chapter 1 and 2 respectively. (author)

  10. 46 CFR 91.60-15 - Cargo Ship Safety Radio Certificate.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cargo Ship Safety Radio Certificate. 91.60-15 Section 91... VESSELS INSPECTION AND CERTIFICATION Certificates Under International Convention for Safety of Life at Sea, 1974 § 91.60-15 Cargo Ship Safety Radio Certificate. Every vessel equipped with a radio installation on...

  11. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    Science.gov (United States)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion

  12. Multiphase flow in ex-vessel coolability: development of an innovative concept

    International Nuclear Information System (INIS)

    Corradini, Michael L.

    2006-01-01

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific Advanced Light Water Reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The paper provides the background of past experiments as well as key fundamentals that are needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability

  13. Establishment of safety goal and its quantification based on risk assessment

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Muramatsu, Ken

    2017-01-01

    We must clarify the safety objectives sought by society in securing the safety of nuclear reactors and nuclear power plants. For that purpose, it is useful to utilize risk assessment. Quantitative methods including probabilistic risk assessment (PRA) are superior in terms of scientific rationality and quantitative performance compared with conventional deterministic methods, and able to indicate an objective numerical value of safety level. Consequently, quantitative methods can enhance the transparency, consistency, compliance, predictability, and explanatory power of regulatory decisions toward business operators and citizens. Business operators can explain the validity of their own safety assurance activities to regulators and citizens. The goal to be secured becomes clear by incorporating the safety goal into the specific performance goal required for the nuclear power plant from the viewpoint of deep safeguard, and it becomes easy to evaluate the effectiveness of the safety measures. It helps us greatly in judging and selecting the appropriateness of safety measures. It should be noted: the fact that the result of implementing the PRA satisfies the safety goal is not a sufficient condition in the sense of guaranteeing complete safety but a necessary condition. The nuclear power field is a region with large uncertainty, and research/efforts for accuracy improvement and evaluation validity will be required continuously. (A.O.)

  14. Structural failure analysis of reactor vessels due to molten core debris

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.

    1993-01-01

    Maintaining structural integrity of the reactor vessel during a postulated core melt accident is an important safety consideration in the design of the vessel. This paper addresses the failure predictions of the vessel due to thermal and pressure loadings from the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on a wet or dry cavity and pressurization of the vessel based on operating pressure or atmospheric (pipe break). The analyses considered both short term (minutes) and long term (days) failure modes. Short term failure modes include creep at elevated temperatures and plastic instabilities of the structure. Long term failure modes are caused by creep rupture that lead to plastic instability of the structure. The analyses predict the reactor vessel will remain intact after the core melt has deposited on the lower vessel head

  15. Magnetic resonance imaging: hazard, risk and safety

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Suri, S.; Singh, P.

    2001-01-01

    The hazard and risk associated with magnetic resonance imaging is a matter of concern. In 1982, the Food and Drug Administration (FDA), USA issued guidelines to Hospital's Investigational Review Board (IRBs) in 'Guidelines for Evaluating Electromagnetic Exposure Risks for Trials of Clinical Nuclear Magnetic Resonance (NMR)'. In 1997, the Berufsgenossenschaft (BG), professional association for precision engineering and electronics of Germany, in their preliminary proposal for safety limits extended their concerns on static magnetic field. Owing to both time varying and static magnetic fields applied in Magnetic Resonance Imaging (MRI) this became of immediate concern to user community to assess the potential hazard and risk associated with the NMR system

  16. RISK MANAGEMENT AS TRANSPORTATION SAFETY PROVISION INSTRUMENT IN RUSSIA

    OpenAIRE

    V. A. Nikolayev

    2012-01-01

    Safety of transportation in Russia is subject to a variety of threats. Discussed in the article are characteristics of major threats to transportation security. State transportation policy directions that make it possible to ensure the security of cargo and passenger transportation are shown. A listof activities and innovative risk management tools that provide for improved safety of railway transportation is proposed.

  17. Risk assessment on hazards for decommissioning safety of a nuclear facility

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Lee, Kune-Woo; Lim, Hyeon-Kyo

    2010-01-01

    A decommissioning plan should be followed by a qualitative and quantitative safety assessment of it. The safety assessment of a decommissioning plan is applied to identify the potential (radiological and non-radiological) hazards and risks. Radiological and non-radiological hazards arise during decommissioning activities. The non-radiological or industrial hazards to which workers are subjected during a decommissioning and dismantling process may be greater than those experienced during an operational lifetime of a facility. Workers need to be protected by eliminating or reducing the radiological and non-radiological hazards that may arise during routine decommissioning activities and as well as during accidents. The risk assessment method was developed by using risk matrix and fuzzy inference logic, on the basis of the radiological and non-radiological hazards for a decommissioning safety of a nuclear facility. Fuzzy inference of radiological and non-radiological hazards performs a mapping from radiological and non-radiological hazards to risk matrix. Defuzzification of radiological and non-radiological hazards is the conversion of risk matrix and priorities to the maximum criterion method and the mean criterion method. In the end, a composite risk assessment methodology, to rank the risk level on radiological and non-radiological hazards of the decommissioning tasks and to prioritize on the risk level of the decommissioning tasks, by simultaneously combining radiological and non-radiological hazards, was developed.

  18. Evaluation of severe accident safety system value based on averting financial risks

    International Nuclear Information System (INIS)

    Hatch, S.W.; Benjamin, A.S.; Bennett, P.R.

    1983-01-01

    The Severe Accident Risk Reduction Program is being performed to benchmark the risks from nuclear power plants and to assess the benefits and impacts of a set of severe accident safety features. This paper describes the program in general and presents some preliminary results. These results include estimates of the financial risks associated with the operation of six reference plants and the value of severe accident prevention and mitigation safety systems in averting these risks. The results represent initial calculations and will be iterated before being used to support NRC decisions

  19. Risk assessment and safety regulations in offshore oil and gas ...

    African Journals Online (AJOL)

    Risk management of which risk assessment is part, and safety regulations are common in the offshore oil and gas industry management system. The process of conducting risk assessment is mostly a challenge for operational personnel assigned to perform this function. The most significant problem is the decision to use ...

  20. Risk assessment of LPG automotive refuelling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, R.E. [University of Newcastle, Newcastle (Australia). Dept. of Civil, Surveying and Enviromental Engineering; Feutrill, W.R. [Wesfarmers Kleenheat Gas Pty. Ltd., Perth (Australia)

    2001-12-01

    Quantified risk analysis (QRA) was used for the revision of regulatory separation distances associated with medium size liquefied petroleum gas (LPG) refuelling facilities used in automotive service (gas) stations. Typically these facilities consist of a 7.5 kl pressure vessel, pump, pipework, dispensing equipment and safety equipment. Multi-tank installations are relatively uncommon. This paper describes the hazard scenarios considered, the risk analysis procedure and the selection and application of data for initiating events and for rates of failure of mechanical components and of the pressure vessel. Human errors and intervention possibilities were also considered. Because of the inapplicability of established consequence models and the relatively small scale of the facilities, a number of tests were performed to estimate flame length, flame impingement effects, ignition probabilities and the effectiveness of screening devices. (author)

  1. Assessment and Management of ageing of major nuclear power plant components important to safety: PWR pressure vessels

    International Nuclear Information System (INIS)

    1999-10-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g., caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness-for-service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs), including water moderated, water cooled energy reactors (WWERs) are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs; and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. Since the reports are written from a safety perspective, they do not address life or life-cycle management of the plant components, which involves the integration of

  2. Navigational Traffic Conflict Technique: A Proactive Approach to Quantitative Measurement of Collision Risks in Port Waters

    Science.gov (United States)

    Debnath, Ashim Kumar; Chin, Hoong Chor

    Navigational safety analysis relying on collision statistics is often hampered because of the low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.

  3. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis. In this respect there is a

  4. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis

  5. Integrated risk reduction framework to improve railway hazardous materials transportation safety

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liu94@illinois.edu; Saat, M. Rapik, E-mail: mohdsaat@illinois.edu; Barkan, Christopher P.L., E-mail: cbarkan@illinois.edu

    2013-09-15

    Highlights: • An integrated framework is developed to optimize risk reduction. • A negative binomial regression model is developed to analyze accident-cause-specific railcar derailment probability. • A Pareto-optimality technique is applied to determine the lowest risk given any level of resource. • A multi-attribute decision model is developed to determine the optimal amount of investment for risk reduction. • The models could aid the government and rail industry in developing cost-efficient risk reduction policy and practice. -- Abstract: Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation.

  6. Validation of risk-based performance indicators: Safety system function trends

    International Nuclear Information System (INIS)

    Boccio, J.L.; Vesely, W.E.; Azarm, M.A.; Carbonaro, J.F.; Usher, J.L.; Oden, N.

    1989-10-01

    This report describes and applies a process for validating a model for a risk-based performance indicator. The purpose of the risk-based indicator evaluated, Safety System Function Trend (SSFT), is to monitor the unavailability of selected safety systems. Interim validation of this indicator is based on three aspects: a theoretical basis, an empirical basis relying on statistical correlations, and case studies employing 25 plant years of historical data collected from five plants for a number of safety systems. Results using the SSFT model are encouraging. Application of the model through case studies dealing with the performance of important safety systems shows that statistically significant trends in, and levels of, system performance can be discerned which thereby can provide leading indications of degrading and/or improving performances. Methods for developing system performance tolerance bounds are discussed and applied to aid in the interpretation of the trends in this risk-based indicator. Some additional characteristics of the SSFT indicator, learned through the data-collection efforts and subsequent data analyses performed, are also discussed. The usefulness and practicality of other data sources for validation purposes are explored. Further validation of this indicator is noted. Also, additional research is underway in developing a more detailed estimator of system unavailability. 9 refs., 18 figs., 5 tabs

  7. Risk-informed decision making a keystone in advanced safety assessment

    International Nuclear Information System (INIS)

    Reinhart, M.

    2007-01-01

    Probabilistic Safety Assessment (PSA) has provided extremely valuable complementary insight, perspective, comprehension, and balance to deterministic nuclear reactor safety assessment. This integrated approach of risk-informed management and decision making has been called Risk-Informed Decision Making (RIDM). RIDM provides enhanced safety, reliability, operational flexibility, reduced radiological exposure, and improved fiscal economy. Applications of RIDM continuously increase. Current applications are in the areas of design, construction, licensing, operations, and security. Operational phase safety applications include the following: technical specifications improvement, risk-monitors and configuration control, maintenance planning, outage planning and management, in-service inspection, inservice testing, graded quality assurance, reactor oversight and inspection, inspection finding significance determination, operational events assessment, and rulemaking. Interestingly there is a significant spectrum of approaches, methods, programs, controls, data bases, and standards. The quest of many is to assimilate the full compliment of PSA and RIDM information and to achieve a balanced international harmony. The goal is to focus the best of the best, so to speak, for the benefit of all. Accordingly, this presentation will address the principles, benefits, and applications of RIDM. It will also address some of the challenges and areas to improve. Finally it will highlight efforts by the IAEA and others to capture the international thinking, experience, successes, challenges, and lessons in RIDM. (authors)

  8. RISK-INFORMED BALANCING OF SAFETY, NONPROLIFERATION, AND ECONOMICS FOR THE SFR

    Energy Technology Data Exchange (ETDEWEB)

    Apostolakis, George; Driscoll, Michael; Golay, Michael; Kadak, Andrew; Todreas, Neil; Aldmir, Tunc; Denning, Richard; Lineberry, Michael

