WorldWideScience

Sample records for vesamicol receptor concentration

  1. Comparative tissue distribution of conformationally restricted radioiodinated vesamicol receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Efange, S M.N.; Khare, A B; Langason, R B

    1995-05-01

    Three conformationally restricted analogs of vesamicol, 1'-[1-(3-iodobenzyl)-4-hydroxypiperidin-3-yl]-spirol[1H-indene-1,4'- piperidine] (5), 1'-[1-(3-iodobenzyl)-4-hydroxypiperidin-3-yl]-3,4-dihydrospiro[indene-1,4'- piperidine] (6) and 1'-[1-(3-iodobenzyl)-4-hydroxypiperidin-3-yl)]-3,4-dihydrospiro[naphthalene- 1(2H),4'-piperidine] (7), were labelled with iodine-125 and evaluated as potential radioligands for mapping vesamicol receptor (VR) density and cholinergic function in vivo. All compounds showed similar kinetics in most tissues. However, differences were observed in the brain. Although comparable levels of each corresponding enantiomeric pair were obtained initially in the brain, the levels of the dextrorotatory enantiomers (+)-5, (+)-6 and (+)-7 were found to decrease by 72-82% over a period of 3 h. In contrast, the brain levels of the corresponding levorotatory isomers were maintained throughout the duration of the experiment. Among the dextrorotatory isomers, (+)-6 showed the highest brain extraction, while (+)-7 showed the lowest. In tissue dissection experiments, the levels of (+)-5, (+)-6 and (+)-7 were highest in the striatum and moderate to low in the cortex and cerebellum. Co-administration of haloperidol with (+)-6 decreased the levels of the latter in the striatum by 27%, while the levels in the cortex and cerebellum were each reduced by 60%. In addition, haloperidol failed to affect the regional distribution of (+)-7 in the brain. However, both haloperidol and spiperone increased the striatal levels of (+)-5 by 67 and 76%, respectively, suggesting that the binding of this radioligand is related to cholinergic function. Furthermore, haloperidol reduced the concentration of (+)-5 in the cortex and cerebellum by 25 and 33%, respectively, thereby implicating the sigma site as a secondary target for this ligand in the cortex.

  2. Comparative tissue distribution of conformationally restricted radioiodinated vesamicol receptor ligands

    International Nuclear Information System (INIS)

    Efange, S.M.N.; Khare, A.B.; Langason, R.B.

    1995-01-01

    Three conformationally restricted analogs of vesamicol, 1'-[1-(3-iodobenzyl)-4-hydroxypiperidin-3-yl]-spirol[1H-indene-1,4'- piperidine] (5), 1'-[1-(3-iodobenzyl)-4-hydroxypiperidin-3-yl]-3,4-dihydrospiro[indene-1,4'- piperidine] (6) and 1'-[1-(3-iodobenzyl)-4-hydroxypiperidin-3-yl)-3,4-dihydrospiro[naphthalene- 1(2H),4'-piperidine] (7), were labelled with iodine-125 and evaluated as potential radioligands for mapping vesamicol receptor (VR) density and cholinergic function in vivo. All compounds showed similar kinetics in most tissues. However, differences were observed in the brain. Although comparable levels of each corresponding enantiomeric pair were obtained initially in the brain, the levels of the dextrorotatory enantiomers (+)-5, (+)-6 and (+)-7 were found to decrease by 72-82% over a period of 3 h. In contrast, the brain levels of the corresponding levorotatory isomers were maintained throughout the duration of the experiment. Among the dextrorotatory isomers, (+)-6 showed the highest brain extraction, while (+)-7 showed the lowest. In tissue dissection experiments, the levels of (+)-5, (+)-6 and (+)-7 were highest in the striatum and moderate to low in the cortex and cerebellum. Co-administration of haloperidol with (+)-6 decreased the levels of the latter in the striatum by 27%, while the levels in the cortex and cerebellum were each reduced by 60%. In addition, haloperidol failed to affect the regional distribution of (+)-7 in the brain. However, both haloperidol and spiperone increased the striatal levels of (+)-5 by 67 and 76%, respectively, suggesting that the binding of this radioligand is related to cholinergic function. Furthermore, haloperidol reduced the concentration of (+)-5 in the cortex and cerebellum by 25 and 33%, respectively, thereby implicating the sigma site as a secondary target for this ligand in the cortex

  3. Development and evaluation of a novel radioiodinated vesamicol analog as a sigma receptor imaging agent.

    Science.gov (United States)

    Ogawa, Kazuma; Kanbara, Hiroya; Shiba, Kazuhiro; Kitamura, Yoji; Kozaka, Takashi; Kiwada, Tatsuto; Odani, Akira

    2012-09-28

    Sigma receptors are highly expressed in human tumors and should be appropriate targets for developing tumor imaging agents. Previously, we synthesized a vesamicol analog, (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol ((+)-pIV), with a high affinity for sigma receptors and prepared radioiodinated (+)-pIV. As a result, (+)-[125I]pIV showed high tumor uptake in biodistribution experiments. However, the accumulation of radioactivity in normal tissues, such as the liver, was high. We supposed that some parts of the accumulation of (+)-pIV in the liver should be because of its high lipophilicity, and prepared and evaluated a more hydrophilic radiolabeled vesamicol analog, (+)-4-[1-(2-hydroxycyclohexyl)piperidine-4-yl]-2-iodophenol ((+)-IV-OH). (+)-[125I]IV-OH was prepared by the chloramine T method from the precursor. The partition coefficient of (+)-[125I]IV-OH was measured. Biodistribution experiments were performed by intravenous administration of a mixed solution of (+)-[125I]IV-OH and (+)-[131I]pIV into DU-145 tumor-bearing mice. Blocking studies were performed by intravenous injection of (+)-[125I]IV-OH mixed with an excess amount of ligand into DU-145 tumor-bearing mice. The hydrophilicity of (+)-[125I]IV-OH was much higher than that of (+)-[125I]pIV. In biodistribution experiments, (+)-[125I]IV-OH and (+)-[131I]pIV showed high uptake in tumor tissues at 10-min post-injection. Although (+)-[131I]pIV tended to be retained in most tissues, (+)-[125I]IV-OH was cleared from most tissues. In the liver, the radioactivity level of (+)-[125I]IV-OH was significantly lower at all time points compared to those of (+)-[131I]pIV. In the blocking studies, co-injection of an excess amount of sigma ligands resulted in significant decreases of tumor/blood uptake ratios after injection of (+)-[125I]IV-OH. The results indicate that radioiodinated (+)-IV-OH holds a potential as a sigma receptor imaging agent.

  4. Measurement of functional cholinergic innervation in rat heart with a novel vesamicol receptor ligand

    International Nuclear Information System (INIS)

    Coffeen, Paul R.; Efange, S.M.N.; Haidet, George C.; McKnite, Scott; Langason, Rosemary B.; Khare, A.B.; Pennington, Jennifer; Lurie, Keith G.

    1996-01-01

    Regional differences in cholinergic activity in the cardiac conduction system have been difficult to study. We tested the utility of (+)-m-[ 125 I]iodobenzyl)trozamicol(+)-[ 125 I]MIBT), a novel radioligand that binds to the vesamicol receptor located on the synaptic vesicle in presynaptic cholinergic neurons, as a functional marker of cholinergic activity in the conduction system. The (+)-[ 125 I]MIBT was injected intravenously into four rats. Three hours later, the rats were killed and their hearts were frozen. Quantitative autoradiography was performed on 20-micron-thick sections that were subsequently stained for acetylcholinesterase to identify specific conduction-system elements. Marked similarities existed between (+)-[ 125 I]MIBT uptake and acetylcholinesterase-positive regions. Optical densitometric analysis of regional (+)-[ 125 I]MIBT uptake revealed significantly greater (+)-[ 125 I]MIBT binding (nCi/mg) in the atrioventricular node (AVN) and His bundle regions compared with other conduction and contractile elements (AVN: 3.43 ± 0.37; His bundle: 2.16 ± 0.30; right bundle branch: 0.95 ± 0.13; right atrium: 0.68 ± 0.05; right ventricle: 0.57 ± 0.03; and left ventricle: 0.57 ± 0.03; p 125 I]MIBT binds avidly to cholinergic nerve tissue innervating specific conduction-system elements. Thus, (+)-[ 125 I]MIBT may be a useful functional marker in studies on cholinergic innervation in the cardiac conduction system

  5. International Workshop on Structural and Functional Aspects of the Cholinergic Synapse Held in Jerusalem, Isreal on 30 August-4 September 1987

    Science.gov (United States)

    1987-09-01

    16 vesaaicol analogues and 9 other compounds of widely varying structures. Only for a weakly binding diner of vesamicol, hexsmethonium and chloroquine ...surface of the vesicle menbrane by use cf a Lambrars-impermaant analogue of vesamicol. Rate processes for association and diissociation of vesamicol...vesamicol analogue occupied the receptor and inhibited ( 14 C]ACh transport. Addition of excess avidin "neutralized’ the biotinylated veasai:ol end freed the

  6. Evaluation of radioiodinated vesamicol analogs for sigma receptor imaging in tumor and radionuclide receptor therapy.

    Science.gov (United States)

    Ogawa, Kazuma; Shiba, Kazuhiro; Akhter, Nasima; Yoshimoto, Mitsuyoshi; Washiyama, Kohshin; Kinuya, Seigo; Kawai, Keiichi; Mori, Hirofumi

    2009-11-01

    It has been reported that sigma receptors are highly expressed in a variety of human tumors. In this study, we selected (+)-2-[4-(4-iodophenyl)piperidino] cyclohexanol [(+)-pIV] as a sigma receptor ligand and evaluated the potential of radioiodinated (+)-pIV for tumor imaging and therapy. (+)-[(125/131)I]pIV was prepared by an iododestannylation reaction under no-carrier-added conditions with radiochemical purity over 99% after HPLC purification. Biodistribution experiments were performed by the intravenous injection of (+)-[(125)I]pIV into mice bearing human prostate tumors (DU-145). Blocking studies were performed by intravenous injection of (+)-[(125)I]pIV mixed with an excess amount of unlabeled sigma ligand into DU-145 tumor-bearing mice. For therapeutic study, (+)-[(131)I]pIV was injected at a dose of 7.4 MBq followed by measurement of the tumor size. In biodistribution experiments, (+)-[(125)I]pIV showed high uptake and long residence in the tumor. High tumor to blood and muscle ratios were achieved because the radioactivity levels of blood and muscle were low. However, the accumulations of radioactivity in non-target tissues, such as liver and kidney, were high. The radioactivity in the non-target tissues slowly decreased over time. Co-injection of (+)-[(125)I]pIV with an excess amount of unlabeled sigma ligand resulted in a significant decrease in the tumor/blood ratio, indicating sigma receptor-mediated tumor uptake. In therapeutic study, tumor growth in mice treated with (+)-[(131)I]pIV was significantly inhibited compared to that of an untreated group. These results indicate that radioiodinated (+)-pIV has a high potential for sigma receptor imaging in tumor and radionuclide receptor therapy.

  7. Evaluation of (+)-p-[11C]methylvesamicol for mapping sigma1 receptors: a comparison with [11C]SA4503

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Kawamura, Kazunori; Yajima, Kazuyoshi; QingGeLeTu; Mori, Hirofumi; Shiba, Kazuhiro

    2006-01-01

    Vesamicol is a leading compound for positron emission tomography (PET) and single photon emission computed tomography (SPECT) tracers for mapping the vesicular acetylcholine transporter (VAChT). Recently, we found that (+)-p-methylvesamicol ((+)-PMV) has low affinity for VAChT (K i =199 nM), but has moderate to high affinity for sigma receptors: K i =3.0 nM for sigma 1 and K i =40.7 nM for sigma 2 , and that sigma 1 -selective SA4503 (K i =4.4 nM for sigma 1 and K i =242 nM for sigma 2 ) has moderate affinity for VAChT (K i =50.2 nM). In the present study, we examined the potential of (+)-[ 11 C]PMV as a PET radioligand for mapping sigma 1 receptors as compared with [ 11 C]SA4503. In rat brain, similar regional distribution patterns of (+)-[ 11 C]PMV and [ 11 C]SA4503 were shown by tissue dissection and by ex vivo autoradiography. Blocking experiments using (±)-PMV (-)-vesamicol, SA4503, haloperidol and (±)-pentazocine showed that the two tracers specifically bound to sigma 1 receptors, and that [ 11 C]SA4503 exhibited greater specific binding than (+)-[ 11 C]PMV. No sign of VAChT-specific binding by [ 11 C]SA4503 was observed in the striatum, which is rich in VAChT sites. In conclusion, (+)-[ 11 C]PMV specifically bound to sigma 1 receptors in the brain, but to a lesser extent than [ 11 C]SA4503, suggesting that (+)-[ 11 C]PMV is a less preferable PET ligand than [ 11 C]SA4503. On the other hand, the moderate affinity of [ 11 C]SA4503 for VAChT is negligible in vivo

  8. Evaluation of (+)-p-[{sup 11}C]methylvesamicol for mapping sigma{sub 1} receptors: a comparison with [{sup 11}C]SA4503

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0022 (Japan)]. E-mail: ishiwata@pet.tmig.or.jp; Kawamura, Kazunori [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0022 (Japan); SHI Accelerator Service Ltd., Tokyo 141-0032 (Japan); Yajima, Kazuyoshi [The Medical and Pharmacological Research Center Foundation, Hakui 920-0631 (Japan); QingGeLeTu [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0022 (Japan); Mori, Hirofumi [Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640 (Japan); Shiba, Kazuhiro [Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640 (Japan)

    2006-05-15

    Vesamicol is a leading compound for positron emission tomography (PET) and single photon emission computed tomography (SPECT) tracers for mapping the vesicular acetylcholine transporter (VAChT). Recently, we found that (+)-p-methylvesamicol ((+)-PMV) has low affinity for VAChT (K {sub i}=199 nM), but has moderate to high affinity for sigma receptors: K {sub i}=3.0 nM for sigma{sub 1} and K {sub i}=40.7 nM for sigma{sub 2}, and that sigma{sub 1}-selective SA4503 (K {sub i}=4.4 nM for sigma{sub 1} and K {sub i}=242 nM for sigma{sub 2}) has moderate affinity for VAChT (K {sub i}=50.2 nM). In the present study, we examined the potential of (+)-[{sup 11}C]PMV as a PET radioligand for mapping sigma{sub 1} receptors as compared with [{sup 11}C]SA4503. In rat brain, similar regional distribution patterns of (+)-[{sup 11}C]PMV and [{sup 11}C]SA4503 were shown by tissue dissection and by ex vivo autoradiography. Blocking experiments using ({+-})-PMV (-)-vesamicol, SA4503, haloperidol and ({+-})-pentazocine showed that the two tracers specifically bound to sigma{sub 1} receptors, and that [{sup 11}C]SA4503 exhibited greater specific binding than (+)-[{sup 11}C]PMV. No sign of VAChT-specific binding by [{sup 11}C]SA4503 was observed in the striatum, which is rich in VAChT sites. In conclusion, (+)-[{sup 11}C]PMV specifically bound to sigma{sub 1} receptors in the brain, but to a lesser extent than [{sup 11}C]SA4503, suggesting that (+)-[{sup 11}C]PMV is a less preferable PET ligand than [{sup 11}C]SA4503. On the other hand, the moderate affinity of [{sup 11}C]SA4503 for VAChT is negligible in vivo.

  9. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  10. Effect of presurgical radiotherapy on the steroid receptor concentrations in primary breast carcinoma

    International Nuclear Information System (INIS)

    Janssens, J. Ph.; Bonte, J.; Drochmans, A.; Mulier, J.; Rutten, J.; Wittevrongel, C.; Loecker, W. de

    1981-01-01

    With age, oestradiol receptor concentrations increased in primary breast carcinoma while age did not seem to affect the progesterone receptor levels. Above the age of 70, all tumours examined proved to be hormone-dependent. Analysis by light microscope did not allow correlation of the receptor-positive tumours to any specific or predominant cellular structure. Presurgical radiotherapy of 20 gray significantly reduced the oestradiol and to an even greater extent the progesterone receptor concentrations in the tumours. Prebioptic irradiation with 8 gray accentuated the inhibition of steroid receptor proteins. This reduction in receptor concentration after radiotherapy should be taken into account when interpreting steroid receptor values. (author)

  11. Development and evaluation of a radiobromine-labeled sigma ligand for tumor imaging

    International Nuclear Information System (INIS)

    Ogawa, Kazuma; Kanbara, Hiroya; Kiyono, Yasushi; Kitamura, Yoji; Kiwada, Tatsuto; Kozaka, Takashi; Kitamura, Masanori; Mori, Tetsuya; Shiba, Kazuhiro; Odani, Akira

    2013-01-01

    Introduction: Sigma receptors are appropriate targets for tumor imaging because they are highly expressed in a variety of human tumors. Previously, we synthesized a vesamicol analog, (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol ((+)-pIV), with high affinity for sigma receptors, and prepared radioiodinated (+)-pIV. In this study, to develop a radiobromine-labeled vesamicol analog as a sigma receptor imaging agent for PET, nonradioactive and radiobromine-labeled (+)-2-[4-(4-bromophenyl)piperidino]cyclohexanol ((+)-pBrV) was prepared and evaluated in vitro and in vivo. In these initial studies, 77 Br was used because of its longer half-life. Methods: (+)-[ 77 Br]pBrV was prepared by a bromodestannylation reaction with radiochemical purity of 98.8% after HPLC purification. The partition coefficient of (+)-[ 77 Br]pBrV was measured. In vitro binding characteristics of (+)-pBrV to sigma receptors were assayed. Biodistribution experiments were performed by intravenous administration of a mixed solution of (+)-[ 77 Br]pBrV and (+)-[ 125 I]pIV into DU-145 tumor-bearing mice. Results: The lipophilicity of (+)-[ 77 Br]pBrV was lower than that of (+)-[ 125 I]pIV. As a result of in vitro binding assay to sigma receptors, the affinities of (+)-pBrV to sigma receptors were competitive to those of (+)-pIV. In biodistribution experiments, (+)-[ 77 Br]pBrV and (+)-[ 125 I]pIV showed high uptake in tumor via sigma receptors. The biodistributions of both radiotracers showed similar patterns. However, the accumulation of radioactivity in liver after injection of (+)-[ 77 Br]pBrV was significantly lower compared to that of (+)-[ 125 I]pIV. Conclusion: These results indicate that radiobromine-labeled pBrV possesses great potential as a sigma receptor imaging agent for PET

  12. Development and evaluation of a radiobromine-labeled sigma ligand for tumor imaging.

    Science.gov (United States)

    Ogawa, Kazuma; Kanbara, Hiroya; Kiyono, Yasushi; Kitamura, Yoji; Kiwada, Tatsuto; Kozaka, Takashi; Kitamura, Masanori; Mori, Tetsuya; Shiba, Kazuhiro; Odani, Akira

    2013-05-01

    Sigma receptors are appropriate targets for tumor imaging because they are highly expressed in a variety of human tumors. Previously, we synthesized a vesamicol analog, (+)-2-[4-(4-iodophenyl)piperidino]cyclohexanol ((+)-pIV), with high affinity for sigma receptors, and prepared radioiodinated (+)-pIV. In this study, to develop a radiobromine-labeled vesamicol analog as a sigma receptor imaging agent for PET, nonradioactive and radiobromine-labeled (+)-2-[4-(4-bromophenyl)piperidino]cyclohexanol ((+)-pBrV) was prepared and evaluated in vitro and in vivo. In these initial studies, (77)Br was used because of its longer half-life. (+)-[(77)Br]pBrV was prepared by a bromodestannylation reaction with radiochemical purity of 98.8% after HPLC purification. The partition coefficient of (+)-[(77)Br]pBrV was measured. In vitro binding characteristics of (+)-pBrV to sigma receptors were assayed. Biodistribution experiments were performed by intravenous administration of a mixed solution of (+)-[(77)Br]pBrV and (+)-[(125)I]pIV into DU-145 tumor-bearing mice. The lipophilicity of (+)-[(77)Br]pBrV was lower than that of (+)-[(125)I]pIV. As a result of in vitro binding assay to sigma receptors, the affinities of (+)-pBrV to sigma receptors were competitive to those of (+)-pIV. In biodistribution experiments, (+)-[(77)Br]pBrV and (+)-[(125)I]pIV showed high uptake in tumor via sigma receptors. The biodistributions of both radiotracers showed similar patterns. However, the accumulation of radioactivity in liver after injection of (+)-[(77)Br]pBrV was significantly lower compared to that of (+)-[(125)I]pIV. These results indicate that radiobromine-labeled pBrV possesses great potential as a sigma receptor imaging agent for PET. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Sigma-1 receptor concentration in plasma of patients with late-life depression: a preliminary study

    Directory of Open Access Journals (Sweden)

    Shimizu H

    2013-12-01

    Full Text Available Hideyuki Shimizu,1 Minoru Takebayashi,2 Masayuki Tani,1 Hiroaki Tanaka,1 Bun Yamagata,1 Kenzo Kurosawa,1 Hiroki Yamada,1 Mitsugu Hachisu,3 Kazue Hisaoka-Nakashima,2 Mami Okada-Tsuchioka,2 Masaru Mimura,4 Akira Iwanami11Department of Neuropsychiatry, Showa University School of Medicine, Tokyo, Japan; 2Department of Psychiatry and Institute for Clinical Research, National Hospital Organization Kure Medical Center, Kure, Japan; 3Department of Clinical Psychopharmacy, Pharmacy School, Showa University, Tokyo, Japan; 4Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, JapanBackground: Recently, the sigma-1 receptor has been shown to play a significant role in the neural transmission of mood by regulating N-methyl-D-aspartate receptors. Additionally, the sigma-1 receptor has been reported to influence cognitive functions including learning and memory. In this study, we measured plasma sigma-1 receptor concentrations before and after antidepressant treatment in patients with late-life major depressive disorder (MDD and explored whether changes in depressive status are related to sigma-1 receptor concentrations.Methods: The study participants were 12 subjects with late-life MDD diagnosed according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. All of the participants were over 60 years old. Immediately prior to and 8 weeks after the start of treatment, sigma-1 receptor concentration and mental status, including depressive symptoms (Hamilton Depression Rating Scale; HAM-D, were measured. Treatment for depression was performed according to a developed algorithm based on the choice of treatments. We examined the association between changes in sigma-1 receptor concentration and HAM-D scores during antidepressant treatment. For the measurement of plasma sigma-1 receptor concentration, blood plasma samples were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Western

  14. AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.

    Directory of Open Access Journals (Sweden)

    Kazuki Tajima

    Full Text Available The precise role of AMP-activated protein kinase (AMPK, a target of metformin, in pancreatic β cells remains controversial, even though metformin was recently shown to enhance the expression of incretin receptors (GLP-1 and GIP receptors in pancreatic β cells. In this study, we investigated the effect of AMPK in the regulation of incretin receptors expression in pancreatic islets. The phosphorylation of AMPK in the mouse islets was decreased by increasing glucose concentrations. We showed the expression of incretin receptors in bell-shaped response to glucose. Expression of the incretin receptors in the isolated islets showed higher levels under a medium glucose concentration (11.1 mM than that under a low glucose concentration (2.8 mM, but was suppressed under a high glucose concentration (22.2 mM. Both treatment with an AMPK inhibitor and DN-AMPK expression produced a significant increase of the incretin receptors expression under a low glucose concentration. By contrast, in hyperglycemic db/db islets, the enhancing effect of the AMPK inhibitor on the expression of incretin receptors was diminished under a low glucose concentration. Taken together, AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.

  15. An examination of the characteristics, concentration, and distribution of androgen receptor in rat testis during sexual maturation

    International Nuclear Information System (INIS)

    Buzek, S.W.

    1989-01-01

    In these studies a nuclear exchange assay was established in rat testis in which exchange after 86 hours at 4 degree C was greater than 85% complete and receptor was stable. Receptor concentration per DNA measured by exchange declined between 15 and 25 days of age in the rat testis, then increased 4-fold during sexual maturation. Proliferation of germ cells which had low receptor concentration appeared to account for the early decline in testicular receptor concentration, whereas increase in receptor number per Sertoli cell between 25 and 35 days of age contributed to the later increase. Detailed studies showed that other possible explanations for changes in receptor number were not likely. Androgen receptor dynamics in testicular cells showed rapid, specific uptake of [ 3 H]-testosterone that was easily blocked by unlabeled testosterone, and medroxyprogesterone acetate, but not as well as by the anti-androgens cyproterone acetate and hydroxyflutamide

  16. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    International Nuclear Information System (INIS)

    Sheng, Zhi-Guo; Tang, Yuan; Liu, Yu-Xiang; Yuan, Ye; Zhao, Bao-Quan; Chao, Xi-Juan; Zhu, Ben-Zhan

    2012-01-01

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10 −9 M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  17. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Tang, Yuan [Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Yanzheng Street, Chongqing 400038 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye; Zhao, Bao-Quan [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  18. Lapatinib Plasma and Tumor Concentrations and Effects on HER Receptor Phosphorylation in Tumor.

    Directory of Open Access Journals (Sweden)

    Neil L Spector

    Full Text Available The paradigm shift in cancer treatment from cytotoxic drugs to tumor targeted therapies poses new challenges, including optimization of dose and schedule based on a biologically effective dose, rather than the historical maximum tolerated dose. Optimal dosing is currently determined using concentrations of tyrosine kinase inhibitors in plasma as a surrogate for tumor concentrations. To examine this plasma-tumor relationship, we explored the association between lapatinib levels in tumor and plasma in mice and humans, and those effects on phosphorylation of human epidermal growth factor receptors (HER in human tumors.Mice bearing BT474 HER2+ human breast cancer xenografts were dosed once or twice daily (BID with lapatinib. Drug concentrations were measured in blood, tumor, liver, and kidney. In a randomized phase I clinical trial, 28 treatment-naïve female patients with early stage HER2+ breast cancer received lapatinib 1000 or 1500 mg once daily (QD or 500 mg BID before evaluating steady-state lapatinib levels in plasma and tumor.In mice, lapatinib levels were 4-fold higher in tumor than blood with a 4-fold longer half-life. Tumor concentrations exceeded the in vitro IC90 (~ 900 nM or 500 ng/mL for inhibition of HER2 phosphorylation throughout the 12-hour dosing interval. In patients, tumor levels were 6- and 10-fold higher with QD and BID dosing, respectively, compared to plasma trough levels. The relationship between tumor and plasma concentration was complex, indicating multiple determinants. HER receptor phosphorylation varied depending upon lapatinib tumor concentrations, suggestive of changes in the repertoire of HER homo- and heterodimers.Plasma lapatinib concentrations underestimated tumor drug levels, suggesting that optimal dosing should be focused on the site of action to avoid to inappropriate dose escalation. Larger clinical trials are required to determine optimal dose and schedule to achieve tumor concentrations that maximally

  19. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  20. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  1. Robust experiment design for estimating myocardial β adrenergic receptor concentration using PET

    International Nuclear Information System (INIS)

    Salinas, Cristian; Muzic, Raymond F. Jr.; Ernsberger, Paul; Saidel, Gerald M.

    2007-01-01

    Myocardial β adrenergic receptor (β-AR) concentration can substantially decrease in congestive heart failure and significantly increase in chronic volume overload, such as in severe aortic valve regurgitation. Positron emission tomography (PET) with an appropriate ligand-receptor model can be used for noninvasive estimation of myocardial β-AR concentration in vivo. An optimal design of the experiment protocol, however, is needed for sufficiently precise estimates of β-AR concentration in a heterogeneous population. Standard methods of optimal design do not account for a heterogeneous population with a wide range of β-AR concentrations and other physiological parameters and consequently are inadequate. To address this, we have developed a methodology to design a robust two-injection protocol that provides reliable estimates of myocardial β-AR concentration in normal and pathologic states. A two-injection protocol of the high affinity β-AR antagonist [ 18 F]-(S)-fluorocarazolol was designed based on a computer-generated (or synthetic) population incorporating a wide range of β-AR concentrations. Timing and dosage of the ligand injections were optimally designed with minimax criterion to provide the least bad β-AR estimates for the worst case in the synthetic population. This robust experiment design for PET was applied to experiments with pigs before and after β-AR upregulation by chemical sympathectomy. Estimates of β-AR concentration were found by minimizing the difference between the model-predicted and experimental PET data. With this robust protocol, estimates of β-AR concentration showed high precision in both normal and pathologic states. The increase in β-AR concentration after sympathectomy predicted noninvasively with PET is consistent with the increase shown by in vitro assays in pig myocardium. A robust experiment protocol was designed for PET that yields reliable estimates of β-AR concentration in a population with normal and pathologic

  2. Radioanalytical methods for the measurement of melanin concentrating hormone (MCH) and detection its receptor in rat tissues

    International Nuclear Information System (INIS)

    Lelesz, B.; Szilvassy, Z.; Varga, A.; Juhasz, B.; Nemeth, J.; Toth, G.K.; Toth, A.; Enyedi, A.; Felszeghy, E.

    2016-01-01

    In the present paper the development and application of a novel melanin concentrating hormone radioimmunoassay and receptor-binding assay are described. 125 I-labeling of melanin concentrating hormone (MCH) was performed by iodogen and the mono-iodinated peptide was separated by reversed-phase high performance liquid chromatography. Detection limit of the MCH specific assay was 0.2 fmol/ml. As a practical application of the novel radioimmunoassay, we measured the MCH concentration in different rat organs. High MCH concentrations were detected in the small intestine, pancreas, kidney, liver, trachea, hypothalamus and spinal cord. 125 I-MCH was also suitable for RBA to demonstrate the presence of MCH receptors in the rat brain. (author)

  3. [The receptorial responsiveness method (RRM): a new possibility to estimate the concentration of pharmacologic agonists at their receptors].

    Science.gov (United States)

    Pák, Krisztián; Kiss, Zsuzsanna; Erdei, Tamás; Képes, Zita; Gesztelyi, Rudolf

    2014-01-01

    Cardiovascular disease is the biggest challenge in terms of life expectancy in developed countries. Adenosine contributes to the adaptation of the heart to ischemia and hypoxia, because adenosine, in addition to its metabolite role in the nucleic acid metabolism, is the endogenous agonist of the ubiquitous adenosine receptor family. Adenosine receptor activation is beneficial in most cases, it improves the balance between energy supply and consumption, reduces injury caused by stressors and inhibits the unfavorable tissue remodeling. Pharmacological manipulation of cardioprotective effects evoked by adenosine is an important, although to date not sufficiently utilized endeavor that may have therapeutic and preventive implications in cardiovascular diseases. As the ligand binding site of adenosine receptors is accessible from the extracellular space, it is especially important to know the adenosine concentration of the interstitial fluid ([Ado](ISF)). However, in the functioning heart, [Ado](ISF) values range in an extremely wide interval, spanning from nano- to micromolar concentrations, as estimated by the commonly used methods. Our recently developed procedure, the receptorial responsiveness method (RRM), may resolve this problem in certain cases. RRM enables quantification of an acute increase in the concentration of a pharmacological agonist, uniquely in the microenvironment of the receptors of the given agonist. As a limitation, concentration of agonists with short half-life (just like adenosine) at their receptors can only be quantified with the equieffective concentration of a stable agonist exerting the same action. In a previous study using RRM, inhibition of the transmembrane nucleoside transport in the euthyroid guinea pig atrium produced an increase in [Ado](ISF) that was equieffective with 18.8 +/- 3 nM CPA (N6-cyclopentyladenosine, a stable, selective A1 adenosine receptor agonist). This finding is consistent with observations of others, i.e., in the

  4. Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source–receptor relationships

    International Nuclear Information System (INIS)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-01-01

    We analyzed the source–receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40–60%) and central China (30–40°N, 10–40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40–80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O 3 on particulate surfaces may be an important component of the PAH oxidation processes. -- Highlights: •Source–receptor analysis was conducted for investigating PAHs in northeast Asia. •In winter, transboundary transport from China is large contribution in leeward. •Relative contribution from Korea, Japan, and eastern Russia is increased in summer. •This seasonal variation is strongly controlled by the meteorological conditions. •The transport distance is different among PAH species. -- Transboundary transport of PAHs in northeast Asia was investigated by source–receptor analysis

  5. Melanin concentrating hormone receptor 1 (MCHR1) antagonists - Still a viable approach for obesity treatment?

    DEFF Research Database (Denmark)

    Högberg, T.; Frimurer, T.M.; Sasmal, P.K.

    2012-01-01

    Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the melanin concentrating hormone (MCH) and its receptor 1. The development of MCHR1 antagonists are described with a specific perspective on different chemotypes...

  6. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Benn, Marianne; Christensen, Pernille Møller

    2012-01-01

    .005) of the initial amounts of human apoM remained in the plasma of Wt and LDL receptor-deficient mice, respectively. Finally, we compared the turnover of radio-iodinated LDL and plasma apoM concentrations in 45 normocholesterolemic humans. There was a negative correlation between plasma apoM and the fractional......ApoM is mainly associated with HDL. Nevertheless, we have consistently observed positive correlations of apoM with plasma LDL cholesterol in humans. Moreover, LDL receptor deficiency is associated with increased plasma apoM in mice. Here, we tested the idea that plasma apoM concentrations...... = 0.02, respectively) as compared with noncarriers (0.93 ± 0.04 µM). When we injected human apoM-containing HDL into Wt (n = 6) or LDL receptor-deficient mice (n = 6), the removal of HDL-associated human apoM was delayed in the LDL receptor-deficient mice. After 2 h, 54 ± 5% versus 90 ± 8% (P

  8. Increased melanin concentrating hormone receptor type I in the human hypothalamic infundibular nucleus in cachexia

    NARCIS (Netherlands)

    Unmehopa, Unga A.; van Heerikhuize, Joop J.; Spijkstra, Wenda; Woods, John W.; Howard, Andrew D.; Zycband, Emanuel; Feighner, Scott D.; Hreniuk, Donna L.; Palyha, Oksana C.; Guan, Xiao-Ming; Macneil, Douglas J.; van der Ploeg, Lex H. T.; Swaab, Dick F.

    2005-01-01

    Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R

  9. Increased melanin concentrating hormone receptor type I in the human hypothalamic infundibular nucleus in cachexia.

    NARCIS (Netherlands)

    Unmehopa, U.A.; Heerikhuize, J.J. van; Spijkstra, W.; Woods, J.W.; Howard, A.D.; Zycband, E.; Feighner, S.D.; Hreniuk, D.L.; Palyha, O.C.; Guan, X.-M.; MacNeil, D.J.; Ploeg, L.H.T.; Swaab, D.F.

    2005-01-01

    Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R

  10. Radioiodinated 2-hydroxy-3-(4-iodophenyl)-1-(4-phenylpiperidinyl)propane: potential radiotracer for mapping central cholinergic innervation in vivo

    International Nuclear Information System (INIS)

    Efange, S.M.N.; Dutta, A.K.; Michelson, R.H.; Thomas, J.R.; Boudreau, R.J.; Kung, H.F.; Billings, J.

    1992-01-01

    Radioiodinated 2-hydroxy-3-(4-iodophenyl)-1-(4-phenylpiperidinyl)propane, (4-HIPP), was synthesized and evaluated as a simple vesamicol-like radiotracer for mapping cholinergic pathways in the brain. Both enantiomers of 4-HIPP exhibit significant accumulation (approx. 2% of injected dose) and prolonged retention (t 1/2 > 3h) within the rat brain. The accumulation of radioiodinated 4-HIPP in the rat brain was reduced by up to 70% in the presence of vesamicol and its analogs. The levorotary isomer (-)-4-[ 123 I]HIPP exhibits significant accumulation in the monkey brain, with a half-life of about 9 h. Radioiodinated 4-HIPP may therefore be a useful tool for studying cholinergic pathways in the brain. (author)

  11. Melanin-concentrating hormone and its receptor are expressed and functional in human skin.

    Science.gov (United States)

    Hoogduijn, Martin J; Ancans, Janis; Suzuki, Itaru; Estdale, Siân; Thody, Anthony J

    2002-08-23

    In this study, we have demonstrated the presence of melanin-concentrating hormone (MCH) and melanin-concentrating hormone receptor (MCHR1) transcripts in human skin. Sequence analysis confirmed that the transcripts of both genes were identical to those previously found in human brain. In culture, endothelial cells showed pro-MCH expression whereas no signal was found in keratinocytes, melanocytes, and fibroblasts. MCHR1 expression was restricted to melanocytes and melanoma cells. Stimulation of cultured human melanocytes with MCH reduced the alpha-MSH-induced increase in cAMP production. Furthermore, the melanogenic actions of alpha-MSH were inhibited by MCH. We propose that the MCH/MCHR1 signalling system is present in human skin and may have a role with the melanocortins in regulating the melanocyte.

  12. A highly phosphorylated subpopulation of insulin-like growth factor II/mannose 6-phosphate receptors is concentrated in a clathrin-enriched plasma membrane fraction

    International Nuclear Information System (INIS)

    Corvera, S.; Folander, K.; Clairmont, K.B.; Czech, M.P.

    1988-01-01

    Insulin-like growth factor II (IGF-II)/mannose 6-phosphate (Man-6-P) receptors immunoprecipitated from purified plasma membranes of 32 P-labeled rat adipocytes are markedly heterogenous in their phosphorylation state. Approximately 80% of the plasma membrane receptors are solubilized in 1% (vol/vol) Triton X-100 and are phosphorylated on serine residues at a stoichiometry of ∼ 0.1-0.2 mol of phosphate per mol of receptor. In contrast, 15-20% of the receptors are Triton X-100-insoluble and are phosphorylated on serine and threonine residues at ∼ 4 or 5 mol of phosphate per mol of receptor. This Triton X-100-insoluble membrane subfraction contains only 5% of the total plasma membrane protein and yet contains all of the clathrin heavy chain associated with plasma membrane. Based on the relative yields of protein in the detergent-insoluble material, IGF-II/Man-6-P receptors are concentrated ∼ 3-fold in this clathrin-enriched subfraction. Taken together, these results indicate that insulin decreases the phosphorylation state of a highly phosphorylated subpopulation of IGF-II/Man-6-P receptors on the plasma membrane. In addition, insulin action may prevent the concentration of these receptors in a clathrin-enriched membrane subfraction

  13. The effects of irradiation on the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver

    International Nuclear Information System (INIS)

    Teshima, Teruki; Mori, Masaki; Honke, Yoshifumi

    1983-01-01

    The effects of irradiation on both the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver were investigated. The liver concentrations of corticosterone and cyclic nucleotides were measured by radioimmunoassay before and after the irradiation of 1,000 rad/l fraction. The glucocorticoid receptor in the liver cytosol was determined by the measurement of the cytosol binding to 3 H-dexamethasone. The cytosol and nuclear corticosterone levels reached a peak 1 day after the irradiation of the rat liver and declined to the control levels after 2 days. The increase in corticosterone levels may be due to the direct stimulation of the right adrenal gland and/ or the stress induced by the irradiation. The binding capacity of the glucocorticoid receptor in rat liver cytosol decreased to the minimum 1 day after the irradiation, and the recovery occurred at 4 days. The Kd value of the glucocorticoid receptor remained unchanged from 1 hour until 4 days but was high at 4 and 7 days. The distinctly increased levels of cyclic GMP in the rat liver were found from 1 hour through 7 days after the irradiation, while cyclic AMP did not change. The inversed relationship between the cytosol glucocorticoid receptor and corticosterone levels in cytosol and the nuclei indicates that the receptor-bound corticosterone in cytosol can be transferred to a nucleus and remain there in the presence of appropriate amounts of corticosterone in cytosol, after which the receptor is released from the nucleus into cytosol. The high Kd values observed 4 -- 7 days after the irradiation may be either due to the direct effect of irradiation or to the replenishment of the receptor with a low affinity. (author)

  14. No upregulation of digitalis glycoside receptor (Na,K-ATPase) concentration in human heart left ventricle samples obtained at necropsy after long term digitalisation.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1991-08-01

    The aim was to evaluate the hypothesis that digitalis glycosides increase the concentration of their specific receptor (Na,K-ATPase) in human myocardial tissue, thereby possibly reducing the inotropic effect of long term digitalis treatment. Intact samples of left ventricle were obtained at necropsy from patients who had been on long term treatment with digoxin and from patients not previously given digoxin. Digitalis glycoside receptors were quantified using vanadate facilitated 3H-ouabain binding before and after washing samples in buffer containing excess digoxin antibody fragments for 16 h at 30 degrees C. This washing procedure has previously been shown to reduce prior specific digoxin binding in human left ventricle by 95% and to allow subsequent vanadate facilitated complete quantification of 3H-ouabain binding sites. In this context it was performed to reduce occupancy of digitalis glycoside receptors by digoxin, caused by digitalisation before 3H-ouabain binding. 11 patients who had been on long term treatment with digoxin and eight who had not previously been given digoxin were studied. Left ventricle samples were obtained at necropsy at around 15 h after death. Standard 3H-ouabain binding was 39% less in samples from digitalised than from undigitalised subjects (p less than 0.001). Washing samples in buffer containing excess digoxin antibody fragments induced an increase in 3H-ouabain binding from 174(SEM 10) to 265(20) pmol.g-1 wet weight (n = 11, p less than 0.001) in samples from digitalised patients. After washing, the digitalis glycoside receptor concentration in left ventricle samples showed a tendency to a lower value (14%, p greater than 0.10) in patients exposed to digoxin compared to left ventricle samples from individuals unexposed to digitalis glycoside treatment. Calculating 3H-ouabain binding relative to dry ventricular muscle weight confirmed the results obtained using wet weight as reference. The results suggest that digoxin treatment in

  15. Circulating Angiopoietin-2 and Its Soluble Receptor Tie-2 Concentrations Are Related to Renal Function in Two Population-Based Cohorts

    DEFF Research Database (Denmark)

    Hennings, Anna; Hannemann, Anke; Rettig, Rainer

    2016-01-01

    BACKGROUND: An intact angiopoietin/Tie-2 ligand receptor system is indispensable for life. High circulating angiopoietin-2 (Ang-2) concentrations are strongly associated with kidney disease involving the progressive loss of glomerular filtration. The aim of our study was to investigate the associ......BACKGROUND: An intact angiopoietin/Tie-2 ligand receptor system is indispensable for life. High circulating angiopoietin-2 (Ang-2) concentrations are strongly associated with kidney disease involving the progressive loss of glomerular filtration. The aim of our study was to investigate...... the associations between renal function and serum Ang-2 or serum Tie-2 concentrations in the general population. METHODS: Data of 3081 and 4088 subjects from two population-based studies, the Study of Health in Pomerania (SHIP-1) and SHIP-Trend, were used. Renal function was assessed by serum creatinine, cystatin...... C concentration, creatinine-based estimated glomerular filtration rate [eGFR(crea)], cystatin C-based eGFR [eGFR(cys)] and urinary albumin-to-creatinine ratio (uACR). Analyses of variance and linear regression models were calculated. RESULTS: In both cohorts, strong positive associations between...

  16. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    Science.gov (United States)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  17. Decreased concentrations of soluble interleukin-1 receptor accessory protein levels in the peritoneal fluid of women with endometriosis.

    Science.gov (United States)

    Michaud, Nadège; Al-Akoum, Mahéra; Gagnon, Geneviève; Girard, Karine; Blanchet, Pierre; Rousseau, Julie Anne; Akoum, Ali

    2011-12-01

    Interleukin 1 (IL1) may play an important role in endometriosis-associated pelvic inflammation, and natural specific inhibitors, including soluble IL1 receptor accessory protein (sIL1RAcP) and soluble IL1 receptor type 2 (sIL1R2), are critical for counterbalancing the pleiotropic effects of IL1. The objective of this study was to evaluate the levels of sIL1RAcP, together with those of sIL1R2 and IL1β, in the peritoneal fluid of women with and without endometriosis. Peritoneal fluid samples were obtained at laparoscopy and assessed by ELISA. sIL1RAcP concentrations were reduced in endometriosis stages I-II and III-IV. sIL1R2 concentrations were decreased, and those of IL1β were significantly increased in endometriosis stages I-II. sIL1RAcP and sIL1R2 concentrations were significantly decreased in the secretory phase of the menstrual cycle, and IL1β concentrations were elevated in the proliferative and the secretory phases. sIL1RAcP and sIL1R2 concentrations were reduced in women with endometriosis who were infertile, fertile, suffering from pelvic pain or pain-free. However, IL1β concentrations were significantly reduced in women with endometriosis who were infertile or had pelvic pain. These changes may exacerbate the local peritoneal inflammatory reaction observed in women with endometriosis and contribute to endometriosis pathophysiology and the major symptoms of this disease. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Time dependent changes in myocardial norepinephrine concentration and adrenergic receptor density following X-irradiation of the rat heart

    NARCIS (Netherlands)

    Franken, N. A.; van der Laarse, A.; Bosker, F. J.; Reynart, I. W.; van Ravels, F. J.; Strootman, E.; Wondergem, J.

    1992-01-01

    The hearts of 9 to 12-weeks-old Sprague-Dawley rats were locally irradiated with a single dose of 20 Gy. The effects on myocardial norepinephrine concentrations and on alpha-adrenergic and beta-adrenergic receptor densities was examined up to 16 months post-treatment. Myocardial norepinephrine

  19. UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients

    International Nuclear Information System (INIS)

    Sparks, Rachel; Yuan, Xiaopu; Lin, Ming Gang; McVarish, Lynda; Aiello, Erin J; McTiernan, Anne; Ulrich, Cornelia M; Bigler, Jeannette; Tworoger, Shelley S; Yasui, Yutaka; Rajan, Kumar B; Porter, Peggy; Stanczyk, Frank Z; Ballard-Barbash, Rachel

    2004-01-01

    UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes are involved in removing sex hormones from circulation. Polymorphic variation in five UGT and SULT genes – UGT1A1 ((TA) 6 /(TA) 7 ), UGT2B4 (Asp 458 Glu), UGT2B7 (His 268 Tyr), UGT2B15 (Asp 85 Tyr), and SULT1A1 (Arg 213 His) – may be associated with circulating sex hormone concentrations, or the risk of an estrogen receptor-negative (ER - ) or progesterone receptor-negative (PR - ) tumor. Logistic regression analysis was used to estimate the odds ratios of an ER - or PR - tumor associated with polymorphisms in the genes listed above for 163 breast cancer patients from a population-based cohort study of women in western Washington. Adjusted geometric mean estradiol, estrone, and testosterone concentrations were calculated within each UGT and SULT genotype for a subpopulation of postmenopausal breast cancer patients not on hormone therapy 2–3 years after diagnosis (n = 89). The variant allele of UGT1A1 was associated with reduced risk of an ER - tumor (P for trend = 0.03), and variants of UGT2B15 and SULT1A1 were associated with non-statistically significant risk reductions. There was some indication that plasma estradiol and testosterone concentrations varied by UGT2B15 and SULT1A1 genotypes; women with the UGT2B15 Asp/Tyr and Tyr/Tyr genotypes had higher concentrations of estradiol than women with the Asp/Asp genotype (P = 0.004). Compared with women with the SULT1A1 Arg/Arg and Arg/His genotypes, women with the His/His genotype had elevated concentrations of testosterone (P = 0.003). The risk of ER - breast cancer tumors may vary by UGT or SULT genotype. Further, plasma estradiol and testosterone concentrations in breast cancer patients may differ depending on some UGT and SULT genotypes

  20. Oxytocin induces prostaglandin F2 alpha release in pregnant cows: influence of gestational age and oxytocin receptor concentrations.

    Science.gov (United States)

    Fuchs, A R; Rollyson, M K; Meyer, M; Fields, M J; Minix, J M; Randel, R D

    1996-03-01

    Brahman cows with known breeding dates received i.v. injections of either 10 or 100 IU oxytocin (OT) on Days 50, 150, 250, or 280 of gestation (n = 6 for each stage). Concentrations of the prostaglandin (PG) F2 alpha metabolite, 13,14-dihydro-15-keto-prostaglandin (PGFM), and OT were measured in samples of peripheral plasma collected at 15-min intervals for 1 h before and 1 h after treatment and then at 30-min intervals for 3 h. Plasma progesterone was measured daily for 14 days after OT injections on Days 50 and 250 of gestation. The increase in plasma OT after injection was dose-dependent (p = 0.001) but not affected by stage of gestation. Plasma PGFM increased after OT in a dose- and stage-dependent manner (p = 0.0001). At Day 280, the increase in plasma PGFM after 100 IU OT was sevenfold greater than at Day 50. Plasma progesterone declined significantly during the 7th to 12th days postinjection and returned to normal pregnancy values by the 14th day (4.4 +/- 0.3 ng/ml) except in two cows treated on Day 50 of gestation that later aborted. In these, plasma progesterone was significantly lower, 2.6 +/- 0.1 ng/ml. In a second experiment, the concentration of OT receptors was determined in endometrium collected from purebred Angus or Hereford cows slaughtered on Days 50, 150, 250, and 280 of gestation (n = 3 or 4 at each stage). Endometrial concentrations of OT receptor changed as a function of gestational age, increasing sixfold from Day 50 to Day 280, which was parallel to the increase by OT of plasma PGFM. Thus, endometrial OT receptors are functionally coupled to PGF2 alpha release during pregnancy, and their concentration determines the magnitude of OT-induced PGF2 alpha release during gestation. Consequently, endogenous OT is a factor in the regulation of PGF2 alpha release from the bovine uterus during pregnancy and parturition.

  1. The Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer

    Directory of Open Access Journals (Sweden)

    Marta Łukaszewicz-Zając

    2016-01-01

    Full Text Available Objectives. Recent investigations have suggested that upregulated levels of inflammatory biomarkers, such as chemokines, may be associated with development of many malignancies, including esophageal cancer (EC. Based on our knowledge, this study is the first to assess the serum concentration of chemokine CXCL12 and its specific receptor CXCR4 in the diagnosis of EC patients. Material and Methods. The present study included 79 subjects: 49 patients with EC and 30 healthy volunteers. The serum concentrations of CXCL12 and CXCR4 and classical tumor markers such as carcinoembryonal antigen (CEA and squamous cell cancer antigen (SCC-Ag were measured using immunoenzyme assays, while C-reactive protein (CRP levels were assessed by immunoturbidimetric method. Moreover, diagnostic criteria of all proteins tested and the survival of EC patients were assessed. Results. The serum concentrations of CXCL12 were significantly higher, while those of its receptor CXCR4 were significantly lower in EC patients compared to healthy controls. The diagnostic sensitivity, negative predictive value, and accuracy of CXCR4 were the highest among all analyzed proteins and increased for combined analysis with classical tumor markers and CRP levels. Conclusion. Our findings suggest that serum CXCR4 may improve the diagnosis of EC patients, especially in combination with classical tumor markers.

  2. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  3. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  4. Chronic stress alters concentrations of corticosterone receptors in a tissue-specific manner in wild house sparrows (Passer domesticus).

