Sample records for vertical wells electrical

  1. Electrically floating, near vertical incidence, skywave antenna

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.


    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  2. Vertical electrical resistivity investigation of foundation conditions ...

    African Journals Online (AJOL)

    Four Vertical Electrical Soundings have been carried out for building sites using Schlumberger array within a buried River channel near Okilton close, Port Harcourt. The objective was to delineate the different geoelectric and geologic parameters of the subsurface as a means of determining its effect on foundation.

  3. Study of twisting of vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Sereda, N.G.; Burkin, Yu.V.; Markov, O.A.


    Diagrams and techniques are examined for analytical and experimental studies for the interaction of components in the lower part of the drilling column of different design with the face and the walls of wells. Results of studies and field introduction of measures to regulate twisting of wells are presented.

  4. Vertical electrical sounding to delineate the potential aquifer zones ...

    Indian Academy of Sciences (India)

    Joy Choudhury


    Sep 6, 2017 ... direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied ... Vertical electrical sounding; groundwater; aquifer zones; borehole litholog; Niamey. 1. Introduction. Niger is a ..... Telford M, Geldart L P, Sheriff R E and Keys D A 1976. Applied ...

  5. Numerical modelling of cuttings transport with foam in vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Kuru, E. [University of Alberta, Edmonton, AB (Canada)


    Development of a one-dimensional unsteady-state mathematical model is described. The model was developed to simulate the transport of cuttings with foam in vertical wells. Numerical solution was used to predict average cuttings concentration in the well as a function of the drilling rate, the gas and the liquid injection rates, the rate of gas and liquid influx from the reservoir, and the borehole geometry. The effects of key drilling parameters on the efficiency of cuttings transport with foam in vertical wells was determined by sensitivity analyses. Verification of model predictions and the results of the sensitivity analyses are presented. The model is claimed to be useful in writing computer programs for design purposes to determine optimal volumetric gas/liquid flow rates, injection pressure and back pressure required to drill vertical wells. It can also be used to develop guidelines for use in operational control of cutting transport with foam. 37 refs., 2 tabs., 13 figs.

  6. Application of Schlumberger array of vertical electric sounding to ...

    African Journals Online (AJOL)

    , Ekpoma, headquarters of Esan West Local Government of Edo state. Schlumberger array of vertical electric sounding (VES) was employed. Interpretation of data was done initially by curve matching which made it possible to produce ...

  7. Modeling of inelastic deformation around vertical and horizontal wells (United States)

    Stefanov, Yu. P.; Myasnikov, A. V.


    The paper presents numerical modeling results on plastic deformation development around vertical and horizontal wells in rocks for four lithologies typical of the Bazhenov formation. Estimates of irreversible deformation were obtained depending on wellbore pressure, in-situ stress distribution and rock dilation factor. Computational results showed that for the considered lithology borehole pressure management does not always provide wellbore stability if the contrast between principal stresses is large enough.

  8. Vertical electric sounding investigation of aquifers in the Ekpoma ...

    African Journals Online (AJOL)

    ... existence was investigated in Eguare-Egoro, Ekpoma, Edo State, Nigeria by using vertical electric sounding (VES) of schlumberger array. The array was employed with minimum drilling spread of 2m and maximum spread of 500m. The need to investigate aquifer existence in Eguare-Egoro becomes inevitable because of ...

  9. Vertical electrical sounding to delineate the potential aquifer zones ...

    Indian Academy of Sciences (India)

    The delineation of potential aquifer zones is an important aspect for groundwater prospecting. Hence, the direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied geophysical techniques for groundwater prospecting that was used in the capital city, Niamey ...

  10. Vertical Electrical Sounding to delineate the potential Aquifer zones ...

    Indian Academy of Sciences (India)


    Vertical Electrical Sounding to delineate the potential Aquifer zones for drinking water in. Niamey city, Niger, Africa. Joy Choudhury*, LohithKumar K, E. Nagaiah, S Sonkamble, Shakeel Ahmed, Venay Kumar. Corresponding author email- CSIR - National Geophysical Research Institute,. Uppal Road ...

  11. Gas Deliverability Model with Different Vertical Wells Properties

    Directory of Open Access Journals (Sweden)

    L. Mucharam


    Full Text Available We present here a gas deliverability computational model for single reservoir with multi wells. The questions of how long the gas delivery can be sustained and how to estimate the plateau time are discussed here. In order to answer such a question, in this case, a coupling method which consists of material balance method and gas flow equation method is developed by assuming no water influx in the reservoir. Given the rate and the minimum pressure of gas at the processing plant, the gas pressure at the wellhead and at the bottom hole can be obtained. From here, the estimation of the gas deliverability can be done. In this paper we obtain a computational method which gives direct computation for pressure drop from the processing plant to the wells, taking into account different well behavior. Here AOF technique is used for obtaining gas rate in each well. Further Tian & Adewumi correlation is applied for pressure drop model along vertical and horizontal pipes and Runge-Kutta method is chosen to compute the well head and bottom hole pressures in each well which then being used to estimate the plateau times. We obtain here direct computational scheme of gas deliverability from reservoir to processing plant for single reservoir with multi-wells properties. Computational results give different profiles (i.e. gas rate, plateau and production time, etc for each well. Further by selecting proper flow rate reduction, the flow distribution after plateau time to sustain the delivery is computed for each well.

  12. Vertical Electric Field Measurements with Copper Plates by Sounding Balloon (United States)

    Wen, Shao-Chun; Chiu, Cheng-Hsiu; Bing-Chih Chen, Alfred; Hsu, Rue-Ron; Su, Han-Tzong


    The vertical electric field plays an important role in driving the circulation of the global electric circuit, and crucial to the formation of the transient luminous events (TLEs). The in-situ measurement of the electric field in the upper atmosphere, especially from cloud top to the bottom of the ionosphere is very challenging but essential. Limited by the flight vehicle, the measurements of the electric field in and above cloud, especiall thundercloud, is rare up to now. A light-weight electric field meter was developed independently and sent to 30 km height by small meteorological balloons successfully. Other than the existing long-spaced, spherical probe design, an improved electric field meter has been built and tested carefully. A new circuit with ultra high input impedance and a high voltage amplifier is implemented to reduce the AC noise induced by the voltage divider. Two copper plates are used to replace the double spherical probes which is spaced by a long fiberglass boom. The in-lab calibration and tests show that this new model is superior to the existing design and very sensitive to the variation of the DC electric field. In this poster, the design and the in-lab tests will be presented, and preliminary results of the flight experiments are also discussed.

  13. Structural and Electrical Investigation of C60-Graphene Vertical Heterostructures. (United States)

    Kim, Kwanpyo; Lee, Tae Hoon; Santos, Elton J G; Jo, Pil Sung; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan


    Graphene, with its unique electronic and structural qualities, has become an important playground for studying adsorption and assembly of various materials including organic molecules. Moreover, organic/graphene vertical structures assembled by van der Waals interaction have potential for multifunctional device applications. Here, we investigate structural and electrical properties of vertical heterostructures composed of C60 thin film on graphene. The assembled film structure of C60 on graphene is investigated using transmission electron microscopy, which reveals a uniform morphology of C60 film on graphene with a grain size as large as 500 nm. The strong epitaxial relations between C60 crystal and graphene lattice directions are found, and van der Waals ab initio calculations support the observed phenomena. Moreover, using C60-graphene heterostructures, we fabricate vertical graphene transistors incorporating n-type organic semiconducting materials with an on/off ratio above 3 × 10(3). Our work demonstrates that graphene can serve as an excellent substrate for assembly of molecules, and attained organic/graphene heterostructures have great potential for electronics applications.

  14. Metode Vertical Electrical Sounding (VES untuk Menduga Potensi Sumberdaya Air

    Directory of Open Access Journals (Sweden)

    Harjito .


    Full Text Available Pada umumnya pemenuhan kebutuhan air dilakukan dengan memanfaatkan airtanah. Airtanah lebih banyak dimanfaatkan dalam pemenuhan kebutuhan domestik maupun industri karena kualitas airtanah pada umumnya lebih baik dibandingkan dengan air permukaan. Potensi airtanah untuk pemenuhan kebutuhan domestik dan industri pada umumnya sulit dihitung secara tepat karena airtanah tidak tampak dan keberadaannya sangat bergantung pada kondisi geologi. Salah satu metode pendugaan yang sering digunakan adalah metode geolistrik VES (Vertical Electrical Sounding. Metode tersebut umum digunakan karena hasilnya lebih akurat, biaya operasional yang murah, dan akuisi data yang cepat. Metode VES digunakan untuk menduga lapisan-lapisan material di bawah permukaan bumi berdasarkan sifat resistivitasnya. Nilai resistivitas (ρ dihitung berdasarkan data arus listrik (I dan beda potensial (V yang diperoleh di lapangan. Data arus listrik dan beda potensial diperoleh dari injeksi arus listrik ke bawah permukaan bumi melalui pasangan elektroda arus (C1,C2 dan elektroda potensial (P1,P2. Berdasarkan hasil pendugaan menggunakan metode VES, potensi airtanah di Kota Surakarta mempunyai volume airtanah yang tersedia besar karena akuifer terdistribusi secara luas dan seragam.Debit airtanah berdasarkan perhitungan dengan data yang tersedia dan asumsi-asumsi yang digunakan, maka debit airtanah di sebagian kota Surakarta adalah 1.208 m 3 /hari. Kata kunci : Vertical Electrical Sounding, sumberdaya air, akuifer


    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  16. Analytical solution of electromagnetic radiation by a vertical electric dipole inside the earth and the effect of atmospheric electrical conductivity inhomogeneity (United States)

    Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl


    In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.

  17. Why has the Nordic electricity market worked so well?


    Amundsen, Eirik S.; Bergman, Lars


    The general opinion among power industry representatives and electricity market analysts is that the Nordic electricity market has worked well. The purpose of this paper is to explore why the Nordic electricity market has performed well and to consider to what extent the Nordic experiences are relevant for other countries. In particular, we investigate causes as to why the Nordic market managed to withstand the supply shock in 2002 – 2003. A comparison is made with the California case, and th...

  18. Sensitivity of the near-surface vertical electric field land Controlled-Source Electromagnetic monitoring

    NARCIS (Netherlands)

    Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.


    We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil

  19. Sensitivity of the near-surface vertical electric field land Controlled-Source Electromagnetic monitoring

    NARCIS (Netherlands)

    Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.

    We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil



    Mohammed M. Alkhawlani


    The future Heterogeneous Wireless Network (HWN) is composed of multiple Radio Access Technologies(RATs) and domains, therefore, new Radio Resource Management (RRM) schemes and mechanisms arenecessary to benefit from the individual characteristics of each RAT and to exploit the gain resultingfrom jointly considering the whole set of the available radio resources in each RAT. Vertical Handover(VHO) enables users to access several networks such as WLAN, WMAN, WPAN, and WWAN in parallel.It allows...

  1. Automated electric control of a vertical axis wind turbine in island operation


    Högberg, Lars


    At the Division of Electricity at Uppsala University, a wind power concept has been developed. The concept uses a vertical axis wind turbine with a direct driven generator. The turbine has fixed blades, making speed control the only way to regulate power absorption. The speed is controlled with the electric load. The turbine is not self-starting, but can be started using the generator as a motor. In this project, an unsupervised electric system with automatic control is designed and construct...

  2. Evaluation of Unknown Tube Well Depth Using Electrical Resistivity Method

    Directory of Open Access Journals (Sweden)

    Zainal Abidin Mohd Hazreek


    Full Text Available Electrical resistivity method has increasingly adopted in engineering, environmental, mining and archaeological studies. Systematic and proper studies of unknown civil engineering structure evaluation particularly on tube well depth was rarely being established. Conventionally, camera test or string with weight approach has been used to evaluate unknown tube well depth thus exposed to several restriction due to its expensive and time consuming. Hence, this study focused on evaluation of unknown tube well depth using indirect test with particular reference to electrical resistivity method (ERM.A single spread line of electrical resistivity survey was performed using ABEM SAS 4000 equipment set based on Wenner and Pole-dipole array in line with the tube well position. Electrical resistivity raw data was processed using RES2DINV software producing electrical resistivity tomography (ERT of the subsurface profile studied. Then, electrical resistivity value (ERV obtained from RES2DINV analyses (ERT was extracted and analysed using plotted graph (depth versus ERV specifically at tube well position based on electrical resistivity spread line performed. It was found that both array have shown some good similarity results in term of tube well depth (20 m thus able to verify the result interpreted. Both array have shown some good similarity of ERV representing groundwater (ERV = 10 – 100 Ωm and soil with water (ERV > 100 Ωm at depth of 0 – 20 m and >20 m respectively. All those interpretation have shown good agreement based on verification thru established ERV of earth materials references, geological map and nearest available boreholes data. Hence, this study has shown that the application of ERM was applicable in evaluation of unknown tube well depth which efficient in term of cost, time and environmental sustainable.

  3. A two-fluid model for vertical flow applied to CO2 injection wells

    DEFF Research Database (Denmark)

    Linga, Gaute; Lund, Halvor


    the well, including tubing, packer fluid, casing, cement or drilling mud, and rock formation. This enables prediction of the temperature in the well fluid and in each layer of the well. The model is applied to sudden shut-in and blowout cases of a CO2 injection well, where we employ the highly accurate...... to thermal stresses and subsequent loss of well integrity, and it is therefore crucial to employ models that can predict this accurately. In this work, we present a model for vertical well flow that includes both two-phase flow and heat conduction. The flow is described by a two-fluid model, where mass...

  4. Fast Response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2). (United States)

    Cai, Minzhen; Outlaw, Ronald A; Quinlan, Ronald A; Premathilake, Dilshan; Butler, Sue M; Miller, John R


    The growth and electrical characteristics of vertically oriented graphene nanosheets grown by radio frequency plasma-enhanced chemical vapor deposition from C2H2 feedstock on nickel substrates and used as electrodes in symmetric electric double layer capacitors (EDLC) are presented. The nanosheets exhibited 2.7 times faster growth rate and much greater specific capacitance for a given growth time than CH4 synthesized films. Raman spectra showed that the intensity ratio of the D band to G band versus temperature initially decreased to a minimum value of 0.45 at a growth temperature of 750 °C, but increased rapidly with further temperature increase (1.15 at 850 °C). The AC specific capacitance at 120 Hz of these EDLC devices increased in a linear fashion with growth temperature, up to 265 μF/cm(2) (2 μm high film, 850 °C with 10 min growth). These devices exhibited ultrafast frequency response: the frequency response at -45° phase angle reached over 20 kHz. Consistent with the increase in D band to G band ratio, the morphology of the films became less vertical, less crystalline, and disordered at substrate temperatures of 800 °C and above. This deterioration in morphology resulted in an increase in graphene surface area and defect density, which, in turn, contributed to the increased capacitance, as well as a slight decrease in frequency response. The low equivalent series resistance varied from 0.07 to 0.08 Ω and was attributed to the significant carbon incorporation into the Ni substrate.

  5. Piezometric surface deduced from vertical electrical sounding data ...

    African Journals Online (AJOL)

    The water table for eleven hand dug wells were directly measured and a comparison was made with cumulative resistivity (Σρa) plots at such well sites. The apparent resistivities were obtained using the Schlumberger electrode array configuration with a spread current electrode of 300m. The data obtained was processed ...

  6. Passive electrical monitoring and localization of fluid leakages from wells (United States)

    Revil, A.; Mao, D.; Haas, A. K.; Karaoulis, M.; Frash, L.


    Electrokinetic phenomena are a class of cross-coupling phenomena involving the relative displacement between the pore water (together with the electrical diffuse layer) with respect to the solid phase of a porous material. We demonstrate that electrical fields of electrokinetic nature can be associated with fluid leakages from wells. These leakages can be remotely monitored and the resulting signals used to localize their causative source distribution both in the laboratory and in field conditions. The first laboratory experiment (Experiment #1) shows how these electrical fields can be recorded at the surface of a cement block during the leakage of a brine from a well. The measurements were performed with a research-grade medical electroencephalograph and were inverted using a genetic algorithm to localize the causative source of electrical current and therefore, localize the leak in the block. Two snapshots of electrical signals were used to show how the leak evolved over time. The second experiment (Experiment #2) was performed to see if we could localize a pulse water injection from a shallow well in field conditions in the case of a heterogeneous subsurface. We used the same equipment as in Experiment #1 and processed the data with a trend removal algorithm, picking the amplitude from 24 receiver channels just after the water injection. The amplitude of the electric signals changed from the background level indicating that a volume of water was indeed flowing inside the well into the surrounding soil and then along the well. We used a least-square inversion algorithm to invert a snapshot of the electrical potential data at the injection time to localize the source of the self-potential signals. The inversion results show positive potential anomalies in the vicinity of the well. For both experiments, forward numerical simulations of the problem using a finite element package were performed in order to assess the underlying physics of the causative source of the

  7. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Wang Ruifei


    Full Text Available The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  8. piezometric surface deduced from vertical electrical sounding data

    African Journals Online (AJOL)

    Dogara M. D.

    obtained using the Schlumberger electrode array configuration with a spread current electrode of 300m. The data obtained was processed using the GP Resound program. It was found that all the depths to the water table for the measured wells fell within the. 3rd segment of the cumulative plots with a standard deviation of.

  9. Simulation of electrical characteristics of GaN vertical Schottky diodes (United States)

    Łukasiak, Lidia; Jasiński, Jakub; Jakubowski, Andrzej


    Reverse current of GaN vertical Schottky diodes is simulated using Silvaco ATLAS to optimize the geometry for the best performance. Several physical quantities and phenomena, such as carrier mobility and tunneling mechanism are studied to select the most realistic models. Breakdown voltage is qualitatively estimated based on the maximum electric field in the structure.

  10. The vertical electrical sounding: A viable tool for the investigation of ...

    African Journals Online (AJOL)

    A resistivity survey was carried out in order to study the fresh ground water conditions (such as the depth to the various aquifers) in the major communities along the Warri River. Vertical electrical soundings by Schlumberger array were carried out at Ogbe-Ijoh, Ode-Itsekiri, Ugbodede, Egbokodo and Omadino.

  11. Effect of patterned electrical neuromuscular stimulation on vertical jump in collegiate athletes. (United States)

    Gulick, Dawn T; Castel, John C; Palermo, Francis X; Draper, David O


    Patterned electrical neuromuscular stimulation (PENS) uses the electrical stimulation of sensory and motor nerves to achieve a skeletal muscle contraction using an electromyogram-derived functional pattern. PENS is used extensively for neuromuscular reeducation and treatment of muscle disuse atrophy. To explore the effectiveness of PENS as applied to the quadriceps muscles on the vertical jump of an athletic population. Experimental with control and repeated measures over time. Healthy college athletes (54 women, 75 men) were divided into 3 groups (control, n = 30; jump, n = 33; and jump with PENS, n = 63). There was no difference among groups' height and weight. Athletes performed a baseline standing vertical jump using a vertical jump system. The control group continued its normal daily activities with no jumping tasks included. The jump groups performed 3 sets of 12 repetitions with a 2-minute rest between sets at a frequency of 3 times per week. The PENS group did the jumping with the coordination of an electrical stimulation system. Vertical jump was retested after 6 weeks of intervention and 2 weeks after cessation. A 3-way repeated measures analysis of variance for time (control, jump alone, jump with PENS) revealed a significant difference (P jump group from posttest to follow-up jump. There was no significant difference between groups for the baseline vertical jump. This study demonstrated that 6 weeks of vertical jump training coordinated with PENS resulted in a greater increase than jumping only or control. This pattern of stimulation with PENS in combination with jump training may positively affect jumping.

  12. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang


    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.


    Directory of Open Access Journals (Sweden)

    М. М. Оlеshkеvich


    Full Text Available The paper considers a helicoid vertically axial windmill geared to synchronous magneto-electric generator which operates for a power system or an independent resistive load. In order to optimize operational modes of a wind power unit a mathematical model and software have been developed and a number of calculative experiments have been carried out. The obtained law of wind unit control makes it possible to ensure maximum power output and stability in a wind unit operation.

  14. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication (United States)

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali


    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices. PMID:24642903

  15. A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well

    Directory of Open Access Journals (Sweden)

    Kadivar Arash


    Full Text Available Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.

  16. A gas flow model for layered landfills with vertical extraction wells. (United States)

    Feng, Shi-Jin; Zheng, Qi-Teng; Xie, Hai-Jian


    This paper developed a two-dimensional axisymmetric analytical model for layered landfills with vertical wells. The model uses a horizontal layered structure to describe the waste non-homogeneity with depth in gas generation, permeability and temperature. The governing equations in the cylindrical coordinate system were transformed to dimensionless forms and solved using a method of eigenfunction expansion. After verification, the effects of different well boundary conditions and gas extraction systems on recovery efficiency were investigated. A dimensionless double-layer system, consisting of a cover and a waste layer, was also explored. The results show that a constant vacuum pressure boundary condition can be enough to describe a perforated pipe surrounded by drainage gravel with a reasonable value of well radius, such as half the radius of gravel fill. Also, the 7 independent variables (one marked with an asterisk is dimensionless) of a double-layer system can be integrated into 3 dimensionless ones: Cover permeability Kv1∗/(Vertical gas permeability of waste Kv2∗×Cover thickness h1∗),-Vacuum pressure pw×PatmKv2∗/(μRgT2×Gas generation rate of waste s2) and ln(Well radius rw∗)/(Anisotropy degree of waste k2∗). The integration is based on the inherent mechanism of this flow system with certain simplification. The effects of these variables are then quantitatively characterized for a better understanding of gas recovery efficiency. Same recovery efficiency can be achieved with different variable combinations. For example, increasing h1∗ (such as doubling it) has the same effect with decreasing Kv1∗ (such as halving it). Along with the reduction of variables by half, the integration can facilitate the preliminary design, and is a small but important advance in the consideration of MSW non-homogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned carbon-nanotube/polymer composites (United States)

    Castellano, Richard J.; Akin, Cevat; Giraldo, Gabriel; Kim, Sangil; Fornasiero, Francesco; Shan, Jerry W.


    Composite thin films incorporating vertically aligned carbon nanotubes (VACNTs) offer promise for a variety of applications where the vertical alignment of the CNTs is critical to meet performance requirements, e.g., highly permeable membranes, thermal interfaces, dry adhesives, and films with anisotropic electrical conductivity. However, current VACNT fabrication techniques are complex and difficult to scale up. Here, we describe a solution-based, electric-field-assisted approach as a cost-effective and scalable method to produce large-area VACNT composites. Multiwall-carbon nanotubes are dispersed in a polymeric matrix, aligned with an alternating-current (AC) electric field, and electrophoretically concentrated to one side of the thin film with a direct-current (DC) component to the electric field. This approach enables the fabrication of highly concentrated, individually aligned nanotube composites from suspensions of very dilute ( ϕ = 4 × 10 - 4 ) volume fraction. We experimentally investigate the basic electrokinetics of nanotube alignment under AC electric fields, and show that simple models can adequately predict the rate and degree of nanotube alignment using classical expressions for the induced dipole moment, hydrodynamic drag, and the effects of Brownian motion. The composite AC + DC field also introduces complex fluid motion associated with AC electro-osmosis and the electrochemistry of the fluid/electrode interface. We experimentally probe the electric-field parameters behind these electrokinetic phenomena, and demonstrate, with suitable choices of processing parameters, the ability to scalably produce large-area composites containing VACNTs at number densities up to 1010 nanotubes/cm2. This VACNT number density exceeds that of previous electric-field-fabricated composites by an order of magnitude, and the surface-area coverage of the 40 nm VACNTs is comparable to that of chemical-vapor-deposition-grown arrays of smaller-diameter nanotubes.

  18. Exploring Moderators to Understand the Association Between Vertical Collectivism and Psychological Well-Being Among Asian Canadian Students (United States)

    Na, Sumin; Spanierman, Lisa B.; Lalonde, Christopher E.


    First, the authors investigated the direct associations of vertical collectivism, ethnic identity exploration, and ethnic identity commitment with psychological well-being among first-generation Asian Canadian university students in Canada (n = 78). Second, to gain a more nuanced understanding of the association between vertical collectivism and…


    Directory of Open Access Journals (Sweden)

    Altab Hossain


    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.


    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain


    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  1. Vertical electrical sounding survey and resistivity inversion using genetic algorithm optimization technique (United States)

    Jha, Madan K.; Kumar, S.; Chowdhury, A.


    SummaryGrowing water scarcity in West Midnapore district of West Bengal, India, is threatening sustainable agricultural production as well as sanitation of the inhabitants. Because of its several inherent qualities, groundwater can play an important role in ensuring sustainable water supply in the district. This study was carried out to assess groundwater condition in the Salboni Block of West Midnapore district using surface resistivity method. Vertical electrical sounding (VES) surveys were carried out at 38 sites using the Schlumberger array. The apparent resistivity-depth datasets (henceforth called 'VES data') thus obtained were interpreted by the genetic algorithm (GA) optimization technique. A GA-based stand-alone computer program was developed for optimizing subsurface layer parameters (true resistivity and thickness) from the VES data. The optimal layer parameters were then correlated with the available well logs to identify aquifer and confining layers. Moreover, a groundwater potential map was created by integrating the thematic layers of aquifer resistivity and thickness in a GIS environment. In order to explore the spatial variation of layer resistivity at a particular depth, resistivity contour maps of the study area for different depths were prepared using ArcView software. The GA technique yielded layer parameters with reasonably low values of root mean square error (0.36-9.75 Ω m) for most VES datasets. It was found that shallow aquifers exist at depths ranging from 4 to 19 m and relatively deep aquifers from 24 to 60 m below the ground surface. The study area is classified into 'very good', 'good', 'moderate' and 'poor' groundwater potential zones, with a majority of the area having good to moderate groundwater prospect. The resistivity contour maps for different depths revealed that deeper aquifers are prevalent in the study area. It is concluded that the GA technique is efficient and reliable for determining subsurface layer parameters from the

  2. Effect of Vertical Rate Error on Recovery from Loss of Well Clear Between UAS and Non-Cooperative Intruders (United States)

    Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor


    When an Unmanned Aircraft System (UAS) encounters an intruder and is unable to maintain required temporal and spatial separation between the two vehicles, it is referred to as a loss of well-clear. In this state, the UAS must make its best attempt to regain separation while maximizing the minimum separation between itself and the intruder. When encountering a non-cooperative intruder (an aircraft operating under visual flight rules without ADS-B or an active transponder) the UAS must rely on the radar system to provide the intruders location, velocity, and heading information. As many UAS have limited climb and descent performance, vertical position andor vertical rate errors make it difficult to determine whether an intruder will pass above or below them. To account for that, there is a proposal by RTCA Special Committee 228 to prohibit guidance systems from providing vertical guidance to regain well-clear to UAS in an encounter with a non-cooperative intruder unless their radar system has vertical position error below 175 feet (95) and vertical velocity errors below 200 fpm (95). Two sets of fast-time parametric studies was conducted, each with 54000 pairwise encounters between a UAS and non-cooperative intruder to determine the suitability of offering vertical guidance to regain well clear to a UAS in the presence of radar sensor noise. The UAS was not allowed to maneuver until it received well-clear recovery guidance. The maximum severity of the loss of well-clear was logged and used as the primary indicator of the separation achieved by the UAS. One set of 54000 encounters allowed the UAS to maneuver either vertically or horizontally, while the second permitted horizontal maneuvers, only. Comparing the two data sets allowed researchers to see the effect of allowing vertical guidance to a UAS for a particular encounter and vertical rate error. Study results show there is a small reduction in the average severity of a loss of well-clear when vertical maneuvers

  3. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes. (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit


    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.


    Energy Technology Data Exchange (ETDEWEB)

    Saeid Ghamaty


    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  5. Absolute and convective instabilities of a film flow down a vertical fiber subjected to a radial electric field (United States)

    Liu, Rong; Chen, Xue; Ding, Zijing


    We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.

  6. Density of states in an electrically biased quantum well

    Indian Academy of Sciences (India)

    GaAs/Al0.3Ga0.7As QW. Solid line represents ρ (with electric field perpendicular to the growth direction) and dotted line represents ρ0 (without electric field). Break-down fields for Si and. GaAs are 3×10. 5. V/cm and 4×10. 5. V/cm respectively.

  7. Electrical resistance profiles of permafrost-affected soils in the north of Western Siberia according to their vertical electrical sounding (United States)

    Abakumov, E. V.; Tomashunas, V. M.; Alekseev, I. I.


    Vertical electrical sounding (VES) of soils and underlying permafrost was performed on key plots in the north of Western Siberia (the Yamalo-Nenets Autonomous Okrug). It was supposed that the values of apparent electrical resistivity should sharply change at the boundary between the active layer and permafrost. Gleyzems, peat gleyzems, podzols, and petrozems studied on the key plots within the Yamal and Gydan peninsulas were characterized by different depths of the active layer. It was found that the electrical resistivity in the permafrost is one to two orders of magnitude higher than that in the active layer of the soils of different textures. Our study suggests that the VES method can be used to diagnose permafrost without disturbance of the soil cover. This conclusion is of special interest for long-term permafrost monitoring programs on permanent key plots. In general, the data obtained by VES are in agreement with the results of determination of the active layer thickness by traditional field methods.

  8. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems

    Directory of Open Access Journals (Sweden)

    Faten A. Chaqmaqchee


    Full Text Available III-V semiconductors components such as Gallium Arsenic (GaAs, Indium Antimony (InSb, Aluminum Arsenic (AlAs and Indium Arsenic (InAs have high carrier mobilities and direct energy gaps. This is making them indispensable for today’s optoelectronic devices such as semiconductor lasers and optical amplifiers at 1.3 μm wavelength operation. In fact, these elements are led to the invention of the Gallium Indium Nitride Arsenic (GaInNAs, where the lattice is matched to GaAs for such applications. This article is aimed to design dilute nitride GaInNAs quantum wells (QWs enclosed between top and bottom of Aluminum (Gallium Arsenic Al(GaAs distributed bragg mirrors (DBRs using MATLAB® program. Vertical cavity semiconductor optical amplifiers (VCSOAs structures are based on Fabry Perot (FP method to design optical gain and bandwidth gain to be operated in reflection and transmission modes. The optical model gives access to the contact layer of epitaxial structure and the reflectivity for successive radiative modes, their lasing thresholds, emission wavelengths and optical field distributions in the laser cavity.