    2011-10-20

    A substantial barrier to the implementation of Sodium-cooled Fast Reactor (SFR) technology in the short term is the perception that they would not be economically competitive with advanced light water reactors. With increased acceptance of risk-informed regulation, the opportunity exists to reduce the costs of a nuclear power plant at the design stage without applying excessive conservatism that is not needed in treating low risk events. In the report, NUREG-1860, the U.S. Nuclear Regulatory Commission describes developmental activities associated with a risk-informed, scenario-based technology neutral framework (TNF) for regulation. It provides quantitative yardsticks against which the adequacy of safety risks can be judged. We extend these concepts to treatment of proliferation risks. The objective of our project is to develop a risk-informed design process for minimizing the cost of electricity generation within constraints of adequate safety and proliferation risks. This report describes the design and use of this design optimization process within the context of reducing the capital cost and levelized cost of electricity production for a small (possibly modular) SFR. Our project provides not only an evaluation of the feasibility of a risk-informed design process but also a practical test of the applicability of the TNF to an actual advanced, non-LWR design. The report provides results of five safety related and one proliferation related case studies of innovative design alternatives. Applied to previously proposed SFR nuclear energy system concepts We find that the TNF provides a feasible initial basis for licensing new reactors. However, it is incomplete. We recommend improvements in terms of requiring acceptance standards for total safety risks, and we propose a framework for regulation of proliferation risks. We also demonstrate methods for evaluation of proliferation risks. We also suggest revisions to scenario-specific safety risk acceptance standards

  9. Risk-Informed Balancing Of Safety, Nonproliferation, And Economics For The SFR

    International Nuclear Information System (INIS)

    Apostolakis, George; Driscoll, Michael; Golay, Michael; Kadak, Andrew; Todreas, Neil; Aldmir, Tunc; Denning, Richard; Lineberry, Michael

    2011-01-01

    A substantial barrier to the implementation of Sodium-cooled Fast Reactor (SFR) technology in the short term is the perception that they would not be economically competitive with advanced light water reactors. With increased acceptance of risk-informed regulation, the opportunity exists to reduce the costs of a nuclear power plant at the design stage without applying excessive conservatism that is not needed in treating low risk events. In the report, NUREG-1860, the U.S. Nuclear Regulatory Commission describes developmental activities associated with a risk-informed, scenario-based technology neutral framework (TNF) for regulation. It provides quantitative yardsticks against which the adequacy of safety risks can be judged. We extend these concepts to treatment of proliferation risks. The objective of our project is to develop a risk-informed design process for minimizing the cost of electricity generation within constraints of adequate safety and proliferation risks. This report describes the design and use of this design optimization process within the context of reducing the capital cost and levelized cost of electricity production for a small (possibly modular) SFR. Our project provides not only an evaluation of the feasibility of a risk-informed design process but also a practical test of the applicability of the TNF to an actual advanced, non-LWR design. The report provides results of five safety related and one proliferation related case studies of innovative design alternatives. Applied to previously proposed SFR nuclear energy system concepts We find that the TNF provides a feasible initial basis for licensing new reactors. However, it is incomplete. We recommend improvements in terms of requiring acceptance standards for total safety risks, and we propose a framework for regulation of proliferation risks. We also demonstrate methods for evaluation of proliferation risks. We also suggest revisions to scenario-specific safety risk acceptance standards

  10. Design of marine structures with improved safety for environment

    International Nuclear Information System (INIS)

    Klanac, Alan; Varsta, Petri

    2011-01-01

    The paper describes a method for design of marine structures with increased safety for environment, considering also the required investment costs as well as the aspects of risk distribution onto the maritime stakeholders. Practically, the paper seeks to answer what is the optimal amount that should be invested into certain safety measure for any given vessel. Due to the uneven distribution of risk, as well as the differing impact of costs emerging from safety improvements, stakeholders experience conflicting ranking of alternatives. To solve this multi-stakeholder decision-making problem, in which each stakeholder is a decision-maker, the method applies concepts of group decision-making theory, namely the Game Theory. The method fosters axiomatic definition of the optimum solution, arguing that the solution, or the final selected design, should satisfy the non-dominance, efficiency, and fairness. These three are thoroughly discussed in terms of structural design, especially the latter. Considering the coupling of environmental risk and structural design, the method also builds on the preference structure of four maritime stakeholders: yards, owners, oil receivers and the public, who either share the risks or directly influence structural design. Method is presented on a practical study of structural design of a tanker with a crashworthy side structure that is capable of reducing the risk of collision. The outcome of this study outlines a number of possibilities for successful improvement of tanker safety that can benefit, concurrently, all maritime stakeholders.

  11. Reducing risks and increasing safety in everyday life: the role of the public

    International Nuclear Information System (INIS)

    Enander, A.

    1998-01-01

    Full text of publication follows: in social science risk research more attention has been paid to examining how people in general perceive risks than to how they perceive possible measures to reduce risks and to increase their own safety. The latter area is, however, becoming increasingly important to understand, particularly in the light of current emphasis on individual responsibility in risk prevention and emergency preparedness. For example, in Sweden a major effort to increase safety awareness among the general public and to increase knowledge and skills in a number of safety-related areas is at present being planned. This effort is being undertaken as a cooperative effort between different authorities and institutions and is coordinated by the Swedish Rescue Services Agency. The intentions behind this and similar programmes raise a number of questions concerning how people view risks and safety measures in their own immediate environment. Knowledge of the factors affecting willingness to take precautions is important in the design of communication and information. The factors which are of significance may be risk-related and concern perceptions of personal risk, but may also be related to attitudes an beliefs concerning different precautionary measures, to perception of social norms and conventions as well as to personal experiences and values. This paper presents some data concerning views and actions among lay groups in relation to reducing risks and increasing safety. Factors affecting these views are discussed in the light of previous research and of empirical data from some recent studies. (author)

  12. Risk investigation for safety assessment of nuclear power stations

    International Nuclear Information System (INIS)

    Heuser, F.W.; Hoertner, H.; Kersting, E.

    1987-01-01

    The most important results of the technical system investigations for Phase B of the German Risk Study and the insight gained from them are discussed in connection with the risk analyses in judging the safety-related design. The results of the German Precursor Study for the Biblis A and B plants are given. There is also a comparison of the German with more recent American risk analyses. (DG) [de

  13. Final processing vessel for radioactive waste

    International Nuclear Information System (INIS)

    Tejima, Takaya; Hiraki, Akimitsu.

    1989-01-01

    An inorganic inner layer comprising dense inorganic material such as organic polymer-impregnated concretes is formed to about 10 - 50 mm in average thickness at the inside of a metal vessel. Further, the surface of the vessel is formed as a flat surface with no or only small reinforcing protrusions. Thus, if the final processing vessel should be dropped during transportation or handling by mistake, since impact shocks do not concentrate to protrusions as usual, no local stress concentration occurs to the inorganic inner liner layer. Accordingly, the risk of rapture can be reduced greatly. Further, since impact shock resistance layer put between the metal vessel and the inorganic inner liner layer absorbs shocks, a further sufficient strength can be obtained against dropping accident. (T.M.)

  14. Risk-informed regulation: handling uncertainty for a rational management of safety

    International Nuclear Information System (INIS)

    Zio, Enrico

    2008-01-01

    A risk-informed regulatory approach implies that risk insights be used as supplement of deterministic information for safety decision-making purposes. In this view, the use of risk assessment techniques is expected to lead to improved safety and a more rational allocation of the limited resources available. On the other hand, it is recognized that uncertainties affect both the deterministic safety analyses and the risk assessments. In order for the risk-informed decision making process to be effective, the adequate representation and treatment of such uncertainties is mandatory. In this paper, the risk-informed regulatory framework is considered under the focus of the uncertainty issue. Traditionally, probability theory has provided the language and mathematics for the representation and treatment of uncertainty. More recently, other mathematical structures have been introduced. In particular, the Dempster-Shafer theory of evidence is here illustrated as a generalized framework encompassing probability theory and possibility theory. The special case of probability theory is only addressed as term of comparison, given that it is a well known subject. On the other hand, the special case of possibility theory is amply illustrated. An example of the combination of probability and possibility for treating the uncertainty in the parameters of an event tree is illustrated

  15. Risk-informed approaches to assess ecological safety of facilities with radioactive waste

    International Nuclear Information System (INIS)

    Vashchenko, V.N.; Zlochevskij, V.V.; Skalozubov, V.I.

    2011-01-01

    Ingenious risk-informed methods to assess ecological safety of facilities with radioactive waste are proposed in the paper. Probabilistic norms on lethal outcomes and reliability of safety barriers are used as safety criteria. Based on the probability measures, it is established that ecological safety conditions are met for the standard criterion of lethal outcomes

  16. 75 FR 23782 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide...

  17. RISK MANAGEMENT AS TRANSPORTATION SAFETY PROVISION INSTRUMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    V. A. Nikolayev

    2012-01-01

    Full Text Available Safety of transportation in Russia is subject to a variety of threats. Discussed in the article are characteristics of major threats to transportation security. State transportation policy directions that make it possible to ensure the security of cargo and passenger transportation are shown. A listof activities and innovative risk management tools that provide for improved safety of railway transportation is proposed.

  18. Study air ingress into the reactor vessel using ICARE/CATHARE V2.0 in case of severe accident

    International Nuclear Information System (INIS)

    Gwenaelle Le Dantec; Fichot, F.

    2005-01-01

    Full text of publication follows: Safety analyses show that core degradation during a severe reactor accident would not be uniform. This was confirmed by TMI2 examinations. In fact, a central region of the core may overheat, melt and flow down to the lower plenum of the reactor while peripheral regions of the core would remain almost intact. Following rupture of the vessel by molten debris, air may be drawn from the containment by natural convection into the reactor coolant system, and react with the intact rods. Studying air ingress into the reactor vessel is of interest because the interaction of air with Zircaloy cladding can strongly affect the evolution of severe accident scenarios. The main effects are heat generation, increasing clad degradation, fission product release and nitriding. In case of air/steam recirculation in the vessel, significant nitriding of cladding can occur. The resulting ZrN phase is characterized by its brittleness and instability under oxidizing conditions, Oxidation of pre-existing ZrN phase layers has been observed to result in violent oxidation and heat release. Therefore, the first consequence for safety is a risk of strong deflagration in the vessel if a large number of rods on which a substantial layer of ZrN has grown are suddenly in contact with oxygen or steam. The second consequence is a late melting of core materials due to the very exothermic oxidation, leading to a late release of materials out of the reactor pressure vessel (RPV). In this paper we present an ICARE/CATHARE V2.0 calculation simulating air ingress into the vessel and in particular to describe the nitriding due to natural convection in the reactor vessel. The basic modeling and the necessary extensions of both ICARE and CATHARE are explained. The natural circulation is calculated to predict the regions of oxygen starvation where nitriding takes place. Key words: air ingress, nitriding, ICARE/CATHARE V2.0. (authors)

  19. Common basis of establishing safety standards and other safety decision-making levels for different sources of health risk

    International Nuclear Information System (INIS)

    Demin, V.F.