    Science.gov (United States)

    Lattin, Christine R; Romero, L Michael

    2014-07-15

    The physiological stress response results in release of glucocorticoid hormones such as corticosterone (CORT). Whereas short-term activation of this response helps animals cope with environmental stressors, chronic activation can result in negative effects including metabolic dysregulation and reproductive failure. However, there is no consensus hormonal profile of a chronically stressed animal, suggesting that researchers may need to look beyond hormone titers to interpret the impacts of chronic stress. In this study, we brought wild house sparrows (Passer domesticus) into captivity. We then compared glucocorticoid and mineralocorticoid receptor concentrations in sparrows exposed either to a standardized chronic stress protocol (n=26) or to standard husbandry conditions (controls; n=20). We used radioligand binding assays to quantify receptors in whole brain, liver, kidneys, spleen, gonads, gastrocnemius and pectoralis muscle, omental and subcutaneous fat, and bib and back skin. In most tissues, CORT receptors did not differ between controls and stressed animals, although we found marginal increases in receptor density in kidney and testes in stressed birds at some time points. Only in pectoralis muscle was there a robust effect of chronic stress, with both receptor types higher in stressed animals. Increased pectoralis sensitivity to CORT with chronic stress may be part of the underlying mechanism for muscle wasting in animals administered exogenous CORT. Furthermore, the change in pectoralis was not paralleled by gastrocnemius receptors. This difference may help explain previous reports of a greater effect of CORT on pectoralis than on other muscle types, and indicate that birds use this muscle as a protein reserve. © 2014. Published by The Company of Biologists Ltd.

  5. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  6. The gene encoding the melanin-concentrating hormone receptor 1 is associated with schizophrenia in a Danish case-control sample

    DEFF Research Database (Denmark)

    Demontis, Ditte; Nyegaard, Mette; Christensen, Jane H

    2012-01-01

    OBJECTIVE: The MCHR1 gene encoding the melanin-concentrating hormone receptor 1 is located on chromosome 22q13.2 and has previously been associated with schizophrenia in a study of cases and controls from the Faroe Islands and Scotland. Herein we report an association between variations in the MCHR...

  7. Computer program for Scatchard analysis of protein: Ligand interaction - use for determination of soluble and nuclear steroid receptor concentrations

    International Nuclear Information System (INIS)

    Leake, R.; Cowan, S.; Eason, R.

    1998-01-01

    Steroid receptor concentration may be determined routinely in biopsy samples of breast and endometrial cancer by the competition method. This method yields data for both the soluble and nuclear fractions of the tissue. The data are usually subject to Scatchard analysis. This Appendix describes a computer program written initially for a PDP-11. It has been modified for use with IBM, Apple Macintosh and BBC microcomputers. The nature of the correction for competition is described and examples of the printout are given. The program is flexible and its use for different receptors is explained. The program can be readily adapted to other assays in which Scatchard analysis is appropriate

  8. Temporal responses of cutaneous blood flow and plasma catecholamine concentrations to histamine H1- or H2-receptor stimulation in man

    DEFF Research Database (Denmark)

    Knigge, U; Alsbjørn, B; Thuesen, B

    1988-01-01

    continuously with a laser Doppler flowmeter, and noradrenaline and adrenaline concentrations were determined in blood samples drawn every 15 min. The infusion of histamine caused an immediate and sustained vasodilatation. The Concomitant infusion of mepyramine prevented the immediate vasodilatation, but had...... noradrenaline, while the increase during concomitant H1-receptor blockade was delayed but achieved the level observed during the histamine infusion. The response to histamine during H2-receptor blockade was small and transient. The rise in plasma adrenaline was not significant. These findings suggest...

  9. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression.

    Science.gov (United States)

    Cui, Lin; Lv, Can; Zhang, Jiannan; Mo, Chunheng; Lin, Dongliang; Li, Juan; Wang, Yajun

    2017-06-05

    Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH 1-19 , and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM

    DEFF Research Database (Denmark)

    Klein, H H; Vestergaard, H; Kotzke, G

    1995-01-01

    The role of skeletal muscle insulin receptor kinase in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM) was investigated. Muscle biopsies from 13 patients with NIDDM and 10 control subjects at fasting serum insulin concentrations and approximately 1,000 pmol/l steady-state serum...... insulin during euglycemic hyperinsulinemic clamps were immediately frozen. The biopsies were then solubilized, and the receptors were immobilized to anti-insulin receptor antibody-coated microwells. Receptor kinase and binding activities were consecutively measured in these wells. The increase in serum...... and control groups, respectively). Moreover, by selecting only the receptors that bound to anti-phosphotyrosine antibody, we found similar hyperinsulinemia-induced increases of this receptor fraction and its kinase activity in both study groups. In vitro activation of the immobilized receptors with 2 mmol...

  11. Changes in plasma concentrations of interleukin-6 and interleukin-1 receptor antagonists in response to adrenaline infusion in humans

    DEFF Research Database (Denmark)

    Søndergaard, S R; Ostrowski, K.; Ullum, H

    2000-01-01

    To investigate the possible role of adrenaline in the response of interleukin (IL)-6 and IL-1 receptor antagonists (ra) to extreme physiological conditions such as trauma and exercise, we examined the concentrations in the plasma of these cytokines during an adrenaline infusion. Given the fact...... that HIV infected patients have elevated levels of IL-6 in plasma, 12 HIV seropositive subjects and 6 HIV seronegative control subjects received a 1-h adrenaline infusion. Baseline concentrations of IL-6 and IL-1ra were higher in the HIV patients compared with the controls (P...), being most pronounced in the untreated subgroup of HIV infected patients (n = 6). The plasma concentration of adrenaline had increased 24-fold after 15 min of adrenaline infusion. The plasma concentration of IL-6 had increased by two- to threefold after 45 min of adrenaline infusion (P

  12. β-Adrenergic receptor-mediated suppression of interleukin 2 receptors in human lymphocytes

    International Nuclear Information System (INIS)

    Feldman, R.D.; Hunninghake, G.W.; McArdle, W.L.

    1987-01-01

    Adrenergic receptor agonists are know to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of β-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the β-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of β-adrenergic agonists on expression of the high affinity IL-2 receptors, [ 125 I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of β-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that β-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites

  13. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation.

    Science.gov (United States)

    Frøbert, Ole; Haink, Gesine; Simonsen, Ulf; Gravholt, Claus H; Levin, Max; Deussen, Andreas

    2006-01-15

    We tested whether hypoxia-induced coronary artery dilatation could be mediated by an increase in adenosine concentration within the coronary artery wall or by an increase in adenosine sensitivity. Porcine left anterior descendent coronary arteries, precontracted with prostaglandin F(2alpha) (10(-5) M), were mounted in a pressure myograph and microdialysis catheters were inserted into the tunica media. Dialysate adenosine concentrations were analysed by HPLC. Glucose, lactate and pyruvate were measured by an automated spectrophotometric kinetic enzymatic analyser. The exchange fraction of [(14)C]adenosine over the microdialysis membrane increased from 0.32 +/- 0.02 to 0.46 +/- 0.02 (n = 4, P lactate/pyruvate ratio was significantly increased in hypoxic arteries but did not correlate with adenosine concentration. We conclude that hypoxia-induced coronary artery dilatation is not mediated by increased adenosine produced within the artery wall but might be facilitated by increased adenosine sensitivity at the A(2A) receptor level.

  14. Receptor Autoradiography Protocol for the Localized Visualization of Angiotensin II Receptors.

    Science.gov (United States)

    Linares, Andrea; Couling, Leena E; Carrera, Eduardo J; Speth, Robert C

    2016-06-07

    This protocol describes receptor binding patterns for Angiotensin II (Ang II) in the rat brain using a radioligand specific for Ang II receptors to perform receptor autoradiographic mapping. Tissue specimens are harvested and stored at -80 °C. A cryostat is used to coronally section the tissue (brain) and thaw-mount the sections onto charged slides. The slide-mounted tissue sections are incubated in (125)I-SI-Ang II to radiolabel Ang II receptors. Adjacent slides are separated into two sets: 'non-specific binding' (NSP) in the presence of a receptor saturating concentration of non-radiolabeled Ang II, or an AT1 Ang II receptor subtype (AT1R) selective Ang II receptor antagonist, and 'total binding' with no AT1R antagonist. A saturating concentration of AT2 Ang II receptor subtype (AT2R) antagonist (PD123319, 10 µM) is also present in the incubation buffer to limit (125)I-SI-Ang II binding to the AT1R subtype. During a 30 min pre-incubation at ~22 °C, NSP slides are exposed to 10 µM PD123319 and losartan, while 'total binding' slides are exposed to 10 µM PD123319. Slides are then incubated with (125)I-SI-Ang II in the presence of PD123319 for 'total binding', and PD123319 and losartan for NSP in assay buffer, followed by several 'washes' in buffer, and water to remove salt and non-specifically bound radioligand. The slides are dried using blow-dryers, then exposed to autoradiography film using a specialized film and cassette. The film is developed and the images are scanned into a computer for visual and quantitative densitometry using a proprietary imaging system and a spreadsheet. An additional set of slides are thionin-stained for histological comparisons. The advantage of using receptor autoradiography is the ability to visualize Ang II receptors in situ, within a section of a tissue specimen, and anatomically identify the region of the tissue by comparing it to an adjacent histological reference section.

  15. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    DEFF Research Database (Denmark)

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja

    2015-01-01

    We have proposed that lactate is a “volume transmitter” in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes......, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress...

  16. Channel opening of γ-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    The function of γ-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36 Cl - isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36 Cl - influx was completed in three phases of ca. 3% (t/sub 1/2/ = 0.6 s), 56% (t/sub 1/2 = 82 s), and 41% (t/sub 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36 Cl - influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles. The half-response concentrations were similar for both receptors. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of low affinity to high-affinity GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria. For both receptors, the measurements over a 2000-fold GABA concentration range required a minimal mechanism involving the occupation of both of the two GABA binding sites for significant channel opening; then the receptors were ca. 80% open. Similarly for both receptors, desensitization was mediated by a different pair of binding sites, although desensitization with only one ligand molecule bound could occur at a 20-fold slower rate

  17. Desensitization of γ-aminobutyric acid receptor from rat brain: two distinguishable receptors on the same membrane

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    Transmembrane chloride flux mediated by γ-aminobutyric acid (GABA) receptor can be measured with a mammalian brain homogenate preparation containing sealed membrane vesicles. The preparation can be mixed rapidly with solutions of defined composition. Influx of 36 Cl - tracer initiated by mixing with GABA was rapidly terminated by mixing with bicuculline methiodide. The decrease in the isotope influx measurement due to prior incubation of the vesicle preparation with GABA, which increased with preincubation time and GABA concentration, was attributed to desensitization of the GABA receptor. By varying the time of preincubation with GABA between 10 ms and 50 s with quench-flow technique, the desensitization rates could be measured over their whole time course independently of the chloride ion flux rate. Most of the receptor activity decreased in a fast phase of desensitization complete in 200 ms at saturation with GABA. Remaining activity was desensitized in a few seconds. These two phases of desensitization were each kinetically first order and were shown to correspond with two distinguishable GABA receptors on the same membrane. The receptor activities could be estimated, and the faster desensitizing receptor was the predominant one, giving on average ca. 80% of the total activity. The half-response concentrations were similar, 150 and 114 μM for the major and minor receptors, respectively. The dependence on GABA concentration indicated that desensitization is mediated by two GABA binding sites. The fast desensitization rate was approximately 20-fold faster than previously reported rates while the slower desensitization rate was slightly faster than previously reported rates

  18. Receptor binding radiotracers for the angiotensin II receptor: radioiodinated [Sar1, Ile8]angiotensin II

    International Nuclear Information System (INIS)

    Gibson, R.E.; Beauchamp, H.T.; Fioravanti, C.; Brenner, N.; Burns, H.D.

    1994-01-01

    The potential for imaging the angiotensin II receptor was evaluated using the radioiodinated peptide antagonist [ 125 I][Sar 1 , Ile 8 ]angiotensin II. The radioligand provides a receptor-mediated signal in several tissues in rat (kidneys, adrenal and liver). The receptor-mediated signal of 3% ID/g kidney cortex should be sufficient to permit imaging, at least via SPECT. The radiotracer is sensitive to reductions in receptor concentration and can be used to define in vivo dose-occupancy curves of angiotensin II receptor ligands. Receptor-mediated images of [ 123 I][Sar 1 , Ile 8 ]angiotensin II were obtained in the rat kidney and Rhesus monkey liver. (author)

  19. Effects of ionizing irradiation on the estradiol and progesterone receptors in rat mammary tumors

    International Nuclear Information System (INIS)

    Janssens, J.P.; Wittevrongel, C.; Van Dam, J.; Goddeeris, P.; Lauwerijns, J.M.; De Loecker, W.

    1981-01-01

    The determination of estradiol and progesterone receptor concentrations in mammary tumors is useful in predicting the hormone responsiveness. As this assay is carried out on tumor tissue which may have been subjected to radiotherapy, the possibility of an ionizing irradiation affecting the steroid receptor levels in neoplastic tissue should be taken into account. The steroid receptor concentrations are examined in dimethylbenz(a)anthracene-induced tumors os Sprague-Dawley rats. The estradiol and the progesterone receptor titers become reduced significantly after treatment with 20 Gray while an application with 7 Gray does not affect the titer values. After treatment of the tumor with 20 Gray, the steroid receptor concentrations decrease progressively, reaching a maximal reduction 20 to 30 days after exposure. As radiation treatment affects the receptor concentrations, this should be kept in mind when interpreting the steroid receptor concentrations

  20. Vitamin C Deficiency Reduces Muscarinic Receptor Coronary Artery Vasoconstriction and Plasma Tetrahydrobiopterin Concentration in Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Gry Freja Skovsted

    2017-07-01

    Full Text Available Vitamin C (vitC deficiency is associated with increased cardiovascular disease risk, but its specific interplay with arteriolar function is unclear. This study investigates the effect of vitC deficiency in guinea pigs on plasma biopterin status and the vasomotor responses in coronary arteries exposed to vasoconstrictor/-dilator agents. Dunkin Hartley female guinea pigs (n = 32 were randomized to high (1500 mg/kg diet or low (0 to 50 mg/kg diet vitC for 10–12 weeks. At euthanasia, coronary artery segments were dissected and mounted in a wire-myograph. Vasomotor responses to potassium, carbachol, sodium nitroprusside (SNP, U46619, sarafotoxin 6c (S6c and endothelin-1 (ET-1 were recorded. Plasma vitC and tetrahydrobiopterin were measured by HPLC. Plasma vitC status reflected the diets with deficient animals displaying reduced tetrahydrobiopterin. Vasoconstrictor responses to carbachol were significantly decreased in vitC deficient coronary arteries independent of their general vasoconstrictor/vasodilator capacity (p < 0.001. Moreover, in vitC deficient animals, carbachol-induced vasodilator responses correlated with coronary artery diameter (p < 0.001. Inhibition of cyclooxygenases with indomethacin increased carbachol-induced vasoconstriction, suggesting an augmented carbachol-induced release of vasodilator prostanoids. Atropine abolished carbachol-induced vasomotion, supporting a specific muscarinic receptor effect. Arterial responses to SNP, potassium, S6c, U46619 and ET-1 were unaffected by vitC status. The study shows that vitC deficiency decreases tetrahydrobiopterin concentrations and muscarinic receptor mediated contraction in coronary arteries. This attenuated vasoconstrictor response may be linked to altered production of vasoactive arachidonic acid metabolites and reduced muscarinic receptor expression/signaling.

  1. Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes

    Science.gov (United States)

    Block, Linda; Jörneberg, Per; Björklund, Ulrika; Westerlund, Anna; Biber, Björn; Hansson, Elisabeth

    2013-01-01

    Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na+ channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, bupivacaine exerts an influence on the Ca2+ signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the μ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the μ-opioid receptor antagonist naloxone and μ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca2+ signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist. PMID:24083665

  2. Receptors for insulin-like growth factors I and II: autoradiographic localization in rat brain and comparison to receptors for insulin

    International Nuclear Information System (INIS)

    Lesniak, M.A.; Hill, J.M.; Kiess, W.; Rojeski, M.; Pert, C.B.; Roth, J.

    1988-01-01

    Receptors for insulin-like growth factor I (IGF-I) in rat brain were visualized using autoradiography with [125I]IGF-I. The binding of the labeled peptide was competed for fully by high concentrations of unlabeled IGF-I. At intermediate concentrations of unlabeled peptide the binding of [125I]IGF-I was competed for by unlabeled IGF-I more effectively than by IGF-II or insulin, which is typical of receptors for IGF-I. Essentially every brain section shows specific binding of IGF-I, and the pattern of binding of IGF-I to its receptors correlated well with the cytoarchitectonic structures. In parallel studies we showed that [125I]IGF-II was bound to tissue sections of rat brain and that the binding was competed for by an excess of unlabeled IGF-II. However, intermediate concentrations of unlabeled peptides gave inconclusive results. To confirm that the binding of [125I]IGF-II was to IGF-II receptors, we showed that antibodies specific for the IGF-II receptor inhibited the binding of labeled IGF-II. Furthermore, the binding of the antibody to regions of the brain section, visualized by the application of [125I]protein-A, gave patterns indistinguishable from those obtained with [125I]IGF-II alone. Again, the binding was very widely distributed throughout the central nervous system, and the patterns of distribution corresponded well to the underlying neural structures. Densitometric analysis of the receptors enabled us to compare the distribution of IGF-I receptors with that of IGF-II receptors as well as retrospectively with that of insulin receptors

  3. EGF-induced stimualtion of EGF-receptor synthesis in human cytotrophoblasts and A431 cells

    International Nuclear Information System (INIS)

    DePalo, L.; Basu, A.; Das, M.

    1987-01-01

    EGF-receptor is a transmembrane glycoprotein whose intracellular degradation is known to be enhanced by EGF. The authors tested whether the receptor is replenished during this process by an enhanced rate of synthesis. Human A431 epidermoid carcinoma cells, and primary cultures of human placental cytotrophoblasts were used in these studies. Cells were labeled with 35 S-methionine, and EGF-receptor biosynthesis was quantitated by immunoprecipitation using a monoclonal anti-EGF-receptor antibody. EGF stimulated receptor biosynthesis at concentrations of 0.1-1 nM. The effect was seen within 2 h of EGF addition. The maximal stimulatory effect was modest in A431 (∼ 2-fold), but marked in the cytotrophoblasts (>5-fold). At EGF concentrations higher than 3 nM, the stimulatory effect was abolished. In contrast, the effect of EGF on receptor degradation is negligible at low subnanomolar concentrations, and is pronounced only at saturating concentrations. These results show that occupation of the cell surface EGF-receptor by its ligand can lead to production of more receptor protein, thus counterbalancing the negative effect on receptor degradation. At low subnanomolar (mitogenic) concentrations of EGF the stimulator effect on receptor synthesis is likely to predominate over the effect on receptor degradation

  4. Relationships between High-mobility Group Protein B1 and Triggering Receptor Expressed on Myeloid Cells Concentrations in Gingival Crevicular Fluid and Chronic Periodontitis.

    Science.gov (United States)

    Paknejad, Mojgan; Sattari, Mandana; Roozbahani, Zohreh; Ershadi, Morteza; Mehrfard, Ali

    2016-10-01

    One of the inflammatory mediators which is secreted by inflammatory cells is high-mobility group protein B1 (HMGB1). Interaction of HMGB1 and toll-like receptors (TLRs) leads to increased production of inflammatory cytokines. On the other hand, it was shown that triggering receptor expressed on myeloid cells (TREM-1) also can be activated by TLRs, and its soluble form (sTREM-1) can be formed by cleaving of membrane-bound form of TREM-1 proteinases. Since there is not enough knowledge about the precise role of HMGB1 and sTREM-1 in periodontal diseases, the aim of this study was to evaluate the concentration of HMGB1 and sTREM-1 in gingival crevicular fluid (GCF) samples of patients with chronic periodontitis. Gingival crevicular fluid (GCF) samples were obtained from a total of 24 individuals with clinically healthy gingiva and 24 patients with moderate to severe chronic periodontitis. For collecting GCF samples, periopapers were placed at the entrance of the crevice and left in position for 30 seconds. Then, they were stored at -80°C. Enzyme-linked immunosorbent assay (ELISA) was used for measuring the concentration of HMGB1 and sTREM-1 in GCF samples. The concentration of HMGB1 (pchronic periodontitis group. In addition, there was a significant positive correlation between HMGB1 and sTREM-1 concentration in chronic periodontitis group (pperiodontal tissues and they can promote inflammatory process, which leads to tissue destruction.

  5. Flavivirus Entry Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Manuel Perera-Lecoin

    2013-12-01

    Full Text Available Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM and TYRO3, AXL and MER (TAM. Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.

  6. Hormone receptor densities in relation to 10B neutron capture therapy

    International Nuclear Information System (INIS)

    Hechter, O.; Schwartz, I.L.

    1982-01-01

    This presentation is a theoretical discussion of the possibility that appropriate steroid-carborane derivatives might be used to selectively deliver boron-10 ( 10 B) to tumor cells with sex-hormone receptors in sufficient concentration for effective neutron capture theory (NCT) of hormone-dependent mammary and prostatic cancer. The results indicate the concentrations of androgen receptors (AR) and progesterone receptors (PR) in malignant prostatic cells or of estrogen receptors (ER) in malignant mammary cells are two low to achieve nuclear 10 B concentrations of 1 + g per g of tumor by using a steroid ligand coupled to a single carborane cage

  7. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    International Nuclear Information System (INIS)

    Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Jr.

    1989-01-01

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects

  8. Circulating ghrelin, leptin, and soluble leptin receptor concentrations and cardiometabolic risk factors in a community-based sample.

    Science.gov (United States)

    Ingelsson, Erik; Larson, Martin G; Yin, Xiaoyan; Wang, Thomas J; Meigs, James B; Lipinska, Izabella; Benjamin, Emelia J; Keaney, John F; Vasan, Ramachandran S

    2008-08-01

    The conjoint effects and relative importance of ghrelin, leptin, and soluble leptin receptor (sOB-R), adipokines involved in appetite control and energy expenditure in mediating cardiometabolic risk, is unknown. The objective of the study was to study the cross-sectional relations of these adipokines to cardiometabolic risk factors in a community-based sample. We measured circulating ghrelin, leptin, and sOB-R in 362 participants (mean age 45 yr; 54% women) of the Framingham Third Generation Cohort. Body mass index, waist circumference (WC), blood pressure, lipid measures, fasting glucose, smoking, and metabolic syndrome (MetS) were measured. Ghrelin and leptin concentrations were significantly higher in women (P risk.

  9. Receptor-mediated targeting of 67Ga-Deferoxamine-Folate to folate-receptor-positive human kb tumor xenografts

    International Nuclear Information System (INIS)

    Mathias, Carla J.; Wang, Susan; Low, Philip S.; Waters, David J.; Green, Mark A.

    1999-01-01

    The radiochemical synthesis and stability of 67 Ga-deferoxamine-folate ([ 67 Ga]Ga-DF-Folate) were examined as a function of DF-Folate concentration. Optimal labeling occurred at DF-Folate concentrations ≥2.5 μg/mL. To define the possible biological significance of variations in product formulation, the biodistribution of [ 67 Ga]Ga-DF-Folate was examined as a function of administered deferoxamine-folate dose in an athymic mouse KB tumor model. The folate-receptor-positive KB tumors were found to concentrate the 67 Ga radiolabel in a dose-dependent fashion, consistent with saturable involvement of the folate receptor in mediating tumor accumulation of the radiopharmaceutical

  10. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-07-01

    Full Text Available We analyze the effect of varying East Asian (EA sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2. We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as "background" sulfate, EA sources account for approximately 30%–50% (over the Western US and 10%–20% (over the Eastern US. The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15 μg/m3, and lowest in DJF (less than 0.06 μg/m3. Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1 μg m−3 of sulfate originates from EA over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase. We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be

  11. Gonadal cell surface receptor for plasma retinol-binding protein

    International Nuclear Information System (INIS)

    Krishna Bhat, M.; Cama, H.R.

    1979-01-01

    A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps; direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme. The binding of retinol-binding protein to the receptor is saturable and reversible. The interaction shows a Ksub(d) value of 2.1x10 -10 . The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testosterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifcally induced by testosterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome. (Auth.)

  12. Hypertension-Related Gene Polymorphisms of G-Protein-Coupled Receptor Kinase 4 Are Associated with NT-proBNP Concentration in Normotensive Healthy Adults

    Directory of Open Access Journals (Sweden)

    Junichi Yatabe

    2012-01-01

    Full Text Available G protein-coupled receptor kinase 4 (GRK4 with activating polymorphisms desensitize the natriuric renal tubular D1 dopamine receptor, and these GRK4 polymorphisms are strongly associated with salt sensitivity and hypertension. Meanwhile, N-terminal pro-B-type natriuretic peptide (NT-proBNP may be useful in detecting slight volume expansion. However, relations between hypertension-related gene polymorphisms including GRK4 and cardiovascular indices such as NT-proBNP are not clear, especially in healthy subjects. Therefore, various hypertension-related polymorphisms and cardiovascular indices were analyzed in 97 normotensive, healthy Japanese adults. NT-proBNP levels were significantly higher in subjects with two or more GRK4 polymorphic alleles. Other hypertension-related gene polymorphisms, such as those of renin-angiotensin-aldosterone system genes, did not correlate with NT-proBNP. There was no significant association between any of the hypertension-related gene polymorphisms and central systolic blood pressure, cardioankle vascular index, augmentation index, plasma aldosterone concentration, or an oxidative stress marker, urinary 8-OHdG. Normotensive individuals with GRK4 polymorphisms show increased serum NT-proBNP concentration and may be at a greater risk of developing hypertension and cardiovascular disease.

  13. Plasma concentrations of soluble urokinase-type plasminogen activator receptor are increased in patients with malaria and are associated with a poor clinical or a fatal outcome

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Ullum, Henrik; Goka, Bamenla Q

    2005-01-01

    PAR are associated with disease severity in malaria. METHODS: At admission to the hospital, plasma concentrations of suPAR were measured by ELISA in samples from 645 African children with clinical symptoms of malaria: 478 had malaria, and 167 had a blood film negative for Plasmodium parasites. Fourteen healthy......BACKGROUND: Blood concentrations of soluble urokinase-type plasminogen activator receptor (suPAR) are increased in conditions with immune activation, and high concentrations of suPAR often predict a poor clinical outcome. This study explored the hypothesis that high plasma concentrations of su......: If the plasma concentration of suPAR reflects the extent of parasite-induced immune activation, this may explain why a high concentration of suPAR is associated with a poor clinical outcome in patients with malaria....

  14. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  15. The development of the glucocorticoid receptor system in the rat limbic brain. 2

    International Nuclear Information System (INIS)

    Meaney, M.J.; Sapolsky, R.M.; McEwen, B.S.

    1985-01-01

    The authors report the results of an autoradiographic analysis of the postnatal development of the hippocampal glucocorticoid receptor system in the rat brain. Quantitative analysis of the autoradiograms revealed a varied pattern of gradual development towards adult receptor concentrations during the second week of life. Receptor concentrations in the dentate gyrus increased dramatically between Days 9 and 15, while the changes during this period in the pyramidal layers of Ammon's horn seemed to reflect both structural changes in these regions as well as increases in receptor concentrations. (orig.)

  16. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  17. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Vitamin C deficiency reduces muscarinic receptor coronary artery vasoconstriction and plasma tetrahydrobiopterin concentration in guinea pigs

    DEFF Research Database (Denmark)

    Skovsted, Gry Freja; Tveden-Nyborg, Pernille; Lindblad, Maiken Marie

    2017-01-01

    Vitamin C (vitC) deficiency is associated with increased cardiovascular disease risk, but its specific interplay with arteriolar function is unclear. This study investigates the effect of vitC deficiency in guinea pigs on plasma biopterin status and the vasomotor responses in coronary arteries...... exposed to vasoconstrictor/-dilator agents. Dunkin Hartley female guinea pigs (n = 32) were randomized to high (1500 mg/kg diet) or low (0 to 50 mg/kg diet) vitC for 10-12 weeks. At euthanasia, coronary artery segments were dissected and mounted in a wire-myograph. Vasomotor responses to potassium......-1 were unaffected by vitC status. The study shows that vitC deficiency decreases tetrahydrobiopterin concentrations and muscarinic receptor mediated contraction in coronary arteries. This attenuated vasoconstrictor response may be linked to altered production of vasoactive arachidonic acid...

  19. A Concentration Addition Model to Assess Activation of the Pregnane X Receptor (PXR) by Pesticide Mixtures Found in the French Diet

    OpenAIRE

    de Sousa, Georges; Nawaz, Ahmad; Cravedi, Jean-Pierre; Rahmani, Roger

    2014-01-01

    French consumers are exposed to mixtures of pesticide residues in part through food consumption. As a xenosensor, the pregnane X receptor (hPXR) is activated by numerous pesticides, the combined effect of which is currently unknown. We examined the activation of hPXR by seven pesticide mixtures most likely found in the French diet and their individual components. The mixture's effect was estimated using the concentration addition (CA) model. PXR transactivation was measured by monitoring luci...

  20. Circulating Angiopoietin-2 and Its Soluble Receptor Tie-2 Concentrations Are Related to Renal Function in Two Population-Based Cohorts.

    Science.gov (United States)

    Hennings, Anna; Hannemann, Anke; Rettig, Rainer; Dörr, Marcus; Nauck, Matthias; Völzke, Henry; Lerch, Markus M; Lieb, Wolfgang; Friedrich, Nele

    2016-01-01

    An intact angiopoietin/Tie-2 ligand receptor system is indispensable for life. High circulating angiopoietin-2 (Ang-2) concentrations are strongly associated with kidney disease involving the progressive loss of glomerular filtration. The aim of our study was to investigate the associations between renal function and serum Ang-2 or serum Tie-2 concentrations in the general population. Data of 3081 and 4088 subjects from two population-based studies, the Study of Health in Pomerania (SHIP-1) and SHIP-Trend, were used. Renal function was assessed by serum creatinine, cystatin C concentration, creatinine-based estimated glomerular filtration rate [eGFR(crea)], cystatin C-based eGFR [eGFR(cys)] and urinary albumin-to-creatinine ratio (uACR). Analyses of variance and linear regression models were calculated. In both cohorts, strong positive associations between serum cystatin C concentrations and serum Ang-2 or Tie-2 concentrations as well as inverse associations between eGFR(cys) and serum Ang-2 or Tie-2 concentrations were found. These relations were also present in a subpopulation without hypertension or diabetes mellitus type 2. Furthermore, we detected weak U-shaped associations between serum creatinine concentrations or eGFR(crea) and serum Ang-2 concentrations. With respect to uACR a strong positive association with serum Ang-2 concentrations was revealed. Serum Ang-2 concentrations are strongly associated with sensitive parameters of renal impairment like serum cystatin C, uACR and eGFR(cys). These findings persisted even after exclusion of subjects with hypertension or diabetes mellitus type 2, conditions that predispose to chronic renal disease and are associated with increased Ang-2 concentrations. Interestingly, we did not detect the same strong relations between serum creatinine and eGFR(crea) with serum Ang-2 concentration. Additionally, significant association of serum Tie-2 concentrations with cystatin C and eGFR(cys) were detected.

  1. Circulating Angiopoietin-2 and Its Soluble Receptor Tie-2 Concentrations Are Related to Renal Function in Two Population-Based Cohorts.

    Directory of Open Access Journals (Sweden)

    Anna Hennings

    Full Text Available An intact angiopoietin/Tie-2 ligand receptor system is indispensable for life. High circulating angiopoietin-2 (Ang-2 concentrations are strongly associated with kidney disease involving the progressive loss of glomerular filtration. The aim of our study was to investigate the associations between renal function and serum Ang-2 or serum Tie-2 concentrations in the general population.Data of 3081 and 4088 subjects from two population-based studies, the Study of Health in Pomerania (SHIP-1 and SHIP-Trend, were used. Renal function was assessed by serum creatinine, cystatin C concentration, creatinine-based estimated glomerular filtration rate [eGFR(crea], cystatin C-based eGFR [eGFR(cys] and urinary albumin-to-creatinine ratio (uACR. Analyses of variance and linear regression models were calculated.In both cohorts, strong positive associations between serum cystatin C concentrations and serum Ang-2 or Tie-2 concentrations as well as inverse associations between eGFR(cys and serum Ang-2 or Tie-2 concentrations were found. These relations were also present in a subpopulation without hypertension or diabetes mellitus type 2. Furthermore, we detected weak U-shaped associations between serum creatinine concentrations or eGFR(crea and serum Ang-2 concentrations. With respect to uACR a strong positive association with serum Ang-2 concentrations was revealed.Serum Ang-2 concentrations are strongly associated with sensitive parameters of renal impairment like serum cystatin C, uACR and eGFR(cys. These findings persisted even after exclusion of subjects with hypertension or diabetes mellitus type 2, conditions that predispose to chronic renal disease and are associated with increased Ang-2 concentrations. Interestingly, we did not detect the same strong relations between serum creatinine and eGFR(crea with serum Ang-2 concentration. Additionally, significant association of serum Tie-2 concentrations with cystatin C and eGFR(cys were detected.

  2. Quantitative analysis of receptor imaging

    International Nuclear Information System (INIS)

    Fu Zhanli; Wang Rongfu

    2004-01-01

    Model-based methods for quantitative analysis of receptor imaging, including kinetic, graphical and equilibrium methods, are introduced in detail. Some technical problem facing quantitative analysis of receptor imaging, such as the correction for in vivo metabolism of the tracer and the radioactivity contribution from blood volume within ROI, and the estimation of the nondisplaceable ligand concentration, is also reviewed briefly

  3. Changes in gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor gene expression after an increase in carbon monoxide concentration in the cavernous sinus of male wild boar and pig crossbread.

    Science.gov (United States)

    Romerowicz-Misielak, M; Tabecka-Lonczynska, A; Koziol, K; Gilun, P; Stefanczyk-Krzymowska, S; Och, W; Koziorowski, M

    2016-06-01

    Previous studies indicate that there are at least a few regulatory systems involved in photoperiodic synchronisation of reproductive activity, which starts with the retina and ends at the gonadotropin-releasing hormone (GnRH) pulse generator. Recently we have shown indicated that the amount of carbon monoxide (CO) released from the eye into the ophthalmic venous blood depends on the intensity of sunlight. The aim of this study was to test whether changes in the concentration of carbon monoxide in the ophthalmic venous blood may modulate reproductive activity, as measured by changes in GnRH and GnRH receptor gene expression. The animal model used was mature male swine crossbred from wild boars and domestic sows (n = 48). We conducted in vivo experiments to determine the effect of increased CO concentrations in the cavernous sinus of the mammalian perihypophyseal vascular complex on gene expression of GnRH and GnRH receptors as well as serum luteinizing hormone (LH) levels. The experiments were performed during long photoperiod days near the summer solstice (second half of June) and short photoperiod days near the winter solstice (second half of December). These crossbred swine demonstrated a seasonally-dependent marked variation in GnRH and GnRH receptor gene expression and systemic LH levels in response to changes in CO concentration in ophthalmic venous blood. These results seem to confirm the hypothesis of humoral phototransduction as a mechanism for some of bright light's effects in animal chronobiology and the effect of CO on GnRH and GnRH receptor gene expression.

  4. In vivo studies of opiate receptors

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented

  5. In vivo studies of opiate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.

  6. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone.

    Science.gov (United States)

    Lafontaine, Anne; Hanikenne, Marc; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2016-10-01

    Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.

  7. Quantitative densitometry of neurotransmitter receptors

    International Nuclear Information System (INIS)

    Rainbow, T.C.; Bleisch, W.V.; Biegon, A.; McEwen, B.S.

    1982-01-01

    An autoradiographic procedure is described that allows the quantitative measurement of neurotransmitter receptors by optical density readings. Frozen brain sections are labeled in vitro with [ 3 H]ligands under conditions that maximize specific binding to neurotransmitter receptors. The labeled sections are then placed against the 3 H-sensitive LKB Ultrofilm to produce the autoradiograms. These autoradiograms resemble those produced by [ 14 C]deoxyglucose autoradiography and are suitable for quantitative analysis with a densitometer. Muscarinic cholinergic receptors in rat and zebra finch brain and 5-HT receptors in rat brain were visualized by this method. When the proper combination of ligand concentration and exposure time are used, the method provides quantitative information about the amount and affinity of neurotransmitter receptors in brain sections. This was established by comparisons of densitometric readings with parallel measurements made by scintillation counting of sections. (Auth.)

  8. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    Science.gov (United States)

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  9. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    International Nuclear Information System (INIS)

    Pires, L.A.; Hegg, R.; Freitas, F.R.; Tavares, E.R.; Almeida, C.P.; Baracat, E.C.; Maranhão, R.C.

    2012-01-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy

  10. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Cortes, R.; Palacios, J.M.

    1985-01-01

    The distribution of serotonin-2 (5-HT 2 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with four ligands: [ 3 H]ketanserin, [ 3 H]mesulergine, [ 3 H]LSD and [ 3 H]spiperone, which are reported to show high affinity for 5-HT 2 receptors. Very high concentrations were localized in the claustrum, olfactory tubercle and layer IV of the neocortex. The anterior olfactory nucleus, piriform cortex and layer I of neocortex were also rich in 5-HT 2 receptors. The specificity of the different ligands used is discussed in terms of the other populations of sites recognized by them. The distribution of 5-HT 2 receptors here reported is discussed in correlation with (a) the known distribution of serotoninergic terminals, (b) the specific anatomical systems and (c) the central effects reported to be mediated by 5-HT 2 -selective drugs. (Auth.)

  11. A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: Further H3 receptors but no evidence for H4 receptors.

    Science.gov (United States)

    Petri, Doris; Schlicker, Eberhard

    2016-07-01

    The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Variations in steroid hormone receptor content throughout age and menopausal periods, and menstrual cycle in breast cancer patients

    International Nuclear Information System (INIS)

    Nikolic-Vukosavljevic, D.; Vasiljevic, N.; Brankovic-Magic, M.; Polic, D.

    1996-01-01

    Variations in steroid hormone receptor contents throughout age and menopausal periods define three breast carcinoma groups: younger pre-menopausal carcinomas (aged up to 45), middle-aged carcinomas (aged up to 45), middle-aged carcinomas (pre-, peri-, and postmenopausal aged 45-59) and older postmenopausal carcinomas (aged over 59). Age-related steroid hormone receptor contents within pre-menopausal and postmenopausal carcinoma groups are characterized by the important increase of both receptor contents, while menopausal-related steroid hormone receptor contents within middle-aged carcinoma group (aged 45-59) are characterized by the important decrease of progesterone receptor content and estrogen receptor functionality. No variations in steroid hormone receptor contents throughout menstrual cycle within the follicular and the luteal phases were obtained. The important cycle within the follicular and the luteal phases were obtained. The important decrease of estrogen receptor content in the mid-cycle phase versus the peri-menstrual phase was found. Variations in steroid hormone receptor contents throughout age and menopausal periods, as well as throughout menstrual cycle could nod be associated with variations in the blood steroid hormone concentrations. However, important association between steroid hormone receptor contents and the blood steroid hormone concentrations was found within the luteal phase carcinoma group and within older postmenopausal carcinoma group. It is interesting that within carcinoma group with the highest concentration of progesterone, progesterone receptor content increases with an increase of the ration of estradiol and progesterone blood concentrations, while within carcinoma group with the lowest steroid hormone concentration and the highest content of estrogen receptor content, estrogen receptor content decreases with an increase of either the blood estradiol concentration or the ratio of the blood estradiol and progesterone blood

  13. Synthesis of (±)-I-125-iodobenzovesamicol - A cholinergic neuron marker

    International Nuclear Information System (INIS)

    Jung, Y.W.; Van Dort, M.E.; Wieland, D.M.

    1990-01-01

    The authors are focusing efforts on developing markers for the cholinergic neuron. Vesamicol (VA) has been adopted as a basis for the design of a presynaptic cholinergic nerve marker. Benzovesamicol, an analog of VA, is equipotent with VA and displays remarkable bulk tolerance in the 5-position. They have synthesized (±)-[I-125]-5-iodobenzovesamicol, and have conducted in vivo screening with it in mice

  14. Do orphan G-protein-coupled receptors have ligand-independent functions? New insights from receptor heterodimers

    OpenAIRE

    Levoye, Angélique; Dam, Julie; Ayoub, Mohammed A; Guillaume, Jean-Luc; Jockers, Ralf

    2006-01-01

    G-protein-coupled receptors (GPCRs) are important drug targets and are involved in virtually every biological process. However, there are still more than 140 orphan GPCRs, and deciphering their function remains a priority for fundamental and clinical research. Research on orphan GPCRs has concentrated mainly on the identification of their natural ligands, whereas recent data suggest additional ligand-independent functions for these receptors. This emerging concept is connected with the observ...

  15. Low Concentrations of o,p’-DDT Inhibit Gene Expression and Prostaglandin Synthesis by Estrogen Receptor-Independent Mechanism in Rat Ovarian Cells

    Science.gov (United States)

    Liu, Jing; Zhao, Meirong; Zhuang, Shulin; Yang, Yan; Yang, Ye; Liu, Weiping

    2012-01-01

    o,p’-DDT is an infamous xenoestrogen as well as a ubiquitous and persistent pollutant. Biomonitoring studies show that women have been internally exposed to o,p’-DDT at range of 0.3–500 ng/g (8.46×10−10 M−1.41×10−6 M) in blood and other tissues. However, very limited studies have investigated the biological effects and mechanism(s) of o,p’-DDT at levels equal to or lower than current exposure levels in human. In this study, using primary cultures of rat ovarian granulosa cells, we determined that very low doses of o,p’-DDT (10−12−10−8 M) suppressed the expression of ovarian genes and production of prostaglandin E2 (PGE2). In vivo experiments consistently demonstrated that o,p’-DDT at 0.5–1 mg/kg inhibited the gene expression and PGE2 levels in rat ovary. The surprising results from the receptor inhibitors studies showed that these inhibitory effects were exerted independently of either classical estrogen receptors (ERs) or G protein-coupled receptor 30 (GPR30). Instead, o,p’-DDT altered gene expression or hormone action via inhibiting the activation of protein kinase A (PKA), rather than protein kinase C (PKC). We further revealed that o,p’-DDT directly interfered with the PKA catalytic subunit. Our novel findings support the hypothesis that exposure to low concentrations of o,p’-DDT alters gene expression and hormone synthesis through signaling mediators beyond receptor binding, and imply that the current exposure levels of o,p’-DDT observed in the population likely poses a health risk to female reproduction. PMID:23209616

  16. Differential regulation of. mu. , delta, kappa opioid receptors by Mn/sup + +/

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, M.; Oetting, G.M.; Coscia, C.J.

    1986-03-05

    Differential effects of Mn/sup + +/ on three opioid receptor subtypes of rat brain membranes were evaluated. Concentration dependency studies performed with 0.05-20 mM Mn/sup + +/ revealed that only the delta receptors are stimulated at any concentration. The binding of 1 nM /sup 3/H-DAGO was not stimulated by low concentrations (< 1mM) of Mn/sup + +/, and was significantly inhibited at higher concentrations (40% at 20 mM). 1 nM /sup 3/H-EKC (+100nM DAGO and 100nM DADLE) binding was inhibited by Mn/sup + +/ in the entire concentration range. While regulation of ..mu.. receptor binding did not change during postnatal development, delta and kappa binding displayed a pronounced developmental time-dependency. Kappa sites were hardly affected by Mn/sup + +/ at day 5, and adult levels of inhibition were reached only after the third week postnatal. In contrast, 1 nM /sup 3/H-DADLE (+10nM DAGO) binding was most sensitive to Mn/sup + +/ on day 5 after birth (100% stimulation with 5-20 mM). The ED/sub 50/ of Mn/sup + +/ stimulation was unchanged during maturation. These immature delta sites displayed a similar extent of Mn/sup + +/ reversal of Gpp(NH)p inhibition as seen in microsomes, which represent a good model of N/sub i/-uncoupled receptors. These data suggest that ..mu.., delta and kappa receptors are differently coupled to N/sub i/. Moreover, a second divalent cation binding site, in addition to that on N/sub i/ might exist for delta receptors.

  17. Application of a Receptor-Binding Capture Quantitative Reverse Transcription-PCR Assay To Concentrate Human Norovirus from Sewage and To Study the Distribution and Stability of the Virus

    Science.gov (United States)

    Yang, David; Pan, Liangwen; Mandrell, Robert

    2012-01-01

    Water is an important route for human norovirus (HuNoV) transmission. Using magnetic beads conjugated with blood group-like antigens (HuNoV receptors), we developed a simple and rapid receptor-binding capture and magnetic sequestration (RBCMS) method and compared it to the existing negatively charged membrane absorption/elution (NCMAE) method for concentrating HuNoV from sewage effluent. RBCMS required 6-fold-less sample volume than the NCMAE method and also resulted in a significantly higher yield of HuNoV. The NCMAE and RBCMS concentrations of genogroup I (GI) HuNoV measured by quantitative reverse transcription-PCR (qRT-PCR) resulted in average threshold cycle (CT) values of 34.68 (8.68 copies, 252-fold concentration) versus 34.07 (13.05 copies, 477-fold concentration), respectively; the NCMAE and RBCMS concentrations of genogroup II (GII) HuNoV were measured as average CT values of 33.32 (24.7 copies, 239-fold concentration) versus 32.38 (46.9 copies, 333-fold concentration), respectively. The specificity of qRT-PCR was confirmed by traditional RT-PCR and an RNase I protection assay. The qRT-PCR signal from RBCMS-concentrated HuNoV treated with RNase I indicated that it was from encapsidated RNA and, probably, viable virus. In contrast, the qRT-PCR signal from NCMAE-concentrated HuNoV was not protected from RNase I and, likely, degradation. Both GI and GII HuNoV were detected from sewage effluent samples collected between April and July with average concentrations of 7.8 × 103 genomic copies per liter (gc/liter) and 4.3 × 104 gc/liter, respectively. No GI and sewage samples stored at room temperature for 4 weeks. We conclude that RBCMS requires less sample volume, has better recovery and sensitivity, and is faster than NCMAE for detection of HuNoV in sewage. PMID:22101044

  18. Acetylcholine receptors in the human retina

    International Nuclear Information System (INIS)

    Hutchins, J.B.; Hollyfield, J.G.

    1985-01-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand 3 H-propylbenzilylcholine mustard ( 3 H-PrBCM) to label muscarinic receptors. 3 H- or 125 I-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that 3 H-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina

  19. Effects of alkylating agents on dopamine D(3) receptors in rat brain: selective protection by dopamine.

    Science.gov (United States)

    Zhang, K; Weiss, N T; Tarazi, F I; Kula, N S; Baldessarini, R J

    1999-11-13

    Dopamine D(3) receptors are structurally highly homologous to other D(2)-like dopamine receptors, but differ from them pharmacologically. D(3) receptors are notably resistant to alkylation by 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which readily alkylates D(2) receptors. We compared EEDQ with N-(p-isothiocyanatophenethyl)spiperone (NIPS), a selective D(2)-like receptor alkylating agent, for effects on D(3) and D(2) receptors in rat brain using autoradiographic analysis. Neither agent occluded D(3) receptors in vivo at doses that produced substantial blockade of D(2) receptors, even after catecholamine-depleting pretreatments. In vitro, however, D(3) receptors were readily alkylated by both NIPS (IC(50)=40 nM) and EEDQ (IC(50)=12 microM). These effects on D(3) sites were blocked by nM concentrations of dopamine, whereas microM concentrations were required to protect D(2) receptors from the alkylating agents. The findings are consistent with the view that alkylation of D(3) receptors in vivo is prevented by its high affinity for even minor concentrations of endogenous dopamine.

  20. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  1. Relationship between peroxisome proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in HepG2 cells.

    Science.gov (United States)

    Rosenmai, Anna Kjerstine; Ahrens, Lutz; le Godec, Théo; Lundqvist, Johan; Oskarsson, Agneta

    2018-02-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a molecular target for perfluoroalkyl substances (PFASs). Little is known about the cellular uptake of PFASs and how it affects the PPARα activity. We investigated the relationship between PPARα activity and cellular concentration in HepG2 cells of 14 PFASs, including perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates and perfluorooctane sulfonamide (FOSA). Cellular concentrations were determined by high-performance liquid chromatography-tandem mass spectrometry and PPARα activity was determined in transiently transfected cells by reporter gene assay. Cellular uptake of the PFASs was low (0.04-4.1%) with absolute cellular concentrations in the range 4-2500 ng mg -1 protein. Cellular concentration of PFCAs increased with perfluorocarbon chain length up to perfluorododecanoate. PPARα activity of PFCAs increased with chain length up to perfluorooctanoate. The maximum induction of PPARα activity was similar for short-chain (perfluorobutanoate and perfluoropentanoate) and long-chain PFCAs (perfluorododecanoate and perfluorotetradecanoate) (approximately twofold). However, PPARα activities were induced at lower cellular concentrations for the short-chain homologs compared to the long-chain homologs. Perfluorohexanoate, perfluoroheptanoate, perfluorooctanoate, perfluorononanoate (PFNA) and perfluorodecanoate induced PPARα activities >2.5-fold compared to controls. The concentration-response relationships were positive for all the tested compounds, except perfluorooctane sulfonate PFOS and FOSA, and were compound-specific, as demonstrated by differences in the estimated slopes. The relationships were steeper for PFCAs with chain lengths up to and including PFNA than for the other studied PFASs. To our knowledge, this is the first report establishing relationships between PPARα activity and cellular concentration of a broad range of PFASs. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney

    International Nuclear Information System (INIS)

    Werner, H.; Shen-Orr, Z.; Stannard, B.; Burguera, B.; Roberts, C.T. Jr.; LeRoith, D.

    1990-01-01

    Insulinlike growth factor I (IGF-I) is a mitogenic hormone with important regulatory roles in growth and development. One of the target organs for IGF-I action is the kidney, which synthesizes abundant IGF-I receptors and IGF-I itself. To study the involvement of IGF-I and the IGF-I receptor in the development of nephropathy, one of the major complications of diabetes mellitus, we measured the expression of these genes in the kidney and in other tissues of the streptozocin-induced diabetic rat. The binding of 125I-labeled IGF-I to crude membranes was measured in the same tissues. We observed a 2.5-fold increase in the steady-state level of IGF-I-receptor mRNA in the diabetic kidney, which was accompanied by a 2.3-fold increase in IGF-I binding. In addition to this increase in IGF-I binding to the IGF-I receptor, there was also binding to a lower-molecular-weight material that may represent an IGF-binding protein. No change was detected in the level of IGF-I-peptide mRNA. Similarly, IGF-II-receptor mRNA levels and IGF-II binding were significantly increased in the diabetic kidney. IGF-I- and IGF-II-receptor mRNA levels and IGF-I and IGF-II binding returned to control values after insulin treatment. Because the IGF-I receptor is able to transduce mitogenic signals on activation of its tyrosine kinase domain, we hypothesize that, among other factors, high levels of receptor in the diabetic kidney may also be involved in the development of diabetic nephropathy. Increased IGF-II-receptor expression in the diabetic kidney may be important for the intracellular transport and packaging of lysosomal enzymes, although a role for this receptor in signal transduction cannot be excluded. Finally, the possible role of IGF-binding proteins requires further study

  3. In vivo study of central receptors in man using pet

    International Nuclear Information System (INIS)

    Baron, J.C.