  9. Performance of a two-phase gas/liquid flow model in vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, C.S.; Hasan, A.R. (Chevron Oil Field Research Co., La Habra, CA (USA))


    Application of a recently developed method for predicting two-phase gas/oil pressure-drop in vertical oil wells is presented. The new method, which is flow-pattern based, is capable of handling flow in both circular and annular channels. Five principal flow regimes, bubbly, dispersed bubbly, slug, churn and annular, are recognized while developing appropriate correlations for predicting void fraction and pressure-drop in each flow regime. Standard oilfield correlations are used for estimating PVT properties of oil and gas: Standing's correlation for solution gas-oil ratio; Katz's correlation for oil formation volume factor; Standing's, and Chew and Connally's correlations for dead and live oil viscosities, respectively; and Lee et al.'s correlation for gas viscosity. A finite-difference algorithm is developed to compute pressure gradient in a wellbore. Computations performed on 115 field tests, involving all the two-phase flow regimes, suggest that the new method performs better than the Aziz et al. correlation. Further comparison of the new method's performance with other standard methods, such as, Orkiszewski, Duns and Ros, Beggs and Brill, Hagedorn and Brown, and Chierci et al., reveals its consistency and improved performance. The test data bank used in this study is that previously used by other authors; thus, validation of the new method is demonstrated with an independent data set. 4 figs., 42 refs., 7 tabs.

  10. Temporal Response of Dilute Nitride Multi-Quantum-Well Vertical Cavity Enhanced Photodetector (United States)

    Nordin, M. S.; Sarcan, F.; Gunes, M.; Boland-Thoms, A.; Erol, A.; Vickers, A. J.


    The temporal response characteristics of a GaInNAs-based vertical resonant cavity enhanced photodetector device are presented for operation at λ ≈ 1.3 μm. The absorption layers of the device are composed of nine 7-nm-thick Ga0.65In0.35N0.02As0.98 quantum wells and are sandwiched between top and bottom AlGaAs/GaAs distributed Bragg reflectors (DBRs). The temperature dependence of the transient photoconductivity (TPC) under different light intensities and bias voltages is reported. Photoluminescence measurements were also performed on structures with and without the top DBR to determine their optical response under continuous illumination. The response time was measured using excitation from a 1047-nm pulsed neodymium-doped yttrium lithium fluoride laser with pulse width of 500 ps and repetition rate of 1 kHz. The rise time of the TPC was 2.27 ns at T = 50 K, decreasing to 1.79 ns at T = 300 K. The TPC decay time was 25.44 ns at T = 50 K, decreasing to 16.58 ns at T = 300 K. With detectivity of 2.28 × 10^{10} {cm}√ {Hz} / {W} and noise-equivalent power of 2.45 × 10^{ - 11} {W/}√ {Hz} , the proposed device is faster and more sensitive with better signal-to-noise ratio compared with other GaInNAs-based resonant cavity enhanced photodetectors (RCEPDs) for operation at 1.3 μm.

  11. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes. (United States)

    Rafizadeh-Tafti, Saeed; Haqiqatkhah, Mohammad Hossein; Saviz, Mehrdad; Janmaleki, Mohsen; Faraji Dana, Reza; Zanganeh, Somayeh; Abdolahad, Mohammad


    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 2D and 3D resistivity inversion of Schlumberger vertical electrical soundings in Wadi El Natrun, Egypt: A case study (United States)

    Khalil, Mohamed A.; Santos, Fernando A. Monteiro


    The Wadi El Natrun area is characterized by a very complicated geological and hydrogeological system. 45 vertical electrical soundings (Schlumberger array) were measured in the study area to elucidate the peculiarity of this unique regime, specifically the nature of waterless area. 2D and 3D resistivity inversion based on the finite element technique and regularization method were applied on the data set. 2D and 3D model resolution was investigated through the use of the Depth and Volume of Investigation Indexes. A very good matching was found between the zones of high resistivity, the waterless area, and the non-productive wells. The low resistivity zones (corresponding to Lower Pliocene clay) were also identified. The middle resistivity fresh water aquifer zones were recognized. Available results can assist in the aquifer management by selecting the most productive zone of groundwater.


    Directory of Open Access Journals (Sweden)

    S Anbazhagan


    Full Text Available Electricity price forecasting is a challenging problem owing to the very great volatility of price which depends on many factors. This is especially prominent for both producers and consumers where a versatile price forecasting is crucial. This paper contributes an extreme learning machine (ELM to classify the prices. These price classifications are essential since all market players do not know the precise value of future prices in their deciding procedure. In this paper, bi-classification model is proposed for prices utilizing the pre-specified price threshold. Three alternative classification models based on neural networks (NNs are also proposed in bi-classification of prices. The performance of the proposed models is compared in terms of classification error and accuracy. The simulation results show that the ELM classification model is superior compared to three other classification models based on NNs. The performances of our models are evaluated using real data from vertically unbundled mainland Spain power system market.

  14. Effects of Deregulation and Vertical Unbundling on the Performance of China's Electricity Generation Sector† (United States)

    Gao, Hang; Van Biesebroeck, Johannes


    The restructuring of the Chinese electricity sector in 2002 reshaped the market structure by vertically unbundling the dominant integrated firm and started the process of wholesale price liberalization. We estimate factor demands to study whether these reforms boosted productivity in the generation segment of the industry. Controlling explicitly for price‐heterogeneity across firms and unobservable productivity shocks, we find that the reforms are associated with reductions in labor and material use of 7 and 5 per cent, respectively. These effects only appear two years after the reforms and are robust to many specification checks. The absolute magnitudes of the estimated restructuring effects vary in intuitive ways by location, firm size or age, and for different definitions of restructured firms. PMID:27076686

  15. Production of durable expanded perlite microspheres in a Vertical Electrical Furnace (United States)

    Panagiotis, M.; Angelopoulos, P.; Taxiarchou, M.; Paspaliaris, I.


    Expanded perlite constitutes one of the most competitive insulating materials that is widely used in construction and manufacturing industry due to its unique properties combination; it is white, natural, lightweight, chemically inert, and exhibits superior insulating properties (thermal and acoustic) and fire resistance. Conventionally, perlite expansion is performed in vertical gas-fired furnaces; the conventional perlite expansion process has certain disadvantages which affect expanded products quality, thus limiting their performance and range of applications. In order to overcome the drawbacks of the conventional expansion technique, a new perlite expansion process has been designed based on a vertical electrical furnace (VEF). In the current study, fine perlite samples (-150 μm) from Milos Island, Greece, were expansed in the novel VEF and a conventional gas-fired furnace with the aim to evaluate and compare the main physical properties of the expanded products. The novel expanded perlite particles were characterised by superior properties, namely increased compression strength, competitive water and oil absorption capability, size homogeneity, spherical shape and decreased surface porosity in comparison to conventionally expanded samples.

  16. Direct current electric potential in an anisotropic half-space with vertical contact containing a conductive 3D body

    Directory of Open Access Journals (Sweden)

    Li Ping


    Full Text Available Detailed studies of anomalous conductors in otherwise homogeneous media have been modelled. Vertical contacts form common geometries in galvanic studies when describing geological formations with different electrical conductivities on either side. However, previous studies of vertical discontinuities have been mainly concerned with isotropic environments. In this paper, we deal with the effect on the electric potentials, such as mise-à-la-masse anomalies, due to a conductor near a vertical contact between two anisotropic regions. We also demonstrate the interactive effects when the conductive body is placed across the vertical contact. This problem is normally very difficult to solve by the traditional numerical methods. The integral equations for the electric potential in anisotropic half-spaces are established. Green's function is obtained using the reflection and transmission image method in which five images are needed to fit the boundary conditions on the vertical interface and the air-earth surface. The effects of the anisotropy of the environments and the conductive body on the electric potential are illustrated with the aid of several numerical examples.



    Altab Hossain; A.K.M.P. Iqbal; Ataur Rahman; M. Arifin; M. Mazian


    This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag...

  18. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    National Research Council Canada - National Science Library

    Pierre Tchakoua; Rene Wamkeue; Mohand Ouhrouche; Tommy Andy Tameghe; Gabriel Ekemb


    .... Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs...

  19. Quantum Well Thermoelectrics for Converting Waste Heat to Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Saeid Ghamaty


    Fabrication development of high efficiency quantum well (QW) thermoelectric continues with the P-type and N-type Si/Si{sub 80}Ge{sub 20} films with encouraging results. These films are fabricated on Si substrates and are being developed for low as well as high temperature operation. Both isothermal and gradient life testing are underway. One couple has achieved over 4000 hours at T{sub H} of 300 C and T{sub C} of 50 C with little or no degradation. Emphasis is now shifting towards couple and module design and fabrication, especially low resistance joining between N and P legs. These modules can be used in future energy conversion systems as well as for air conditioning.

  20. On the coupled unsaturated–saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    Directory of Open Access Journals (Sweden)

    X. Liang


    established with special consideration of the coupled unsaturated–saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace–finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant in unconfined aquifers affected from above by the unsaturated flow process.

  1. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni


    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.


    Directory of Open Access Journals (Sweden)



    Full Text Available Este trabajo presenta una técnica de interpretación del comportamiento de la presión y derivada de presión para un fl uido tipo Bingham en un yacimiento homogéneo drenado por un pozo vertical, aplicando la técnica TDS observando la infl uencia del gradiente mínimo de presión que caracteriza este comportamiento y puntos característicos con el propósito de calcular la permeabilidad, el área de drenaje y el factor de daño de la formación. Es la primera vez que se presenta en la literatura la derivada de presión para estos fl uidos. Entre mayor se hace el mínimo gradiente de presión la derivada se hace asimétricamente más cóncava hacia arriba. También se observó que en sistemas cerrados la pendiente unitaria tardía que se desarrolla en la derivada de presión coincide con la misma de fl uidos Newtonianos.

  3. A Simple Method for Measuring the Verticality of Small-Diameter Driven Wells

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, Bent


    The presence of stones, solid waste, and other obstructions can deflect small-diameter driven wells during installation, leading to deviations of the well from its intended position. This could lead to erroneous results, especially for measurements of ground water levels by water level meters...... ground water flow directions....

  4. Vertically coupled double-microdisk lasers composed of InGaAs quantum dots-in-a-well active layers (United States)

    Hsing, J. Y.; Tzeng, T. E.; Lay, T. S.; Shih, M. H.


    We report the epitaxy, fabrication, and measurement of vertically coupled double-microdisk lasers using InGaAs quantum dots-in-a-well as the optical gain material. The bonding and anti-bonding photonic molecule laser modes are simultaneously observed at room temperature (T = 300 K). The optical coupling is confirmed by measuring the double disks for three different air gaps of 100 nm, 200 nm, and 480 nm, respectively. The coupling strengths for the photonic molecule bonding mode MB1,9 and anti-bonding mode MA1,9 between the adjacent microdisks are equal to 17.4 THz for 100 nm air gap, and 5.2 THz for 200 nm air gap, respectively. The refractive index sensing experiments show the lasing wavelength sensitivity of 60 nm/RIU for the vertically coupled double-microdisk laser of 100 nm air gap.

  5. Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

    Energy Technology Data Exchange (ETDEWEB)



    Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

  6. Structural and electrical analysis of epitaxial 2D/3D vertical heterojunctions of monolayer MoS2 on GaN (United States)

    O'Regan, Terrance P.; Ruzmetov, Dmitry; Neupane, Mahesh R.; Burke, Robert A.; Herzing, Andrew A.; Zhang, Kehao; Birdwell, A. Glen; Taylor, DeCarlos E.; Byrd, Edward F. C.; Walck, Scott D.; Davydov, Albert V.; Robinson, Joshua A.; Ivanov, Tony G.


    Integration of two-dimensional (2D) and conventional (3D) semiconductors can lead to the formation of vertical heterojunctions with valuable electronic and optoelectronic properties. Regardless of the growth stacking mechanism implemented so far, the quality of the formed heterojunctions is susceptible to defects and contaminations mainly due to the complication involved in the transfer process. We utilize an approach that aims to eliminate the transfer process and achieve epitaxial vertical heterojunctions with low defect interfaces necessary for efficient vertical transport. Monolayers of MoS2 of approximately 2 μm domains are grown epitaxially by powder vaporization on GaN substrates forming a vertical 2D/3D heterojunction. Cross-sectional transmission electron microscopy (XTEM) is employed to analyze the in-plane lattice constants and van der Waals (vdW) gap between the 2D and 3D semiconductor crystals. The extracted in-plane lattice mismatch between monolayer MoS2 and GaN is only 1.2% which corresponds well to the expected mismatch between bulk MoS2 and GaN. The vdW gap between MoS2 and GaN, extracted from the XTEM measurements, is consistent with the vdW gap of 3.1 Å predicted by our first principles calculations. The effect of monolayer (1L) MoS2 on the electrical characteristics of 2D/3D semiconductor heterojunctions was studied using conductive atomic force microscopy (CAFM). The electrical current across the CAFM-tip/1L-MoS2/GaN vertical junctions is dominated by the tip/GaN interface of both n- and p-doped GaN. This electronic transparency of 1L-MoS2 tells us that a 2D crystal component has to be above a certain thickness before it can serve as an independent semiconductor element in 2D/3D heterojunctions.

  7. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers (United States)

    Liu, Wen-Jie; Hu, Xiao-Long; Ying, Lei-Ying; Zhang, Jiang-Yong; Zhang, Bao-Ping


    Continuous wave (CW) lasing of electrically injected GaN-based vertical cavity surface emitting lasers (VCSELs) was achieved at room temperature. First, a high quality factor (Q) VCSEL-structured device with very narrow linewidth of 0.12 nm, corresponding to a Q-value of 3570 was obtained through two-step substrate transfer technique. However, poor heat dissipation ability prevented the device from lasing. Based on the high-Q resonant cavity design, we further fabricated vertical-structured VCSELs through metal bonding technique on Si substrate. CW lasing from vertical-structured VCSELs was observed with threshold current of density of 1.2 kA/cm2 and lasing linewidth of about 0.20 nm.


    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Shaffer; Radislav Potyralio; Joseph Salvo; Timothy Sivavec; Lloyd Salsman


    This report describes the Phase I effort to develop an Automated In Well Monitoring System (AIMS) for in situ detection of chlorinated volatile organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE) in groundwater. AIMS is composed of 3 primary components: (a) sensor probe, (b) instrument delivery system, and (c) communication/recharging station. The sensor probe utilizes an array of thickness shear mode (TSM) sensors coated with chemically-sensitive polymer films provides a low-cost, highly sensitive microsensor platform for detection and quantification. The instrument delivery system is used to position the sensor probe in 2 inch or larger groundwater monitoring wells. A communication/recharging station provides wireless battery recharging and communication to enable a fully automated system. A calibration curve for TCE in water was built using data collected in the laboratory. The detection limit of the sensor probe was 6.7 ppb ({micro}g/L) for TCE in water. A preliminary field test was conducted at a GE remediation location and a pilot field test was performed at the DOE Savannah River Site (SRS). The AIMS system was demonstrated in an uncontaminated (i.e., ''clean'') 2-inch well and in a 4-inch well containing 163.5 ppb of TCE. Repeat measurements at the two wells indicated excellent day-to-day reproducibility. Significant differences in the sensor responses were noted between the two types of wells but they did not closely match the laboratory calibration data. The robustness of the system presented numerous challenges for field work and limited the scope of the SRS pilot field test. However, the unique combination of trace detection (detection limits near the MCL, minimum concentration level) and size (operations in 2-inch or larger groundwater wells) is demonstration of the promise of this technology for long-term monitoring (LTM) applications or rapid site characterization. Using the lessons learned from the

  9. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Zaugg, C. A., E-mail:; Mangold, M.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U. [Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8093 Zürich (Switzerland); Gronenborn, S.; Moench, H.; Weichmann, U. [Philips Technologie GmbH Photonics Aachen, Steinbachstrasse 15, 52074 Aachen (Germany); Miller, M. [Philips Technologie GmbH U-L-M Photonics, Lise-Meitner-Strasse 13, 89081 Ulm (Germany)


    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM{sub 00} mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiN{sub x} and SiO{sub 2}) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm{sup 2} to 1.1 μJ/cm{sup 2}, respectively.

  10. Vertical electrical sounding to delineate the potential aquifer zones for drinking water in Niamey city, Niger, Africa (United States)

    Choudhury, Joy; Kumar, K. Lohith; Nagaiah, E.; Sonkamble, S.; Ahmed, Shakeel; Kumar, Venay


    Niger is a landlocked African country and the only source of surface water is the Niger River which flows in the western part of Niger and only few villages near to the river gets benefited from it, leaving most of the areas dependent on groundwater solely. The groundwater resources in Niger are mainly used for drinking, livestock and domestic needs. It can be observed that the water exploitation is minimal there due to several factors like undeveloped areas, less population, limited wells, rain-fed irrigation, etc. The delineation of potential aquifer zones is an important aspect for groundwater prospecting. Hence, the direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied geophysical techniques for groundwater prospecting that was used in the capital city, Niamey of Niger. Twelve VES surveys, each of AB spacing 400 m were carried out in lateritic and granitic rock formations with a view to study the layer response and to delineate the potential zones. Potential aquifer zones were at shallow depth ranging from 10 to 25 m for the drilled borehole depth of 80-85 m in every village. Analysis of the result showed a good correlation between the acquired data and the lithologs.

  11. Cutting transport models and parametric studies in vertical and deviated wells


    Jiimaa, Girmaa


    Master's thesis in Petroleum engineering Field experience shows that the accumulation of cutting in a wellbore causes several drilling problems. These include an increase in torque and drag, which may limit drilling from reaching to a desired target formation. In addition, it may cause drill string sticking and poor hydraulics as well. Therefore, an efficient hole cleaning is the most important aspect of drilling operation. Hole-cleaning is a very complex subject, which integrates fluid me...

  12. Production performance laws of vertical wells by volume fracturing in CBM reservoirs

    Directory of Open Access Journals (Sweden)

    Liehui Zhang


    Full Text Available Volume fracturing technology has been widely applied in the development of coalbed methane (CBM reservoirs. As for the stimulated reservoir volume (SRV created by volume fracturing, the seepage laws of fluids are described more accurately and rationally in the rectangular composite model than in the traditional radial composite model. However, the rectangular composite model considering SRV cannot be solved using the analytical or semi-analytical function method, and its solution from the linear flow model has larger errors. In view of this, SRV areas of CBM reservoirs were described by means of dual-medium model in this paper. The complex CBM migration mechanisms were investigated comprehensively, including adsorption, desorption, diffusion and seepage. A well testing model for rectangular composite fracturing wells in CBM reservoirs based on unsteady-state diffusion was built and solved using the boundary element method combined with Laplace transformation, Stehfest numerical inversion and computer programming technology. Thus, production performance laws of CBM reservoirs were clarified. The flow regimes of typical well testing curves were divided and the effects on change laws of production performance from the boundary size of gas reservoirs, permeability of volume fractured areas, adsorption gas content, reservoir permeability and SRV size were analyzed. Eventually, CBM reservoirs after the volume fracturing stimulation were described more accurately and rationally. This study provides a theoretical basis for a better understanding of the CBM migration laws and an approach to evaluating and developing CBM reservoirs efficiently and rationally.

  13. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare? (United States)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; hide


    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  14. The DC field components of horizontal and vertical electric dipole sources immersed in three-layered stratified media

    Directory of Open Access Journals (Sweden)

    D. Llanwyn Jones

    Full Text Available Formulas for computing the Cartesian components of the static (DC fields of horizontal electric dipoles ( HEDs and vertical electric dipoles ( VEDs located in the central zone of a three-layer horizontally stratified medium are derived and presented in a summary form suitable for immediate computation. Formulas are given for the electric and magnetic field components in the upper and central regions. In the general case the computation involves the summation of a convergent infinite series. For the particular case of an infinitely thick central region (corresponding to the two-layer problem, the analysis produces relatively simple closed-form equations for the field components which are suitable for a 'hand calculation'. Specimen calculations for dipoles in seawaters are included and the derived results are compared with computations made using an ac model.

  15. The DC field components of horizontal and vertical electric dipole sources immersed in three-layered stratified media

    Directory of Open Access Journals (Sweden)

    D. Llanwyn Jones


    Full Text Available Formulas for computing the Cartesian components of the static (DC fields of horizontal electric dipoles ( HEDs and vertical electric dipoles ( VEDs located in the central zone of a three-layer horizontally stratified medium are derived and presented in a summary form suitable for immediate computation. Formulas are given for the electric and magnetic field components in the upper and central regions. In the general case the computation involves the summation of a convergent infinite series. For the particular case of an infinitely thick central region (corresponding to the two-layer problem, the analysis produces relatively simple closed-form equations for the field components which are suitable for a 'hand calculation'. Specimen calculations for dipoles in seawaters are included and the derived results are compared with computations made using an ac model.

  16. Electric field dependence of spin coherence in (001) GaAs/AlGaAs quantum wells


    Lau, Wayne H.; Flatté, Michael E.


    Conduction electron spin lifetimes ($T_1$) and spin coherence times ($T_2$) are strongly modified in semiconductor quantum wells by electric fields. Quantitative calculations in GaAs/AlGaAs quantum wells at room temperature show roughly a factor of four enhancement in the spin lifetimes at optimal values of the electric fields. The much smaller enhancement compared to previous calculations is due to overestimates of the zero-field spin lifetime and the importance of nonlinear effects.

  17. MHD Natural Convection Flow of an incompressible electrically conducting viscous fluid through porous medium from a vertical flat plate

    Directory of Open Access Journals (Sweden)

    Dr. G. Prabhakara Rao,


    Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.

  18. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells (United States)

    Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C.


    A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF3/ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at -18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications.

  19. Modulation of Electronic and Optical Anisotropy Properties of ML-GaS by Vertical Electric Field (United States)

    Guo, Fei; Wu, Yaping; Wu, Zhiming; Ke, Congming; Zhou, Changjie; Chen, Ting; Li, Heng; Zhang, Chunmiao; Fu, Mingming; Kang, Junyong


    We investigate the electric-field-dependent optical properties and electronic behaviors of GaS monolayer by using the first-principles calculations. A reversal of the dipole transition from E//c to E⊥c anisotropy is found with a critical external electric field of about 5 V/nm. Decomposed projected band contributions exhibit asymmetric electronic structures in GaS interlayers under the external electric field, which explains the evolution of the absorption preference. Spatial distribution of the partial charge and charge density difference reveal that the strikingly reversed optical anisotropy in GaS ML is closely linked to the additional crystal field originated from the external electric field. These results pave the way for experimental research and provide a new perspective for the application of the monolayer GaS-based two-dimensional electronic and optoelectronic devices.

  20. Characterization Of oil/ gas flow pattern in vertical pipes using electrical capacitance tomography


    Abdulkareem, Lokman A.; Azzopardi, Barry J.; Hamid, Sarbast A,; Abdulkahdir, M.


    Electrical Capacitance Tomography provides the opportunity to visualize the contents of a process of many applications such as pipeline and obtain information on the flow configuration. Multiphase flow is an extremely complex field of fluid mechanics; the characteristics of the operations of many equipmentin different areas of industry such as oil and power generation are determined by the nature of flow of two phase or multiphase. In this study, a twin plane Electrical capacitance tomography...

  1. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002 (United States)

    Vroblesky, Don A.; Peterson, J.E.


    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that

  2. Nonlinear optical rectification in laterally-coupled quantum well wires with applied electric field (United States)

    Liu, Guanghui; Guo, Kangxian; Zhang, Zhongmin; Hassanbadi, Hassan; Lu, Liangliang


    Nonlinear optical rectification coefficient χ0(2) in laterally-coupled AlxGa1-xAs/GaAs quantum well wires with an applied electric field is theoretically investigated using the effective mass approximation as well as the numerical energy levels and wavefunctions of electrons. We find that χ0(2) is greatly influenced by the electric field as well as both the distance and the radius of the coupled system. A blue shift of χ0(2) with increasing electric field is exhibited while a red shift followed by a blue shift with increasing distance or radius is exhibited. A nonmonotonic behavior can be found in the resonant peak values of χ0(2) along with the increase of the electric field, the distance or the radius. One or two of the following physical mechanisms: the increased localization of the ground and first-excited states, the reduced coupling and the reduced quantum confinement effect are applied to elucidate the results above. Our results play a potential role in infrared photodetectors based on the coupled system.

  3. Optimizing electrically pumped vertical extended cavity surface emitting semiconductor lasers (E-VECSELs) (United States)

    McInerney, John G.; Mooradian, Aram


    The future evolution of photonics, for a wide spectrum of applications ranging from established optical telecommunications to emerging opportunities such as biotechnology, reprographics and projection displays, will depend on availability of compact, rugged, efficient and inexpensive lasers which deliver high power, good beam quality, excellent wavelength stability, low noise and long lifetime in the near infrared and visible regions. This combination is not readily available from either of the traditional classes of semiconductor laser, edge-emitters and vertical cavity surface emitters (VCSELs). Here we describe a novel class of laser based on geometry similar to VCSELs but controlled by an extended coupled cavity. These devices are scalable to high powers while maintaining fundamental spatial mode performance, a feature that is essential to efficient coupling into a single mode optical fibre or waveguide, or long range propagation in free space. They are also ideally suited to mode locking, gain-switching and intracavity frequency conversion, among other applications.

  4. Evaluation of Vertical Electrical Sounding Method for Groundwater Development in Basement Complex Terrain of West-Central Nigeria

    Directory of Open Access Journals (Sweden)

    A. K. Olawuyi


    Full Text Available This research evaluated the Vertical Electrical Sounding (VES method of groundwater development in the Basement Complex terrain of West Central Nigeria. It was aimed at verifying the reliability of VES in differentiating lithologies, predicting the depth to basement and probably, aquifer in groundwater development. In doing this, the Schlumberger electrode configuration was employed in the surveys while partial curve matching and computer iteration techniques were used to interpret the curves obtained. In all, seventy three VES were carried out and fourteen boreholes constructed. Comparison was made between the predicted depth to basement from VES and the actual depth from the drilling log. A linear relationship between the actual depth and that predicted by VES was established with coefficient of determination of 0.94 confirming the reliability of the VES method. None of the boreholes drilled was abortive.

  5. Determination of warm, sensitive permafrost areas in near-vertical rockwalls and evaluation of distributed models by electrical resistivity tomography (United States)

    Magnin, Florence; Krautblatter, Michael; Deline, Philip; Ravanel, Ludovic; Malet, Emmanuel; Bevington, Alexandre


    Alpine rockwalls with warm permafrost (near 0°C) are the most active rockfall detachment zones in the Mont Blanc massif (MBM, French Alps) with more than 380 recent events. Near-vertical rockwall permafrost is spatially controlled by variations in rock fractures, snow cover, and microtopography. A reliable method to validate the distribution of permafrost in critical and unstable areas does not yet exist. We present seven electrical resistivity tomography (ERT) surveys measured on five near-vertical rockwalls in the MBM from 2012 and 2013 that have been calibrated with measurements on a granite sample in the laboratory. ERT shows consistent measurements of remaining sensitive permafrost relating to inferred temperatures from 0 to -1.5°C. ERT results demonstrate evidence of topographic controls on permafrost distribution and resistivity gradients that appear to reflect crest width. ERT results are compared to two permafrost index maps that use topoclimatic factors and combine effects of thin snow and fractures, where index model spatial resolution is crucial for the validation with ERT. In cryospheric environments, index maps seem to overestimate permafrost conditions in glacial environments. As a consequence, the sensitive areas of permafrost may slightly deviate from the results from distributed models that are only constrained by topoclimatic factors and interpreted with consideration of local fracture and snow conditions. This study demonstrates (i) that the sensitive and hazardous areas of permafrost in near-vertical rock faces can be assessed and monitored by the means of temperature-calibrated ERT and (ii) that ERT can be used for distributed model validation.

  6. Optical and Electrical Studies of Vertically Oriented Tellurium Nanowire Arrays Produced by Template Electrodeposition (United States)

    Kumar, Narinder; Kumar, Rajesh; Kumar, Sushil; Chakarvarti, S. K.


    We report the fabrication of highly ordered arrays of tellurium nanowires and investigate their electrical, optical and structural properties. The tellurium nanowire arrays were synthesized by electrochemical deposition via a template method and characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-Visible spectroscopy. The XRD and FESEM characterizations confirm the formation of a dense crop of tellurium nanowire arrays with hexagonal phase. The intense crystalline peak corresponding to the (100) plane observed in the XRD spectra suggests a preferential growth of wires along the [001] direction. The crystallite size and micro-strain effect were estimated by Williamson-Hall (WH) analysis. The average crystallite size and lattice strain extracted from WH plot were found to be ˜34 nm and 0.0044, respectively. Further, electrical properties of the arrays of nanowires were examined using a two-probe method. The current-voltage curve of the tellurium wires exhibits a non-linear behavior and a double diode-like characteristic, which signifies their novel applications in future nanodevices.


    Directory of Open Access Journals (Sweden)

    D. G. Koliushko


    Full Text Available Purpose. Creating a computer program for interpreting the results of vertical sounding the soil in the form of multilayer model most typical for Ukraine. Methodology. The algorithm of the program is constructed on determination the soil structure with the help of the method of point source current, method of analogy and method of equivalent. The option of automatic interpretation based on Hook-Jeeves method. The program is implemented in the programming language Delphi. Results. The computer program «VEZ-4A» has a possibility of the interactive and automatic interpretation sounding results in the multi-layered geoelectrical model. Originality. In first time the computer program for analyzing and interpreting results of the soil sounding by Wenner configuration was created on the base of the analytical solution for field of current point source located in four-, three- or two-layer structure. In paper the review is presented and basic functions of our program are analyzed. Practical value. The program «VEZ-4A» is created and adapted for use in the electromagnetic diagnostics of grounding of existing power plants and substations.