    2002-01-01

    Current approaches in establishing safety standards and other decision-making levels for different sources of health risk are critically analysed. To have a common basis for this decision-making a specific risk index R is recommended. In the common sense R is quantitatively defined as LLE caused by the annual exposure to the risk source considered: R = annual exposure, damage (LLE) from the exposure unit. This common definition is also rewritten in specific forms for a set of different risk sources (ionising radiation, chemical pollutants, etc): for different risk sources the exposure can be measured with different quantities (the probability of death, the exposure dose, etc.). R is relative LLE: LLE in years referred to 1 year under the risk. The dimension of this value is [year/year]. In the statistical sense R is conditionally the share of the year, which is lost due to exposure to a risk source during this year. In this sense R can be called as the relative damage. Really lifetime years are lost after the exposure. R can be in some conditional sense considered as a dimensionless quantity. General safety standards R n for the public and occupational workers have been suggested in terms of this index: R n = 0.0007 and 0.01 accordingly. Secondary safety standards are derived for a number of risk sources (ionising radiation, environmental chemical pollutants, etc). Values of R n are chosen in such a way that to have the secondary radiation BSS being equivalent to the current one's. Other general and derived levels for safety decision-making are also proposed including the de-minimus levels. Their possible dependence on the national or regional health-demographic data (HDD) is considered. Such issues as the ways of the integration and averaging of risk indices considered through the national or regional HDD for different risk sources and the use of non-threshold linear exposure - response relationships for ionising radiation and chemical pollutants are analysed

  20. Personnel Risks in Ensuring Safety of Medical Activity

    Directory of Open Access Journals (Sweden)

    O. L. Zadvornaya

    2017-01-01

    Full Text Available Purpose: modern strategies of management of the organization require the formation of special management approaches based on the analysis of the mechanisms and processes of the organization of medical activities related to possible risks in activity of medical personnel. Based on international experience and own research the authors have identified features of a system of management of personnel risk in medical activities, examined approaches showing the sequence and contents of the main practical activities of the formation, maintenance and development of the system of management of personnel risks. Emphasized is the need for further research and implementation of the system of management of personnel risk in health care organizations. Study and assessment of personnel risks affecting the security of medical activities aimed at the development of the system of personnel risk management, development of a system of identification and monitoring of HR risk indicators with a purpose to improve institutional management and increase efficiency of activity of medical organizations. Methods: in the present study, the following methods were used: systemic approach, content analysis, methods of social diagnosis (questionnaires, interviews, comparative analysis, method of expert evaluations, method of statistical processing of information. Results: approaches to predict the occurrence and development of personnel risks have been reviewed and proposed. Conclusions and Relevance: patient safety is a global issue affecting countries at all levels of development. Each year, the WHO identifies a number of systemic and technical aspects and trends in the field of patient safety related to actions of medical workers. Existing imbalances in the staffing of the health system of the Russian Federation increase the probability of potential risks in medical practice. The personnel policy of healthcare of the Russian Federation requires further improvement and

  1. In-service supervision of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Zemann, H.; Mayer, N.; Amberg, C.

    1985-01-01

    On-line measurements of the physical state of a prestressed concrete pressure vessel and a comparison of the distribution of temperature, strain and stress within the concrete member to the optimized statical predictions and the criterions of layout yield to an efficient and economical method of operating the vessel with a high potential of safety. The requirements of instrumentation and the comparison with static calculations are discussed on the prototype vessel at Seibersdorf Research Center during the phase of construction and prestressing, the phase of the first thermal treatment (stabilization), the pressure tests and under the operating conditions of a high temperature reactor (150 0 C/50 bar). (Author)

  2. In-service supervision of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Zemann, H.; Weissbacher, L.; Mayer, N.; Amberge, C.

    1985-01-01

    On-line measurements of the physical state of a prestressed concrete pressure vessel, and comparison with the design predictions of the distribution of temperature, strain and stress within the concrete member and the criteria of layout, provide an efficient and economical method of operating the vessel with a high potential of safety. The requirements of instrumentation and the comparison with static calculations are discussed with reference to the prototype vessel at Seibersdorf Research Centre during the phase of construction and prestressing, the phase of the first thermal treatment (stabilization), the pressure tests and under the operating conditions of a high temperature reactor (150 0 C, 50 bar). (author)

  3. 76 FR 55079 - Recreational Vessel Accident Reporting

    Science.gov (United States)

    2011-09-06

    ... operators to make decisions aimed at improving boating safety. This information, described in title 33 Code... Coast Guard long after an accident occurs. Incomplete, inaccurate, or late accident information makes... the recreational vessel owner or operator? If so, how many man-hours are required to collect this...

  4. Safety from physical viewpoint: ''two-risk model in multiple risk problem''

    International Nuclear Information System (INIS)

    Kuz'Min, I.I.; Akimov, V.A.

    1998-01-01

    Full text of publication follows: the problem of safety provision for people and environment within the framework of a certain socio-economic system (SES) as a problem of managing a great number of interacting risks characterizing numerous hazards (natural, manmade, social, economic once, etc.) inherent in the certain SES has been discussed. From the physical point of view, it can be considered a problem of interaction of many bodies which has no accurate mathematical solution even if the laws of interaction of this bodies are known. In physics, to solve this problem, an approach based on the reduction of the above-mentioned problem of the problem of two-body interaction which can be solved accurately in mathematics has been used. The report presents a similar approach to the problem of risk management in the SES. This approach includes the subdivision of numerous hazards inherent within the framework of the SES into two classes of hazards, so that each of the classes could be considered an integrated whole one, each of them being characterized by the appropriate risk. Consequently, problem of 'multiple-risk' management (i.e. the problem of many bodies, as represented in physics) can be reduced to the 'two-risk' management problem (that is, to the problem two-bodies). Within the framework of the two-risk model the optimization of costs to reduce the two kinds of risk, that is, the risk inherent in the SES as a whole, as well as the risk potentially provoked by lots of activities to be introduced in the SES economy has been described. The model has made it possible to formulate and prove the theorem of equilibrium in risk management. Using the theorem, a relatively simple and practically applicable procedure of optimizing the threshold costs to reduce diverse kinds of risk has been elaborated. The procedure provides to assess the minimum value of the cost that can be achieved regarding the socio-economic factors typical of the SES under discussion. The aimed

  5. Method of detecting water leakage in radioactive waste containing vessel

    International Nuclear Information System (INIS)

    Ishioka, Hitoshi; Takao, Yoshiaki; Hayakawa, Kiyoshige.

    1989-01-01

    Lower level radioactive wastes formed upon operation of nuclear facilities are processed by underground storage. In this case, a plurality of drum cans packed with radioactive wastes are contained in a vessel and a water soluble dye material is placed at the inside of the vessel. The method of placing the water soluble dye material at the inside of the vessel includes a method of coating the material on the inner surface of the vessel and a method of mixing the material in sands to be filled between each of the drum cans. Then, leakage of water soluble dye material is detected when water intruding from the outside into the vessel is again leached out of the vessel, to detect the water leakage from the inside of the vessel. In this way, it is possible to find a water-invaded vessel before corrosion of the drum can by water intruded into the vessel and leakage of nuclides in the drum can. Accordingly, it is possible to apply treatment such as repair before occurrence of accident and can maintain the safety of radioactive water processing facilities. (I.S.)

  6. 46 CFR 71.75-5 - Passenger Ship Safety Certificate.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Passenger Ship Safety Certificate. 71.75-5 Section 71.75-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS INSPECTION AND... Passenger Ship Safety Certificate. (a) All vessels on an international voyage are required to have a...

  7. Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials

    Science.gov (United States)

    Abou, Seraphin Chally; Saad, Maarouf

    2013-09-01

    In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.

  8. HANFORD SAFETY ANALYSIS and RISK ASSESSMENT HANDBOOK (SARAH)

    International Nuclear Information System (INIS)

    EVANS, C.B.

    2004-01-01

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S and M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard

  9. Identification and evaluation of priorities in the business process of a risk or safety organization

    International Nuclear Information System (INIS)

    Teng, Kuei-Yung; Thekdi, Shital A.; Lambert, James H.

    2012-01-01

    Agencies are increasingly following principles and guidelines for the coordination of risk assessment, risk management, and risk communication in large-scale programs. In particular, there is a challenge to comply with the U.S. Office of Management and Budget (OMB) memorandum “Updated Principles for Risk Analysis” among other guidelines. This paper demonstrates a systemic approach to achieve compliance of a risk program with administrative and organizational principles and guidelines for risk analysis. The paper suggests three canonical questions as the mission of such a program: (i) what sources of risks are to be managed by the program, (ii) how should multiple risk assessment, risk management, and risk communication activities be administered and coordinated, and what should be the basis for resource allocation to these activities, and (iii) how will the performance of the program be monitored and evaluated. The paper demonstrates a re-prioritization of policy initiatives of the program based on emergent and future conditions. The approach is useful to agencies implementing risk or safety organizational guidelines such as those of the OMB, the US Government Accountability Office, the US Department of Homeland Security, the US Department of Defense, and others. This paper will be of interest to risk managers; agencies; and risk and safety analysts engaged in the conception, implementation, and evaluation of risk or safety programs. - Highlights: ► We develop a systemic approach for management of a risk or safety program. ► The approach includes business process models and policy prioritization. ► The results support organizations to implement risk and safety programs.

  10. Superior long term outcome associated with native vessel versus graft vessel PCI following secondary PCI in patients with prior CABG.

    Science.gov (United States)

    Mavroudis, Chrysostomos A; Kotecha, Tushar; Chehab, Omar; Hudson, Jonathan; Rakhit, Roby D

    2017-02-01

    Secondary percutaneous coronary intervention (PCI) in patients with prior coronary artery bypass graft surgery is increasingly common. Graft vessel PCI has higher rates of adverse events compared with native coronary vessel PCI. To investigate the clinical outcomes of patients with prior CABG who underwent secondary PCI of either a graft vessel (GV), a native coronary vessel (NV) or both graft and native (NG) vessels. 220 patients (84% male) who underwent PCI in our institution to either GV (n=89), NV (n=103) or both GV and NV (NG group) (n=28) were studied. The study population underwent 378 procedures (GV group; n=126, NV group; n=164 and NG group; n=88). Median follow up was for 36months [range 2-75months]. Target vessel revascularisation (TVR) occurred in 12.5% of the GV group and 3.6% in the NV group [p=0.0004], and was predominantly due to in-stent restenosis. Patients who had PCI due to TVR were more likely to suffer from diabetes and peripheral vascular disease. History of chronic renal failure was associated with higher risk (HR 2.21, p=0.005) whereas preserved left ventricular ejection fraction (LVEF) with lower risk (HR 0.17, p=0.0007) of death. The median survival (interval between CABG and end of follow-up period) was lower in the GV compared with the NV group (315 vs 372months p=0.005). This registry demonstrates inferior long term outcome for patients undergoing secondary PCI of GV versus NV. Where possible, a strategy of NV rather than GV target PCI should be considered in patients with prior CABG. Secondary PCI in patients with prior CABG surgery is increasingly common. Graft vessel PCI has inferior outcomes with high rates of restenosis and occlusion compared with native coronary vessel PCI. We studied the clinical outcomes of 220 patients with prior CABG who underwent secondary PCI to either a graft vessel (GV), a native coronary vessel (NV) or both graft and native (NG) vessels. Target vessel revascularisation was 5 times higher in the GV

  11. Analysis of In-Vessel Late Phase Melt Progression Using SCDAP/RELAP5/MOD3.3

    International Nuclear Information System (INIS)

    Park, R.J.; Kim, S.B.; Kim, H.D.

    2004-01-01

    High-pressure in-vessel melt progressions of the KSNP (Korean Standard Nuclear Power Plant) have been analyzed using the SCDAP/RELAP5/MOD3.3 computer code. The total loss of feed water (LOFW) to the steam generators with/without intentional RCS depressurization using the safety depressurization system (SDS) and the station blackout (SBO) have been simulated from transient initiation to reactor vessel failure. The SCDAP/RELAP5/MOD3.3 results have shown that the pressure boundary of the reactor coolant system did not fail before reactor vessel failure in the high-pressure sequences of the LOFW and the SBO transients of the KSNP. In all the high-pressure transients, approximately 20-30 % of the core material was melted and relocated to the lower plenum of the reactor vessel at the time of reactor vessel failure. Intentional RCS depressurization using the SDS for the total LOFW delays reactor vessel failure for approximately 5 hours by actuation of the safety injection tanks. At the time of reactor vessel failure, approximately 50-60 % of the fuel rod cladding was oxidized for the total LOFW and the SBO transients of the KSNP. (authors)

  12. Pressure Safety Program Implementation at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark [ORNL; Etheridge, Tom [ORNL; Oland, C. Barry [XCEL Engineering, Inc.

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply

  13. Bowtie Risk Management methodology and Modern Nuclear Safety Reports

    International Nuclear Information System (INIS)

    Ilizastigui Pérez, F.