    1986-09-01

    Central neurotransmitter systems and receptors are intimately involved in the mechanism of several neurologic and phychiatric disorders. Although neurotransmitter concentration and receptor function can be measured regionnally post-mortem, studies performed during life may provide insight into changes at early stages of the disease as well as follow-up data on, and pharmacological modification of, such changes. Positron Tomography (PET) allows to monitor non-invasively the time-course of regional tissue tracer concentration following administration of a radioactive drug. If the latter is known to interact selectively with specific binding sites, it can be used to probe in vivo the regional distribution and affinity of the receptors involved. As shown in this progress report, several receptor systems can now be studied reliably in humans, using PET

  4. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  5. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    OpenAIRE

    Cheng, I.; Xu, X.; Zhang, L.

    2015-01-01

    Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions but also with the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including principal components analysis and positive matrix factorization, and back trajectory receptor models including potential source contri...

  6. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  7. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    Science.gov (United States)

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  8. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    Science.gov (United States)

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  9. Channel opening of gamma-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses.

    Science.gov (United States)

    Cash, D J; Subbarao, K

    1987-12-01

    The function of gamma-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36Cl- isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36Cl- influx was completed in three phases of ca. 3% (t 1/2 = 0.6 s), 56% (t 1/2 = 82 s), and 41% (t 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36Cl- influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles with initial first-order rate constants of 9.5 s-1 and 2.3 s-1 and desensitizing with first-order rate constants of 21 s-1 and 1.4 s-1, respectively, at saturation. The half-response concentrations were similar for both receptors, 150 microM and 114 microM GABA for desensitization and 105 microM and 82 microM for chloride exchange, for the faster and slower desensitizing receptors, respectively. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of "low-affinity" to "high-affinity" GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Insulin receptor degradation is accelerated in cultured lymphocytes from patients with genetic syndromes of extreme insulin resistance

    International Nuclear Information System (INIS)

    McElduff, A.; Hedo, J.A.; Taylor, S.I.; Roth, J.; Gorden, P.

    1984-01-01

    The insulin receptor degradation rate was examined in B lymphocytes that were obtained from peripheral blood of normal subjects and patients with several syndromes of extreme insulin resistance. The insulin receptors were surface labeled using Na 125 I/lactoperoxidase and the cells were returned to incubate in growth media. After varying periods of incubation, aliquots of cells were solubilized and the cell content of labeled receptor subunits were measured by immunoprecipitation with anti-receptor antibodies and NaDodSO4/polyacrylamide gel electrophoresis. In cell lines from four patients in whom the number of insulin receptors was reduced by greater than 90%, the rate of receptor loss was greater than normal (t1/2 equals 3.8 +/- 0.9 h vs. 6.5 +/- 1.2 h; mean +/- SD, P less than 0.01). However, a similar acceleration in receptor degradation was seen in cells from five patients with extreme insulin resistance but low-normal insulin receptor concentration (t1/2 equals 4.4 +/- 0.9 h). Thus, all the patients with genetic syndromes of insulin resistance had accelerated receptor degradation, regardless of their receptor concentration. By contrast, insulin receptors on cultured lymphocytes that were obtained from patients with extreme insulin resistance secondary to autoantibodies to the insulin receptor had normal receptor degradation (t1/2 equals 6.1 +/- 1.9 h). We conclude that (a) accelerated insulin receptor degradation is an additional feature of cells from patients with genetic forms of insulin resistance; (b) that accelerated insulin receptor degradation may explain the low-normal receptor concentrations that were seen in some patients with extreme insulin resistance; and (c) that accelerated degradation does not explain the decreased receptor concentration in patients with very low insulin receptor binding and, therefore, by inference, a defect in receptor synthesis must be present in this subgroup

  11. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    International Nuclear Information System (INIS)

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-01-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [ 3 H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody αIR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125 I-labeled IGF-I but not 125 I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. αIR-3 competitively inhibits IGF-I-mediated stimulation of [ 3 H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of αIR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3 H]thymidine incorporation is not inhibited by αIR-3. However, the incremental effects of higher concentrations (> 1 μg/ml) of insulin on [ 3 H]thymidine incorporation are inhibited by αIR-3. αIR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself

  12. Alpha adrenergic receptors in dog coronary arteries as detected with autoradiography

    International Nuclear Information System (INIS)

    Muntz, K.; Calianos, T.; Buja, L.M.

    1986-01-01

    The authors used previously established methods to determine the presence of alpha adrenergic receptors in different sizes of dog coronary arteries using autoradiography of 3 H-prazosin (PRAZ) and 125 I-BE 2254 (HEAT) to label alpha 1 adrenergic receptors and 3 H-rauwolscine (RAUW) to label alpha 2 adrenergic receptors. Frozen sections of the left main coronary artery (LMA), the left anterior descending artery (LAD) and myocardium were incubated in 3 concentrations of PRAZ (0.1, 0.5 and 1.0 nM) (n=5 dogs), 3 concentrations of RAUW (1, 3 and 5 nM) (n=5) and one concentration of HEAT (50 pM) (n=3). All incubations were done in the absence of (total binding) or presence of (nonspecific binding) 10 -5 M phentolamine or yohimbine. The sections were processed for autoradiography and silver grains quantitated using an image analyzer. Analysis of variance determined that there was a significant difference between total and nonspecific binding in the LMA incubated with PRAZ (p 1 receptors decreases as vessel size decreases, while the number of alpha 2 receptors increases as vessel size decreases

  13. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization.

    Science.gov (United States)

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin Simon; Williams, Melissa; Zaveri, Nurulain T; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L; Toll, Lawrence

    2015-08-19

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These

  14. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro.

    Science.gov (United States)

    Nishikawa, H; Hashino, A; Kume, T; Katsuki, H; Kaneko, S; Akaike, A

    2000-09-15

    This study was performed to examine the roles of the N-methyl-D-aspartate (NMDA) receptor/phencyclidine (PCP) channel complex in the protective effects of sigma-receptor ligands against glutamate neurotoxicity in cultured cortical neurons derived from fetal rats. A 1-h exposure of cultures to glutamate caused a marked loss of viability, as determined by Trypan blue exclusion. This acute neurotoxicity of glutamate was prevented by NMDA receptor antagonists. Expression of sigma(1) receptor mRNA in cortical cultures was confirmed by reverse transcription polymerase chain reaction (RT-PCR). sigma Receptor ligands with affinity for NMDA receptor channels including the PCP site, such as (+)-N-allylnormetazocine ((+)-SKF10,047), haloperidol, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane ((-)-PPAP), prevented glutamate neurotoxicity in a concentration-dependent manner. In contrast, other sigma-receptor ligands without affinity for NMDA receptors, such as carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), did not show neuroprotective effects. Putative endogenous sigma receptor ligands such as pregnenolone, progesterone, and dehydroepiandrosterone did not affect glutamate neurotoxicity. The protective effects of (+)-SKF10,047, haloperidol, and (-)-PPAP were not affected by the sigma(1) receptor antagonist rimcazole. These results suggested that a direct interaction with NMDA receptors but not with sigma receptors plays a crucial role in the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

  15. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  16. Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers.

    Science.gov (United States)

    Harding, Peter J; Attrill, Helen; Boehringer, Jonas; Ross, Simon; Wadhams, George H; Smith, Eleanor; Armitage, Judith P; Watts, Anthony

    2009-02-01

    Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.

  17. Sigma opioid receptor: characterization and co-identity with the phencyclidine receptor

    International Nuclear Information System (INIS)

    Mendelsohn, L.G.; Kalra, V.; Johnson, B.G.; Kerchner, G.A.

    1985-01-01

    The properties of the sigma opioid receptor of rat brain cortex have been characterized using the prototypic ligand (+)-[ 3 H] SKF 10,047. Binding to this receptor was rapid, and equilibrium was obtained within 30 min at 37 degrees C. Specific binding was linear with protein concentration up to 500 micrograms/2 ml and was dependent upon protein integrity. Denaturation by boiling destroyed over 95% of the specific binding. A high-affinity binding site with a KD of 150 +/- 40 nM and a maximum binding of 2.91 +/- 0.84 pmol/mg of protein was determined from a Scatchard plot of the binding data. The addition of salt, either NaCl or CaCl 2 , to the buffers markedly decreased binding, with CaCl 2 being more potent than NaCl. A broad pH optimum for specific binding was observed; maximum binding was at pH 9.0. The affinity of a number of ligands for the sigma site and the phencyclidine receptor were compared. The binding (IC50) of 13 ligands to the sigma site showed a correlation of 0.86 (P less than .01) with binding to the phencyclidine site. The data demonstrate that the biochemical properties of the sigma and phencyclidine receptors are similar and support the view that these receptors are one and the same site

  18. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA......, and cytosolic progesterone receptors (PR) measured by LBA were also studied. While ERc concentrations determined by LBA and EIA were highly correlated (r: 0.94), ERc values detected by LBA were approximately twice those found by EIA (median values of ERc: 155 vs. 64 fmol/mg cytosol protein, DCC vs. EIA......). The percentages of ERc positive tumors were 89% by LBA and 77% by EIA. The median fraction of total ER present as ERn was 63%. PR levels correlated positively with ERn concentrations (r: 0.73). We explore possible reasons why greater concentrations of ERc are determined by estradiol binding than by the ER-EIA kit...

  19. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    John Gatfield

    Full Text Available Two endothelin receptor antagonists (ERAs, bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH, a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC. The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP(1 assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with K(b values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt(1/2 compared to bosentan and ambrisentan (ROt(1/2:17 minutes versus 70 seconds and 40 seconds, respectively. Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP(1 assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1 concentrations. However, prolongation of the ET-1 stimulation time beyond ROt(1/2 rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive

  20. The purinergic P2X7 ion channel receptor — a ‘repair’ receptor in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2018-01-01

    A strong skeleton relies on adaptation to varying physical demands and on maintenance of the bone tissue in order to avoid accumulation of micro-damage. In bone, the purinergic P2X7 ion channel receptor is expressed on both cells of the stromal lineage such as the bone forming osteoblasts...... and the mechano-sensing osteocytes and on cells belonging to the immune-related monocyte–macrophage lineage, the bone resorbing osteoclasts. Recent studies have demonstrated that the receptor plays important roles in the anabolic responses to mechanical loading on bone and, together with the pannexin1 hemi......-channel, in the process of initiating bone remodeling in response to micro-damage. Thus, the receptor is crucial in skeletal mechano-transduction and in the continuous repair process. However, under pathophysiological conditions such as diabetes with high glucose concentrations or glucocorticoid-treatment the receptor...

  1. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  2. Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3.

    Directory of Open Access Journals (Sweden)

    Rocío Alcántara-Hernández

    Full Text Available The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1-3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1-3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes.Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.

  3. Positron emission tomography studies of central receptors in humans

    International Nuclear Information System (INIS)

    Baron, J.C.; Maziere, B.

    1986-01-01

    Central neurotransmitter systems and receptors are intimately involved in the mechanism of several neurologic and psychiatric disorders. One well-known example is the nigro-striatal dopaminergic system in akinesia of Parkinson's disease. Although neurotransmitter concentration and receptor function can be measured regionally post-mortem, positron tomography (PET) studies can be performed during life and therefore may provide insight into changes at early stages of the disease as well as follow-up data on, and pharmacological modification of, such changes. PET allows to monitor non-invasively the time-course of regional tissue tracer concentration following administration of a radioactive drug. If the latter is known to interact selectively with specific binding sites, it can be used to probe in vivo the regional distribution and affinity of the receptors involved. This principle was first pioneered using 3 H or 14 C-labeled ligands injected intravenously to laboratory animal, but necessitated brain tissue sampling for determination of regional radioactive concentration. The feasibility of the PET paradigm to characterize specific binding in vivo showed that trace amounts of 11 C-labeled flunitrazepam could be displaced specifically from the baboon's brain by a therapeutic load of the unlabeled competitor Lorazepam, indicating that specific in vivo binding of the radioligand to the benzodiazepine (BZD) receptors has taken place

  4. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by [3H] dihydroergocryptine binding

    International Nuclear Information System (INIS)

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-01-01

    The radioactive alpha-adrenergic antagonist [ 3 H] dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). [ 3 H] Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for [ 3 H] dihydroergocryptine binding sites stereo-selectively ([-]-norepinephrine is 100 times as potent as [+]-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for [ 3 H] dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. [ 3 H] dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response

  5. Solution to the inversely stated transient source-receptor problem

    International Nuclear Information System (INIS)

    Sajo, E.; Sheff, J.R.

    1995-01-01

    Transient source-receptor problems are traditionally handled via the Boltzmann equation or through one of its variants. In the atmospheric transport of pollutants, meteorological uncertainties in the planetary boundary layer render only a few approximations to the Boltzmann equation useful. Often, due to the high number of unknowns, the atmospheric source-receptor problem is ill-posed. Moreover, models to estimate downwind concentration invariably assume that the source term is known. In this paper, an inverse methodology is developed, based on downwind measurement of concentration and that of meterological parameters to estimate the source term

  6. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  7. AMPA receptor mediated excitotoxicity in neocortical neurons is developmentally regulated and dependent upon receptor desensitization

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S

    1998-01-01

    with a fast and rapidly desensitizing response, this could explain the relatively low toxicity produced by 500 microM AMPA. This was investigated by blocking AMPA receptor desensitization with cyclothiazide. Using a lower concentration (25 microM) of AMPA, addition of 50 microM cyclothiazide increased...... the AMPA induced excitotoxicity in cultured cortical neurons at all DIV except for DIV 2. This combination of AMPA + cyclothiazide yielded 77% cell death for DIV 12 cultures. In contrast to the results observed with 500 microM AMPA, the neurotoxicity mediated directly by AMPA receptors when desensitization...

  8. Methodological aspects on drug receptor binding analysis

    International Nuclear Information System (INIS)

    Wahlstroem, A.

    1978-01-01

    Although drug receptors occur in relatively low concentrations, they can be visualized by the use of appropriate radioindicators. In most cases the procedure is rapid and can reach a high degree of accuracy. Specificity of the interaction is studied by competition analysis. The necessity of using several radioindicators to define a receptor population is emphasized. It may be possible to define isoreceptors and drugs with selectivity for one isoreceptor. (Author)

  9. Naltrexone pretreatment blocks microwave-induced changes in central cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.; Carino, M.A.; Wen, Y.F.; Horita, A.; Guy, A.W. (Univ. of Washington School of Medicine, Seattle (USA))

    1991-01-01

    Repeated exposure of rats to pulsed, circularly polarized microwaves (2,450-MHz, 2-microseconds pulses at 500 pps, power density 1 mW/cm2, at an averaged, whole-body SAR of 0.6 W/kg) induced biphasic changes in the concentration of muscarinic cholinergic receptors in the central nervous system. An increase in receptor concentration occurred in the hippocampus of rats subjected to ten 45-min sessions of microwave exposure, whereas a decrease in concentration was observed in the frontal cortex and hippocampus of rats exposed to ten 20-min sessions. These findings, which confirm earlier work in the authors' laboratory, were extended to include pretreatment of rats with the narcotic antagonist naltrexone (1 mg/kg, IP) before each session of exposure. The drug treatment blocked the microwave-induced changes in cholinergic receptors in the brain. These data further support the authors' hypothesis that endogenous opioids play a role in the effects of microwaves on central cholinergic systems.

  10. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  11. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins.

  12. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides......, and seven insect biogenic amines on the expressed receptor and found that it was activated by low concentrations of the Drosophila neuropeptide, pyrokinin-1 (TGPSASSGLWFGPRLamide; EC50, 5 x 10(-8) M). The receptor was also activated by other Drosophila neuropeptides, terminating with the sequence PRLamide...... (Hug-gamma, ecdysis-triggering-hormone-1, pyrokinin-2), but in these cases about six to eight times higher concentrations were needed. The receptor was not activated by Drosophila neuropeptides, containing a C-terminal PRIamide sequence (such as ecdysis-triggering-hormone-2), or PRVamide (such as capa...

  13. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  14. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  15. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  16. Intrapulmonary receptors in the Tegu lizard: I. Sensitivity to CO2.

    Science.gov (United States)

    Feede, M R; Kuhlmann, W D; Scheid, P

    1977-02-01

    Single unit vagal recordings from intrapulmonary receptors were obtained in decerebrate, paralyzed lizards both during pump ventilation and during unidirectional ventilation on the cannulated, sack-shaped lung. Two types of receptors were identified: (1) CO2-receptors, which increased their discharge frequency as intrapulmonary CO2 concentration decreased but were not sensitive to stretch of the lung. (2) Mechanoreceptors, which rapidly increased discharge frequency when the lung was stretched. These receptors' CO2 sensitivity varied. Lungs of lizards thus appeared to possess both CO2 receptors, which have functional characteristics similar to those in birds, and mechanoreceptors with properties similar to stretch receptors in mammals.

  17. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    Schliebs, R.; Walch, C.

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author)

  18. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Schliebs, R; Walch, C [Leipzig Univ. (German Democratic Republic). Bereich Medizin; Stewart, M G [Open Univ., Milton Keynes (UK)

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author).

  19. Bisphenol A affects androgen receptor function via multiple mechanisms.

    Science.gov (United States)

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. Published by Elsevier Ireland Ltd.

  20. Distribution of kappa opioid receptors in the brain of young and old male rats

    International Nuclear Information System (INIS)

    Maggi, R.; Limonta, P.; Dondi, D.; Martini, L.; Piva, F.

    1989-01-01

    The experiments to be described have been designed in order to: (a) provide new information on the concentrations of opioid kappa receptors in different regions of the brain of the male rats; and (b) to analyze whether the density of brain kappa receptors might be modified by the process of aging. The concentration of kappa receptors was investigated in the hypothalamus, amygdala, mesencephalon, corpus striatum, hippocampus, thalamus, frontal poles, anterior and posterior cortex collected from male rats of 2 and 19 months of age. 3 H-bremazocine (BRZ) was used as the ligand of kappa receptors, after protection of mu and delta receptors respectively with dihydromorphine and d-ala-d-leu-enkephalin. The results obtained show that: (1) in young male rats, the number of kappa opioid receptors is different in the various brain areas examined. (2) Aging exerts little influence on the number of kappa receptors in the majority of the brain structures considered. However in the amygdala and in the thalamus the number of kappa receptors was increased in old animals

  1. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Cathey, T.M.; Chung, Kyung W. (Univ. of Oklahoma, Oklahoma City (USA))

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy.

  2. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    International Nuclear Information System (INIS)

    Cathey, T.M.; Chung, Kyung W.

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy

  3. IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells

    International Nuclear Information System (INIS)

    Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.; Khazanie, P.; Atkinson, S.; DiMarchi, R.; Caro, J.F.

    1990-01-01

    Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blot analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin

  4. Steroid hormone receptors: long- and short-term integrators of the internal milieu and the external environment.

    Science.gov (United States)

    Blaustein, J D

    2012-07-01

    Many of the influences of estrogens and progestins on the brain and behavior are mediated by estrogen receptors and progestin receptors, acting as transcriptional regulators. The homologous and heterologous regulation of the concentrations of these receptors by cognate hormones is well established. However, although they were discovered and characterized based on their binding to cognate hormone and their role in transcriptional regulation, steroid hormone receptors have a more complex role and serve many more functions than originally suspected. First, besides being regulated by steroid hormones, the intracellular concentrations of brain steroid hormone receptors are regulated by neurotransmitters, a pathway by which stimuli from the environment, including from conspecific animals, can modulate the concentration of particular steroid hormone receptors in subsets of cells. Further, besides being activated by cognate steroid hormones, the receptors can be activated by a variety of neurotransmitters and phosphorylation pathways, providing a route through which environmental stimulation can activate steroid-receptor-dependent functions in specific cells. In addition, the transcription factor, estrogen receptor-α, produced from the estrogen receptor-α gene, can be modified to be targeted to membranes, where it can signal via kinase pathways. Finally, developmental experiences, such as particular stressors during the pubertal period, can permanently remodel the brain's response to ovarian hormones, most likely by long-term changes in regulation of the receptors mediating those responses. In addition to their function in responding to cognate ligand, it is now more appropriate to think of steroid hormone receptors as integrators of a wide variety of signaling pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Markus Thamm

    Full Text Available BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera, serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. RESULTS: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. CONCLUSIONS: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  6. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).

    Science.gov (United States)

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  7. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Katharina; Gruner, Janina; Madeja, Michael; Musshoff, Ulrich [Universitaetsklinikum Muenster, Institut fuer Physiologie I, Muenster (Germany); Hartmann, Louise M.; Hirner, Alfred V. [Universitaet Duisburg-Essen, Institut fuer Umweltanalytik, Essen (Germany); Binding, Norbert [Universitaetsklinikum Muenster, Institut fuer Arbeitsmedizin, Muenster (Germany)

    2006-08-15

    Pentavalent and trivalent organoarsenic compounds belong to the major metabolites of inorganic arsenicals detected in humans. Recently, the question was raised whether the organic arsenicals represent metabolites of a detoxification process or methylated species with deleterious biological effects. In this study, the effects of trivalent arsenite (AsO{sub 3} {sup 3-}; iA{sup III}), the pentavalent organoarsenic compounds monomethylarsonic acid (CH{sub 3}AsO(OH){sub 2}; MMA{sup V}) and dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and the trivalent compounds monomethylarsonous acid (CH{sub 3}As(OH){sub 2}, MMA{sup III}) and dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) were tested on glutamate receptors and on voltage-operated potassium and sodium channels heterologously expressed in Xenopus oocytes. Membrane currents of ion channels were measured by conventional two-electrode voltage-clamp techniques. The effects of arsenite were tested in concentrations of 1-1,000 {mu}mol/l and the organic arsenical compounds were tested in concentrations of 0.1-100 {mu}mol/l. We found no significant effects on voltage-operated ion channels; however, the arsenicals exert different effects on glutamate receptors. While MMA{sup V} and MMA{sup III} significantly enhanced ion currents through N-methyl-d-aspartate (NMDA) receptor ion channels with threshold concentrations <10 {mu}mol/l, DMA{sup V} and DMA{sup III} significantly reduced NMDA-receptor mediated responses with threshold concentrations <0.1 {mu}mol/l; iA{sup III} had no effects on glutamate receptors of the NMDA type. MMA{sup III} and DMA{sup V} significantly reduced ion currents through {alpha}-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor ion channels with threshold concentrations <10 {mu}mol/l (MMA{sup III}) and <1 {mu}mol/l (DMA{sup V}). MMA{sup V} and iA{sup III} had no significant effects on glutamate receptors of the AMPA type. The effects of MMA{sup V}, MMA

  8. Quantitative autoradiography of [3H]corticosterone receptors in rat brain

    International Nuclear Information System (INIS)

    Sapolsky, R.M.; McEwen, B.S.; Rainbow, T.C.

    1983-01-01

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 μCi [ 3 H]corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradigraphic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue. (Auth.)

  9. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    Science.gov (United States)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  10. The G protein-coupled receptor, class C, group 6, subtype A (GPRC6A) receptor

    DEFF Research Database (Denmark)

    Clemmensen, C; Smajilovic, S; Wellendorph, P

    2014-01-01

    the physiological concentration in most tissues. More recently, the peptide osteocalcin and the steroid testosterone have also been suggested to be endogenous GPRC6A agonists. The receptor is widely expressed in all three species which, along with the omnipresence of the amino acids and divalent cation ligands...

  11. Investigations on the insulin receptor of isolated fat cells

    International Nuclear Information System (INIS)

    Eichler, W.

    1980-01-01

    Fat cells, isolated from the epididymal adipose tissue of rats, were incubed with iodine 125 insulin after previous incubation with various antagonists. By varying the antagonist concentration, it was possible to determine the effect these substances have on the insulin receptor, i.e. the insulin similarity. By varying the preincubation time, toxicity of the test substances could be detected, which pretended repression effects; and by finally verying the incubation time the effects on the receptor via the membrane could be distinguished from direct receptor bindings of the antagonist. (orig./MG) [de

  12. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    Science.gov (United States)

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  13. Cocaine modulates allosteric D2-σ1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum.

    Science.gov (United States)

    Beggiato, Sarah; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel; Corbucci, Ilaria; Tomasini, Maria Cristina; Marti, Matteo; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca

    2017-12-01

    The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D 2 -σ 1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ 1 receptors (σ 1 Rs) in the cocaine-provoked amplification of D 2 receptor (D 2 R)-induced reduction of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D 2 -likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. The σ 1 R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K + -evoked [ 3 H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ 1 R and D 2L R HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D 2L R singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D 2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D 2 -σ 1 R complexes on the rat striatal DA and glutamate nerve terminals and functional D 2 -σ 1 R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D 2 R signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Science.gov (United States)

    Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614

  15. Autoradiographic localization of thyrotropin releasing hormone (TRH) receptors in the central nervous system

    International Nuclear Information System (INIS)

    Manaker, S.

    1985-01-01

    Quantitative autoradiography was used to examine the distribution of thyrotropin-releasing hormone (TRH) receptors in the rat and human central nervous system (CNS). The binding of [ 3 H]-3-methyl-histidine 2 -TRH ([ 3 H]-MeTRH) to TRH receptors was saturable, of a high affinity (K/sub d/ = 5 nM), and specific for TRH analogs. Studies with neurotoxins ibotenic acid and 6-hydroxydopamine (6-OHDA) suggest that TRH receptors within the amygdala are predominantly located on cell bodies, and not nerve terminals. Finally, an examination was made of the concentrations of TRH receptors in spinal cords of patients with amyotrophic lateral sclerosis (ALS), a degenerative disease of the motor neurons located in Lamina IX. Large decreases in TRH receptors were noted in ALS spinal cords, when compared to non-neurological controls, probably reflecting the loss of motor neurons. In addition, decreases in the TRH receptor concentration of Lamina II were observed. This finding may reflect the sensitivity of neurons throughout the CNS to the pathophysiologic mechanisms of neuronal degeneration which cause ALS

  16. Characterization of beta-adrenergic receptors through the replicative life span of IMR-90 cells

    International Nuclear Information System (INIS)

    Scarpace, P.J.

    1987-01-01

    Beta-adrenergic receptor number and receptor affinity for isoproterenol were assessed at various in vitro ages of the human diploid fibroblast cell line IMR-90. From population doubling level (PDL) 33 to 44, there was a positive correlation between beta-adrenergic receptor density and PDL. Beta-adrenergic receptors, assessed by Scatchard analysis of [ 125 I]-iodocyanopindolol (ICYP) binding, increased from 15 fmol/mg protein at PDL 33 to 36 fmol/mg protein at PDL 44. In contrast, from PDL 44 to 59, there was a negative correlation between beta-adrenergic receptor density and PDL. Receptor density declined to 12 fmol/mg protein at PDL 59. When the density of beta-adrenergic receptors was expressed as receptor per cell, the findings were similar. Receptor agonist affinity for isoproterenol was determined from Hill plots of [ 125 I]-ICYP competition with isoproterenol. There was no change in the dissociation constant for isoproterenol with in vitro age. In humans, serum norepinephrine concentrations increase with age. This increase in serum norepinephrine may be partially responsible for the decreased beta-adrenergic receptor-agonist affinity observed with age in human lymphocytes and rat heart and lung. The present findings are consistent with the hypothesis that the decreases in receptor agonist affinity in rat and man with age are secondary to increases in catecholamine concentrations

  17. Evidence that the angiotensin at 2-receptor agonist compound 21 is also a low affinity thromboxane TXA2-receptor antagonist

    DEFF Research Database (Denmark)

    Fredgart, M.; Leurgans, T.; Stenelo, M.

    2015-01-01

    Objective: The objective of this study was to test whether Compound 21 (C21), a high-affinity, non-peptide angiotensinAT2-receptor agonist, is also an antagonist of thromboxane A2 (TXA2) receptors thus reducing both vasoconstriction and platelet aggregation. Design and method: Binding of C21...... to the TXA2 receptor was determined by TBXA2R Arrestin Biosensor Assay. Mouse mesenteric arteries were mounted in wire myographs, and responses to increasing concentrations of C21 (1nM- 10muM) were recorded during submaximal contractions with 0.1muM U46619 (TXA2 analogue) or 1muMphenylephrine. To control for......AT2-receptor specificity, arteries were pre-incubated with the AT2-receptor antagonist PD123319 (10muM), or mesenteric arteries from AT2-receptor knock-out (AT2R-/y) mice were used. An inhibitory effect of C21 (100nM - 10muM) on U46619 (0,3muM) induced platelet aggregation was examined in whole human...

  18. The anthelmintic levamisole is an allosteric modulator of human neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Levandoski, Mark M; Piket, Barbara; Chang, Jane

    2003-06-13

    L-[-]-2,3,5,6-Tetrahydro-6-phenylimidazo[2,1b]-thiazole hydrochloride (levamisole) is an anthelmintic that targets the nicotinic acetylcholine receptors of parasitic nematodes. We report here the effects of levamisole on human neuronal alpha 3 beta 2 and alpha 3 beta 4 nicotinic receptors, heterologously expressed in Xenopus oocytes and studied with the voltage clamp method. Applied alone, levamisole was a very weak partial agonist for the two subunit combinations. When co-applied with acetylcholine, micromolar concentrations of levamisole potentiated responses, while millimolar concentrations inhibited them; these effects were complex functions of both acetylcholine and levamisole concentrations. The differences in the levamisole effects on the two receptor combinations suggest that the effects are mediated by the beta subunit. Several combinations of agonist and anthelmintic gave the dual potentiation/inhibition behavior, suggesting that the modulatory effects are general. Levamisole inhibition showed macroscopic characteristics of open channel block. Several results led us to conclude that levamisole potentiation occurs through noncompetitive binding to the receptor. We propose pseudo-site binding for noncompetitive potentiation by levamisole.

  19. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    International Nuclear Information System (INIS)

    Jäntti, Maria H.; Mandrika, Ilona; Kukkonen, Jyrki P.

    2014-01-01

    Highlights: • OX 1 and OX 2 orexin and CB 1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX 1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB 1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX 1 , OX 2 and CB 1 receptors, C-terminally fused with either Renilla luciferase or GFP 2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB 1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP 2 to CB 1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX 1 –OX 2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB 1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations

  20. Regulation versus modulation in GnRH receptor function

    International Nuclear Information System (INIS)

    Zolman, J.C.; Theodoropoulos, T.J.

    1985-01-01

    Serum luteinizing hormone (LH) concentration after exposure to gonadotropin-releasing hormone (GnRH) indicates that an instantaneous increase occurs in the rate of release of LH directly from the anterior pituitary, as measured dynamically during superfusion in vitro. On the other hand, estradiol-17 beta (E2) alone shows no such instantaneous effect on LH release rate (at least for the first four hours), in either physiologic or pharmacologic concentrations. At the same time, brief (ten to 30 minute) exposure of isolated anterior pituitary plasma membranes to physiologic concentrations of E2 significantly alters the binding of a fully biologically active 125 I-GnRH to its plasma membrane receptor protein. In order to characterize the effect of E2 on GnRH binding further, dispersed bovine anterior pituitary cells were preincubated for six hours in the presence or absence of physiologic concentrations of E2 (10(-10)M). Following preincubation in the presence of E2, the cell suspension was incubated for 30 minutes with physiologic concentrations (5 x 10(-11) - 5 x 10(-10)M) of a fully biologically active 125 I-GnRH. The treatment, at least, doubled the number of biologically important high affinity GnRH binding sites (Kd's . 7.5 x -10(-11) - 4.5 x 10(-10)M), and changed the binding capacity of some of the binding sites up to three fold, which altered the cooperativity of GnRH-receptor interaction. Thus, the interaction of E2 with GnRH at the level of GnRH receptor is mandatory for the short-term pituitary effect of E2 on LH release in vitro and in vivo

  1. Chronic effects of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors

    International Nuclear Information System (INIS)

    Wong, D.T.; Reid, L.R.; Bymaster, F.P.; Threlkeld, P.G.

    1985-01-01

    Fluoxetine administration to rats dose of 10mg/kg i.p. daily up to 12 or 24 days failed to change the concentration-dependent binding of [ 3 H]WB4101, [ 3 H]clonidine and [ 3 H]dihydroalprenolol to α 1 -, α 2 - and β-adrenergic receptors, respectively; [ 3 H]quinuclidinyl benzilate to muscarinic receptors; [ 3 H]pyrilamine to histamine H 1 receptors and [ 3 H]naloxone to opiate receptors. Persistent and significant decreases in receptor number (Bsub(max) value) without changes in the dissociation constant (Ksub(D) value) of [ 3 H]5-HT binding in cortical membranes were observed upon chronic treatment with fluoxetine administered either by intraperitoneal injection or incorporation in the diet. A detectable reduction of 5-HT 1 receptor number occured after once-daily injections of fluoxetine at 10mg/kg i.p. within 49 hours. After pretreatment for 3 days with p-chlorophenylalanine, an inhibitor of 5-HT synthesis, followed by repeated administration of fluoxetine, 5-HT 1 receptor numbers were higher than those of normal rats, suggesting a dependence on synaptic concentration of 5-HT for fluoxetine to affect a receptor down-regulation. These studies provide further evidence for the selectivity of fluoxetine as an inhibitor of 5-HT reuptake, resulting in a selective down-regulation of 5-HT 1 receptors in the cerebal cortex of rat brain. (Author)

  2. In vitro nuclear receptor inhibition and cytotoxicity of hydraulic fracturing chemicals and their binary mixtures.

    Science.gov (United States)

    Bain, Peter A; Kumar, Anu

    2018-05-01

    The widespread use of hydraulic fracturing (HF) in oil and gas extraction operations has led to concern over environmental risks posed by chemicals used in HF fluids. Here we employed a suite of stable luciferase reporter gene assays to investigate the potential for selected HF chemicals or geogenics to activate or antagonise nuclear receptor signalling. We screened three biocides (bronopol [BP], glutaraldehyde [GA], and tetrakis(hydroxymethyl)phosphonium sulfate [THPS]), a surfactant (2-butoxyethanol), a friction reducer (polyacrylamide), and a coal seam geogenic (o-cresol) for their potential to act as agonists or antagonists of the estrogen receptor, androgen receptor, progesterone receptor (PR), glucocorticoid receptor or peroxisome proliferator-activated receptor gamma (PPARγ). None of the chemicals induced luciferase activity in any of assays used in the study. In antagonistic mode, BP, GA and THPS caused reductions in luciferase activity in the reporter assays at higher concentrations (50-100 μM), while at low concentrations (2-10 μM) GA and THPS enhanced luciferase activity in some assays relative to controls. None of the other tested chemicals exhibited antagonism in the selected assays. In most cases, altered receptor signalling only occurred at concentrations exhibiting cytotoxicity. However, PPARγ activity, and to a lesser extent PR activity, were inhibited by THPS at sub-cytotoxic concentrations. The majority of binary combinations tested exhibited significantly less-than-additive cytotoxicity, and none of the combinations exhibited synergistic cytotoxicity. In summary, the results of the present study indicate that the selected chemicals are not likely to function as direct agonists of the nuclear receptors tested, and only one chemical, THPS was an apparent partial antagonist of two nuclear receptors. Copyright © 2017. Published by Elsevier Ltd.

  3. Autoradiographic localization of substance P receptors using 125I substance P

    International Nuclear Information System (INIS)

    Shults, C.W.; Quirion, R.; Jensen, R.T.; Moody, T.W.; O'Donohue, T.L.; Chase, T.N.

    1982-01-01

    This paper describes a method for localization of substance P receptors in the rat central nervous system using 125 I labeled substance P in an autoradiographic procedure. Particularly high densities of substance P receptors were observed in the olfactory bulb, dentate gyrus, amygdala, superior colliculus, and locus coeruleus. Surprisingly low densities of substance P receptors were found in the substantia nigra pars reticulata, a region which contains high concentrations of substance P

  4. Enhancement of bradykinin and resensitization of its B2 receptor.

    Science.gov (United States)

    Marcic, B; Deddish, P A; Jackman, H L; Erdös, E G

    1999-03-01

    We studied the enhancement of the effects of bradykinin B2 receptor agonists by agents that react with active centers of angiotensin-converting enzyme (ACE) independent of enzymatic inactivation. The potentiation and the desensitization and resensitization of B2 receptor were assessed by measuring [3H]arachidonic acid release and [Ca2+]i mobilization in Chinese hamster ovary cells transfected to express human ACE and B2 receptor, or in endothelial cells with constitutively expressed ACE and receptor. Administration of bradykinin or its ACE-resistant analogue desensitized the receptor, but it was resensitized (arachidonic acid release or [Ca2+]i mobilization) by agents such as enalaprilat (1 micromol/L). Enalaprilat was inactive in the absence of ACE expression. La3+ (100 micromol/L) inhibited the apparent resensitization, probably by blocking the entry of extracellular calcium. Enalaprilat resensitized the receptor via ACE to release arachidonic acid by bradykinin at a lower concentration (5 nmol/L) than required to mobilize [Ca2+]i (1 micromol/L). Monoclonal antibodies inhibiting the ACE N-domain active center and polyclonal antiserum potentiated bradykinin. The snake venom peptide BPP5a and metabolites of angiotensin and bradykinin (angiotensin-[1-9], angiotensin-[1-7], bradykinin-[1-8]; 1 micromol/L) enhanced arachidonic acid release by bradykinin. Angiotensin-(1-9) and -(1-7) also resensitized the receptor. Enalaprilat potentiated the bradykinin effect in cells expressing a mutant ACE with a single N-domain active site. Agents that reacted with a single active site, on the N-domain or on the C-domain, potentiated bradykinin not by blocking its inactivation but by inducing crosstalk between ACE and the receptor. Enalaprilat enhanced signaling via ACE by Galphai in lower concentration than by Galphaq-coupled receptor.

  5. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    Science.gov (United States)

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  6. Alpha7 nicotinic receptor mediated protection against ethanol-induced cytotoxicity in PC12 cells.

    Science.gov (United States)

    Li, Y; King, M A; Grimes, J; Smith, N; de Fiebre, C M; Meyer, E M

    1999-01-16

    Ethanol caused a concentration-dependent loss of PC12 cells over a 24 h interval, accompanied by an increase in intracellular calcium. The specific alpha7 nicotinic receptor partial agonist DMXB attenuated both of these ethanol-induced actions at a concentration (3 microM) found previously to protect against apoptotic and necrotic cell loss. The alpha7 nicotinic receptor antagonist methylylaconitine blocked the neuroprotective action of DMXB when applied with but not 30 min after the agonist. These results indicate that activation of alpha7 nicotinic receptors may be therapeutically useful in preventing ethanol-neurotoxicity. Copyright 1999 Elsevier Science B.V.

  7. Increased thermolability of benzodiazepine receptors in cerebral cortex of a baboon with spontaneous seizures: a case report.

    Science.gov (United States)

    Squires, R; Naquet, R; Riche, D; Braestrup, C

    1979-06-01

    The benzodiazepine receptor in the cortex of 1 spontaneously epileptic baboon exhibited an increased rate of thermal inactivation at 65 degrees C when compared with those from 3 other baboons. In other respects (receptor concentration, affinities for flunitrazepam and diazepam, and response to changing pH), the benzodiazepine receptor from this animal was very similar to the receptors in the cortex of 3 other baboons. The 3H-QNB (muscarinic) and 3H-naloxone (opiate) binding sites in the brain of all 4 baboons appeared very similar with respect to all parameters studied (thermal stability, concentration, regional distribution, and affinities for respective ligands). An endogenous factor stabilizing the benzodiazepine receptor could be lacking in the spontaneously epileptic baboon.

  8. Identification and characterization of alpha 1 adrenergic receptors in the canine prostate using [125I]-Heat

    International Nuclear Information System (INIS)

    Lepor, H.; Baumann, M.; Shapiro, E.

    1987-01-01

    We have recently utilized radioligand receptor binding methods to characterize muscarinic cholinergic and alpha adrenergic receptors in human prostate adenomas. The primary advantages of radioligand receptor binding methods are that neurotransmitter receptor density is quantitated, the affinity of unlabelled drugs for receptor sites is determined, and receptors can be localized using autoradiography on slide-mounted tissue sections. Recently, [ 125 I]-Heat, a selective and high affinity ligand with high specific activity (2200 Ci/mmole) has been used to characterize alpha 1 adrenergic receptors in the brain. In this study alpha 1 adrenergic receptors in the dog prostate were characterized using [ 125 I]-Heat. The Scatchard plots were linear indicating homogeneity of [ 125 I]-Heat binding sites. The mean alpha 1 adrenergic receptor density determined from these Scatchard plots was 0.61 +/- 0.07 fmol/mg. wet wt. +/- S.E.M. The binding of [ 125 I]-Heat to canine prostate alpha 1 adrenergic binding sites was of high affinity (Kd = 86 +/- 19 pM). Steady state conditions were reached following an incubation interval of 30 minutes and specific binding and tissue concentration were linear within the range of tissue concentrations assayed. The specificity of [ 125 I]-Heat for alpha 1 adrenergic binding sites was confirmed by competitive displacement assays using unlabelled clonidine and prazosin. Retrospective analysis of the saturation experiments demonstrated that Bmax can be accurately calculated by determining specific [ 125 I]-Heat binding at a single ligand concentration. [ 125 I]-Heat is an ideal ligand for studying alpha 1 adrenergic receptors in the prostate and its favorable properties should facilitate the autoradiographic localization of alpha 1 adrenergic receptors in the prostate

  9. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    International Nuclear Information System (INIS)

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-01-01

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 0 C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17β-[ 3 H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins

  10. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    Science.gov (United States)

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  11. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects

    Directory of Open Access Journals (Sweden)

    Christian eWaeber

    2011-02-01

    Full Text Available Receptors for sphingosine-1-phosphate (S1P have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444, used extensively as specific S1P2 and S1P3 receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P2 receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca2+ concentration via P2 receptor or α1A-adrenoceptor stimulation and α1A-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P3-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P1/3 receptor antagonist, VPC23019, does not inhibit S1P3-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  12. [H-3]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain

    NARCIS (Netherlands)

    Zeinstra, E; Wilczak, N; De Keyser, J

    2000-01-01

    By using immunocytochemistry we previously reported the absence of beta(2) adrenergic receptors on astrocytes in multiple sclerosis (MS) white matter. Here, we measured beta(1) and beta(2) adrenergic receptor concentrations in postmortem brain sections of six MS patients and six controls by using

  13. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  14. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor.

    Science.gov (United States)

    Joeckel, Elke; Haber, Tobias; Prawitt, Dirk; Junker, Kerstin; Hampel, Christian; Thüroff, Joachim W; Roos, Frederik C; Brenner, Walburgis

    2014-02-28

    The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.

  15. Serum concentrations of TNF-α and its soluble receptors during psychotherapy in German soldiers suffering from combat-related PTSD.

    Science.gov (United States)

    Himmerich, Hubertus; Willmund, Gerd D; Zimmermann, Peter; Wolf, Jörg-Egbert; Bühler, Antje H; Kirkby, Kenneth C; Dalton, Bethan; Holdt, Lesca M; Teupser, Daniel; Wesemann, Ulrich

    2016-09-01

    Changes in serum concentrations of tumor necrosis factor-α (TNF-α) and its soluble receptors (sTNF-R) p55 and p75 have been shown to be associated with various psychiatric treatments. Before and after treatment, serum levels of TNF-α, sTNF-R p55 and sTNF-R p75 were measured in 38 German soldiers who had been deployed abroad and suffered from combat-related post-traumatic stress disorder (PTSD). Patients were randomized either to inpatient psychotherapy (N=21) including eye movement desensitization and reprocessing (EMDR) or to outpatient clinical management (N=17). Symptoms of PTSD were measured using the Post-traumatic Stress Diagnostic Scale (PDS). The PDS score significantly decreased across time in both groups. Serum concentrations of TNF-α increased, while sTNF-R p55 and sTNF-R p75 levels decreased significantly. After the treatment period, we could not detect any significant difference regarding TNF-α, sTNF-R p55 or sTNF-R p75 levels between the inpatient psychotherapy group and the outpatient clinical management control group. This relatively small clinical study suggests that specific inpatient psychotherapy but also non-specific supportive outpatient treatment for PTSD are associated with changes in the TNF-α system. This may represent an immunological effects or side effects of psychotherapy.

  16. Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues.

    Science.gov (United States)

    Sherwood, Andrew; Holland, Peter C; Adamantidis, Antoine; Johnson, Alexander W

    2015-12-01

    Exposure to environmental cues associated with food can evoke eating behavior in the absence of hunger. This capacity for reward cues to promote feeding behaviors under sated conditions can be examined in the laboratory using cue-potentiated feeding (CPF). The orexigenic neuropeptide Melanin Concentrating Hormone (MCH) is expressed throughout brain circuitry critical for CPF. We examined whether deletion of the MCH receptor, MCH-1R, would in KO mice disrupt overeating in the presence of a Pavlovian CS+ associated with sucrose delivery. While both wild-type controls and KO mice showed comparable food magazine approach responses during the CPF test, MCH-1R deletion significantly impaired the ability of the CS+ to evoke overeating of sucrose under satiety. Through the use of a refined analysis of meal intake, it was revealed that this disruption to overeating behavior in KO mice reflected a reduction in the capacity for the CS+ to initiate and maintain bursts of licking behavior. These findings suggest that overeating during CPF requires intact MCH-1R signaling and may be due to an influence of the CS+ on the palatability of food and on regulatory mechanisms of peripheral control. Thus, disruptions to MCH-1R signaling may be a useful pharmacological tool to inhibit this form of overeating behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Fecundity, 17ß-estradiol concentrations and expression of vitellogenin and estrogen receptor genes throughout the ovarian cycle in female Eastern mosquitofish from three lakes in Florida

    DEFF Research Database (Denmark)

    Kristensen, T.; Edwards, T. M.; Kohno, S.

    2007-01-01

    Previous studies of Eastern mosquitofish in contaminated Lake Apopka, Florida, have documented reduced sperm count and sexual behaviour in males but increased fecundity and liver weight in females, compared to nearby reference lakes. Liver weight can be an indicator of vitellogenin (Vtg) synthesis...... in fish, such as the mosquitofish. It was therefore hypothesized that estrogenic organochlorine pesticides, present at elevated concentrations in animals from Lake Apopka, could cause the reproductive disorders in males, as well as increase female fecundity. We initiated a test of this hypothesis...... by examining the relationship between 17β-estradiol (E2) tissue concentrations, hepatic estrogen receptor α (ERα) and Vtg A, B and C gene expression and fecundity in sexually mature female Eastern mosquitofish from Lake Apopka and two reference lakes, Lake Woodruff and Lake Orange. We observed that female...

  18. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    DEFF Research Database (Denmark)

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor...... for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice......, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts...

  19. Optimal geometry and dimensions for the receiver of a parabolic solar concentrator with an angle of 90 degrees; Determiancion de la geometria y dimensiones optimas de un receptor para un concentrador solar paraboloidal con angulo de apertura de 90 grados

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Claudio A; Arancibia, Camilo [Centro de Investigacion en Energia UNAM, Temixco, Morelos (Mexico); Hernandez, Nestor [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico)

    2000-07-01

    The optimal geometry and dimensions for the receiver of a parabolic solar concentrator based on microwave communication antenna are obtained. First, the experiments for the determination of the angular error of the concentrator and the dimensions of its focal region are described. Results are also presented for the ray tracing study, from which the optimal characteristics of the receiver are obtained according to the experimental results. As the aluminum antenna has a rim angle of 90 Celsius degrees, it is necessary to use a cavity receiver to allow external as well as internal absorption of radiative flux. Cylindrical, conical and spherical geometric were considered, as well as combinations of them. The best results are achieved using a conical cavity. Its dimensions are calculated to maximize the radiative transfer efficiency from the aperture of the concentrator to the receiver. [Spanish] Se determinan la geometria y dimensiones optimas del receptor de un concentrador solar parabolico obtenido a partir de una antena de telecomunicaciones para microondas. Primeramente se describen los experimentos realizados para obtener el valor del error angular asociado al concentrador y de las dimensiones de su region focal. Tambien se presentan los resultados del estudio optico de trazado de rayos, que permitio determinar teoricamente las caracteristicas del receptor, de acuerdo a los resultados de los experimentos. Debido a que la antena de aluminio tiene un angulo de borde de 90 grados Celcius, es necesario usar un receptor tipo cavidad que permita la captacion de energia tanto interna como externa. Se consideraron geometrias cilindrica, conica, esferica y combinaciones entre ellas, resultando ser la conica la que da los mejores resultados. Las dimensiones del receptor fueron determinadas maximizando la eficiencia del transporte de radiacion de la apertura del concentrador al receptor.

  20. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  1. Effect of different concentrations of oxygen on expression of sigma 1 receptor and superoxide dismutases in human colon adenocarcinoma cell lines.

    Science.gov (United States)

    Skrzycki, Michał; Czeczot, Hanna; Mielczarek-Puta, Magdalena; Otto-Ślusarczyk, Dagmara; Graboń, Wojciech

    2017-06-01

    Tumor cells due to distance from capillary vessels exist in different oxygenation conditions (anoxia, hypoxia, normoxia). Changes in cell oxygenation lead to reactive oxygen species production and oxidative stress. Sigma 1 receptor (Sig1R) is postulated to be stress responding agent and superoxide dismutases (SOD1 and SOD2) are key antioxidant enzymes. It is possible that they participate in tumor cells adaptation to different concentrations of oxygen. Evaluation of Sig1R, SOD1, and SOD2 expression in different concentrations of oxygen (1%, 10%, 21%) in colon adenocarcinoma cell lines. SW480 (primary adenocarcinoma) and SW620 (metastatic) cell lines were cultured in standard conditions in Dulbecco's modified Eagle's medium for 5 days, and next cultured in Hypoxic Chamber in 1% O 2 , 10% O 2 , 21% O 2 . Number of living cells was determined by trypan blue assay. Level of mRNA for Sig1R, SOD1, and SOD2 was determined by standard PCR method. Statistical analysis was conducted using Statistica 10.1 software. We observed significant changes in expression of Sig1R, SOD1, SOD2 due to different oxygen concentrations. ANOVA analysis revealed significant interactions between studied parameters mainly in hypoxia conditions in SW480 cells and between Sig1R and SOD2 in SW620 cells. It also showed that changes in expression of studied proteins depend significantly on type of the cell line. Changes of Sig1R and SOD2 expression point to mitochondria as main organelle responsible for survival of tumor cells exposed to hypoxia or oxidative stress. Studied proteins are involved in intracellular response to stress related with different concentrations of oxygen.