  8. Investigation of the vertical electrical transport in a-Si:H/nc-Si:H superlattice thin films. (United States)

    Das, Debajyoti; Kar, Debjit


    Tuning the size of silicon nano-crystallites (Si-ncs) has been realized simply by controlling the thickness of the nc-Si:H sub-layer (tnc) in the a-Si:H/nc-Si:H superlattice thin films grown by low temperature plasma processing in PE-CVD. The vertical electrical transport phenomena accomplished in superlattice films have been investigated in order to identify their effective utilization in practical device configuration. The reduced size of the Si-ncs at thinner tnc and the associated band gap widening due to quantum confinement effects generates the Coulomb potential barrier at the a-Si/nc-Si interface which in turn obstructs the transport of charge carriers to the allowed energy states in Si-ncs, leading to the Poole-Frenkel tunneling as the prevailing charge transport mechanism in force. The advantages of the conduction process governed by the Poole-Frenkel mechanism are two-fold. The lower barrier height caused by the a-Si:H sub-layer in the superlattice than the silicon oxide sub-layer in conventional structures enhances the conduction current. Moreover, increasing trapped charges in the a-Si:H sub-layer can arbitrarily increase the current conduction. Accordingly, a-Si:H/nc-Si:H superlattice structures could provide superior electrical transport in stacked layer devices e.g., multi-junction all silicon solar cells.

  9. Electrical properties of Au/CdZnTe/Au detectors grown by the boron oxide encapsulated Vertical Bridgman technique

    Energy Technology Data Exchange (ETDEWEB)

    Turturici, A.A. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Abbene, L., E-mail: [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Gerardi, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Benassi, G. [due2lab s.r.l., Via Paolo Borsellino 2, Scandiano, 42019 Reggio Emilia (Italy); Bettelli, M.; Calestani, D. [IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100 (Italy); Zambelli, N. [due2lab s.r.l., Via Paolo Borsellino 2, Scandiano, 42019 Reggio Emilia (Italy); Raso, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Zappettini, A. [IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100 (Italy); Principato, F. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy)


    In this work we report on the results of electrical characterization of new CdZnTe detectors grown by the Boron oxide encapsulated Vertical Bridgman technique (B-VB), currently produced at IMEM-CNR (Parma, Italy). The detectors, with gold electroless contacts, have different thicknesses (1 and 2.5 mm) and the same electrode layout, characterized by a central anode surrounded by a guard-ring electrode. Investigations on the charge transport mechanisms and the electrical contact properties, through the modeling of the measured current–voltage (I–V) curves, were performed. Generally, the detectors are characterized by low leakage currents at high bias voltages even at room temperature: 34 nA/cm{sup 2} (T=25 °C) at 10,000 V/cm, making them very attractive for high flux X-ray measurements, where high bias voltage operation is required. The Au/CdZnTe barrier heights of the devices were estimated by using the interfacial layer-thermionic-diffusion (ITD) model in the reverse bias voltage range. Comparisons with CdZnTe detectors, grown by Traveling Heater Method (THM) and characterized by the same electrode layout, deposition technique and resistivity, were also performed.

  10. Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia) (United States)

    Chabaane, Achref; Redhaounia, Belgacem; Gabtni, Hakim


    The following work is an attempt to enhance and optimize the potential exploitation of the Hammam Sayala thermal spring (NW Tunisia). This hot spring is located at 10 km of South-western Béja city, with higher temperature values around 42 °C and a low discharge value of about 1 l s-1. The geological and structural settings of the study area are complex and associated with faults and Triassic intruded salt and evaporate. An integrated geophysical approach using Electrical Resistivity Tomography (ERT), Induced Polarization (IP) and Vertical Electrical Sounding (VES) techniques can provide a high-resolution subsurface image of the principal geothermal plume and associated pathways. These data were used to determine and understand the mechanisms responsible of the rise of hot water flowing out onto the surface. Our results add new information of the hydrothermal system's context in Hammam Sayala area, which can help to create a therapeutic center opening new perspectives in the Béja region and to encourage regional thermal tourism development.

  11. Vertical electric sounding of selected Arctic and Antarctic soils: advances in express field investigation of the Cryosols (United States)

    Abakumov, Evgeny


    Physical properties of the soils of the cold environments are underestimated. Soil and permafrost border and active layer thickness are the key classification indicators for the polar soils. That is why electrophysical research has been conducted with aim to determine the soil-permafrost layer heterogeneity and the depth of the uppermost permafrost layer on examples of selected plots in Antarctic region and Russian Arctic. The electric resistivity (ER) was measured directly in the soil profiles using the vertical electrical sounding (VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from the soil surface without digging pits or drilling. This method allows dividing the soil layer vertically into genetic layers, which are different on main key properties and characteristics Different soil layers have different ER values, that is why the sharp changes in ER values in soil profile can be interpreted as results of transition of one horizon to another. In our study, the resistivity measurements were performed using four-electrode (AB + MN) arrays of the AMNB configuration with use of the Schlumberger geometry. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements in this study. Electrodes were situated on the soil surface, distance between M and N was fixes, while distance from A to B were changed during the sounding. Vertical Electrical Resistivity Soundings (VERS) using Schlumberger array were carried out at stations, situated on the different plots of terrestrial ecosystems of Arctic and Antarctic. The resistance readings at every VERS point were automatically displayed on the digital readout screen and then written down on the field note book. The soils had been 'sounded' thoroughly and found to vary between 5 cm and 3-5 m in A-B distances. It was shown that use of VES methodology in soil survey is quite useful for identification of the permafrost depth without digging of soil pit. This

  12. Electric control of spin transport in GaAs (111) quantum wells (United States)

    Hernández-Mínguez, A.; Biermann, K.; Hey, R.; Santos, P. V.


    We show by spatially and time-resolved photoluminescence that the application of an electric field transverse to the plane of an intrinsic GaAs (111) quantum well (QW) allows the transport of photogenerated electron spins polarized along the direction perpendicular to the QW plane over distances exceeding 10 μ m . We attribute the long spin transport lengths to the compensation of the in-plane effective magnetic field related to the intrinsic spin-orbit (SO) interaction by means of the electrically generated SO field. Away from SO compensation, the precession of the spin vector around the SO field decreases the out-of-plane polarization of the spin ensemble as the electrons move away from the laser generation spot. The results are reproduced by a model for two-dimensional drift diffusion of spin polarized charge carriers under weak SO interaction.

  13. Modeling of stresses and electric fields in piezoelectric multilayer: Application to multi quantum wells

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Mishra


    Full Text Available Exact closed-form expressions have been derived for the stresses and the electric fields induced in piezoelectric multilayers deposited on a substrate with lattice misfit and thermal expansion coefficient mismatch. The derived formulations can model any number of layers using recursive relations that minimize the computation time. A proper rotation matrix has been utilized to generalize the expressions so that they can be used for various growth orientations with each layer having hexagonal crystal symmetry. As an example, the influence of lattice misfit and thermal expansion coefficient mismatch on the state of electroelastic fields in different layers of GaN multi quantum wells has been examined. A comparison with the finite element analysis results showed very close agreement. The analytical expressions developed herein will be useful in designing optoelectronic devices as well as in predicting defect density in multi quantum wells.

  14. Three-phase material distribution measurements in a vertical flow using gamma-densitometry tomography and electrical-impedance tomography

    Energy Technology Data Exchange (ETDEWEB)



    Experiments are presented in which electrical-impedance tomography (EIT) and gamma-densitometry tomography (GDT) measurements were combined to simultaneously measure the solid, liquid, and gas radial distributions in a vertical three-phase flow. The experimental testbed was a 19.05-cm diameter bubble column in which gas is injected at the bottom and exits out the top while the liquid and solid phases recirculate. The gas phase was air and the liquid phase was deionized water with added electrolytes. Four different particle classes were investigated for the solid phase: 40--100 {micro}m and 120--200 {micro}m glass beads (2.41 g/cm{sup 3}), and 170--260 {micro}m and 200--700 {micro}m polystyrene beads (1.04 g/cm{sup 3}). Superficial gas velocities of 3 to 30 cm/s and solid volume fractions up to 0.30 were examined. For all experimental conditions investigated, the gas distribution showed only a weak dependence on both particle size and density. Average gas volume fraction as a function of superficial gas velocity can be described to within {+-} 0.04 by curve passing through the center of the data. For most cases the solid particle appeared to be radically uniformly dispersed in the liquid.

  15. Integrated petrophysics and rock physics modeling for well log interpretation of elastic, electrical, and petrophysical properties (United States)

    Wu, Wenting; Grana, Dario


    Rock and fluid volumetric properties, such as porosity, saturation, and mineral volumes, are generally estimated from petrophysical measurements such as density, resistivity, neutron porosity and gamma ray, through petrophysical equations. The computed petrophysical properties and sonic log measurements are generally used to estimate the petro-elastic relationship between elastic and rock and fluid volumetric properties used in reservoir characterization. In this paper, we present a unified workflow that includes petrophysical relations and rock physics models for the estimation of rock and fluid properties from elastic, electrical, and petrophysical (porosity, density, and lithology) measurements. The multi-physics model we propose has the advantage of accounting for the coupled effect of rock and fluid properties in the joint petro-elastic and electrical domains, and potentially reduce the uncertainty in the well log interpretation. Furthermore, the presented workflow can be eventually extended to three-dimensional reservoir characterization problems, where seismic and electromagnetic data are available. To demonstrate the validity of the methodology, we show the application of this multi-physics model to both laboratory measurements and well log data.

  16. Electrical control simulation of near infrared emission in SOI-MOSFET quantum well devices (United States)

    Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi


    In the race to realize ultrahigh-speed processors, silicon photonics research is part of the efforts. Overcoming the silicon indirect bandgap with special geometry, we developed a concept of a metal-oxide-semiconductor field-effect transistor, based on a silicon quantum well structure that enables control of light emission. This quantum well consists of a recessed ultrathin silicon layer, obtained by a gate-recessed channel and limited between two oxide layers. The device's coupled optical and electrical properties have been simulated for channel thicknesses, varying from 2 to 9 nm. The results show that this device can emit near infrared radiation in the 1 to 2 μm range, compatible with the optical networking spectrum. The emitted light intensity can be electrically controlled by the drain voltage Vds while the peak emission wavelength depends on the channel thickness and slightly on Vds. Moreover, the location of the radiative recombination source inside the channel, responsible for the light emission, is also controllable through the applied voltages.

  17. Electrical injection to contactless near-surface InGaN quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Riuttanen, L., E-mail:; Svensk, O.; Suihkonen, S. [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Kivisaari, P.; Oksanen, J. [Department of Biomedical Engineering and Computational Science, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)


    Charge injection to the prevailing and emerging light-emitting devices is almost exclusively based on the double heterojunction (DHJ) structures that have remained essentially unchanged for decades. In this letter, we report the excitation of a near surface indium gallium nitride (InGaN) quantum well (QW) by bipolar carrier diffusion from a nearby electrically excited pn-homojunction. The demonstrated near surface QW emitter is covered only by a 10 nm GaN capping leaving the light-emitting mesa perfectly free of metals, other contact, or current spreading structures. The presented proof-of-principle structure, operating approximately with a quantum efficiency of one fifth of a conventional single QW reference structure, provides conclusive evidence of the feasibility of using diffusion injection to excite near surface light-emitting structures needed, e.g., for developing light emitters or photo-voltaic devices based on nanoplasmonics or free-standing nanowires. In contrast to the existing DHJ solutions or optical pumping, our approach allows exciting nanostructures without the need of forming a DHJ, absorbing layers or even electrical contacts on the device surface.

  18. Optimization of liquid and gas flow rates for aerated drilling fluids considering hole cleaning for vertical and low inclination wells

    Energy Technology Data Exchange (ETDEWEB)

    Ozbayoglu, M.E. [Middle East Univ., Metn (Lebanon)


    One of the most widely used technologies in depleted and/or low pressured formations is underbalanced drilling. Drilling fluids are usually gasified in order to achieve underbalanced conditions. The most commonly used drilling fluids during underbalanced drilling are pure gas, gas-liquid mixtures, and foams. This paper presented a study that focused on gas-liquid mixtures. The purpose of this paper was to express two-phase flow in vertical wellbores, and determine required flow rates for liquid and gas phase by considering formation pressure and hole cleaning properties. It was assumed that the liquid phase is the major contributor for cuttings transport, and that the gas phase only influences the bottom hole pressure. The paper introduced a mechanistic model for estimating the hydraulic behaviour of gas-liquid mixture drilling fluids under different flow patterns. Based on the bottom hole pressure and effective hole cleaning point of view, an algorithm was proposed for estimating the optimum required flow rates for liquid and gas phases based on the introduced mechanistic model. The model also predicts the required backpressure that must be applied. It was concluded that since the liquid flow rate is only dependent on proper hole cleaning, gas flow rate can be adjusted to achieve a bottomhole pressure equal to formation pressure. Also, backpressure should not be kept constant at the same value for static and dynamic conditions. Otherwise, bottomhole pressure cannot be kept constant. 14 refs., 9 figs., 1 appendix.

  19. Electrically injected GaAsBi/GaAs single quantum well laser diodes (United States)

    Liu, Juanjuan; Pan, Wenwu; Wu, Xiaoyan; Cao, Chunfang; Li, Yaoyao; Chen, Xiren; Zhang, Yanchao; Wang, Lijuan; Yan, Jinyi; Zhang, Dongliang; Song, Yuxin; Shao, Jun; Wang, Shumin


    We present electrically injected GaAs/GaAsBi single quantum well laser diodes (LDs) emitting at a record long wavelength of 1141 nm at room temperature grown by molecular beam epitaxy. The LDs have excellent device performances with internal quantum efficiency of 86%, internal loss of 10 cm-1 and transparency current density of 196 A/cm2. The LDs can operate under continuous-wave mode up to 273 K. The characteristic temperature are extracted to be 125 K in the temperature range of 77˜150 K, and reduced to 90 K in the range of 150˜273 K. The temperature coefficient of 0.3 nm/K is extracted in the temperature range of 77˜273 K.

  20. Quantum well saturable absorber mirror with electrical control of modulation depth

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Rafailov, Edik U.; Livshits, Daniil


    We demonstrate a quantum well QW semiconductor saturable absorber mirror SESAM comprising low-temperature grown InGaAs/GaAs QWs incorporated into a p-i-n structure. By applying the reverse bias voltage in the range 0–2 V to the p-i-n structure, we were able to change the SESAM modulation depth...... in the range 2.5–0.5%, as measured by nonlinear reflectivity of 450 fs long laser pulses with 1065 nm central wavelength, in the pump fluence range 1.6–26.7 J /cm2. This electrical control of the modulation depth is achieved by controlling the small-signal loss of the SESAM via quantum-confined Stark effect...

  1. Trends in Solar energy Driven Vertical Ground Source Heat Pump Systems in Sweden - An Analysis Based on the Swedish Well Database (United States)

    Juhlin, K.; Gehlin, S.


    Sweden is a world leader in developing and using vertical ground source heat pump (GSHP) technology. GSHP systems extract passively stored solar energy in the ground and the Earth's natural geothermal energy. Geothermal energy is an admitted renewable energy source in Sweden since 2007 and is the third largest renewable energy source in the country today. The Geological Survey of Sweden (SGU) is the authority in Sweden that provides open access geological data of rock, soil and groundwater for the public. All wells drilled must be registered in the SGU Well Database and it is the well driller's duty to submit registration of drilled wells.Both active and passive geothermal energy systems are in use. Large GSHP systems, with at least 20 boreholes, are active geothermal energy systems. Energy is stored in the ground which allows both comfort heating and cooling to be extracted. Active systems are therefore relevant for larger properties and industrial buildings. Since 1978 more than 600 000 wells (water wells, GSHP boreholes etc) have been registered in the Well Database, with around 20 000 new registrations per year. Of these wells an estimated 320 000 wells are registered as GSHP boreholes. The vast majority of these boreholes are single boreholes for single-family houses. The number of properties with registered vertical borehole GSHP installations amounts to approximately 243 000. Of these sites between 300-350 are large GSHP systems with at least 20 boreholes. While the increase in number of new registrations for smaller homes and households has slowed down after the rapid development in the 80's and 90's, the larger installations for commercial and industrial buildings have increased in numbers over the last ten years. This poster uses data from the SGU Well Database to quantify and analyze the trends in vertical GSHP systems reported between 1978-2015 in Sweden, with special focus on large systems. From the new aggregated data, conclusions can be drawn about

  2. Effect of compositional interlayers on the vertical electrical conductivity of Si-doped AlN/GaN distributed Bragg reflectors grown on SiC (United States)

    Hashemi, Ehsan; Hjort, Filip; Stattin, Martin; Ive, Tommy; Bäcke, Olof; Lotsari, Antiope; Halvarsson, Mats; Adolph, David; Desmaris, Vincent; Meledin, Denis; Haglund, Åsa


    We have investigated the effect of strain-compensating interlayers on the vertical electrical conductivity of Si-doped AlN/GaN distributed Bragg reflectors (DBRs). Samples with 10.5 mirror pairs were grown through plasma-assisted molecular beam epitaxy on SiC. Room-temperature current-voltage characteristics were measured vertically in mesas through 8 of the 10.5 pairs. The sample with no interlayers yields a mean specific series resistance of 0.044 Ω cm2 at low current densities, while three samples with 5/5-Å-thick, 2/2-nm-thick, and graded interlayers have resistivities between 0.16 and 0.34 Ω cm2. Thus, interlayers impair vertical current transport, and they must be designed carefully when developing conductive DBRs.

  3. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Poch, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Mahalik, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, A. [Argonne National Lab. (ANL), Argonne, IL (United States)


    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  4. Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam

    NARCIS (Netherlands)

    Kihara Rurimo, G.; Schardt, M.; Quabis, S.; Malzer, S.; Dotzler, C.; Winkler, A.; Leuchs, G.; Döhler, G.H.; Driscoll, D.; Hanson, M.; Gossard, A.C.; Pereira, S.F.


    We report a method to measure the electric energy density of longitudinal and transverse electric field components of strongly focused polarized laser beams. We used a quantum well photodetector and exploited the polarization dependent optical transitions of light holes and heavy holes to probe the

  5. Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua


    Full Text Available The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD models in the literature.

  6. Auroral E-region electron density height profile modificationby electric field driven vertical plasma transport:some evidence in EISCAT CP-1 data statistics

    Directory of Open Access Journals (Sweden)

    T. Bösinger


    Full Text Available A model developed several years ago by Huuskonen et al. (1984 predicted that vertical transport of ions in the nocturnal auroral E-region ionosphere can shift the electron density profiles in altitude during times of sufficiently large electric fields. If the vertical plasma transport effect was to operate over a sufficiently long enough time, then the real height of the E-region electron maximum should be shifted some km upwards (downwards in the eastward (westward auroral electrojet, respectively, when the electric field is strong, exceeding, say, 50 mV/m. Motivated by these predictions and the lack of any experimental verification so far, we made use of the large database of the European Incoherent Scatter (EISCAT radar to investigate if the anticipated vertical plasma transport is at work in the auroral E-region ionosphere and thus to test the Huuskonen et al. (1984 model. For this purpose a new type of EISCAT data display was developed which enabled us to order a large number of electron density height profiles, collected over 16 years of EISCAT operation, according to the electric field magnitude and direction as measured at the same time at the radar's magnetic field line in the F-region. Our analysis shows some signatures in tune with a vertical plasma transport in the auroral E-region of the type predicted by the Huuskonen et al. model. The evidence brought forward is, however, not unambiguous and requires more rigorous analysis.

    Key words. Ionosphere (auroral ionosphere; plasma convection; electric fields and currents

  7. Computational algorithm for predicting the pressure gradient in vertical wells by correlating multiphase flow Hagedorn and Brown


    Luis Jose Duarte Bohorquez; María Duarte


    The accurate prediction of the pressure drop expected to occur during the multiphase flow of fluids in the flow string of a well is a widely recognized problem in the petroleum industry. There are many correlations and mechanistic models that estimate pressure gradients in wells as correlations: Duns & Ros (2008); Orkiszewski (1967); Hagedorn & Brown (1965), Beggs & Brill (1973), Govier & col. (1999), etc. Each one is based on application criteria that transform it into...

  8. Significant Factors Influencing Rural Residents’ Well-Being with Regard to Electricity Consumption: An Empirical Analysis in China

    Directory of Open Access Journals (Sweden)

    Sen Guo


    Full Text Available The electric universal service policy, which has been implemented for many years in China, aims to meet the basic electricity demands of rural residents. Electricity consumption can facilitate the daily life of rural residents, such as lighting and cooking, which are necessary to their well-being. In practice, the well-being of rural residents due to electricity consumption is influenced by many factors. Therefore, to improve the well-being of rural residents, it is quite necessary to identify and optimize the significant factors that make the electric universal service policy play its prescribed role as well as possible. In this paper, the significant factors influencing rural residents’ well-being obtained from electricity consumption were identified and discussed by employing the Ordered Probit model. The results indicate that: (1 there are six significant factors, of which ‘educational level’, ‘health condition’, ‘each person income of a family per month’, and ‘service time of household appliances’ play positive roles in rural residents’ well-being, while ‘average power interruption times’ and ‘monthly electric charges’ have negative impacts; (2 for significant factors with positive roles, ‘educational level’ and ‘health condition’ show larger marginal effects on rural residents’ well-being; and (3 for significant factors with negative impacts, ‘average power interruption times’ has the greatest marginal effect. Finally, policy implications are proposed for improving rural residents’ well-being, which can also contribute to the effective implementation of the electric universal service policy in China.

  9. Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tutuka Ariadji


    Full Text Available Comparing the quality of basic reservoir rock properties is a common practice to locate new infills or development wells for optimizing an oil field development using a reservoir simulation. The conventional technique employs a manual trial and error process to find new well locations, which proves to be time-consuming, especially, for a large field. Concerning this practical matter, an alternative in the form of a robust technique was introduced in order that time and efforts could be reduced in finding best new well locations capable of producing the highest oil recovery. The objective of the research was to apply Genetic Algorithm (GA in determining wells locations using reservoir simulation to avoid the manual conventional trial and error method. GA involved the basic rock properties, i.e., porosity, permeability, and oil saturation, of each grid block obtained from a reservoir simulation model, which was applied into a newly generated fitness function formulated through translating the common engineering practice in the reservoir simulation into a mathematical equation and then into a computer program. The maximum of the fitness value indicated a final searching of the best grid location for a new well location. In order to evaluate the performance of the generated GA program, two fields that had different production profile characteristics, namely the X and Y fields, were applied to validate the proposed method. The proposed GA method proved to be a robust and accurate method to find the best new well locations for field development. The key success of this proposed GA method is in the formulation of the objective function.

  10. The Effect of Electric Field on RbCl Asymmetric Gaussian Potential Quantum Well Qubit (United States)

    Xiao, Jing-Lin


    We calculate the time evolution and the coordinate change of the quantum mechanical electronic state by using variational method of Pekar type (VMPT) in the presence of strong electron-LO-phonon coupling. The electron is confined in an asymmetric Gaussian potential quantum well (AGPQW) subjected to an applied electric field. The eigenenergies and the eigenfunctions of the ground and the first excited states (GFES) are calculated. A single qubit can be realized in this two-level quantum system. The electron's probability density oscillates in the AGPQW with a certain period of T 0 = 22.511 fs when the electron is in the superposition state of the GFES. We show that due to the presence of the asymmetrical Gaussian potential in the growth direction of the QW, the electron's probability density shows one peak in the range of the coordinate z > 0, whereas it equals to zero in the range of z 0.24 nm. It has a minimum when R = 0.24 nm.

  11. A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua


    Full Text Available Models are crucial in the engineering design process because they can be used for both the optimization of design parameters and the prediction of performance. Thus, models can significantly reduce design, development and optimization costs. This paper proposes a novel equivalent electrical model for Darrieus-type vertical axis wind turbines (DTVAWTs. The proposed model was built from the mechanical description given by the Paraschivoiu double-multiple streamtube model and is based on the analogy between mechanical and electrical circuits. This work addresses the physical concepts and theoretical formulations underpinning the development of the model. After highlighting the working principle of the DTVAWT, the step-by-step development of the model is presented. For assessment purposes, simulations of aerodynamic characteristics and those of corresponding electrical components are performed and compared.

  12. High-resolution vertical profiles of groundwater electrical conductivity (EC) and chloride from direct-push EC logs (United States)

    Bourke, Sarah A.; Hermann, Kristian J.; Hendry, M. Jim


    Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl-) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl- from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl- concentrations than a power-law relationship (Archie's Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl- concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl- = 1,978 ECa - 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl- as porosity data become available and the site-specific ECw-Cl- relationship is determined.

  13. Variational calculations of subbands in a quantum well with uniform electric field - Gram-Schmidt orthogonalization approach (United States)

    Ahn, Doyeol; Chuang, S. L.


    Variational calculations of subband eigenstates in an infinite quantum well with an applied electric field using Gram-Schmidt orthogonalized trial wave functions are presented. The results agree very well with the exact numerical solutions even up to 1200 kV/cm. It is also shown that, for increasing electric fields, the energy of the ground state decreases, while that of higher subband states increases slightly up to 1000 kV/cm and then decreases for a well size of 100 A.

  14. Neotectonics in Marajó Island, State of Pará (Brazil revealed by vertical electric sounding integrated with remote sensing and geological data

    Directory of Open Access Journals (Sweden)



    Full Text Available Studies suggest that the Marajó Island has experienced neotectonic activity during its latest evolution. However, there are no data demonstrating the presence of tectonic structures in its shallow subsurface. This work integrates vertical electric sounding, morphostructural lineaments, and geological data aiming to show fault control on the Late Pleistocene-Holocene sedimentation of this area. Resistivity values were related to mud ( 500 Ωm. The latest values were related to the unconformity with lateritic paleosol at the top of the Barreiras Formation. Despite the values ≤ 500 Ωm of both the Barreiras Formation and the Late Pleistocene-Holocene unit, the latter was distinguished along four electric sections due to the presence of this unconformity, combined with the integration of available 14C, and luminescence ages of Quaternary sediments. The electric sections recorded several places with lateral interruptions of resistivity values within short distances, which were related to faults. The Miocene strata were vertically displaced by normal faults, giving rise to new accommodation space where Late Pleistocene-Holocene sediments were deposited. Fault reactivation was crucial to renew sedimentation in eastern Marajó Island during its latest evolutionary stage.

  15. Efficacy of Hummel (Modified Schlumberger Arrays of Vertical Electrical Sounding in Groundwater Exploration: Case Study of Parts of Ibadan Metropolis, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Micheal Oladunjoye


    Full Text Available This research compared the interpretation results of the Vertical Electrical Sounding data acquired using the conventional Schlumberger and modified Schlumberger arrays with a view to assessing the effectiveness of the modified Schlumberger arrays of vertical electrical sounding as an alternative to the conventional Schlumberger array at sites with space constraint during groundwater exploration. A total of thirty-seven (37 sounding locations were occupied and one hundred (100 sounding data for both conventional Schlumberger and modified Schlumberger arrays were collected across different rock units within Ibadan metropolis, south-western Nigeria, with electrode spacing (AB/2 ranging from 1 to 75 m. The field data were interpreted qualitatively by curve matching and computer iterative methods. Also, statistical analysis of subsurface units and the coefficient of correlation “R” of the statistical plots of the field data shows the relationship between the different arrays. The raw data plot of the different arrays shows significant similarities while statistical analysis of the geo-electric parameters obtained from the different arrays across varied lithologic units show that strong relationships exist between the different field methods. The coefficient of correlation R with values ranging from 0.7 to 0.99 implies that a good similarity exists between the different field methods employed in this study. Hence, modified Schlumberger arrays can be said to be a good alternative to the conventional Schlumberger array for groundwater exploration especially in urban settings where space constraint is a major challenge.

  16. New own design an application of electric heating cable for the Orinoco oil belt wells in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Quezada, A; Jorge, L [PDVSA PETROLEOS S.A. (Venezuela)


    In the heavy oil industry, thermal recovery processes are common methods to reduce oil viscosity and the oil steaking factor. One of these methods consists of using a heating element to increase the well's temperature.. A new heating system, the down hole electric heating system (CEF), has been developed where the hold cable for the horizontal section is heated and used as a resistive heating element; the aim of this paper is to present this new technology system and its application. The system was installed one of PDVSA's wells in the Zuata Field in the Orinoco oil belt in Venezuela and has now been in use for 8 months. Results showed a production increase of 20% with the use of the down hole electric heating system. Through successful application in a well in Venezuela, this paper showed that the down hole electric heating system can be a good alternative to produce oil from heavy oil reservoirs.

  17. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  18. Detecting spectrally localized components of lunar tide-frequency in time-series of the electric field vertical component of the earth atmosphere boundary layer

    CERN Document Server

    Isakevich, V V; Isakevich, D V


    Using the signal eigenvectors and components analyser (Grunskaya L.V., Isakevich V.V., Isakevich D.V. the RF Utility Model Patent 116242 of 30.09.2011) made it possible to detect non-coherent complex-period components localized at lunar tide frequencies in the time-series of the electric field vertical component of the Earth atmosphere boundary layer. The detected components are unobservable by means of spectral analysis quadrature scheme. The probability of the detected effects being pseudo-estimates is not more than 0.00025

  19. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria). (United States)

    Asfahani, J; Abdul Ghani, B; Ahmad, Z


    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Vertical axis wind turbines (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU


    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  1. Determination of fluid transmissivity and electric transverse resistance for shallow aquifers and deep reservoirs from surface and well-log electric measurements

    Directory of Open Access Journals (Sweden)

    H. S. Salem


    Full Text Available Fluid transmissivity (layer thickness times permeability and electric transverse resistance (layer thickness time resistivity are important parameter in groundwater and hydrocarbon exploration. Determination of these parameters provides a good knowledge of the potential of porous media, because they relate fluid flow to electric-current conduction, in terms of layer thickness, permeability and resistivity. In this study, both parameters were determined for shallow aquifers (Schleswig-Holstein, northern Germany and deep reservoirs (Jeanne d'Arc Basin, offshore of eastern Canada, utilizing surface and well-log electric measurements. Direct relationships between both parameters, with coefficients of correlation of 0.99 (for the aquifers and 0.94 (for the reservoirs, were obtained. The relationships suggest that an increase in both parameters indicate presence of zones of high fluid potential within the aquifers and the reservoirs.