    2016-01-01

    The Safety Report (SR) plays a crucial role within the nuclear licensing regime as the principal means for demonstrating the adequacy of safety analysis for a nuclear facility to ensure that it can be constructed, operated, maintained, shut down, and decommissioned safely and in compliance with applicable laws and regulations. It serves as the basis for granting authorizations for the commencement of the main stages of the facility’s life cycle as well as decision-making processes related to safety. Historically, the majority of nuclear safety reports have operated under rather prescriptive regimes, with emphasis placed on demonstrations of the robustness of the facility’s design (design safety) against prescriptive technical requirements set by the regulatory body, and less attention paid to demonstrating the adequacy and effectiveness of Operator’s management system for managing risks to daily operation.

  14. [Small vessel cerebrovascular disease].

    Science.gov (United States)

    Cardona Portela, P; Escrig Avellaneda, A

    2018-05-09

    Small vessel vascular disease is a spectrum of different conditions that includes lacunar infarction, alteration of deep white matter, or microbleeds. Hypertension is the main risk factor, although the atherothrombotic lesion may be present, particularly in large-sized lacunar infarctions along with other vascular risk factors. MRI findings are characteristic and the lesions authentic biomarkers that allow differentiating the value of risk factors and defining their prognostic value. Copyright © 2018 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Risk-based evaluation tool for safety-related maintenance involving scaffolding

    International Nuclear Information System (INIS)

    Stevens, C.; Azizi, M.; Massman, M.

    1988-01-01

    The US Nuclear Regulatory Commission (NRC) has expressed a general concern that transient materials in and around safety systems at nuclear power plants represent a seismic safety hazard to the plant, in particular, the uncontrolled use of scaffolding during maintenance activities. Currently, most plants perform a seismic safety analysis for all uses of scaffolding near safety-related equipment to determine appropriate tie-down locations, scaffolding reinforcements, etc. This is both time-consuming and, for the most part, unnecessary. A workable engineering solution based on risk analysis techniques has been developed and is being used at the Palo Verde nuclear generating station (PVNGS)

  16. Report of the DHS National Small Vessel Security Summit

    National Research Council Canada - National Science Library

    Brownstein, Charles; Baker, John; Hull, Peter; Minogue, Nicholas; Murphy, George; Winston, Phyllis

    2007-01-01

    The purpose of the National Small Vessel Security Summit (NSVSS) was to engage private, commercial and government stakeholders in discussions on a range of issues involving the security risks posed by small vessels in the U.S...

  17. The need to pressure test prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Forgie, J.H.; Holland, J.A.

    1983-01-01

    In the period when PCRV were relatively unproven, proof pressure testing provided a useful demonstration of vessel integritiy and a confirmation of model testing and of analysis. No failures have occurred during concrete vessel tests in the UK or in the subsequent operational life of the vessels and much has been learned of their behaviour in service. The paper examines the advantages and disadvantages of proof testing PCRV in the light of the above increased knowledge of vessel performance. The paper draws attention to certain hypothetical loading cases that could be more onerous than the proof test and suggests that pressure testing could itself cause unnecessarily high loading to parts of the vessel. Always recognising the safety considerations and demonstrations of such are of prime importance, the authors suggest that a lower pressure level could be adopted without loss of original intent. In addition some ground rules are suggested as to cases where proof testing could be omitted. (orig./HP)

  18. VESSEL-SOURCED POLLUTION: A SECURITY THREAT IN ...

    African Journals Online (AJOL)

    and some other conventions make provisions concerning protection of ma- ... the pollution of the marine in Malaysia, it appears that pollution by vessels .... pollution from ships and maritime safety; providing effective legal, technical and scientific ..... of the offence after the service of the notice on the offending ship through.

  19. What is cerebral small vessel disease?

    International Nuclear Information System (INIS)

    Onodera, Osamu

    2011-01-01

    An accumulating amount of evidence suggests that the white matter hyperintensities on T 2 weighted brain magnetic resonance imaging predict an increased risk of dementia and gait disturbance. This state has been proposed as cerebral small vessel disease, including leukoaraiosis, Binswanger's disease, lacunar stroke and cerebral microbleeds. However, the concept of cerebral small vessel disease is still obscure. To understand the cerebral small vessel disease, the precise structure and function of cerebral small vessels must be clarified. Cerebral small vessels include several different arteries which have different anatomical structures and functions. Important functions of the cerebral small vessels are blood-brain barrier and perivasucular drainage of interstitial fluid from the brain parenchyma. Cerebral capillaries and glial endfeet, take an important role for these functions. However, the previous pathological investigations on cerebral small vessels have focused on larger arteries than capillaries. Therefore little is known about the pathology of capillaries in small vessel disease. The recent discoveries of genes which cause the cerebral small vessel disease indicate that the cerebral small vessel diseases are caused by a distinct molecular mechanism. One of the pathological findings in hereditary cerebral small vessel disease is the loss of smooth muscle cells, which is an also well-recognized finding in sporadic cerebral small vessel disease. Since pericytes have similar character with the smooth muscle cells, the pericytes should be investigated in these disorders. In addition, the loss of smooth muscle cells may result in dysfunction of drainage of interstitial fluid from capillaries. The precise correlation between the loss of smooth muscle cells and white matter disease is still unknown. However, the function that is specific to cerebral small vessel may be associated with the pathogenesis of cerebral small vessel disease. (author)

  20. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs) . Volume 2; Appendices

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This document contains the appendices to the main report.

  1. Conceptual design of the handling and storage system for spent target vessel

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Junichi; Sasaki, Shinobu; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    A conceptual design of a handling and storage system for spent target vessels has been carried out, in order to establish spent target technology for the neutron scattering facility. The spent target vessels must be treated remotely with high reliability and safety, since they are highly activated and contain the poisonous mercury. The system is composed of a target exchange trolley to exchange the target vessel, remote handling equipment such as manipulators, airtight casks for the spent target vessel, storage pits and so on. This report presents the results of conceptual design study on a basic plan, a handling procedure, main devices and their arrangement of a handling and storage system for the spent target vessels. (author)

  2. Risk Communication: A Key for Fostering a More Resilient Safety Culture

    International Nuclear Information System (INIS)

    Nishizawa, M.

    2016-01-01

    It is widely agreed that the accident of the Fukushima Daiichi nuclear power plant was not only triggered by natural events combined with technical failures, but was a human induced disaster. From the bitter lessons, we have learned that human and organizational factors associated with emergency planning, response and decision-making for nuclear safety need to be more carefully reviewed and enhanced. Elements of social sciences, especially, risk management and risk communication here play a key role. Risk communication is an established concept within risk analysis frameworks. It is a vital tool to convey the meaning of scientific assessment and risk management, share safety related information, and exchange views and values amongst varying stakeholder groups. Risk communication aims at building trust through this process and human interactions. However, it would not be an overstatement that the essence of risk communication is not fully understood. As a result, it is either partially integrated into risk management practice or remains unconducive. The marginalisation of risk communication is observed in a variety of risk communication practices, or more evidently, in perception gaps between lays and experts about risks.

  3. [Occupational risks among public safety and security forces].

    Science.gov (United States)

    Candura, S M; Verni, P; Minelli, C M; Rosso, G L; Cappelli, M I; Strambi, S; Martellosio, V

    2006-01-01

    The present paper tries to identify the occupational risk factors (physical, chemical, biological, psychological), variable depending on jobs and tasks, to which the heterogeneous public safety/security workers are exposed. The fight against criminality and public order maintenance imply (sometimes fatal) traumatic risks, and expose to psychophysical and sensorial tiring, unfavourable macro- and microclimatic conditions, the risk of baropathy (air navigation, underwater activities), noise (generated by firearms and several other sources), vibrations and shakings (automatic weapons, transport vehicles), the risk of electric injury, ionizing (X and gamma rays) and non-inonizing (ultraviolet rays, microwaves and radiofrequencies, electromagnetic fields) radiations. Chemical hazards include carbon monoxide and other combustion products (fires, urban traffic), substances released in chemical accidents, tear gases, lead (firing grounds, metal works, environmental pollution), solvents, lubrificants and cutting oils (mechanic repair and maintenance), laboratory materials and reagents, irritant and/or sensitizing agents contained in gloves. The main biological risks are tetanus, blood-borne diseases (viral hepatitis, AIDS), aerogenous diseases (e.g., tuberculosis, Legionnaire's disease, epidemic cerebrospinal meningitis), dog- or horse-transmitted zoonosis. Finally, emotional, psychosomatic and behavioural stress-related disorders (e.g., burn-out syndrome, post-traumatic stress disorder) are typically frequent. The presence of numerous and diversified hazards among public safety/security forces imposes the adoption of occupational medicine measures, including risk assessment, health education, technical and environmental prevention, personal protective devices, sanitary surveillance and biological monitoring, clinical interventions (diagnosis, therapy and rehabilitation of occupational accidents and illnesses), prompt medico-legal evaluation of occupational

  4. Stress criteria for nuclear vessel concrete

    International Nuclear Information System (INIS)

    Costes, D.

    1975-01-01

    Concrete nuclear vessels are submitted to prestressing forces which limit tensile stresses in concrete when the vessel is under pressure with thermal gradients. Hence, the most severe conditions for concrete appear when the vessel is prestressed and not submitted to internal pressure. The triaxial states of stress in the concrete may be computed postulating elastic or other behavior and compared with safe limits obtained from rupture tests and fatigue tests. The first part of the paper, recalls experimental rupture results and the acceptability procedures currently used. Criteria founded on the lemniscoid surfaces are proposed, parameters for which are obtained by various tests and safety considerations. In the second part, rupture tests are reported on small, thick, cylindrical vessels submitted to external hydraulic pressure simulating prestressing forces. Materials used are plain concrete, microconcrete, marble and graphite. The strengths obtained are much higher than those which could be elastically computed, triaxial rupture states being provided by previous experiments. Such results may be due to a plastic stress redistribution before fracture and to stabilizing effects of stress gradients around the more stressed areas. Fatigue tests by external hydraulic loading are reported [fr

  5. Synthesis of the IRSN report on severe accidents and level 2 probabilistic safety studies within the frame of the safety re-examination associated with the third decennial inspection of 1300 MW reactors

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of this report is to analyze studies related to severe accidents and performed within the framework of the third decennial safety re-examination of the French 1300 We nuclear reactors. It also reports the main conclusions of a detailed analysis of level-2 probabilistic safety studies performed according to another procedure. The report first addresses the 'severe accident' system of reference. It presents the general approach and the safety objectives, discusses the management of a site with a unit in severe accident (this encompasses the management of neighbouring units, the conditions of intervention in terms of habitability of the control room and of manoeuvrability of the venting-filtration system), discusses the expected equipment performance (concerned equipment, safety requirements for equipment needed in case of severe accident, loadings). A second part addresses and comments the results of level 2 probabilistic studies. The report then addresses the water management in the vessel sink with two main objectives (to keep corium in the vessel while promoting its cooling, to cool corium fallen in the vessel sink). The next part addresses modifications planned by EDF in terms of instrumentation associated with a severe accident situation, of improvement of confinement and reduction of risks of important and early releases, of enclosure depressurization in case of unavailability of the enclosure sprinkling system, and of strategy of opening the venting-filtration device in case of total loss of electricity supplies

  6. Reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    1992-07-01

    Within the framework of the IAEA extrabudgetary programme on the Safety of WWER-440/230 NPPs, a list of safety issues requiring broad studies of generic interest have been agreed upon by an Advisory Group who met in Vienna in September 1990. The list was later revised in the light of the programme findings. The information on the status of the issues, and on the amount of work already completed and under way in the various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each one of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Reactor Pressure Vessel Embrittlement'' presents a comprehensive survey of technical information available in the field and identifies those aspects which require further investigation. 39 refs, 21 figs, 4 tabs

  7. Process management - critical safety issues with focus on risk management

    International Nuclear Information System (INIS)

    Sanne, Johan M.