  2. Nuclear triiodothyronine receptor binding characteristics and occupancy in obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1987-01-01

    Obese (ob/ob) mice exhibit reduced adaptive thermogenesis associated with an impairment of thyroid hormone action. The mechanism underlying the latter defect was investigated by comparing the binding characteristics and occupancy of solubilized nuclear 3,5,3'-triiodothyronine (T 3 ) receptors from livers of lean and obese mice. T 3 concentration was measured by radioimmunoassay. Scatchard analysis showed minimal differences in B/sub max/ and K/sub d/ between phenotypes at both 4 and 8-10 wk of age, indicating that reduced hepatic thyroid hormone expression in obese mice is not caused by alterations in nuclear receptor concentration or affinity. In contrast, nuclear T 3 receptor occupancy (endogenous T 3 associated with the specific receptor divided by B/sub max/) was 14 and 23% lower in 4- and 8- to 10-wk old obese mice, respectively. Together with reported changes in hepatic thyroid hormone-sensitive enzymes, these data are consistent with a diminished nuclear T 3 signal initiating thyroid hormone action in obese mice. Decreased nuclear T 3 receptor occupancy may be secondary to a low transport of plasma T 3 to the nuclear pool. In conclusion, impaired hepatic thyroid hormone action in obese mice is mediated in part at least by a reduction in nuclear T 3 receptor occupancy

  3. Improved in Vitro Folding of the Y2 G Protein-Coupled Receptor into Bicelles

    Directory of Open Access Journals (Sweden)

    Peter Schmidt

    2018-01-01

    Full Text Available Prerequisite for structural studies on G protein-coupled receptors is the preparation of highly concentrated, stable, and biologically active receptor samples in milligram amounts of protein. Here, we present an improved protocol for Escherichia coli expression, functional refolding, and reconstitution into bicelles of the human neuropeptide Y receptor type 2 (Y2R for solution and solid-state NMR experiments. The isotopically labeled receptor is expressed in inclusion bodies and purified using SDS. We studied the details of an improved preparation protocol including the in vitro folding of the receptor, e.g., the native disulfide bridge formation, the exchange of the denaturating detergent SDS, and the functional reconstitution into bicelle environments of varying size. Full pharmacological functionality of the Y2R preparation was shown by a ligand affinity of 4 nM and G-protein activation. Further, simple NMR experiments are used to test sample quality in high micromolar concentration.

  4. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Pedro Setti-Perdigão

    Full Text Available Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+-11á-hydroxyerysotrine was the lowest, whereas (+-erythravine and (+-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+-erythravine and (+-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  5. Quantification of human opiate receptor concentration and affinity using high and low specific activity ( sup 11 C)diprenorphine and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sadzot, B.; Price, J.C.; Mayberg, H.S.; Douglass, K.H.; Dannals, R.F.; Lever, J.R.; Ravert, H.T.; Wilson, A.A.; Wagner, H.N. Jr.; Feldman, M.A. (Johns Hopkins Medical Institutions, Baltimore, MD (USA))

    1991-03-01

    (11C)Diprenorphine, a weak partial opiate agonist, and positron emission tomography were used to obtain noninvasive regional estimates of opiate receptor concentration (Bmax) and affinity (Kd) in human brain. Different compartmental models and fitting strategies were compared statistically to establish the most reliable method of parameter estimation. Paired studies were performed in six normal subjects using high (769-5,920 Ci/mmol) and low (27-80 Ci/mmol) specific activity (SA) (11C)diprenorphine. Two subjects were studied a third time using high SA (11C)diprenorphine after a pretreatment with 1-1.5 mg/kg of the opiate antagonist naloxone. After the plasma radioactivity was corrected for metabolites, the brain data were analyzed using a three-compartment model and nonlinear least-squares curve fitting. Linear differential equations were used to describe the high SA (low receptor occupancy) kinetics. The k3/k4 ratio varied from 1.0 +/- 0.2 (occipital cortex) to 8.6 +/- 1.6 (thalamus). Nonlinear differential equations were used to describe the low SA (high receptor occupancy) kinetics and the curve fits provided the konf2 product. The measured free fraction of (11C)diprenorphine in plasma (f1) was 0.30 +/- 0.03, the average K1/k2 ratio from the two naloxone studies was 1.1 +/- 0.2, and the calculated free fraction of (11C)diprenorphine in the brain (f2) was 0.3. Using the paired SA studies, the estimated kinetic parameters, and f2, separate estimates of Bmax and Kd were obtained. Bmax varied from 2.3 +/- 0.5 (occipital cortex) to 20.6 +/- 7.3 (cingulate cortex) nM. The average Kd (eight brain regions) was 0.85 +/- 0.17 nM.

  6. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Palacios, M.

    1985-01-01

    The distribution of serotonin-1 (5-HT 1 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with [ 3 H]serotonin (5-[ 3 H]HT), 8-hydroxy-2-[N-dipropylamino- 3 H]tetralin (8-OH-[ 3 H]DPAT), [ 3 H]LSD and [ 3 H]mesulergine, and the densities quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Competition experiments for 5-[ 3 H]HT binding by several serotonin-1 agonists led to the identification of brain areas enriched in each one of the three subtypes of 5-HT 1 recognition sites already described. The existence of these 'selective' areas allowed a detailed pharmacological characterization of these sites to be made in a more precise manner than has been attained in membrane-binding studies. Very high concentrations of 5-HT 1 receptors were localized in the choroid plexus, lateroseptal nucleus, globus pallidus and ventral pallidum, dentate gyrus, dorsal subiculum, olivary pretectal nucleus, substantia nigra, reticular and external layer of the entorhinal cortex. The distribution of 5-HT 1 receptors reported here is discussed in correlation with the distribution of serotoninergic neurons and fibers, the related anatomical pathways and the effects which appear to be mediated by these sites. (Auth.)

  7. Novel agents acting on GABA2 receptors: potential cognitive enhancers

    International Nuclear Information System (INIS)

    Chebib, M.

    2001-01-01

    γ- Aminobutyric acid (GABA) is a low molecular weight ammo acid found throughout the central and peripheral nervous systems. It is a very flexible molecule and thus can attain a number of low-energy conformations which are recognised by a series of enzymes, receptors and transporter systems. This article will concentrate on the effects of GABA C as the major inhibitory neurotransmitter in the brain. GABA C receptors belong to the superfamily of ligand-gated ion channels that include nicotinic acetylcholine, GABA A , strychnine-sensitive glycine, and serotonin type 3 receptors. The compound outlined in this article provide us with novel leads for the design and development of compounds that may be selective for GABA receptors. Such compounds will help in the study of GABA C receptors both in vitro and in vivo, providing an insight into the role these receptors play in the brain

  8. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

    International Nuclear Information System (INIS)

    Yi, P.I.; Beck, G.; Zucker, S.

    1981-01-01

    Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins [very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)] and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms

  9. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    Science.gov (United States)

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  10. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulat...

  11. Beta adrenergic receptors in human cavernous tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.

    1985-04-01

    Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.

  12. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  13. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    Science.gov (United States)

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably

  14. [18F]FE@SNAP—A new PET tracer for the melanin concentrating hormone receptor 1 (MCHR1): Microfluidic and vessel-based approaches

    Science.gov (United States)

    Philippe, Cécile; Ungersboeck, Johanna; Schirmer, Eva; Zdravkovic, Milica; Nics, Lukas; Zeilinger, Markus; Shanab, Karem; Lanzenberger, Rupert; Karanikas, Georgios; Spreitzer, Helmut; Viernstein, Helmut; Mitterhauser, Markus; Wadsak, Wolfgang

    2012-01-01

    Changes in the expression of the melanin concentrating hormone receptor 1 (MCHR1) are involved in a variety of pathologies, especially obesity and anxiety disorders. To monitor these pathologies in-vivo positron emission tomography (PET) is a suitable method. After the successful radiosynthesis of [11C]SNAP-7941—the first PET-Tracer for the MCHR1, we aimed to synthesize its [18F]fluoroethylated analogue: [18F]FE@SNAP. Therefore, microfluidic and vessel-based approaches were tested. [18F]fluoroethylation was conducted via various [18F]fluoroalkylated synthons and direct [18F]fluorination. Only the direct [18F]fluorination of a tosylated precursor using a flow-through microreactor was successful, affording [18F]FE@SNAP in 44.3 ± 2.6%. PMID:22921745

  15. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.

    Science.gov (United States)

    Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique

    2013-10-01

    Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: Possible origin of pharmacological distortions and side effects

    International Nuclear Information System (INIS)

    Morissette, Guillaume; Lodge, Robert; Bouthillier, Johanne; Marceau, Francois

    2008-01-01

    The aims of this study were to investigate whether several histamine receptor agonists and antagonists are subjected to receptor-independent ion trapping into acidic organelles, and whether this sequestration influences their pharmacological or toxicological properties. Vacuolar (V)-ATPase-dependent intracellular sequestration of agonists was recognized as morphological alterations (large fluid-filled vacuoles for betahistine and 1-methylhistamine, granular uptake for fluorescent BODIPY FL histamine) prevented by the specific V-ATPase inhibitor bafilomycin A1 in rabbit vascular smooth muscle cells. Lipophilicity was the major determinant of these cellular effects (order of potency: BODIPY FL histamine > betahistine > 1-methylhistamine > histamine) that occurred at high concentrations. This ranking was dissociable from the potency order for H 1 receptor-mediated contraction of the rabbit aorta, a response uninfluenced by bafilomycin. Antihistamines are inherently more lipophilic and caused vacuolization of a proportion of cells at 5-500 μM. Agonist or antagonist-induced vacuoles were of macroautophagic nature (labeled with GFP-conjugated LC3, Rab7 and CD63; detection of LC3 II). Further, the 2 most lipophilic antihistamines tested, astemizole and terfenadine, were potentiated by V-ATPase blockade in the aortic contractility assay (13- and 3.6-fold more potent, respectively, pA 2 scale), suggesting that V-ATPase-mediated cation trapping sequesters these antagonists from the vicinity of H 1 receptors in the therapeutic concentration range. This potentiation did not apply to less lipophilic antagonists (pyrilamine, diphenhydramine). While some agonists and all tested antagonists of the histamine H 1 receptors induce the V-ATPase-dependent vacuolar and autophagic cytopathology, sequestration affects the pharmacology of only the most lipophilic antagonists, the ones prone to off-target arrhythmogenic side effects

  17. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors.

    Directory of Open Access Journals (Sweden)

    John G Yamauchi

    2011-01-01

    Full Text Available We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC by developing sensor cells stably expressing a Ca(2+ permeable LGIC and a genetically encoded Förster (or fluorescence resonance energy transfer (FRET-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A serotonin receptors and a chimera of human α7/mouse 5-HT(3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

  18. Concanavalin a increases beta-adrenergic and glucocorticoid receptors in porcine splenocytes

    International Nuclear Information System (INIS)

    Kelley, K.N.; Westly, H.J.

    1986-01-01

    We identified specific glucocorticoid and beta-adrenergic receptors on porcine splenocytes. There are 2000 to 4000 glucocorticoid receptors per cell with a K /SUB D/ of 2 to 4 nM and 1000 beta-adrenergic receptors with a K /SUB D/ of 0.3 to 0.6 nM. When splenocytes were incubated with concanavalin A (Con A), there was an approximate 2-fold increase in both gluococorticoid and beta-adrenergic receptors with no change in binding affinity. Incubation of splenocytes with cortisol as low as 40 nM (13 ng/ml) inhibited proliferation in response to Con A. This inhibitory effect of cortisol was not due to cytotoxic effects of glucocorticoids. At maximal physiologic concentrations (400 nM; 135 ng/ml), cortisol caused reductions in Con A activation of thymocytes and peripheral blood mononuclear cells. When eight wk old pigs were restrained, there was an increase in plasma cortisol, atrophy of thymus and reduction in skin test responses to phytohemagglutinin. On the basis of the data, we suggest that physiologic concentrations of stress asociated hormones affect functional activities of porcine lymphoid cells. Since activated splenocytes display increased numbers of receptors for these hormones, perhaps glucocorticoids or catecholamines normally function in vivo to suppress clonal expansion of antigen activated and autoreactive T lymphocytes

  19. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...... truncation variants, the amino-terminal third of the SRCR region was shown to be crucial for the binding of haptoglobin.hemoglobin complexes. By Western blotting of the CD163 variants, a panel of ten monoclonal antibodies was mapped to SRCR domains 1, 3, 4, 6, 7, and 9, respectively. Only the two antibodies...... to CD163 demonstrated that optimal ligand binding requires physiological plasma calcium concentrations, and an immediate ligand release occurs at the low calcium concentrations measured in acidifying endosomes. In conclusion, SRCR domain 3 of CD163 is an exposed domain and a critical determinant...

  20. Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells

    International Nuclear Information System (INIS)

    Yashima, N.; Wada, A.; Izumi, F.

    1986-01-01

    Adrenal medulla cells are cholinoceptive cells. Stimulation of the acetylcholine receptor causes the influx of Ca to the cells, and Ca acts as the coupler of the stimulus-secretion coupling. In this study, the authors investigated the effects of halothane on the receptor-mediated influx of 45 Ca using cultured bovine adrenal medulla cells. Halothane at clinical concentrations (0.5-2%) inhibited the influx of 45 Ca caused by carbachol, with simultaneous inhibition of catecholamine secretion. The influx of 45 Ca and the secretion of catecholamines caused by K depolarization were inhibited by a large concentration of Mg, which competes with Ca at Ca channels, but not inhibited by halothane. Inhibition of the 45 Ca influx by halothane was not overcome by increase in the carbachol concentration. Inhibition of the 45 Ca influx by halothane was examined in comparison with that caused by a large concentration of Mg by the application of Scatchard analysis as the function of the external Ca concentration. Halothane decreased the maximal influx of 45 Ca without altering the apparent kinetic constant of Ca to Ca channels. On the contrary, a large concentration of Mg increased the apparent kinetic constant without altering the maximal influx of 45 Ca. Based on these findings, the authors suggest that inhibition of the 45 Ca influx by halothane was not due to the direct competitive inhibition of Ca channels, nor to the competitive antagonism of agonist-receptor interaction. As a possibility, halothane seems to inhibit the receptor-mediated activation of Ca channels through the interference of coupling between the receptor and Ca channels

  1. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  2. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Schöller, Susanne; Belmont, Martin; Cazzamali, Giuseppe

    2005-01-01

    The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two...... previously cloned and characterized myosuppressin receptors from Drosophila [Proc. Natl. Acad. Sci. USA 100 (2003) 9808]. The mosquito receptor cDNA was expressed in Chinese hamster ovary cells and was found to be activated by low concentrations of Anopheles myosuppressin (TDVDHVFLRFamide; EC50, 1.6 x 10...... identification of a mosquito neuropeptide receptor....

  3. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs

    International Nuclear Information System (INIS)

    Farde, L.; Wiesel, F.A.; Halldin, C.; Sedvall, G.

    1988-01-01

    Using positron emission tomography and the carbon 11-labeled ligand raclopride, central D2-dopamine receptor occupancy in the putamen was determined in psychiatric patients treated with clinical doses of psychoactive drugs. Receptor occupancy in drug-treated patients was defined as the percent reduction of specific carbon 11-raclopride binding in relation to the expected binding in the absence of drug treatment. Clinical treatment of schizophrenic patients with 11 chemically distinct antipsychotic drugs (including both classic and atypical neuroleptics such as clozapine) resulted in a 65% to 85% occupancy of D2-dopamine receptors. In a depressed patient treated with the tricyclic antidepressant nortriptyline, no occupancy was found. The time course for receptor occupancy and drug levels was followed after withdrawal of sulpiride or haloperidol. D2-dopamine receptor occupancy remained above 65% for many hours despite a substantial reduction of serum drug concentrations. In a sulpiride-treated patient, the dosage was reduced in four steps over a nine-week period and a curvilinear relationship was demonstrated between central D2-dopamine receptor occupancy and serum drug concentrations. The results demonstrate that clinical doses of all the currently used classes of antipsychotic drugs cause a substantial blockade of central D2-dopamine receptors in humans. This effect appears to be selective for the antipsychotics, since it was not induced by the antidepressant nortriptyline

  4. GABA_A receptor function is regulated by lipid bilayer elasticity

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Werge, Thomas; Berthelsen, Camilla

    2006-01-01

    ( s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABAA receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown...... reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABAA receptor function is regulated by lipid bilayer elasticity....... PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer....

  5. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland); Mandrika, Ilona, E-mail: ilona@biomed.lu.lv [Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV 1067 (Latvia); Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland)

    2014-03-07

    of forming signal complexes with optimal cannabinoid concentrations available for cannabinoid receptors.

  6. Activation of neurotensin receptors and purinoceptors in human colonic adenocarcinoma cells detected with the microphysiometer.

    Science.gov (United States)

    Richards, M; van Giersbergen, P; Zimmermann, A; Lesur, B; Hoflack, J

    1997-10-01

    Activation of endogenous neurotensin (NT) receptors and P2-purinoceptors expressed by human colonic adenocarcinoma HT-29 cells increased extracellular acidification rates that were detected in the microphysiometer. NT (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu), NT[8-13] (Arg-Arg-Pro-Tyr-Ile-Leu), NT[9-13] (Arg-Pro-Tyr-Ile-Leu), and NT1 (N alpha methyl-Arg-Lys-Pro-Trp-Tle-Leu [Tle = tert-leucine]) were full agonists, whereas XL 775 (N-[N-[2-[3-[[6-amino-1-oxo-2-[[(phenylmethoxy)carbonyl]-amino]hex yl]amino]phenyl]-3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-L-isoleucyl]-L-le ucine) was a partial agonist for activating NT receptors expressed by HT-29 cells. Desensitization induced by NT was rapid and monophasic with 85% of the initial response lost by a 30-s exposure. Once initiated, the rate and extent of desensitization were similar for different concentrations of a given agonist, for agonists of different potencies, and for agonists of different efficacies, which suggests that desensitization may be independent of receptor occupancy or agonist efficacy. Resensitization was a much slower process, requiring 60 min before the full agonist response to NT was recovered. ATP, via P2-purinoceptors, also activated cellular acidification rates in a concentration-dependent manner. ATP induced a biphasic desensitization of purinoceptors with a loss of ca. 50% of the initial stimulation detectable between 30 and 90 s of exposure to the agonist. Desensitization of NT receptors did not influence the activation of P2-purinoceptors by ATP, suggesting there was no heterologous desensitization between the two types of receptors. Superfusion with NT receptor agonists for 15 min at concentrations that did not elicit changes in extracellular acidification rates blocked, in a concentration-dependent manner, the agonist response induced by 100 nM NT. This may reflect sequestration of the receptor. These results suggest that the high agonist affinity state of NT receptors may

  7. Radioreceptor assays: plasma membrane receptors and assays for polypeptide and glycoprotein hormones

    International Nuclear Information System (INIS)

    Schulster, D.

    1977-01-01

    Receptors for peptide, protein and glycoprotein hormones, and the catecholamines are located on the plasma membranes of their target cells. Preparations of the receptors may be used as specific, high-affinity binding agents for these hormones in assay methodology akin to that for radioimmunoassay. A particular advantage of the radioreceptor assay is that it has a specificity directed towards the biologically active region of the hormone, rather than to some immunologically active region that may have little (or no) involvement in the expression of hormonal activity. Methods for hormone receptor preparation vary greatly, and range from the use of intact cells (as the source of hormone receptor) to the use of purified or solubilized membrane receptors. Receptors isolated from plasma membranes have proved to be of variable stability, and may be damaged during preparation and/or storage. Moreover, since they are present in relatively low concentration in the cell, their preparation in sufficient quantity for use in a radioreceptor assay may present technical problems. In general, there is good correlation between radioreceptor assays and in-vitro bioassays; differences between results from radioreceptor assays and radioimmunoassays are similar to those noted between in-vitro bioassays and radioimmunoassays. The sensitivity of the method is such that normal plasma concentrations of various hormones have been assayed by this technique. (author)

  8. Role of Interleukin-6 and Its Receptor in Endometriosis

    OpenAIRE

    Li, Shihui; Fu, Xiaoxia; Wu, Tingting; Yang, Liwei; Hu, Changchang; Wu, RuiJin

    2017-01-01

    Background Studies have shown that the concentration of interleukin (IL)-6 in peritoneal fluid is increased in patients with endometriosis; however, whether the disorders involving IL-6 contribute to the development of endometriosis is still unclear. In the present study, we evaluated the potential role of IL-6 and IL-6 receptor (IL-6R) in the pathogenesis of endometriosis. Material/Methods We examined activated macrophages and the expression of membrane-binding receptor (mIL-6R) in peritonea...

  9. Pharmacology and function of melatonin receptors

    International Nuclear Information System (INIS)

    Dubocovich, M.L.

    1988-01-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references

  10. A Concentration Addition Model to Assess Activation of the Pregnane X Receptor (PXR) by Pesticide Mixtures Found in the French Diet

    Science.gov (United States)

    de Sousa, Georges; Nawaz, Ahmad; Cravedi, Jean-Pierre; Rahmani, Roger

    2014-01-01

    French consumers are exposed to mixtures of pesticide residues in part through food consumption. As a xenosensor, the pregnane X receptor (hPXR) is activated by numerous pesticides, the combined effect of which is currently unknown. We examined the activation of hPXR by seven pesticide mixtures most likely found in the French diet and their individual components. The mixture's effect was estimated using the concentration addition (CA) model. PXR transactivation was measured by monitoring luciferase activity in hPXR/HepG2 cells and CYP3A4 expression in human hepatocytes. The three mixtures with the highest potency were evaluated using the CA model, at equimolar concentrations and at their relative proportion in the diet. The seven mixtures significantly activated hPXR and induced the expression of CYP3A4 in human hepatocytes. Of the 14 pesticides which constitute the three most active mixtures, four were found to be strong hPXR agonists, four medium, and six weak. Depending on the mixture and pesticide proportions, additive, greater than additive or less than additive effects between compounds were demonstrated. Predictions of the combined effects were obtained with both real-life and equimolar proportions at low concentrations. Pesticides act mostly additively to activate hPXR, when present in a mixture. Modulation of hPXR activation and its target genes induction may represent a risk factor contributing to exacerbate the physiological response of the hPXR signaling pathways and to explain some adverse effects in humans. PMID:25028461

  11. CRF1 receptor-deficiency increases cocaine reward.

    Science.gov (United States)

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF 1 receptor-deficient (CRF 1 -/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF 1 -/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF 1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF 1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF 1 -/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF 1 -/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF 1 -/- mice by exogenous corticosterone does not affect CRF 1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF 1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The development of fluoroandrogens and fluoroprogestins as potential imaging agents for receptor-positive prostate and breast tumors

    International Nuclear Information System (INIS)

    Brandes, S.J.; Katzenellenbogen, J.A.

    1986-01-01

    The assay of progesterone receptor (PR) concentration in breast tumors and androgen receptor (AR) concentration in prostate tumors enables hormone responsive neoplasms to be distinguished from those that are non-responsive. In principle, a positron-emitting progestin or androgen with suitably high affinity and selectivity for PR and AR, respectively, and an adequately high specific activity might provide a means for imaging receptor-positive tumors and quantifying their receptor content in vivo. The use of fluorine-18 as a radiolabel, coupled with the use of positron emission transaxial tomography, appears to be a most favorable approach in the development of receptor binding radiopharmaceuticals for in vivo imaging. Therefore, we have begun a systematic investigation of the development of fluorine-substituted androgens and progestins that might be prepared in F-18 labeled form as probes for AR and PR. (author)

  13. Estradiol-induced estrogen receptor-alpha trafficking.

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2009-12-02

    Estradiol has rapid actions in the CNS that are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca(2+)](i)) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERalpha has an extracellular portion. In addition to the full-length ERalpha [apparent molecular weight (MW), 66 kDa], surface biotinylation labeled an ERalpha-immunoreactive protein (MW, approximately 52 kDa) identified by both COOH- and NH(2)-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 and 52 kDa ERalpha. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24-48 h reduced ERalpha levels, suggesting receptor downregulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERalpha-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERalpha trafficking to and from the membrane. Estradiol-induced [Ca(2+)](i) flux was also significantly increased at the time of peak ERalpha activation/internalization. These results demonstrate that ERalpha is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERalpha are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERalpha to augment and then terminate membrane-initiated signaling.

  14. Estradiol-induced estrogen receptor-α trafficking

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2010-01-01

    Estradiol has rapid actions in the central nervous system, which are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca2+]i) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERα has an extracellular portion. In addition to the full length ERα (apparent M.W. 66 kDa), surface biotinylation labeled an ERα-immunoreactive protein (M.W. ~ 52 kDa) identified by both COOH- and NH2-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 kDa and 52 kDa ERα. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24–48 hr reduced ERα levels, suggesting receptor down-regulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERα-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERα trafficking to and from the membrane. Estradiol-induced [Ca2+]i flux was also significantly increased at the time of peak ERα activation/internalization. These results demonstrate that ERα is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERα are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERα to augment and then terminate membrane-initiated signaling. PMID:19955385

  15. Activation/Inhibition of mast cells by supra-optimal antigen concentrations.

    Science.gov (United States)

    Huber, Michael

    2013-01-22

    Mast cells (MCs) are tissue resident cells of hemopoietic origin and are critically involved in allergic diseases. MCs bind IgE by means of their high-affinity receptor for IgE (FcεRI). The FcεRI belongs to a family of multi-chain immune recognition receptors and is activated by cross-linking in response to multivalent antigens (Ags)/allergens. Activation of the FcεRI results in immediate release of preformed granular substances (e.g. histamine, heparin, and proteases), generation of arachidonic acid metabolites, and production of pro-inflammatory cytokines. The FcεRI shows a remarkable, bell-shaped dose-response behavior with weak induction of effector responses at both low and high (so-called supra-optimal) Ag concentrations. This is significantly different from many other receptors, which reach a plateau phase in response to high ligand concentrations. To explain this unusual dose-response behavior of the FcεRI, scientists in the past have drawn parallels to so-called precipitin curves resulting from titration of Ag against a fixed concentration of antibody (Ab) in solution (a.k.a. Heidelberger curves). Thus, for high, supra-optimal Ag concentrations one could assume that every IgE-bound FcεRI formed a monovalent complex with "its own Ag", thus resulting in marginal induction of effector functions due to absence of receptor cross-linking. However, this was never proven to be the case. More recently, careful studies of FcεRI activation and signaling events in MCs in response to supra-optimal Ag concentrations have suggested a molecular explanation for the descending part of this bell-shaped curve. It is obvious now that extensive FcεRI/IgE/Ag clusters are formed and inhibitory molecules and signalosomes are engaged in response to supra-optimal cross-linking (amongst them the Src family kinase Lyn and the inositol-5'-phosphatase SHIP1) and they actively down-regulate MC effector responses. Thus, the analysis of MC signaling triggered by supra

  16. In vivo imaging of estrogen receptor concentration in the endometrium and myometrium using FES PET - influence of menstrual cycle and endogenous estrogen level

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Tatsuro [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan)]. E-mail: tsucchy@fmsrsa.fukui-med.ac.jp; Okazawa, Hidehiko [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Kobayashi, Masato [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Yoshida, Yoshio [Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Itoh, Harumi [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan)

    2007-02-15

    Purpose: The goals of this study were to measure estrogen receptor (ER) concentration in the endometrium and myometrium using 16{alpha}-[{sup 18}F]fluoro-17{beta}-estradiol (FES) positron emission tomography (PET) and to investigate the relationship between changes in these parameters with the menstrual cycle and endogenous estrogen levels. Methods: Sixteen female healthy volunteers were included in this study. After blood sampling to measure endogenous estrogen level, FES PET image was acquired 60 min postinjection of FES. After whole-body imaging of FES PET, averaged standardized uptake values (SUVs) in the endometrium and myometrium were measured, and the relationship between FES uptake and menstrual cycle or endogenous estrogen level was evaluated. Results: Endometrial SUV was significantly higher in the proliferative phase than in the secretory phase (6.03{+-}1.05 vs. 3.97{+-}1.29, P=.022). In contrast, there was no significant difference in myometrial SUV when the proliferative and secretory phases were compared (P=.23). Further, there was no correlation between SUV and endogenous estrogen level in the proliferative phase. Conclusions: The change of ER concentration relative to menstrual cycle as characterized by FES PET was consistent with those from previous reports that used an immunohistochemical technique. These data suggest that FES PET is a feasible, noninvasive method for characterizing changes in ER concentration.

  17. In vivo imaging of estrogen receptor concentration in the endometrium and myometrium using FES PET - influence of menstrual cycle and endogenous estrogen level

    International Nuclear Information System (INIS)

    Tsuchida, Tatsuro; Okazawa, Hidehiko; Mori, Tetsuya; Kobayashi, Masato; Yoshida, Yoshio; Fujibayashi, Yasuhisa; Itoh, Harumi

    2007-01-01

    Purpose: The goals of this study were to measure estrogen receptor (ER) concentration in the endometrium and myometrium using 16α-[ 18 F]fluoro-17β-estradiol (FES) positron emission tomography (PET) and to investigate the relationship between changes in these parameters with the menstrual cycle and endogenous estrogen levels. Methods: Sixteen female healthy volunteers were included in this study. After blood sampling to measure endogenous estrogen level, FES PET image was acquired 60 min postinjection of FES. After whole-body imaging of FES PET, averaged standardized uptake values (SUVs) in the endometrium and myometrium were measured, and the relationship between FES uptake and menstrual cycle or endogenous estrogen level was evaluated. Results: Endometrial SUV was significantly higher in the proliferative phase than in the secretory phase (6.03±1.05 vs. 3.97±1.29, P=.022). In contrast, there was no significant difference in myometrial SUV when the proliferative and secretory phases were compared (P=.23). Further, there was no correlation between SUV and endogenous estrogen level in the proliferative phase. Conclusions: The change of ER concentration relative to menstrual cycle as characterized by FES PET was consistent with those from previous reports that used an immunohistochemical technique. These data suggest that FES PET is a feasible, noninvasive method for characterizing changes in ER concentration

  18. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    Sweet, L.J.; Wilden, P.A.; Pessin, J.E.

    1986-01-01

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32 P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α 2 β 2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α 2 β 2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α 2 β 2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α 2 β 2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α 2 β 2 insulin receptor subunit complex

  19. A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster.

    Science.gov (United States)

    Balfanz, Sabine; Strünker, Timo; Frings, Stephan; Baumann, Arnd

    2005-04-01

    In invertebrates, the biogenic-amine octopamine is an important physiological regulator. It controls and modulates neuronal development, circadian rhythm, locomotion, 'fight or flight' responses, as well as learning and memory. Octopamine mediates its effects by activation of different GTP-binding protein (G protein)-coupled receptor types, which induce either cAMP production or Ca(2+) release. Here we describe the functional characterization of two genes from Drosophila melanogaster that encode three octopamine receptors. The first gene (Dmoa1) codes for two polypeptides that are generated by alternative splicing. When heterologously expressed, both receptors cause oscillatory increases of the intracellular Ca(2+) concentration in response to applying nanomolar concentrations of octopamine. The second gene (Dmoa2) codes for a receptor that specifically activates adenylate cyclase and causes a rise of intracellular cAMP with an EC(50) of approximately 3 x 10(-8) m octopamine. Tyramine, the precursor of octopamine biosynthesis, activates all three receptors at > or = 100-fold higher concentrations, whereas dopamine and serotonin are non-effective. Developmental expression of Dmoa genes was assessed by RT-PCR. Overlapping but not identical expression patterns were observed for the individual transcripts. The genes characterized in this report encode unique receptors that display signature properties of native octopamine receptors.

  20. Receptor models for source apportionment of remote aerosols in Brazil

    International Nuclear Information System (INIS)

    Artaxo Netto, P.E.

    1985-11-01

    The PIXE (particle induced X-ray emission), and PESA (proton elastic scattering analysis) method were used in conjunction with receptor models for source apportionment of remote aerosols in Brazil. The PIXE used in the determination of concentration for elements with Z >- 11, has a detection limit of about 1 ng/m 3 . The concentrations of carbon, nitrogen and oxygen in the fine fraction of Amazon Basin aerosols was measured by PESA. We sampled in Jureia (SP), Fernando de Noronha, Arembepe (BA), Firminopolis (GO), Itaberai (GO) and Amazon Basin. For collecting the airbone particles we used cascade impactors, stacked filter units, and streaker samplers. Three receptor models were used: chemical mass balance, stepwise multiple regression analysis and principal factor analysis. The elemental and gravimetric concentrations were explained by the models within the experimental errors. Three sources of aerosol were quantitatively distinguished: marine aerosol, soil dust and aerosols related to forests. The emission of aerosols by vegetation is very clear for all the sampling sites. In Amazon Basin and Jureia it is the major source, responsible for 60 to 80% of airborne concentrations. (Author) [pt

  1. Nature and regulation of the receptors for insulin-like growth factors

    International Nuclear Information System (INIS)

    Rechler, M.M.; Nissley, S.P.

    1985-01-01

    Two subtypes of IGF receptors have been identified. Type I IGF receptors have a Mr greater than 300,000 and are composed of disulfide-linked 130,000-dalton (alpha) and approximately 90,000-dalton (beta) subunits. Type I receptors preferentially bind IGF-I but also bind IGF-II and, more weakly, insulin. Type II IGF receptors consist of a 250,000-dalton protein that contains internal disulfide bonds but is not linked to other membrane components. Type II receptors bind IGF-II with higher affinity than IGF-I. They do not interact with even very high concentrations of insulin. Type I IGF receptors and insulin receptors are homologous structures. Type II IGF receptors do not appear to be homologous to type I receptors. Type II receptors do not appear to be downregulated. Insulin acutely upregulates type II IGF receptors in intact rat adipose cells by effecting a redistribution of receptors cycling between a large intracellular pool and the plasma membrane. Insulin and the IGFs elicit the same biological responses, either by cross-reacting with one of the receptors for the heterologous ligand or by concurrent activation of convergent effector pathways by binding to the homologous receptor. Which mechanism is utilized appears to depend more on the tissue than on the biological response. Insulin desensitizes rat hepatoma cells to the actions of insulin and IGFs, mediated by both insulin and IGF receptors, by mechanisms distal to hormone binding and possibly common to IGF and insulin effector pathways

  2. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid.

    Science.gov (United States)

    Li, Ping; Ann, Jason; Akk, Gustav

    2011-08-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. Though highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1-4% of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI for the human α4β2 receptor is 18 μM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)(2) (β2)(3) receptors significantly more strongly inhibited than the (α4)(3) (β2)(2) receptors. Copyright © 2011 Wiley-Liss, Inc.

  3. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  4. Different effects of pentobarbital on two γ-aminobutyrate receptors from rat brain: channel opening, desensitization, and an additional conformational change

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1988-01-01

    The effect of pentobarbital on the responses of the γ-aminobutyric acid (GABA) receptor from rat brain was studied in quantitative measurements of GABA-mediated chloride-exchange rates (reflecting channel-opening equilibrium) and receptor desensitization rates by using 36 Cl - tracer ion with negative membrane vesicles. Pentobarbital effected the two phases of 36 Cl - influx in different ways, supporting previous evidence that these are mediated by two different receptors. Both the chloride-exchange rate and the desensitization rate of the faster desensitizing receptor were increased by pentobarbital at concentrations above 20 μM by an allosteric effect shifting the response curve to lower GABA concentrations. A similar enhancement of the responses of the slower desensitizing receptor occurred up to 200 μM pentobarbital. Two pentobarbital effector sites were involved in the allosteric mechanism. Above 500 μM pentobarbital, both the initial chloride-exchange rate and the desensitization rate of the slower desensitizing receptor were decreased. This inhibition, which was immediate, occurred with saturating as well as low GABA concentrations and therefore was not attributed to decreased GABA binding but to inhibitory sites for pentobarbital, different from the allosteric activating sites and the GABA binding sites. The chloride ion exchange activity was seen to recover with time, at concentrations above 1000 μM pentobarbital, in a process with a very steep dependence on pentobarbital concentration. This reactivation was attributed to the conversion of an initial form of the receptor to a final form that was less inhibited by pentobarbital. Comparisons of the effects of pentobarbital on desensitization and on high-affinity ligand binding measurements suggest that increased GABA binding at equilibrium reflects an increased conversion to the desensitized state

  5. Changes of Cerebral and/or Peripheral Adenosine A₁ Receptor and IGF-I Concentrations under Extended Sleep Duration in Rats.

    Science.gov (United States)

    Chennaoui, Mounir; Arnal, Pierrick J; Dorey, Rodolphe; Sauvet, Fabien; Ciret, Sylvain; Gallopin, Thierry; Leger, Damien; Drogou, Catherine; Gomez-Merino, Danielle

    2017-11-17

    Extended sleep improves sustained attention and reduces sleep pressure in humans. Downregulation of adenosine A₁ receptor (A₁R) and modulation of the neurotrophic factor insulin growth factor-1 (IGF-I) in brain structures controlling attentional capacities could be involved. In the frontal cortex and hippocampus of rats, we measured adenosine A₁R and IGF-I protein concentrations after photoperiod-induced sleep extension. Two groups of twelve rats were adapted over 14 days to a habitual (CON) 12:12 light-dark (LD) schedule and an extended (EXT) 16:8 LD schedule. IGF-I content was also measured in plasma, liver, and skeletal muscle. In EXT, compared to CON rats, A₁R content in the frontal cortex was significantly lower ( p IGF-I content was higher ( p IGF-I content in plasma and muscle was higher ( p IGF-I levels. This photoperiod induced an anabolic profile with increased weight gain and circulating and muscular IGF-I levels. An extension of sleep duration might favor cerebral and peripheral anabolism, which may help attentional and physical capacities.

  6. T3 receptors in human pituitary tumors.

    Science.gov (United States)

    Machiavelli, Gloria A; Pauni, Micaela; Heredia Sereno, Gastón M; Szijan, Irene; Basso, Armando; Burdman, José A

    2009-11-01

    The purpose of this work was to investigate the synthesis of T3 receptors in human tumors of the anterior pituitary gland, its relationship with the hormone synthesized and/or secreted by the tumor and the post-surgical evolution of the patient. Patients were evaluated clinically and by magnetic nuclear resonance to classify the adenoma according to their size. Hormonal concentrations in sera were determined by radioimmunoassay. Immunohistochemistry of the pituitary hormones was performed in the tumors. Tumors were obtained at surgery and immediately frozen in ice, transported to the laboratory and stored at -70 degrees C. Reverse transcription was performed with purified RNA from the tumors. Out of 33 pituitary tumors, 29 had RNA for T3 receptors synthesis (88%). They were present in different histological specimens, the tumors were grades 1-4 according to their size, and there was no relationship between the size of the tumor and the presence of T3 receptor RNAs. The post-surgical evolution of the patient was mostly dependent on the size and not on the presence of T3 receptors. The presence of thyroid hormone receptors in pituitary tumors is in line with two important characteristics of these tumors: they are histologically benign and well differentiated.

  7. Amiloride interacts with renal α- and β-adrenergic receptors

    International Nuclear Information System (INIS)

    Howard, M.J.; Mullen, M.D.; Insel, P.A.

    1987-01-01

    The authors have used radioligand binding techniques to assess whether amiloride and certain analogues of amiloride (ethylisopropyl amiloride and benzamil) can bind to adrenergic receptors in the kidney. They found that amiloride could compete for [ 3 H]rauwolscine (α 2 -adrenergic receptors), [ 3 H]prazosin (α 1 -adrenergic receptors), and [ 125 I]iodocyanopindolol (β-adrenergic receptors) binding in rat renal cortical membranes with inhibitor constants of 13.6 /plus minus/ 5.7, 24.4 /plus minus/ 7.4, and 8.36 /plus minus/ 13.5 μM, respectively. Ethylisopropyl amiloride and benzamil were from 2- to 25-fold more potent than amiloride in competing for radioligand binding sites in studies with these membranes. In addition, amiloride and the two analogues competed for [ 3 H]prazosin sites on intact Madin-Darby canine kidney cells and amiloride blocked epinephrine-stimulated prostaglandin E 2 production in these cells. They conclude that amiloride competes for binding to several classes of renal adrenergic receptors with a rank order of potency of α 2 > α 1 > β. Binding to, and antagonism of, adrenergic receptors occurs at concentrations of amiloride that are lower than previously observed nonspecific interactions of this agent

  8. Structure and function of the IFNγ receptor on human mononuclear phagocytes

    International Nuclear Information System (INIS)

    Schreiber, R.D.; Celada, A.

    1986-01-01

    Human mononuclear phagocytes bear a receptor that binds 125 I-IFNγ in a saturable, reversible and specific manner. The receptor consists minimally of a 70 kD polypeptide chain and its expression (5000/cell) and binding affinity (Ka=10 9 M -1 ) are unaffected by cellular activation or differentiation. The receptor's biological relevance was validated by correlating receptor occupancy with induction of a cellular response. 50% maximal induction of Fc receptors on U937 was effected by 0.8 nM IFNγ; the same concentration needed to half saturate U937 IFNγ receptors. Ligand-receptor interaction displayed species specificity but not cellular specificity. The receptors on U937 and human fibroblasts displayed identical ligand binding affinities (1.5-1.8 x 10 9 M -1 ). At 37 0 C, IFNγ bound to U937 in a biphasic manner. The high affinity binding component was due to ligand internalization since purified cell membranes and paraformaldehyde fixed cells displayed only the lower Ka and ligand internalization could be directly demonstrated. Using lysosomotropic amines, the internalized IFNγ-IFNγ receptor complex was tracked into an acid compartment where dissociation occurred. Free intracellular IFNγ was then degraded while free receptor entered an intracellular pool and eventually recycled back to the cell surface

  9. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    Science.gov (United States)

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the

  10. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  11. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  12. Systemic levels of the anti-inflammatory decoy receptor soluble RAGE (receptor for advanced glycation end products) are decreased in dogs with inflammatory bowel disease.

    Science.gov (United States)

    Heilmann, Romy M; Otoni, Cristiane C; Jergens, Albert E; Grützner, Niels; Suchodolski, Jan S; Steiner, Jörg M

    2014-10-15

    Inflammatory bowel disease (IBD) is a common condition in dogs, and a dysregulated innate immunity is believed to play a major role in its pathogenesis. S100A12 is an endogenous damage-associated molecular pattern molecule, which is involved in phagocyte activation and is increased in serum/fecal samples from dogs with IBD. S100A12 binds to the receptor of advanced glycation end products (RAGE), a pattern-recognition receptor, and results of studies in human patients with IBD and other conditions suggest a role of RAGE in chronic inflammation. Soluble RAGE (sRAGE), a decoy receptor for inflammatory proteins (e.g., S100A12) that appears to function as an anti-inflammatory molecule, was shown to be decreased in human IBD patients. This study aimed to evaluate serum sRAGE and serum/fecal S100A12 concentrations in dogs with IBD. Serum and fecal samples were collected from 20 dogs with IBD before and after initiation of medical treatment and from 15 healthy control dogs. Serum sRAGE and serum and fecal S100A12 concentrations were measured by ELISA, and were compared between dogs with IBD and healthy controls, and between dogs with a positive outcome (i.e., clinical remission, n=13) and those that were euthanized (n=6). The relationship of serum sRAGE concentrations with clinical disease activity (using the CIBDAI scoring system), serum and fecal S100A12 concentrations, and histologic disease severity (using a 4-point semi-quantitative grading system) was tested. Serum sRAGE concentrations were significantly lower in dogs with IBD than in healthy controls (p=0.0003), but were not correlated with the severity of histologic lesions (p=0.4241), the CIBDAI score before (p=0.0967) or after treatment (p=0.1067), the serum S100A12 concentration before (p=0.9214) and after treatment (p=0.4411), or with the individual outcome (p=0.4066). Clinical remission and the change in serum sRAGE concentration after treatment were not significantly associated (p=0.5727); however, serum s

  13. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  14. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana*

    Science.gov (United States)

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G. Eric

    2015-01-01

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed. PMID:25814663

  15. Hindbrain ghrelin receptor signaling is sufficient to maintain fasting glucose.

    Directory of Open Access Journals (Sweden)

    Michael M Scott

    Full Text Available The neuronal coordination of metabolic homeostasis requires the integration of hormonal signals with multiple interrelated central neuronal circuits to produce appropriate levels of food intake, energy expenditure and fuel availability. Ghrelin, a peripherally produced peptide hormone, circulates at high concentrations during nutrient scarcity. Ghrelin promotes food intake, an action lost in ghrelin receptor null mice and also helps maintain fasting blood glucose levels, ensuring an adequate supply of nutrients to the central nervous system. To better understand mechanisms of ghrelin action, we have examined the roles of ghrelin receptor (GHSR expression in the mouse hindbrain. Notably, selective hindbrain ghrelin receptor expression was not sufficient to restore ghrelin-stimulated food intake. In contrast, the lowered fasting blood glucose levels observed in ghrelin receptor-deficient mice were returned to wild-type levels by selective re-expression of the ghrelin receptor in the hindbrain. Our results demonstrate the distributed nature of the neurons mediating ghrelin action.

  16. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  17. Adrenal medullary regulation of rat renal cortical adrenergic receptors

    International Nuclear Information System (INIS)

    Sundaresan, P.R.; Guarnaccia, M.M.; Izzo, J.L. Jr.

    1987-01-01

    The role of the adrenal medulla in the regulation of renal cortical adrenergic receptors was investigated in renal cortical particular fractions from control rats and rats 6 wk after adrenal demedullation. The specific binding of [ 3 H]prazosin, [ 3 H]rauwolscine, and [ 125 I]iodocyanopindolol were used to quantitate α 1 -, α 2 -, and β-adrenergic receptors, respectively. Adrenal demedullation increased the concentration of all three groups of renal adrenergic receptors; maximal number of binding sites (B max , per milligram membrane protein) for α 1 -, and α 2 -, and β-adrenergic receptors were increased by 22, 18.5, and 25%, respectively. No differences were found in the equilibrium dissociation constants (K D ) for any of the radioligands. Plasma corticosterone and plasma and renal norepinephrine levels were unchanged, whereas plasma epinephrine was decreased 72% by adrenal demedullation, renal cortical epinephrine was not detectable in control or demedullated animals. The results suggest that, in the physiological state, the adrenal medulla modulates the number of renal cortical adrenergic receptors, presumably through the actions of a circulating factor such as epinephrine

  18. Enhanced expression of contractile endothelin ET(B) receptors in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Johnsson, E.; Maddahi, A.; Wackenfors, A.

    2008-01-01

    . In cardiovascular disease and in organ culture in vitro, endothelin ET(B) receptors are up-regulated on smooth muscle cells. The objectives of the present study were to characterise the endothelin receptor-induced vasoconstriction and quantify the endothelin receptor mRNA levels and immunoreactivity in fresh...... and cultured rat coronary arteries. We demonstrate that endothelin-1 induces strong and equal concentration-dependent contractions in fresh and cultured segments from the left anterior descending coronary artery. Sarafotoxin 6c, an endothelin ET(B) receptor agonist, had negligible effect in fresh arteries...... but produced significant vasoconstriction after organ culture. The endothelin ET(B) receptor mRNA level and the receptor protein immunoreactivity were increased, whereas the level of endothelin ET(A) receptor mRNA was down-regulated but not its receptor protein immunoreactivity after organ culture...

  19. Model for breast cancer survival: relative prognostic roles of axillary nodal status, TNM stage, estrogen receptor concentration, and tumor necrosis.

    Science.gov (United States)

    Shek, L L; Godolphin, W

    1988-10-01

    The independent prognostic effects of certain clinical and pathological variables measured at the time of primary diagnosis were assessed with Cox multivariate regression analysis. The 859 patients with primary breast cancer, on which the proportional hazards model was based, had a median follow-up of 60 months. Axillary nodal status (categorized as N0, N1-3 or N4+) was the most significant and independent factor in overall survival, but inclusion of TNM stage, estrogen receptor (ER) concentration and tumor necrosis significantly improved survival predictions. Predictions made with the model showed striking subset survival differences within stage: 5-year survival from 36% (N4+, loge[ER] = 0, marked necrosis) to 96% (N0, loge[ER] = 6, no necrosis) in TNM I, and from 0 to 70% for the same categories in TNM IV. Results of the model were used to classify patients into four distinct risk groups according to a derived hazard index. An 8-fold variation in survival was seen with the highest (greater than 3) to lowest index values (less than 1). Each hazard index level included patients with varied combinations of the above factors, but could be considered to denote the same degree of risk of breast cancer mortality. A model with ER concentration, nodal status, and tumor necrosis was found to best predict survival after disease recurrence in 369 patients, thus confirming the enduring biological significance of these factors.

  20. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration.

    Science.gov (United States)

    Cassano, Jennifer M; Kennedy, John G; Ross, Keir A; Fraser, Ethan J; Goodale, Margaret B; Fortier, Lisa A

    2018-01-01

    Bone marrow concentrate (BMC) and platelet-rich plasma (PRP) are used extensively in regenerative medicine. The aim of this study was to determine differences in the cellular composition and cytokine concentrations of BMC and PRP and to compare two commercial BMC systems in the same patient cohort. Patients (29) undergoing orthopaedic surgery were enrolled. Bone marrow aspirate (BMA) was processed to generate BMC from two commercial systems (BMC-A and BMC-B). Blood was obtained to make PRP utilizing the same system as BMC-A. Bone marrow-derived samples were cultured to measure colony-forming units, and flow cytometry was performed to assess mesenchymal stem cell (MSC) markers. Cellular concentrations were assessed for all samples. Catabolic cytokines and growth factors important for cartilage repair were measured using multiplex ELISA. Colony-forming units were increased in both BMCs compared to BMA (p BMC-A and PRP, but there were differences in leucocyte concentrations. TGF-β1 and PDGF were not different between BMC-A and PRP. IL-1ra concentrations were greater (p = 0.0018) in BMC-A samples (13,432 pg/mL) than in PRP (588 pg/mL). The IL-1ra/IL-1β ratio in all BMC samples was above the value reported to inhibit IL-1β. The bioactive factors examined in this study have differing clinical effects on musculoskeletal tissue. Differences in the cellular and cytokine composition between PRP and BMC and between BMC systems should be taken into consideration by the clinician when choosing a biologic for therapeutic application. Clinical, Level II.

  1. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells

    OpenAIRE

    Stroncek, David F.; Lee, Daniel W.; Ren, Jiaqiang; Sabatino, Marianna; Highfill, Steven; Khuu, Hanh; Shah, Nirali N.; Kaplan, Rosandra N.; Fry, Terry J.; Mackall, Crystal L.

    2017-01-01

    Background Clinical trials of Chimeric Antigen Receptor (CAR) T cells manufactured from autologous peripheral blood mononuclear cell (PBMC) concentrates for the treatment of hematologic malignancies have been promising, but CAR T cell yields have been variable. This variability is due in part to the contamination of the PBMC concentrates with monocytes and granulocytes. Methods Counter-flow elutriation allows for the closed system separation of lymphocytes from monocytes and granulocytes. We ...

  2. Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.

    Science.gov (United States)

    Coates, E L; Ballam, G O

    1987-01-01

    1. Tidal volume, end-tidal CO2, and ventilatory frequency in Tupinambis nigropunctatus were measured in response to CO2 (1-4%) delivered to either the mouth or nares. Additionally, the sensitivity of the ventilatory response to nasal CO2 was evaluated at CO2 concentrations less than 1%. The ventilatory parameters were also measured in response to CO2 (1-4%) delivered to the nares after the olfactory peduncle was transected. 2. It was found that (0.4-4%) nasal CO2 depressed ventilatory frequency by 9% to 83% respectively, while tidal volume was not significantly altered. CO2 (1-4%) delivered to the mouth produced no apparent changes in any of the ventilatory parameters. Following transection of the olfactory peduncle, nasal CO2 was ineffective in producing any change in ventilatory frequency or depth. 3. These findings indicate that CO2-sensitive receptors are located in either the nasal or vomeronasal membranes of tegu lizards and that the olfactory peduncle must be intact for these receptors to affect ventilatory changes in response to elevated CO2 concentrations. The receptors are capable of mediating a ventilatory response to CO2 concentrations lower than those found in either expired air or in confined spaces such as occupied burrows. 4. The discrepancies in the ventilatory responses of lizards and snakes to inspired CO2 reported in past experiments may be partially explained by the presence of nasal or vomeronasal CO2-sensitive receptors.