  2. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles. (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J


    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  3. The use of Time Domain Electromagnetic method and Continuous Vertical Electrical Sounding to map groundwater salinity in the Barotse sub-basin, Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Wibroe, Johanne; Staal-Thomsen, K.


    This paper describes the results from the application of two geophysical exploration techniques, Time Domain Electromagnetic (TDEM) and Continuous Vertical Electrical Sounding (CVES) that have proved effective in mapping groundwater salinity variations within the sedimentary formations of the Bar......This paper describes the results from the application of two geophysical exploration techniques, Time Domain Electromagnetic (TDEM) and Continuous Vertical Electrical Sounding (CVES) that have proved effective in mapping groundwater salinity variations within the sedimentary formations...... of the Barotse sub basin in the Western Province of Zambia. TDEM was used to map groundwater salinity variations on a regional scale, whereas CVES was used at the local scale to investigate freshwater–saltwater distribution in an ephemeral river valley. On a regional scale, salt water occurrence was shown......-concentration of salts in interdune deposits, which were subsequently buried due to dune migration about 32 to 4 thousands of years ago or kilo annums (ka). The occurrence of saline groundwater could also possibly be linked to evaporation of a former Lake Paleo Makgadikgadi, an extensive endorheic lake system that once...

  4. Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields (United States)

    Restrepo, R. L.; Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Morales, A. L.; Duque, C. A.


    The effects of electric and magnetic fields on the second and third harmonic generation coefficients in a Morse potential quantum well are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the Schrödinger equation for the electron in the parabolic band scheme and effective mass approximations and the envelope function approach. The results show that both the electric and the magnetic fields have significant influence on the magnitudes and resonant peak energy positions of the second and third harmonic generation responses. In general, the Morse potential profile becomes wider and shallower as γ -parameter increases and so the energies of the bound states will be functions of this parameter. Therefore, we can conclude that the effects of the electric and magnetic fields can be used to tune and control the optical properties of interest in the range of the infrared electromagnetic spectrum.

  5. Statistical factor analysis technique for characterizing basalt through interpreting nuclear and electrical well logging data (case study from Southern Syria). (United States)

    Asfahani, Jamal


    Factor analysis technique is proposed in this research for interpreting the combination of nuclear well logging, including natural gamma ray, density and neutron-porosity, and the electrical well logging of long and short normal, in order to characterize the large extended basaltic areas in southern Syria. Kodana well logging data are used for testing and applying the proposed technique. The four resulting score logs enable to establish the lithological score cross-section of the studied well. The established cross-section clearly shows the distribution and the identification of four kinds of basalt which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The factor analysis technique is successfully applied on the Kodana well logging data in southern Syria, and can be used efficiently when several wells and huge well logging data with high number of variables are required to be interpreted. © 2013 Elsevier Ltd. All rights reserved.

  6. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate

    KAUST Repository

    Muhammed, Mufasila


    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multi-quantum well (MQW) grown on the masked β-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ~ 86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  7. Failure mode analysis of degraded InGaAs-AlGaAs strained quantum well multi-mode vertical-cavity surface-emitting lasers (United States)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Huang, Michael; Bushmaker, Adam; Theiss, Jesse; Presser, Nathan; Foran, Brendan; Moss, Steven C.


    Remarkable progress made in vertical cavity surface emitting lasers (VCSELs) emitting at 850 and 980 nm has led them to find an increasing number of applications in high speed data communications as well as in potential space satellite systems. However, little has been reported on reliability and failure modes of InGaAs VCSELs emitting at ~980 nm although it is crucial to understand failure modes and underlying degradation mechanisms in developing these VCSELs that exceed lifetime requirements for space missions. The active layer of commercial VCSELs that we studied consisted of two or three InGaAs quantum wells. The laser structures were fabricated into deep mesas followed by a steam oxidation process to form oxide-apertures for current and optical confinements. Our multi- mode VCSELs showed a laser threshold of ~ 0.5 mA at RT. Failures were generated via accelerated life-testing of VCSELs. For the present study, we report on failure mode analysis of degraded oxide-VCSELs using various techniques. We employed nondestructive techniques including electroluminescence (EL), optical beam induced current (OBIC), and electron beam induced current (EBIC) techniques as well as destructive techniques including focused ion beam (FIB) and high-resolution TEM techniques to study VCSELs that showed different degradation behaviors. Especially, we employed FIB systems to locally remove a portion of top-DBR mirrors of degraded VCSELs, which made it possible for our subsequent EBIC and OBIC techniques to locate damaged areas that were generated as a result of degradation processes and also for our HR-TEM technique to prepare TEM cross sections from damaged areas. Our nondestructive and destructive physical analysis results are reported including defect and structural analysis results from pre-aged VCSELs as well as from degraded VCSELs life-tested under different test conditions.

  8. Tuning electronic and optical properties of arsenene/C3N van der Waals heterostructure by vertical strain and external electric field. (United States)

    Zeng, Hui; Zhao, Jun; Cheng, Ai-Qiang; Zhang, Lei; He, Zi; Chen, Ru-Shan


    Searching for new van der Waals (vdW) heterostructure with novel electronic and optical properties is of great interest and importance for the next generation of devices. By using first-principles calculations, we show that the electronic and optical properties of the arsenene/C3N vdW heterostructure can be effectively modulated by applying vertical strain and external electric field. Our results suggest that this heterostructure has an intrinsic type-II band alignment with an indirect bandgap of 0.16 eV, facilitating the separation of photogenerated electron-hole pairs. The bandgap in the heterostructure can be tuned from 0-0.35 eV via the strain, experiencing an indirect-to-direct bandgap transition. Moreover, the bandgap of the heterostructure varies linearly with respect to a moderate external electric field, and the semiconductor-to-metal transition can be realized in the presence of a strong electric field. The calculated band alignment and the optical absorption reveal that the arsenene/C3N heterostructure could present excellent light-harvesting performance. Our designed vdW heterostructure is expected to have great potential applications in nanoelectronic devices and photovoltaics.

  9. Tuning electronic and optical properties of arsenene/C3N van der Waals heterostructure by vertical strain and external electric field (United States)

    Zeng, Hui; Zhao, Jun; Cheng, Ai-Qiang; Zhang, Lei; He, Zi; Chen, Ru-Shan


    Searching for new van der Waals (vdW) heterostructure with novel electronic and optical properties is of great interest and importance for the next generation of devices. By using first-principles calculations, we show that the electronic and optical properties of the arsenene/C3N vdW heterostructure can be effectively modulated by applying vertical strain and external electric field. Our results suggest that this heterostructure has an intrinsic type-II band alignment with an indirect bandgap of 0.16 eV, facilitating the separation of photogenerated electron–hole pairs. The bandgap in the heterostructure can be tuned from 0–0.35 eV via the strain, experiencing an indirect-to-direct bandgap transition. Moreover, the bandgap of the heterostructure varies linearly with respect to a moderate external electric field, and the semiconductor-to-metal transition can be realized in the presence of a strong electric field. The calculated band alignment and the optical absorption reveal that the arsenene/C3N heterostructure could present excellent light-harvesting performance. Our designed vdW heterostructure is expected to have great potential applications in nanoelectronic devices and photovoltaics.

  10. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.


    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and

  11. Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients

    Directory of Open Access Journals (Sweden)

    S. Krause


    Full Text Available This paper investigates the patterns and controls of aquifer–river exchange in a fast-flowing lowland river by the conjunctive use of streambed temperature anomalies identified with Fibre-optic Distributed Temperature Sensing (FO-DTS and observations of vertical hydraulic gradients (VHG.

    FO-DTS temperature traces along this lowland river reach reveal discrete patterns with "cold spots" indicating groundwater up-welling. In contrast to previous studies using FO-DTS for investigation of groundwater–surface water exchange, the fibre-optic cable in this study was buried in the streambed sediments, ensuring clear signals despite fast flow and high discharges. During the observed summer baseflow period, streambed temperatures in groundwater up-welling locations were found to be up to 1.5 °C lower than ambient streambed temperatures. Due to the high river flows, the cold spots were sharp and distinctly localized without measurable impact on down-stream surface water temperature.

    VHG patterns along the stream reach were highly variable in space, revealing strong differences even at small scales. VHG patterns alone are indicators of both, structural heterogeneity of the stream bed as well as of the spatial heterogeneity of the groundwater–surface water exchange fluxes and are thus not conclusive in their interpretation. However, in combination with the high spatial resolution FO-DTS data we were able to separate these two influences and clearly identify locations of enhanced exchange, while also obtaining information on the complex small-scale streambed transmissivity patterns responsible for the very discrete exchange patterns. The validation of the combined VHG and FO-DTS approach provides an effective strategy for analysing drivers and controls of groundwater–surface water exchange, with implications for the quantification of biogeochemical cycling and contaminant transport at aquifer–river interfaces.

  12. Job insecurity, wellness and social support within a business unit of an electricity organisation / by Mamello Makhobotloane


    Makhobotloane, Mamello Patience


    The primary objective of this study is to investigate the relationship between job insecurity, wellness and social support of employees (N=209) within the business unit of an electricity organisation. A cross-sectional survey design was used. Constructs were measured by means of Job Insecurity Survey Questionnaire (JISQ), the Maslach Bumout Inventory General Survey (MBI-GS), the Utrecht Work Engagement Scale W S), the General Health Questionnaire (GHQ), and the Social Support Questionnaire (S...

  13. The D sup - centre in a quantum well in the presence of parallel electric and strong magnetic fields

    CERN Document Server

    Monozon, B S


    An analytical approach to the problem of a negatively charged donor in an infinitely deep quantum well (QW) in the presence of parallel electric and strong magnetic external fields both directed perpendicular to the heteroplanes is developed. The double adiabatic approximation is employed. The dependences of the binding energy on the field strengths, the width of the well and the position of the impurity within the well are derived in explicit form. The effect of the inversion of the electric field is investigated. It is shown that the combined potential acting on the 'outer' electron resembles that of a double QW. When the levels associated with the two effective QWs anticross, a resonant structure arises. The explicit dependence of the resonant splitting on the width of the QW, the strength of the electric field and the position of the impurity are obtained. Using the parameters associated with the GaAs QW, estimates of the inversion shift of the binding energy and the frequency of the emitted resonant radi...

  14. Room-temperature CW operation of a nitride-based vertical-cavity surface-emitting laser using thick GaInN quantum wells (United States)

    Furuta, Takashi; Matsui, Kenjo; Horikawa, Kosuke; Ikeyama, Kazuki; Kozuka, Yugo; Yoshida, Shotaro; Akagi, Takanobu; Takeuchi, Tetsuya; Kamiyama, Satoshi; Iwaya, Motoaki; Akasaki, Isamu


    We demonstrated a room-temperature (RT) continuous-wave (CW) operation of a GaN-based vertical-cavity surface-emitting laser (VCSEL) using a thick GaInN quantum well (QW) active region and an AlInN/GaN distributed Bragg reflector. We first investigated the following two characteristics of a 6 nm GaInN 5 QWs active region in light-emitting diode (LED) structures. The light output power at a high current density (∼10 kA/cm2) from the 6 nm GaInN 5 QWs was the same or even higher than that from standard 3 nm 5 QWs. In addition, we found that hole injection into the farthest QW from a p-layer was sufficient. We then demonstrated a GaN-based VCSEL with the 6 nm 5 QWs, resulting in the optical confinement factor of 3.5%. The threshold current density under CW operation at RT was 7.5 kA/cm2 with a narrow (0.4 nm) emission spectrum of 413.5 nm peak wavelength.

  15. Effects of Soret, Hall and Ion-slip on mixed convection in an electrically conducting Casson fluid in a vertical channel (United States)

    RamReddy, Ch.; Surender, O.; Venkata Rao, Ch.


    The significance of Soret, Hall and Ion-slip effects on mixed convection flow of an electrically conducting Casson fluid in a vertical channel in the presence of viscous dissipation is analyzed. The system of flow governing equations are converted into the system of non-dimensional equations using appropriate non-dimensional transformations and hence solved analytically by homotopy analysis method. A quantitative comparison is made between homotopy analysis method and Adomian decomposition method and the results are found to be in good agreement. The dimensionless velocity, temperature and species concentration profiles are illustrated graphically and quantitatively with special focus on the Casson fluid, Soret, viscous dissipation, Hall and Ion-slip parameters.

  16. Brine delineation and monitoring with electrical resistivity tomography and electromagnetic borehole logging at the Fort Knox well field near West Point, Kentucky (United States)

    Henderson, Rory; Unthank, Michael D.; Zettwoch, Douglas D.; Lane, John W.


    The potable water system at Fort Knox is threatened by brine contamination from improperly abandoned natural gas exploration wells. The Fort Knox well field is located near the town of West Point, Kentucky, in the flood plain of the Ohio River. At the site, unconsolidated sediments approximately 30 – 40 m thick, overlie shale and porous limestone. Brine is believed to flow vertically from the underlying formations to the unconsolidated aquifer through damaged or leaky well casings under a high hydraulic gradient from the artificially pressurized porous limestone, which is utilized for natural gas storage by a regional energy company. Upon reaching the unconsolidated aquifer, brinecontaminated groundwater enters water supply production wells under the pumping‐induced gradient. As part of the Fort Knox remediation strategy to reduce the impact of brine contamination, electrical resistivity tomography (ERT) and borehole electromagnetic (EM) logs are being collected annually to detect gross changes in subsurface conductivity. The 2009 ERT data show areas of high conductivity on the western (contaminated) side of the site with conductivities more than an order of magnitude higher than on the eastern (uncontaminated) side of the site. The areas of high conductivity are interpreted as brine contamination, consistent with known regions of brine contamination. Conductivities from the EM logs are consistent with the results from the ERT inversions. The EM logs show little change between 2008 and 2009, except for some small changes in the brine distribution in well PZ1. Yearly ERT surveys will be continued to detect new areas of brine contamination and monitor the remediation effort.

  17. Quantum well saturable absorber mirror with electrical control of modulation depth

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Rafailov, E.U.; Livshits, D.


    A saturable absorber mirror comprizing InGaAs/GaAs quantum wells incorporated into a p-i-n structure is demonstrated. Its modulation depth can be reduced from 4.25 % to 1.63 % by applying reverse bias voltage in the range 0–1 V.......A saturable absorber mirror comprizing InGaAs/GaAs quantum wells incorporated into a p-i-n structure is demonstrated. Its modulation depth can be reduced from 4.25 % to 1.63 % by applying reverse bias voltage in the range 0–1 V....

  18. Porosity and hydraulic conductivity estimation of the basaltic aquifer in Southern Syria by using nuclear and electrical well logging techniques (United States)

    Asfahani, Jamal


    An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity ( K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.

  19. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations (United States)

    Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando

    This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal

  20. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems


    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  1. Stationary and nonstationary models of the global electric circuit: Well-posedness, analytical relations, and numerical implementation (United States)

    Kalinin, A. V.; Slyunyaev, N. N.; Mareev, E. A.; Zhidkov, A. A.


    We analyze the formulation of the problem of global atmospheric electric circuit modeling. It was shown that under some relatively simple and widely used simplifying assumptions this problem can be reduced to finding the temporal and spatial dependencies of the electric potential on the specified generators, which are determined by the external electric current density. They correspond to thunderclouds in the real atmosphere. The ionospheric potential (the potential difference between the upper and lower atmospheric boundaries) is not specified explicitly but can be uniquely determined from the solution. The formulations of the stationary and nonstationary problems are given in terms of the potential and their well-posedness is discussed. We obtained a number of analytical relations under some restrictions on the distribution of conductivity. They include the formulas which explicitly express the ionospheric potential in terms of the problem parameters. The examples of numerical calculations using the software developed on the basis of general formulations of the stationary and nonstationary problems are demonstrated.

  2. Reply to comment by Mauder on "How well can we measure the vertical wind speed? Implications for fluxes of energy and mass" (United States)

    John Kochendorfer; Tilden P. Meyers; John M. Frank; William J. Massman; Mark W. Heuer


    In Kochendorfer et al. (Boundary-Layer Meteorol 145:383-398, 2012, hereafter K2012) the vertical wind speed (w) measured by a non-orthogonal three-dimensional sonic anemometer was shown to be underestimated by 12%. Turbulent statistics and eddycovariance fluxes estimated using w were also affected by this underestimate in w. Methodologies used in K2012 are clarified...

  3. Optimization of GaInNAs quantum-well vertical-cavity surface-emitting laser emitting at 2.33 μm (United States)

    Sarzała, Robert P.; Piskorski, Łukasz; Kudrawiec, Robert; Nakwaski, Włodzmierz


    In the present paper, a comprehensive computer simulation is used to determine optimal structure of the InP-based GaInNAs quantum-well (QW) active region and to investigate a possibility of reaching room-temperature (RT) continuous-wave (CW) single-fundamental-mode 2.33-μm operation of vertical-cavity surface-emitting laser (VCSEL) with such an active region. From among various considered InP-based active regions, the one with the Ga0.15In0.85N0.015As0.985/Al0.138Ga0.332In0.530As QW, i.e. with barriers lattice matched to InP, seems to be optimal for the 2.33-μm VCSEL performance. Its QW material is chosen for the required long-wavelength emission whereas its barrier is expected to ensure promising laser performance at room and higher temperatures. The latter is mostly connected with the QW conduction band offset equal in the above active region to as much as 413 meV, which is much larger than those of its possible lattice matched to InP competitors, e.g. 276 meV for the Ga0.47In0.53As barrier and 346 meV for the Ga0.327In0.673As0.71P0.29 one. Our simulation reveals that from among various considered structures, a VCSEL with a 4-μm-diameter tunnel junction and two 6-nm Ga0.15In0.85N0.015As0.985/Al0.138Ga0.332In0.530As QWs exhibits the lowest calculated threshold current of 0.88 mA. Its promising RT CW performance suggests that it may represent a very interesting alternative to GaSb-based VCSELs.

  4. Effects of impurity and composition profiles on electrical characteristics of GaAsSb/InGaAs hetero-junction vertical tunnel field effect transistors (United States)

    Gotow, Takahiro; Mitsuhara, Manabu; Hoshi, Takuya; Sugiyama, Hiroki; Takenaka, Mitsuru; Takagi, Shinichi


    We fabricated and characterized GaAs0.51Sb0.49/In0.53Ga0.47As hetero-junction vertical tunnel field effect transistors (TFETs) on InP substrates in order to examine the effects of the structural characteristics of GaAsSb/InGaAs hetero-structures on the electrical properties of the TFETs. The operation of the fabricated GaAs0.51Sb0.49/In0.53Ga0.47As TFET was confirmed with the ION/IOFF ratio of ˜102 over VG swing of 1.25 V at 297 K. This ION/IOFF ratio was improved up to ˜104 at 20 K, thanks to the suppression of the leakage current in the source junction. The secondary ion mass spectrometry analyses for the present hetero-structures have revealed that the concentration of the p-type dopant (Be) atoms, doped in the GaAsSb source regions, decreases in the InGaAs channel regions at an inverse slope of ˜11 nm/dec. Also, the scanning transmission electron microscope-energy dispersive X-ray spectroscopy has shown that group III and V compositions change abruptly in a region within 10 nm from the interface between the Be-doped GaAsSb source and the undoped InGaAs channel. We performed the 2-dimensional device simulation based on the device structure and the experimentally obtained composition and impurity profiles, and we found that the composition profile had little effect on the S.S. values. The device simulation also revealed that both the optimization of the concentration and the profile of the p-type doping of GaAsSb, and thinning of the effective oxide thickness (EOT) of the gate stacks could effectively improve the inherent S.S. values of the present GaAs0.51Sb0.49/In0.53Ga0.47As hetero-junction vertical TFETs. When 1.0 nm EOT and NA = 1 × 1020 cm-3 are used under the present impurity abruptness, S.S. < 40 mV/dec. can be achieved for the vertical GaAsSb/InGaAs TFETs, which is promising for an ultralow power switching device.

  5. Influence of band offset, nanostructuring, and applied electric field on the optoelectronic properties of vertically stacked MoS2/WS2 materials (United States)

    Mlinar, Vladan


    We theoretically investigate the electronic and optical properties of multilayer vertically stacked MoS2/WS2 heterostructures, focusing on the role of the MoS2-WS2 band offset, number of monolayers in the heterostructure, effects of an applied electric field, and size reduction in lateral direction, leading to MoS2/WS2 -based nanowires and nanoplatelets. Given that different values of the MoS2-WS2 band offset have been reported, we show that the band offset determines the ordering of the energy levels in the valence band and spin projections at the K point of the Brillouin zone. These variations as function of the value of the band offset are suppressed in an external electric field. For multilayer MoS2/WS2 -based nanostructures, our calculations reveal nanowires and nanoplatelets with S-atom edges exhibit a metallic character, but nanowires with one S-atom and other Mo/W edge show the band gap with electrons located in MoS2 and holes in WS2 layer. The band gap can be controlled by the size of the nanowire in lateral direction and number of layers. The calculated real part of optical conductivity show that the lowest optical transitions originate from the optical transitions in MoS2 layers. The electronic structure is obtained from a parametrized tight-binding model that includes nonorthogonal sp 3d5 orbitals and spin orbit coupling. Our results are gauged with respect to those extracted from density functional theory and G W methods to ensure the high quality of our predictions.

  6. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well. (United States)

    Chang, Shih-Hsien; Wu, Chih-Hung; Wang, Ruei-Cyun; Lin, Chi-Wen


    A low-cost mini tubular microbial fuel cell (MFC) was developed for treating groundwater that contained benzene in monitoring wells. Experimental results indicate that increasing the length and density, and reducing the size of the char particles in the anode effectively reduced the internal resistance. Additionally, a thinner polyvinyl alcohol (PVA) hydrogel separator and PVA with a higher molecular weight improved electricity generation. The optimal parameters for the MFC were an anode density of 1.22 g cm -3 , a coke of 150 μm, an anode length of 6 cm, a PVA of 105,600 g mol -1 , and a separator thickness of 1 cm. Results of continuous-flow experiments reveal that the increasing the sets of MFCs and connecting them in parallel markedly improved the degradation of benzene. More than 95% of benzene was removed and electricity of 38 mW m -2 was generated. The MFC ran continuously up to 120 days without maintenance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Structural and electrical characterization of NbO2 vertical devices grown on TiN coated SiO2/Si substrate (United States)

    Joshi, Toyanath; Borisov, Pavel; Lederman, David

    Due to its relatively high MIT temperature (1081 K) and current-controlled negative differential resistance, NbO2 is a robust candidate for memory devices and electrical switching applications. In this work, we present in-depth analysis of NbO2 thin film vertical devices grown on TiN coated SiO2/Si substrates using pulsed laser deposition (PLD). Two of the films grown in 1 mTorr and 10 mTorr O2/Ar (~7% O2) mixed growth pressures were studied. The formation of NbO2 phase was confirmed by Grazing Incidence X-ray Diffractometry (GIXRD), X-ray Photoelectron Spectroscopy (XPS) and current vs. voltage measurements. A probe station tip (tip size ~2 μm) or conductive AFM tip was used as a top and TiN bottom layer was used as a bottom contact. Device conductivity showed film thickness and contact size dependence. Current pulse measurements, performed in response to applied triangular voltage pulses, showed a non-linear threshold switching behavior for voltage pulse durations of ~100 ns and above. Self-sustained current oscillations were analyzed in terms of defect density presented in the film. Supported by FAME (sponsored by MARCO and DARPA, Contract 2013-MA-2382), WV Higher Education Policy Commission Grant (HEPC.dsr.12.29), and WVU SRF. We also thank S. Kramer from Micron for providing the TiN-coated Si substrates.

  8. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M., E-mail:; Vinnichenko, M. Ya., E-mail:; Makhov, I. S.; Firsov, D. A.; Vorobjev, L. E. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation)


    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  9. The use of Time Domain Electromagnetic method and Continuous Vertical Electrical Sounding to map groundwater salinity in the Barotse sub-basin, Zambia (United States)

    Chongo, M.; Wibroe, J.; Staal-Thomsen, K.; Moses, M.; Nyambe, I. A.; Larsen, F.; Bauer-Gottwein, P.

    This paper describes the results from the application of two geophysical exploration techniques, Time Domain Electromagnetic (TDEM) and Continuous Vertical Electrical Sounding (CVES) that have proved effective in mapping groundwater salinity variations within the sedimentary formations of the Barotse sub basin in the Western Province of Zambia. TDEM was used to map groundwater salinity variations on a regional scale, whereas CVES was used at the local scale to investigate freshwater-saltwater distribution in an ephemeral river valley. On a regional scale, salt water occurrence was shown to be present mainly on the south-eastern portions of the basin, which are situated in a rift that forms a tripe junction with the East African Rift Valley. The general geophysical model indicates an aquifer with saline water with a thickness of about 40 m with resistivity variations less than 35 Ωm (more than 500 mg/l of Cl - based on a formation factor of 5), overlain by an unconfined freshwater aquifer of about 10 m thickness with resistivities in excess of 70 Ωm (i.e. less than 250 mg/l of Cl - based on a formation factor of 5). The origin of the saline water is hypothesized to be related to the evapo-concentration of salts in interdune deposits, which were subsequently buried due to dune migration about 32 to 4 thousands of years ago or kilo annums (ka). The occurrence of saline groundwater could also possibly be linked to evaporation of a former Lake Paleo Makgadikgadi, an extensive endorheic lake system that once covered large parts of Southern Africa. Locally, a thin freshwater aquifer was observed in an ephemeral river valley, indicating recent recharge of river water into a pre-existing saline environment.

  10. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama. (United States)

    Karacan, C Özgen


    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  11. Photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, S.Y. [Grupo de Educacion en Ciencias Experimentales y Matematicas-GECEM, Facultad de Educacion, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)


    The photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  12. Delineation of aquifers in basaltic hard rock terrain using vertical ...

    Indian Academy of Sciences (India)

    the traps by using vertical electrical sounding surveys in order to meet the increasing demand of water ... (VES) for the purpose of augmenting water sup- ...... 3.7 Water quality. In this region, similar to any other rural area of the country, groundwater from dug wells is directly used for drinking. Therefore, analysis of ground-.

  13. A well-conditioned integral-equation formulation for efficient transient analysis of electrically small microelectronic devices

    KAUST Repository

    Bagci, Hakan


    A hierarchically regularized coupled set of time-domain surface and volume electric field integral-equations (TD-S-EFIE and TD-V-EFIE) for analyzing electromagnetic wave interactions with electrically small and geometrically intricate composite structures comprising perfect electrically conducting surfaces and finite dielectric volumes is presented. A classically formulated coupled set of TD-S- and V-EFIEs is shown to be ill-conditioned at low frequencies owing to the hypersingular nature of the TD-S-EFIE. To eliminate low-frequency breakdown in marching-on-in-time solvers for these coupled equations, a hierarchical regularizer leveraging generalized RaoWiltonGlisson functions is applied to the TD-S-EFIE; no regularization is applied to the TD-V-EFIE as it is protected from low-frequency breakdown by an identity term. The resulting hierarchically regularized hybrid TD-S- and V-EFIE solver is applicable to the analysis of wave interactions with electrically small and densely meshed structures of arbitrary topology. The accuracy, efficiency, and applicability of the proposed solver are demonstrated by analyzing crosstalk in a six-port transmission line, radiation from a miniature radio-frequency identification antenna, and, plane-wave coupling onto a partially-shielded and fully loaded two-layer computer board. © 2006 IEEE.

  14. Investigation of GaInNAs/GaAs quantum wells and vertical-cavity surface-emitting laser structures using modulated reflectance spectroscopy

    CERN Document Server

    Choulis, S A


    study on a representative InGaAs/GaAs/AlAs/AIGaAs as-grown VCSEL structure, using PR spectroscopy as a function of position on a non-uniform wafer. We also show how temperature dependent PR and the appropriate lineshape model can be used to obtain a full picture of the relative movements between the gain and the CM over the full range of temperature. This information allows calculating the material gain in the temperature range of interest, independent from the effect of the CM and also provides an alternative method for characterising the growth, which can be applied to uniform wafers. PR and non-destructive ER can be used to identify regions suitable for fabrication into devices. For this reason modulation spectroscopy can be very useful for industry to reject wafers where good alignment between the CM and the QW does not occur and can thus save on the time consuming and expensive fabrication procedures. We investigate the electronic band structure of device relevant GaInNAs/GaAs multiple quantum wells (MQW...

  15. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells (United States)

    Vail, III, William B.


    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  16. Impact of the vertical dynamics on the thermosphere at low and middle latitudes: GITM simulations (United States)

    Zhu, Qingyu; Deng, Yue; Maute, Astrid; Sheng, Cheng; Lin, Cissi Y.


    In this study, the influences of the electric fields at low and middle latitudes on the ionosphere and thermosphere are investigated by using the nonhydrostatic Global Ionosphere and Thermosphere Model (GITM). The equatorial ionization anomaly and the equatorial thermosphere anomaly (ETA) are well reproduced in the simulation when the electric fields are included. The term analysis of the continuity equation of the neutral mass density shows that the daytime upward vertical wind near the geomagnetic equator tends to increase the local neutral mass density at 400 km altitude, while the divergence in the meridional wind associated with the meridional ion-drag force tends to transport the neutral mass density away from the geomagnetic equator which might contribute to the formation of the ETA trough. The vertical dynamics is modulated by the vertical forces including ion-drag force and pressure gradient force acting on the neutrals, and the changing vertical dynamics can also feedback to vertical ion-drag and pressure gradient forces, particularly near the geomagnetic equator. The daytime vertical ion-drag force near the geomagnetic equator is generally upward, while the daytime vertical pressure gradient force near the geomagnetic equator is reduced at most times after adding in the electric fields at low and middle latitudes. Meanwhile, the sudden introduction of the electric fields at low and middle latitudes induces an acoustic wave.