    2005-12-01

    Organizational changes focused on process orientation are taking place among Swedish nuclear power plants, aiming at improving the operation. The Swedish Nuclear Power Inspectorate has identified a need for increased knowledge within the area for its regulatory activities. In order to analyze what process orientation imply for nuclear power plant safety a number of questions must be asked: 1. How is safety in nuclear power production created currently? What significance does the functional organization play? 2. How can organizational forms be analysed? What consequences does quality management have for work and for the enterprise? 3. Why should nuclear power plants be process oriented? Who are the customers and what are their customer values? Which customers are expected to contribute from process orientation? 4. What can one learn from process orientation in other safety critical systems? What is the effect on those features that currently create safety? 5. Could customer values increase for one customer without decreasing for other customers? What is the relationship between economic and safety interests from an increased process orientation? The deregulation of the electricity market have caused an interest in increased economic efficiency, which is the motivation for the interest in process orientation. among other means. It is the nuclear power plants' owners and the distributors (often the same corporations) that have the strongest interest in process orientation. If the functional organization and associated practices are decomposed, the prerequisites of the risk management regime changes, perhaps deteriorating its functionality. When nuclear power operators consider the introduction of process orientation, the Nuclear Power Inspectorate should require that 1. The operators perform a risk analysis beforehand concerning the potential consequences that process orientation might convey: the analysis should contain a model specifying how safety is currently

  8. Clinical risk management and patient safety education for nurses: a critique.

    Science.gov (United States)

    Johnstone, Megan-Jane; Kanitsaki, Olga

    2007-04-01

    Nurses have a pivotal role to play in clinical risk management (CRM) and promoting patient safety in health care domains. Accordingly, nurses need to be prepared educationally to manage clinical risk effectively when delivering patient care. Just what form the CRM and safety education of nurses should take, however, remains an open question. A recent search of the literature has revealed a surprising lack of evidence substantiating models of effective CRM and safety education for nurses. In this paper, a critical discussion is advanced on the question of CRM and safety education for nurses and the need for nurse education in this area to be reviewed and systematically researched as a strategic priority, nationally and internationally. It is a key contention of this paper that without 'good' safety education research it will not be possible to ensure that the educational programs that are being offered to nurses in this area are evidence-based and designed in a manner that will enable nurses to develop the capabilities they need to respond effectively to the multifaceted and complex demands that are inherent in their ethical and professional responsibilities to promote and protect patient safety and quality care in health care domains.

  9. MDCTA diagnosis of cerebral vessel disease among patients with arterial hypertension

    International Nuclear Information System (INIS)

    Romanko-Hrushchak, Nataliya

    2013-01-01

    to study changes involving cerebral vessels in patients with hypertension and various levels of total cardiovascular risk. One hundred and thirty-four patients underwent CT-angiography of intracranial vessels. Ninety-eight of them were diagnosed with hypertension. Taking into consideration high blood pressure, presence of risk factors and target organ damage subjects were divided into 4 groups: with low, medium, high and very high total cardiovascular risk. Control group included 36 patients. They were not diagnosed with hypertension at the time of examination. One hundred and five patients were examined using a 4-slice CT scanner (Toshiba Asteion 4, Toshiba Medical System, Japan), and 29 patients were examined using a 128-slice scanner (Siemens Definition AS+, Siemens Healthcare, Germany) with an injection system. We used iodine-containing contrast agents such as iodixanol and iopromide for angiography. Anatomical and topographic changes of cerebral vessels were most frequently found in hypertensive patients with high and very high total cardiovascular risk. Narrowing of vertebral vessels was the most common change (27 patients (27.55%), 21 patients (21.43%) had narrowing of the right artery, and 6 (6.12%) subjects – of the left one). Tortuous course of internal carotid arteries at the neck level was visualized in 11 patients (11.22%). Narrowing of A1 segment of anterior cerebral artery was noted in 9 patients (9.18%), of the right one – in 8 patients (8.16%), of the left one – in 1 patient (1.02%). Aneurysmal dilation of intracranial vessels was visualized in 6 patients (6.12%). Saccular aneurysm of left internal carotid artery was diagnosed in 2 patients (2.04%), one patient (1.02%) had right internal carotid artery aneurysm and one patient (1.02%) had an aneurysm of the basilar artery. the most common changes of cerebral vessels diagnosed in MDCTA among patients with hypertension included various degrees of narrowing of vertebral vessels, anterior

  10. Underreporting of maritime accidents to vessel accident databases.

    Science.gov (United States)

    Hassel, Martin; Asbjørnslett, Bjørn Egil; Hole, Lars Petter

    2011-11-01

    Underreporting of maritime accidents is a problem not only for authorities trying to improve maritime safety through legislation, but also to risk management companies and other entities using maritime casualty statistics in risk and accident analysis. This study collected and compared casualty data from 01.01.2005 to 31.12.2009, from IHS Fairplay and the maritime authorities from a set of nations. The data was compared to find common records, and estimation of the true number of occurred accidents was performed using conditional probability given positive dependency between data sources, several variations of the capture-recapture method, calculation of best case scenario assuming perfect reporting, and scaling up a subset of casualty information from a marine insurance statistics database. The estimated upper limit reporting performance for the selected flag states ranged from 14% to 74%, while the corresponding estimated coverage of IHS Fairplay ranges from 4% to 62%. On average the study results document that the number of unreported accidents makes up roughly 50% of all occurred accidents. Even in a best case scenario, only a few flag states come close to perfect reporting (94%). The considerable scope of underreporting uncovered in the study, indicates that users of statistical vessel accident data should assume a certain degree of underreporting, and adjust their analyses accordingly. Whether to use correction factors, a safety margin, or rely on expert judgment, should be decided on a case by case basis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Proactive safety management in health care : towards a broader view of risk analysis, error recovery, and safety culture

    NARCIS (Netherlands)

    Habraken, M.M.P.

    2010-01-01

    Medical errors occur frequently. The harm and additional costs associated with those errors ask for effective safety management. According to the objective of minimal patient harm, safety management in health care should be proactive; that is, risks should be anticipated and reduced before patients

  12. Structural analysis and evaluation for the design of pressure vessel

    International Nuclear Information System (INIS)

    Arai, K.; Uragami, K.; Funada, T.; Baba, K.; Kira, T.

    1977-01-01

    For the design of pressure vessel, the detailed structural analysis such as the fatigue analysis under operating conditions is required by ASME Code or Japanese regulation. Accordingly, it should be verified by the analysis that the design of the pressure vessel is in compliance with the stress limitation defined in the Code or the regulation. However, it was apparent that the analysis is very complicated and takes a lot of time to evaluate in accordance with the Code requirements. Thereupon we developed the computer program by which we can perform the stress analysis with correctness and comparatively in a short period of design work reflecting the calculation results on detailed drawings to be used for fabrication. The computer program is controlled in combination with the system of the design work and out put list of the program can be directly used for the stress analysis report which is issued to customers. In addition to the above computer program, we developed the specific three dimensional finite element computer program to make sure of the structural integrity of the vessel head and flanges which are most complex for the analysis compared with the stress distribution measured by strain gauges on the vessel head and flange. Besides the structural analysis, the fracture mechanics analysis for the purpose of preventing the pressure vessel from the brittle fracture during heat-up and cool-down operation is also important and thereby we showed herein that the pressure vessel is in safety against the brittle fracture for the specified operating conditions. As a result of the above-mentioned analysis, the pressure vessel is designed with safety from the stand-points of the structural intensity and the fracture mechanics. (auth.)

  13. The safety of risk or the risk of safety?

    NARCIS (Netherlands)

    Suddle, S.I.; Waarts, P.H.

    2003-01-01

    Safety is nowadays one of the main items on the agenda during the planning, realisation and management of most large-scale projects, particularly in infrastructure and building projects in intensively used areas such as multiple use of land projects. It is vital that safety aspects are properly

  14. Improved Safety Margin Characterization of Risk from Loss of Offsite Power

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Paul [Texas A & M Univ., College Station, TX (United States)

    2017-11-07

    Original intent: The original intent of this task was “support of the Risk-Informed Safety Margin Characteristic (RISMC) methodology in order” “to address … efficiency of computation so that more accurate and cost-effective techniques can be used to address safety margin characterizations” (S. M. Hess et al., “Risk-Informed Safety Margin Characterization,” Procs. ICONE17, Brussels, July 2009, CD format). It was intended that “in Task 1 itself this improvement will be directed toward upon the very important issue of Loss of Offsite Power (LOOP) events,” more specifically toward the challenge of efficient computation of the multidimensional nonrecovery integral that has been discussed by many previous contributors to the theory of nuclear safety. It was further envisioned that “three different computational approaches will be explored,” corresponding to the three subtasks listed below; deliverables were tied to the individual subtasks.

  15. Accidental safety analysis methodology development in decommission of the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H.; Hwang, J. H.; Jae, M. S.; Seong, J. H.; Shin, S. H.; Cheong, S. J.; Pae, J. H.; Ang, G. R.; Lee, J. U. [Seoul National Univ., Seoul (Korea, Republic of)

    2002-03-15

    Decontamination and Decommissioning (D and D) of a nuclear reactor cost about 20% of construction expense and production of nuclear wastes during decommissioning makes environmental issues. Decommissioning of a nuclear reactor in Korea is in a just beginning stage, lacking clear standards and regulations for decommissioning. This work accident safety analysis in decommissioning of the nuclear facility can be a solid ground for the standards and regulations. For source term analysis for Kori-1 reactor vessel, MCNP/ORIGEN calculation methodology was applied. The activity of each important nuclide in the vessel was estimated at a time after 2008, the year Kori-1 plant is supposed to be decommissioned. And a methodology for risk analysis assessment in decommissioning was developed.

  16. Risk and Work Configuration Management as a Function of Integrated Safety Management

    International Nuclear Information System (INIS)

    Lana Buehrer; Michele Kelly; Fran Lemieux; Fred Williams

    2007-01-01

    National Security Technologies, LLC (NSTec), has established a work management program and corresponding electronic Facilities and Operations Management Information System (e-FOM) to implement Integrated Safety Management (ISM). The management of work scopes, the identification of hazards, and the establishment of implementing controls are reviewed and approved through electronic signatures. Through the execution of the program and the implementation of the electronic system, NSTec staff work within controls and utilize feedback and improvement process. The Integrated Work Control Manual further implements the five functions of ISM at the Activity level. By adding the Risk and Work Configuration Management program, NSTec establishes risk acceptance (business and physical) for liabilities within the performance direction and work management processes. Requirements, roles, and responsibilities are specifically identified in the program while e-FOM provides the interface and establishes the flowdown from the Safety Chain to work and facilities management processes to company work-related directives, and finally to Subject Matter Expert concurrence. The Program establishes, within the defined management structure, management levels for risk identification, risk mitigation (controls), and risk acceptance (business and physical) within the Safety Chain of Responsibility. The Program also implements Integrated Safeguards and Security Management within the NSTec Safety Chain of Responsibility. Once all information has been entered into e-FOM, approved, and captured as data, the information becomes searchable and sortable by hazard, location, organization, mitigating controls, etc

  17. Structural features and in-service inspection of the LTHR-200 pressure vessel

    International Nuclear Information System (INIS)

    Xiong Dunshi; He Shuyan; Liu Junjie; Yu Suyuan

    1993-01-01

    LTHR-200 is a low temperature district-heating reactor. It adopts double-shell design pressure vessel and metal containment. Because of the safety and structural features of the reactor, the in-service inspection of the pressure vessel can be simplified greatly. LTHR-200 is an integrated arrangement. Both its core components and the main heat exchangers are contained in the reactor pressure vessel. The coolant of the main loop is run by a full-power natural circulation and there need no main pumps and pipes. Thus, the reactor pressure vessel constitutes the pressure boundary of the reactor's main loop coolant. In regard to these features, a small-sized containment is designed for the reactor. The metal safety container with a small volume is placed closely around the reactor pressure vessel. Outside the metal containment, there is a large reinforced concrete construction for the reactor. Their main operation and design parameters are as follows: The pressure vessel: operation pressure = 2.4 MPa; design pressure = 3.0 MPa; design temperature = 250 deg C; 40 year fast neutron (E>1MeV) fluence in the belt-line region = < 10E16n/cm; internal diameter = 5000 mm; material SA516-70; shell thickness 65 mm; The metal containment: maximum operation pressure = 1.8 MPa; design pressure = 1.8 MPa; design temperature = 250 deg. C; upper internal diameter 7000 mm; lower internal diameter = 5600 mm; material = SA516-70; shell thickness, upper part = 80 mm; lower part = 50 mm. All penetrating pipes through the pressure vessel are located at the top penetration section of the shell. All the internal diameters of penetrating pipes are less than 50 mm. Inside and outside the metal containment wall respectively, isolating valves are connected to the reactor coolant pipe which passes through the containment. These two isolating valves use different driving methods. Every penetrating part of the reactor construction uses a proper form of structure according to safety requirements

  18. 33 CFR 161.12 - Vessel operating requirements.