  3. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    Science.gov (United States)

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  4. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  5. Inorganic mercury dissociates preassembled Fas/CD95 receptor oligomers in T lymphocytes

    International Nuclear Information System (INIS)

    Ziemba, Stamatina E.; McCabe, Michael J.; Rosenspire, Allen J.

    2005-01-01

    Genetically susceptible rodents exposed to low burdens of inorganic mercury (Hg 2+ ) develop autoimmune disease. Previous studies have shown that low, noncytotoxic levels of Hg 2+ inhibit Fas-mediated apoptosis in T cells. These results suggest that inhibition of the Fas death receptor pathway potentially contributes to autoimmune disease after Hg 2+ exposure, as a consequence of disruption of peripheral tolerance. The formation of active death inducing signaling complexes (DISC) following CD95/Fas receptor oligomerization is a primary step in the Fas-mediated apoptotic pathway. Other recent studies have shown that Hg 2+ at concentrations that inhibit apoptosis also inhibit formation of active DISC, suggesting that inhibition of DISC is the mechanism responsible for Hg 2+ -mediated inhibition of apotosis. Preassociated Fas receptors have been implicated as key elements necessary for the production of functional DISC. We present evidence in this study showing that low and nontoxic concentrations of Hg 2+ induce the dissociation of preassembled Fas receptor complexes in Jurkat T cells. Thus, this Hg 2+ -induced event should subsequently decrease the amount of preassembled Fas available for DISC formation, potentially resulting in the attenuation of Fas-mediated apoptosis in T lymphocytes

  6. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy

    Science.gov (United States)

    Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

    2017-01-01

    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

  7. Modulation of GABA receptors expressed in Xenopus oocytes by 13-L-hydroxylinoleic acid and food additives.

    Science.gov (United States)

    Aoshima, H; Tenpaku, Y

    1997-12-01

    To study the effects of 13-L-hydroxylinoleic acid (LOH) and food additives on gamma-aminobutyric acid (GABA) receptors, ionotropic GABA receptors were expressed in Xenopus oocytes by injecting mRNAs prepared from rat whole brain. LOH, which was prepared by reduction of 13-L-hydroperoxylinoleic acid (LOOH), inhibited the response of GABA receptors in the presence of high concentrations of GABA. LOH also inhibited nicotinic acetylcholine, glycine, and kainate receptors, while it had little effect on NMDA receptors expressed in Xenopus oocytes. However, LOH potentiated the response of GABA receptors as well as LOOH in the presence of low concentrations of GABA, possibly increasing the affinity of GABA for the receptors, while linoleic acid did not. Since some modification of the compounds seemed to change their effects on GABA receptors, the responses of GABA receptors elicited by 10 microM GABA were measured in the presence of compounds with various kinds of functional groups or the structural isomers of pentanol. Potentiation of GABA receptors depended strongly on the species of functional groups and also depended on the structure of the isomers. Then effects of various kinds of food additives on GABA receptors were also examined; perfumes such as alcohols or esters potentiated the responses strongly, while hexylamine, nicotinamide, or caffeine inhibited the responses, mainly in a competitive manner, and vanillin inhibited the responses noncompetitively. These results suggest the possibility that production of LOOH and LOH, or intake of much of some food additives, modulates the neural transmission in the brain, especially through ionotropic GABA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  8. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    Science.gov (United States)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  9. Application of source-receptor models to determine source areas of biological components (pollen and butterflies)

    OpenAIRE

    M. Alarcón; M. Àvila; J. Belmonte; C. Stefanescu; R. Izquierdo

    2010-01-01

    The source-receptor models allow the establishment of relationships between a receptor point (sampling point) and the probable source areas (regions of emission) through the association of concentration values at the receptor point with the corresponding atmospheric back-trajectories, and, together with other techniques, to interpret transport phenomena on a synoptic scale. These models are generally used in air pollution studies to determine the areas of origin of chemical compounds measured...

  10. Competitive inhibition of [3H]dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    International Nuclear Information System (INIS)

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-01-01

    The inhibitory effect of leupeptin on [ 3 H]dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of [ 3 H]dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of [ 3 H]dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S)

  11. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors.

    Science.gov (United States)

    Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping

    2014-08-21

    To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. Colon transit was slower in the cold group than in the control group (P cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.

  12. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    International Nuclear Information System (INIS)

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with [ 3 H]yohimbine, whereas [ 3 H]clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, [ 3 H] clonidine and [ 3 H]yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of [ 3 H]clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations

  13. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  14. Gastrin receptor characterization: affinity cross-linking of the gastrin receptor on canine gastric parietal cells

    International Nuclear Information System (INIS)

    Matsumoto, M.; Park, J.; Yamada, T.

    1987-01-01

    The authors applied affinity cross-linking methods to label the gastrin receptor on isolated canine gastric parietal cells in order to elucidate the nature of its chemical structure. 125 I-labeled Leu 15 -gastrin and 125 I-labeled gastrin/sub 2-17/ bound to intact parietal cells and their membranes with equal affinity, and half-maximal inhibition of binding was obtained at an incubation concentration of 3.2 x 10 -10 M unlabeled gastrin. 125 I-gastrin/sub 2-17/ was cross-linked to plasma membranes or intact parietal cells by incubation in disuccinimidyl suberate. The membrane pellets were solubilized with or without dithiothreitol and applied to electrophoresis on 7.5% sodium dodecyl sulfate polyacrylamide gels. Autoradiograms revealed a band of labeling at M/sub r/ 76,000 and labeling of this band was inhibited in a dose-dependent fashion by addition of unlabeled gastrin to the incubation mixture. Dithiothreitol in concentrations as high as 100 mM did not later the electrophoretic mobility of the labeled band. After taking into account the molecular weight of 125 I-gastrin/sub 2-17/, the results suggest that the gastrin receptor on parietal cells is a single protein of M/sub r/ 74,000 without disulfide-linked subunits

  15. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles

    International Nuclear Information System (INIS)

    Kamen, B.A.; Wang, M.T.; Streckfuss, A.J.; Peryea, X.; Anderson, R.G.

    1988-01-01

    MA104 cells, as well as several other rapidly dividing tissue culture cells, have a folate-binding protein associated with their cell surface. The protein has the properties of a membrane receptor: (a) 5-methyl[ 3 H]tetrahydrofolic acid binds with high affinity (Kd approximately equal to 3 nM); (b) the protein is an integral membrane protein; (c) it appears to deliver physiological concentrations of 5-methyl[ 3 H]tetrahydrofolic acid to the inside of the cell; (d) binding activity is regulated by the concentration of folate within the cell. To better understand the mechanism of action of this receptor, we have studied the pathway of folate internalization. We present evidence that during internalization: (a) folate binds to the membrane receptor; (b) the ligand-receptor complex moves into the cell; (c) the ligand is released from the receptor in an acidic intracellular compartment and moves into the cytoplasm; and (d) the unoccupied receptor returns to the cell surface

  16. The multiplicity of the D-1 dopamine receptor

    International Nuclear Information System (INIS)

    Mailman, R.B.; Klits, C.D.; Lewis, M.H.; Rollema, H.; Schulz, D.W.; Wyrick, S.

    1986-01-01

    The authors have sought to address two questions of some neuropharmacological importance in this chapter. First, they examine the nature of mechanisms by which dopamine initiates many psychopharmacological effects and, second, they study the possibility of designing highly specific drugs targeted only at a selected subpopulation of dopamine receptors. Effects of SCH23390 and haloperidol on concentrations of dopamine, DOPAC, and HVA in various rat brain regions are shown. In addition, the effects of SCH23390 on the in vivo binding of dipropyl-5, 6-ADTN are shown. Differential distribution of a dopamine sensitive adenylate cyclase and ( 3 H)-SCH23390 binding sites are examined. A model is presented of D 1 dopamine receptors in membrane, illustrating the lack of identity of some of the ( 3 H)-SCH23390 binding sites with the dopamine receptor linked to stimulation of cAMP synthesis

  17. Increased brain dopamine and dopamine receptors in schizophrenia

    International Nuclear Information System (INIS)

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-01-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients

  18. Structure-function relationships for the interleukin 2 receptor system

    Directory of Open Access Journals (Sweden)

    Richard J. Robb

    1987-01-01

    Full Text Available Receptors for interleukin 2 (IL-2 esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta] chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.

  19. Potential Involvement of P2 Receptors in the Pathological Processes of Hyperthyroidism: A Pilot Study.

    Science.gov (United States)

    Hong, Wu; Li, Guodong; Nie, Yijun; Zou, Lifang; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Zhang, Chun-Ping; Liang, Shangdong

    2016-05-01

    Symptoms of hyperthyroidism manifest mainly as changes in the nervous and metabolic systems. Whether P2X receptors (ionotropic ATP purinergic receptors, including P2X3 receptor and P2X7 receptor) are involved in the alterations of these disorders still remains unclear. Thus, this study aimed to assess the association of hyperthyroidism with the expression of P2X3 and P2X7 receptors and the concentrations of ATP in blood leukocytes and catecholamine. Twelve healthy subjects and twelve patients diagnosed with hyperthyroidism were recruited. Serum free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) levels had been detected by chemiluminescence method. Meanwhile, the catecholamine levels (including adrenaline, noradrenaline, and dopamine) in plasma, ATP level and P2X receptors (including P2X3 receptor and P2X7 receptor) in peripheral blood had been detected by high performance liquid chromatography, bioluminescence method, and reverse transcription polymerase chain reaction, respectively. Levels of epinephrine and norepinephrine were significantly higher in the hyperthyroidism group compared with the control group. The concentration of ATP in the hyperthyroidism group was significantly higher than its in the control group. The expression of P2X3 mRNA and P2X7 mRNA in hyperthyroidism group were significantly increased compared with those in control group. In a conclusion, there is a relationship between the elevated expression of P2X3 receptor and P2X7 receptor in peripheral blood leukocytes and high serum epinephrine and norepinephrine levels in hyperthyroidism patients. © 2016 by the Association of Clinical Scientists, Inc.

  20. Dopamine receptors in human gastrointestinal mucosa

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-01-01

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using 3 H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of 3 H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures

  1. Up-regulation of VEGF and its receptor in refractory leukemia cells

    OpenAIRE

    Wang, Lei; Zhang, Wenjun; Ding, Yi; Xiu, Bing; Li, Ping; Dong, Yan; Zhu, Qi; Liang, Aibin

    2015-01-01

    Objective: To analyze the causative mechanisms in refractory leukemia cells. Methods: Vascular endothelial growth factor (VEGF) blood plasma concentrations in 35 de novo, 6 relapse, 20 remission leukemia patients and 10 healthy kids were determined via ELISA analyses. Transcription levels of the VEGF receptors (VEGFR) Fms-like tyrosine kinase-1 (Flt-1) and kinase-domain insert containing receptor (KDR) were determined in participants’ leucocytes with RT-PCR. Apoptosis rates as well as Cyt-C a...

  2. Regulation of 1,25-dihydroxyvitamin D, receptors by [3H]-1,25-dihydroxyvitamin D3 in cultured cells (T-47D): evidence for receptor upregulation

    International Nuclear Information System (INIS)

    Reinhardt, T.A.; Horst, R.L.

    1986-01-01

    The authors examined the effect of 1,25-(OH) 2 D 3 on receptor concentration in cultured cells (T-47D). Two days prior to experiment, cells were fed with RPMI 1640 + 10% serum and 24-32 hours prior to experiment the media was replaced with RPMI 1640 + 25 mM Hepes + 1% serum. [ 3 H]-1,25-(OH) 2 D 3 +/- 100-fold molar excess cold hormone was used to treat the cells. Occupied receptors were measured in freshly prepared cytosols. Total receptors were measured following a 16-hour incubation of cytosols in the presence of 0.6 nM [ 3 H]-1,25-(OH) 2 D 3 +/- 100-fold molar excess of cold hormone at 4 0 C. Treatment of cell cultures for 16-18 hours with 0.5-1.0 nM [ 3 H]-1,25-(OH) 2 D 3 resulted in a 30-40% receptor occupancy by the hormone and a 2- to 3-fold increase in total cell receptor as compared to vehicle-treated controls. Time course studies showed a rapid increase in total receptors up to 16 hours post-treatment in the face of declining receptor occupancy. Actinomycin D blocked the [ 3 H]-1,25-(OH) 2 D 3 -dependent rise in cell receptor. The physiological significance of this receptor upregulation is not known nor is it known whether upregulation results from synthesis of new receptors and/or is the result of the activation of preformed receptors by a inducible activator protein

  3. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers

    Directory of Open Access Journals (Sweden)

    Propping Peter

    2004-03-01

    Full Text Available Abstract Background Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF have been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine metabolite concentrations are partly determined by genetic influences. Methods We investigated possible relationships between DNA polymorphisms in the serotonin 2C receptor (HTR2C, the serotonin 3A receptor (HTR3A, the dopamine D4 receptor (DRD4, and the dopamine β-hydroxylase (DBH genes and CSF concentrations of 5-hydroxyindolacetic acid (5-HIAA, homovanillic acid (HVA, and 3-methoxy-4-hydroxyphenylglycol (MHPG in healthy volunteers (n = 90. Results The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02. The DBH-1021 heterozygote genotype was associated with 5-HIAA (p = 0.0005 and HVA (p = 0.009 concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were significantly associated with any of the monoamine metabolites. Conclusions The present results suggest that the HTR3A and DBH genes may participate in the regulation of dopamine and serotonin turnover rates in the central nervous system.

  4. Concentration fluctuations and averaging time in vapor clouds

    CERN Document Server

    Wilson, David J

    2010-01-01

    This book contributes to more reliable and realistic predictions by focusing on sampling times from a few seconds to a few hours. Its objectives include developing clear definitions of statistical terms, such as plume sampling time, concentration averaging time, receptor exposure time, and other terms often confused with each other or incorrectly specified in hazard assessments; identifying and quantifying situations for which there is no adequate knowledge to predict concentration fluctuations in the near-field, close to sources, and far downwind where dispersion is dominated by atmospheric t

  5. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  6. Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors.

    Science.gov (United States)

    Calas-List, Delphine; List, Olivier; Quinchard, Sophie; Thany, Steeve H

    2013-07-01

    Clothianidin is a neonicotinoid insecticide developed in the early 2000s. We have recently demonstrated that it was a full agonist of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors expressed in the cockroach dorsal unpaired median neurons. Clothianidin was able to act as an agonist of imidacloprid-insensitive nAChR2 receptor and internal regulation of cAMP concentration modulated nAChR2 sensitivity to clothianidin. In the present study, we demonstrated that cAMP modulated the agonist action of clothianidin via α-bungarotoxin-sensitive and insensitive receptors. Clothianidin-induced current-voltage curves were dependent to clothianidin concentrations. At 10 μM clothianidin, increasing cAMP concentration induced a linear current-voltage curve. Clothianidin effects were blocked by 0.5 μM α-bungarotoxin suggesting that cAMP modulation occurred through α-bungarotoxin-sensitive receptors. At 1 mM clothianidin, cAMP effects were associated to α-bungarotoxin-insensitive receptors because clothianidin-induced currents were blocked by 5 μM mecamylamine and 20 μM d-tubocurarine. In addition, we found that application of 1mM clothianidin induced a strong increase of intracellular calcium concentration. These data reinforced the finding that calcium pathways including cAMP modulated clothianidin action on insect nicotinic acetylcholine receptors. We proposed that intracellular calcium pathways such as cAMP could be a target to modulate the mode of action of neonicotinoid insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Role of GABA(B) receptors in learning and memory and neurological disorders.

    Science.gov (United States)

    Heaney, Chelcie F; Kinney, Jefferson W

    2016-04-01

    Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Compositions and methods related to serotonin 5-HT1A receptors

    Science.gov (United States)

    Mukherjee, Jogeshwar [Irvine, CA; Saigal, Neil [Fresno, CA; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably .sup.18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with .sup.18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  9. Dopamine D/sub 2/ and D/sub 1/ receptors: biochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Niznik, H B

    1986-01-01

    In order to label dopamine D/sub 2/ receptors reversibly and selectively the potent substituted benzamide neuroleptic, YM-09151-2, was tritium labeled and its binding characteristics to striatal homogenates investigated. (/sup 3/H) YM-09151-2 bound to D/sub 2/ receptors with high affinity in a specific, saturable, reversible and sodium dependent fashion, displaying an appropriate pharmacological D/sub 2/ receptor profile. (/sup 3/H) YM-09151-2 appears to be the ligand of choice for labeling D/sub 2/ receptors since it displays approximately 20-fold lower affinity for serotonergic S/sub 2/ receptors than does (/sup 3/H) spiperone. As an initial step towards the molecular identification of the ligand binding subunit of the striatal D/sub 2/ receptor, photolabile analogues of the substituted benzamide clebopride were synthesized and their reversible and irreversible binding interactions to D/sub 2/ receptors characterized. D/sub 2/ receptor photoinactivation was prevented in a concentration and stereoselective manner by dopaminergic agonists and antagonists. In vivo biodistribution studies with (/sup 125/I) iodoazidoclebopride confirmed the ligand's ability to bind to D/sub 2/ receptor-rich regions and as such, may become a useful tool for the molecular characterization of D/sub 2/ receptor proteins. Digitonin solubilized striatal dopamine D/sub 2/ and D/sub 1/ receptors can be completely separated with full retention of biological activity by steric exclusion High Pressure Liquid Chromatography (HPLC) with corresponding Stokes radii of 7.1 and 5.6 nm.

  10. MS-377, a selective sigma receptor ligand, indirectly blocks the action of PCP in the N-methyl-D-aspartate receptor ion-channel complex in primary cultured rat neuronal cells.

    Science.gov (United States)

    Karasawa, Jun-ichi; Yamamoto, Hideko; Yamamoto, Toshifumi; Sagi, Naoki; Horikomi, Kazutoshi; Sora, Ichiro

    2002-02-22

    MS-377 ((R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate) is a antipsychotic agent that binds to sigma-1 receptor. MS-377 showed anti-dopaminergic and anti-serotonergic activities and antagonistic action against phencyclidine (PCP)-induced behaviors in an animal model. These anti-psychotic activities of MS-377 are attributable to association with sigma-1 receptor. However, the mechanism by which the sigma-1 receptor ligands exact those numerous effects remains to be elucidated. In the present study, we evaluated the effect of MS-377 on N-methyl-D-aspartate (NMDA) receptor ion-channel complex in primary cultured rat neuronal cells. First, we examined the effect of MS-377 on NMDA-induced Ca2+ influx with fura-2/ AM loaded cells. MS-377 showed no effects on the basal Ca2+ concentration and NMDA-induced Ca2+ influx by itself PCP and SKF-10047 reduced the NMDA-induced increase in intracellular Ca2+ concentration. Pre-incubation of 1 microM MS-377 was found to significantly block the reduction by PCP or SKF-10047 of the NMDA-induced Ca2+ influx. Second, the effect of MS-377 on [3H]MK-801 intact cell binding was examined. PCP, haloperidol and (+)-pentazocine inhibited [3H]MK-801 binding, although MS-377 showed no effect by itself Pre-treatment of MS-377 markedly reversed the inhibition of [3H]MK-801 binding by PCP in a dose-dependent manner. These effects of MS-377 may depend on its affinity for the sigma-1 receptor, because MS-377 is a selective sigma-1 receptor ligand without any affinity for NMDA receptor ion-channel complex. These observations suggest that the MS-377 indirectly modulated the NMDA receptor ion-channel complex, and the anti-psychotic activities of MS-377, in part, are attributable to such on action via sigma-1 receptor.

  11. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS

    DEFF Research Database (Denmark)

    Sellebjerg, F; Börnsen, L; Khademi, M

    2009-01-01

    BACKGROUND: Accumulating evidence supports a major role of B cells in multiple sclerosis (MS) pathogenesis. How B cells are recruited to the CNS is incompletely understood. Our objective was to study B-cell chemokine concentrations in MS, their relationship with disease activity, and how treatment...... the chemokine receptor CXCR5 to the CNS in multiple sclerosis (MS), and may be a useful biomarker for treatment effects in MS. Furthermore, CXCL13 or its receptor CXCR5 should be considered as therapeutic targets in MS....... with methylprednisolone and natalizumab affected the concentration in CSF. METHODS: Using a cross-sectional design, CSF and blood samples were obtained from cohorts of patients with clinically isolated syndromes (CIS), relapsing-remitting MS (RRMS), primary progressive MS (PPMS), or secondary progressive MS (SPMS...

  12. Interleukin-8 and Its Receptors in Human Milk from Mothers of Full-Term and Premature Infants.

    Science.gov (United States)

    Polat, Adem; Tunc, Turan; Erdem, Galip; Yerebasmaz, Neslihan; Tas, Ahmet; Beken, Serdar; Basbozkurt, Gokalp; Saldir, Mehmet; Zenciroglu, Aysegul; Yaman, Halil

    2016-06-01

    In addition to its nutritional benefits, human milk also has bioactive elements. Limited immunological functions of newborns are supported and altered by the immunological elements of mother milk. Chemokines are of importance among these immune factors. Interleukin-8 (IL-8) has been demonstrated in mother's milk, and its receptors, CXC chemokine receptors (CXCR)-1 and CXCR-2, were detected on cells, responsible for immunological reactions and mammary glandular cells. The soluble forms of these receptors are yet to be described in human milk. In this study, it was aimed to assess the IL-8 levels and the concentrations of its receptors in colostrum and mature mother's milk in regard to preterm and term delivery. The results of this study indicated a decline in IL-8 levels with the lactation stage, but no difference was observed between term and preterm mother's milk. Regarding the CXCR-1 and CXCR-2, the concentrations of these receptors were similar in both colostrum and mature milk. Furthermore, there was not any significant difference between term and preterm mother's milk. In conclusion, this is the first study to investigate the concentrations of CXCR-1 and CXCR-2 with the levels of IL-8 in colostrum and mature human milk of term and preterm newborns. The alterations in IL-8 levels were similar in some of the studies reported. CXCR-1 and CXCR-2 levels did not demonstrate any significant difference. Further studies are required to investigate the soluble forms of these receptors and their relation to IL-8 with larger cohort.

  13. Medicinal utility of boron clusters. Receptor modulators bearing carborane as a hydrophobic pharmacophore

    International Nuclear Information System (INIS)

    Endo, Y.; Iijima, T.; Yaguchi, K.; Yoshimi, T.; Yamakoshi, Y.; Kawachi, E.; Kagechika, H.

    2000-01-01

    The hydrophobic character and spherical geometry of carboranes may allow their use as a hydrophobic pharmacophore in biologically active molecules. We report potent cellular nuclear receptor ligands with carborane such as retinoids and estrogens. These receptor ligands raise the possibility for therapeutic agents, and their membrane transport characteristics and concentration in cellular nucleus may provide potential use for BNCT. (author)

  14. P2X4: A fast and sensitive purinergic receptor

    Directory of Open Access Journals (Sweden)

    Jaanus Suurväli

    2017-10-01

    Full Text Available Extracellular nucleotides have been recognized as important mediators of activation, triggering multiple responses via plasma membrane receptors known as P2 receptors. P2 receptors comprise P2X ionotropic receptors and G protein-coupled P2Y receptors. P2X receptors are expressed in many tissues, where they are involved in a number of functions including synaptic transmission, muscle contraction, platelet aggregation, inflammation, macrophage activation, differentiation and proliferation, neuropathic and inflammatory pain. P2X4 is one of the most sensitive purinergic receptors (at nanomolar ATP concentrations, about one thousand times more than the archetypal P2X7. P2X4 is widely expressed in central and peripheral neurons, in microglia, and also found in various epithelial tissues and endothelial cells. It localizes on the plasma membrane, but also in intracellular compartments. P2X4 is preferentially localized in lysosomes, where it is protected from proteolysis by its glycosylation. High ATP concentration in the lysosomes does not activate P2X4 at low pH; P2X4 gets activated by intra-lysosomal ATP only in its fully dissociated tetra-anionic form, when the pH increases to 7.4. Thus, P2X4 is functioning as a Ca2+-channel after the fusion of late endosomes and lysosomes. P2X4 modulates major neurotransmitter systems and regulates alcohol-induced responses in microglia. P2X4 is one of the key receptors mediating neuropathic pain. However, injury-induced upregulation of P2X4 expression is gender dependent and plays a key role in pain difference between males and females. P2X4 is also involved in inflammation. Extracellular ATP being a pro-inflammatory molecule, P2X4 can trigger inflammation in response to high ATP release. It is therefore involved in multiple pathologies, like post-ischemic inflammation, rheumatoid arthritis, airways inflammation in asthma, neurodegenerative diseases and even metabolic syndrome. Although P2X4 remains poorly

  15. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: Quantitative autoradiography, species differences and comparison with kappa receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, N.A.; Hughes, J. (Addenbrookes Hospital Site, Cambridge (England))

    1989-05-01

    The opioid peptides, (3H)DAGO and (3H)DPDPE, bound to rat and guinea pig brain homogenates with a high, nanomolar affinity and to a high density of mu and delta receptors, respectively. (3H)DAGO binding to mu receptors was competitively inhibited by unlabelled opioids with the following rank order of potency: DAGO greater than morphine greater than DADLE greater than naloxone greater than etorphine much greater than U50488 much greater than DPDPE. In contrast, (3H)DPDPE binding to delta receptors was inhibited by compounds with the following rank order of potency: DPDPE greater than DADLE greater than etorphine greater than dynorphin(1-8) greater than naloxone much greater than U50488 much greater than DAGO. These profiles were consistent with specific labelling of the mu and delta opioid receptors, respectively. In vitro autoradiographic techniques coupled with computer-assisted image analyses revealed a discrete but differential anatomical localization of mu and delta receptors in the rat and guinea pig brain. In general, mu and delta receptor density in the rat exceeded that in the guinea pig brain and differed markedly from that of kappa receptors in these species. However, while mu receptors were distributed throughout the brain with hotspots in the fore-, mid- and hindbrain of the two rodents, the delta sites were relatively diffusely distributed, and were mainly concentrated in the forebrain with particularly high levels within the olfactory bulb (OB), n. accumbens and striatum. Notable regions of high density of mu receptors in the rat and guinea pig brain were the accessory olfactory bulb, striatal patches and streaks, amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and s. nigra.

  16. Intrapulmonary receptors in the Tegu lizard: II. Functional characteristics and localization;.

    Science.gov (United States)

    Scheid, P; Kuhlmann, W D; Fedde, M R

    1977-02-01

    Intrapulmonary receptors identified in the Tegu lizard by single-unit vagal recording (Fedde et al., 1977) were subjected to a number of stimuli and localized within the lung. Some carbon dioxide receptors could follow periodic changes in intrapulmonary CO2 concentrations as rapidly as 1.3 Hz; No oxygen sensitivity was observed with this receptor type, and halothane markedly depressed the discharge frequency. In response to intravenously injected acetazolamide they increased their discharge frequency and became almost totally insensitive to CO2, suggesting molecular per se is not the direct controller of receptor discharge; These receptors show many of the functional characteristics described for those in the avian lung. Afferent activity from both CO2 and mechanoreceptors could be elicited by electrically stimulating the lung surface. The CO2 receptors appeared to be organized in a receptive field covering more than 1 cm2 of lung surface, multiple receptors being innervated by a single afferent fiber. Activity in afferent fibers from mechanoreceptors could be evoked from only one distinct spot on the lung surface. Conduction velocities of afferent fibers from CO2 receptors ranged from 1 to 3 m-sec-1; from mechanoreceptors, from 1.9 to 5.2 m-sec-1.

  17. Isolation of a mannose/N-acetylglucosamine receptor from rabbit lung

    International Nuclear Information System (INIS)

    Lennartz, M.R.; Wileman, T.E.; Stahl, P.D.

    1986-01-01

    The presence of a mannose receptor on alveolar macrophages was first described in 1978 and later extended to other macrophage populations. Recently the novel ligand, mannose-conjugated lactoperoxidase, was used to identify this receptor as a 175kD protein. A 175kD protein exhibiting mannose and N-acetylglucosamine (GlcNAc)-binding properties was isolated from rabbit lung membranes. Membranes were washed with high salt, mannose and EDTA to remove endogenously bound ligand and were subsequently extracted with 1% Triton-X 100. The extract was subjected to affinity chromatography on Mannose-Sepharose followed by GlcNAc-Agarose. Triton was exchanged for 1% CHAPS while the protein was bound to GlcNAc-Agarose, allowing the eluate to be concentrated without denaturation. The eluted protein bound [ 125 I]mannose-BSA in a mannan-inhibitable fashion. Microgram quantities of protein were isolated in this fashion. SDS-PAGE revealed a major protein band at 175kD. Amino acid analysis indicates low concentrations of methionine. Results from concanavalin A binding studies and endoglycosidase F digestion suggest that the mannose receptor is a glycoprotein containing N-linked oligosaccharides

  18. Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin

    International Nuclear Information System (INIS)

    Gaudreau, P.; Quirion, R.; St Pierre, S.; Pert, C.B.

    1983-01-01

    [ 3 H]Pentagastrin binds specifically to an apparent single class of CCK receptors on slide-mounted sections of rat brain (KD . 5.6 nM; Bmax . 36.6 fmol/mg protein). This specific binding is temperature-dependent and regulated by ions and nucleotides. The relative potencies of C-terminal fragments of CCK-8(SO 3 H), benzotript and proglumide in inhibiting specific [ 3 H]pentagastrin binding to CCK brain receptors reinforce the concept of different brain and pancreas CCK receptors. CCK receptors were visualized by using tritium-sensitive LKB film analyzed by computerized densitometry. CCK receptors are highly concentrated in the cortex, dentate gyrus, granular and external plexiform layers of the olfactory bulb, anterior olfactory nuclei, olfactory tubercle, claustrum, accumbens nucleus, some nuclei of the amygdala, thalamus and hypothalamus

  19. Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Hauser, Frank; Kobberup, Sune

    2003-01-01

    The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also...... part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila...... and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head...

  20. The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilisation in pancreatic beta-cells.

    Science.gov (United States)

    Squires, Paul E; Hills, Claire E; Rogers, Gareth J; Garland, Patrick; Farley, Sophia R; Morgan, Noel G

    2004-10-06

    beta-Carbolines (including harmane and pinoline) stimulate insulin secretion by a mechanism that may involve interaction with imidazoline I(3)-receptors but which also appears to be mediated by actions that are additional to imidazoline receptor agonism. Using the MIN6 beta-cell line, we now show that both the imidazoline I(3)-receptor agonist, efaroxan, and the beta-carboline, harmane, directly elevate cytosolic Ca(2+) and increase insulin secretion but that these responses display different characteristics. In the case of efaroxan, the increase in cytosolic Ca(2+) was readily reversible, whereas, with harmane, the effect persisted beyond removal of the agonist and resulted in the development of a repetitive train of Ca(2+)-oscillations whose frequency, but not amplitude, was concentration-dependent. Initiation of the Ca(2+)-oscillations by harmane was independent of extracellular calcium but was sensitive to both dantrolene and high levels (20 mM) of caffeine, suggesting the involvement of ryanodine receptor-gated Ca(2+)-release. The expression of ryanodine receptor-1 and ryanodine receptor-2 mRNA in MIN6 cells was confirmed using reverse transcription-polymerase chain reaction (RT-PCR) and, since low concentrations of caffeine (1 mM) or thimerosal (10 microM) stimulated increases in [Ca(2+)](i), we conclude that ryanodine receptors are functional in these cells. Furthermore, the increase in insulin secretion induced by harmane was attenuated by dantrolene, consistent with the involvement of ryanodine receptors in mediating this response. By contrast, the smaller insulin secretory response to efaroxan was unaffected by dantrolene. Harmane-evoked changes in cytosolic Ca(2+) were maintained by nifedipine-sensitive Ca(2+)-influx, suggesting the involvement of L-type voltage-gated Ca(2+)-channels. Taken together, these data imply that harmane may interact with ryanodine receptors to generate sustained Ca(2+)-oscillations in pancreatic beta-cells and that this effect

  1. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  2. Autoradiographic localization of substance P receptors in the rat and bovine spinal cord and the rat and cat spinal trigeminal nucleus pars caudalis and the effects of neonatal capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Mantyh, P.W.; Hunt, S.P. (Medical Research Council Centre, Cambridge (UK). Medical School, MRC Neurochemical Pharmacology Unit)

    1985-04-22

    Substance P (SP) is a putative neurotransmitter in the central nervous system. In the present report the authors have used autoradiographic receptor binding techniques to investigate the distribution of SP receptor binding sites in the rat and bovine spinal cord and in the rat and cat spinal trigeminal nucleus pars caudalis. Although some quantitative differences were evident, all species appeared to have a similar distribution of SP receptor binding sites in both the spinal cord and in the spinal trigeminal nucleus pars caudalis. In the spinal cord the heaviest concentration of SP receptors is located in lamina X, while moderate to heavy concentrations were found in laminae I, II and V-IX. Very low concentrations of SP receptors were present in laminae III and IV. Examination of the cat and rat spinal trigeminal nucleus pars caudalis revealed a moderate density of SP receptor binding sites in laminae I and II, very low concentrations in laminae III and IV, and low to moderate concentrations in lamina V. Rats treated neonatally with capsaicin showed a small (11%) but significant (P < 0.02) increase in the levels of SP receptor binding sites in laminae I and II of the cervical and lumbar spinal cord while in all other laminae the levels remained unchanged.

  3. Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins

    Science.gov (United States)

    Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.

    2008-01-01

    All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126

  4. Comparative effects of several simple carbohydrates on erythrocyte insulin receptors in obese subjects.

    Science.gov (United States)

    Rizkalla, S W; Baigts, F; Fumeron, F; Rabillon, B; Bayn, P; Ktorza, A; Spielmann, D; Apfelbaum, M

    1986-09-01

    The effects of simple carbohydrates on erythrocyte insulin receptors, plasma insulin and plasma glucose were studied during four hypocaloric, hyperproteic, diets. One diet contained no carbohydrate; the other three contained 36 g of either glucose, galactose or fructose. These diets were given for a 14-day period to groups of moderately obese subjects. The hypocaloric carbohydrate-free diet produced a decrease in plasma insulin and glucose concentrations concomitant with an increase in the number of insulin receptors. A similar increase in insulin receptor number was found when the diet was supplemented with glucose or galactose, but not with fructose. The presence of fructose in the diet prevented any increase in insulin receptor number.

  5. A Dual-Sensing Receptor Confers Robust Cellular Homeostasis

    Directory of Open Access Journals (Sweden)

    Hannah Schramke

    2016-06-01

    Full Text Available Cells have evolved diverse mechanisms that maintain intracellular homeostasis in fluctuating environments. In bacteria, control is often exerted by bifunctional receptors acting as both kinase and phosphatase to regulate gene expression, a design known to provide robustness against noise. Yet how such antagonistic enzymatic activities are balanced as a function of environmental change remains poorly understood. We find that the bifunctional receptor that regulates K+ uptake in Escherichia coli is a dual sensor, which modulates its autokinase and phosphatase activities in response to both extracellular and intracellular K+ concentration. Using mathematical modeling, we show that dual sensing is a superior strategy for ensuring homeostasis when both the supply of and demand for a limiting resource fluctuate. By engineering standards, this molecular control system displays a strikingly high degree of functional integration, providing a reference for the vast numbers of receptors for which the sensing strategy remains elusive.

  6. Specific receptor for endothelin in cultured rat cardiocytes

    International Nuclear Information System (INIS)

    Hirata, Y.; Fukuda, Y.; Yoshimi, H.; Emori, T.; Shichiri, M.; Marumo, F.

    1989-01-01

    Specific binding sites for the endothelium-derived vasoconstrictor endothelin (ET) and its effect on cytosolic free Ca2+ concentrations [( Ca2+]i) were studied in a primary culture of cardiocytes from neonatal rats. Binding studies using 125 I-labeled-porcine ET as a radioligand revealed the presence of a single class of high-affinity binding sites for ET in cardiocytes with an apparent Kd of 6-9 x 10(-10) M and a Bmax of 50,000-80,000 sites/cell. Neither various vasoconstrictors nor Ca2+-channel blockers affected the binding. Pretreatment with ET substantially reduced the total number of ET receptors without changing their affinity. ET dose-dependently increased [Ca2+]i in fura-2-loaded cardiocytes. These data indicate that cardiocytes have specific ET receptors that are controlled by a down-regulation mechanism, and that ET induces a receptor-mediated increase in [Ca2+]i in cardiocytes

  7. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    International Nuclear Information System (INIS)

    Weiland, N.G.; Wise, P.M.

    1987-01-01

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silastic capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with [ 3 H]prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland

  8. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, N.G.; Wise, P.M.

    1987-11-01

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silastic capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.

  9. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    International Nuclear Information System (INIS)

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-01-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [ 14 C]CD or [ 14 C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0-50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice

  10. [GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors?].

    Science.gov (United States)

    Levoye, Angélique; Jockers, Ralf

    2007-01-01

    G protein-coupled receptors (GPCRs), also called seven transmembrane domain (7TM) proteins, represent the largest family of cell surface receptors. GPCRs control a variety of physiological processes, are involved in multiple diseases and are major drug targets. Despite a vast effort of academic and industrial research, more than one hundred receptors remain orphans. These orphan GPCRs offer a great potential for drug discovery, as almost 60% of currently prescribed drugs target GPCRs. Deorphenization strategies have concentrated mainly on the identification of the natural ligands of these proteins. Recent advances have shown that orphan GPCRs, similar to orphan nuclear receptors, can regulate the function of non-orphan receptors by heterodimerization. These findings not only help to better understand the extraordinary diversity of GPCRs, but also open new perspectives for the identification of the function of these orphan receptors that hold great therapeutic potential.

  11. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  12. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes.

    Science.gov (United States)

    Lalo, Ulyana; Pankratov, Yuri; Kirchhoff, Frank; North, R Alan; Verkhratsky, Alexei

    2006-03-08

    Chemical transmission between neurons and glial cells is an important element of integration in the CNS. Here, we describe currents activated by NMDA in cortical astrocytes, identified in transgenic mice that express enhanced green fluorescent protein under control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp either in slices or after gentle nonenzymatic mechanical dissociation. Acutely isolated astrocytes showed a three-component response to glutamate. The initial rapid component was blocked by 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), which is an antagonist of AMPA receptors (IC50, 2 microM), and the NMDA receptor antagonist D-AP-5 blocked the later sustained component (IC50, 0.6 microM). The third component of glutamate application response was sensitive to D,L-threo-beta-benzyloxyaspartate, a glutamate transporter blocker. Fast application of NMDA evoked concentration-dependent inward currents (EC50, 0.3 microM); these showed use-dependent block by (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801). These NMDA-evoked currents were linearly dependent on membrane potential and were not affected by extracellular magnesium at concentrations up to 10 mM. Electrical stimulation of axons in layer IV-VI induced a complex inward current in astrocytes situated in the cortical layer II, part of which was sensitive to MK-801 at holding potential -80 mV and was not affected by the AMPA glutamate receptor antagonist NBQX. The fast miniature spontaneous currents were observed in cortical astrocytes in slices as well. These currents exhibited both AMPA and NMDA receptor-mediated components. We conclude that cortical astrocytes express functional NMDA receptors that are devoid of Mg2+ block, and these receptors are involved in neuronal-glial signal transmission.

  13. Elevated glucose concentrations promote receptor-independent activation of adherent human neutrophils: an experimental and computational approach

    DEFF Research Database (Denmark)

    Kummer, Ursula; Zobeley, Jürgen; Brasen, Jens Christian

    2007-01-01

    of NO and superoxide formation were observed. However, these changes were not observed for sorbitol, a nonmetabolizable carbohydrate. Glucose transport appears to be important in this process as phloretin interferes with the glucose-specific receptor-independent activation of neutrophils. However, LY83583...

  14. Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain.

    Science.gov (United States)

    Navarro, Gemma; Cordomí, Arnau; Brugarolas, Marc; Moreno, Estefanía; Aguinaga, David; Pérez-Benito, Laura; Ferre, Sergi; Cortés, Antoni; Casadó, Vicent; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Pardo, Leonardo; McCormick, Peter J; Franco, Rafael

    2018-02-28

    G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A 1 R or A 2A R) can form A 1 R-A 2A R heteromers (A 1 -A 2A Het), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (β-arrestin mediated) signaling. Adenosine has different affinities for A 1 R and A 2A R, allowing the heteromeric receptor to detect its concentration by integrating the downstream G i - and G s -dependent signals. cAMP accumulation and β-arrestin recruitment assays have shown that, within the complex, activation of A 2A R impedes signaling via A 1 R. We examined the mechanism by which A 1 -A 2A Het integrates G i - and G s -dependent signals. A 1 R blockade by A 2A R in the A 1 -A 2A Het is not observed in the absence of A 2A R activation by agonists, in the absence of the C-terminal domain of A 2A R, or in the presence of synthetic peptides that disrupt the heteromer interface of A 1 -A 2A Het, indicating that signaling mediated by A 1 R and A 2A R is controlled by both G i and G s proteins. We identified a new mechanism of signal transduction that implies a cross-communication between G i and G s proteins guided by the C-terminal tail of the A 2A R. This mechanism provides the molecular basis for the operation of the A 1 -A 2A Het as an adenosine concentration-sensing device that modulates the signals originating at both A 1 R and A 2A R.

  15. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    Science.gov (United States)

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  16. Determination of estradiol, estrone and progesterone in serum and human endometrium in correlation to the content of steroid receptors and 17β-hydroxysteroid dehydrogenase activity during menstrual cycle

    International Nuclear Information System (INIS)

    Schmidt-Gollwitzer, M.; Eiletz, J.; Pachaly, J.

    1977-01-01

    A study has been carried out to compare the influence of estradiol estrone and progesterone on the estradiol and progesterone receptor levels and 17β-hydroxysteroid dehydrogenase (17β-HSD) activity in human endometrium. The steroid hormone concentrations were measured simultaneously in both serum and endometrial tissue. The estradiol receptor levels were highest during the early proliferative phase and were inversely correlated to the endometrial tissue and serum concentrations of estradiol and progesterone. The highest progesterone binding capacity was found in endometrical cytosol during the late proliferative phase (midcycle) of the menstrual cycle. The midcycle peak of the progesterone receptor level correlated well with the first peak of the serum and tissue concentrations of estradiol. During,the luteal phase, in contrast to the proliferative phase, the progesterone receptor level decreased whereas serum progesterone concentrations were high. Estrone concentrations were higher in secretory than proliferative endometrium and were correlated to the increase of progesterone receptor content and 17β-HSD activity during early secretory phase. The 17β-HSD activity was approximately 10-fold higher during the early secretory than during the proliferative phase. The progesterone receptor level was highly correlated to the specific 17β-HSD activity of the microsomal fraction whereas a significant inverse correlation between the enzyme activity and the estradiol receptor level was observed. (orig.) [de

  17. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    Science.gov (United States)

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?

    Science.gov (United States)

    Rix, Rachel R; Cutler, G Christopher

    2018-02-01

    Hormetic preconditioning, whereby exposure to mild stress primes an organism to better tolerate subsequent stress, is well documented. It is unknown if exposure to hormetic concentrations of insecticide can trans-generationally prime insects to better tolerate insecticide exposure, or whether exposure to hormetic concentrations of insecticide can induce mutations in genes responsible for insecticide resistance. Using the aphid Myzus persicae (Sulzer) and the insecticide imidacloprid as a model, we examined if exposure to mildly toxic and hormetic concentrations of imidacloprid reduced aphid susceptibility to insecticides across four generations, and whether such exposures induced mutations in the imidacloprid binding site in post-synaptic nicotinic acetylcholine receptors. Chronic, multigenerational exposure of aphids to hormetic concentrations of imidacloprid primed offspring to better survive exposure to certain concentrations of imidacloprid, but not exposure to spirotetramat, an insecticide with a different mode of action. Exposure to hormetic and mildly toxic concentrations of imidacloprid did not result in mutations in any of the examined nicotinic acetylcholine receptor subunits. Our findings demonstrate that exposure to hormetic concentrations of insecticide can prime insects to better withstand subsequent chemical stress, but this is dependent upon the insecticide exposure scenario, and may be subtle over generations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Odin (ANKS1A modulates EGF receptor recycling and stability.

    Directory of Open Access Journals (Sweden)

    Jiefei Tong

    Full Text Available The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.

  20. Circulating Ghrelin, Leptin, and Soluble Leptin Receptor Concentrations and Cardiometabolic Risk Factors in a Community-Based Sample

    OpenAIRE

    Ingelsson, Erik; Larson, Martin G.; Yin, Xiaoyan; Wang, Thomas J.; Meigs, James B.; Lipinska, Izabella; Benjamin, Emelia J.; Keaney, John F.; Vasan, Ramachandran S.

    2008-01-01

    Context: The conjoint effects and relative importance of ghrelin, leptin, and soluble leptin receptor (sOB-R), adipokines involved in appetite control and energy expenditure in mediating cardiometabolic risk, is unknown.

  1. Serum concentrations of chemokines (CCL-5 and CXCL-12), chemokine receptors (CCR-5 and CXCR-4), and IL-6 in patients with posttraumatic stress disorder and avoidant personality disorder.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Moś, Danuta M; Araszkiewicz, Aleksander; Szromek, Adam R

    2015-12-01

    Posttraumatic stress disorder (PTSD) can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the neurochemical and neuroendocrine functions of the body play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 220 men and women were enrolled in the study. 180 of them constituted the study group. The studied groups consisted of: 60 patients with a diagnosed avoidant personality disorders (APD), 60 patients with a diagnosed APD and with PTSD and of 60 patients with PTSD but without a APD. There were 30 women and 30 men in each group of 60 subjects. The control group consisted of 40 healthy individuals. The plasma levels of chemokines and their receptors (CCL-5, CXCR-5, CXCL-12 and CXCR-4), as well as IL-6, were assessed by ELISA. There was an increase in the CXCL-12 and CCL-5 levels in women and men with the PTSD versus the control group. Also, increased levels of IL-6 and the receptors CXCR-4, CCR-5 were observed in women and men with PTSD. The levels of CXCL-12 and CCL-5 chemokines, as well as CCR-5 and CXCR4 receptors were higher in women than in men. The results of this study indicate a need for assessment of the CCL-5 and CXCL-12 chemokine levels, as they are likely markers of PTSD. Measurement of the concentrations of chemokines, chemokine receptors and IL-6 in women and men with PTSD along with concomittant APD may be useful for early detection of mental disorders. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Differential effects of the steaming time and frequency for manufactured red Liriope platyphylla on nerve growth factor secretion ability, nerve growth factor receptor signaling pathway and regulation of calcium concentration.

    Science.gov (United States)

    Choi, Sun Il; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Hye Ryun; Lee, Young Ju; Son, Hong Joo; Lee, Hee Seob; Lee, Jong Sup; Kim, Hak Jin; Hwang, Dae Youn

    2012-11-01

    The herb Liriope platyphylla (LP) has been considered to have curative properties for diabetes, asthma and neurodegenerative disorders. To examine the effects of steaming time and frequency of manufactured red LP (RLP) on the nerve growth factor (NGF) secretion ability and NGF receptor signaling pathway, the NGF concentration, cell differentiation, NGF signaling pathway and calcium concentration were analyzed in neuronal cells treated with several types of LPs manufactured under different conditions. The maximum NGF secretion was observed in B35 cells treated with 50 µg/ml LP extract steamed for 9 h (9-SLP) and with two repeated steps (3 h steaming and 24 h air-dried) carried out 7 times (7-SALP). No significant changes in viability were detected in any of the cells treated with the various LPs, with the exception of 0-SLP and 0-SALP. In addition, PC12 cell differentiation was induced by treatment with the NGF-containing conditional medium (CM) collected from the RLP-treated cells. The levels of TrkA and extracellular signal-regulated kinase (ERK) phosphorylation in the high affinity NGF receptor signaling pathway were significantly higher in the cells treated with 3-SLP or 1-SALP/3-SALP CM compared with those treated with the vehicle CM. In the low affinity NGF receptor pathway, the expression levels of most components were higher in the 9-, 15- and 24-SALP CM-treated cells compared with the vehicle CM-treated cells. However, this level was significantly altered in cells treated with 3-SALP CM. Furthermore, an examination of the RLP function on calcium regulation revealed that only the LP- or RLP-treated cells exhibited changes in intracellular and extracellular calcium levels. RLP induced a significant decrease in the intracellular calcium levels and an increase in the extracellular calcium levels. These results suggest the possibility that steaming-processed LP may aid in the relief of neurodegenerative diseases through the NGF secretion ability and NGF

  3. Odor concentration invariance by chemical ratio coding

    Directory of Open Access Journals (Sweden)

    Naoshige Uchida

    2008-08-01

    Full Text Available Many animal species rely on chemical signals to extract ecologically important information from the environment. Yet in natural conditions chemical signals will frequently undergo concentration changes that produce differences in both level and pattern of activation of olfactory receptor neurons. Thus, a central problem in olfactory processing is how the system is able to recognize the same stimulus across different concentrations. To signal species identity for mate recognition, some insects use the ratio of two components in a binary chemical mixture to produce a code that is invariant to dilution. Here, using psychophysical methods, we show that rats also classify binary odor mixtures according to the molar ratios of their components, spontaneously generalizing over at least a tenfold concentration range. These results indicate that extracting chemical ratio information is not restricted to pheromone signaling and suggest a general solution for concentration-invariant odor recognition by the mammalian olfactory system.

  4. Aspects of dopamine and acetylcholine release induced by glutamate receptors

    International Nuclear Information System (INIS)

    Paes, Paulo Cesar de Arruda

    2002-01-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  5. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D

    2003-02-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists ({beta}-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations {<=}1.9 {mu}g/l. Metoprolol and nadolol were identified in {>=}71% of the samples with concentrations of metoprolol {<=}1.2 {mu}g/l and nadolol {<=}0.36 {mu}g/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that {beta}-Blockers are present in United States wastewater effluent in the ng/l to {mu}g/l range.

  6. Identifying plant cell-surface receptors: combining 'classical' techniques with novel methods.

    Science.gov (United States)

    Uebler, Susanne; Dresselhaus, Thomas

    2014-04-01

    Cell-cell communication during development and reproduction in plants depends largely on a few phytohormones and many diverse classes of polymorphic secreted peptides. The peptide ligands are bound at the cell surface of target cells by their membranous interaction partners representing, in most cases, either receptor-like kinases or ion channels. Although knowledge of both the extracellular ligand and its corresponding receptor(s) is necessary to describe the downstream signalling pathway(s), to date only a few ligand-receptor pairs have been identified. Several methods, such as affinity purification and yeast two-hybrid screens, have been used very successfully to elucidate interactions between soluble proteins, but most of these methods cannot be applied to membranous proteins. Experimental obstacles such as low concentration and poor solubility of membrane receptors, as well as instable transient interactions, often hamper the use of these 'classical' approaches. However, over the last few years, a lot of progress has been made to overcome these problems by combining classical techniques with new methodologies. In the present article, we review the most promising recent methods in identifying cell-surface receptor interactions, with an emphasis on success stories outside the field of plant research.

  7. Beta-adrenergic receptors of lymphocytes in children with allergic respiratory diseases

    International Nuclear Information System (INIS)

    Bittera, I.; Gyurkovits, K.; Falkay, G.; Eck, E.; Koltai, M.