  17. Fractal theory modeling for interpreting nuclear and electrical well logging data and establishing lithological cross section in basaltic environment (case study from Southern Syria). (United States)

    Asfahani, Jamal


    Fractal theory modeling technique is newly proposed in this research for interpreting the combination of nuclear well logging, including natural gamma ray, density and neutron-porosity, and the electrical well logging of long and short normal, for establishing the lithological cross section in basaltic environments. The logging data of Kodana well, localized in Southern Syria are used for testing and applying the proposed technique. The established cross section clearly shows the distribution and the identification of four kinds of basalt which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The concentration- Number (C-N) fractal modeling technique is successfully applied on the Kodana well logging data in southern Syria, and can be used efficiently when several wells with much well logging data with a high number of variables are required to be interpreted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Electrical model of an NMOS body biased structure in triple-well technology under photoelectric laser stimulation


    Borrel, N; Champeix, C; Lisart, M; Sarafianos, A.; Kussener, E; Rahajandraibe, W; DUTERTRE, Jean-Max


    International audience; — This study is driven by the need to optimize failure analysis methodologies based on laser/silicon interactions with an integrated circuit using a triple-well process. It is therefore mandatory to understand the behavior of elementary devices to laser illumination, in order to model and predict the behavior of more complex circuits. This paper presents measurements of the photoelectric currents induced by a pulsed-laser on an NMOS transistor in triple-well Psubstrate...

  19. Effect of transverse electric field and temperature on light absorption in GaAs/AlGaAs tunnel-coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Firsov, D. A.; Vorobjev, L. E.; Vinnichenko, M. Ya., E-mail:; Balagula, R. M. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation); Kulagina, M. M.; Vasil’iev, A. P. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)


    The photoluminescence and intersubband absorption spectra are studied in GaAs/AlGaAs tunnel- coupled quantum well structures. The peak positions in the photoluminescence and absorption spectra are consistent with the theoretically calculated energies of optical carrier transitions. The effect of a transverse electric field and temperature on intersubband light absorption is studied. It is caused by electron redistribution between the size-quantization levels and a variation in the energy spectrum of quantum wells. The variation in the refractive index in the energy region of observed intersubband transitions is estimated using Kramers–Kronig relations.

  20. Application of vertical electrical sounding combined with induced polarization method in ground water exploration; IP koka wo koryoshita hiteikoho suichoku tansa no chikasui chosa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M.; Sakurada, H. [Sumiko Consultants Co. Ltd., Tokyo (Japan); Suzuki, T. [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)


    For ground water exploration using vertical Schlumberger exploration method, measurement and analysis combined with induced polarization (IP) effect were conducted as trial. For the Schlumberger method, potential is measured at the center between potential electrodes during flow of dc current between current electrodes. In the case of vertical exploration, measurements are repeated with fixed potential electrodes by extending the distance between current electrodes. Ground water exploration was conducted using this method at Otaki village, Hokkaido. Geology of surveyed plateau consists of a basement of Pliocene tuffs and Quaternary Pleistocene sediments covering on the surface. For the results of analysis, four to seven beds were detected from the resistivity. The depth up to the lowest bed was between 25 and 85 m, the resistivity of each bed was between 9 and 8,000 ohm{times}m, and the polarizability was between 1 and 15 mV/V. Among these resistivity zones, it was judged that zones satisfying following three conditions correspond to coarse grain sediments saturated with ground water, and can be expected as aquifers; having resistivity ranging between 100 and 1,000 ohm{times}m, polarizability higher than 10 mV/V, and relatively large thickness. 11 refs., 6 figs.

  1. Technical feasibility study for the development of a large capacity wind powered electrical generating system. [by using vertical airfoil motion along track system (United States)

    Powe, R. E.


    The engineering feasibility of developing a basic mechanical system necessary for extracting large amounts of power (on the order of 10 to 20 MW) from the wind is considered using the concept of vertical airfoils moving along a closed horizontal track system. Attention is focused on those components necessary for the conversion of wind energy to mechanical energy, although the general characteristics and critical aspects of other components are also considered. The four phases of this program are: (1) Establishment of component specifications and interface requirements for major system components; (2) formulation of alternative sets of conceptual designs for major system components; (3) engineering analysis of various components and systems; and (4) re-examination of basic concept and identification of any desirable follow-up work.

  2. Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers (United States)

    Engelhardt, Andreas P.; Kolb, Johanna S.; Roemer, Friedhard; Weichmann, Ulrich; Moench, Holger; Witzigmann, Bernd


    The electro-optical efficiency of vertical-cavity surface-emitting lasers (VCSELs) strongly depends on the efficient carrier injection into the quantum wells (QWs) in the laser active region. Carrier injection degrades with increasing temperature, which limits VCSEL performance in high-power applications where self-heating imposes high-operating temperatures. In a numerical model, we investigate the transport of charge carriers in an 808-nm AlGaAs multi-quantum-well structure with special attention to the temperature dependence of carrier injection into the QWs. Experimental reference data were extracted from oxide-confined, top-emitting VCSELs. The transport simulations follow a drift-diffusion-model complemented by an energy-resolved carrier-capture model. The QW gain was calculated in the screened Hartree-Fock approximation. With the combination of the gain and transport model, we explain experimental reference data for the injection efficiency and threshold current. The degradation of the injection efficiency with increasing temperature is not only due to increased thermionic escape of carriers from the QWs, but also to state filling in the QWs initiated from higher threshold carrier densities. With a full opto-electro-thermal VCSEL model, we demonstrate how changes in VCSEL properties affecting the threshold carrier density, like mirror design or optical confinement, have consequences on the thermal behavior of the injection and the VCSEL performance.

  3. Effects of the vertically switching electric field on the photoelectric properties of polymer-stabilized blue-phase liquid crystal cells using the director model. (United States)

    Chi, Cheng-Yu; Qiu, Shi-Hao; Lin, Guan-Jhong; Chen, Tien-Jung; Yang, Yin-Jay; Wu, Jin-Jei


    This study uses the director model to analyze the optoelectronic properties of polymer-stabilized blue-phase liquid crystal (PS-BPLC). The director model revealed a linear relationship of refractive index change and the cosine squared of the angle between the LCs and the direction of the electric field. Moreover, we employed simulations based on the Kerr effect and compared the results with those of the director model. The simulation results also show high consistency with real circumstances. Consequently, it can be of great help to design BPLC displays that can be applied to adopting better strategies for developing next-generation LCD devices.

  4. Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. (United States)

    Bikson, Marom; Paneri, Bhaskar; Mourdoukoutas, Andoni; Esmaeilpour, Zeinab; Badran, Bashar W; Azzam, Robin; Adair, Devin; Datta, Abhishek; Fang, Xiao Hui; Wingeier, Brett; Chao, Daniel; Alonso-Alonso, Miguel; Lee, Kiwon; Knotkova, Helena; Woods, Adam J; Hagedorn, David; Jeffery, Doug; Giordano, James; Tyler, William J

    We present device standards for low-power non-invasive electrical brain stimulation devices classified as limited output transcranial electrical stimulation (tES). Emerging applications of limited output tES to modulate brain function span techniques to stimulate brain or nerve structures, including transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial pulsed current stimulation (tPCS), have engendered discussion on how access to technology should be regulated. In regards to legal regulations and manufacturing standards for comparable technologies, a comprehensive framework already exists, including quality systems (QS), risk management, and (inter)national electrotechnical standards (IEC). In Part 1, relevant statutes are described for medical and wellness application. While agencies overseeing medical devices have broad jurisdiction, enforcement typically focuses on those devices with medical claims or posing significant risk. Consumer protections regarding responsible marketing and manufacture apply regardless. In Part 2 of this paper, we classify the electrical output performance of devices cleared by the United States Food and Drug Administration (FDA) including over-the-counter (OTC) and prescription electrostimulation devices, devices available for therapeutic or cosmetic purposes, and devices indicated for stimulation of the body or head. Examples include iontophoresis devices, powered muscle stimulators (PMS), cranial electrotherapy stimulation (CES), and transcutaneous electrical nerve stimulation (TENS) devices. Spanning over 13 FDA product codes, more than 1200 electrical stimulators have been cleared for marketing since 1977. The output characteristics of conventional tDCS, tACS, and tPCS techniques are well below those of most FDA cleared devices, including devices that are available OTC and those intended for stimulation on the head. This engineering analysis demonstrates that with

  5. Thermodynamic Based Framework for Determining Sustainable Electric Infrastructures as well as Modeling of Decoherence in Quantum Composite Systems (United States)

    Cano-Andrade, Sergio

    In this dissertation, applications of thermodynamics at the macroscopic and quantum levels of description are developed. Within the macroscopic level, an upper-level Sustainability Assessment Framework (SAF) is proposed for evaluating the sustainable and resilient synthesis/design and operation of sets of small renewable and non-renewable energy production technologies coupled to power production transmission and distribution networks via microgrids. The upper-level SAF is developed in accord with the four pillars of sustainability, i.e., economic, environmental, technical and social. A superstructure of energy producers with a fixed transmission network initially available is synthesized based on the day with the highest energy demand of the year, resulting in an optimum synthesis, design, and off-design network configuration. The optimization is developed in a quasi-stationary manner with an hourly basis, including partial-load behavior for the producers. Since sustainability indices are typically not expressed in the same units, multicriteria decision making methods are employed to obtain a composite sustainability index. Within the quantum level of description, steepest-entropy-ascent quantum thermodynamics (SEA-QT) is used to model the phenomenon of decoherence. The two smallest microscopic composite systems encountered in Nature are studied. The first of these is composed of two two-level-type particles, while the second one is composed of a two-level-type particle and an electromagnetic field. Starting from a non-equilibrium state of the composite and for each of the two different composite systems, the time evolution of the state of the composite as well as that of the reduced and locally-perceived states of the constituents are traced along their relaxation towards stable equilibrium at constant system energy. The modeling shows how the initial entanglement and coherence between constituents are reduced during the relaxation towards a state of stable

  6. Effects of an intensive hog farming operation on groundwater in east Mediterranean (I): a study on electrical conductivity, as well as nitrogen and sulfur nutrients. (United States)

    Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Liodakis, Stylianos


    The discharge of treated animal wastewater produced in concentrated animal feeding operations (CAFOs) on surface soil (within CAFOs borders) leads to groundwater degradation. In this research, groundwater degradation effects of an intensive hog farming operation, located in a Mediterranean area, were investigated. Treated animal wastewater was discharged on a small plot (~10.8 ha) with a geologic fault. Groundwater samples were taken from seven groundwater monitoring wells close to the farm. These wells were affected by the subsurface flow of waters, due to the presence of the geologic fault. In the summer, a significant increase of electrical conductivity values was noted in and attributed to falling water table levels. During the winter, significant increases in concentrations of ammonium nitrogen, nitrate nitrogen, and sulfate were noted and attributed to high precipitation, which assisted in the leaching of nitrogen and sulfur to groundwater.

  7. Residual electric fields of InGaAs/AlAs/AlAsSb (001) coupled double quantum wells structures assessed by photoreflectance anisotropy (United States)

    González-Fernández, J. V.; Herrera-Jasso, R.; Ulloa-Castillo, N. A.; Ortega-Gallegos, J.; Castro-García, R.; Lastras-Martínez, L. F.; Lastras-Martínez, A.; Balderas-Navarro, R. E.; Mozume, T.; Gozu, S.


    We report on photoreflectance anisotropy (PRA) spectroscopy of InGaAs/AlAs/AlAsSb coupled double quantum wells (CDQWs) with extremely thin coupling AlAs barriers grown by molecular beam epitaxy (MBE), with no intentional doping. By probing the in-plane interfacial optical anisotropies (OAs), it is shown that PRA spectroscopy has the ability to detect and distinguish semiconductor layers with quantum dimensions, as the anisotropic photoreflectance (PR) signal stems entirely from buried quantum wells (QWs). In order to account for the experimental PRA spectra, a theoretical model at k = 0, based on a linear electro-optic effect through a piezoelectric shear strain, has been employed to quantify the internal electric fields across the QWs. The dimensionalities of the PR lineshapes were tested by using reciprocal (Fourier) space analysis. Such a complementary test is used in order to correctly employ the PRA model developed here.

  8. Reaching saturation in patterned source vertical organic field effect transistors (United States)

    Greenman, Michael; Sheleg, Gil; Keum, Chang-min; Zucker, Jonathan; Lussem, Bjorn; Tessler, Nir


    Like most of the vertical transistors, the Patterned Source Vertical Organic Field Effect Transistor (PS-VOFET) does not exhibit saturation in the output characteristics. The importance of achieving a good saturation is demonstrated in a vertical organic light emitting transistor; however, this is critical for any application requiring the transistor to act as a current source. Thereafter, a 2D simulation tool was used to explain the physical mechanisms that prevent saturation as well as to suggest ways to overcome them. We found that by isolating the source facet from the drain-source electric field, the PS-VOFET architecture exhibits saturation. The process used for fabricating such saturation-enhancing structure is then described. The new device demonstrated close to an ideal saturation with only 1% change in the drain-source current over a 10 V change in the drain-source voltage.

  9. Environmental Sciences Electrical resistivity soundings to determine ...

    African Journals Online (AJOL)

    Four Wenner apparent pseudosections and a vertical electrical sounding were made at the Orita Aperin refuse dump site, Ibadan, South West Nigeria, to map the gross layered structure of the refuse as well as the extent of groundwater contamination. Wood, leaves, newspaper, cloth, polythene bags, plastics, glass and ...

  10. Effects of Warm-Up on Vertical Jump Performance and Muscle Electrical Activity Using Half-Squats at Low and Moderate Intensity (United States)

    Sotiropoulos, Konstantinos; Smilios, Ilias; Christou, Marios; Barzouka, Karolina; Spaias, Angelos; Douda, Helen; Tokmakidis, Savvas p.


    The purpose of this study was to determine the effects of a specific warm-up using half-squats at low and moderate intensity on vertical jump performance and electromyographic activity of the thigh muscles. The subjects were 26 men who were divided into a low intensity group (LIG; n = 13) and a moderate intensity group (MIG; n = 13). The LIG performed a specific warm-up protocol that included the explosive execution of half-squats with loads 25 and 35% of the one repetition maximum (1RM) and the MIG with loads 45 and 65% of the 1RM. The two groups performed a countermovement jump (CMJ) before and three minutes after the specific warm-up protocols. During the concentric phase of the CMJ a linear encoder connected to an A/D converter interfaced to a PC with a software for data acquisition and analysis allowed the calculation of average mechanical power. The electromyographic (EMG) activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) were recorded during the concentric phase of the jumps. The average quadriceps (Qc) activity (mean value of the VL, VM and RF) was also calculated. A two way ANOVA (protocols X time) with repeated measures on the second factor was used to analyze the data. Following the specific warm-up procedure both groups improved (p ≤ 0.05) CMJ performance and mechanical power by 3.5% and 6.3%, respectively, with no differences observed between the two groups. EMG activity of the Qc and VL increased (p ≤ 0.05) for both groups by 5.9% and 8.5%, respectively. It is concluded that the use of a specific warm-up that includes half-squats, performed explosively with low to moderate intensity, improves CMJ performance. This may be due to increased muscle activation as evaluated by the surface EMG. Key points The inclusion of two sets of explosively performed half squats with low to moderate loads in the warm up procedure elicited an acute performance en-hancement. The performance was enhanced regardless of the load used in

  11. Analysis of altimeter data jointly with seafloor electric data (vertically integrated velocity) and VCTD-yoyo data (detailed profiles of VCTD) (United States)

    Tarits, Pascal D.; Menvielle, M.; Provost, C.; Filloux, J. H.


    We propose simultaneous analyses of the TOPEX/POSEIDON altimetry data, in situ data--mainly permanent seafloor electric recordings--and velocity, conductivity, temperature, density (VCTD)-yoyo data at several stations in areas of scientific interest. We are planning experiments in various areas of low and high energy levels. Several complementary and redundant methods will be used to characterize the ocean circulation and its short- and long-term variability. We shall emphasize long-term measurement using permanent stations. Our major initial objectives with the TOPEX/POSEIDON mission are the Confluence area in the Argentine Basin and the Circumpolar Antarctic Current. An early experiment was carried out in the Confluence zone in 1988 and 1990 (Confluence Principal Investigators, 1990) to prepare for an intensive phase later one. This intensive phase will include new types of instrumentation. Preliminary experiments will be carried out in the Mediterranean Sea (in 1991) and in the North Atlantic Ocean (in 1992, north of the Canary Islands) to test the new instrumentation.

  12. Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers (United States)

    Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz


    Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.

  13. Optimation Pressure Loss to Oil Production System with Electrical Submersible Pump (ESP) at the Well A SW Field Bojonegoro, East Java (United States)

    Ilmah, A. M.; Hendrajaya, L.


    Study about oil and gas well A and SW fields have been conducted in Bojonegoro area, East Java Province. From the research, it is known that one of the constrain in oil and gas production process is a pressure drop, so that is necessary to set Electrical Submersible Pump (ESP) as an artificial lift pump at low pressure wells. It is needed to analyze the production well pressure as an effort to optimize the fluid production. It is in describe to relations between IPR (Inflow Performance Relationship ) curve with TPR (Tubing Performance Relationship), are getting down point cut TPR curve with IPR curve, fluid rate its optimal, so need tubing’s diameter variation and the number of stage pump ESP variation to can the most optimal fluid rate. Produced that to tubing variation are 2,441 ID is 876,729 bpd, 2,991 is 961,197 bpd, 3,476 id is 996, 26 Bpd, while on the number of stage pump esp variation The most high is stage 400 with fluid rate 961,197 by comparison stage 338 it has value fluid rate 921,165 bpd, stage 200 it has fluid rate 827,889 bpd, and stage 169 has fluid rate 774,646 bpd. Of some variation tubing and stage pumps that has the most influence to fluid rate optimalize is the change number of stage pump.

  14. Comparative analysis of electric field influence on the quantum wells with different boundary conditions.: I. Energy spectrum, quantum information entropy and polarization. (United States)

    Olendski, Oleg


    Analytical solutions of the Schrödinger equation for the one-dimensional quantum well with all possible permutations of the Dirichlet and Neumann boundary conditions (BCs) in perpendicular to the interfaces uniform electric field [Formula: see text] are used for the comparative investigation of their interaction and its influence on the properties of the system. Limiting cases of the weak and strong voltages allow an easy mathematical treatment and its clear physical explanation; in particular, for the small [Formula: see text], the perturbation theory derives for all geometries a linear dependence of the polarization on the field with the BC-dependent proportionality coefficient being positive (negative) for the ground (excited) states. Simple two-level approximation elementary explains the negative polarizations as a result of the field-induced destructive interference of the unperturbed modes and shows that in this case the admixture of only the neighboring states plays a dominant role. Different magnitudes of the polarization for different BCs in this regime are explained physically and confirmed numerically. Hellmann-Feynman theorem reveals a fundamental relation between the polarization and the speed of the energy change with the field. It is proved that zero-voltage position entropies [Formula: see text] are BC independent and for all states but the ground Neumann level (which has [Formula: see text]) are equal to [Formula: see text] while the momentum entropies [Formula: see text] depend on the edge requirements and the level. Varying electric field changes position and momentum entropies in the opposite directions such that the entropic uncertainty relation is satisfied. Other physical quantities such as the BC-dependent zero-energy and zero-polarization fields are also studied both numerically and analytically. Applications to different branches of physics, such as ocean fluid dynamics and atmospheric and metallic waveguide electrodynamics, are discussed.

  15. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods

    Energy Technology Data Exchange (ETDEWEB)

    Barate, P.; Zhang, T. T.; Vidal, M.; Renucci, P.; Marie, X.; Amand, T. [Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 avenue de Rangueil, 31077 Toulouse (France); Liang, S.; Devaux, X.; Hehn, M.; Mangin, S.; Lu, Y., E-mail: [Institut Jean Lamour, UMR 7198, CNRS-Nancy Université, BP 239, 54506 Vandoeuvre (France); Frougier, J.; Jaffrès, H.; George, J. M. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 1 avenue A. Fresnel, 91767 Palaiseau (France); Xu, B.; Wang, Z. [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 (China); Zheng, Y. [Institut des NanoSciences de Paris, UPMC, CNRS UMR 7588, 4 place Jussieu, 75005 Paris (France); Tao, B. [Institut Jean Lamour, UMR 7198, CNRS-Nancy Université, BP 239, 54506 Vandoeuvre (France); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Han, X. F. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China)


    An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam epitaxy. The maximal spin injection efficiency is comparable for both methods. Additionally, the effect of annealing is also investigated for the two types of samples. Both samples show the same trend: an increase of the electroluminescence circular polarization (P{sub c}) with the increase of annealing temperature, followed by a saturation of P{sub c} beyond 350 °C annealing. Since the increase of P{sub c} starts well below the crystallization temperature of the full CoFeB bulk layer, this trend could be mainly due to an improvement of chemical structure at the top CoFeB/MgO interface. This study reveals that the control of CoFeB/MgO interface is essential for an optimal spin injection into semiconductor.

  16. Valuation of the quantity of electric output from photovoltaic generation system in case of PV module applied to installing to vertical direction; Taiyo denchi wo suichoku ni haichishita baai no hatsudenryo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, K. [Kansai Electric Power Co. Inc., Osaka (Japan)


    In general, it is most efficient and economical to install photovoltaic (PV) modules with proper slope. There are room spaces on the wall except ground or roof. The PV modules were installed on the vertical wall, to consider the compensative method for this weak point. When modules were installed vertically, there is an advantage that reflecting solar light as well as incident solar light can be utilized compared with the installation with slope. The PV modules were installed on the roof of building with inclination of 90{degree} facing to south using the roof material as a reflecting material (S90), and with inclination of 15{degree} facing to south (S15), to compare their output. The output ratio, S90/S15 was 0.42. When it was very fine, this value increased to 0.60. When using plated steel plate as the reflecting material, this value increased to 0.74, which provided 10 to 30% larger output than the roof material. From these results, about 50% of module output of S15 can be expected for S90. If receiving larger reflection, there would only a slight difference in the module output between S15 and S90. 3 figs., 1 tab.

  17. Aspects of Geophysical Exploration for Groundwater Using Vertical ...

    African Journals Online (AJOL)

    A geophysical survey using vertical electrical sounding (VES) was undertaken within the University of Benin (Ugbowo Campus) in an attempt to ascertain aspects of the hydrogeological parameters for groundwater exploitation. Six (6) vertical electrical soundings with electrode spacing of 215m AB/2 were occupied along ...

  18. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine


    lateral current spreading to support large aperture diameters. The output power is thus very limited in these devices. The top-emitting design is, however, estimated to be able to mode-lock in an external cavity with a saturable absorber with a very low, but realisable, saturation fluence. The prospects...

  19. Acquired vertical accommodative vergence. (United States)

    Klein-Scharff, Ulrike; Kommerell, Guntram; Lagrèze, Wolf A


    Vertical accommodative vergence is an unusual synkinesis in which vertical vergence is modulated together with accommodation. It results from a supranuclear miswiring of the network normally conveying accommodative convergence. So far, it is unknown whether this condition is congenital or acquired. We identified an otherwise healthy girl who gradually developed vertical accommodative vergence between five to 13 years of age. Change of accommodation by 3 diopters induced a vertical vergence of 10 degrees. This observation proves that the miswiring responsible for vertical accommodative vergence must not necessarily be congenital, but can be acquired. The cause and the mechanism leading to vertical accommodative vergence are yet unknown.

  20. Dominant transverse-electric polarized emission from 298 nm MBE-grown AlN-delta-GaN quantum well ultraviolet light-emitting diodes (United States)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing


    III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.

  1. Restructuring the Electricity Industry

    DEFF Research Database (Denmark)

    Boom, Anette; Buehler, Stefan

    We study the role of vertical structure in determining generating capacities and retail prices in the electricity industry. Allowing for uncertain demand, we compare three market configurations: (i) integrated monopoly, (ii) integrated duopoly with wholesale trade, and (iii) separated duopoly...

  2. Restructuring the Electricity Industry

    DEFF Research Database (Denmark)

    Boom, Anette; Buehler, Stefan

    We study the role of vertical structure in determining generating capacities, retail prices, and welfare in the electricity industry. Welfare is maximized if market liberalization is combined with vertical separation. The driving force behind this result is the risk of rent extraction faced...

  3. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...... laterally coupled cavities is proposed and investigated, which exhibits the breaking of parity-time (PT) symmetry in vertical cavity structures. Compared to other types of platform for studying this phenomenon such as ring/disk resonators and photonic crystal cavities, the HCG/HG-based vertical cavities...... appear to be more feasible for realizing an electrically pumped device, which may pave the way for finding device applications for PT-symmetry breaking phenomenon....

  4. First results of fair-weather atmospheric electricity measurements in ...

    Indian Academy of Sciences (India)

    A comparative study with Carnegie universal variation shows 70% correlation with observed variation of vertical potential gradient during the period of the campaign. The results are discussed in view of difficulty as well as possibility of getting global signatures in atmospheric electricity measurements made from tropical ...

  5. Electrical contracting

    CERN Document Server

    Neidle, Michael


    Electrical Contracting, Second Edition is a nine-chapter text guide for the greater efficiency in planning and completing installations for the design, installation and control of electrical contracts. This book starts with a general overview of the efficient cabling and techniques that must be employed for safe wiring design, as well as the cost estimation of the complete electrical contract. The subsequent chapters are devoted to other electrical contracting requirements, including electronic motor control, lighting, and electricity tariffs. A chapter focuses on the IEE Wiring Regulations an

  6. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander


    composition, and it is truly commonplace in today’s communication with the diversity of VPNs and secure browser sessions. In fact, it is normal that we have several layers of secure channels: For instance, on top of a VPN-connection, a browser may establish another secure channel (possibly with a different...... end point). Even using the same protocol several times in such a stack of channels is not unusual: An application may very well establish another TLS channel over an established one. We call this selfcomposition. In fact, there is nothing that tells us that all these compositions are sound, i.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  7. The Preparation of Microzonation Map of the Gulf of Buyukcekmece using results obtain by Vertical Electrical Sounding Measurements with Multi-Channel Analysis of Surface Wave and Microtremor Array Method (United States)

    Tezel, Okan; Karabulut, Savas; Imre, Nazire; Caglak, Faruk; Yeziz, Hatice; Ozcep, Ferhat


    Istanbul is a megacity with 17 million inhabitants. After the 17 August 1999 earthquake, many researchers have focused on the mitigation of earthquake hazards in the Sea of Marmara and its vicinity. If we want to lessen the effects of such an earthquake, we have to learn about three different types of problems which are properties of the earthquake's source, whether of site effect or properties of engineering structures. When İstanbul Metropolitian Municipilaty obtained a World Bank Credit 5 years ago, they had a microzonation report for only a limited area which finished at Har amidere in the western site of Istanbul. Because they will not have any new project, the western side of Haramidere hasn't been studied by any scientist. For this reason, we focused on the Gulf of Buyukcekmece which is located on the western part of Haramidere and suffered in the 1999 earthquake. There are five geological units in the study area such as Bakirkoy formation, Gurpinar formation, Çukurçeşme formation, Güngören formation and Alluvial deposit. We conducted some measurements which are multi-channel analysis of surface wave (MASW), microtremor array method (MAM) and vertical electrical sounding(VES). The aim of using VES data is to determine bedrock depth, learn whether there is a new fault and learn the electrical properties of each layer of bedrock. The MASW method is so attactive, cheap and fast. According to seismic refraction, it has some advantages that are determining the deeper part of sub-surface, lower velocity layers and velocity contrast. Especially, we use natural sources; MAM methods are more useful method in the city. For all of these purposes, we collected MASW and MAM measurements at 80 sites and VES measurements at 20 sites. As primary results for VES measurements, we determined the bedrock depth by evaluating the VES measurements for the central, eastern and western part of Buyukcekmece Gulf. Bedrock depth is 308 meters in the central and eastern part of

  8. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer. (United States)

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi


    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  9. Magnetohydrodynamic mixed convection flow in vertical concentric ...

    Indian Academy of Sciences (India)

    This work reports an analytical solution for fully developed mixed convection flow of viscous,incompressible, electrically conducting fluid in vertical concentric annuli under the influence of a transverse magnetic field, where the outer surface of inner cylinder is heated sinusoidally and the inner surface of outercylinder is kept ...

  10. Thermal vertical bimorph actuators and their applications

    CERN Document Server

    Sehr, H J


    In this thesis, a novel concept for lateral actuators based on vertical bimorphs is presented. Vertical bimorphs consist of silicon beams side-coated with aluminium, which bend when heated due to the different thermal expansion coefficients of the two materials causing a displacement in the wafer plane. The heating of the actuator is provided by an electrical current through the silicon beam. The simplest implementation of a vertical bimorph actuator is a clamped-clamped beam. To obtain higher deflections, a meander shaped actuator has been designed. By combining four meander actuators, a two-dimensional positioning stage has been realised. The meander actuator has also been applied for normally closed and normally open micro-relays. Analytical calculations and ANSYS simulations have been carried out to predict the physical behaviour of the bimorph devices, including temperature distribution, static deflection, vertical stiffness, thermal time constant and lateral resonances. For both the clamped-clamped beam...

  11. Impurity-related optical properties in rectangular-transverse section GaAs-Ga{sub 1-x}Al{sub x}As quantum well wires: Hydrostatic pressure and electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.W.; Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Rodriguez, A.H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 20-364, San Angel 01000, Mexico DF (Mexico); Porras-Montenegro, N. [Departamento de Fisica, Universidad del Valle, AA 25360, Cali (Colombia)


    Using a variational procedure within the effective mass approximation, we have calculated the influence of an applied electric field and hydrostatic pressure on the shallow-impurity-related optical properties in a rectangular-transverse section GaAs-Ga{sub 1-x}Al{sub x}As quantum well wire. The electric field is applied in the plane of the transverse section of the wire and different angular directions have been considered. The results presented are for the impurity binding energy, its corresponding density of impurity states, and impurity-related transition energy and polarizability. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Vertical nanowire probes for intracellular signaling of living cells


    Lee, Ki-Young; Kim, Ilsoo; Kim, So-Eun; Jeong, Du-Won; Kim, Ju-Jin; Rhim, Hyewhon; Ahn, Jae-Pyeong; Park, Seung-Han; Choi, Heon-Jin


    The single living cell action potential was measured in an intracellular mode by using a vertical nanoelectrode. For intracellular interfacing, Si nanowires were vertically grown in a controlled manner, and optimum conditions, such as diameter, length, and nanowire density, were determined by culturing cells on the nanowires. Vertical nanowire probes were then fabricated with a complimentary metal-oxide-semiconductor (CMOS) process including sequential deposition of the passivation and electr...