    Science.gov (United States)

    2010-07-01

    ....0′ N. extending eastward through the Golden Gate, and the navigable waters of San Francisco Bay and... safety beyond that provided by other means. The bridge-to-bridge navigational frequency, 156.650 MHz (Ch... Measures, and Operating Requirements § 161.12 Vessel operating requirements. (a) Subject to the exigencies...

  19. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    Energy Technology Data Exchange (ETDEWEB)

    Mahdevari, Satar, E-mail: satar.mahdevari@aut.ac.ir [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriar, Kourosh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Esfahanipour, Akbar [Industrial Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-08-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  20. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    International Nuclear Information System (INIS)

    Mahdevari, Satar; Shahriar, Kourosh; Esfahanipour, Akbar

    2014-01-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  1. Problems of making decisions with account of risk and safety factors

    Energy Technology Data Exchange (ETDEWEB)

    Larichev, O I

    1987-01-01

    New trends in making decisions on accidents when using large-scale technologies-NPPs, chemical plants etc., are considered. Three main directions in the investigations in this field are distinguished. One of them consists in risk measuring (its perception by people, ways of its quantitative determination). The second direction consists in increasing the safety of large-scale production systems. Here the following questions are considered: risk assessment (the safety standard statement), site selection for new systems, man-machine interaction problems, development of safer technologies, cost benefit safety analysis. The third direction is connected with the problem of accidents and their analysis. This direction includes considering the reasons and process of the accident development, preparing for the possible accidents, monitoring under extreme conditions, accident effect analysis.

  2. Problems of making decisions with account of risk and safety factors

    International Nuclear Information System (INIS)

    Larichev, O.I.

    1987-01-01

    New trends in making decisions on accidents when using large-scale technologies-NPPs, chemical plants etc., are considered. Three main directions in the investigations in this field are distinguished. One of them consists in risk measuring (its perception by people, ways of its quantitative determination). The second direction consists in increasing the safety of large-scale production systems. Here the following questions are considered: risk assessment (the safety standard statement), site selection for new systems, man-machine interaction problems, development of safer technologies, cost benefit safety analysis. The third direction is connected with the problem of accidents and their analysis. This direction includes considering the reasons and process of the accident development, preparing for the possible accidents, monitoring under extreme conditions, accident effect analysis

  3. An integrated risk sensing system for geo-structural safety

    Institute of Scientific and Technical Information of China (English)

    H.W. Huang; D.M. Zhang; B.M. Ayyub

    2017-01-01

    Over the last decades, geo-structures are experiencing a rapid development in China. The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project, i.e. the project of Shanghai Yangtze tunnel in 2002. Since then, risk assessment of geo-structures has been gradually developed from a qualitative manner to a quantitative manner. However, the current practices of risk management have been paid considerable attention to the assessment, but little on risk control. As a result, the responses to risks occurrences after a comprehensive assessment are basically too late. In this paper, a smart system for risk sensing incorporating the wireless sensor network (WSN) on-site visualization techniques and the resilience-based repair strategy was proposed. The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers. The sectional convergence, joint opening, and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems (MEMS) based sensors. The light emitting diode (LED) coupling with the above WSN system was used to indicate different risk levels on site. By sensing the risks and telling the risks in real time, the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree. Finally, a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system. The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.

  4. The Coast Guard Proceedings of the Marine Safety and Security Council: Spring 2016

    Science.gov (United States)

    2016-04-01

    management system designed to manage safety elements in the workplace . In practice, an operational...winning DuPont family of workplace safety training offerings. Management Buy-In Even if an organization embraces nonconformities as a call to improved...PROCEEDINGS Spring 2016 Vol. 73, Number 1 Safety Management System Objectives 6 Safety Management Facilitates Safe Vessel Operation Vessel

  5. Patient safety in the operating room: an intervention study on latent risk factors

    Directory of Open Access Journals (Sweden)

    van Beuzekom Martie

    2012-06-01

    Full Text Available Abstract Background Patient safety is one of the greatest challenges in healthcare. In the operating room errors are frequent and often consequential. This article describes an approach to a successful implementation of a patient safety program in the operating room, focussing on latent risk factors that influence patient safety. We performed an intervention to improve these latent risk factors (LRFs and increase awareness of patient safety issues amongst OR staff. Methods Latent risk factors were studied using a validated questionnaire applied to the OR staff before and after an intervention. A pre-test/post-test control group design with repeated measures was used to evaluate the effects of the interventions. The staff from one operating room of an university hospital acted as the intervention group. Controls consisted of the staff of the operating room in another university hospital. The outcomes were the changes in LRF scores, perceived incident rate, and changes in incident reports between pre- and post-intervention. Results Based on pre-test scores and participants’ key concerns about organizational factors affecting patient safety in their department the intervention focused on the following LRFs: Material Resources, Training and Staffing Recourses. After the intervention, the intervention operating room - compared to the control operating room - reported significantly fewer problems on Material Resources and Staffing Resources and a significantly lower score on perceived incident rate. The contribution of technical factors to incident causation decreased significantly in the intervention group after the intervention. Conclusion The change of state of latent risk factors can be measured using a patient safety questionnaire aimed at these factors. The change of the relevant risk factors (Material and Staffing resources concurred with a decrease in perceived and reported incident rates in the relevant categories. We conclude that

  6. Workplace road safety risk management: An investigation into Australian practices.

    Science.gov (United States)

    Warmerdam, Amanda; Newnam, Sharon; Sheppard, Dianne; Griffin, Mark; Stevenson, Mark

    2017-01-01

    In Australia, more than 30% of the traffic volume can be attributed to work-related vehicles. Although work-related driver safety has been given increasing attention in the scientific literature, it is uncertain how well this knowledge has been translated into practice in industry. It is also unclear how current practice in industry can inform scientific knowledge. The aim of the research was to use a benchmarking tool developed by the National Road Safety Partnership Program to assess industry maturity in relation to risk management practices. A total of 83 managers from a range of small, medium and large organisations were recruited through the Victorian Work Authority. Semi-structured interviews aimed at eliciting information on current organisational practices, as well as policy and procedures around work-related driving were conducted and the data mapped onto the benchmarking tool. Overall, the results demonstrated varying levels of maturity of risk management practices across organisations, highlighting the need to build accountability within organisations, improve communication practices, improve journey management, reduce vehicle-related risk, improve driver competency through an effective workplace road safety management program and review organisational incident and infringement management. The findings of the study have important implications for industry and highlight the need to review current risk management practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Challenges of Safety Culture: No more risk!

    Directory of Open Access Journals (Sweden)

    Julija Melnikova

    2016-12-01

    Full Text Available According to A. Maslow’s [1] hierarchy of human needs the need for safety and security is a priority for mankind. The concept ‘safety culture’ appeared only in 1986, when theChernobyldisaster made the whole world muse upon human relationship with technology [2]. This global catastrophe was a caution, but not for everyone. Potent academic systems and elaborated instruments of a huge economical value have been invoked in maintaining the satisfaction of biogenetic needs, whereas any manual on safety topic has not been issued yet. Even such progressive communities as the European Union, elaborating long-term strategic decisions, do not find clear and reasonable principles that would encourage to choose safe technologies with respect to present and future generations. Giving way to the ostensible effectiveness of centralized technologies such as equipment, communication, energetic that are well-disposed to big business, the majority of politicians and even scientists are not able to estimate the risk that is programmed in the choice of dangerous and insecure technical decisions. It is not still realized that none of the technologies is worth a human life or safety.The level of social maturity is a factor stipulating the merge of two concepts ‘safety’ and „a person“. At the time when industrial priorities were dominant the concept ‘safety techniques’ had been used putting stress on peculiarities of working with technical devices and on the ways manpower could be adjusted to them. Later the term ‘Safety of labour’ appeared. It drew attention to the labour process and its peculiarities. The assimilation of European culture has determined the introduction of the notion ‘personnel safety and health’ to labour relations. The postindustrial stage of humanity development brings the new understanding of major values. Individual is now identified as a personality as well as human life is understood as the major value. The natural

  8. Driving behaviours, traffic risk and road safety: comparative study between Malaysia and Singapore.

    Science.gov (United States)

    Khan, Saif ur Rehman; Khalifah, Zainab Binti; Munir, Yasin; Islam, Talat; Nazir, Tahira; Khan, Hashim

    2015-01-01

    The present study aims to investigate differences in road safety attitude, driver behaviour and traffic risk perception between Malaysia and Singapore. A questionnaire-based survey was conducted among a sample of Singaporean (n = 187) and Malaysian (n = 313) road users. The data was analysed using confirmatory factor analysis and structural equation modelling applied to measure comparative fit indices of Malaysian and Singaporean respondents. The results show that the perceived traffic risk of Malaysian respondents is higher than Singaporean counterparts. Moreover, the structural equation modelling has confirmed perceived traffic risk performing the role of full mediation between perceived driving skills and perceived road safety for both the countries, while perceived traffic skills was found to perform the role of partial mediation between aggression and anxiety, on one hand, and road safety, on the other hand, in Malaysia and Singapore. In addition, in both countries, a weak correlation between perceived driving skills, aggression and anxiety with perceived road safety was found, while a strong correlation exists with traffic risk perception. The findings of this study have been discussed in terms of theoretical, practical and conceptual implications for both scholars and policy-makers to better understand the young drivers' attitude and behaviour relationship towards road safety measures with a view to future research.

  9. Safety Politics and Risk Perceptions in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    Abstract The book deals with the analysis of work hazards and safety in industrial enterprises in Peninsular Malaysia, Southeast Asia. It traces the development of this theme of conflict within the context constituted by state, labour market and labour-management relations in Malaysia. The book...... and safety, when compared with the influence of local conditions? What kind of process develops, as local theory about work hazards are formed among workers. And, which are the opportunities for changing working environment institutions in Malaysia? The first part of the book discusses traditions...... by the state from Burawoy, Beronius, and Adesina about production politics and social relations in the labour process provides an integrated perspective on individual risk perceptions, safety practices in enterprises, and government regulation. The empirical data were collected during the period 1989...

  10. A quantitative approach to the risk perception associated with nuclear safety

    International Nuclear Information System (INIS)

    Black, S.