    1988-01-01

    The beta-adrenergic receptor binding sites on peripheral lymphocytes in children with bronchial asthma (n = 16) and seasonal allergic rhinitis (n = 8) were examined in comparison with normal controls (n = 18) by means of 124 I-cyanopindolol. The number of beta-adrenergic receptors was significantly lower in the asthmatic group (858 +/- 460/lymphocyte) than in the controls (1564 +/- 983/lymphocyte). The value (1891 +/- 1502/lymphocyte in children with allergic rhinitis was slightly higher than that in healthy controls. Of the 24 patients suffering from allergic diseases of the lower or upper airways, the bronchial histamine provocation test was performed in 21; 16 gave positive results, while 5 were negative. No difference in beta-adrenergic receptor count was found between the histamine-positive and negative patients. Neither was there any correlation between the number of beta-adrenergic receptors and the high (16/24) and low (8/24) serum IgE concentrations found in allergic patients. The significant decrease in beta-adrenergic receptor count in asthmatic children lends support to Szentivanyi's concept. Further qualitative and quantitative analysis of lymphocyte beta-adrenergic receptors may provide an individual approach to the treatment of bronchial asthma with beta-sympathomimetic drugs

  8. Brain concentrations of benzodiazepines are elevated in an animal model of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Basile, A.S.; Pannell, L.; Jaouni, T.; Gammal, S.H.; Fales, H.M.; Jones, E.A.; Skolnick, P.

    1990-01-01

    Brain extracts from rats with hepatic encephalopathy due to thioacetamide-induced fulminant hepatic failure contained 4- to 6-fold higher concentrations of substances that inhibit radioligand binding to benzodiazepine receptors than corresponding control rat extracts. Both isocratic and gradient-elution HPLC indicated that this inhibitory activity was localized in 3-8 peaks with retention times corresponding to deschlorodiazepam, deschlorolorazepam, lorazepam, oxazepam, diazepam, and N-desmethyldiazepam. The presence of diazepam and N-desmethyldiazepam was confirmed by mass spectroscopy. Both mass spectroscopic and radiometric techniques indicated that the concentrations of N-desmethyldiazepam and diazepam in brain extracts from encephalopathic rats were 2-9 and 5-7 times higher, respectively, than in control brain extracts. While benzodiazepines have been identified previously in mammalian and plant tissues, this report demonstrates that concentrations of these substances are increased in a pathophysiological condition. These findings provide a rational basis for the use of benzodiazepine receptor antagonists in the management of hepatic encephalopathy in humans

  9. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  10. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-01-01

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  11. Increased NMDA receptor inhibition at an increased Sevoflurane MAC

    Directory of Open Access Journals (Sweden)

    Brosnan Robert J

    2012-06-01

    Full Text Available Abstract Background Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Methods Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL plus 0.4 mg/mL dizocilpine (MK-801 was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Results Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P  Conclusions Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability.

  12. Study of NSILA-s (nonsuppressible insulin-like activity soluble in acid ethanol) by a new radio-receptor assay

    International Nuclear Information System (INIS)

    Megyeri, K.

    1977-01-01

    The insulin-like activity nonsuppressible with insulin-antibodies (NSILA) accounts for 90% of the insulin activity of the blood plasma. A peptid, soluble in acid ethanol, was purified (NSILA-s) and specific NSILA-s receptors were found on the plasma membrane of liver cells. The specificity, kinetics, affinity and pH-optimum of NSILA-s receptors significantly differed from those of insulin-receptors. A new, highly specific radio-receptor assay was developed, applying 125 I NSILA-s and liver cell membranes or lymphocytes. By this means the NSILA-s concentration of blood plasma was determined under normal and pathological (hypoglycaemizing tumours, hypopituritarism, acromegaly, anorexia nervosa, etc.) conditions. It is concluded that, 90% of the NSILA-s concentration of blood plasma is bound. In cases of hypoglycaemizing tumours increased NSILA-s activity was demonstrated both in blood serum and in the extracts of the tumour-tissue. Pharmacological doses of growth hormon (GH) increased plasma NSILA-s concentration, however, in the case of stimulation- and inhibition-tests carried out in normal patients, no unambiguous relationship could be demonstrated between plasma GH- and NSILA-s-levels. (L.E.)

  13. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

    Science.gov (United States)

    Prüss, H; Leubner, J; Wenke, N K; Czirják, G Á; Szentiks, C A; Greenwood, A D

    2015-08-27

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut's encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut's cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed.

  14. Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation

    Directory of Open Access Journals (Sweden)

    Ian D. Coombs

    2017-08-01

    Full Text Available Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs associated with transmembrane AMPAR regulatory proteins (TARPs. At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood. We report here that TARP γ-2 reduces the ability of low glutamate concentrations to cause AMPAR desensitization and enhances channel gating at low glutamate occupancy. Simulations show that, by shifting the balance between AMPAR activation and desensitization, TARPs can markedly facilitate the transduction of spillover-mediated synaptic signaling. Furthermore, the dual effects of TARPs can account for biphasic steady-state glutamate concentration-response curves—a phenomenon termed “autoinactivation,” previously thought to reflect desensitization-mediated AMPAR/TARP dissociation.

  15. Delta opioid receptor on equine sperm cells: subcellular localization and involvement in sperm motility analyzed by computer assisted sperm analyzer (CASA

    Directory of Open Access Journals (Sweden)

    Lacalandra Giovanni M

    2010-06-01

    Full Text Available Abstract Background Opioid receptors and endogenous opioid peptides act not only in the control of nociceptive pathways, indeed several reports demonstrate the effects of opiates on sperm cell motility and morphology suggesting the importance of these receptors in the modulation of reproduction in mammals. In this study we investigated the expression of delta opioid receptors on equine spermatozoa by western blot/indirect immunofluorescence and its relationship with sperm cell physiology. Methods We analyzed viability, motility, capacitation, acrosome reaction and mitochondrial activity in the presence of naltrindole and DPDPE by means of a computer assisted sperm analyzer and a fluorescent confocal microscope. The evaluation of viability, capacitation and acrosome reaction was carried out by the double CTC/Hoechst staining, whereas mitochondrial activity was assessed by means of MitoTracker Orange dye. Results We showed that in equine sperm cells, delta opioid receptor is expressed as a doublet of 65 and 50 kDa molecular mass and is localized in the mid piece of tail; we also demonstrated that naltrindole, a delta opioid receptor antagonist, could be utilized in modulating several physiological parameters of the equine spermatozoon in a dose-dependent way. We also found that low concentrations of the antagonist increase sperm motility whereas high concentrations show the opposite effect. Moreover low concentrations hamper capacitation, acrosome reaction and viability even if the percentage of cells with active mitochondria seems to be increased; the opposite effect is exerted at high concentrations. We have also observed that the delta opioid receptor agonist DPDPE is scarcely involved in affecting the same parameters at the employed concentrations. Conclusions The results described in this paper add new important details in the comprehension of the mammalian sperm physiology and suggest new insights for improving reproduction and for

  16. sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures.

    Science.gov (United States)

    Shimazu, S; Katsuki, H; Takenaka, C; Tomita, M; Kume, T; Kaneko, S; Akaike, A

    2000-01-28

    We investigated the potential neuroprotective effects of several sigma receptor ligands in organotypic midbrain slice cultures as an excitotoxicity model system. When challenged with 100-microM N-methyl-D-aspartate (NMDA) for 24 h, dopaminergic neurons in midbrain slice cultures degenerated, and this was prevented by (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5, 10-imine (MK-801; 1-10 microM). Concomitant application of ifenprodil (1-10 microM) or haloperidol (1-10 microM), both of which are high-affinity sigma receptor ligands, significantly attenuated the neurotoxicity of 100 microM NMDA. The sigma(1) receptor-selective ligand (+)-N-allylnormetazocine ((+)-SKF 10047; 1-10 microM) was also effective in attenuating the toxicity of NMDA. The effect of R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane hydrochloride ((-)-PPAP), a sigma receptor ligand with negligible affinity for the phencyclidine site of NMDA receptors, was also examined. (-)-PPAP (3-100 microM) caused a concentration-dependent reduction of NMDA cytotoxicity, with significant protection at concentrations of 30 and 100 microM. In contrast, (+)-SKF 10047 (10 microM) and (-)-PPAP (100 microM) showed no protective effects against cell death induced by the Ca(2+) ionophore ionomycin (1-3 microM). These results indicate that sigma receptor ligands attenuate the cytotoxic effects of NMDA on midbrain dopaminergic neurons, possibly via inhibition of NMDA receptor functions.

  17. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    Science.gov (United States)

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  18. Membrane Estrogen Receptor-α Interacts with Metabotropic Glutamate Receptor Type 1a to Mobilize Intracellular Calcium in Hypothalamic Astrocytes

    Science.gov (United States)

    Kuo, John; Hariri, Omid R.; Bondar, Galyna; Ogi, Julie; Micevych, Paul

    2009-01-01

    Estradiol, acting on a membrane-associated estrogen receptor-α (mERα), induces an increase in free cytoplasmic calcium concentration ([Ca2+]i) needed for progesterone synthesis in hypothalamic astrocytes. To determine whether rapid estradiol signaling involves an interaction of mERα with metabotropic glutamate receptor type 1a (mGluR1a), changes in [Ca2+]i were monitored with the calcium indicator, Fluo-4 AM, in primary cultures of female postpubertal hypothalamic astrocytes. 17β-Estradiol over a range of 1 nm to 100 nm induced a maximal increase in [Ca2+]i flux measured as a change in relative fluorescence [ΔF Ca2+ = 615 ± 36 to 641 ± 47 relative fluorescent units (RFU)], whereas 0.1 nm of estradiol stimulated a moderate [Ca2+]i increase (275 ± 16 RFU). The rapid estradiol-induced [Ca2+]i flux was blocked with 1 μm of the estrogen receptor antagonist ICI 182,780 (635 ± 24 vs. 102 ± 11 RFU, P estradiol-induced membrane signaling in astrocytes. PMID:18948402

  19. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    Science.gov (United States)

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  20. Possible role of IGF2 receptors in regulating selection of 2 dominant follicles in cattle selected for twin ovulations and births

    Science.gov (United States)

    Abundance of IGF-2 receptor (IGF2R), FSH receptor (FSHR), and LH receptor (LHCGR) mRNA in granulosa cells (GCs) or theca cells (TCs) or both cells as well as estradiol (E2), progesterone (P4), and androstenedione concentrations in follicular fluid were compared in cows genetically selected (Twinner)...

  1. Ontogenic and sexual differences in pituitary GnRH receptors and intracellular Ca2+ mobilization induced by GnRH.

    Science.gov (United States)

    Lacau-Mengido, I M; González Iglesias, A; Lux-Lantos, V; Libertun, C; Becú-Villalobos, D

    1998-04-01

    The present experiments were designed in order to elucidate the participation of the developing hypophysis in determining the changing sensitivity of gonadotrophins to gonadotropin-releasing hormone (GnRH) during ontogeny in the rat. To that end, we chose two well defined developmental ages that differ markedly in sexual and ontogenic characteristics of hypophyseal sensitivity to GnRH, 15 and 30 d. In order to study sex differences and the role of early sexual organization of the hypothalamus, experiments were carried out in males, females, and neonatally androgenized females (TP females). We evaluated (1) the characteristics of pituitary GnRH receptors, and (2) associated changes in GnRH-induced mobilization of intracellular Ca2+ (a second messenger involved in gonadotropins exocytosis). We measured binding characteristics of the GnRH analog D-Ser(TBu)6-des-Gly10-GnRH ethylamide in pituitary homogenates. We found that Kds did not vary among the different sex groups. Total number and concentration of receptors decreased in the female rat from 15-30 d of age, whereas in the male and TP female, receptors/pituitary increased, and the concentration/mg tissue did not change. Also, at 30 days of age, males presented higher content and concentration of receptors than females, and higher content than TP females. In order to evaluate if developmental and sexual differences in pituitary sensitivity to GnRH might be expressed through variations in the intracellular Ca2+ signal, we studied the mobilization of intracellular Ca2+ induced by GnRH (1 x 10(-8) to 1 x 10(-11) M) in a suspension of dispersed pituitary cells in the six groups. In cells from 15-d-old females, Ca2+ response was greater than in 30-d-old females at the doses of 10(-8) to 10(-10) M, indicating that in the infantile female rat activation of highly concentrated GnRH receptors is reflected in an increase in signal transduction mediated by Ca2+. In males and in female rats androgenized at birth, there was also

  2. Negative modulation of the GABAA ρ1 receptor function by l-cysteine.

    Science.gov (United States)

    Beltrán González, Andrea N; Vicentini, Florencia; Calvo, Daniel J

    2018-01-01

    l-Cysteine is an endogenous sulfur-containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson's and Alzheimer's disease. l-Cysteine can modulate the activity of ionic channels, including voltage-gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before. In the present work, we analyzed the effects of l-cysteine on responses mediated by homomeric GABA A ρ1 receptors, which are known for mediating tonic γ-aminobutyric acid (GABA) responses in retinal neurons. GABA A ρ1 receptors were expressed in Xenopus laevis oocytes and GABA-evoked chloride currents recorded by two-electrode voltage-clamp in the presence or absence of l-cysteine. l-Cysteine antagonized GABA A ρ1 receptor-mediated responses; inhibition was dose-dependent, reversible, voltage independent, and susceptible to GABA concentration. Concentration-response curves for GABA were shifted to the right in the presence of l-cysteine without a substantial change in the maximal response. l-Cysteine inhibition was insensitive to chemical protection of the sulfhydryl groups of the ρ1 subunits by the irreversible alkylating agent N-ethyl maleimide. Our results suggest that redox modulation is not involved during l-cysteine actions and that l-cysteine might be acting as a competitive antagonist of the GABA A ρ1 receptors. © 2017 International Society for Neurochemistry.

  3. Crambescidin 816 induces calcium influx though glutamate receptors in primary cultures of cortical neurons

    Directory of Open Access Journals (Sweden)

    Víctor Martín Vázquez

    2014-06-01

    In summary, our data suggest that the cytotoxic effect of 10 μM Cramb816 in cortical neurons may be related to an increase in the cytosolic calcium concentration elicited by the toxin, which is shown to be mediated by glutamate receptor activation. Further studies analyzing the effect of glutamate receptor blockers on the cytotoxic effect of Cramb816 are needed to confirm this hypothesis.

  4. Reconstitution of hormone-responsive detergent-solubilized follicle stimulating hormone receptors into liposomes

    International Nuclear Information System (INIS)

    Grasso, P.; Dattatreyamurty, B.; Reichert, L.E. Jr.

    1988-01-01

    An FSH receptor-enriched fraction that responds to exogenous FSH by activation of adenylate cyclase was prepared by ultrafiltration of sucrose density gradient-purified light membranes derived from bovine calf testes homogenates and solubilized with Triton X-100. To further confirm the functional nature of the detergent-solubilized FSH receptor, the extract was incorporated by lipid hydration into large multilamellar vesicles composed of dioleoyl phosphatidylcholine and cholesterol, 2:1 molar ratio. Receptor incorporation was determined by measurement of specific binding of [125I] human FSH ([125I] hFSH). Substitution of dioleoyl phosphatidylcholine with dipalmitoyl phosphatidylcholine or increasing the cholesterol concentration of the vesicles reduced specific binding of [125I]hFSH. Under conditions favoring optimal incorporation of the receptor, specific binding of [125I]hFSH was time and temperature dependent and saturable when increasing concentrations of radioligand were added to a constant amount of proteoliposomes. Reconstituted proteoliposomes bound 1600 fmol FSH/mg protein with an affinity of 3.54 x 10(9) M-1. Inhibition of [125I] hFSH binding by hFSH was comparable to that seen with the membrane-bound receptor (ED50 = 10 ng). Equilibrium binding studies with [3H]Gpp(NH)p indicated that a single class of high affinity GTP binding sites with an association constant (Ka) of 3.33 x 10(7) m-1 which bound 2.19 fmol [3H]Gpp(NH)p/mg protein had also been incorporated into the proteoliposomes. Addition of FSH induced a 2-fold stimulation of [3H]Gpp(NH)p binding, supporting our earlier studies suggesting that the detergent-solubilized FSH receptor is complexed to the G protein. Of particular significance in the present study was the observation that both NaF and FSH stimulated cAMP production in the reconstituted system

  5. Metabolomics for informing adverse outcome pathways: Androgen receptor activation and the pharmaceutical spironolactone

    International Nuclear Information System (INIS)

    Davis, J.M.; Ekman, D.R.; Skelton, D.M.; LaLone, C.A.; Ankley, G.T.; Cavallin, J.E.; Villeneuve, D.L.; Collette, T.W.

    2017-01-01

    Highlights: • Metabolomics identified potential key events in an androgen receptor activation AOP. • Metabolomics indicate spironolactone may elicit effects via multiple nuclear receptors. • Spironolactone exposure may elicit interactive effects in multi-stressor environments. - Abstract: One objective in developing adverse outcome pathways (AOPs) is to connect biological changes that are relevant to risk assessors (i.e., fecundity) to molecular and cellular-level alterations that might be detectable at earlier stages of a chemical exposure. Here, we examined biochemical responses of fathead minnows (Pimephales promelas) to inform an AOP relevant to spironolactone’s activation of the androgen receptor, as well as explore other biological impacts possibly unrelated to this receptor. Liquid chromatography with high resolution mass spectrometry (LC–MS) was used to measure changes in endogenous polar metabolites in livers of male and female fish that were exposed to five water concentrations of spironolactone (0, 0.05, 0.5, 5, or 50 μg L"−"1) for 21 days. Metabolite profiles were affected at the two highest concentrations (5 and 50 μg L"−"1), but not in the lower-level exposures, which agreed with earlier reported results of reduced female fecundity and plasma vitellogenin (VTG) levels. We then applied partial least squares regression to assess whether metabolite alterations covaried with changes in fecundity, VTG gene expression and protein concentrations, and plasma 17β-estradiol and testosterone concentrations. Metabolite profiles significantly covaried with all measured endpoints in females, but only with plasma testosterone in males. Fecundity reductions occurred in parallel with changes in metabolites important in osmoregulation (e.g., betaine), membrane transport (e.g., L-carnitine), and biosynthesis of carnitine (e.g., methionine) and VTG (e.g., glutamate). Based on a network analysis program (i.e., mummichog), spironolactone also affected

  6. Metabolomics for informing adverse outcome pathways: Androgen receptor activation and the pharmaceutical spironolactone

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.M., E-mail: davis.john@epa.gov [U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605 (United States); Ekman, D.R., E-mail: ekman.drew@epa.gov [U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605 (United States); Skelton, D.M. [U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605 (United States); LaLone, C.A.; Ankley, G.T.; Cavallin, J.E.; Villeneuve, D.L. [U.S. EPA, National Health and Environmental Effects Research Laboratory, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Collette, T.W. [U.S. EPA, National Exposure Research Laboratory, 960 College Station Rd., Athens, GA 30605 (United States)

    2017-03-15

    Highlights: • Metabolomics identified potential key events in an androgen receptor activation AOP. • Metabolomics indicate spironolactone may elicit effects via multiple nuclear receptors. • Spironolactone exposure may elicit interactive effects in multi-stressor environments. - Abstract: One objective in developing adverse outcome pathways (AOPs) is to connect biological changes that are relevant to risk assessors (i.e., fecundity) to molecular and cellular-level alterations that might be detectable at earlier stages of a chemical exposure. Here, we examined biochemical responses of fathead minnows (Pimephales promelas) to inform an AOP relevant to spironolactone’s activation of the androgen receptor, as well as explore other biological impacts possibly unrelated to this receptor. Liquid chromatography with high resolution mass spectrometry (LC–MS) was used to measure changes in endogenous polar metabolites in livers of male and female fish that were exposed to five water concentrations of spironolactone (0, 0.05, 0.5, 5, or 50 μg L{sup −1}) for 21 days. Metabolite profiles were affected at the two highest concentrations (5 and 50 μg L{sup −1}), but not in the lower-level exposures, which agreed with earlier reported results of reduced female fecundity and plasma vitellogenin (VTG) levels. We then applied partial least squares regression to assess whether metabolite alterations covaried with changes in fecundity, VTG gene expression and protein concentrations, and plasma 17β-estradiol and testosterone concentrations. Metabolite profiles significantly covaried with all measured endpoints in females, but only with plasma testosterone in males. Fecundity reductions occurred in parallel with changes in metabolites important in osmoregulation (e.g., betaine), membrane transport (e.g., L-carnitine), and biosynthesis of carnitine (e.g., methionine) and VTG (e.g., glutamate). Based on a network analysis program (i.e., mummichog), spironolactone also

  7. D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons

    DEFF Research Database (Denmark)

    Gong, Xiang-Qun; Frandsen, Anne; Lu, Wei-Yang

    2005-01-01

    1 The amino acid, D-aspartate, exists in the mammalian brain and is an agonist at the N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors. Here, for the first time, we studied the actions of D-aspartate on alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptors (AMPARs......) in acutely isolated rat hippocampal neurons. 2 In the presence of the NMDA receptor channel blocker, MK801, D-aspartate inhibited kainate-induced AMPAR current in hippocampal neurons. The inhibitory action of D-aspartate on kainate-induced AMPAR current was concentration-dependent and was voltage......-independent in the tested voltage range (-80 to +60 mV). 3 The estimated EC50 of the L-glutamate-induced AMPAR current was increased in the presence of D-aspartate, while the estimated maximum L-glutamate-induced AMPAR current was not changed. D-aspartate concentration-dependently shifted the dose-response curve of kainate...

  8. Insulin-like growth factor type-1 receptor down-regulation associated with dwarfism in Holstein calves.

    Science.gov (United States)

    Blum, J W; Elsasser, T H; Greger, D L; Wittenberg, S; de Vries, F; Distl, O

    2007-10-01

    Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; Pcontrols, Pcontrols, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfsdwarfism in studied calves.

  9. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of ( 125 I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred

  10. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  11. Cholecystokinin receptor-1 mediates the inhibitory effects of exogenous cholecystokinin octapeptide on cellular morphine dependence

    Directory of Open Access Journals (Sweden)

    Wen Di

    2012-06-01

    Full Text Available Abstract Background Cholecystokinin octapeptide (CCK-8, the most potent endogenous anti-opioid peptide, has been shown to regulate the processes of morphine dependence. In our previous study, we found that exogenous CCK-8 attenuated naloxone induced withdrawal symptoms. To investigate the precise effect of exogenous CCK-8 and the role of cholecystokinin (CCK 1 and/or 2 receptors in morphine dependence, a SH-SY5Y cell model was employed, in which the μ-opioid receptor, CCK1/2 receptors, and endogenous CCK are co-expressed. Results Forty-eight hours after treating SH-SY5Y cells with morphine (10 μM, naloxone (10 μM induced a cAMP overshoot, indicating that cellular morphine dependence had been induced. The CCK receptor and endogenous CCK were up-regulated after chronic morphine exposure. The CCK2 receptor antagonist (LY-288,513 at 1–10 μM inhibited the naloxone-precipitated cAMP overshoot, but the CCK1 receptor antagonist (L-364,718 did not. Interestingly, CCK-8 (0.1-1 μM, a strong CCK receptor agonist, dose-dependently inhibited the naloxone-precipitated cAMP overshoot in SH-SY5Y cells when co-pretreated with morphine. The L-364,718 significantly blocked the inhibitory effect of exogenous CCK-8 on the cAMP overshoot at 1–10 μM, while the LY-288,513 did not. Therefore, the CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence in SH-SY5Y cells. An additional inhibitory effect of CCK-8 at higher concentrations appears to involve the CCK1 receptor. Conclusions This study reveals the difference between exogenous CCK-8 and endogenous CCK effects on the development of morphine dependence, and provides the first evidence for the participation of the CCK1 receptor in the inhibitory effects of exogenous CCK-8 on morphine dependence.

  12. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    International Nuclear Information System (INIS)

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-01-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [ 125 I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [ 125 I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less

  13. Degradation of tissue-type plasminogen activator by human monocyte- derived macrophages is mediated by the mannose receptor and by the low- density lipoprotein receptor-related protein

    NARCIS (Netherlands)

    Noorman, F.; Braat, E.A.M.; Rijken, D.C.

    1995-01-01

    The balance of tissue-type plasminogen activator (t-PA) production and degradation determines its concentration in blood and tissues. Disturbance of this balance may result in either increased or decreased proteolysis. In the present study, we identified the receptor systems involved in the

  14. Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.

    Science.gov (United States)

    Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars

    2006-02-17

    Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.

  15. Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2011-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-Bolton-Hunter-exendin(9-39) antagonist radioligands were performed in mice pancreas and insulinomas as well as in human insulinomas; competition experiments were performed in the presence of increasing concentration of GLP-1(7-36)amide or exendin(9-39). The antagonist 125 I-Bolton-Hunter-exendin(9-39) labels mouse pancreatic β-cells and mouse insulinomas, but it does not label human pancreatic β-cells and insulinomas. High affinity displacement (IC 50 approximately 2 nM) is observed in mouse β-cells and insulinomas with either the exendin(9-39) antagonist or GLP-1(7-36)amide agonist. For comparison, the agonist 125 I-GLP-1(7-36)amide intensively labels mouse pancreatic β-cells, mouse insulinoma and human insulinomas; high affinity displacement is observed for the GLP-1(7-36)amide in all tissues; however, a 5 and 20 times lower affinity is found for exendin(9-39) in the mouse and human tissues, respectively. This study reports a species-dependent behaviour of the GLP-1 receptor antagonist exendin(9-39) that can optimally target GLP-1 receptors in mice but not in human tissue. Due to its overly low binding affinity, this antagonist is an inadequate targeting agent for human GLP-1 receptor-expressing tissues, as opposed to the GLP-1 receptor agonist, GLP-1(7-36)amide. (orig.)

  16. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana.

    Science.gov (United States)

    Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd

    2017-10-30

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.

  17. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana

    Directory of Open Access Journals (Sweden)

    Wolfgang Blenau

    2017-10-01

    Full Text Available The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G protein-coupled receptors (GPCRs. Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana expresses a second type 1 tyramine receptor (PeaTAR1B in addition to PeaTAR1A (previously called PeaTYR1. When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.

  18. Decrease in TSH Receptor Autoantibodies during Antithyroid Treatment

    DEFF Research Database (Denmark)

    Christensen, Niels Juel; Habekost, Gurli; Bratholm, Palle

    2011-01-01

    We have previously shown that a long noncoding RNA transcript Heg is negatively correlated with TSH receptor autoantibodies (TRAb) in patients with untreated Graves' disease and with CD14 mRNA in treated patients and controls. Thus patients with high concentrations of Heg RNA have low levels...... of TRAb or CD14 mRNA, respectively. Here we show that an additional factor, gene expression of Cdk1 in mononuclear cells, is positively related to concentrations of TRAb in patients with untreated Graves' disease. Cdk1 mRNA is very important for regulation of cell cycle activity. It is well known...

  19. Prenatal Alcohol Exposure Increases Histamine H3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus.

    Science.gov (United States)

    Varaschin, Rafael K; Allen, Nyika A; Rosenberg, Martina J; Valenzuela, C Fernando; Savage, Daniel D

    2018-02-01

    We have reported that prenatal alcohol exposure (PAE)-induced deficits in dentate gyrus, long-term potentiation (LTP), and memory are ameliorated by the histamine H 3 receptor inverse agonist ABT-239. Curiously, ABT-239 did not enhance LTP or memory in control offspring. Here, we initiated an investigation of how PAE alters histaminergic neurotransmission in the dentate gyrus and other brain regions employing combined radiohistochemical and electrophysiological approaches in vitro to examine histamine H 3 receptor number and function. Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution 4 hours each day throughout gestation. This pattern of drinking, which produces a mean peak maternal serum ethanol concentration of 60.8 ± 5.8 mg/dl, did not affect maternal weight gain, litter size, or offspring birthweight. Radiohistochemical studies in adult offspring revealed that specific [ 3 H]-A349821 binding to histamine H 3 receptors was not different in PAE rats compared to controls. However, H 3 receptor-mediated G i /G o protein-effector coupling, as measured by methimepip-stimulated [ 35 S]-GTPγS binding, was significantly increased in cerebral cortex, cerebellum, and dentate gyrus of PAE rats compared to control. A LIGAND analysis of detailed methimepip concentration-response curves in dentate gyrus indicated that PAE significantly elevates receptor-effector coupling by a lower affinity H 3 receptor population without significantly altering the affinities of H 3 receptor subpopulations. In agreement with the [ 35 S]-GTPγS studies, a similar range of methimepip concentrations also inhibited electrically evoked field excitatory postsynaptic potential responses and increased paired-pulse ratio, a measure of decreased glutamate release, to a significantly greater extent in dentate gyrus slices from PAE rats than in controls. These results suggest that a PAE-induced elevation in H 3 receptor-mediated inhibition of glutamate release from

  20. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  1. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    Science.gov (United States)

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these

  2. Human eosinophils - potential pharmacological model applied in human histamine H4 receptor research.

    Science.gov (United States)

    Grosicki, Marek; Kieć-Kononowicz, Katarzyna

    2015-01-01

    Histamine and histamine receptors are well known for their immunomodulatory role in inflammation. In this review we describe the role of histamine and histamine H4 receptor on human eosinophils. In the first part of article we provide short summary of histamine and histamine receptors role in physiology and histamine related therapeutics used in clinics. We briefly describe the human histamine receptor H4 and its ligands, as well as human eosinophils. In the second part of the review we provide detailed description of known histamine effects on eosinophils including: intracellular calcium concentration flux, actin polymerization, cellular shape change, upregulation of adhesion proteins and cellular chemotaxis. We provide proofs that these effects are mainly connected with the activation of histamine H4 receptor. When examining experimental data we discuss the controversial results and limitations of the studies performed on isolated eosinophils. In conclusion we believe that studies on histamine H4 receptor on human eosinophils can provide interesting new biomarkers that can be used in clinical studies of histamine receptors, that in future might result in the development of new strategies in the treatment of chronic inflammatory conditions like asthma or allergy, in which eosinophils are involved.

  3. Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications

    International Nuclear Information System (INIS)

    Nowotny, Thomas; De Bruyne, Marien; Warr, Coral G; Berna, Amalia Z; Trowell, Stephen C

    2014-01-01

    Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant information. The resulting extreme sensitivity and discrimination has proven useful to humans, who have therefore co-opted some animals’ sense of smell. One aim of machine olfaction research is to replace the use of animal noses and one avenue of such research aims to incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that they would not normally encounter. We collected a large number of in vivo recordings from individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36 chemicals related to wine (‘wine set’) and an ecologically irrelevant set of 35 chemicals related to chemical hazards (‘industrial set’), each chemical at a single concentration. Resampled response sets were used to classify the chemicals against all others within each set, using a standard linear support vector machine classifier and a wrapper approach. Drosophila receptors appear highly capable of distinguishing chemicals that they have not evolved to process. In contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best recognition accuracy if the outputs of all 20 receptor types were used. (paper)

  4. Upregulation of endothelin ETB receptor-mediated vasoconstriction in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Eskesen, Karen; Edvinsson, Lars

    2006-01-01

    The aim of this study was to examine if endothelin ET(B) receptor-mediated contraction occurred in isolated segments of rat coronary arteries during organ culture. Presence of contractile endothelin ET(B) receptors was studied by measuring the change in isometric tension in rings of left anterior......(+)-solution was not modified after 1 day in culture medium. The experiments indicate that organ culture of rat coronary arteries upregulate endothelin ET(B) receptor-mediated contraction by inducing synthesis of new protein....... descending coronary arteries isolated from hearts of rats as response to application of the selective endothelin ET(B) receptor agonist, Sarafotoxin 6c and endothelin-1. In segments cultured 1 day in serum free Dulbecco's Modified Eagle's Medium, Sarafotoxin 6c induced a concentration dependent contraction...

  5. DESENSITIZATION PROPERTIES OF P2X3 RECEPTORS SHAPING PAIN SIGNALLING

    Directory of Open Access Journals (Sweden)

    Rashid eGiniatullin

    2013-12-01

    Full Text Available ATP-gated P2X3 receptors are mostly expressed by nociceptive sensory neurons and participate in transduction of pain signals. P2X3 receptors show a combination of fast desensitization onset and slow recovery. Moreover, even low nanomolar agonist concentrations unable to evoke a response, can induce desensitization via a phenomenon called ‘high affinity desensitization’. We have also observed that recovery from desensitization is agonist-specific and can range from seconds to minutes. The recovery process displays unusually high temperature dependence. Likewise, recycling of P2X3 receptors in peri-membrane regions shows unexpectedly large temperature sensitivity. By applying kinetic modeling, we have previously shown that desensitization characteristics of P2X3 receptor are best explained with a cyclic model of receptor operation involving three agonist molecules binding a single receptor and that desensitization is primarily developing from the open receptor state. Mutagenesis experiments suggested that desensitization depends on a certain conformation of the ATP binding pocket and on the structure of the transmembrane domains forming the ion pore. Further molecular determinants of desensitization have been identified by mutating the intracellular N- and C-termini of P2X3 receptor. Unlike other P2X receptors, the P2X3 subtype is facilitated by extracellular calcium that acts via specific sites in the ectodomain neighboring the ATP binding pocket. Thus, substitution of serine275 in this region (called ‘left flipper’ converts the natural facilitation induced by extracellular calcium to receptor inhibition. Given such their strategic location in nociceptive neurons and unique desensitization properties, P2X3 receptors represent an attractive target for development of new analgesic drugs via promotion of desensitization aimed at suppressing chronic pain.

  6. The LDL receptor.

    Science.gov (United States)

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  7. [3H]cytisine binding to nicotinic cholinergic receptors in brain

    International Nuclear Information System (INIS)

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J.

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic 3 H-agonist ligands. Here we have examined the binding of [ 3 H]cytisine in rat brain homogenates. [ 3 H]Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for [ 3 H]cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that [ 3 H]cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of [ 3 H]cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of [ 3 H]cytisine should make it a very useful ligand for studying neuronal nicotinic receptors

  8. Evolutionary aspects of growth hormones and prolactins and their receptors

    International Nuclear Information System (INIS)

    Tarpey, J.F.

    1986-01-01

    The interactions of GH's, PRL's and PL's with receptors for GH and PRL were examined from a comparative and evolutionary viewpoint. The binding of 125 I-bGH to membrane preparations from liver of representatives of the major classes of non-mammalian vertebrates was also studied. Only hepatic membranes from sturgeon and Gillichthys had significant bGH binding and were further characterized and compared with male rabbit liver membranes in terms of time, temperature, pH, and membrane concentration to optimize binding conditions. The binding of several members of the GH, PRL, PL family of hormones to GH receptors from liver of sturgeon, Gillichthys, rabbit, mouse and rat was investigated. in terms of hormonal specificity, the mammalian receptors and the sturgeon binding sites were similar, while Gillichthys receptors had a different pattern of hormonal specificity. The binding of 125 I-oPRL to renal membranes of the turtle, Pseudemys scripta elegans, was characterized and compared to PRL binding sites of kidney membranes of the bullfrog, Rana catesbeiana, and the tiger salamander, Ambystoma tigrinum

  9. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened.Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol.Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway activation.

  10. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain.

    Science.gov (United States)

    Balfanz, Sabine; Jordan, Nadine; Langenstück, Teresa; Breuer, Johanna; Bergmeier, Vera; Baumann, Arnd

    2014-04-01

    G protein-coupled receptors are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca²⁺-([Ca²⁺](i)) or 3',5'-cyclic adenosine monophosphate ([cAMP](i)) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped to reveal the functional effects of different biogenic amines in honeybees. The phenolamine octopamine is an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca²⁺](i) or [cAMP](i). To date, only one honeybee octopamine receptor that induces Ca²⁺ signals has been molecularly and pharmacologically characterized. Here, we examined the pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC₅₀(s) in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency for potential receptor antagonists was very similar on all four honeybee receptors with mianserin > cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees. © 2013 International Society for Neurochemistry.

  11. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan); Nishio, Hiroaki, E-mail: nishio@fupharm.fukuyama-u.ac.jp [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan)

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  12. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. (-)[125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells

    International Nuclear Information System (INIS)

    Barovsky, K.; Brooker, G.

    1980-01-01

    (-)-Pindolol, one of the most potent beta-adrenergic receptor antagonists, was radioiodinated using chloramine-T oxidation of carrier-free Na 125I and separated from unreacted pindolol to yield 2200 Ci/mmole (-)-[125I]-iodopindolol ((-)-[125I]-IPin). Mass and ultraviolet spectra confirmed that the iodination occurred on the indole ring, presumably at the 3 position. The binding of radiolabeled (-)-[125I]-IPin to beta-adrenergic receptors has been studied using intact C6 rat astrocytoma cells (2B subclone) grown in monolayer cultures. Binding of (-)[125IPin was saturable with time and concentration. Using 13 pM (-)-[125I]IPin, binding equilibrium was reached in 90 min at 21-22 degrees C. The reverse rate constant was 0.026 min-1 at 21 0 C. Specific binding (expressed as 1 microM(-)-propranolol displaceable counts) of (-)-[125I]-IPin was 95% of total binding. Scatchard analysis of (-)-[125I]-I]Pin binding revealed approximately 4300 receptors/cell and a dissociation constant of 30 pM. This was in excellent agreement with the kinetically determined dissociation constant of 35 pM. Displacement by propranolol and isoproterenol showed that (-)-[125I]-IPin binding sites were pharmacologically and stereospecifically selective. These results indicate that (-)-[125I]-IPin, a pure (-)-stereoisomer, high specific activity radioligand, selectively binds to beta-adrenergic receptors in whole cells with a high percentage of specific binding and should therefore be useful in the study and measurement of cellular beta-adrenergic receptors

  14. Bovine ovarian cells have (pro)renin receptors and prorenin induces resumption of meiosis in vitro.

    Science.gov (United States)

    Dau, Andressa Minussi Pereira; da Silva, Eduardo Pradebon; da Rosa, Paulo Roberto Antunes; Bastiani, Felipe Tusi; Gutierrez, Karina; Ilha, Gustavo Freitas; Comim, Fabio Vasconcellos; Gonçalves, Paulo Bayard Dias

    2016-07-01

    The discovery of a receptor that binds prorenin and renin in human endothelial and mesangial cells highlights the possible effect of renin-independent prorenin in the resumption of meiosis in oocytes that was postulated in the 1980s.This study aimed to identify the (pro)renin receptor in the ovary and to assess the effect of prorenin on meiotic resumption. The (pro)renin receptor protein was detected in bovine cumulus-oocyte complexes, theca cells, granulosa cells, and in the corpus luteum. Abundant (pro)renin receptor messenger ribonucleic acid (mRNA) was detected in the oocytes and cumulus cells, while prorenin mRNA was identified in the cumulus cells only. Prorenin at concentrations of 10(-10), 10(-9), and 10(-8)M incubated with oocytes co-cultured with follicular hemisections for 15h caused the resumption of oocyte meiosis. Aliskiren, which inhibits free renin and receptor-bound renin/prorenin, at concentrations of 10(-7), 10(-5), and 10(-3)M blocked this effect (Pmeiosis resumption, cumulus-oocyte complexes and follicular hemisections were treated with prorenin and with angiotensin II or saralasin (angiotensin II antagonist). Prorenin induced the resumption of meiosis independently of angiotensin II. Furthermore, cumulus-oocyte complexes cultured with forskolin (200μM) and treated with prorenin and aliskiren did not exhibit a prorenin-induced resumption of meiosis (Pmeiosis in cattle. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine

    International Nuclear Information System (INIS)

    Goodman, R.R.; Synder, S.H.

    1982-01-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of [ 3 H]N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine

  16. Purslane Effect on GLP-1 and GLP-1 receptor in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Roja Daliri

    2013-01-01

    Full Text Available Abstract:Background: The aim of this study was to examine the effect of purslane seeds in glucagon-like peptide-1 concentration and glucagon-like peptide-1 receptor in women with diabetes.Methods: This was a quasi-experimental study. The population was consisted of the city of Sari where diabetic women with diabetes II who had no history of using purslane seeds. All individuals used the same dose of metformin under the specialist supervision. Among these individuals, 16 were assigned at random to Purslane group and control group. The purslane group consumed 2.5 grams Purslane with lunch and along with 5 grams of purslane (Portulaca oleracea seeds 7.5 g daily with dinner meals twice daily for 8 weeks. Blood sample was taken before and after 8 weeks, after 12 hours of fasting to 5 ml of the left brachial vein.Results: After 8 weeks using purslane seeds in the experimental group, a significant increase was seen in glucagon-like peptide-1 concentrations (p<0.007, but there was no significant difference in the concentration of glucagon-like peptide-1 receptor (p <0.455. No significant relationship was found between changes in glucagon-like peptide-1 and its receptor.Conclusion: The use of purslane seeds improved Type II diabetes; therefore it can be effective in improving the health of women with diabetes.

  17. Reduced number of alpha- and beta-adrenergic receptors in the myocardium of rats exposed to tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    Larue, D.; Kato, G.

    1981-04-09

    The concentration of alpha- and beta-adrenergic receptors--as measured by specific (/sup 3/H)WB-4101 and (-)-(/sup 3/H)dihydroalprenolol binding--was diminished by 60% below control values in the hearts of rats exposed to tobacco smoke. These changes in receptor numbers took place almost immediately after tobacco smoke exposure and were rapidly reversible after termination of the exposure. The dissociation constant, KD, for (/sup 3/H)WB-4101 was identical in exposed (KD . 0.34 +/- 0.09 nM) and control (KD . 0.35 +/- 0.07 nM) hearts but was significantly different in the case of (-)-(3H)dihydroalprenolol binding (exposed, KD . 2.83 +/- 0.30 mM vs. control KD . 5.22 +/- 0.61 nM). For beta-receptor binding there was no significant difference between exposed and control animals in the Ki values for (-)-epinephrine, (-)-norepinephrine, (-)-alprenolol, (+/-)-propranolol or timolol. (-)-Isoproterenol, however, was found to bind with lower affinity in exposed compared with control hearts. For alpha-receptor binding there was no significant difference between control and 'smoked' animals in the Ki values for (-)-epinephrine, (-0)-norepinephrine or phentolamine. The decrease in alpha- and beta-adrenergic receptor concentration may be related to the phenomenon of receptor desensitization resulting from a release of catecholamines in rats exposed to tobacco smoke.

  18. Maternal hemoglobin concentration and hematocrit values may affect fetus development by influencing placental angiogenesis.

    Science.gov (United States)

    Stangret, Aleksandra; Wnuk, Anna; Szewczyk, Grzegorz; Pyzlak, Michał; Szukiewicz, Dariusz

    2017-01-01

    Vasculogenesis and angiogenesis are crucial for maintaining proper placental perfusion and optimal fetal development. Among other physical and chemical factors, hypoxia is known to stimulate angiogenic processes. Preplacental type of hypoxia is often associated with maternal anemia and is thought to enhance vascularization within the fetoplacental unit. The goal of this study was to establish the correlation between the local expression of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) receptors (flt-1, flk-1) with maternal hemoglobin (Hb) concentration, hematocrit (Ht) values and the infant birthweight. In total, 43 specimens of term placentas obtained from normal course pregnancies delivered at term were included in the study. The expression of flt-1 and flk-1 receptors was analyzed by immunohistochemical staining. Vascular/extravascular tissular index (V/EVTI) was measured by assessing a total vascular area. Nonparametric Mann-Whitney U-test and Spearman's rank correlation were used to compare the various parameters and their differences between the groups. Among the patients with low Hb concentration, nearly 2-fold greater expression of the flt-1 receptor was positively correlated with infants birthweight (p = 0.028). Increased placental vascular density (increased flt-1 expression), during a physiological course of gestation, may be an adaptive response to lowered maternal Hb concentration and Ht values encountered during pregnancy.

  19. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    International Nuclear Information System (INIS)

    Hurst, Christopher H.; Waxman, David J.

    2004-01-01

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC 50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  20. Distribution of corticotropin-releasing factor receptors in primate brain

    International Nuclear Information System (INIS)

    Millan, M.A.; Jacobowitz, D.M.; Hauger, R.L.; Catt, K.J.; Aguilera, G.

    1986-01-01

    The distribution and properties of receptors for corticotropin-releasing factor (CRF) were analyzed in the brain of cynomolgus monkeys. Binding of [ 125 I]tyrosine-labeled ovine CRF to frontal cortex and amygdala membrane-rich fractions was saturable, specific, and time- and temperature-dependent, reaching equilibrium in 30 min at 23 0 C. Scatchard analysis of the binding data indicated one class of high-affinity sites with a K/sub d/ of 1 nM and a concentration of 125 fmol/mg. As in the rat pituitary and brain, CRF receptors in monkey cerebral cortex and amygdala were coupled to adenylate cyclase. Autoradiographic analysis of specific CRF binding in brain sections revealed that the receptors were widely distributed in the cerebral cortex and limbic system. Receptor density was highest in the pars tuberalis of the pituitary and throughout the cerebral cortex, specifically in the prefrontal, frontal, orbital, cingulate, insular, and temporal areas, and in the cerebellar cortex. A low binding density was present in the superior colliculus, locus coeruleus, substantia gelatinosa, preoptic area, septal area, and bed nucleus of the stria terminalis. These data demonstrate that receptors for CRF are present within the primate brain at areas related to the central control of visceral function and behavior, suggesting that brain CRF may serve as a neurotransmitter in the coordination of endocrine and neural mechanisms involved in the response to stress

  1. Effect of Nelumbo nucifera Petal Extracts on Lipase, Adipogenesis, Adipolysis, and Central Receptors of Obesity

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Chinampudur Velusami

    2013-01-01

    Full Text Available N. nucifera is one among the important medicinal plants assessed for its antiobesity action in various preclinical models. The present study was aimed at investigating the antiobesity effect of methanol and successive water extracts of petals of N. nucifera by studying its effect on adipogenesis, adipolysis, lipase, serotonin (5-HT2C, cannabinoid (CNR2, melanocyte concentrating hormone (MCHR1, and melanocortin (MC4R receptors. Both methanol and successive water extracts of N. nucifera petals had an effect on inhibition of lipid storage in adipocytes and on increasing lipolysis. N. nucifera petal methanol extract exhibited the concentration-dependent inhibitory effect on lipase activity with an IC50 value of 47 µg/mL. N. nucifera petal extracts showed evident agonist and antagonist activity towards 5-HT2C and CNR2 receptors, respectively, while it showed no effect towards MCHR1 and MC4R receptors. Overall, methanol extract of N. nucifera petals showed better activity than successive water extract.

  2. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder

    Science.gov (United States)

    Bychkov, ER; Ahmed, MR; Gurevich, VV; Benovic, JL; Gurevich, EV

    2011-01-01

    Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. Reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder. PMID:21784156

  3. β3-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats.

    Science.gov (United States)

    Csanova, Agnesa; Hlavacova, Natasa; Hasiec, Malgorzata; Pokusa, Michal; Prokopova, Barbora; Jezova, Daniela

    2017-05-01

    The main hypothesis of the study is that stress associated with repeated immune challenge has an impact on β 3 -adrenergic receptor gene expression in the brain. Sprague-Dawley rats were intraperitoneally injected with increasing doses of lipopolysaccharide (LPS) for five consecutive days. LPS treatment was associated with body weight loss and increased anxiety-like behavior. In LPS-treated animals of both sexes, β 3 -receptor gene expression was increased in the prefrontal cortex but not the hippocampus. LPS treatment decreased β 3 -receptor gene expression in white adipose tissue with higher values in males compared to females. In the adipose tissue, LPS reduced peroxisome proliferator-activated receptor-gamma, leptin and adiponectin gene expression, but increased interleukin-6 expression, irrespective of sex. Repeated immune challenge resulted in increased concentrations of plasma aldosterone and corticosterone with higher values of corticosterone in females compared to males. Concentrations of dehydroepiandrosterone (DHEA) in plasma were unaffected by LPS, while DHEA levels in the frontal cortex were lower in the LPS-treated animals compared to the controls. Thus, changes of DHEA levels in the brain take place irrespective of the changes of this neurosteroid in plasma. We have provided the first evidence on stress-induced increase in β 3 -adrenergic receptor gene expression in the brain. Greater reduction of β 3 -adrenergic receptor expression in the adipose tissue and of the body weight gain by repeated immune challenge in male than in female rats suggests sex differences in the role of β 3 -adrenergic receptors in the metabolic functions. LPS-induced changes in adipose tissue regulatory factors and hormone concentrations might be important for coping with chronic infections.

  4. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals.

    Science.gov (United States)

    Bannister, Richard; Beresford, Nicola; Granger, David W; Pounds, Nadine A; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J

    2013-09-15

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p>0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10(-6)M for Gen and >10(-5)M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of genistein and

  5. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    International Nuclear Information System (INIS)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D.

    2003-01-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists (β-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations ≤1.9 μg/l. Metoprolol and nadolol were identified in ≥71% of the samples with concentrations of metoprolol ≤1.2 μg/l and nadolol ≤0.36 μg/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that β-Blockers are present in United States wastewater effluent in the ng/l to μg/l range

  6. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Mayi, Therese Hervee; Rigamonti, Elena [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Pattou, Francois [Univ Lille Nord de France, F-59000 Lille (France); Department of Endocrine Surgery, University Hospital, Lille (France); U859 Biotherapies for Diabetes, INSERM, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  7. Lower concentrations of receptor for advanced glycation end products and epiregulin in amniotic fluid correlate to chemically induced cleft palate in mice.

    Science.gov (United States)

    Wang, Xinhuan; Zhu, Jingjing; Fang, Yanjun; Bian, Zhuan; Meng, Liuyan

    2017-04-01

    This study investigated the correlation between differentially expressed proteins in amniotic fluid (AF) and cleft palate induced by all-trans retinoic acid (atRA), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. Seven proteins were differentially expressed at embryonic day (E) 16.5 in atRA and control groups as revealed by label-based mouse antibody array. Enzyme-linked immunosorbent assay was further used to detect the expression levels of these proteins in AF from E13.5 to E16.5 in atRA, TCDD, and control groups. The cleft palate groups showed lower concentrations of receptor for advanced glycation end products (RAGE) and epiregulin at E16.5. RAGE immunostaining obviously decreased in palatal tissue sections obtained from E14.5 to E16.5 in the cleft palate groups as revealed by immunohistochemistry. These findings indicate that reduced levels of RAGE and epiregulin in AF are correlated to chemically induced cleft palate in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture.

    Science.gov (United States)

    Miyashita, Keiko; Oyama, Tohru; Sakuta, Tetsuya; Tokuda, Masayuki; Torii, Mitsuo

    2012-06-01

    Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Regulatory proteins (inhibitors or activators) affect estimates of Msub(r) of enzymes and receptors by radiation inactivation

    International Nuclear Information System (INIS)

    Potier, M.; Giroux, S.