  13. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad Esq. Paseo a La Bufa S/N. C.P. 98060 Zacatecas (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516 Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Duque, C.A., E-mail: [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)


    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N{sub 2d}) of each single δ-doped quantum well are taken to vary within the range of 1.0×10{sup 12} to 7.0×10{sup 12} cm{sup −2}, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system.

  14. The integration of gas and electricity: potential effects on competition in markets; La integracion vertical de los negocios de gas y electricidad: Posibles efectos sobre la competencia en los mercados afectados

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Milla, J.


    During the last years, an increasing number of gas and electricity companies have integrated their activities in both sectors. Following this trend, several Mergers and Acquisitions between gas and electricity companies have emerged, and some of them have been cross-borders operations that have given rise to multinational enterprises. This paper analyses the causes of the integration of gas and electricity activities, and examines its implications on regulation and competition policy, showing that these changes in the energy industry raise new challenges and compel to adopt new measures in that field of the economic policy. (Author) 25 refs.

  15. Vertical atlantoaxial dislocation


    Ramaré, S.; Lazennec, J. Y.; Camelot, C.; Saillant, G.; Hansen, S.; Trabelsi, R.


    An unusual case of vertical atlantoaxial dislocation without medulla oblongata or spinal cord injury is reported. The pathogenic process suggested occipito-axial dislocation. The case was treated surgically with excellent results on mobility and pain.

  16. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan


    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  17. Electric Field Generation in Martian Dust Devils (United States)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.


    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  18. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper


    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  19. Composition of vertical gardens


    Sandeva, Vaska; Despot, Katerina


    Vertical gardens are fully functional gardens in areas where there is less oxygen and space, ideal for residential and urban cities where there is no vegetation; occupy a special place in interiors furniture. The gardens occupy an important aesthetic problem. Aesthetic task in vertical gardens can be achieved by forming sectors of identification in the urban landscape through the choice of a particular plant spatial composition and composition, to create comfort and representation in commu...

  20. Muscle activation history at different vertical jumps and its influence on vertical velocity

    NARCIS (Netherlands)

    Kopper, Bence; Csende, Zsolt; Safar, Sandor; Hortobagyi, Tibor; Tihanyi, Jozsef

    In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps

  1. Dissociated vertical deviation and eye torsion: Relation to disparity-induced vertical vergence

    NARCIS (Netherlands)

    L.J. van Rijn; H.J. Simonsz (Huib); M.P.M. ten Tusscher


    textabstractWe studied the relation between vertical eye movements and binocular torsion in five subjects with dissociated vertical deviation (DVD). During trials, subject viewed a well illuminated Snellen letter chart, with both eyes uncovered during 4 seconds. Subsequently, DVD was induced by



    Jakovac, Pavle


    The liberalization of the electricity market in the EU is aimed at creating a competitive market in order to increase economic efficiency and reduce the role of the state. For a long period of time, the electricity sector in the EU member states was organized in the form of a natural vertically integrated state-owned monopoly. It proved to be ineffective in terms of ensuring the (competitive) market price of electricity. With technological advances in electricity generation and transmission, ...

  3. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Hua Qi


    Full Text Available Nanowires (NWs/Ag sheath composites were produced to investigate plasmonic coupling between vertically aligned NWs for surface-enhanced Raman scattering (SERS applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography patterned sapphire substrate via vapor-liquid-solid (VLS mechanism and Si NW arrays produced by wet chemical etching. Both types of vertical NW arrays were coated with a thin layer of silver by electroless silver plating for SERS enhancement studies. The experimental results show extremely strong SERS signals due to plasmonic coupling between the NWs, which was verified by COMSOL electric field simulations. We also compared the SERS enhancement intensity of aligned and random ZnO NWs, indicating that the aligned NWs show much stronger and repeatable SERS signal than those grown in nonaligned geometries.

  4. Final report on Technical Demonstration and Economic Validation of Geothermally-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Luchini, Chris B. [Universal GeoPower LLC, Houston, TX (United States)


    The initial geothermal brine flow rate and temperature from the re-worked well were insufficient, after 2.5 days of flow testing, to justify advancing past Phase I of this project. The flow test was terminated less than 4 hours from the Phase I deadline for activity, and as such, additional flow tests of 2+ months may be undertaken in the future, without government support.

  5. Decoration of vertical graphene with aerosol nanoparticles for gas sensing (United States)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong


    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.

  6. Operational control and diagnostics of the equipment by the parameters of the electric drive power supply by the example of deep well pump units (United States)

    Shishlyannikov, D. I.; Vasilyeva, M. A.


    Currently, the vast majority of Russian oil wells use oil well pumping units (OPU), equipped with a mechanical drive - a balancing pumping unit. The significant lifetime of balancing pumping units used in oil fields of Russia amounts to full or close to full resource generation and to a high accident rate of the mechanical drive rod of OPU. Reduced material costs for operation and maintenance of OPU may be provided by the rejection of the system of preventive maintenance and service during the transition to the actual technical condition. The article analyzes the statistics of the most frequent crash balancing pumping units of OPU and their causes. The prospect of applying the method of instrument control parameters is proved, and the technical condition of the OPU is assessed based on the analysis of the magnitude and the nature of changes in load drive motors, determined by the recording of the instantaneous values of power consumption. The authors consider the construction and operation of the programmable controller ‘AKD-SK’ manufactured by JSC R&D company ‘ROS’ (Perm). Fundamentals of vattmetrogramm analysis of OPU drive motors are stated, and the character of displaying key defects of submersible pumps and balanced beam unit is described.

  7. Electrically conductive polymer concrete coatings (United States)

    Fontana, Jack J.; Elling, David; Reams, Walter


    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  8. FxLMS Method for Suppressing In-Wheel Switched Reluctance Motor Vertical Force Based on Vehicle Active Suspension System

    National Research Council Canada - National Science Library

    Yan-yang Wang; Yi-nong Li; Wei Sun; Chao Yang; Guang-hui Xu


    .... In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in suspension performance for in-wheel motor driven electric vehicles (IWM-EV...

  9. Electric Drive Study (United States)


    equivalent turbine moment of inertia for the vehicle about a central vertical axis (assumed equal to 33000 slug ft2 for the 19.5 ton vehicle), v... hydrokinetic transmissions. A comparison of the ’acceleration times (from zero to 20 miles per hour) for the electric and hydrokinetic transmissions is table 5.5-4. The electric transmis- sions in most cases meet or exceed the speed on grade achievable with the hydrokinetic transmissions. 5-214

  10. Diel vertical migrat..

    African Journals Online (AJOL)


    Jan 24, 2002 ... crustacean zooplankton but also in a Wide array of different marine zooplankton groups. (Russell 1927, McLaren 1963). Thus there is no doubt that ..... cooperation during field work and for their fruitful discussion on the draft manuscript. REFERENCES. Bayly lAE 1986 Aspects of diel vertical migration in ...

  11. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen


    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra...... this strategic behavior, yields better market performance than Cournot beliefs...

  12. Hunting Voronoi vertices

    NARCIS (Netherlands)

    Ferrucci, V.; Overmars, Mark; Rao, A.; Vleugels, J.


    Given three objects in the plane, a Voronoi vertex is a point that is equidistant simultaneously from each. In this paper, we consider the problem of computing Voronoi vertices for planar objects of xed but possibly unknown shape; we only require the ability to query the closest point on an object

  13. Vertical shaft windmill (United States)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)


    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  14. Vertical gastroplasty: evolution of vertical banded gastroplasty. (United States)

    Mason, E E; Doherty, C; Cullen, J J; Scott, D; Rodriguez, E M; Maher, J W


    The objective of this paper is to summarize the goals, technical requirements, advantages, and potential risks of gastroplasty for treatment of severe obesity. Gastroplasty is preferred to more complex operations, as it preserves normal digestion and absorption and avoids complications that are peculiar to exclusion operations. The medical literature and a 30-year experience at the University of Iowa Hospitals and Clinics (UIHC) provides an overview of vertical banded gastroplasty (VBG) evolution. Preliminary 10-year results with the VBG technique currently used at UIHC are included. At UIHC the VBG is preferred to other gastroplasties because it provides weight control that extends for at least 10 years and the required objective, intraoperative quality control required for a low rate of reoperation. It is recommended that modifications of the operative technique not be attempted until a surgeon has had experience with the standardized operation--and then only under a carefully designed protocol. Realistic goals for surgery and criteria of success influence the choice of operation and the optimum, lifelong risk/benefit ratio. In conclusion, VBG is a safe, long-term effective operation for severe obesity with advantages over complex operations and more restrictive simple operations.

  15. Effect of oxygen concentration on fire growth of various types of cable bending in horizontal and vertical orientations (United States)

    Pangaribuan, Adrianus; Dhiputra, I. M. K.; Nugroho, Yulianto S.


    Electrical cable is a whole of the material including metal (cooper) conductor and its insulation, when an electrical cable is flowed by electric current, based on its own capacity, the temperature of cable conductor increases gradually. If the current flows above the cable carrying capacity, then an extreme temperature rises are expected. When temperature increase, the electric current flow inside cable conductor will decrease gradually related to the resistance and could occur repeatedly in a period. Since electrical faults on electrical cable system are often suspected as the cause of fires, thus this research aims to investigate measures of preventing the fire to start by means of controlling oxygen concentration in a cable compartment. The experimental work was conducted in laboratory by using electrical power cable of 1.5 mm2 size. Two transparent chambers were applied for studying the effect of vertical and horizontal orientations on the cable temperature rise, under various oxygen concentration of the gas streams. In the present work, the electrical was maintained at a constant level during a typical test run. Parametric studies reported in the paper include the use of a bare and insulated cables as well as the bending shape of the cable lines of a straight cable, coiled cable and randomly bent cable which were loaded with the same electric load and oxygen concentration in the gas supply.

  16. Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/Ga{sub 1-x}Al{sub x}As multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L.; Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.e [Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico)


    A detailed theoretical study of the combined effects of hydrostatic pressure and in-growth direction applied electric field on the binding energy and self-polarization of a donor impurity in a system of GaAs-(Ga,Al)As coupled square quantum wells is presented. The study is performed in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electron effective mass, the dielectric constant, the barrier height, the well sizes, all them varying with the hydrostatic pressure are taken into account within the study. The results obtained show that the impurity binding energy and its self-polarization bear strong dependencies with the hydrostatic pressure, the strength of the applied electric field, the width of the confining potential barriers, and the impurity position. - Research highlights: {yields} Impurity binding energy and self-polarization have a conjugate behavior in MQWs. {yields} Binding energy (self-polarization) is an increasing (decreasing) function of HP. {yields} For on-center impurity, the binding energy decreases with EF. {yields} For on-center impurity the self-polarization increases with EF.

  17. The Revolutionary Vertical Lift Technology (RVLT) Project (United States)

    Yamauchi, Gloria K.


    The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at

  18. Simulation Of Single Channel Length Vertical Silicon MOSFET (United States)

    Ooi, P. K.; Ibrahim, K.


    Vertical MOSFET has been introduced in the last few decades. As planar devices become smaller and smaller, vertical MOS transistor is one of the solutions for surpassing the short channel effects and pattern transfer. Thus, it is a promising approach to achieve channel lengths between 100 nm and 25 nm. In this work, we simulate sub-100 nm single channel length vertical silicon MOSFET. The simulations are done with using ATHENA, DEVEDIT and ATLAS from SILVACO International. Input and output electrical characteristics of the vertical MOS transistors are investigated. The short channel effects of the vertical MOSFETs are explored. Due to the structure is not symmetry, source at top and bottom is also considered. The results also compared with experimental results from other researcher.

  19. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.; Damschen, D.W.


    The Hanford Site contains about 2200 wells constructed from pre-Hanford Works days to the present. As of June 1977, about 1900 wells still exist, and about 850 of these existing wells were drilled to the ground-water table. About 700 of these wells (including about 24 farm wells) still contain water. The others have become dry through infiltration of sediments or a general lowering of the water table in their vicinity. This report, providing the most complete documentation of wells in and adjacent to the Hanford Site, supersedes all previous compilations of Hanford wells.

  20. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode

    Directory of Open Access Journals (Sweden)

    Wen-Chung Chang


    Full Text Available Vertically aligned p-type silicon nanowire (SiNW arrays were fabricated through metal-assisted chemical etching (MACE of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM, X-ray diffraction (XRD, and current−voltage (I−V measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.

  1. Numerical study of effect of induced magnetic field on transient natural convection over a vertical cone

    Directory of Open Access Journals (Sweden)



    Full Text Available In the present paper, an analysis has been performed to study the influence of induced magnetic field on the transient free convective flow of an electrically conducting and viscous incompressible fluid over a vertical cone. The coupled nonlinear partial differential equations governing the transient flow have been solved numerically by using the implicit finite difference method of Crank–Nicolson type. The influence of magnetic parameter, magnetic Prandtl number and semi-vertical angle of the cone on the velocity and induced magnetic field profiles has been illustrated graphically. Also, the local as well as average skin-friction and Nusselt number has been presented graphically. For result validation, we have done a comparative study and the present results are found to be in very good agreement with available results.

  2. A Study of Vertical Transport through Graphene towards Control of Quantum Tunneling. (United States)

    Zhu, Xiaodan; Lei, Sidong; Tsai, Shin-Hung; Zhang, Xiang; Liu, Jun; Yin, Gen; Tang, Min; Torres, Carlos Manuel; Navabi, Aryan; Jin, Zehua; Tsai, Shiao-Po; Qasem, Hussam; Wang, Yong; Vajtai, Robert; Lake, Roger K; Ajayan, Pulickel M; Wang, Kang L


    Vertical integration of van der Waals (vdW) materials with atomic precision is an intriguing possibility brought forward by these 2-dimensional materials. Essential to the design and analysis of these structures is a fundamental understanding of the vertical transport of charge carriers into and across vdW materials, yet little has been done in this area. In this report, we explore the important roles of single layer graphene in the vertical tunneling process as a tunneling barrier. Although a semi-metal in the lateral lattice plane, graphene together with the vdW gap act as a tunneling barrier that is nearly transparent to the vertically tunneling electrons due to its atomic thickness and the transverse momenta mismatch between the injected electrons and the graphene band structure. This is accentuated using electron tunneling spectroscopy (ETS) showing a lack of features corresponding to the Dirac cone band structure. Meanwhile, the graphene acts as a lateral conductor through which the potential and charge distribution across the tunneling barrier can be tuned. These unique properties make graphene an excellent 2-dimensional atomic grid, transparent to charge carriers, and yet can control the carrier flux via the electrical potential. A new model on the quantum capacitance's effect on vertical tunneling is developed to further elucidate the role of graphene in modulating the tunneling process. This work may serve as a general guideline for the design and analysis of vdW vertical tunneling devices and heterostructures, as well as the study of electron/spin injection through and into vdW materials.

  3. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Frougier, J., E-mail:; Jaffrès, H.; Deranlot, C.; George, J.-M. [Unité Mixte de Physique CNRS-Thales and Université Paris Sud 11, 1 av. Fresnel, 91767 Palaiseau (France); Baili, G.; Dolfi, D. [Thales Research and Technology, 1 av. Fresnel, 91767 Palaiseau (France); Alouini, M. [Institut de Physique de Rennes, 263 Avenue Général Leclerc, 35042 Rennes (France); Sagnes, I. [Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Garnache, A. [Institut d' électronique du Sud CNRS UMR5214, Université Montpellier 2 Place Eugene Bataillon, 34095 Montpellier (France)


    We fabricated and characterized an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well Vertical External Cavity Surface Emitting Laser (VECSEL). The structure is designed to allow the integration of a Metal-Tunnel-Junction ferromagnetic spin-injector for future electrical injection. We report here the control at room temperature of the electromagnetic field polarization using optical spin injection in the active medium of the VECSEL. The switching between two highly circular polarization states had been demonstrated using an M-shaped extended cavity in multi-modes lasing. This result witnesses an efficient spin-injection in the active medium of the LASER.

  4. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.


    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739. (DLC)

  5. GPS, su datum vertical.

    Directory of Open Access Journals (Sweden)

    Esteban Dörries


    Full Text Available La introducción de la metodología GPS en aplicaciones topográficas y geodésicas pone en notoria evidencia la clásica separación de sistemas de referencia en horizontal y vertical. Con GPS el posicionamiento es tridimensional, pero el concepto de altura difiere del clásico. Si se desea utilizar la información altimétrica debe contemplarse la ondulación del geoide.

  6. Investigation of the clogging affinity of vertical wells using an experimental model. A contribution to understanding chemical clogging processes in open-pit dewatering; Untersuchung der Verockerungsneigung von Vertikalfilterbrunnen im Modellversuch. Ein Beitrag zum Prozessverstaendnis der chemischen Verockerung in der Tagebauentwaesserung

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Sebastian; Schuettrumpf, Holger [RWTH Aachen University, Lehrstuhl und Institut fuer Wasserbau und Wasserwirtschaft (IWW), Aachen (Germany); Weidner, Christoph; Ruede, Thomas R. [RWTH Aachen University, Lehr- und Forschungsgebiet Hydrogeologie, Aachen (Germany); Roger, Sebastian [RWE Innogy GmbH, Hydro Power and New Technologies, Essen (Germany); Klauder, Wiebke; Vinzelberg, Gero [RWE Power AG, Bergheim (Germany)


    Operating wells are often influenced by performance losses which increase over time. These losses can be caused by clogging of system elements due to oxidation and precipitation of diluted Fe(II)- and Mn(II)-ions to Fe(III)- and Mn(IV)-hydroxides. The influence of iron clogging on the conductivity of the gravel pack - in particular on the hydraulic gradient in the gravel pack - is analyzed with a combined hydraulic and hydrogeochemical model of a vertical well in which the clogging process is accelerated by hydrochemical modifications. Over 295 h, the iron concentration in the filter gravel increased up to 15 g Fe per kg gravel. According to the preliminary findings, these incrustations induce an increase of the pressure loss in the filter gravel pack of nearly 30 %. After defining a test termination criterion, the model will be used for tests concerning different well material (screen and gravel pack) and methods for reduction of the incrustation (operation and regeneration) as well as for parametric studies. (orig.) [German] Der Betrieb von Brunnen unterliegt haeufig zeitabhaengigen Alterungsprozessen, die in signifikanten Leistungsrueckgaengen resultieren. Hauptursache ist die Verockerung infolge der Oxidation und Ausfaellung im Grundwasser geloester Fe(II)- und Mn(II)-Ionen zu Fe(III)- bzw. Mn(IV)-Hydroxiden. Zur Untersuchung der hydraulischen Wirksamkeit der Brunnenverockerung - insbesondere in Hinblick auf die Veraenderung des hydraulischen Druckabbaus - wurde ein interdisziplinaeres Versuchskonzept zur Erkennung der massgeblichen hydraulischen und hydrochemischen Prozesse erstellt. Das kombinierte stroemungsphysikalische und hydrogeochemische Modell bildet einen Ausschnitt eines Vertikalfilterbrunnens ab. Die Verockerung wird unter kontrollierten hydrochemischen Bedingungen des Systemwassers beschleunigt nachgebildet. In einem Versuchszeitraum von 295 h koennen im Filterkies Gehalte von bis zu 15 g Fe kg{sup -1} erzeugt werden. Diese Mineralablagerungen

  7. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.


    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.


    Directory of Open Access Journals (Sweden)

    Stjepan Antolović


    Full Text Available The interest and performance of horizontal drilling and completions has increased during the last two decades. Horizontal wells are advantageous compared to vertical wells in thin reservoirs, reservoirs with favorable vertical permeability and reservoirs with water and gas coning problems. In many reservoirs, the ratio of horizontal permeability to the vertical permeability is substantially larger than one and often is close to 10. Thus, these reservoirs are very good candidates for hydraulic fracturing. By hydraulic fracturing one or more fractures are created, which can be longitudinal or orthogonal. By that, flow is altered and it mostly conducts horizontally through reservoir toward horizontal wellbore. With this altered flow, fluid is produced faster, with less pressure loss by fluid unit of produced fluid. Some of the existing mathematical models to determine the productivity of multifractured horizontal wells are presented in this work (the paper is published in Croatian.

  9. Vertical CNT-Si photodiode array. (United States)

    Ahnood, Arman; Zhou, Hang; Dai, Qing; Vygranenko, Yuri; Suzuki, Yuji; Esmaeili-Rad, Mr; Amaratunga, Gehan; Nathan, Arokia


    A photodiode consisting of nanopillars of thin-film silicon p-i-n on an array of vertically aligned carbon nanotubes (CNTs) with a noncontinuous cathode electrode is demonstrated. The structure exploits the intrinsic enhancement of the CNTs' electric field, which leads to reduction in the photodiode's operating voltage and response time and enhancement of optical coupling due to better light trapping, as compared with the conventional planar photodiode. These improvements translate to higher resolution and higher frame rate flat-panel imaging systems for a broad range of applications, including computed tomography and particle detection.

  10. Vertical Meandering Approach for Antenna Size Reduction

    Directory of Open Access Journals (Sweden)

    Li Deng


    Full Text Available A novel vertical meandering technique to reduce the lateral size of a planar printed antenna is presented. It is implemented by dividing a conventional spiral patch into a different number of segments and placing them on different sides of the microwave substrate with vias as the connections. To confirm the validity of this technique, measured electrical performance and radiation characteristics of five antennas with different numbers of segments are compared. The smallest antenna is reduced in size by 84% when compared with the conventional printed spiral antenna.

  11. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon


    are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle......It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...

  12. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.; Mitchell, P.J.; Argo, R.S.


    The report is comprised of a list of wells located on or near the Hanford Site. Information on location, construction and completion dates has been updated on wells existing from the days before construction of the Hanford Works to the present. 4 refs. (ACR)

  13. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, M.A.; Merz, J.K.


    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  14. A Physician's Perspective On Vertical Integration. (United States)

    Berenson, Robert A


    Vertical integration has been a central feature of health care delivery system change for more than two decades. Recent studies have demonstrated that vertically integrated health care systems raise prices and costs without observable improvements in quality, despite many theoretical reasons why cost control and improved quality might occur. Less well studied is how physicians view their newfound partnerships with hospitals. In this article I review literature findings and other observations on five aspects of vertical integration that affect physicians in their professional and personal lives: patients' access to physicians, physician compensation, autonomy versus system support, medical professionalism and culture, and lifestyle. I conclude that the movement toward physicians' alignment with and employment in vertically integrated systems seems inexorable but that policy should not promote such integration either intentionally or inadvertently. Instead, policy should address the flaws in current payment approaches that reward high prices and excessive service use-outcomes that vertical integration currently produces. Project HOPE—The People-to-People Health Foundation, Inc.

  15. Electrical and optical properties of convex-type metamorphic In0.75Ga0.25As/In0.7Al0.3As quantum well structures grown by MBE on GaAs (United States)

    Komissarova, T. A.; Chernov, M. Yu; Solov’ev, V. A.; Meltser, B. Ya; Brunkov, P. N.; Sitnikova, A. A.; Kop’ev, P. S.; Ivanov, S. V.


    In0.75Ga0.25As/In0.7Al0.3As quantum well (QW) structures were grown by molecular beam epitaxy on GaAs(0 0 1) substrates by using linear- and convex-graded In x Al1‑x As metamorphic buffer layers (MBLs). Influence of a type of the In x Al1‑x As MBL, as well as design and growth conditions of the QW active region (for the convex-type MBL) on electrical and optical properties of the QW structures was studied. The convex-graded In x Al1‑x As MBL was found to result in obtaining the In0.75Ga0.25As/In0.7Al0.3As QWs with the higher electron mobility in comparison with the linear MBL. Effect of persistent photoconductivity was observed and explained by localization of charge carriers on potential fluctuations caused by the QW interface roughness and In-rich regions formed in the InAlAs barriers and InGaAs QW. Two conductivity channels in the vicinity of the bottom and top interfaces of the In0.75Ga0.25As/In0.7Al0.3As QW were found to exist even for optimized structures grown on convex-graded In x Al1‑x As MBL.

  16. Vertical cavity laser

    DEFF Research Database (Denmark)


    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index......, an index of refraction of the second low-index layer or air being less than 2; and a thickness of the cap layer and a thickness of the grating layer, and a pitch and a duty cycle of the grating structure are selected to obtain a resonance having a free-space resonance wavelength in the interval 300 nm to 3...... microns, the cap layer comprises an active region configured to generate or absorb photons at the free-space resonance wavelength by stimulated emission or absorption when a sufficient forward or reverse bias voltage is applied across the active region, a thickness of the first low-index layer is less...

  17. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Kent


    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  18. Ez-response as a monitor of a Baikal rift fault electrical resistivity: 3D modelling studies

    Directory of Open Access Journals (Sweden)

    I. L. Trofimov


    Full Text Available 3D numerical studies have shown that the vertical voltage above the Baikal deep-water fault is detectable and that respective transfer functions, Ez-responses, are sensitive to the electrical resistivity changes of the fault, i.e. these functions appear actually informative with respect to the resistivity «breath» of the fault. It means that if the fault resistivity changed, conventional electromagnetic instruments would be able to detect this fact by measurement of the vertical electric field, Ez, or the vertical electric voltage just above the fault as well as horizontal magnetic field on the shore. Other electromagnetic field components (Ex, Ey, Hz do not seem to be sensitive to the resistivity changes in such a thin fault (as wide as 500 m. On the other hand, such changes are thought to be able to indicate a change of a stress state in the earthquake preparation zone. Besides, the vertical profile at the bottom of Lake Baikal is suitable for electromagnetic monitoring of the fault electrical resistivity changes. Altogether, the vertical voltage above the deep-water fault might be one of earthquake precursors.

  19. correlation of vertical elecric sounding and agnetic survey results in ...

    African Journals Online (AJOL)

    the study area were deducted. The vertical electric sounding (VES) locations were sited in regions considered from the high amplitude magnetic lows as having thick ovei'nurdens. The sounding was done with the aid of the W50 DC resistivity meters, using the Schlumberger electrodes configuration. The data obtained from ...

  20. Support schemes and vertical integration - who skims the cream?

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Jensen, Stine Grenaa


    This paper examines how the effectiveness of feed-in tariffs for distributed generators, producing renewable electricity, depends on industry structure, i.e., vertical integration vs. unbundling. A stylized analytical model with a monopolist and a competitive fringe (distributed generators) will ...

  1. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  2. Magnetic and Electrical Properties of Leachate

    Directory of Open Access Journals (Sweden)

    Kartika Kirana


    Full Text Available Heavy metals content as well as magnetic and electrical properties of leachate from Sarimukti, West Java were studied in an attempt to seek correlation between heavy metals content and magnetic/electrical properties. Such correlation is expected to open the way for the use of magnetic/electrical properties as proxy indicators for the concentration of heavy metals in the leachate. The number of leachate samples studied is 21; 15 were taken spatially at depth of 1 m while the remaining 6 samples were taken vertically at a particular point. Measurement results showed that the heavy metals content in the leachate has a smaller concentration, except for Fe. The correlation between magnetic susceptibility and heavy metals content was found to be not so significant. The best correlation coefficient between magnetic susceptibility with heavy metals in leachate was found in Zn. Correlation between electrical conductivity and heavy metal is also not so significant, except for Zn and Cd. The use of magnetic properties as proxy indicator for heavy metals content in leachate is plausible provided that the magnetic susceptibility exceeds certain threshold value. Correlation between magnetic susceptibility, electrical conductivity and heavy metal content would be good if each quantity has a large value.

  3. Fundamentals of electrical drives

    CERN Document Server

    Veltman, André; De Doncker, Rik W


    Provides a comprehensive introduction to various aspects of electrical drive systems. This volume provides a presentation of dynamic generic models that cover all major electrical machine types and modulation/control components of a drive as well as dynamic and steady state analysis of transformers and electrical machines.

  4. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa


    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  5. Extraction of m{sub s} and vertical bar V{sub us} vertical bar from Hadronic Tau Decays

    Energy Technology Data Exchange (ETDEWEB)

    Gamiz, Elvira [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Jamin, Matthias [Physik Department, Technische Universitat Miinchen, D-85747 Garching (Germany); Pich, Antonio [Departament de Fisica Teorica, IFIC, Universitat de Valencia-CSIC, Apt. Correus 22085, E-46071 Valencia (Spain); Prades, Joaquim [CAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuente Nueva, E-18002 Granada (Spain); Schwab, Felix [Physik Department, Technische Universitat Miinchen, D-85747 Garching (Germany); Max-Planck-Institut fuer Physik - Werner-Heisenberg-Institut, D-80805 Munich (Germany)


    We review recent work to determine the strange quark mass m{sub s} as well as the proposal to determine vertical bar V{sub us} vertical bar using hadronic {tau} decay data. The recent update of the strange spectral function by OPAL and their moments of the invariant mass distribution are employed. Our results are vertical bar V{sub us} vertical bar=0.2208+/-0.0034 and m{sub s}(2GeV)=81+/-22 MeV. Our result is already competitive to the standard extraction of vertical bar V{sub us} vertical bar from K{sub e3} decays and to the new proposals to determine it. The error on vertical bar V{sub us} vertical bar is dominated by experiment and will be eventually much improved by the B-factories hadronic {tau} data. Ultimately, a simultaneous fit to both m{sub s} and vertical bar V{sub us} vertical bar to a set of moments of the hadronic {tau} decays invariant mass distribution will provide one of the most accurate determinations of these Standard Model parameters.