    2015-01-01

    Subjective risk perception associated with nuclear safety is hard-wired into the general public psyche; but as real as this 'feels', and as much as it requires to be respected in a democracy, misguided risk perception on nuclear safety can create its own perils for humans. The objective of this paper is to create a better understanding of the phenomena of risk perception associated with nuclear safety presented by journalistic media. It will attempt to quantify the manifestation of risk perception associated with nuclear safety by providing comparison between the media coverage of nuclear and industrial accidents of similar magnitude. It will utilise the Fog Index, a mathematical formula that defines the readability of an article, allowing for an unbiased numerical comparison on 'readability' to be derived. Fog Index is expressed as: Fog Index = 0.4(N/S + 100*L/N), where N is the number of words in the article, S is the number of sentences and L is the number of words with 3 syllables or more. To provide consistency, the medium chosen to compare industrial accidents are reports extracted from 'The Times' newspaper, written at the time of the accidents and concerning Chernobyl and Bhopal disasters. 'The Times' is respected newspaper, written for a knowledgeable audience who have an in-depth interest in the news from the UK and abroad; subsequently this causes it to have a relatively high Fog index, compared to its tabloid counterparts. The higher the Fog Index, the more education the reader requires to fully understand the article, a Fog Index of 12 is the limit for the majority of the general public. Research found that reporting of nuclear safety accidents has a Fog Index of approximately 14 while it was only of 10 for Bhopal accident. These values go someway in demonstrating that the complexity of media information on nuclear safety transferred via journalistic media is beyond what can reasonably be expected to be

  11. The role of engineering judgement, safety culture, and organizational factors in risk assessment

    International Nuclear Information System (INIS)

    Muzumdar, Ajit; Professor, Visiting

    1996-01-01

    This paper reviews the role of engineering judgement, safety culture, and organizational factors in risk assessment by examining the reasons for human-based error. The need for more emphasis on producing engineers with good engineering judgement is described. The progress in quantifying the role of safety culture and organizational factors in risk assessment studies is summarized

  12. Improved Safety Margin Characterization of Risk from Loss of Offsite Power

    International Nuclear Information System (INIS)

    Nelson, Paul

    2017-01-01

    Original intent: The original intent of this task was ''support of the Risk-Informed Safety Margin Characteristic (RISMC) methodology in order'' ''to address ... efficiency of computation so that more accurate and cost-effective techniques can be used to address safety margin characterizations'' (S. M. Hess et al., ''Risk-Informed Safety Margin Characterization,'' Procs. ICONE17, Brussels, July 2009, CD format). It was intended that ''in Task 1 itself this improvement will be directed toward upon the very important issue of Loss of Offsite Power (LOOP) events,'' more specifically toward the challenge of efficient computation of the multidimensional nonrecovery integral that has been discussed by many previous contributors to the theory of nuclear safety. It was further envisioned that ''three different computational approaches will be explored,'' corresponding to the three subtasks listed below; deliverables were tied to the individual subtasks.

  13. Application of risk assessment in upgrading safety and quality of radiochemical operations

    International Nuclear Information System (INIS)

    Lin, K.H.; Hightower, J.R.; Vaughen, V.C.A.

    1990-01-01

    A Comprehensive Safety Assessment and Upgrade Program (CSAUP) was commenced by the Chemical Technology Division (Chem Tech) at Oak Ridge National Laboratory (ORNL) to achieve excellence in the safety and quality of its operations and condition of its facilities. In the course of conducting CSAUP, a number of issues of concern were identified. The safety risk of these issues has been assessed, and planned actions were prepared for those issues that require corrective actions or improvement/upgrading. The planned actions were evaluated on consideration for the uniqueness of Chem Tech facilities and operations to determine the risks (high, moderate or low) involved by failure to implement the actions. The risk was defined in terms of the frequency and severity of impact. Priority of categorized actions was based on the urgency of the actions. 2 refs., 1 fig., 3 tabs

  14. HySTAR: the hydrogen safety training and risk workplace

    International Nuclear Information System (INIS)

    Hay, R.

    2006-01-01

    This paper shows the output of the software package HySTAR, the Hydrogen Safety, Training and Risk Workplace. This is the software output of the CTFA, Canadian Hydrogen Safety Program projects. It shows the Hydrogen Virtual Interactive Expert Workplace, a guide for permitting and code enforcement for officials and other parties involved in approving hydrogen energy facilities. It also shows the Hydrogen Codes and Standards Report (Site Level) as well as Hydrogen Distances and Clearances Report

  15. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    Science.gov (United States)

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  16. PWG4 perspective on ex-vessel hydrogen sources

    International Nuclear Information System (INIS)

    2000-07-01

    The purpose of this perspective document is to identify the potential ex-vessel hydrogen sources and to address the question whether, considered the uncertainties associated to these sources, further investigations are required. The statement is established with reference to the needs for safety evaluation of nuclear reactors under severe accident conditions. It is recognised that the views could be different if one looks at these issues from another standpoint. Since the TMI-2 accident in 1979, there had been a large interest in the nuclear reactor safety community for studying the behaviour of hydrogen in case of a severe accident. As a result, different 'state of the art' reports were produced. Examples of these documents are NUREG/CR-1561 and EUR 14307. In particular, they identified potential hydrogen sources during accidents, including ex-vessel sources. Various ex-vessel hydrogen sources, covering a variety of physical and chemical processes, were identified. Although their precise quantification and relative importance is to be established on a case by case basis with respect to the specific reactor design of interest, general trends can be formulated. The sources to be considered are the followings: - radiolysis of water; - corrosion reactions, - reaction of urania with steam and water; - core-concrete interaction; - debris-atmosphere interaction. These sources are discussed successively. The PWG4 (CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases) perspective on Ex-vessel Hydrogen Sources can be summarised in the following statements: 1. The issue of hydrogen sources must be considered as a whole and cannot be separated into in-vessel and ex-vessel issues. For significant sources that may not be accommodated by mitigation means associated to DBA, the uncertainty is largely dominated by the unknown extent of Zr oxidation during the in-vessel phase. 2. PWG4 notes that hydrogen production during corium quenching by water is

  17. A Practical Risk Assessment Methodology for Safety-Critical Train Control Systems

    Science.gov (United States)

    2009-07-01

    This project proposes a Practical Risk Assessment Methodology (PRAM) for analyzing railroad accident data and assessing the risk and benefit of safety-critical train control systems. This report documents in simple steps the algorithms and data input...

  18. 75 FR 17417 - Joint Meeting of the Arthritis Advisory Committee and the Drug Safety and Risk Management...

    Science.gov (United States)

    2010-04-06

    ...] Joint Meeting of the Arthritis Advisory Committee and the Drug Safety and Risk Management Advisory... Arthritis Advisory Committee and the Drug Safety and Risk Management Advisory Committee. This meeting was... Drug Safety and Risk Management Advisory Committee would be held on May 12, 2010. On page 10490, in the...

  19. Aging impact on the safety and operability of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-01-01

    Irradiation embrittlement causes a loss of reactor vessel material fracture toughness as nuclear plants age. Fracture mechanics based regulatory requirements limit the permissible level of irradiation embrittlement such that essential fracture prevention margins are maintained throughout the plant operating life. This paper reviews the regulatory requirements and the underlying fracture mechanics technology. Issues identified with that technology are identified and research programs implemented to resolve the issues are described. Where possible, an assessment is given of the anticipated impact on the research program output will have on the reactor vessel fracture-margin assessment process

  20. Seismic proving test of PWR reactor containment vessel

    International Nuclear Information System (INIS)

    Akiyama, H.; Yoshikawa, T.; Tokumaru, Y.

    1987-01-01

    The seismic reliability proving tests of nuclear power plant facilities are carried out by Nuclear Power Engineering Test Center (NUPEC), using the large-scale, high-performance vibration of Tadotsu Engineering Laboratory, and sponsored by the Ministry of International Trade and Industry (MITI). In 1982, the seismic reliability proving test of PWR containment vessel started using the test component of reduced scale 1/3.7 and the test component proved to have structural soundness against earthquakes. Subsequently, the detailed analysis and evaluation of these test results were carried out, and the analysis methods for evaluating strength against earthquakes were established. Whereupon, the seismic analysis and evaluation on the actual containment vessel were performed by these analysis methods, and the safety and reliability of the PWR reactor containment vessel were confirmed

  1. Thermonuclear generation program: risks and safety; Programa de geracao termonuclear: seus riscos e segurancas

    Energy Technology Data Exchange (ETDEWEB)

    Goes, Alexandre Gromann de Araujo

    1999-07-01

    This work deals with the fundamental concepts of risk and safety related to nuclear power generation. In the first chapter, a general evaluation of the various systems for energy generation and their environmental impacts is made. Some definitions for safety and risk are suggested, based on the already existing regulatory processes and also on the current tendencies of risk management. Aspects regarding the safety culture are commented. The International Nuclear Event Scale (INES), a coherent and clear mechanism of communication between nuclear specialists and the general public, is analyzed. The second chapter examines the thermonuclear generation program in Brazil and the role of the National Nuclear Energy Commission. The third chapter presents national and international scenarios in terms of safety and risks, available policies and the main obstacles for future development of nuclear energy and nuclear engineering, and strategies are proposed. In the last chapter, comments about possible trends and recommendations related to practical risk management procedures, taking into account rational criteria for resources distribution and risk reduction are made, envisaging a closer integration between nuclear specialists and the society as a whole, thus decreasing the conflicts in a democratic decision-making process.

  2. Assessment and management of ageing of major nuclear power plant components important to safety: PWR pressure vessels. 2007 update

    International Nuclear Information System (INIS)

    2007-06-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that effective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) is one of the most important issues for plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. IAEA-TECDOC-1120 documented ageing assessment and management practices for pressurized water reactor (PWR) reactor pressure vessels (RPVs) that were current at the time of its finalization in 1997-1998. Safety significant operating events have occurred since the finalization of the TECDOC, e.g. primary water stress corrosion cracking (PWSCC) of Alloy 600 control rod drive mechanism (CRDM) penetrations and boric acid corrosion/wastage of RPV heads, which threatened the integrity of the RPV heads. These events led to new ageing management actions by both NPP operators and regulators. Therefore it was recognized that IAEA-TECDOC-1120 should be updated by incorporating those new events and their countermeasures. The objective of this report is to update IAEA-TECDOC-1120 in order to provide current ageing management guidance for PWR RPVs to all involved in the operation and regulation of PWRs and thus to help ensure PWR RPV integrity in IAEA Member States throughout their entire service life

  3. Knowledge management and safety compliance in a high-risk distributed organizational system.

    Science.gov (United States)

    Gressgård, Leif Jarle

    2014-06-01

    In a safety perspective, efficient knowledge management is important for learning purposes and thus to prevent errors from occurring repeatedly. The relationship between knowledge exchange among employees and safety behavior may be of particular importance in distributed organizational systems where similar high-risk activities take place at several locations. This study develops and tests hypotheses concerning the relationship between knowledge exchange systems usage, knowledge exchange in the organizational system, and safety compliance. The operational context of the study is petroleum drilling and well operations involving distributed high-risk activities. The hypotheses are tested by use of survey data collected from a large petroleum operator company and eight of its main contractors. The results show that safety compliance is influenced by use of knowledge exchange systems and degree of knowledge exchange in the organizational system, both within and between units. System usage is the most important predictor, and safety compliance seems to be more strongly related to knowledge exchange within units than knowledge exchange between units. Overall, the study shows that knowledge management is central for safety behavior.

  4. Provision of reliable core cooling in vessel-type boiling reactors

    International Nuclear Information System (INIS)

    Alferov, N.S.; Balunov, B.F.; Davydov, S.A.

    1987-01-01

    Methods for providing reliable core cooling in vessel-type boiling reactors with natural circulation for heat supply are analysed. The solution of this problem is reduced to satisfaction of two conditions such as: water confinement over the reactor core necessary in case of an accident and confinement of sufficient coolant flow rate through the bottom cross section of fuel assemblies for some time. The reliable fuel element cooling under conditions of a maximum credible accident (brittle failure of a reactor vessel) is shown to be provided practically in any accident, using the safety vessel in combination with the application of means of standard operation and minimal composition and capacity of ECCS

  5. Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning.

    Science.gov (United States)

    Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien

    2015-08-01

    Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.