    1985-01-01

    The radiation-inactivation method allows the determination of the Msub(r) of enzymes and receptors by monitoring the decay of biological activity as a function of absorbed dose. The presence of regulatory or effector proteins (inhibitors or activators) associated with an enzyme or receptor, or released in the preparation after tissue homogenization, may affect the decay of biological activity. How the activity is affected, however, will depend on the type of inhibition (competitive or non-competitive), the inhibitor or activator concentration, the dissociation constant of the enzyme-effector system, and the effector Msub(r) relative to that of the enzyme. Since little is known on how effector proteins influence radiation inactivation of enzymes and receptors, we have considered a theoretical model in an effort to provide a framework for the interpretation of experimentally obtained data. Our model predicts that competitive and non-competitive inhibitors of enzymes could be distinguished by analysing irradiated samples with various substrate concentrations. Inhibitors will decrease whereas activators will increase the apparent target size of enzymes or receptors. (author)

  10. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana

    DEFF Research Database (Denmark)

    Hansen, Karina K; Hauser, Frank; Cazzamali, Giuseppe

    2006-01-01

    Cockroaches have long been used as insect models to investigate the actions of biologically active neuropeptides. Here, we describe the cloning and functional expression in Chinese hamster ovary cells of an adipokinetic hormone (AKH) G protein-coupled receptor from the cockroach Periplaneta...... americana. This receptor is only activated by various insect AKHs (we tested eight) and not by a library of 29 other insect or invertebrate neuropeptides and nine biogenic amines. Periplaneta has two intrinsic AKHs, Pea-AKH-1, and Pea-AKH-2. The Periplaneta AKH receptor is activated by low concentrations...... of both Pea-AKH-1 (EC50, 5 x 10(-9)M), and Pea-AKH-2 (EC50, 2 x 10(-9)M). Insects can be subdivided into two evolutionary lineages, holometabola (insects with a complete metamorphosis during development) and hemimetabola (incomplete metamorphosis). This paper describes the first AKH receptor from...

  11. Multiple serotonin receptors: regional distribution and effect of raphe lesions

    International Nuclear Information System (INIS)

    Blackshear, M.A.; Sanders-Bush, E.; Steranka, L.R.

    1981-01-01

    These studies confirm and extend the recent work suggesting that [ 3 H]lysergic acid diethylamide (LSD) labels two distinct binding sites in rat brain resembling serotonin (5HT) receptors. Although Scatchard analyses of [ 3 H]LSD binding to membranes prepared from cortex/hippocampus were linear, the heterogeneity of the [ 3 H]LSD binding sites was clearly demonstrated in displacement studies. The displacement curves for both 5HT and spiperone were bisigmoidal with the concentration required to saturate the high affinity components nearly 3 orders of magnitude lower than the concentrations necessary to saturate the low affinity components. Additivity studies suggested that the sites with high affinity for 5HT and spiperone are different, independent sites. These sites are referred to as 5HT 1 and 5HT 2 respectively. Regional analyses showed, that in the frontal cortex, the density of the 5HT 2 site was slightly greater than the 5HT 1 site whereas the 5HT 1 site was predominant in all other brain areas, including the spinal cord. The pharmacological properties of the two sites have features in common with 5HT receptors; however, electrolytic lesions of the midbrain raphe nuclei did not change the densities or binding constants of the two apparent 5HT receptor subtypes, even though the number of high affinity 5HT uptake sites was markedly reduced. (Auth.)

  12. Inhibition by sigma receptor ligand, MS-377, of N-methyl- D-aspartate-induced currents in dopamine neurons of the rat ventral tegmental area.

    Science.gov (United States)

    Yamazaki, Yuu; Ishioka, Miwa; Matsubayashi, Hiroaki; Amano, Taku; Sasa, Masashi

    2002-04-01

    MS-377 [( R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl) piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate] is a novel anti-psychotic drug candidate with high affinity for sigma receptors but devoid of binding affinity for PCP binding site of NMDA receptor/ion channel complex. The effects of MS-377 on NMDA receptor and/or its ion channel complex were examined to elucidate the antipsychotic properties of MS-377. We examined the effect of MS-377 on NMDA ( N-methyl- D-aspartate)-induced current in acutely dissociated dopamine neurons of rat ventral tegmental area (VTA) using patch clamp whole cell recording. MS-377 applied in a bath inhibited the peak current evoked by NMDA applied via the U-tube method for 2 s in a concentration-dependent manner. Other sigma receptor ligands, BD-1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), NE-100 ( N, N-dipropyl-2-[4-methoxy-3-(2-phenylenoxy)-phenyl]-ethylamine monohydrochloride) and haloperidol also inhibited NMDA-induced current in a concentration-dependent manner. Interestingly, concomitant application of MS-377 with BD-1063, NE-100 or haloperidol at concentrations that had no effects on NMDA-induced current, potentiated the MS-377-induced inhibition. The results suggest that MS-377, as well as other sigma receptor ligands, indirectly acts on the sigma receptor to inhibit glutaminergic transmission mediated by NMDA receptor/ion channel complex in VTA dopamine neurons, thereby inhibiting dopamine release in target VTA areas.

  13. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors

    Directory of Open Access Journals (Sweden)

    Messlinger Karl

    2009-04-01

    Full Text Available Abstract Background Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM, two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation. Results Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin. Conclusion Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.

  14. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C.; Kaas, A.; Hansen, L.

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated...... longitudinally circulating concentrations of CCR5 ligands of 256 newly diagnosed patients with type 1 diabetes. CCR5 ligands were differentially associated with beta-cell function and clinical remission. CCL5 was decreased in remitters and positively associated with HbA1c suggestive of a Th1 associated...... of CCR5 by therapeutic agents such as maraviroc may provide a new therapeutic target to ameliorate disease progression in type 1 diabetes. (C) 2008 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/7...

  15. Insulin and adenosine regulate the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes.

    Science.gov (United States)

    Kiechle, F L; Sykes, E; Artiss, J D

    1995-01-01

    Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.

  16. Kinetic modeling of receptor-ligand binding applied to positron emission tomographic studies with neuroleptic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J; Wolf, A P; Shiue, C Y; Fowler, J S

    1987-01-01

    Positron emission tomography (PET) with labeled neuroleptics has made possible the study of neurotransmitter-receptor systems in vivo. In this study we investigate the kinetics of the 3,4-dihydroxyphenylethylamine (dopamine) receptor-ligand binding using PET data from a series of experiments in the baboon with the /sup 18/F-labeled drugs spiperone, haloperidol, and benperidol. Models used to describe these systems are based on first-order kinetics which applies at high specific activity (low receptor occupancy). The parameters governing the uptake and loss of drug from the brain were found by fitting PET data from regions with little or no receptor concentration (cerebellum) and from experiments in which specific binding was blocked by pretreatment with the drug (+)-butaclamol. Receptor constants were determined by fitting data from receptor-containing structures. Correcting the arterial plasma activities (the model driving function) for the presence of drug metabolites was found to be important in the modeling of these systems.

  17. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    Science.gov (United States)

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

    Science.gov (United States)

    Brasser, Susan M; Norman, Meghan B; Lemon, Christian H

    2010-05-01

    Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.

  19. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Fior-Chadi D.R.

    1998-01-01

    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  20. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane

    International Nuclear Information System (INIS)

    Funakoshi, Takeshi; Yanai, Akie; Shinoda, Koh; Kawano, Michio M.; Mizukami, Yoichi

    2006-01-01

    Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17β-estradiol or E2) causes an elevation in the intracellular Ca 2+ concentration ([Ca 2+ ] i ) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain

  1. Total soluble and endogenous secretory receptor for advanced glycation endproducts (RAGE) in IBD.

    Science.gov (United States)

    Meijer, Berrie; Hoskin, Teagan; Ashcroft, Anna; Burgess, Laura; Keenan, Jacqueline I; Falvey, James; Gearry, Richard B; Day, Andrew S

    2014-06-01

    Recruitment and activation of neutrophils, with release of specific proteins such as S100 proteins, is a feature of inflammatory bowel disease (IBD). Soluble forms of the receptor for advanced glycation endproducts (sRAGE), and variants such as endogenous secretory (esRAGE), can act as decoy receptors by binding ligands, including S100A12. The aims of this study were to determine total sRAGE and esRAGE concentrations in patients with IBD and correlate these with C-reactive protein (CRP), endoscopic scores and clinical disease activity scores. EDTA-plasma was collected from patients undergoing colonoscopy including those with Crohn's disease (CD: n=125), ulcerative colitis (UC: n=79) and control patients without endoscopic signs of inflammation (non-IBD: n=156). Concentrations of sRAGE and esRAGE were determined by enzyme-linked immunosorbent assay and plasma CRP concentrations measured. Standard clinical disease activity and endoscopic severity scores were defined for all subjects. Plasma sRAGE concentrations were lower in UC (but not CD) than non-IBD subjects (pdefine the significance of sRAGE and esRAGE in IBD. Copyright © 2013 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  2. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  3. Receptor-Mediated Drug Delivery to Macrophages in Chemotherapy of Leishmaniasis

    Science.gov (United States)

    Mukhopadhyay, Amitabha; Chaudhuri, Gautam; Arora, Sunil K.; Sehgal, Shobha; Basu, Sandip K.

    1989-05-01

    Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the ``scavenger'' receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.

  4. XMRV: usage of receptors and potential co-receptors

    Directory of Open Access Journals (Sweden)

    Gaddam Durga

    2011-09-01

    Full Text Available Abstract Background XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS. Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors. Methods To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR. Results Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP. Conclusion XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.

  5. Triton X-100 inhibits agonist-induced currents and suppresses benzodiazepine modulation of GABA(A) receptors in Xenopus oocytes

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Ebert, Bjarke; Klaerke, Dan

    2009-01-01

    Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na(+) and L-type Ca(2+) channels and GABA(A) receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its...... by flunitrazepam at alpha(1)beta(3)gamma(2S) receptors. All effects were independent of the presence of a gamma(2S) subunit in the GABA(A) receptor complex. The present study suggests that Triton X-100 may stabilize open and desensitized states of the GABA(A) receptor through changes in lipid bilayer elasticity....

  6. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  7. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  8. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  9. The two-state dimer receptor model: a general model for receptor dimers.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  10. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  11. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  12. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  13. Dopamine D2 receptors in the cerebral cortex: Distribution and pharmacological characterization with [3H]raclopride

    International Nuclear Information System (INIS)

    Lidow, M.S.; Goldman-Rakic, P.S.; Rakic, P.; Innis, R.B.

    1989-01-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D 1 receptors in the cortex have been well documented. Comparable information on cortical D 2 sites is lacking. The authors report here the results of binding studied in the cortex and neostriatum of rat and monkey using the D 2 selective antagonist [ 3 H]raclopride. In both structures [ 3 H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D 2 receptors. D 2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study established the presence and widespread distribution of dopamine D 2 receptors in the cortex

  14. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    International Nuclear Information System (INIS)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-01-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism

  15. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B. (Univ. of Missouri-Columbia (USA))

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.

  16. The Role of Canonical Transient Receptor Potential Channels in Seizure and Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2014-04-01

    Full Text Available Canonical transient receptor potential (TRPC channels are a family of polymodal cation channels with some degree of Ca2+ permeability. Although initially thought to be channels mediating store-operated Ca2+ influx, TRPC channels can be activated by stimulation of Gq-coupled G-protein coupled receptors, or by an increase in intracellular free Ca2+ concentration. Thus, activation of TRPC channels could be a common downstream event of many signaling pathways that contribute to seizure and excitotoxicity, such as N-methyl-D-aspartate (NMDA receptor-mediated Ca2+ influx, or metabotropic glutamate receptor activation. Recent studies with genetic ablation of various TRPC family members have demonstrated that TRPC channels, in particular heteromeric TRPC1/4 channels and homomeric TRPC5 channels, play a critical role in both pilocarpine-induced acute seizures and neuronal cell death. However, exact underlying mechanisms remain to be fully elucidated, and selective TRPC modulators and antibodies with better specificity are urgently needed for future research.

  17. Variable aromatase inhibitor plasma concentrations do not correlate with circulating estrogen concentrations in post-menopausal breast cancer patients.

    Science.gov (United States)

    Hertz, Daniel L; Speth, Kelly A; Kidwell, Kelley M; Gersch, Christina L; Desta, Zeruesenay; Storniolo, Anna Maria; Stearns, Vered; Skaar, Todd C; Hayes, Daniel F; Henry, N Lynn; Rae, James M

    2017-10-01

    The aromatase inhibitors (AI) exemestane (EXE), letrozole (LET), and anastrozole suppress estrogen biosynthesis, and are effective treatments for estrogen receptor (ER)-positive breast cancer. Prior work suggests that anastrozole blood concentrations are associated with the magnitude of estrogen suppression. The objective of this study was to determine whether the magnitude of estrogen suppression, as determined by plasma estradiol (E2) concentrations, in EXE or LET treated patients is associated with plasma AI concentrations. Five hundred post-menopausal women with ER-positive breast cancer were enrolled in the prospective Exemestane and Letrozole Pharmacogenetic (ELPh) Study conducted by the COnsortium on BReast cancer phArmacogomics (COBRA) and randomly assigned to either drug. Estrogen concentrations were measured at baseline and after 3 months of AI treatment and drug concentrations were measured after 1 or 3 months. EXE or LET concentrations were compared with 3-month E2 concentration or the change from baseline to 3 months using several complementary statistical procedures. Four-hundred patients with on-treatment E2 and AI concentrations were evaluable (EXE n = 200, LET n = 200). Thirty (7.6%) patients (EXE n = 13, LET n = 17) had 3-month E2 concentrations above the lower limit of quantification (LLOQ) (median: 4.75; range: 1.42-63.8 pg/mL). EXE and LET concentrations were not associated with on-treatment E2 concentrations or changes in E2 concentrations from baseline (all p > 0.05). Steady-state plasma AI concentrations do not explain variability in E2 suppression in post-menopausal women receiving EXE or LET therapy, in contrast with prior evidence in anastrozole treated patients.

  18. Involvement of sigma-1 receptors in the antidepressant-like effects of dextromethorphan.

    Science.gov (United States)

    Nguyen, Linda; Robson, Matthew J; Healy, Jason R; Scandinaro, Anna L; Matsumoto, Rae R

    2014-01-01

    Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1) receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047) were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP) 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [(3)H](+)-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors.

  19. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  20. Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells

    International Nuclear Information System (INIS)

    Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D'Avis, J.C.; Wartofsky, L.

    1991-01-01

    In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding [125I] ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound [125I]ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized [125I]ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity

  1. Human umbilical vein: involvement of cyclooxygenase-2 pathway in bradykinin B1 receptor-sensitized responses.

    Science.gov (United States)

    Errasti, A E; Rey-Ares, V; Daray, F M; Rogines-Velo, M P; Sardi, S P; Paz, C; Podestá, E J; Rothlin, R P

    2001-08-01

    In isolated human umbilical vein (HUV), the contractile response to des-Arg9-bradykinin (des-Arg9-BK), selective BK B1 receptor agonist, increases as a function of the incubation time. Here, we evaluated whether cyclooxygenase (COX) pathway is involved in BK B1-sensitized response obtained in 5-h incubated HUV rings. The effect of different concentrations of indomethacin, sodium salicylate, ibuprofen, meloxicam, lysine clonixinate or NS-398 administrated 30 min before concentration-response curves (CRC) was studied. All treatments produced a significant rightward shift of the CRC to des-Arg9-BK in a concentration-dependent manner, which provides pharmacological evidence that COX pathway is involved in the BK B1 responses. Moreover, in this tissue, the NS-398 pKb (5.2) observed suggests that COX-2 pathway is the most relevant. The strong correlation between published pIC50 for COX-2 and the NSAIDs' pKbs estimated further supports the hypothesis that COX-2 metabolites are involved in BK B1 receptor-mediated responses. In other rings, indomethacin (30, 100 micromol/l) or NS-398 (10, 30 micromol/l) produced a significant rightward shift of the CRC to BK, selective BK B2 agonist, and its pKbs were similar to the values to inhibit BK B1 receptor responses, suggesting that COX-2 pathway also is involved in BK B2 receptor responses. Western blot analysis shows that COX-1 and COX-2 isoenzymes are present before and after 5-h in vitro incubation and apparently COX-2 does not suffer additional induction.

  2. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations

    International Nuclear Information System (INIS)

    Roepke, Troy A.; Snyder, Mark J.; Cherr, Gary N.

    2005-01-01

    Environmental endocrine disrupting compounds (EDCs) are a wide variety of chemicals that typically exert effects, either directly or indirectly, through receptor-mediated processes, thus mimicking endogenous hormones and/or inhibiting normal hormone activities and metabolism. Little is known about the effects of EDCs on echinoderm physiology, reproduction and development. We exposed developing sea urchin embryos (Strongylocentrotus purpuratus and Lytechinus anamesus) to two known EDCs (4-octylphenol (OCT), bisphenol A (BisA)) and to natural and synthetic reproductive hormones (17β-estradiol (E 2 ), estrone (E 1 ), estriol (E 3 ), progesterone (P 4 ) and 17α-ethynylestradiol (EE 2 )). In addition, we studied two non-estrogenic EDCs, tributyltin (TBT) and o,p-DDD. Successful development to the pluteus larval stage (96 h post-fertilization) was used to define EDC concentration-response relationships. The order of compound potency based on EC 50 values for a reduction in normal development was as follows: TBT L.anamesus > OCT > TBT S. p urpuratus >> E 2 > EE 2 > DDD >> BisA > P 4 > E 1 >> E 3 . The effect of TBT was pronounced even at concentrations substantially lower than those commonly reported in heavily contaminated areas, but the response was significantly different in the two model species. Sea urchin embryos were generally more sensitive to estrogenic EDCs and TBT than most other invertebrate larvae. Stage-specific exposure experiments were conducted to determine the most sensitive developmental periods using blastula, gastrula and post-gastrula (pluteus) stages. The stage most sensitive to E 2 , OCT and TBT was the blastula stage with less overall sensitivity in the gastrula stage, regardless of concentration. Selective estrogen receptor modulators (SERMs) were added to the experiments individually and in combination with estrogenic EDCs to interfere with potential receptor-mediated actions. Tamoxifen, a partial ER agonist, alone inhibited development at

  3. Context-dependent modulation of alphabetagamma and alphabetadelta GABA A receptors by penicillin: implications for phasic and tonic inhibition.

    Science.gov (United States)

    Feng, Hua-Jun; Botzolakis, Emmanuel J; Macdonald, Robert L

    2009-01-01

    Penicillin, an open-channel blocker of GABA(A) receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABA(A) receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoform currents that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation.

  4. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  5. Preclinical in vitro and in vivo evaluation of [11C]SNAP-7941 – the first PET tracer for the melanin concentrating hormone receptor 1

    International Nuclear Information System (INIS)

    Philippe, Cécile; Nics, Lukas; Zeilinger, Markus; Kuntner, Claudia; Wanek, Thomas; Mairinger, Severin; Shanab, Karem; Spreitzer, Helmut; Viernstein, Helmut; Wadsak, Wolfgang; Mitterhauser, Markus

    2013-01-01

    Introduction: Due to its involvement in a variety of pathologies (obesity, diabetes, gut inflammation and depression), the melanin concentrating hormone receptor 1 (MCHR1) is a new target for the treatment of these lifestyle diseases. We previously presented the radiosynthesis of [ 11 C]SNAP-7941, the first potential PET tracer for the MCHR1. Methods: We herein present its in vitro and in vivo evaluation, including binding affinity, plasma stability, stability against liver mircrosomes and carboxylesterase, lipohilicity, biodistribution, in vivo metabolism and small-animal PET. Results: [ 11 C]SNAP-7941 evinced high stability against liver microsomes, carboxylesterase and in human plasma. The first small-animal PET experiments revealed a 5 fold increased brain uptake after Pgp/BCRP inhibition. Therefore, it can be assumed that [ 11 C]SNAP-7941 is a Pgp/BCRP substrate. No metabolites were found in brain. Conclusion: On the basis of these experiments with healthy rats, the suitability of [ 11 C]SNAP-7941 for the visualisation of central and peripheral MCHR1 remains speculative

  6. Effects of local alpha2-adrenergic receptor blockade on adipose tissue lipolysis during prolonged systemic adrenaline infusion in normal man

    DEFF Research Database (Denmark)

    Simonsen, Lene; Enevoldsen, Lotte H; Stallknecht, Bente

    2008-01-01

    During prolonged adrenaline infusion, lipolysis peaks within 30 min and thereafter tends to decline, and we hypothesized that the stimulation of local adipose tissue alpha2-adrenergic receptors accounts for this decline. The lipolytic effect of a prolonged intravenous adrenaline infusion combined....... Regional adipose tissue blood flow was measured by the (133)Xe clearance technique. Regional glycerol output (lipolytic rate) was calculated from these measurements and simultaneous measurements of arterial glycerol concentrations. Adrenaline infusion increased lipolysis in all three depots (data...... circulating adrenaline concentrations, and the decrease in lipolysis in subcutaneous adipose tissue under prolonged adrenaline stimulation is thus not attributed to alpha2-adrenergic receptor inhibition of lipolysis. However, in the preperitoneal adipose tissue depot, alpha2-adrenergic receptor tone plays...

  7. A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models.

    Science.gov (United States)

    Huang, Shiu-Wen; Kuo, Heng-Lan; Hsu, Ming-Tsung; Tseng, Yufeng Jane; Lin, Shu-Wha; Kuo, Sheng-Chu; Peng, Hui-Chin; Lien, Jin-Cherng; Huang, Tur-Fu

    2016-08-01

    A novel benzimidazole derivative, nstpbp5185, was discovered through in vitro and in vivo evaluations for antiplatelet activity. Thromaboxane receptor (TP) is important in vascular physiology, haemostasis and pathophysiological thrombosis. Nstpbp5185 concentration-dependently inhibited human platelet aggregation caused by collagen, arachidonic acid and U46619. Nstpbp5185 caused a right-shift of the concentration-response curve of U46619 and competitively inhibited the binding of 3H-SQ-29548 to TP receptor expressed on HEK-293 cells, with an IC50 of 0.1 µM, indicating that nstpbp5185 is a TP antagonist. In murine thrombosis models, nstpbp5185 significantly prolonged the latent period in triggering platelet plug formation in mesenteric and FeCl3-induced thrombi formation, and increased the survival rate in pulmonary embolism model with less bleeding than aspirin. This study suggests nstpbp5185, an orally selective anti-thrombotic agent, acting through blockade of TXA2 receptor, may be efficacious for prevention or treatment of pathologic thrombosis.

  8. Low concentrations of ethanol but not of dimethyl sulfoxide (DMSO) impair reciprocal retinal signal transduction.

    Science.gov (United States)

    Siapich, Siarhei A; Akhtar, Isha; Hescheler, Jürgen; Schneider, Toni; Lüke, Matthias

    2015-10-01

    The model of the isolated and superfused retina provides the opportunity to test drugs and toxins. Some chemicals have to be applied using low concentrations of organic solvents as carriers. Recently, E-/R-type (Cav2.3) and T-type (Cav3.2) voltage-gated Ca(2+) channels were identified as participating in reciprocal inhibitory retinal signaling. Their participation is apparent, when low concentrations of NiCl2 (15 μM) are applied during superfusion leading to an increase of the ERG b-wave amplitude, which is explained by a reduction of amacrine GABA-release onto bipolar neurons. During these investigations, differences were observed for the solvent carrier used. Recording of the transretinal receptor potentials from the isolated bovine retina. The pretreatment of bovine retina with 0.01 % (v/v) dimethylsulfoxide did not impair the NiCl2-mediated increase of the b-wave amplitude, which was 1.31-fold ± 0.03 of initial value (n = 4). However, pretreatment of the retina with the same concentration of ethanol impaired reciprocal signaling (0.96-fold ± 0.05, n = 4). Further, the implicit time of the b-wave was increased, suggesting that ethanol itself but not DMSO may antagonize GABA-receptors. Ethanol itself but not DMSO may block GABA receptors and cause an amplitude increase by itself, so that reciprocal signaling is impaired.

  9. [Studying specific effects of nootropic drugs on glutamate receptors in the rat brain].

    Science.gov (United States)

    Firstova, Iu Iu; Vasil'eva, E V; Kovalev, G I

    2011-01-01

    The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family.

  10. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    Science.gov (United States)

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  11. Genetic variations in the androgen receptor are associated with steroid concentrations and anthropometrics but not with muscle mass in healthy young men.

    Directory of Open Access Journals (Sweden)

    Hélène De Naeyer

    Full Text Available OBJECTIVE: The relationship between serum testosterone (T levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. DESIGN: 677 men (25-45 years were recruited in a cross-sectional, population-based sibling pair study. METHODS: Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs, sex steroid levels (by LC-MS/MS, body composition (by DXA, muscle cross-sectional area (CSA (by pQCT, muscle force (isokinetic peak torque, grip strength and anthropometrics were studied using linear mixed-effect modelling. RESULTS: Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT and free T (FT levels were positively related to muscle CSA, whereas estradiol (E2 and free E2 (FE2 concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. CONCLUSIONS: Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR

  12. Value of the radiolabelled GLP-1 receptor antagonist exendin(9-39) for targeting of GLP-1 receptor-expressing pancreatic tissues in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, P.O. Box 62, Bern (Switzerland)

    2011-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-Bolton-Hunter-exendin(9-39) antagonist radioligands were performed in mice pancreas and insulinomas as well as in human insulinomas; competition experiments were performed in the presence of increasing concentration of GLP-1(7-36)amide or exendin(9-39). The antagonist {sup 125}I-Bolton-Hunter-exendin(9-39) labels mouse pancreatic {beta}-cells and mouse insulinomas, but it does not label human pancreatic {beta}-cells and insulinomas. High affinity displacement (IC{sub 50} approximately 2 nM) is observed in mouse {beta}-cells and insulinomas with either the exendin(9-39) antagonist or GLP-1(7-36)amide agonist. For comparison, the agonist {sup 125}I-GLP-1(7-36)amide intensively labels mouse pancreatic {beta}-cells, mouse insulinoma and human insulinomas; high affinity displacement is observed for the GLP-1(7-36)amide in all tissues; however, a 5 and 20 times lower affinity is found for exendin(9-39) in the mouse and human tissues, respectively. This study reports a species-dependent behaviour of the GLP-1 receptor antagonist exendin(9-39) that can optimally target GLP-1 receptors in mice but not in human tissue. Due to its overly low binding affinity, this antagonist is an inadequate targeting agent for human GLP-1 receptor-expressing tissues, as opposed to the GLP-1 receptor agonist, GLP-1(7-36)amide. (orig.)

  13. Predictive performance of two PK-PD models of D2 receptor occupancy of the antipsychotics risperidone and paliperidone in rats

    NARCIS (Netherlands)

    Kozielska, Magdalena; Johnson, Martin; Pilla Reddy, Venkatesh; Vermeulen, An; de Greef, Rik; Li, Cheryl; Grimwood, Sarah; Liu, Jing; Groothuis, Genoveva; Danhof, Meindert; Proost, Johannes

    2010-01-01

    Objectives: The level of dopamine D2 receptor occupancy is predictive of efficacy and safety in schizophrenia. Population PK-PD modelling has been used to link observed plasma and brain concentrations to receptor occupancy. The objective of this study was to compare the predictive performance of two

  14. High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments.

    Science.gov (United States)

    Roubalova, Lenka; Vosahlikova, Miroslava; Brejchova, Jana; Sykora, Jan; Rudajev, Vladimir; Svoboda, Petr

    2015-01-01

    HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between

  15. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Abrar Ashoor

    Full Text Available Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+-dependent Cl(- channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+ chelator BAPTA and perfusion with Ca(2+-free bathing solution containing Ba(2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  16. Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Milan Fedurco

    2015-01-01

    Full Text Available The California poppy (Eschscholzia californica Cham. contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant α1β2γ2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 μM. However, (S-reticuline behaved as positive allosteric modulator at the α3, α5, and α6 isoforms of GABAA receptors. The depressant properties of aerial parts of E. californica are assigned to chloride-current modulation by (S-reticuline at the α3β2γ2 and α5β2γ2 GABAA receptors. Interestingly, α1, α3, and α5 were not significantly affected by (R-reticuline, 1,2-tetrahydroreticuline, codeine, and morphine—suspected (S-reticuline metabolites in the rodent brain.

  17. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling.

    Science.gov (United States)

    Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil

    2013-05-01

    Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5'-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.

  18. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  19. Receptor oligomerization in family B1 of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Roed, Sarah Norklit; Ørgaard, Anne; Jørgensen, Rasmus

    2012-01-01

    , the glucagon receptor, and the receptors for parathyroid hormone (PTHR1 and PTHR2). The dysregulation of several family B1 receptors is involved in diseases, such as diabetes, chronic inflammation, and osteoporosis which underlines the pathophysiological importance of this GPCR subfamily. In spite of this......, investigation of family B1 receptor oligomerization and especially its pharmacological importance is still at an early stage. Even though GPCR oligomerization is a well-established phenomenon, there is a need for more investigations providing a direct link between these interactions and receptor functionality......The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades...

  20. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  1. Imaging opiate receptors with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Wong, D.F.; Links, J.M.; Burns, H.D.; Kuhar, M.J.; Snyder, S.H.; Wagner, H.N. Jr.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5..mu..g/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 ..mu..g/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15.

  2. Imaging opiate receptors with positron emission tomography

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5μg/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 μg/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15

  3. The measurement of TSH-receptor autoantibodies in human serum by radioreceptor assay

    International Nuclear Information System (INIS)

    Truong, T.X.

    2002-01-01

    TSH receptor autoantibodies (TRAB) are valuable in Graves' disease with a sensitivity of 85% and a specificity of 80%. Autoantibodies levels decrease progressively with antithyroid drugs treatment or after thyroidectomy. The predictive value of the level of TSH receptor autoantibodies is diversely appreciated. Nevertheless, the vast majority of the studies agrees on the fact that high levels of TSH receptor autoantibodies predict a relapse. The feto-placental transfer of these antibodies could explain congenital hyperthyroidism of newborns from mother affected by Graves' disease. These antibodies are present in certain cases of Hashimoto thyroiditis, subacute thyroiditis or silent thyroiditis in phase of thyrotoxicosis. In Vietnam, first time we have researched determination of TRAB levels in the non disease and the Graves' disease, after treatment of antithyroid drugs and after thyroidectomy. We imported TRAB - Kit from CIS bio international France. The principle of Radioreceptor assay (RRA ) is following: TR - Ab kit utilizes a principle of competition between TSH receptor autoantibodies present in the sample and bovine TSH radiolabelled with 125 -I, facing a fixed and limited amount of soluble porcine TSH receptors. The more TSH receptor autoantibodies are present in the sample, the less 125 -I- TSH is bound to the soluble TSH receptors. Free and bound fractions are separated in adding PEG solution followed by a centrifugation. Results are calculated from a calibration curve (U/l). The samples were counted by the multi crystal gamma counter Oakfield which was supplied from IAEA (Years 2000). This is the first study in Vietnam, the concentration of TSH receptor autoantibodies (TRAB) was determined by radioreceptor assay (RRA) on 30 normal subjects and 30 Grave's disease subjects. The normal range is 1,4 □ 0.6 U/l. Max of normal is 2.99U/l. Min of normal is 3.38U/l .There are 11 males and 29 females with age from 15 to 50 years old. Mean of Graves' disease is

  4. Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor

    International Nuclear Information System (INIS)

    Schols, D.; Baba, M.; Pauwels, R.; Desmyter, J.; De Clercq, E.

    1989-01-01

    The triphenylmethane derivative aurintricarboxylic acid (ATA), but not aurin, selectively prevented the binding of OKT4A/Leu-3a monoclonal antibody (mAb) and, to a lesser extent, OKT4 mAb to the CD4 cell receptor for human immunodeficiency virus type 1 (HIV-1). The effect was seen within 1 min at an ATA concentration of 10 μM in various T4 + cells (MT-4, U-937, peripheral blood lymphocytes, and monocytes). It was dose-dependent and reversible. ATA prevented the attachment of radiolabeled HIV-1 particles to MT-4 cells, which could be expected as the result of its specific binding to the HIV/CD4 receptor. Other HIV inhibitors such as suramin, fuchsin acid, azidothymidine, dextran sulfate, heparin, and pentosan polysulfate did not affect OKT4A/Leu-3a mAb binding to the CD4 receptor, although the sulfated polysaccharides suppressed HIV-1 adsorption to the cells at concentrations required for complete protection against HIV-1 cytopathogenicity. Thus, ATA is a selective marker molecule for the CD4 receptor. ATA also interfered with the staining of membrane-associated HIV-1 glycoprotein gp120 by a mAb against it. These unusual properties of a small molecule of nonimmunological origin may have important implications for the study of CD4/HIV/AIDS pathogenesis and possibly treatment

  5. Evaluation of PET Radioligands for the neuronal nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Schoenbaechler, R.; Westera, G.; Nan-Horng Lin

    2002-01-01

    Full text: A-186253.1, a compound made by Abbott laboratories, was labelled with carbon-11 and evaluated as a PET ligand for the neuronal nicotinic acetylcholine receptor (nAChR). The compound was labelled with C-11 by methylation with 11C-MeI of the desmethyl precursor A-183828.1. The affinity of A-186253.1 for the α4β2 and the α7 subtype of the nAChR was determined in displacement studies. PET-studies were performed in rats and pigs Inhibitory constants (K i ) versus cytsine were 461 ± 99 pM for A-186253.1 and versus α-Bungarotoxin >100 μM. which means a very high selectivity for the α4β2-receptor (>227,000). Highest uptake of [ 11 C]-A-186253.1 was observed in the thalamus where an increase in radiotracer uptake was seen until 45 min p.i.. Thereafter, the radiotracer concentration remained constant until the end of the scan indicating slow washout of [ 11 C]-A-186253.1. Application of cold A-186253.1 (0.5 mg/kg) 40 min p.i. resulted in a decrease in radiotracer concentration in the thalamus and the cortex indicating displacement of [ 11 C]-A-186253.1. Blockade studies with cytisine (0.5 mg/kg), a selective ligand for the α4β2 nicotinic receptor, showed just a slight reduction of the radioligand uptake in the thalamus and in the cortex whereas the blockade with cold A-186253.1 (1 mg/kg) resulted in a 50 % reduction. These results suggest, that 50 % of the [ 11 C]-A-186253.1 in the brain corresponds to specifically bound radioligand, but not to the α4β2 subtype of the nicotinic receptor. (author)

  6. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder.

    Science.gov (United States)

    Somogyi, G T; de Groat, W C

    1992-02-01

    Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.

  7. Quantification of 5-HT{sub 1A} receptors in human brain using p-MPPF kinetic modelling and PET

    Energy Technology Data Exchange (ETDEWEB)

    Sanabria-Bohorquez, S.M.; Veraart, C. [Neural Rehabilitation Engineering Lab., Univ. Catholique de Louvain, Brussels (Belgium); Biver, F.; Damhaut, P.; Wikler, D.; Goldman, S. [PET/Biomedical Cyclotron Unit, Univ. Libre de Bruxelles (Belgium)

    2002-01-01

    Serotonin-1A (5-HT{sub 1A}) receptors are implicated in neurochemical mechanisms underlying anxiety and depression and their treatment. Animal studies have suggested that 4-(2'-methoxyphenyl)-1-[2'-[N-(2''-pyridinyl)-p-[{sup 18}F]fluorobenzamido] ethyl] piperazine (p-MPPF) may be a suitable positron emission tomography (PET) tracer of 5-HT{sub 1A} receptors. To test p-MPPF in humans, we performed 60-min dynamic PET scans in 13 healthy volunteers after single bolus injection. Metabolite quantification revealed a fast decrease in tracer plasma concentration, such that at 5 min post injection about 25% of the total radioactivity in plasma corresponded to p-MPPF. Radioactivity concentration was highest in hippocampus, intermediate in neocortex and lowest in basal ganglia and cerebellum. The interactions between p-MPPF and 5-HT{sub 1A} receptors were described using linear compartmental models with plasma input and reference tissue approaches. The two quantification methods provided similar results which are in agreement with previous reports on 5-HT{sub 1A} receptor brain distribution. In conclusion, our results show that p-MPPF is a suitable PET radioligand for 5-HT{sub 1A} receptor human studies. (orig.)

  8. Opioid mediated activity and expression of mu and delta opioid receptors in isolated human term non-labouring myometrium.

    LENUS (Irish Health Repository)

    Fanning, Rebecca A

    2013-01-05

    The existence of opioid receptors in mammalian myometrial tissue is now widely accepted. Previously enkephalin degrading enzymes have been shown to be elevated in pregnant rat uterus and a met-enkephalin analogue has been shown to alter spontaneous contractility of rat myometrium. Here we have undertaken studies to determine the effects of met-enkephalin on in vitro human myometrial contractility and investigate the expression of opioid receptors in pregnant myometrium. Myometrial biopsies were taken from women undergoing elective caesarean delivery at term. Organ bath experiments were used to investigate the effect of the met-enkephalin analogue [d-Ala 2, d-met 5] enkephalin (DAMEA) on spontaneous contractility. A confocal immunofluorescent technique and real time PCR were used to determine the expression of protein and mRNA, respectively for two opioid receptor subtypes, mu and delta. DAMEA had a concentration dependent inhibitory effect on contractile activity (1 × 10(-7)M-1 × 10(-4)M; 54% reduction in contractile activity, P<0.001 at 1 × 10(-4)M concentration). Mu and delta opioid receptor protein sub-types and their respective mRNA were identified in all tissues sampled. This is the first report of opioid receptor expression and of an opioid mediated uterorelaxant action in term human non-labouring myometrium in vitro.

  9. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape.

    Directory of Open Access Journals (Sweden)

    Virginie eRouiller-Fabre

    2015-05-01

    Full Text Available During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food and many consumer products, several can act as endocrine disrupting compounds (EDCs, thus interfering with the endocrine system. Phthalates, bisphenol A (BPA and diethylstilbestrol (DES have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review we discuss the role of classical nuclear receptors (genomic pathway in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA and DES. Among the nuclear receptors we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR, androgen receptor (AR, estrogen receptors (ERα and β, liver X receptors (LXR and small heterodimer partner (SHP. First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s. We also point-out the involvement of other receptors and nuclear receptor-independent pathways.

  10. Development of gamma emitting receptor-binding radiotracers for imaging the brain and pancreas. Progress report, February 1983-September 1984

    International Nuclear Information System (INIS)

    Reba, R.C.

    1984-01-01

    The possibility of measuring the change in receptor concentration as a function of disease by external imaging was investigated. The structure-binding-relationship which provides optimal localization of radiolabelled antagonist of the muscarinic acetylcholine receptors in the brain was studied. These relationships were also studied with respect to localization in the pancreas

  11. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael

    2003-01-01

    The database of the Drosophila Genome Project contains the sequences of two genes, CG8784 and CG8795, predicted to code for two structurally related G protein-coupled receptors. We have cloned these genes and expressed their coding parts in Chinese hamster ovary cells. We found that both receptors...... can be activated by low concentrations of the Drosophila neuropeptide pyrokinin-2 (CG8784, EC(50) for pyrokinin-2, 1x10(-9)M; CG8795, EC(50) for pyrokinin-2, 5 x 10(-10)M). The precise role of Drosophila pyrokinin-2 (SVPFKPRLamide) in Drosophila is unknown, but in other insects, pyrokinins have...... embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors...

  12. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.

    2006-01-01

    also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system......RNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle....

  13. Imaging benzodiazepine receptors in man with C-11-suriclone and positron emission tomography

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Links, J.M.; Trifiletti, R.; Snyder, S.H.; Wagner, H.N. Jr.

    1985-01-01

    Suriclone is a potent cyclopyrrolone, anti-anxiety drug which binds to the benzodiazepine receptor complex (BZR) with high affinity. Suriclone binds to a site on the BZR distinct from the site where benzodiazepines bind. The K/sub D/ of suriclone at 37oC is 0.03 nM. C-11-suriclone (SUR) was synthesized by reacting C-CH3I with the appropriate amine precursor. SUR (1 μg/kg) was injected IV into a baboon alone or with 1 mg/kg of Ro-151788, a benzodiazepine antagonist, and serial PET scans of the brain were obtained. High radioactivity concentrations were observed in the cerebral cortex and cerebellum which contain high densities of BZR, intermediate concentrations in thalamus and low concentrations in the striatum. When Ro-151788 was given a uniform distribution of radioactivity was observed; the radioactivity was reduced to ca. 25% of control values in the brain which was contained within the PET slice. SUR (0.2 μg/kg) was next administered to a human subject. From 30-60 minutes after injection high radioactivity concentrations were observed in the cerebral cortex and cerebellum, intermediate concentrations in the thalamus and a low concentration in the caudate. Radioactivity in the cerebral cortex and cerebellum decreased slowly with time, implying that binding of SUR to a high affinity site had occurred. These results demonstrate utility of SUR for measuring binding to the benzodiazepine receptor complex non-invasively in man

  14. Leptin responsiveness to energy restriction: genetic variation in the leptin receptor gene

    NARCIS (Netherlands)

    Mars, M.; Rossum, van C.T.M.; Graaf, de C.; Hoebee, B.; Groot, de C.P.G.M.; Kok, F.J.

    2004-01-01

    Serum leptin concentrations are an important afferent signal in energy balance homeostasis. It has been speculated that the leptin responsiveness to energy restriction is affected by the functionality of the leptin receptor. The purpose of this analysis was to explore the effect of polymorphisms in

  15. Single Channel Analysis of Isoflurane and Ethanol Enhancement of Taurine-Activated Glycine Receptors.

    Science.gov (United States)

    Kirson, Dean; Todorovic, Jelena; Mihic, S John

    2018-01-01

    The amino acid taurine is an endogenous ligand acting on glycine receptors (GlyRs), which is released by astrocytes in many brain regions, such as the nucleus accumbens and prefrontal cortex. Taurine is a partial agonist with an efficacy significantly lower than that of glycine. Allosteric modulators such as ethanol and isoflurane produce leftward shifts of glycine concentration-response curves but have no effects at saturating glycine concentrations. In contrast, in whole-cell electrophysiology studies these modulators increase the effects of saturating taurine concentrations. A number of possible mechanisms may explain these enhancing effects, including modulator effects on conductance, channel open times, or channel closed times. We used outside-out patch-clamp single channel electrophysiology to investigate the mechanism of action of 200 mM ethanol and 0.55 mM isoflurane in enhancing the effects of a saturating concentration of taurine. Neither modulator enhanced taurine-mediated conductance. Isoflurane increased the probability of channel opening. Isoflurane also increased the lifetimes of the two shortest open dwell times while both agents decreased the likelihood of occurrence of the longest-lived intracluster channel-closing events. The mechanism of enhancement of GlyR functioning by these modulators is dependent on the efficacy of the agonist activating the receptor and the concentration of agonist tested. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Activation of vascular cholinergic and adrenergic receptors induced by gamma rays

    International Nuclear Information System (INIS)

    Alya, G.

    1999-10-01

    Activation of vascular cholinergic receptors and adrenoceptors plays an important role in vasomotoricity and peripheric vascular resistance. These factors are essential in maintaining a stable blood pressure. The aim of this study is to investigate the radiosensitivity differences between vascular cholinergic receptors and adrenoceptors, and consequently to determinate the effects of ionizing radiation (whole body irradiation) on contractile response regulation of vascular smooth muscle fibers VSMF isolated from rat portal vein. Our results show that Clonidine, (non-specific adrenergic agonist), and phenylephrine which is more specific α1-adrenoceptor agonist, increase the VSMF contractions. The maximum effect is obtained at 10 -5 - 3.10 -5 M. On irradiated rats (1-3-5 Gy), there is an important shift thus, the maximal response (E m ax) can be obtained in lower concentrations of clonidine and phenylephrine. Irradiation deceases the contractile responses of VSMF mediated by cholinergic stimulation, in a dose dependant manner. With E m ax 1 Gy>E m ax 3 Gy>E m ax 5 Gy. Irradiated muscular fibers became less sensitive to acetylcholine, thus 3.10 -8 M. A. ch induced more than 50% of contraction force increase in normal conditions. This concentration induce generally a negligible effect after irradiation. The results reveal the existence of radiosensitivity differences between vascular cholinergic and adrenergic receptors. (author)

  17. Hypophysectomy eliminates and growth hormone (GH) maintains the midpregnancy elevation in GH receptor and serum binding protein in the mouse

    International Nuclear Information System (INIS)

    Sanchez-Jimenez, F.; Fielder, P.J.; Martinez, R.R.; Smith, W.C.; Talamantes, F.

    1990-01-01

    [ 125 I]Iodomouse GH [( 125 I]iodo-mGH) binding to samples of serum and hepatic microsomal membranes was measured in hypophysectomized pregnant, sham-operated pregnant, intact pregnant, and intact adult virgin mice. Surgeries were carried out on day 11 of pregnancy, and the animals were killed on day 14. The binding of mGH to both serum and hepatic microsomal membranes of intact virgin mice was much lower than to those of intact pregnant mice. In hypophysectomized mice, the mGH-binding capacity of both serum and hepatic microsomes decreased to values similar to those of nonpregnant mice. No significant differences were observed between intact and sham-operated pregnant animals in the maternal serum mGH concentration, the serum GH-binding protein concentration, or the hepatic GH receptor concentration. GH receptor and binding protein-encoding mRNAs were also higher in intact and sham-operated pregnant mice than in virgin and hypophysectomized mice. Hypophysectomized mice were treated with 200 micrograms/day bovine GH, administered by osmotic minipump; after 3 days of treatment, a significant elevation of hepatic GH receptor and serum GH-binding protein levels was observed. These results demonstrate an up-regulation of hepatic GH receptors and serum GH-binding protein by GH during pregnancy in the mouse

  18. Preliminary studies of 99mTc-memantine derivatives for NMDA receptor imaging

    International Nuclear Information System (INIS)

    Zhou Xingqin; Zhang Jiankang; Yan Chenglong; Cao Guoxian; Zhang Rongjun; Cai Gangming; Jiang Mengjun; Wang Songpei

    2012-01-01

    Introduction: Novel technetium-labeled ligands, 99m Tc-NCAM and 99m Tc-NHAM were developed from the N-methyl-D-aspartate (NMDA) receptor agonist memantine as a lead compound by coupling with N 2 S 2 . This study evaluated the binding affinity and specificity of the ligands for the NMDA receptor. Methods: Ligand biodistribution and uptake specificity in the brain were investigated in mice. Binding affinity and specificity were determined by radioligand receptor binding assay. Three antagonists were used for competitive binding analysis. In addition, uptake of the complexes into SH-SY5Y nerve cells was evaluated. Results: The radiochemical purity of 99m Tc-labeled ligands was more than 95%. Analysis of brain regional uptake showed higher concentration in the frontal lobe and specific uptake in the hippocampus. 99m Tc-NCAM reached a higher target to nontarget ratio than 99m Tc-NHAM. The results indicated that 99m Tc-NCAM bound to a single site on the NMDA receptor with a K d of 701.21 nmol/l and a B max of 62.47 nmol/mg. Specific inhibitors of the NMDA receptor, ketamine and dizocilpine, but not the dopamine D 2 and 5HT 1A receptor partial agonist aripiprazole, inhibited specific binding of 99m Tc-NCAM to the NMDA receptor. Cell physiology experiments showed that NCAM can increase the viability of SH-SY5Y cells after glutamate-induced injury. Conclusions: The new radioligand 99m Tc-NCAM has good affinity for and specific binding to the NMDA receptor, and easily crosses the blood–brain barrier; suggesting that it might be a potentially useful tracer for NMDA receptor expression.

  19. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals☆☆☆

    Science.gov (United States)

    Bannister, Richard; Beresford, Nicola; Granger, David W.; Pounds, Nadine A.; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J.

    2013-01-01

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p > 0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10−6 M for Gen and >10−5 M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of

  20. Involvement of sigma-1 receptors in the antidepressant-like effects of dextromethorphan.

    Directory of Open Access Journals (Sweden)

    Linda Nguyen

    Full Text Available Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1 receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047 were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [(3H](+-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors.

  1. Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.

    Science.gov (United States)

    Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H

    2004-01-01

    Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.

  2. Specific, high affinity receptors for insulin-like growth factor II in the rat kidney glomerulus

    International Nuclear Information System (INIS)

    Haskell, J.F.; Pillion, D.J.; Meezan, E.

    1988-01-01

    Rat renal glomeruli were isolated by a technique involving kidney perfusion with a solution containing magnetic iron oxide particles, followed by homogenization, sieving, and concentration over a strong magnet. Isolated glomeruli were treated with 1% Triton X-100 to solubilize plasma membrane components, while insoluble basement membrane components were removed by centrifugation. [ 125 I]Insulin-like growth factor II (IGF-II) binding to this preparation was competitively inhibited by increasing amounts of unlabeled IGF-II, with 50% inhibition at an IGF-II concentration of 1 ng/ml. [ 125 I]IGF-II was covalently cross-linked with disuccinimidyl suberate to its receptor in rat renal glomeruli and a specific high mol wt (255,000) band could be identified on autoradiograms of dodecyl sulfate-polyacrylamide gels. [ 125 I]IGF-II binding and cross-linking to this band was inhibited by a polyclonal antibody against the type II IGF receptor. These results demonstrate for the first time that the isolated rat renal glomerulus contains a high affinity receptor for IGF-II

  3. Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus

    DEFF Research Database (Denmark)

    Weihprecht, H; Lorenz, J N; Schnermann, J

    1990-01-01

    Adenosine has been proposed to act within the juxtaglomerular apparatus (JGA) as a mediator of the inhibition of renin secretion produced by a high NaCl concentration at the macula densa. To test this hypothesis, we studied the effects of the adenosine1 (A1)-receptor blocker 8-cyclopentyl-1......,3-dipropylxanthine (CPX) on renin release from single isolated rabbit JGAs with macula densa perfused. The A1-receptor agonist, N6-cyclohexyladenosine (CHA), applied in the bathing solution at 10(-7) M, was found to inhibit renin secretion, an effect that was completely blocked by adding CPX (10(-5) M) to the bath....... Applied to the lumen, 10(-5) M CPX produced a modest stimulation of renin secretion rates suppressed by a high NaCl concentration at the macula densa (P less than 0.05). The effect of changing luminal NaCl concentration on renin secretion rate was examined in the presence of CPX (10(-7) and 10(-5) M...

  4. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    Science.gov (United States)

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. Copyright © 2016, American Association for the Advancement of Science.

  5. Concentration of activin A and follistatin in follicular fluid from human small antral follicles associated to gene expression of the corresponding granulosa cells

    DEFF Research Database (Denmark)

    Jeppesen, J V; Nielsen, M E; Kristensen, S G

    2012-01-01

    The present study correlated concentrations of activin A and follistatin in follicular fluid (FF) from human small antral follicles to FF concentrations of AMH, inhibin B, progesterone, and oestradiol and to the mRNA expression of FSH-receptor (FSHR), LH-receptor (LHR), AMH-receptor2 (AMHR2), CYP19...... activin A levels increased in follicles exceeding 10 mm in diameter. Levels of activin A and inhibin B showed a highly significant inverse association. Follistatin showed highly significant positive associations with AMH and inhibin B levels and with FSHR and AR gene expression in GC. This study revealed......a, and androgen-receptor (AR) in the corresponding granulosa cells (GC). FF from 144 follicles (3-12 mm in diameter) was included whereas mRNA expression profiles were established in GC from 66 of the 144 follicles. Levels of follistatin remained constant in relation to follicular diameter, whereas...

  6. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity.

    Science.gov (United States)

    Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda

    2017-01-01

    The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Norepinephrine-induced alteration in the coupling of α1-adrenergic receptor occupancy to calcium efflux in rabbit aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Colucci, W.S.; Alexander, R.W.