  6. Vertical allometry: fact or fiction? (United States)

    Mahmood, Iftekhar; Boxenbaum, Harold


    In pharmacokinetics, vertical allometry is referred to the clearance of a drug when the predicted human clearance is substantially higher than the observed human clearance. Vertical allometry was initially reported for diazepam based on a 33-fold higher human predicted clearance than the observed human clearance. In recent years, it has been found that many other drugs besides diazepam, can be classified as drugs which exhibit vertical allometry. Over the years, many questions regarding vertical allometry have been raised. For example, (1) How to define and identify the vertical allometry? (2) How much difference should be between predicted and observed human clearance values before a drug could be declared 'a drug which follows vertical allometry'? (3) If somehow one can identify vertical allometry from animal data, how this information can be used for reasonably accurate prediction of clearance in humans? This report attempts to answer the aforementioned questions. The concept of vertical allometry at this time remains complex and obscure but with more extensive works one can have better understanding of 'vertical allometry'. Published by Elsevier Inc.

  7. Control system for a vertical axis windmill (United States)

    Brulle, Robert V.


    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at and to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  8. High-speed modulation of vertical cavity surface emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Armendariz, M.G.; Choquette, K.D.; Lear, K.L.


    This report summarizes work on the development of high-speed vertical cavity surface emitting lasers (VCSELs) for multi-gigabit per second optical data communications applications (LDRD case number 3506.010). The program resulted in VCSELs that operate with an electrical bandwidth of 20 GHz along with a simultaneous conversion efficiency (DC to light) of about 20%. To achieve the large electrical bandwidth, conventional VCSELs were appropriately modified to reduce electrical parasitics and adapted for microwave probing for high-speed operation.

  9. Lateral excitonic switching in vertically stacked quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jarzynka, Jarosław R.; McDonald, Peter G.; Galbraith, Ian [Institute of Photonics and Quantum Sciences, SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Shumway, John [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)


    We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are also discussed.

  10. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning. (United States)

    Ryu, Seong Woo; Hwang, Jae Won; Hong, Soon Hyung


    Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors.

  11. Adaptation of the vertical vestibulo-ocular reflex in cats during low-frequency vertical rotation. (United States)

    Fushiki, Hiroaki; Maruyama, Motoyoshi; Shojaku, Hideo


    We examined plastic changes in the vestibulo-ocular reflex (VOR) during low-frequency vertical head rotation, a condition under which otolith inputs from the vestibular system are essential for VOR generation. For adaptive conditioning of the vertical VOR, 0.02Hz sinusoidal pitch rotation for one hour about the earth's horizontal axis was synchronized with out-of-phase vertical visual stimulation from a random dot pattern. A vertical VOR was well evoked when the upright animal rotated around the earth-horizontal axis (EHA) at low frequency due to the changing gravity stimulus and dynamic stimulation of the otoliths. After adaptive conditioning, the amplitude of the vertical VOR increased by an average of 32.1%. Our observations showing plasticity in the otolithic contribution to the VOR may provide a new strategy for visual-vestibular mismatch training in patients with otolithic disorders. This low-frequency vertical head rotation protocol also provides a model for investigating the mechanisms underlying the adaptation of VORs mediated by otolith activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Wellness Matters (United States)

    Arteaga, Brenda


    Creating a healthier school in today's world of budget cuts and seemingly endless to-do lists is not only possible, but it is also imperative. Beyond the health implications, one of the most compelling reasons for creating healthier schools is that wellness serves as a power booster for learning. Numerous studies have documented what educators…

  13. Werable wellness

    DEFF Research Database (Denmark)

    Rozycki, Bartosz


    We live in a world full of rush and a ‘relaxed state of being’ might increasingly play a role in today’s fast paced society to overcome contemporary stress and related illnesses such as burn-outs. The Sleephones concept is a wearable wellness device that aims to support relaxation by combing music...

  14. Méthode analytique généralisée pour le calcul du coning. Nouvelle solution pour calculer le coning de gaz, d'eau et double coning dans les puits verticaux et horizontaux Generalized Analytical Method for Coning Calculation. New Solution to Calculation Both the Gas Coning, Water Coning and Dual Coning for Vertical and Horizontal Wells

    Directory of Open Access Journals (Sweden)

    Pietraru V.


    Full Text Available Une nouvelle méthode analytique d'évaluation du coning d'eau par bottom water drive et/ou de gaz par gas-cap drive dans les puits horizontaux et verticaux a été développée pour les réservoirs infinis [1]. Dans cet article, une généralisation de cette méthode est présentée pour les réservoirs confinés d'extension limitée dont le toit est horizontal. La généralisation proposée est basée sur la résolution des équations différentielles de la diffusivité avec prise en compte des effets de drainage par gravité et des conditions aux limites pour un réservoir confiné. La méthode est applicable aux réservoirs isotropes ou anisotropes. L'hypothèse de pression constante à la limite de l'aire de drainage dans l'eau et/ou dans le gaz a été adoptée. Les pertes de charge dans l'aquifère et dans le gas-cap sont donc négligées. Les principales contributions de cet article sont : - L'introduction de la notion de rayon de cône, différent du rayon de puits. La hauteur du cône et le débit critique dépendent du rayon de cône alors qu'ils sont indépendants du rayon du puits. - Une nouvelle corrélation pour le calcul du débit critique sous forme adimensionnelle en fonction de trois paramètres : le temps, la longueur du drain horizontal (nulle pour un puits vertical et le rayon de drainage. - Des corrélations pour le calcul du rapport des débits gaz/huile (GOR ou de la fraction en eau (fw, pendant les périodes critique et postcritique, qui tiennent compte de la pression capillaire et des perméabilités relatives. - Des corrélations pour le calcul des rapports de débits gaz/huile et eau/huile pendant les périodes pré, post et supercritique en double coning. - Des critères pour le calcul du temps de percée au puits en simple coning de gaz ou d'eau, ou en double coning de gaz et d'eau. A new analytical method for assessing water and/or gas coning in horizontal and vertical wells has been developed for infinite

  15. Electricity market 2001

    Energy Technology Data Exchange (ETDEWEB)



    The electricity markets in the Nordic countries have undergone major changes since the electricity market reform work was started in the early 1990s. Sweden, Norway and Finland have had a common electricity market since 1996. The work of also reforming the Danish electricity market was begun in the year 2000. The objective of the electricity market reform is to introduce increased competition, to give the consumers greater freedom of choice and also, by open and expanded trade in electricity, create the conditions for efficient pricing. The Swedish National Energy Administration is the supervisory authority as specified in the Electricity Act, and one of the tasks entrusted to it by the Government is to follow developments on the electricity market and to regularly compile and report current market information. The purpose of the 'Electricity market 2001' publication is to meet the need for generalized and readily accessible information on the conditions on the Nordic market. Iceland is not included in the description. The publication also includes summaries of information from recent years concerning electricity generation and utilization in the Nordic countries, the structure of the electricity market from the players' perspective, trade in electricity in the Nordic countries and in Northern Europe, electricity prices in the Nordic and other countries, and the impact of the electricity sector on the environment. The publication contains data on electricity generation and use during the past years, structure of the electricity market, trade in electricity in the Nordic countries and northern Europe, electricity prices in the Nordic countries and other countries as well as impact of electricity generation system on the environment.

  16. Protected Vertices in Motzkin trees


    Van Duzer, Anthony


    In this paper we find recurrence relations for the asymptotic probability a vertex is $k$ protected in all Motzkin trees. We use a similar technique to calculate the probabilities for balanced vertices of rank $k$. From this we calculate upper and lower bounds for the probability a vertex is balanced and upper and lower bounds for the expected rank of balanced vertices.

  17. Power sector development in a common Baltic electricity market. Executive summary

    Energy Technology Data Exchange (ETDEWEB)



    In the years to come the Baltic electricity sector is expected to go through major changes. up till recently the sector has been characterised by vertically integrated monopolies, but at present the electricity sectors in the Baltic States are undergoing reform processes to meet the requirements of the EU directives regarding liberalisation of electricity sectors. This implies a different organisation of the sector, with new roles and responsibilities, and focus on new issues such as a well-functioning electricity market, security of supply and market power. In this project long-term scenario analyses are used to clarify the challenges facing the future Baltic electricity market and to analyse the robustness of the power sector. The project examines how existing power plants will manage in a competitive market, how power prices will develop and which investments are likely to be preferred by investors, among other issues. (BA)

  18. An experimental study of the electrical activity of the bypassed stomach in the Roux-en-Y gastric bypass Estudo experimental da atividade elétrica do estômago excluso na gastroplastia vertical com reconstituição em Y-de-Roux

    Directory of Open Access Journals (Sweden)

    Álvaro Antônio Bandeira Ferraz


    Full Text Available BACKGROUND: Surgical options for morbid obesity are diverse, and the Roux-en-Y gastric bypass, initially described by Fobi has gained popularity. Knowledge about the physiology of the bypassed stomach is limited because this newly produced segment of the stomach is inaccessible to endoscopic or contrast radiological studies. AIM: To evaluate the myoelectric activity of the bypassed stomach and its reply to the feeding. METHODS: An experimental protocol was conducted to evaluate postoperative gastric bypassed motility in dogs submitted to the Roux-en-Y gastric bypass procedure. Two groups of five animals were studied on postoperative fasting and after a standard meal, recording electrical response and control activity. Both control and Roux-en-Y gastric bypass operated study group had a pair of electrodes placed on three points of the remaining stomach: fundus, body and antrum. Data registration was performed after complete ileus resolution, and analysed with DATA Q Inst. series 200. RESULTS: The results achieved on the conditions of this study suggest that: 1. the remaining stomach maintain the same pattern of motility; 2. there is a reduced fasting electromyography activity following the Roux-en-Y gastric bypass procedure; 3. significantly reduced fasting electric control activity when compared both groups, and a markedly reduced fasting response electric activity and; 4. the electric response to the feeding kept the same standard of the stomach, however in a statistically reduced way. CONCLUSION: The electrical activity of the bypassed stomach of Roux-en-Y gastric bypass procedure kept the same pattern but in a statistically reduced number of contraction.RACIONAL: Dentre a grande diversidade de opções cirúrgicas para obesidade mórbida, a gastroplastia vertical com reconstituição em Y-de-Roux, tornou-se extremamente popular. Dados concernentes à fisiologia do estômago excluído são limitados, desde que este segmento produzido pela

  19. Electrostatic comb drive for vertical actuation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL


    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  20. Electric Power Plants and Generation Stations, Power Plants - is a seperate layer, however, we have them included in local building layer as well, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Government. (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2010. Power Plants - is a seperate layer, however, we have them included in local building layer...

  1. Well production decline

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, Branimir


    Effective rate-time analysis during a declining production in an oil or gas wells is an important tool for establishing a successful management. The reasons behind the production decline include reservoir, fracture and well conditions. A well's decline rate is transient, signifying that the pressure wave propagates freely from the wellbore, leading to depletion when the outer boundary for the well is reached and to the wave propagation coming to a halt. This thesis studies the transient decline, with emphasis on a horizontal well with fracture wellbore responses. It also deals with the depletion decline, investigating the wellbore pressure responses for a vertical well producing under variable rate conditions of Arps decline. The well decline model solutions are analytical, and the modelling itself is carried out in two steps. The first step involves modelling the transient well responses of a multi fractured horizontal well. These responses originate from an infinitive reservoir and are considered as full-time rate-time responses. Multi-fractured horizontal well rate-time responses represent the solutions to a diffusion equation with varying boundary conditions and different fracture options (i.e., with or without fracture, a variety of fracture orientations, various fracture lengths, etc). The transient model calculates individual fracture rates, productivity indexes and an equivalent wellbore radius for the multi-fractured well. For the transient decline of a fractured-horizontal well model, well data is matched and the reservoir diagnosis and production prognosis are improved through the individual fracture production, with a model screening ability, and novel model features that can handle wellbore conditions changing from rate-to-pressure. Screening analyses can generate valuable information for fracture diagnosis in addition to a well and fracture production prognosis. Further model runs are carried out to match the real well data. The model solution is

  2. Implementation of Electricity Business Competition Framework with Economic Dispatch Direct Method

    Directory of Open Access Journals (Sweden)

    Yusra Sabri


    Full Text Available Technically, electricity business under competition structure is more complex than that of vertically integrated one. The main prolems here are how to create an applicable competition framework and to solve electric calculations very quickly to obtain an optimal energi pricing, cost of losses, congestion and transportation costs by less than 15 minutes. This paper proposes a competition framework with the electric calculations, where a bilateral contract has been accommodated. Optimal energy price in the paper is calculated based on direct method of economic dispatch to obtain the result very quickly. The proposed method has been simulated to a 4-bus system. The simulation results show that the method works well and complies with the expectation. Therefore, electric power business under competition structure can be well realized by the proposed method.

  3. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu


    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  4. Vertical Electrical Sounding as a Viable Tool for Investigating ...

    African Journals Online (AJOL)

    ... in the range 0.50m- 180.0m and thicknesses in the range 0.50m-75.0m. Area of probable subsurface lithological formations and their thicknesses have been identified for economical purposes, environmental purposes, engineering purposes, especially for future, mining of industries foundation operations and drilling.

  5. Application of Schlumberger array of vertical electric sounding to ...

    African Journals Online (AJOL)

    The results obtained were correlated using bore-hole log as a control to determine various aquifers (water bearing formations) at each level. The water bearing formations are probably sands, sandstones, gravels and or sands with clay intercalation. The resistivity values for the water bearing layers detected vary from 100 ...

  6. Piezometric surface deduced from vertical electrical sounding data ...

    African Journals Online (AJOL)

    Science World Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 11, No 4 (2016) >. Log in or Register to get access to full text downloads.

  7. Evaluation of Vertical Electrical Sounding Method for Groundwater ...

    African Journals Online (AJOL)


    crystalline basement rock of pre-cambrian era (Kazeem,. 2007). The occurrence of groundwater in this ... locality may not necessarily be the same as the geological ones. (Emmanuel et al., 2011). The ultimate ... Figure 1: Geological sketch map of Nigeria showing the major geological components (Basement, Younger ...

  8. Electricity Customers (United States)

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  9. Financial methods in competitive electricity markets (United States)

    Deng, Shijie

    The restructuring of electric power industry has become a global trend. As reforms to the electricity supply industry spread rapidly across countries and states, many political and economical issues arise as a result of people debating over which approach to adopt in restructuring the vertically integrated electricity industry. This dissertation addresses issues of transmission pricing, electricity spot price modeling, as well as risk management and asset valuation in a competitive electricity industry. A major concern in the restructuring of the electricity industries is the design of a transmission pricing scheme that will ensure open-access to the transmission networks. I propose a priority-pricing scheme for zonal access to the electric power grid that is uniform across all buses in each zone. The Independent System Operator (ISO) charges bulk power traders a per unit ex ante transmission access fee based on the expected option value of the generated power with respect to the random zonal spot prices. The zonal access fee depends on the injection zone and a self-selected strike price determining the scheduling priority of the transaction. Inter zonal transactions are charged (or credited) with an additional ex post congestion fee that equals the zonal spot price difference. The unit access fee entitles a bulk power trader to either physical injection of one unit of energy or a compensation payment that equals to the difference between the realized zonal spot price and the selected strike price. The ISO manages congestion so as to minimize net compensation payments and thus, curtailment probabilities corresponding to a particular strike price may vary by bus. The rest of the dissertation deals with the issues of modeling electricity spot prices, pricing electricity financial instruments and the corresponding risk management applications. Modeling the spot prices of electricity is important for the market participants who need to understand the risk factors in

  10. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all......We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final-good...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  11. Horizontal and Vertical Line Designs. (United States)

    Johns, Pat


    Presents an art lesson in which students learn about the artist Piet Mondrian and create their own abstract artworks. Focuses on geometric shapes using horizontal and vertical lines. Includes background information about the artist. (CMK)

  12. Vertical axis wind turbine airfoil (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich


    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  13. Backward integration, forward integration, and vertical foreclosure


    Spiegel, Yossi


    I show that partial vertical integration may either alleviates or exacerbate the concern for vertical foreclosure relative to full vertical integration and I examine its implications for consumer welfare.

  14. Electrical resistivity tomography and magnetic surveys: applications ...

    African Journals Online (AJOL)

    A study aimed at evaluating the competence of the near surface formations as foundation materials has been undertaken at the site of the newly established Wolkite University Campus. Integrated geophysical surveys involving 2D Electrical Resistivity Tomography (ert), Vertical Electrical Sounding (ves) and magnetic ...

  15. Electricity economics. Production functions with electricity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhaoguang [State Grid Energy Research Institute, Beijing (China); Hu, Zheng [Delaware Univ., Newark, DE (United States)


    The first book studies on the economics of electricity consumption. Compares the sector production functions with electricity and the commercial production functions with electricity. Introduces the global E-GDP function, the European E-GDP function and 12 national E-GDP functions. Presents the gene characters of EAI production functions and E-GDP functions for USA to see why USA's economy is entering an up-industrialization period. Discusses China's economic growth by production functions with electricity. Electricity Economics: Production Functions with Electricity studies the production output from analyzing patterns of electricity consumption. Since electricity data can be used to measure scenarios of economic performance due to its accuracy and reliability, it could therefore also be used to help scholars explore new research frontiers that directly and indirectly benefits human society. Our research initially explores a similar pattern to substitute the Cobb-Douglas function with the production function with electricity to track and forecast economic activities. The book systematically introduces the theoretical frameworks and mathematical models of economics from the perspective of electricity consumption. The E-GDP functions are presented for case studies of more than 20 developed and developing countries. These functions also demonstrate substantial similarities between human DNA and production functions with electricity in terms of four major characteristics, namely replication, mutation, uniqueness, and evolution. Furthermore, the book includes extensive data and case studies on the U.S., China, Japan, etc. It is intended for scientists, engineers, financial professionals, policy makers, consultants, and anyone else with a desire to study electricity economics as well as related applications.

  16. Vertical external cavity surface emitting semiconductor lasers

    CERN Document Server

    Holm, M


    Active stabilisation showed a relative locked linewidth of approx 3 kHz. Coarse tuning over 7 nm was achieved using a 3-plate birefingent filter plate while fine-tuning using cavity length change allowed tuning over 250 MHz. Vertical external cavity semiconductor lasers have emerged as an interesting technology based on current vertical cavity semiconductor laser knowledge. High power output into a single transverse mode has attracted companies requiring good fibre coupling for telecommunications systems. The structure comprises of a grown semiconductor Bragg reflector topped with a multiple quantum well gain region. This is then included in an external cavity. This device is then optically pumped to promote laser action. Theoretical modelling of AIGaAs based VECSEL structures was undertaken, showing the effect of device design on laser characteristics. A simple 3-mirror cavity was constructed to assess the static characteristics of the structure. Up to 153 mW of output power was achieved in a single transver...

  17. Ultimately short ballistic vertical graphene Josephson junctions. (United States)

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong


    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale.

  18. Vertical Footbridge Vibrations: The Response Spectrum Methodology

    DEFF Research Database (Denmark)

    Georgakis, Christos; Ingólfsson, Einar Thór


    In this paper, a novel, accurate and readily codifiable methodology for the prediction of vertical footbridge response is presented. The methodology is based on the well-established response spectrum approach used in the majority of the world’s current seismic design codes of practice. The concept...... of a universally applicable reference response spectrum is introduced, from which the pedestrian-induced vertical response of any footbridge may be determined, based on a defined “event” and the probability of occurrence of that event. A series of Monte Carlo simulations are undertaken for the development...... of a reference response spectrum. The simulations use known statistical data for pedestrian and population walking characteristics to generate loads for a 50m long simply-supported bridge, with a fixed level of damping and a mean pedestrian flow rate of 1 pedestrian / sec. The response obtained from...

  19. Vertical-axis wind turbines -- The current status of an old technology

    Energy Technology Data Exchange (ETDEWEB)

    Berg, D.E.


    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  20. Electrical Injection Schemes for Nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten


    Three electrical injection schemes based on recently demonstrated electrically pumped photonic crystal nanolasers have been numerically investigated: 1) a vertical p-i-n junction through a post structure; 2) a lateral p-i-n junction with a homostructure; and 3) a lateral p-i-n junction....... For this analysis, the properties of different schemes, i.e., electrical resistance, threshold voltage, threshold current, and internal efficiency as energy requirements for optical interconnects are compared and the physics behind the differences is discussed....

  1. Vertical-probe-induced asymmetric dust oscillation in complex plasma. (United States)

    Harris, B J; Matthews, L S; Hyde, T W


    A complex plasma vertical oscillation experiment which modifies the bulk is presented. Spherical, micron-sized particles within a Coulomb crystal levitated in the sheath above the powered lower electrode in a GEC reference cell are perturbed using a probe attached to a Zyvex S100 Nanomanipulator. By oscillating the probe potential sinusoidally, particle motion is found to be asymmetric, exhibiting superharmonic response in one case. Using a simple electric field model for the plasma sheath, including a nonzero electric field at the sheath edge, dust particle charges are found by employing a balance of relevant forces and emission analysis. Adjusting the parameters of the electric field model allowed the change predicted in the levitation height to be compared with experiment. A discrete oscillator Green's function is applied using the derived force, which accurately predicts the particle's motion and allows the determination of the electric field at the sheath edge.

  2. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy (United States)



    Objectives The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders) and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI). Material and Methods Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate) were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra) and illustrated in 3D the abraded areas. Results Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. Conclusion Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials. PMID:24212995

  3. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy. (United States)

    Pascaretti-Grizon, Florence; Mabilleau, Guillaume; Chappard, Daniel


    The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders) and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI). Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate) were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra) and illustrated in 3D the abraded areas. Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials.

  4. Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications (United States)

    Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.


    Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.

  5. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures (United States)

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo


    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields.

  6. Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Kent D. Choquette


    Full Text Available We review the design, fabrication, and performance of photonic crystal vertical cavity surface emitting lasers (VCSELs. Using a periodic pattern of etched holes in the top facet of the VCSEL, the optical cavity can be designed to support the fundamental mode only. The electrical confinement is independently defined by proton implantation or oxide confinement. By control of the refractive index and loss created by the photonic crystal, operation in the Gaussian mode can be insured, independent of the lasing wavelength.

  7. The Brazilian electric sector regulation as reference for the hydrogen regulation as energetic vector; A regulacao do setor eletrico brasileiro como referencia para regulacao do hidrogenio como vetor energetico

    Energy Technology Data Exchange (ETDEWEB)

    Paternostro, Andre de Goes [Universidade Salvador (UNIFACS), Salvador, BA (Brazil); Fundacao de Amparo a Pesquisa do Estado da Bahia (FAPSB), Salvador, BA (Brazil)]. E-mail:


    This paper is based on the Brazilian electric sector to outline parallels for introduction of hydrogen as energetic vector in Brazilian matrix. For this purpose it was achieved an analysis of regulation theory, of electric sector reorganization, the new model of energy trade and the NOS role. In face of this analysis, hydrogen regulation may be established through a mix of four models: tariff model by return tax; tariff by marginal cost; regulation by performance and price cap. This new industrial sector should start vertical and with its maturity become non vertical as electric sector after its reorganization. Regarding the market, advanced purchase of hydrogen should be established enabling the reduction of incertitude in trade as well as reduction of implantation costs. NOS should pursue electric energy generation from hydrogen as this may carry impacts in transmission networks as well as in distribution network depending on how hydrogen was generated, whether in large scale or for local consumption supply. (author)

  8. Vertical saccades in dyslexic children. (United States)

    Tiadi, Aimé; Seassau, Magali; Bui-Quoc, Emmanuel; Gerard, Christophe-Loïc; Bucci, Maria Pia


    Vertical saccades have never been studied in dyslexic children. We examined vertical visually guided saccades in fifty-six dyslexic children (mean age: 10.5±2.56 years old) and fifty-six age matched non dyslexic children (mean age: 10.3±1.74 years old). Binocular eye movements were recorded using an infrared video-oculography system (mobileEBT®, e(ye)BRAIN). Dyslexic children showed significantly longer latency than the non dyslexic group, also the occurrence of anticipatory and express saccades was more important in dyslexic than in non dyslexic children. The gain and the mean velocity values were significantly smaller in dyslexic than in non dyslexic children. Finally, the up-down asymmetry reported in normal population for the gain and the velocity of vertical saccades was observed in dyslexic children and interestingly, dyslexic children also reported an up-down asymmetry for the mean latency. Taken together all these findings suggested impairment in cortical areas responsible of vertical saccades performance and also at peripheral level of the extra-ocular oblique muscles; moreover, a visuo-attentionnal bias could explain the up-down asymmetry reported for the vertical saccade triggering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. HTGR core model response to simultaneous horizontal and vertical excitations

    Energy Technology Data Exchange (ETDEWEB)

    Bezler, P.; Curreri, J.R.


    An experimental program was undertaken to investigate the effects of simultaneous horizontal and vertical excitation on the response of the HTGR core. The tests were conducted with block array models of the core excited with both fixed frequency and sweeping frequency harmonic forcing functions. The effects on both free standing block arrays and on block arrays preloaded in the vertical direction were investigated. The results of the tests as well as their importance as regards to the full core response, are presented.

  10. Broadband Grounded Vertical Antennas for 30-180 MHZ (VHF) (United States)


    antennas are well known for their broadband gain (monocone, bicone ) but are never combined with a monopole. An eccentric combination of broadband...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Broadband Grounded Vertical Antennas For 30-180 MZH (VHF) 5a. CONTRACT NUMBER 5b...18 Attorney Docket No. 102536 1 of 17 BROADBAND GROUNDED VERTICAL ANTENNAS FOR 30-180 MHZ (VHF) STATEMENT OF GOVERNMENT INTEREST

  11. Improvement of vertical stabilization on KSTAR (United States)

    Mueller, D.; Bak, J. G.; Boyer, M. D.; Eideitis, N.; Hahn, S. H.; Humphreys, D. A.; Kim, H. S.; Jeon, Y. M.; Lanctot, M.; Walker, M. L.


    The successful control of strongly shaped plasmas on the Korea Superconducting Tokamak Advanced Research (KSTAR) device requires active feedback of fast motion of the plasma vertical position by the use of internal normal conducting coils (IVC). This has required new electronics to supply relative flux loop differences, for zp, and voltage loop differences, for dzp/dt, as well as a novel technique (Zfast) to use a high-pass filter, typically 1 Hz, on the error in the signal in the feedback loop. Use of Zfast avoids the potential contention encountered when the internal coil attempts to perform control of the plasma shape which should be controlled by the slower and more powerful superconducting coils. A common problem of this contention is saturation of the IVC and loss of fast vertical control. This is eliminated by proper use of the Zfast. A Ziegler-Nichols relay feedback system was used to fine tune the required feedback gains. The selection of the magnetic sensors, filter time constants, control gains and of the Zfast control strategy which allowed vertically stable operation at a plasma elongation, kappa. of up to 2.16 at li = 1.15 and Betap = 2.4 will be discussed which is beyond the design reference of KSTAR of kappa = 2.0 at li = 1.2 and Betap = 1.9. Work Supported by U.S.D.O.E. Contract No. DE-AC02-09CH11466 and DE-SC0010685 and the KSTAR project.

  12. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft Project (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  13. Waves, circulation and vertical dependence (United States)

    Mellor, George


    Longuet-Higgins and Stewart (J Fluid Mech 13:481-504, 1962; Deep-Sea Res 11:529-562, 1964) and later Phillips (1977) introduced the problem of waves incident on a beach, from deep to shallow water. From the wave energy equation and the vertically integrated continuity equation, they inferred velocities to be Stokes drift plus a return current so that the vertical integral of the combined velocities was nil. As a consequence, it can be shown that velocities of the order of Stokes drift rendered the advective term in the momentum equation negligible resulting in a simple balance between the horizontal gradients of the vertically integrated elevation and wave radiation stress terms; the latter was first derived by Longuet-Higgins and Stewart. Mellor (J Phys Oceanogr 33:1978-1989, 2003a), noting that vertically integrated continuity and momentum equations were not able to deal with three-dimensional numerical or analytical ocean models, derived a vertically dependent theory of wave-circulation interaction. It has since been partially revised and the revisions are reviewed here. The theory is comprised of the conventional, three-dimensional, continuity and momentum equations plus a vertically distributed, wave radiation stress term. When applied to the problem of waves incident on a beach with essentially zero turbulence momentum mixing, velocities are very large and the simple balance between elevation and radiation stress gradients no longer prevails. However, when turbulence mixing is reinstated, the vertically dependent radiation stresses produce vertical velocity gradients which then produce turbulent mixing; as a consequence, velocities are reduced, but are still larger by an order of magnitude compared to Stokes drift. Nevertheless, the velocity reduction is sufficient so that elevation set-down obtained from a balance between elevation gradient and radiation stress gradients is nearly coincident with that obtained by the aforementioned papers. This paper

  14. Electrical installations and regulations

    CERN Document Server

    Whitfield, J F


    Electrical Installations and Regulations focuses on the regulations that apply to electrical installations and the reasons for them. Topics covered range from electrical science to alternating and direct current supplies, as well as equipment for providing protection against excess current. Cables, wiring systems, and final subcircuits are also considered, along with earthing, discharge lighting, and testing and inspection.Comprised of 12 chapters, this book begins with an overview of electrical installation work, traits of a good electrician, and the regulations governing installations. The r

  15. Quantum-Well Thermophotovoltaic Cells (United States)

    Freudlich, Alex; Ignatiev, Alex


    Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.

  16. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)


    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  17. Physics and the Vertical Jump (United States)

    Offenbacher, Elmer L.


    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  18. Multiservice Vertical Handoff Decision Algorithms

    Directory of Open Access Journals (Sweden)

    Zhu Fang


    Full Text Available Future wireless networks must be able to coordinate services within a diverse-network environment. One of the challenging problems for coordination is vertical handoff, which is the decision for a mobile node to handoff between different types of networks. While traditional handoff is based on received signal strength comparisons, vertical handoff must evaluate additional factors, such as monetary cost, offered services, network conditions, and user preferences. In this paper, several optimizations are proposed for the execution of vertical handoff decision algorithms, with the goal of maximizing the quality of service experienced by each user. First, the concept of policy-based handoffs is discussed. Then, a multiservice vertical handoff decision algorithm (MUSE-VDA and cost function are introduced to judge target networks based on a variety of user- and network-valued metrics. Finally, a performance analysis demonstrates that significant gains in the ability to satisfy user requests for multiple simultaneous services and a more efficient use of resources can be achieved from the MUSE-VDA optimizations.