  6. Optimized design of an ex-vessel cooling thermosyphon for decay heat removal in SFR

    International Nuclear Information System (INIS)

    Choi, Jae Young; Jeong, Yong Hoon; Song, Sub Lee; Chang, Soon Heung

    2017-01-01

    Passive decay heat removal and sodium fire are two major key issues of nuclear safety in sodium-cooled fast reactor (SFR). Several decay heat removal systems (DHR) were suggested for SFR around the world so far. Those DHRS mainly classified into two concepts: Direct reactor cooling system and ex-vessel cooling system. Direct reactor cooling method represented by PDHRS from PGSFR has disadvantages on its additional in-vessel structure and potential sodium fire risk due to the sodium-filled heat exchanger exposed to air. Contrastively, ex-vessel cooling method represented by RVACS from PRISM has low decay heat removal performance, which cannot be applicable to large scale reactors, generally over 1000 MWth. No passive DHRSs which can solve both side of disadvantages has been suggested yet. The goal of this study was to propose ex-vessel cooling system using two-phase closed thermosyphon to compensate the disadvantages of the past DHRSs. Reference reactor was Innovative SFR (iSFR), a pool-type SFR designed by KAIST and featured by extended core lifetime and increased thermal efficiency. Proposed ex-vessel cooling system consisted of 4 trains of thermosyphons and designed to remove 1% of thermal power with 10% of margin. The scopes of this study were design of proposed passive DHRS, validation of system analysis and optimization of system design. Mercury was selected as working fluid to design ex-vessel thermosyphon in consideration of system geometry, operating temperature and required heat flux. SUS 316 with chrome coated liner was selected as case material to resist against high corrosivity of mercury. Thermosyphon evaporator was covered on the surface of reactor vessel as the geometry of hollow shell filled with mercury. Condenser was consisted of finned tube bundles and was located in isolated water pool, the ultimate heat sink. Operation limits and thermal resistance was estimated to guarantee whether the design was adequate. System analysis was conducted by in

  7. Risks and safety perception. IPSN barometer october 1999. Synthesis

    International Nuclear Information System (INIS)

    1999-10-01

    An opinion investigation was realized in october 1999 by the IPSN to know the public opinion concerning the risks and safety perception. Five subjects were treated: the public care subjects (social and environment); the science and scientists image; the food risks; the opinion on the nuclear activities (interveners ability and credibility, nuclear controversy, radioactive wastes and nuclear accidents); the french people cares about the risks. The methodology and the analysis of the poll results are detailed. Tables of data investigation are also included. (A.L.B.)

  8. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias, E-mail: amandaraso@hotmail.com, E-mail: vasconv@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: soaresw@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Tecnologia de Reatores

    2017-07-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  9. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    International Nuclear Information System (INIS)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias

    2017-01-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  10. Efficient improvement of nuclear power plant safety by reorganization of risk-informed safety importance evaluation methods for piping welded portions

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Takashi; Hanafusa, Hidemitsu; Suyama, Takeshi [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Morota, Hidetsugu; Kojima, Sigeo; Mizuno, Yoshinobu [Computer Software Development Co., Ltd., Tokyo (Japan)

    2002-09-01

    In this work, risk information was used to evaluate the safety importance of piping welded portions which were important for plant operation and maintenance of nuclear power plants. There are two types of risk-informed safety importance evaluation methods, namely the ASME method and the EPRI method. Since both methods have advantages and disadvantages, elements of each method were combined and reorganized. Considerations included whether the degradation mechanisms would be objectively evaluated and whether plant safety would be efficiently improved. The most objective and efficient method was as follows. Piping failure potential is quantitatively and objectively evaluated for failure with probabilistic fracture mechanics (PFM) and for other degradation mechanisms with empirical failure rates, and conditional core damage probability (CCDP) is calculated with PSA. This method reduces the inspected segment numbers to 1/4 of the deterministic method and increases the ratio of risk, which is covered by the inspected segments, to total risk from 80% of the deterministic method to 95%. Piping inspection numbers decreased for safety injection systems that were required the inspections by the deterministic method. Piping inspections were required for part of main feed water and main steam systems that were not required the inspections by the deterministic method. (author)

  11. In-place thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-04-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. The Amry SM-1A test reactor vessel was wet annealed in 1967 at less than 343 0 C (650 0 F), and wet annealing of the Belgian BR-3 reactor vessel at 343 0 C (650 0 F) has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place at temperatures as high as 454 0 C (850 0 F) is feasible, but solvable engineering problems do exist. Economic considerations have not been totally evaluated in assessing the cost-effectiveness of in-place annealing of commercial nuclear vessels. An American Society for Testing and Materials (ASTM) task group is upgrading and revising guide ASTM E 509-74 with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (e.g., the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  12. BARC-risk monitor- a tool for operational safety assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Vinod, Gopika; Saraf, R.K.; Babar, A.K.; Hadap, Nikhil

    2000-12-01

    Probabilistic safety assessment has become a key tool as on today to identify and understand nuclear power plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear power plant. Operation of risk monitor is based on PSA methods for assisting in day to day applications. Risk monitoring programs can assess the risk profile and are used to optimise the operation of nuclear power plants with respect to a minimum risk level over the operating time. This report presents the background activities of risk monitor, its application areas and also gives the status of such tools in international scenarios. The software is based on the PSA model of Kaiga generating station and would be applicable to similar design configuration. (author)

  13. Governance implications of nanomaterials companies' inconsistent risk perceptions and safety practices

    Energy Technology Data Exchange (ETDEWEB)

    Engeman, Cassandra D. [University of California, Santa Barbara, Department of Sociology (United States); Baumgartner, Lynn; Carr, Benjamin M.; Fish, Allison M.; Meyerhofer, John D. [UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara (United States); Satterfield, Terre A. [University of California, Santa Barbara, NSF Center for Nanotechnology and Society (United States); Holden, Patricia A. [UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara (United States); Harthorn, Barbara Herr, E-mail: harthorn@cns.ucsb.edu [University of California, Santa Barbara, NSF Center for Nanotechnology and Society (United States)

    2012-03-15

    Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders' perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated 'lack of information' as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders' reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.

  14. Performance Analysis of Multi Stage Safety Injection Tank

    International Nuclear Information System (INIS)

    Shin, Soo Jai; Kim, Young In; Bae, Youngmin; Kang, Han-Ok; Kim, Keung Koo

    2015-01-01

    In general the integral reactor has such characteristics, the integral reactor requires a high flow rate of coolant safety injection at the initial stage of the accident in which the core level is relatively fast decreased, A medium flow rate of coolant safety injection at the early and middle stages of the accident in which the coolant discharge flow rate is relatively large due to a high internal pressure of the reactor vessel, and a low flow rate of coolant safety injection is required at the middle and late stages of the accident in which the coolant discharge flow rate is greatly reduced due to a decreased pressure of the reactor vessel. It is noted that a high flow rate of the integral reactor is quite smaller compared to a flow rate required in the commercial loop type reactor. However, a nitrogen pressurized safety injection tank has been typically designed to quickly inject a high flow rate of coolant when the internal pressure of the reactor vessel is rapidly decreased, and a core makeup tank has been designed to safely inject at a single mode flow rate due to a gravitational head of water subsequent to making a pressure balance between the reactor vessel and core makeup tank. As a result, in order to compensate such a disadvantage, various type systems are used in a complicated manner in a reactor according to the required characteristic of safety injection during an accident. In the present study, we have investigated numerically the performance of the multi stage safety injection tank. A parameter study has performed to understand the characteristics of the multi stage safety injection tank. The performance of the multi stage safety injection tank has been investigated numerically. When an accident occurs, the coolant in the multi stage safety injection tank is injected into a reactor vessel by a gravitational head of water subsequent to making a pressure balance between the reactor and tank. At the early stages of the accident, the high flow rate of

  15. Performance Analysis of Multi Stage Safety Injection Tank

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo Jai; Kim, Young In; Bae, Youngmin; Kang, Han-Ok; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In general the integral reactor has such characteristics, the integral reactor requires a high flow rate of coolant safety injection at the initial stage of the accident in which the core level is relatively fast decreased, A medium flow rate of coolant safety injection at the early and middle stages of the accident in which the coolant discharge flow rate is relatively large due to a high internal pressure of the reactor vessel, and a low flow rate of coolant safety injection is required at the middle and late stages of the accident in which the coolant discharge flow rate is greatly reduced due to a decreased pressure of the reactor vessel. It is noted that a high flow rate of the integral reactor is quite smaller compared to a flow rate required in the commercial loop type reactor. However, a nitrogen pressurized safety injection tank has been typically designed to quickly inject a high flow rate of coolant when the internal pressure of the reactor vessel is rapidly decreased, and a core makeup tank has been designed to safely inject at a single mode flow rate due to a gravitational head of water subsequent to making a pressure balance between the reactor vessel and core makeup tank. As a result, in order to compensate such a disadvantage, various type systems are used in a complicated manner in a reactor according to the required characteristic of safety injection during an accident. In the present study, we have investigated numerically the performance of the multi stage safety injection tank. A parameter study has performed to understand the characteristics of the multi stage safety injection tank. The performance of the multi stage safety injection tank has been investigated numerically. When an accident occurs, the coolant in the multi stage safety injection tank is injected into a reactor vessel by a gravitational head of water subsequent to making a pressure balance between the reactor and tank. At the early stages of the accident, the high flow rate of

  16. The impact of vessel speed reduction on port accidents.

    Science.gov (United States)

    Chang, Young-Tae; Park, Hyosoo

    2016-03-19

    Reduced-speed zones (RSZs) have been designated across the world to control emissions from ships and prevent mammal strikes. While some studies have examined the effectiveness of speed reduction on emissions and mammal preservation, few have analyzed the effects of reduced ship speed on vessel safety. Those few studies have not yet measured the relationship between vessel speed and accidents by using real accident data. To fill this gap in the literature, this study estimates the impact of vessel speed reduction on vessel damages, casualties and frequency of vessel accidents. Accidents in RSZ ports were compared to non-RSZ ports by using U.S. Coast Guard data to capture the speed reduction effects. The results show that speed reduction influenced accident frequency as a result of two factors, the fuel price and the RSZ designation. Every $10 increase in the fuel price led to a 10.3% decrease in the number of accidents, and the RSZ designation reduced vessel accidents by 47.9%. However, the results do not clarify the exact impact of speed reduction on accident casualty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  18. Danger zone: Men, masculinity and occupational health and safety in high risk occupations.

    Science.gov (United States)

    Stergiou-Kita, Mary; Mansfield, Elizabeth; Bezo, Randy; Colantonio, Angela; Garritano, Enzo; Lafrance, Marc; Lewko, John; Mantis, Steve; Moody, Joel; Power, Nicole; Theberge, Nancy; Westwood, Eleanor; Travers, Krista

    2015-12-01

    The workplace is a key setting where gender issues and organizational structures may influence occupational health and safety practices. The enactment of dominant norms of masculinity in high risk occupations can be particularly problematic, as it exposes men to significant risks for injuries and fatalities. To encourage multi-disciplinary collaborations and advance knowledge in the intersecting areas of gender studies, men's health, work and workplace health and safety, a national network of thirteen researchers and health and safety stakeholders completed a critical literature review examining the intersection between masculinities and men's workplace health and safety in order to: (i) account for research previously undertaken in this area; (ii) identify themes that may inform our understanding of masculinity and workplace health and safety and; (iii) identify research and practice gaps in relation to men's workplace health and safety. In this paper we present key themes from this review. Recommendations are made regarding: (i) how to define gender; (ii) how to attend to and identify how masculinities may influence workers' identities, perceptions of occupational risks and how institutionalized practices can reinforce norms of masculinity; (iii) the importance of considering how masculinities may intersect with other variables (e.g. historical context, age, class, race, geographical location) and; (iv) the added significance of present-day labour market forces on men's occupational health and safety.

  19. Installation method for the steel container and vessel of the nuclear heating reactor

    International Nuclear Information System (INIS)

    Chen Liying; Guo Jilin; Liu Wei

    2000-01-01

    The Nuclear Heating Reactor (NHR) has the advantages of inherent safety and better economics, integrated arrangement, full power natural circulation and dual vessel structure. However, the large thin container presents a new and difficult problem. The characteristics of the dual vessel installation method are analyzed with system engineering theory. Since there is no foreign or domestic experience, a new method was developed for the dual vessel installation for the 5 MW NHR. The result shows that the installation method is safe and reliable. The research on the dual vessel installation method has important significance for the design, manufacture and installation of the NHR dual vessel, as well as the industrialization and standardization of the NHR

  20. RB research reactor safety report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document