    1986-01-01

    To determine whether α-adrenergic desensitization of vascular smooth muscle is due to an alteration in α 1 -adrenergic receptor coupling, the authors determined the relationship between receptor occupancy and maximal receptor-coupled Ca 2+ efflux in cultured rabbit aortic smooth muscle cells (i) under basal conditions as defined by receptor inactivation with phenoxybenzamine and (ii) after 48 hr of exposure to several concentrations of 1-norepinephrine (NE). Neither phenoxybenzamine nor NE exposure caused a change in binding affinity for [ 3 H]prazosin or NE. Maximal [ 3 H]prazosin binding capacity and maximal NE-stimulated 45 Ca 2+ efflux decreased progressively with exposure of incubated cells to increasing concentrations of phenoxybenzamine or NE. An approximately 80% decrease in maximal [ 3 H]prazosin binding capacity caused by either phenoxybenzamine or NE resulted in complete loss of NE-stimulated 45 Ca 2+ efflux, indicating that under these conditions approximately 20% of α 1 -adrenergic receptors are not coupled to the Ca 2+ efflux. Under basal conditions, the relationship between maximal [ 3 H]prazosin binding capacity and maximal NE-stimulated 45 Ca 2+ efflux was markedly nonlinear, so that a near maximal response could be elicited by occupancy of only approximately 40% of the receptors. Thus, an alteration in occupancy-response coupling at a step proximal to Ca 2+ mobilization and/or influx, rather than a reduction in receptor number, is of primary importance in the process of agonist-induced α-adrenergic receptor desensitization of vascular smooth muscle cells

  8. Pharmacological differences between the D-2 autoreceptor and the D-1 dopamine receptor in rabbit retina

    International Nuclear Information System (INIS)

    Dubocovich, M.L.; Weiner, N.

    1985-01-01

    The effect of dopamine receptor agonists and antagonists was studied on the calcium-dependent release of [ 3 H]dopamine elicited by field stimulation at 3 Hz for a duration of 1 min (20 mA, 2 msec) from the rabbit retina in vitro and on adenylate cyclase activity in homogenates of rabbit retina. The relative order of potency of dopamine receptor agonists to inhibit the stimulation-evoked [ 3 H]dopamine release was pergolide greater than bromocriptine greater than apomorphine greater than LY 141865 greater than N,N-di-n-propyldopamine greater than or equal to dopamine. The relative order of potencies of dopamine receptor antagonists to increase [ 3 H]dopamine release was: S-sulpiride greater than or equal to domperidone greater than or equal to spiroperidol greater than metoclopramide greater than fluphenazine greater than or equal to R-sulpiride. alpha-Flupenthixol (0.01-1 microM) and (+)-butaclamol (0.01-1 microM) did not increase [ 3 H]dopamine overflow when added alone, but they antagonized the concentration-dependent inhibitory effect of apomorphine (0.1-10 microM). These results suggest that the dopamine inhibitory autoreceptor involved in the modulation of dopamine release from the rabbit retina possesses the pharmacological characteristics of a D-2 dopamine receptor. Maximal stimulation by 30 microM dopamine resulted in a 3-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 2.46 microM. Apomorphine and pergolide elicited a partial stimulation of adenylate cyclase activity. However, at low concentrations both compounds were more potent than dopamine

  9. Partial Agonism of Taurine at Gamma-Containing Native and Recombinant GABAA Receptors

    Science.gov (United States)

    Kletke, Olaf; Gisselmann, Guenter; May, Andrea; Hatt, Hanns; A. Sergeeva, Olga

    2013-01-01

    Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α1/2β1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ1/2 subunit reduced taurine efficacy to 60–90% of GABA. The mutation γ2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ2 subunit carrying the δ subunit motif around F77 (MTVFLH). At α1/2β1γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine’s partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions. PMID:23637894

  10. Glucocorticoid receptor modulators.

    Science.gov (United States)

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Modulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex

    Directory of Open Access Journals (Sweden)

    Anna Maria Haarmann

    2014-11-01

    Full Text Available Introduction: Spreading depression (SD is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investigate the effect of dopamine D2 receptors on the characteristic features of SD in rat neocortical tissues. Methods: The effect of dopamine D2 receptor agonist quinpirole and D2 receptor antagonist sulpiride was tested on different characteristic features (amplitude, duration and velocity of KCl-induced SD in somatosensory neocortical slices of adult rats. The effect of above-mentioned substances on production of long-term potentiation (LTP in the neocortex was also evaluated. Results: The present data revealed a dose-dependent suppression of the amplitude and duration of SD in the presence of the dopamine D2 receptor antagonist sulpiride in the neocortex. D2 dopamine receptor agonist quinpirole dose-dependently enhanced the amplitude and duration of the neocortical SD. Furthermore, application of D2 receptor antagonist significantly suppressed induction of LTP. Discussion: These results indicate that D2 receptors modulate the initiation of SD in the neocortex. This finding refers to the potential role of D2 receptor antagonist in treatment of migraine pain.

  12. Expression of group III metabotropic glutamate receptors in the reproductive system of male mice.

    Science.gov (United States)

    Marciniak, Marcin; Chruścicka, Barbara; Lech, Tomasz; Burnat, Grzegorz; Pilc, Andrzej

    2016-03-01

    Although the presence of metabotropic glutamate (mGlu) receptors in the central nervous system is well documented, they have recently been found in peripheral and non-neuronal tissues. In the present study we investigated the expression of group III mGlu receptors in the reproductive system of male mice. Reverse transcription-polymerase chain reaction analysis revealed the presence of mGlu6, mGlu7 and mGlu8 (but not mGlu4) receptor transcripts in testes and epididymides from adult mice. In addition, expression of mGlu6 (Grm6) and mGlu8 receptor (Grm8) mRNA was detected in spermatozoa isolated from the vas deferens. The vas deferens was found to contain only mGlu7 receptor (Grm7) mRNA, which was particularly intense in 21-day-old male mice. In penile homogenates, only the mGlu7 receptor signal was detected. Genetic ablation of the mGlu7 receptor in males led to fertility disorders manifested by decreased insemination capability as well as deterioration of sperm parameters, particularly sperm motility, vitality, sperm membrane integrity and morphology, with a simultaneous increase in sperm concentration. These results indicate that constitutively expressed mGlu receptors in the male reproductive system may play an important role in ejaculation and/or erection processes, as well as in the formation and maturation of spermatozoa.

  13. Detection and characterization of Ah receptor in tissue and cells from human tonsils

    International Nuclear Information System (INIS)

    Lorenzen, A.; Okey, A.B.

    1991-01-01

    Ah receptor was identified and characterized in cytosol and nuclear extracts from human tonsils obtained at surgery from children 2 to 6 years of age. Ah receptor was found in cytosol prepared from whole-tonsil homogenates as well as in cytosol and nuclear fractions prepared from tonsil lymphocytes or tonsil fibroblasts grown in primary culture. Cytosolic Ah receptor was detectable in tonsillar tissue with either halogenated (2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD)) or nonhalogenated (3-[3H]methylcholanthrene and [3H]benzo[a]pyrene) aromatic hydrocarbons and sedimented at approximately 9 S after velocity sedimentation on sucrose gradients. The apparent binding affinity (Kd) of [3H]TCDD for Ah receptor ranged from 3 to 12 nM in cytosols from seven different donors. The same analyses indicated a concentration of Ah receptor in human tonsils of approximately 100-300 fmol/mg cytosolic protein. Incubation of either tonsil lymphocytes or tonsil fibroblasts with [3H]TCDD resulted in transformation of cytosolic Ah receptor to a nuclear binding form which could be detected as a specifically labeled peak sedimenting at approximately 6 S on sucrose gradients. These data demonstrate the existence of Ah receptor in human tonsils and suggest that this immune organ may be an appropriate model for further studies on the mechanism and manifestation of aromatic hydrocarbon-induced immunotoxicity in man

  14. Effects of melatonin and its receptor antagonist on retinal pigment epithelial cells against hydrogen peroxide damage

    Science.gov (United States)

    Rosen, Richard B.; Hu, Dan-Ning; Chen, Min; McCormick, Steven A.; Walsh, Joseph

    2012-01-01

    Purpose Recently, we reported finding that circulating melatonin levels in age-related macular degeneration patients were significantly lower than those in age-matched controls. The purpose of this study was to investigate the hypothesis that melatonin deficiency may play a role in the oxidative damage of the retinal pigment epithelium (RPE) by testing the protective effect of melatonin and its receptor antagonist on RPE cells exposed to H2O2 damage. Methods Cultured human RPE cells were subjected to oxidative stress induced by 0.5 mM H2O2. Cell viability was measured using the microculture tetrazoline test (MTT) assay. Cells were pretreated with or without melatonin for 24 h. Luzindole (50 μM), a melatonin membrane-receptor antagonist, was added to the culture 1 h before melatonin to distinguish direct antioxidant effects from indirect receptor-dependent effects. All tests were performed in triplicate. Results H2O2 at 0.5 mM decreased cell viability to 20% of control levels. Melatonin showed dose-dependent protective effects on RPE cells against H2O2. Cell viability of RPE cells pretreated with 10−10, 10−8, 10−6, and 10−4 M melatonin for 24 h was 130%, 160%, 187%, and 230% of cells treated with H2O2 alone (all p<0.05). Using cells cultured without H2O2 as the control, cell viability of cells treated with H2O2 after pretreatment with 10−10-10−4 M melatonin was still significantly lower than that of the controls, suggesting that melatonin significantly decreased but did not completely abolish the in vitro cytotoxic effects of H2O2. Luzindole completely blocked melatonin’s protective effects at low concentrations of melatonin (10−10-10−8 M) but not at high concentrations (10−6-10−4 M). Conclusions Melatonin has a partial protective effect on RPE cells against H2O2 damage across a wide range of concentrations (10−10-10−4 M). This protective effect occurs through the activation of melatonin membrane receptors at low concentrations (10−10

  15. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  16. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin-concentrating Hormone Receptor 1 Antagonist.

    Science.gov (United States)

    Gennemark, P; Trägårdh, M; Lindén, D; Ploj, K; Johansson, A; Turnbull, A; Carlsson, B; Antonsson, M

    2017-07-01

    In this study, we present the translational modeling used in the discovery of AZD1979, a melanin-concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body-composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non-parametric input estimation (e.g., predicting energy intake from longitudinal body-weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose-prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  17. [Serum leptin levels and soluble leptin receptors in female patients with anorexia nervosa].

    Science.gov (United States)

    Jiskra, J; Haluzík, M; Svobodová, J; Haluzíková, D; Nedvídková, J; Parízková, J; Kotrlíková, E

    2000-10-25

    Leptin action in peripheral tissues is enabled by an interaction with specific transmembrane receptors. Several of leptin receptor isoforms were identified, including soluble leptin receptor isoform structurally identical to extracellular domain of the the long leptin receptor isoform. The soluble receptor isoform is released to the circulation and acts probably as leptin-binding factor. The aim of our study was to measure serum concentrations of the soluble leptin receptor in patients with anorexia nervosa and in the control group of healthy women. Relationships of soluble leptin receptor levels to body mass index (BMI), body fat content, serum leptin, TNF-alpha and insulin levels were also studied. 16 patients with anorexia nervosa and 16 age-matched lean healthy women were included into the study. All of the subjects were measured and weighed, the body fat content was estimated from the skinfold thickness measurement. The blood for the determination of leptin, soluble leptin receptor and other hormonal parameters was obtained from all subjects after the overnight fasting. BMI, body fat content, serum leptin and insulin levels in patients with anorexia nervosa were significantly lower than in the control group (BMI: 14.98 +/- 2.32 vs. 22.21 +/- 2.48, p anorexia nervosa were significantly higher compared the to control group (24.67 +/- 8.3 U.ml-1 vs. 15.71 +/- 2.79 U.ml-1, p anorexia nervosa were significantly higher in comparison with the healthy subjects. Except of the negative correlation between serum soluble leptin receptor levels and BMI no statistically significant relationships between serum soluble leptin receptor and the rest of parameters studied were found.

  18. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  19. Phylogenetic and Molecular Evolutionary Analysis of Mitophagy Receptors under Hypoxic Conditions

    Directory of Open Access Journals (Sweden)

    Xiaomei Wu

    2017-07-01

    Full Text Available As animals evolved to use oxygen as the main strategy to produce ATP through the process of mitochondrial oxidative phosphorylation, the ability to adapt to fluctuating oxygen concentrations is a crucial component of evolutionary pressure. Three mitophagy receptors, FUNDC1, BNIP3 and NIX, induce the removal of dysfunctional mitochondria (mitophagy under prolonged hypoxic conditions in mammalian cells, to maintain oxygen homeostasis and prevent cell death. However, the evolutionary origins and structure-function relationships of these receptors remain poorly understood. Here, we found that FUN14 domain-containing proteins are present in archaeal, bacterial and eukaryotic genomes, while the family of BNIP3 domain-containing proteins evolved from early animals. We investigated conservation patterns of the critical amino acid residues of the human mitophagy receptors. These residues are involved in receptor regulation, mainly through phosphorylation, and in interaction with LC3 on the phagophore. Whereas FUNDC1 may be able to bind to LC3 under the control of post-translational regulations during the early evolution of vertebrates, BINP3 and NIX had already gained the ability for LC3 binding in early invertebrates. Moreover, FUNDC1 and BNIP3 each lack a layer of phosphorylation regulation in fishes that is conserved in land vertebrates. Molecular evolutionary analysis revealed that BNIP3 and NIX, as the targets of oxygen sensing HIF-1α, showed higher rates of substitution in fishes than in mammals. Conversely, FUNDC1 and its regulator MARCH5 showed higher rates of substitution in mammals. Thus, we postulate that the structural traces of mitophagy receptors in land vertebrates and fishes may reflect the process of vertebrate transition from water onto land, during which the changes in atmospheric oxygen concentrations acted as a selection force in vertebrate evolution. In conclusion, our study, combined with previous experimental results, shows that

  20. Resveratrol, piceatannol and analogs inhibit activation of both wild-type and T877A mutant androgen receptor.

    Science.gov (United States)

    Lundqvist, Johan; Tringali, Corrado; Oskarsson, Agneta

    2017-11-01

    Prostate cancer growth and progression are mainly dependent on androgens and many current prostate cancer treatment options target the synthesis or function of androgens. We have previously reported that resveratrol and synthetic analogs of resveratrol with a higher bioavailability inhibit the synthesis of androgens in human adrenocortical H295R cells. Now we have studied the antiandrogenic properties of resveratrol, piceatannol and analogs in two different prostate cell lines; LNCaP and RWPE. LNCaP carry a T877A mutation in the androgen receptor while RWPE has a wild-type androgen receptor. We found that resveratrol, piceatannol and all studied analogs were able to inhibit a dihydrotestosterone-induced activation of the androgen receptor, showing that they act as antiandrogens. In LNCaP cells, all studied compounds were able to statistically significantly decrease the androgenic signaling in concentrations ≥1μM and the synthetic analogs trimethylresveratrol (RSVTM) and tetramethylpiceatannol (PICTM) were the most potent compounds. RWPE cells were not as responsive to the studied compounds as the LNCaP cells. A statistically significant decrease in the androgenic signaling was observed at concentrations ≤5μM for most compounds and RSVTM was found to be the most potent compound. Further, we studied the effects of resveratrol, piceatannol and analogs on the levels of prostate-specific antigen (PSA) in LNCaP cells and found that all studied compounds decreased the level of PSA and that the synthetic analogs diacetylresveratrol (RSVDA), triacetylresveratrol (RSVTA) and RSVTM were the most potent compounds, decreasing the PSA level by approx. 50% at concentrations ≥10μM. In a cell-free receptor binding assay we were unable to show binding of resveratrol or analogs to the ligand binding domain of the androgen receptor, indicating that the observed effects are mediated via other mechanisms than direct ligand competition. We conclude that the resveratrol

  1. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Science.gov (United States)

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  2. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striki...

  3. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    Science.gov (United States)

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  4. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients.

    Science.gov (United States)

    Wright, Adam; Mahaut-Smith, Martyn; Symon, Fiona; Sylvius, Nicolas; Ran, Shaun; Bafadhel, Mona; Muessel, Michelle; Bradding, Peter; Wardlaw, Andrew; Vial, Catherine

    2016-06-15

    Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Considerations on pharmacodynamics and pharmacokinetics: can everything be explained by the extent of drug binding to its receptor?

    Science.gov (United States)

    Castañeda-Hernández, G; Granados-Soto, V

    2000-03-01

    It is frequently assumed that pharmacological responses depend solely on the extent of drug binding to its receptor according to the occupational theory. It is therefore presumed that the intensity of the effect is determined by drug concentration at its receptor site, yielding a unique concentration-effect relationship. However, when dependence, abstinence, and tolerance phenomena occur, as well as for pharmacological responses in vivo that are modulated by homeostatic mechanisms, the rate of drug input shifts the concentration-effect relationship. Hence, such responses cannot be explained on the sole basis of the extent of drug binding to its receptor. Information on the cellular and molecular processes involved in the generation of abstinence, dependence, and tolerance will undoubtedly result in the development of pharmacodynamic models allowing a satisfactory explanation of drug effects modulated by these phenomena. Notwithstanding, integrative physiology concepts are required to develop pharmacokinetic-pharmacodynamic models allowing the description of drug effects in an intact organism. It is therefore important to emphasize that integrative physiology cannot be neglected in pharmacology teaching and research, but should be considered as an equally valuable tool as molecular biology and other biomedical disciplines for the understanding of pharmacological effects.

  6. Melanin-concentrating hormone: from fish skin to skinny mammals.

    Science.gov (United States)

    Pissios, Pavlos; Maratos-Flier, Eleftheria

    2003-07-01

    In recent years, the key role of melanin-concentrating hormone (MCH) in regulating mammalian energy balance has been confirmed through several lines of evidence. When administered exogenously, MCH leads to a rapid and robust feeding response and chronic infusions result in the development of mild obesity. At the physiological level, it is known that MCH expression changes in states of altered energy balance, such as fasting and obesity. Genetic studies with mice have shown that ablation of either the gene for prepro-MCH or the gene encoding the MCH receptor leads to a lean phenotype. Finally, the administration of MCH antagonists appears to inhibit both feeding and the development of diet-induced obesity. The aim of this article is to review the recent data on MCH and MCH receptors in light of their emerging roles in energy homeostasis.

  7. Autoinactivation of the stargazin-AMPA receptor complex: subunit-dependency and independence from physical dissociation.

    Directory of Open Access Journals (Sweden)

    Artur Semenov

    Full Text Available Agonist responses and channel kinetics of native α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA receptors are modulated by transmembrane accessory proteins. Stargazin, the prototypical accessory protein, decreases desensitization and increases agonist potency at AMPA receptors. Furthermore, in the presence of stargazin, the steady-state responses of AMPA receptors show a gradual decline at higher glutamate concentrations. This "autoinactivation" has been assigned to physical dissociation of the stargazin-AMPA receptor complex and suggested to serve as a protective mechanism against overactivation. Here, we analyzed autoinactivation of GluA1-A4 AMPA receptors (all flip isoform expressed in the presence of stargazin. Homomeric GluA1, GluA3, and GluA4 channels showed pronounced autoinactivation indicated by the bell-shaped steady-state dose response curves for glutamate. In contrast, homomeric GluA2i channels did not show significant autoinactivation. The resistance of GluA2 to autoinactivation showed striking dependence on the splice form as GluA2-flop receptors displayed clear autoinactivation. Interestingly, the resistance of GluA2-flip containing receptors to autoinactivation was transferred onto heteromeric receptors in a dominant fashion. To examine the relationship of autoinactivation to physical separation of stargazin from the AMPA receptor, we analyzed a GluA4-stargazin fusion protein. Notably, the covalently linked complex and separately expressed proteins expressed a similar level of autoinactivation. We conclude that autoinactivation is a subunit and splice form dependent property of AMPA receptor-stargazin complexes, which involves structural rearrangements within the complex rather than any physical dissociation.

  8. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition

    OpenAIRE

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases ?-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability ...

  9. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    Science.gov (United States)

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that

  10. Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model

    Directory of Open Access Journals (Sweden)

    Kang JY

    2013-10-01

    Full Text Available Ji Young Kang, Sook Young Lee, Chin Kook Rhee, Seung Joon Kim, Soon Seog Kwon, Young Kyoon KimDepartment of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul, KoreaBackground and objectives: The influence of aging on the development of asthma has not been studied thoroughly. The aim of this study was to investigate age-related airway responses involving lung histology and expression of muscarinic receptors in a murine model of acute asthma. Methods: Female BALB/c mice at the ages of 6 weeks and 6, 9, and 12 months were sensitized and challenged with ovalbumin (OVA for 1 month (n = 8–12 per group. We analyzed inflammatory cells and T-helper (Th2 cytokines in bronchoalveolar lavage (BAL fluid and parameters of airway remodeling and expression of muscarinic receptors in lung tissue. Results: Among the OVA groups, total cell and eosinophil numbers in BAL fluid were significantly higher in the older (6-, 9-, and 12-month-old mice than in the young (6-week-old mice. Interleukin (IL 4 (IL-4 concentration increased, but IL-5 and IL-13 concentrations showed a decreased tendency, with age. IL-17 concentration tended to increase with age, which did not reach statistical significance. periodic acid-Schiff (PAS staining area, peribronchial collagen deposition, and area of α-smooth muscle staining were significantly higher in the 6-month older OVA group than in the young OVA group. The expression of the M3 and M2 muscarinic receptors tended to increase and decrease, respectively, with age. Conclusion: The aged mice showed an active and unique pattern not only on airway inflammation, but also on airway remodeling and expression of the muscarinic receptors during the development of acute asthma compared with the young mice. These findings suggest that the aging process affects the pathogenesis of acute asthma and age-specific approach might be more appropriate for better asthma control in a clinical practice.Keywords: aging, asthma

  11. Prediction and analysis of near-road concentrations using a reduced-form emission/dispersion model

    Directory of Open Access Journals (Sweden)

    Kononowech Robert

    2010-06-01

    Full Text Available Abstract Background Near-road exposures of traffic-related air pollutants have been receiving increased attention due to evidence linking emissions from high-traffic roadways to adverse health outcomes. To date, most epidemiological and risk analyses have utilized simple but crude exposure indicators, most typically proximity measures, such as the distance between freeways and residences, to represent air quality impacts from traffic. This paper derives and analyzes a simplified microscale simulation model designed to predict short- (hourly to long-term (annual average pollutant concentrations near roads. Sensitivity analyses and case studies are used to highlight issues in predicting near-road exposures. Methods Process-based simulation models using a computationally efficient reduced-form response surface structure and a minimum number of inputs integrate the major determinants of air pollution exposures: traffic volume and vehicle emissions, meteorology, and receptor location. We identify the most influential variables and then derive a set of multiplicative submodels that match predictions from "parent" models MOBILE6.2 and CALINE4. The assembled model is applied to two case studies in the Detroit, Michigan area. The first predicts carbon monoxide (CO concentrations at a monitoring site near a freeway. The second predicts CO and PM2.5 concentrations in a dense receptor grid over a 1 km2 area around the intersection of two major roads. We analyze the spatial and temporal patterns of pollutant concentration predictions. Results Predicted CO concentrations showed reasonable agreement with annual average and 24-hour measurements, e.g., 59% of the 24-hr predictions were within a factor of two of observations in the warmer months when CO emissions are more consistent. The highest concentrations of both CO and PM2.5 were predicted to occur near intersections and downwind of major roads during periods of unfavorable meteorology (e.g., low wind

  12. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Roepke, Troy A. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States); Snyder, Mark J. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States); Cherr, Gary N. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States) and Departments of Environmental Toxicology and Nutrition, One Shields Avenue, University of California, Davis, CA 95616 (United States)]. E-mail: gncherr@ucdavis.edu

    2005-01-26

    Environmental endocrine disrupting compounds (EDCs) are a wide variety of chemicals that typically exert effects, either directly or indirectly, through receptor-mediated processes, thus mimicking endogenous hormones and/or inhibiting normal hormone activities and metabolism. Little is known about the effects of EDCs on echinoderm physiology, reproduction and development. We exposed developing sea urchin embryos (Strongylocentrotus purpuratus and Lytechinus anamesus) to two known EDCs (4-octylphenol (OCT), bisphenol A (BisA)) and to natural and synthetic reproductive hormones (17{beta}-estradiol (E{sub 2}), estrone (E{sub 1}), estriol (E{sub 3}), progesterone (P{sub 4}) and 17{alpha}-ethynylestradiol (EE{sub 2})). In addition, we studied two non-estrogenic EDCs, tributyltin (TBT) and o,p-DDD. Successful development to the pluteus larval stage (96 h post-fertilization) was used to define EDC concentration-response relationships. The order of compound potency based on EC{sub 50} values for a reduction in normal development was as follows: TBT {sub L.anamesus} > OCT > TBT {sub S.{sub p}}{sub urpuratus} >> E{sub 2} > EE{sub 2} > DDD >> BisA > P{sub 4} > E{sub 1} >> E{sub 3}. The effect of TBT was pronounced even at concentrations substantially lower than those commonly reported in heavily contaminated areas, but the response was significantly different in the two model species. Sea urchin embryos were generally more sensitive to estrogenic EDCs and TBT than most other invertebrate larvae. Stage-specific exposure experiments were conducted to determine the most sensitive developmental periods using blastula, gastrula and post-gastrula (pluteus) stages. The stage most sensitive to E{sub 2}, OCT and TBT was the blastula stage with less overall sensitivity in the gastrula stage, regardless of concentration. Selective estrogen receptor modulators (SERMs) were added to the experiments individually and in combination with estrogenic EDCs to interfere with potential receptor

  13. Therapeutic targeting of angiotensin II receptor type 1 to regulate androgen receptor in prostate cancer.

    Science.gov (United States)

    Takahashi, Satoru; Uemura, Hiroji; Seeni, Azman; Tang, Mingxi; Komiya, Masami; Long, Ne; Ishiguro, Hitoshi; Kubota, Yoshinobu; Shirai, Tomoyuki

    2012-10-01

    With the limited strategies for curative treatment of castration-resistant prostate cancer (CRPC), public interest has focused on the potential prevention of prostate cancer. Recent studies have demonstrated that an angiotensin II receptor blocker (ARB) has the potential to decrease serum prostate-specific antigen (PSA) level and improve performance status in CRPC patients. These facts prompted us to investigate the direct effects of ARBs on prostate cancer growth and progression. Transgenic rat for adenocarcinoma of prostate (TRAP) model established in our laboratory was used. TRAP rats of 3 weeks of age received ARB (telmisartan or candesartan) at the concentration of 2 or 10 mg/kg/day in drinking water for 12 weeks. In vitro analyses for cell growth, ubiquitylation or reporter gene assay were performed using LNCaP cells. We found that both telmisartan and candesartan attenuated prostate carcinogenesis in TRAP rats by augmentation of apoptosis resulting from activation of caspases, inactivation of p38 MAPK and down-regulation of the androgen receptor (AR). Further, microarray analysis demonstrated up-regulation of estrogen receptor β (ERβ) by ARB treatment. In both parental and androgen-independent LNCaP cells, ARB inhibited both cell growth and AR-mediated transcriptional activity. ARB also exerted a mild additional effect on AR-mediated transcriptional activation by the ERβ up-regulation. An intervention study revealed that PSA progression was prolonged in prostate cancer patients given an ARB compared with placebo control. These data provide a new concept that ARBs are promising potential chemopreventive and chemotherapeutic agents for prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  14. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  15. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    International Nuclear Information System (INIS)

    Kim, Byeongju; Jin, Hye Jun; Park, Eun Jin; Hong, Seunghun; Song, Hyun Seok; Lee, Sang Hun; Park, Tai Hyun; Lee, Byung Yang

    2013-01-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening. (paper)

  16. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    Science.gov (United States)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  17. Characterization of the interleukin 3 receptor

    International Nuclear Information System (INIS)

    Murthy, S.C.; Mui, A.L.; Krystal, G.

    1990-01-01

    A variety of homobifunctional crosslinking agents have been used to gain insight into the nature of the murine interleukin 3 (mIL-3) receptor. When [125I]mIL-3 was cross-linked to receptor sites on the surfaces of intact B6SUtA1 cells with disuccinimidyl suberate (DSS), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed the existence of two radiolabeled species with molecular weights of 140 (p140) and 70 (p70) kd (after subtraction of [125I]mIL-3). The relative intensities of the two bands did not change when the [125I]mIL-3 concentration was varied, confirming Scatchard results which suggested only one affinity class. However, when [125I]mIL-3 was crosslinked to intact cells and then incubated at 37 degrees C, the intensity of p140 decreased relative to p70, suggesting a conversion of p140 to p70. This conversion could be inhibited by sodium azide, methylamine, and bacitracin and could also be prevented by first boiling for 1 min in 2% SDS and 5% 2-mercaptoethanol. The putative protease that carried out this apparent conversion appeared to be associated both with plasma membranes prepared from these cells and also with solubilized receptors. Moreover, when p140, crosslinked with both dithiobis succinimidylpropionate and glutaraldehyde, was purified and reelectrophoresed under reducing conditions, p70 could be generated. N-glycanase digestion of p140 and p70 revealed a similar level of N-linked carbohydrate, which upon closer study appeared to consist of two chains, a 3-kd and an 8-kd moiety. Consistent with this data, we propose that the receptor is a 140-kd glycoprotein that is cleaved to a 70-kd surface protein upon mIL-3 binding and chemical crosslinking

  18. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  19. Relaxin and atrial natriuretic peptide pathways participate in the anti-fibrotic effect of a melon concentrate in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Julie Carillon

    2016-04-01

    Full Text Available Background: In spontaneously hypertensive rats (SHR, a model of human essential hypertension, oxidative stress is involved in the development of cardiac hypertrophy and fibrosis associated with hypertension. Dietary supplementation with agents exhibiting antioxidant properties could have a beneficial effect in remodeling of the heart. We previously demonstrated a potent anti-hypertrophic effect of a specific melon (Cucumis melo L. concentrate with antioxidant properties in spontaneously hypertensive rats. Relaxin and atrial natriuretic peptide (ANP were reported to reduce collagen deposition and fibrosis progression in various experimental models. Objective: The aim of the present investigation was to test the hypothesis that, beside reduction in oxidative stress, the melon concentrate may act through relaxin, its receptor (relaxin/insulin-like family peptide receptor 1, RXFP1, and ANP in SHR. Design and results: The melon concentrate, given orally during 4 days, reduced cardiomyocyte size (by 25% and totally reversed cardiac collagen content (Sirius red staining in SHR but not in their normotensive controls. Treatment with the melon concentrate lowered cardiac nitrotyrosine-stained area (by 45% and increased by 17–19% the cardiac expression (Western blot of superoxide dismutase (SOD and glutathione peroxidase. In addition, plasma relaxin concentration was normalized while cardiac relaxin (Western blot was lowered in treated SHR. Cardiac relaxin receptor level determined by immunohistochemical analysis increased only in treated SHR. Similarly, the melon concentrate reversed the reduction of plasma ANP concentration and lowered its cardiac expression. Conclusions: The present results demonstrate that reversal of cardiac fibrosis by the melon concentrate involves antioxidant defenses, as well as relaxin and ANP pathways restoration. It is suggested that dietary SOD supplementation could be a useful additional strategy against cardiac hypertrophy

  20. Receptor assay

    Energy Technology Data Exchange (ETDEWEB)

    Kato, K; Ibayashi, H [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1975-05-01

    This paper summarized present status and problems of analysis of hormone receptor and a few considerations on clinical significance of receptor abnormalities. It was pointed that in future clinical field quantitative and qualitative analysis of receptor did not remain only in the etiological discussion, but that it was an epoch-making field of investigation which contained the possiblity of artificial change of sensitivity of living body on drugs and the development connected directly with treatment of various diseases.

  1. Effect of hypothermia on the insulin-receptor interaction in skeletal muscle plasma membranes

    International Nuclear Information System (INIS)

    Torlinska T, Mackowiak P.; Nogowski L, Kozlik J.

    1996-01-01

    The aim of the study was to investigate the effect of hypothermia on (125-I)-insulin binding to rat skeletal muscle membranes and to determine whether the decrease in blood insulin concentration could be related to changes in the number or in the affinity of insulin receptor sites according to the down-regulation theory. Rat skeletal muscle membranes were prepared from control, normothermic rats (Tr = 35.6 ± 0.3 degree C) and hypothermic rats (Tr = 26.0 ± 0.5 deg C) and purified according to Havrankowa. In order to determine the kinetic parameters of the hormone-receptor interaction the data from the competition binding studies were analysed by the method of Scatchard using the LIGAND Pc.v.3.1. computer program of Munson and Rodbard. We have shown that under hypothermic conditions insulin receptors number is significantly increased in specific hindlimb skeletal muscles but the changes take place mainly in the low affinity receptors class. The phenomenon probably results from the lack of spare high affinity insulin receptors in skeletal muscle as shown recently by Camps et al. (author). 36 refs., 3 figs, 2 tabs

  2. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  3. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease?

    International Nuclear Information System (INIS)

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-01-01

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of ( 3 H)-ketanserin to serotonin receptors in frontal cortex and of ( 3 H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of ( 3 H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens

  4. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  5. Dopamine1 receptors in rat kidneys identified with 125I-Sch 23982

    International Nuclear Information System (INIS)

    Felder, R.A.; Jose, P.A.

    1988-01-01

    Dopamine1 receptors were studied in rat kidney using the selective dopamine1 antagonist 125I-labeled Sch 23982. The specific binding of 125I-Sch 23982 (defined by 5 microM Sch 23390) to renal cortical homogenates incubated at room temperature was rapid, saturable with time and ligand concentration, and reversible. Analysis of Rosenthal plots revealed a single class of receptors with an apparent dissociation constant of 12.2 +/- 1.9 nM and maximum receptor density of 1.03 +/- 0.15 pmol/mg protein (n = 6). However, competition experiments with the dopamine1 antagonist Sch 23390 revealed a low- and high-affinity binding site with inhibition constants of 1 x 10(-6) and 1 x 10(-8) M, respectively. The competition experiments were also indicative of dopamine1 receptors with stereoselectivity noted for dopamine1 but not for dopamine2 antagonists. The inhibition constants for dopamine1 antagonists and agonists were two orders of magnitude greater in renal cortical than striatal homogenates. Different buffers affected striatal but not renal cortical binding. Autoradiographic studies revealed 125I-Sch 23982 binding in renal cortical but not medullary tissue. These studies confirm the presence of dopamine1 receptors in the cortex of the rat kidney

  6. Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs?

    Science.gov (United States)

    Barwell, James; Gingell, Joseph J; Watkins, Harriet A; Archbold, Julia K; Poyner, David R; Hay, Debbie L

    2012-05-01

    The calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR) are two of the 15 human family B (or Secretin-like) GPCRs. CTR and CLR are of considerable biological interest as their pharmacology is moulded by interactions with receptor activity-modifying proteins. They also have therapeutic relevance for many conditions, such as osteoporosis, diabetes, obesity, lymphatic insufficiency, migraine and cardiovascular disease. In light of recent advances in understanding ligand docking and receptor activation in both the family as a whole and in CLR and CTR specifically, this review reflects how applicable general family B GPCR themes are to these two idiosyncratic receptors. We review the main functional domains of the receptors; the N-terminal extracellular domain, the juxtamembrane domain and ligand interface, the transmembrane domain and the intracellular C-terminal domain. Structural and functional findings from the CLR and CTR along with other family B GPCRs are critically appraised to gain insight into how these domains may function. The ability for CTR and CLR to interact with receptor activity-modifying proteins adds another level of sophistication to these receptor systems but means careful consideration is needed when trying to apply generic GPCR principles. This review encapsulates current thinking in the realm of family B GPCR research by highlighting both conflicting and recurring themes and how such findings relate to two unusual but important receptors, CTR and CLR. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Exclusive nuclear location of estrogen receptors in Squalus testis.

    Science.gov (United States)

    Callard, G V; Mak, P

    1985-01-01

    An estrogen (E)-binding molecule having both occupied and unoccupied sites is restricted to nuclear subfractions in the testis of the spiny dogfish (Squalus acanthias). We investigated the hypothesis that a species characterized by high body-fluid osmolarity (1010 mosM) has an estrogen receptor (ER) that binds to chromatin with high affinity and consequently resists redistribution during tissue processing. Although the steroid binding and sedimentation properties of the Squalus nuclear ER conformed to those of classical ER, its elution maximum from DNA-cellulose was unusually high (0.55 M NaCl). A tendency to adhere tightly to cell nuclei was reflected in the high salt concentration (0.43 M KCl) required to extract 50% of the receptors from the nuclear compartment during homogenization and in the stability of the nuclear ER population in the presence of high concentrations of a nonionic solute (urea) or increased buffer volume. Mixing and redistribution experiments showed that nuclear ER could be quantitatively and qualitatively measured in cytosolic extracts, ruling out the possibility that soluble receptors were being masked. Although Squalus oviduct ER was similar to that of testis, ER in the testis and liver of a related elasmobranch (Potamotrygon) that maintains osmotic equilibrium at 300 mosM more closely resembled mammalian ER in its elution maximum from DNA-cellulose (0.22 M NaCl) and cytosolic/nuclear ratios in low-salt buffers. We conclude that Squalus testis has a single ER pool located exclusively in the nuclear compartment. These observations support a revised concept of steroid action and further indicate that the chromatin affinity of the hormone-ER complex is an important factor in determining subfractional distribution during tissue processing. PMID:3856265

  8. Affinity of Iresine herbstii and Brugmansia arborea extracts on different cerebral receptors.

    Science.gov (United States)

    Nencini, Cristina; Cavallo, Federica; Bruni, Giancarlo; Capasso, Anna; De Feo, Vincenzo; De Martino, Laura; Giorgi, Giorgio; Micheli, Lucia

    2006-05-24

    Iresine herbstii Hook. (Amaranthaceae) and Brugmansia arborea (L.) Lagerheim (Solanaceae) are used in the northern Peruvian Andes for magic-therapeutical purposes. The traditional healers use Iresine herbstii with the ritual aim to expel bad spirits from the body. Furthermore, Iresine herbstii was used in association with other plants, such as Trichocereus pachanoi Britt. et Rose, for divination, to diagnose diseases, and to take possession of another identity. Also, species of Brugmansia have been reported to be used during ritual practices for magical and curative purposes. Given the above evidence, the aim of the present study is to evaluate if the central effects of Iresine herbstii and Brugmansia arborea could be associated with interaction with SNC receptors. Two Iresine herbstii extracts (methanolic and aqueous) and one Brugmansia arborea aqueous extract were tested for in vitro affinity on 5-HT(1A), 5-HT(2A), 5-HT(2C), D1, D2, alpha(1), and alpha(2) receptors by radioligand binding assays. The biological materials for binding assay (cerebral cortex) were taken from male Sprague-Dawley rats. The extracts affinity for receptors is definite as inhibition percentage of radioligand/receptor binding and measured as the radioactivity of remaining complex radioligand/receptor. The data obtained for Iresine extracts have shown a low affinity for the 5-HT(1A) receptor and no affinity for 5-HT(2A) receptor. Otherwise the methanolic extract showed affinity for 5-HT(2C) receptor (IC(50): 34.78 microg/ml) and for D1 receptor (IC(50): 19.63 microg/ml), instead the Iresine aqueous extract displayed a lower affinity for D1 (48.3% at the maximum concentration tested) and a higher value of affinity for D2 receptors (IC(50): 32.08 microg/ml). The Brugmansia aqueous extract displayed affinity for D1 receptors (IC(50): 17.68 microg/ml), D2 receptors (IC(50): 15.95 microg/ml) and weak affinity for the serotoninergic receptors. None of the three extracts showed relevant affinity

  9. Raynaud's phenomenon: peripheral catecholamine concentration and effect of sympathectomy.

    Science.gov (United States)

    Nielsen, S L; Christensen, N J; Olsen, N; Lassen, N A

    1980-01-01

    The reaction to body and finger cooling was recorded in seven patients with relapse of primary Raynaud's phenomenon after sufficiently performed bilateral upper thoracic sympathectomy and for comparison in eight young women with primary Raynaud's phenomenon as well as in seven normal women. The forearm venous concentration of noradrenaline was lower and adrenaline concentration higher in the sympathectomized patients than in the other groups (p less than 0,05). Noradrenaline showed a significant increase during body cooling in normals and primary Raynaud's (p less than 0,05). There was no significant correlation between the vasoconstrictor response to cooling of a finger and the noradrenaline concentration probably due to the fact that skin vasoconstriction impeded release of noradrenaline from the skin. The relapse of Raynaud's phenomenon after surgically sufficient sympathectomy could not be treated by reserpine or alfa-adrenergic receptor blockers in two patients in whom this was tried.

  10. Pitocin and autism: An analysis of oxytocin receptor desensitization in the fetus.

    Science.gov (United States)

    Gottlieb, Mark M

    2016-02-01

    The risk of Pitocin as a cause of autism attributable to oxytocin receptor desensitization in the brain of the fetus is evaluated in terms of a mathematical model. A composite unit, D, for oxytocin receptor desensitization levels is established with the form ((IU-h)/ml)E-3, where IU is the international unit for oxytocin. The desensitization values for oxytocin receptor desensitization at a concentration of 10 nmol of oxytocin per liter for 3, 4.2 and 6h corresponding to 0%, 50% and 100% desensitization are calculated to be 15 D, 21 D, and 30 D, respectively. The permeability of the blood-brain barrier in the fetus to oxytocin is discussed, and the upper limit of the concentration of Pitocin in the placenta, and its possible diffusion into the blood and brain of the fetus, is calculated for a routine dose of 6 milli U per minute of Pitocin over a 12h labor. This dose of Pitocin is shown to result in a desensitization value in units of D that is more than a factor of 10 below the 0% desensitization value of 15 D. This indicates that routine doses of Pitocin are not a significant cause of autism attributable to oxytocin receptor desensitization. This is consistent with the findings of a major epidemiological study of the association of Pitocin with autism in Denmark entitled, "Oxytocin-augmented labor and risk for males", Behavioral Brain Research, May 1, 2015; 284:207-212, which found no association between the use of Pitocin during labor and the incidence of autism for females, and a modest association for males. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    Science.gov (United States)

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  12. Radioiodinated SB 207710 as a radioligand in vivo: imaging of brain 5-HT{sub 4} receptors with SPET

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Victor W. [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); PET Radiopharmaceutical Sciences Section, Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, MD 20892-1003, Bethesda (United States); Halldin, Christer; Nobuhara, Kenji; Swahn, Carl-Gunnar; Karlsson, Per; Olsson, Hans; Larsson, Stig; Schnell, Per-Olof; Farde, Lars [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Karolinska Hospital, 17176, Stockholm (Sweden); Hiltunen, Julka [MAP Medical Technologies, Oy, Tikkakoski (Finland); Mulligan, Rachel S. [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Institute of Psychiatry, SE 8AF, De Crespigny Park, Denmark Hill, London (United Kingdom); Centre for PET, Austin and Repatriation Medical Centre, Studley Road, Melbourne VIC 3084 (Australia); Hume, Susan P.; Hirani, Ella [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Imaging Research Solutions Ltd., Cyclotron Building, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Whalley, Jaqueline [MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, W12 0NN, London (United Kingdom); Pilowsky, Lyn S. [Institute of Psychiatry, SE 8AF, De Crespigny Park, Denmark Hill, London (United Kingdom); Institute of Nuclear Medicine, Royal Free and University College, Medical School, Mortimer Street, W1N 8AA, London (United Kingdom); Ell, Peter J. [Institute of Nuclear Medicine, Royal Free and University College, Medical School, Mortimer Street, W1N 8AA, London (United Kingdom)

    2003-11-01

    Single-photon emission tomography (SPET) and positron emission tomography (PET), when coupled to suitable radioligands, are uniquely powerful for investigating the status of neurotransmitter receptors in vivo. The serotonin subtype-4 (5-HT{sub 4}) receptor has discrete and very similar distributions in rodent and primate brain. This receptor population may play a role in normal cognition and memory and is perhaps perturbed in some neuropsychiatric disorders. SB 207710 [(1-butyl-4-piperidinylmethyl)-8-amino-7-iodo-1,4-benzodioxan-5-carboxylate] is a selective high-affinity antagonist at 5-HT{sub 4} receptors. We explored radioiodinated SB 207710 as a possible radioligand for imaging 5-HT{sub 4} receptors in vivo. Rats were injected intravenously with iodine-125 labelled SB 207710, euthanised at known times and dissected to establish radioactivity content in brain tissues. Radioactivity entered brain but cleared rapidly and to a high extent from blood and plasma. Between 45 and 75 min after injection, the ratios of radioactivity concentration in each of 12 selected brain tissues to that in receptor-poor cerebellum correlated with previous measures of 5-HT{sub 4} receptor density distribution in vitro. The highest ratio was about 3.4 in striatum. SB 207710 was labelled with iodine-123 by an iododestannylation procedure. A cynomolgus monkey was injected intravenously with [{sup 123}I]SB 207710 and examined by SPET. Maximal whole brain uptake of radioactivity was 2.3% of the injected dose at 18 min after radioligand injection. Brain images acquired between 9 and 90 min showed high radioactivity uptake in 5-HT{sub 4} receptor-rich regions, such as striatum, and low uptake in receptor-poor cerebellum. At 169 min the ratio of radioactivity concentration in striatum to that in cerebellum was 4.0. In a second SPET experiment, the cynomolgus monkey was pretreated with a selective 5-HT{sub 4} receptor antagonist, SB 204070, at 20 min before [{sup 123}I]SB 207710 injection

  13. Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor.

    Science.gov (United States)

    Singer, M S; Shepherd, G M

    1994-06-02

    Olfactory receptors belong to the superfamily of seven transmembrane domain, G protein-coupled receptors. In order to begin analysis of mechanisms of receptor activation, a computer model of the OR5 olfactory receptor has been constructed and compared with other members of this superfamily. We have tested docking of the odor molecule lyral, which is known to activate the OR5 receptor. The results point to specific ligand-binding residues on helices III through VII that form a binding pocket in the receptor. Some of these residues occupy sequence positions identical to ligand-binding residues conserved among other superfamily members. The results provide new insights into possible molecular mechanisms of odor recognition and suggest hypotheses to guide future experimental studies using site-directed mutagenesis.

  14. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    International Nuclear Information System (INIS)

    Muñoz, Miguel; Coveñas, Rafael

    2015-01-01

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC

  15. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es [Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla (Spain); Coveñas, Rafael [Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca (Spain)

    2015-07-06

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  16. [Effect of 5-HT1A receptors in the hippocampal DG on active avoidance learning in rats].

    Science.gov (United States)

    Jiang, Feng-ze; Lv, Jing; Wang, Dan; Jiang, Hai-ying; Li, Ying-shun; Jin, Qing-hua

    2015-01-01

    To investigate the effects of serotonin (5-HTIA) receptors in the hippocampal dentate gyrus (DG) on active avoidance learning in rats. Totally 36 SD rats were randomly divided into control group, antagonist group and agonist group(n = 12). Active avoidance learning ability of rats was assessed by the shuttle box. The extracellular concentrations of 5-HT in the DG during active avoidance conditioned reflex were measured by microdialysis and high performance liquid chromatography (HPLC) techniques. Then the antagonist (WAY-100635) or agonist (8-OH-DPAT) of the 5-HT1A receptors were microinjected into the DG region, and the active avoidance learning was measured. (1) During the active avoidance learning, the concentration of 5-HT in the hippocampal DG was significantly increased in the extinction but not establishment in the conditioned reflex, which reached 164.90% ± 26.07% (P active avoidance learning. (3) The microinjection of 8-OH-DPAT(an agonist of 5-HT1A receptor) into the DG significantly facilitated the establishment process and inhibited the extinction process during active avoidance conditioned reflex. The data suggest that activation of 5-HT1A receptors in hipocampal DG may facilitate active avoidance learning and memory in rats.

  17. Flow cytometric detection of growth factor receptors in autografts and analysis of growth factor concentrations in autologous stem cell transplantation: possible significance for platelet recovery

    DEFF Research Database (Denmark)

    Schiødt, I; Jensen, Charlotte Harken; Kjaersgaard, E

    2000-01-01

    In order to improve prediction of hematopoietic recovery, we conducted a pilot study, analyzing the significance of growth factor receptor expression in autografts as well as endogenous growth factor levels in blood before, during and after stem cell transplantation. Three early acting (stem cell......-CSF receptor positive, CD34+ progenitor cells were measured by flow cytometry in the leukapheresis product used for transplantation in a subgroup of 15 patients (NHL, n = 8, MM, n = 7). Three factors were identified as having a significant impact on platelet recovery. First, the level of Tpo in blood...... at the time of the nadir (day +7). Second, the percentage of re-infused thrombopoietin receptor positive progenitors and finally, the percentage of Flt3 receptor positive progenitors. On the other hand, none of the analyzed factors significantly predicted myeloid or erythroid recovery. These findings need...

  18. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-11-01

    Full Text Available Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR and G-protein coupled receptors (GPCR as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information

  19. Vitamin D receptor protein is associated with interleukin-6 in human skeletal muscle

    Science.gov (United States)

    Vitamin D is associated with skeletal muscle physiology and function and may play a role in intramuscular inflammation, possibly via the vitamin D receptor (VDR). We conducted two studies to examine (1) whether serum 25-hydroxyvitamin D (25OHD) and/or intramuscular VDR protein concentrations are ass...

  20. Antagonist profile of ibodutant at the tachykinin NK2 receptor in guinea pig isolated bronchi.

    Science.gov (United States)

    Santicioli, Paolo; Meini, Stefania; Giuliani, Sandro; Lecci, Alessandro; Maggi, Carlo Alberto

    2013-10-24

    In this study we have characterized the pharmacological profile of the non-peptide tachykinin NK 2 receptor antagonist ibodutant (MEN15596) in guinea pig isolated main bronchi contractility. The antagonist potency of ibodutant was evaluated using the selective NK 2 receptor agonist [βAla 8 ]NKA(4-10)-mediated contractions of guinea pig isolated main bronchi. In this assay ibodutant (30, 100 and 300nM) induced a concentration-dependent rightward shift of the [βAla 8 ]NKA(4-10) concentration-response curves without affecting the maximal contractile effect. The analysis of the results yielded a Schild-plot linear regression with a slope not different from unity (0.95, 95% c.l. 0.65-1.25), thus indicating a surmountable behaviour. The calculated apparent antagonist potency as pK B value was 8.31±0.05. Ibodutant (0.3-100nM), produced a concentration-dependent inhibition of the nonadrenergic-noncholinergic (NANC) contractile response induced by electrical field stimulation (EFS) of intrinsic airway nerves in guinea pig isolated main bronchi. At the highest concentration tested (100nM) ibodutant almost abolished the EFS-induced bronchoconstriction (95±4% inhibition), the calculated IC 50 value was 2.98nM (95% c.l. 1.73-5.16nM). In bronchi from ovalbumin (OVA) sensitized guinea pigs ibodutant (100nM) did not affect the maximal contractile response to OVA, but completely prevented the slowing in the fading of the motor response induced by phosphoramidon pretreatment linked to the endogenous neurokinin A release. Altogether, the present study demonstrate that ibodutant is a potent NK 2 receptor antagonist in guinea pig airways. © 2013 Published by Elsevier B.V.