  19. Balloon-Borne Electric-Field Observations Relevant to Models for Sprites and Jets

    National Research Council Canada - National Science Library

    Beasley, William


    We designed and built a new balloon-borne electric-field-change instrument and launched five of them into thunderstorms to observe changes in the vertical component of electric field caused by lightning...



    Mustafa GÖLCÜ


    In literature, pumps which are known as vertical turbine pump (VTP) have been designed to work vertically. Today, they are known as deep well pumps. These pumps are especially used in narrow and very deep wells where the surface sources are insufficient. Therefore, it is necessary to select suitable stage number to benefit from deep well pumps efficiently. In this study, a new deep well pump has been designed and the performances of three stage deep well pumps have been investigated experimen...

  1. Aging effects on vertical graphene nanosheets and their thermal stability (United States)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.


    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  2. Electric Field Driven Self-Assembly of Colloidal Rods (United States)

    Juarez, Jaime; Chaudhary, Kundan; Chen, Qian; Granick, Steve; Lewis, Jennifer


    The ability to assemble anisotropic colloidal building blocks into ordered configurations is of both scientific and technological importance. We are studying how electric field-induced interactions guide the self-assembly of these blocks into well aligned microstructures. Specifically, we present observations of the assembly of colloidal silica rods (L/D ˜ 4) within planar electrode cells as a function of different electric field parameters. Results from video microscopy and image analysis demonstrate that aligned microstructures form due to the competition between equilibrium interactions of induced dipoles and non-equilibrium processes (i.e., electro-osmosis). Under the appropriate electric field conditions (˜ kHZ AC fields), aligned colloidal rod fluids form over large areas on the electrode surface. The superposition of a DC electric field to this aligned colloidal rod fluid initiates their condensation into a vertically oriented crystalline phase. Ongoing work is now focused on exploring how temporal changes to electric fields influence colloidal rod dynamics and, hence, the assembly kinetics of aligned colloidal monolayers.

  3. Quality control of electricity comsumption

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, P.P.; Moroz, L.A.


    A foundation is provided for the concept of ''electricity consumption quality''. The principles of controlling electrical consumption quality and its simulation at the level of interaction between electric power systems and industrial consumers, as well as within the enterprise, are examined.

  4. Electric drives

    CERN Document Server

    Boldea, Ion


    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  5. Ground water contamination by electrical prospecting; Denki tansaho ni yoru chikasui osen chosa

    Energy Technology Data Exchange (ETDEWEB)

    Irie, S.; Fujii, Y.; Sakaguchi, S.; Ushijima, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering


    A report is made about the result of vertical electric sounding conducted in the MK district, Fukuoka City, where Kyushu University is about to move. As for the method of electrical prospecting, in consideration of the need for probing a depth of 50m at the shallowest, vertical electrical sounding with a Schlumberger array of electrodes was employed. Measurements were made for 57 locations on the planar ground, the interval between electrodes gradually increased from 1 to 200m. In the 2D structure model analysis, a 2D inversion program was utilized in the ABIC minimization method. Also investigated were the relationship of electric prospecting and the geology, geological conditions, water level in the well, water quality, salt water, and pore rate from the previously-conducted investigative boring. As the result, it was estimated that the boundary between the first and second layers detected by electric prospecting reflected the level of underground water and that the boundary between the second and third layers reflected the portion where the N-value sharply increases. 4 refs., 8 figs.

  6. Earth's Atmospheric Electricity Parameter Response During Venus Transit

    Directory of Open Access Journals (Sweden)

    Syam Sundar De


    Full Text Available Venus transited across the Sun on 06 June 2012, introducing significant contribution to the tidal characteristics of the solar atmosphere. _ atmosphere was perturbed due to an anomalous Coronal Mass Ejection (CME and γ-radiationγ-radiation influenced by the solar tide due to Venus transit, thereby the Earth-ionosphere waveguide characteristics were changed. In this anomalous situation we measured some atmospheric electricity parameters such as Schumann resonance (SR amplitude, very low frequency (VLF sferics, subionospheric transmitted signals and the point discharge current (PDC along with the vertical electrical potential gradient (PG at the ground surface on the day of transit. The results showed some remarkable variations during the transit as well as pre- and post-transit periods. The observed anomalies in the recorded data were interpreted in terms of the anomalous solar tidal effects initiated due to Venus transit.

  7. Electric field changes and cloud electrical structure (United States)

    Krider, E. Philip


    The NASA Kennedy Space Center and Cape Canaveral Air Force Station are currently operating a large network of electric field mills to detect lightning and electrified clouds that might present hazards to ground operations, launches, and landings. Here we summarize recent results of least squares analyses of multistation measurements of field changes that were produced by cloud-to-ground (Q model) and intracloud (P model) lightning. The values of the optimum parameters of 113 lightning events that occurred in one small storm on July 11, 1978, and a portion of a large storm on July 6, 1978, are tabulated and graphed. We note that, in both storms, there is considerable symmetry in the direction of P vectors around the Q region and that this pattern is consistent with the classic double-dipole model of thundercloud charges. We note also that the vertical separation of the Q and P regions depends on the storm intensity.

  8. Coexistence of Strategic Vertical Separation and Integration

    DEFF Research Database (Denmark)

    Jansen, Jos


    This paper gives conditions under which vertical separation is chosen by some upstream firms, while vertical integration is chosen by others in the equilibrium of a symmetric model. A vertically separating firm trades off fixed contracting costs against the strategic benefit of writing a (two......-part tariff, exclusive dealing) contract with its retailer. Coexistence emerges when more than two vertical Cournot oligopolists supply close substitutes. When vertical integration and separation coexist, welfare could be improved by reducing the number of vertically separating firms. The scope...

  9. Well logging for physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hearst, J.R.; Nelson, P.H.


    This book presents the fundamentals of well logging techniques for petroleum and natural gas deposits. Topics considered include the wellbore environment, logging practice; temperature, electrical and magnetic methods; nuclear radiation logging; acoustic logging; borehole gravimetry; ethology; porosity; saturation; permeability; fluid movement; fractures; elemental analysis; cement; directional surveying; dipmeter logging, and some other interesting applications.

  10. Kinematic Fitting of Detached Vertices

    Energy Technology Data Exchange (ETDEWEB)

    Mattione, Paul [Rice Univ., Houston, TX (United States)


    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  11. Vertical distribution of Arctic methane (United States)

    Tukiainen, Simo; Karppinen, Tomi; Hakkarainen, Janne; Kivi, Rigel; Heikkinen, Pauli; Tamminen, Johanna


    In this study we show the vertical distribution of atmospheric methane (CH4) measured in Sodankylä, Northern Finland. The CH4 profiles are retrieved from the direct Sun FTS measurements using the dimension reduction retrieval method. In the retrieval method, we have a few degrees of freedom about the profile shape. The data set covers years 2010-2016 (from February to November) and altitudes 0-40 km. The retrieved FTS profiles are validated against ACE satellite measurements and AirCore balloon measurements. The total columns derived from the FTS profiles are compared to the official TCCON XCH4 data. A vertically resolved methane data set can be used, e.g., to study stratospheric methane during the polar vortex.


    Directory of Open Access Journals (Sweden)

    Furia Donatella


    Full Text Available During the last decades, market segmentation and intra-industry trade have become increasingly relevant. The underlying hypothesis of our work is that distinct articles have heterogeneous potential for vertical differentiation, implying that different patterns of international specialization should be identifiable. We carry out an analysis on revealed comparative advantage (through the Lafay Index in specific sectors of interest. Then we highlight the emergence of diverse degrees of product quality differentiation among sectors (through the Relative Quality Index. Results confirm our hypothesis. Indeed it appears that only certain goods, for which the pace of either creative or technological innovation (or both is particularly fast, present a high degree of vertical differentiation and market segmentation. This allows countries to specialize in a particular product variety and gain market power position for that variety. These findings should be taken in due consideration when designing trade policies.

  13. Poligonación Vertical

    Directory of Open Access Journals (Sweden)

    Esteban Dörries


    Full Text Available La poligonación vertical es un método de medición de diferencias de altura que aprovecha las posibilidades de las estaciones totales. Se presta fundamentalmente para líneas de nivelación entre nodos formando red. El nombre se debe a que las visuales sucesivas se proyectan sobre aristas verticales en lugar de un plano horizontal, como ocurre en la poligonación convencional.

  14. Vertical Launch System Loadout Planner (United States)


    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...mathematically complex and require training to operate the software. A Visual Basic for Applications ( VBA ) Excel (Microsoft Corporation, 2015...lockheed/data/ms2/documents/laun chers/MK41 VLS factsheet.pdf Microsoft Excel version 14.4.3, VBA computer software. (2011). Redmond, WA: Microsoft

  15. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-economy property rights theory of the firm using firm-level data. Finally, we notice that our model's sorting pattern is in line with recent evidence when the wage difference across countries is not too big....

  16. Prophylaxis of vertical HBV infection. (United States)

    Pawlowska, Malgorzata; Pniewska, Anna; Pilarczyk, Malgorzata; Kozielewicz, Dorota; Domagalski, Krzysztof


    An appropriate management of HBV infection is the best strategy to finally reduce the total burden of HBV infection. Mother-to-child transmission (MTCT) is responsible for more than one third of chronic HBV infections worldwide. Because HBV infection in infancy or early childhood often leads to chronic infection, appropriate prophylaxis and management of HBV in pregnancy is crucial to prevent MTCT. The prevention of HBV vertical transmission is a complex task and includes: universal HBV screening of pregnant women, administration of antivirals in the third trimester of pregnancy in women with high viral load and passive-active HBV immunoprophylaxis with hepatitis B vaccine and hepatitis B immune globulin in newborns of all HBV infected women. Universal screening of pregnant women for HBV infection, early identification of HBV DNA level in HBV-infected mothers, maternal treatment with class B according to FDA antivirals and passive/active anti-HBV immunoprophylaxis to newborns of HBV-positive mothers are crucial strategies for reducing vertical HBV transmission rates. Consideration of caesarean section in order to reduce the risk of vertical HBV transmission should be recommend in HBV infected pregnant women with high viral load despite antiviral therapy or when the therapy in the third trimester of pregnancy is not available.

  17. Thermal performance of vertical greening system on the building façade: A review (United States)

    Sari, Astri Anindya


    Over the last decade, research on the application of vertical greening system on the building façade has gained much attention. Those studies proved that installing a vertical greening system on the building facade has many advantages not only for the building but also for the city. Acting as a shading as well as thermal insulation in the building, reducing greenhouse gas emission, and improving the microclimate are some of the advantages of vertical greening system that already being proved. This study aims to review some studies related to the thermal performance of vertical greening system on the building façade. The review will provide comprehensive knowledge about the thermal performance of vertical greening system over different variations including climates, orientations, plant types, and the design of vertical greening system. Furthermore, this review is expected to be a reference in designing such vertical greening system which suitable for certain climate area that able to produce the best thermal performance.

  18. DC Electric Fields and Associated Plasma Drifts Observed with the C/NOFS Satellite (United States)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Rowland, D.


    Initial DC electric field observations and associated plasma drifts are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite. We present statistical averages of the vector fields for the first year of operations that include both the zonal and radial components of the resulting E x B plasma flows at low latitudes. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. The DC electric field detector reveals zonal and radial electric fields that undergo strong diurnal variations, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. There is considerable variation in the large scale DC electric field data, in both the daytime and nighttime cases, with enhanced structures typically observed at night. In general, the measured zonal DC electric field amplitudes include excursions that extend within the 0.4 - 2 m V/m range, corresponding to E x B drifts of the order of 30-150 m/s. The average vertical or radial electric fields may exceed the zonal fields in amplitude by a factor of 1.5 to 2. Although the data compare well, in a general sense, with previous satellite observations and statistical patterns of vertical ion drifts, the E x B drifts we report from C/NOFS rarely show a pronounced pre-reversal enhancement after sunset. We attribute this to a combination of extreme solar minimum conditions and the fact that the C/NOFS orbit of 401 by 867 km carries the probes essentially above the lower altitude regions where the wind-driven dynamo might be expected to create enhanced upwards drifts in the early evening. Evidence for wavenumber 4 tidal effects and other longitudinal signatures have been detected and will be presented. We also discuss off-equatorial electric fields and their relation to the ambient plasma density.

  19. Vertical deformation at western part of Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Febriyani, Caroline, E-mail:; Prijatna, Kosasih, E-mail:; Meilano, Irwan, E-mail:


    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  20. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries. (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi


    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of "closed" pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  1. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. (United States)

    Liang, Qizhen; Yao, Xuxia; Wang, Wei; Liu, Yan; Wong, Ching Ping


    Thermally conductive functionalized multilayer graphene sheets (fMGs) are efficiently aligned in large-scale by a vacuum filtration method at room temperature, as evidenced by SEM images and polarized Raman spectroscopy. A remarkably strong anisotropy in properties of aligned fMGs is observed. High electrical (∼386 S cm(-1)) and thermal conductivity (∼112 W m(-1) K(-1) at 25 °C) and ultralow coefficient of thermal expansion (∼-0.71 ppm K(-1)) in the in-plane direction of A-fMGs are obtained without any reduction process. Aligned fMGs are vertically assembled between contacted silicon/silicon surfaces with pure indium as a metallic medium. Thus-constructed three-dimensional vertically aligned fMG thermal interfacial material (VA-fMG TIM) architecture has significantly higher equivalent thermal conductivity (75.5 W m(-1) K(-1)) and lower contact thermal resistance (5.1 mm2 K W(-1)), compared with their counterpart from A-fMGs that are recumbent between silicon surfaces. This finding provides a throughout approach for a graphene-based TIM assembly as well as knowledge of vertically aligned graphene architectures, which may not only facilitate graphene's application in current demanding thermal management but also promote its widespread applications in electrodes of energy storage devices, conductive polymeric composites, etc.

  2. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi


    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  3. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi


    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  4. Storm-time total electron content and its response to penetration electric fields over South America

    Directory of Open Access Journals (Sweden)

    P. M. de Siqueira


    Full Text Available In this work the response of the ionosphere due to the severe magnetic storm of 7–10 November 2004 is investigated by analyzing GPS Total Electron Content (TEC maps constructed for the South America sector. In order to verify the disturbed zonal electric fields in South America during the superstorm, ionospheric vertical drift data obtained from modeling results are used in the analysis. The vertical drifts were inferred from ΔH magnetometer data (Jicamarca-Piura following the methodology presented by Anderson et al. (2004. Also used were vertical drifts measured by the Jicamarca ISR. Data from a digisonde located at São Luís, Brazil (2.33° S, 44.2° W, dip latitude 0.25° are presented to complement the Jicamarca equatorial data. Penetration electric fields were observed by the comparison between the equatorial vertical drifts and the Interplanetary Electric Field (IEF. The TEC maps obtained from GPS data reflect the ionospheric response over the South America low-latitude and equatorial region. They reveal unexpected plasma distributions and TEC levels during the main phase of the superstorm on 7 November, which is coincident with the local post-sunset hours. At this time an increase in the pre-reversal enhancement was expected to develop the Equatorial Ionization Anomaly (EIA but we observed the absence of EIA. The results also reveal well known characteristics of the plasma distributions on 8, 9, and 10 November. The emphasized features are the expansion and intensification of EIA due to prompt penetration electric fields on 9 November and the inhibition of EIA during post-sunset hours on 7, 8, and 10 November. One important result is that the TEC maps provided a bi-dimensional view of the ionospheric changes offering a spatial description of the electrodynamics involved, which is an advantage over TEC measured by isolated GPS receivers.

  5. [Vertical fractures: apropos of 2 clinical cases]. (United States)

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R


    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures.

  6. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy. (United States)

    Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G


    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  7. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes. (United States)

    Klink, Stefan; Schuhmann, Wolfgang; La Mantia, Fabio


    Porous lithium ion battery electrodes are characterized using a vertical distribution of cross-currents. In an appropriate simplification, this distribution can be described by a transmission line model (TLM) consisting of infinitely thin electrode layers. To investigate the vertical distribution of currents, overpotentials, and irreversible charge losses in a porous graphite electrode in situ, a multi-layered working electrode (MWE) was developed as the experimental analogue of a TLM. In this MWE, each layer is in ionic contact but electrically insulated from the other layers by a porous separator. It was found that the negative graphite electrodes get lithiated and delithiated stage-by-stage and layer-by-layer. Several mass-transport- as well as non-mass-transport-limited processes could be identified. Local current densities can reach double the average, especially on the outermost layer at the beginning of each intercalation stage. Furthermore, graphite particles close to the counter electrode act as "electrochemical sieve" reducing the impurities present in the electrolyte such as water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Vertical Motions of Oceanic Volcanoes (United States)

    Clague, D. A.; Moore, J. G.


    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  9. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny


    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  10. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  11. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)


    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  12. Geophysical methods for locating abandoned wells (United States)

    Frischknecht, Frank C.; Muth, L.; Grette, R.; Buckley, T.; Kornegay, B.


    A preliminary study of the feasibility of using geophysical exploration methods to locate abandoned wells containing steel casing indicated that magnetic methods promise to be effective and that some electrical techniques might be useful as auxiliary methods. Ground magnetic measurements made in the vicinity of several known cased wells yielded total field anomalies with peak values ranging from about 1,500 to 6,000 gammas. The anomalies measured on the ground are very narrow and, considering noise due to other cultural and geologic sources, a line spacing on the order of 50 feet (15.2 m) would be necessary to locate all casings in the test area. The mathematical model used to represent a casing was a set of magnetic pole pairs. By use of a non-linear least squares curve fitting (inversion) program, model parameters which characterize each test casing were determined. The position and strength of the uppermost pole was usually well resolved. The parameters of lower poles were not as well resolved but it appears that the results are adequate for predicting the anomalies which would be observed at aircraft altitudes. Modeling based on the parameters determined from the ground data indicates that all of the test casings could be detected by airborne measurements made at heights of 150 to 200 feet (45.7-61.0 m) above the ground, provided lines spaced as closely as 330 feet (100 m) were used and provided noise due to other cultural and geologic sources is not very large. Given the noise levels of currently available equipment and assuming very low magnetic gradients due to geologic sources, the detection range for total field measurements is greater than that for measurements of the horizontal or vertical gradient of the total intensity. Electrical self-potential anomalies were found to be associated with most of the casings where measurements were made. However, the anomalies tend to be very narrow and, in several cases, they are comparable in magnitude to other small

  13. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan


    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  14. Electric Substations (United States)

    Department of Homeland Security — Substations. Substations are facilities and equipment that switch, transform, or regulate electric voltage. The Substations feature class includes taps, a location...

  15. Lateral and Vertical Organic Transistors (United States)

    Al-Shadeedi, Akram

    high doping concentrations. In subsequent chapters, the working mechanisms of OPBTs are discussed. OPBTs consist of two Schottky diodes (top and bottom diode), and the charge transport in these C60-based Schottky diodes is studied first. Two transport regimes can be distinguished in forward direction - injection limited currents (ILCs) and space charge limited currents (SCLCs). It is found that the current increases exponentially with applied voltage in the ILC regime and depends quadratically on the applied voltage in the SCLC regime. Furthermore, it is observed that the forward and backward currents of the Schottky diode are increased by decreasing the C60 layer thickness, increasing the active area, and increasing the temperature. Furthermore, in order to reach a high performance, various treatments have been applied. Air exposure, a variation of the thickness of the top electrode, as well as annealing of the diodes are used to optimize the diodes. OPBTs are processed by using the semiconductor C60 due its high charge carrier mobility and good film-forming properties. Again, the working mechanism of OPBTs is studied by electrical characterization (base-sweep measurements and output characteristics). To achieve a high performance of OPBTs, various treatments and techniques have been applied. The annealing of the OPBTs after fabrication changes the morphology of the base electrode. Thus, openings (pinholes) are formed in the base electrode, which enables a high current transfer from the upper to lower semiconductor layer. The formation of openings is proved by analyzing SEM and TEM image of the base electrode. Adding a doped layer at the emitter is another process to optimize the OPBTs. The doped layer ensures a high charge carrier injection at the emitter, leading to a high transmission and current gain. Furthermore, it has been observed that the ON/OFF ratio and transconductance of OPBTs increases by decreasing their active area. A very high transconductance gm of

  16. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes (United States)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.


    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  17. Liquid Crystal Microlens Using Nanoparticle-Induced Vertical Alignment

    Directory of Open Access Journals (Sweden)

    Shug-June Hwang


    Full Text Available The nanoparticle-induced vertical alignment (NIVA of the nematic liquid crystals (LC is applied to achieve an adaptive flat LC microlens with hybrid-aligned nematic (HAN mode by dropping polyhedral oligomeric silsesquioxane (POSS nanoparticle solution on a homogeneous alignment layer. The vertical alignment induced by the POSS nanoparticles resulted in the formation of a hybrid-aligned LC layer with concentric nonuniform distribution of the refractive index in the planar LC cell, which subsequently played the role of the lens, even in the absence of any applied voltages. The dimensions of the concentric HAN structure significantly depend on the volume of the microdroplet and the POSS concentration. The focus effect of this flat microlens was observed while electrically controlling its focal length using the applied voltages from −50 mm to −90 mm.

  18. Advanced high performance vertical hybrid synthetic jet actuator (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)


    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  19. Vertically integrated nanogenerator based on ZnO nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aifang; Li, Hongyu; Tang, Haoying; Liu, Tengjiao; Jiang, Peng [National Center for Nanoscience and Technology, No.11, Beiyitiao Zhongguancun, Beijing 100190 (China); Wang, Zhong Lin [National Center for Nanoscience and Technology, No.11, Beiyitiao Zhongguancun, Beijing 100190 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)


    We report a technique to construct a vertically integrated nanogenerator (VI-NG) based on ZnO nanowire (NW) arrays. The VI-NG consists of nine single NGs connected mixed parallel and serial by a layer-by-layer stacking. For the single layer NG, the peak output voltage and current are 0.045 V and 2.5 nA, respectively. The VI-NG produces an output power density of 2.8 nW/cm{sup 2} with a peak output voltage of 0.15 V and output current of 7.2 nA. The vertical integration of the multi-NG provides a feasible technique for effectively converting mechanical energies to electricity from environment. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Functionalization of vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Eloise Van Hooijdonk


    Full Text Available This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs. The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  1. Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes (United States)

    Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.


    Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.

  2. Intelligent Electricity Broker

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Væggemose, Poul Erik; Kulik, Tomas

    when feasible to the system owner. This paper describes how the IEB can be used by house owners, in building clusters, and/or by energy providers to take advantage of electricity stock market prices and weather forecasts to control energy surplus storage suffers as well as to lower electricity bills......The Intelligent Electricity Broker (IEB) is a new energy storage and energy broker facility that serves two purposes. Firstly, it allows for storing excessive energy in the Smart Grid [1, 2, 3] it is connected to. Secondly, it runs a broker-algorithm that ensures that energy is purchased and sold...

  3. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)


    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  4. Well profile meter

    Energy Technology Data Exchange (ETDEWEB)

    Zhivotovskiy, Iz.Z.; Iskenderov, V.G.; Perelman, G.Ya.


    A well profile meter is proposed which contains in-series connected measurement levers, remote measuring system, signal summators of lever pairs arranged in one vertical plain, and recorders, one of which recorded the operational, and the other all the measurement information. It is distinguished by the fact that in order to exclude ambiguity in determining the intervals of possible groove formation and surplus information recorded by the recorder of all measurement information, it is equipped with threshold blocks for isolating signals corresponding to the minimum and maximum diameters, storage circuit, accumulator, control circuit, synchronization circuit and input keys of the recorder of the entire measurement information. In this case the inlet of the synchronization circuit is connected to the remote measurement system, and one of the outlets is connected to the parallel included inlets of the threshold blocks for isolating signals corresponding to the minimum and maximum diameters. The other outlet of the synchronization circuit is connected to the parallel included inlets of their storage circuit, accumulator and control circuit. The inlet keys of the recorder of all the measurement information are connected by their inlets to the inlets of the summator of the lever pairs and the outlet of the control circuit. The outlets are connected to the recorder of all measurement information, the outlet of the threshold block of signal isolation corresponding to the maximum diameter, through the storage circuit is connected to 1 of the inlets of the recorder of operational information. The outlet of the threshold block of signal isolation corresponding to the minimum diameter is connected through the accumulator to the other inlet of the recorder of operational information, while the outlets of the storage circuit and the accumulator are connected to the inlets of the control circuit.

  5. ?Vertical Sextants give Good Sights? (United States)

    Richey, Michael

    Mark Dixon suggests (Forum, Vol. 50, 137) that nobody thus far has attempted to quantify the errors from tilt that arise while observing with the marine sextant. The issue in fact, with the related problem of what exactly is the axis about which the sextant is rotated whilst being (to define the vertical), was the subject of a lively controversy in the first two volumes of this Journal some fifty years ago. Since the consensus of opinion seems to have been that the maximum error does not necessarily occur at 45 degrees, whereas Dixon's table suggests that it does, some reiteration of the arguments may be in order.



    Lama Ramirez, R.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú; Condorhuamán Ccorimanya, C.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú


    lt has been studied the batch sedimentation of aqueous suspensions of precipitated calcium carbonate, barium sulphate and lead oxide , in vertical thickeners of rectangular and circular cross sectional area. Suspensions vary in concentration between 19.4 and 617.9 g/I and the rate of sedimentation obtained between 0.008 and 7.70 cm/min. The effect of the specific gravity of the solid on the rate of sedimentation is the same for all the suspensions, that is, the greater the value of the specif...

  7. Binocular responses and vertical strabismus

    Directory of Open Access Journals (Sweden)

    Risović Dušica


    Full Text Available Background/Aim. Elevation in adduction is the most common pattern of vertical strabismus, and it is mostly treated with surgery. The results of weaking of inferior oblique muscle are very changeable. The aim of this study was to evaluate binocular vision using sensory tests before and one and six months after the surgery. Methods. A total of 79 children were divided in two groups: the first, with inferior oblique muscle of overaction (n = 52, and the second with dissociated vertical deviation (DVD, and primary inferior oblique muscle overaction (n = 27. We tested them by polaroid mirror test (PMT, Worth test at distance and near, fusion amplitudes on sinoptofore, Lang I stereo test and Wirt-Titmus stereo test. We examined our patients before and two times after the surgery for vertical strabismus. Results. Foveal suppression in the group I was found in 60.5% of the patients before, and in 56.4% after the surgery. In group II Foveal suppression was detected in 64.7% of the patients before, but in 55.6% 6 months after the surgery with PMT. Worth test revealed suppression in 23.5% of the patients before, and in 40.7% after the vertical muscle surgery. Parafoveal fussion persisted in about 1/3 of the patients before the surgery, and their amplitudes were a little larger after the surgery in the group I patients. Lang I stereo test was negative in 53.9% before and 51.9% after the surgery in the group I, and in 48.2% of the patients before and after the surgery in the group II patients. Wirt-Titmus stereo test was negative in 74.5% of the patients before and in 72.9% after the surgery in the group I, but in the group II it was negative in 70.8% before and in 68.0% of the patients 6 months after the surgery. Conclusion. Binocular responses were found after surgery in 65.7% of the patients the group I and in 55.6% patients the group II. There was no significant difference between these two groups, but binocular responses were more often in the patients

  8. Electricity markets theories and applications

    CERN Document Server

    Lin, Jeremy


    Electricity Markets: Theories and Applications offers students and practitioners a clear understanding of the fundamental concepts of the economic theories, particularly microeconomic theories, as well as information on some advanced optimization methods of electricity markets. The authors--noted experts in the field--cover the basic drivers for the transformation of the electricity industry in both the United States and around the world and discuss the fundamentals of power system operation, electricity market design and structures, and electricity market operations. The text also explores advanced topics of power system operations and electricity market design and structure including zonal versus nodal pricing, market performance and market power issues, transmission pricing, and the emerging problems electricity markets face in smart grid and micro-grid environments. The authors also examine system planning under the context of electricity market regime. They explain the new ways to solve problems with t...

  9. Electric machine (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI


    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  10. Vertical Pointing Weather Radar for Built-up Urban Areas

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Thorndahl, Søren; Schaarup-Jensen, Kjeld


      A cost effective vertical pointing X-band weather radar (VPR) has been tested for measurement of precipitation in urban areas. Stationary tests indicate that the VPR performs well compared to horizontal weather radars, such as the local area weather radars (LAWR). The test illustrated...

  11. The Turkish Gecko Hemidactylus turcicus Prefers Vertical Walls


    Vogrin, Milan


    In summer 1997 on the island of Pag in Croatia, we studied a selection of perching sites of the Turkish gecko Hemidactylus turcicus. With the transect sampling of 1 hour in 2 days we found 102 geckos. Adults as well as juveniles were founds mostly on vertical walls.

  12. Sufficient Conditions for Vertical Composition of Security Protocols (Extended Version)

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Viganò, Luca

    a certain kind of channel as a goal and another secure protocol P2 that assumes this kind of channel, can we then derive that their vertical composition P2[P1] is secure? It is well known that protocol composition can lead to attacks even when the individual protocols are all secure in isolation...

  13. Ultra Thin Quantum Well Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dr Saeid Ghamaty


    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W

  14. Vertically stacked nanocellulose tactile sensor. (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun


    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10(4) loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  15. Restructuring Electricity Markets when Demand is Uncertain

    DEFF Research Database (Denmark)

    Boom, Anette; Buehler, Stefan


    We examine the effects of reorganizing electricity markets on capacity investments, retail prices and welfare when demand is uncertain. We study the following market configurations: (i) integrated monopoly, (ii) integrated duopoly with wholesale trade, and (iii) separated duopoly with wholesale...... are such that the separated (integrated) duopoly with wholesale trade performs best (worst) in terms of welfare.Keywords: Electricity, Investments, Generating Capacities, Vertical Integration, Monopoly and Competition.JEL-Classification: D42, D43, D44, L11, L12, L13...

  16. Vertical datum unification for the International Height Reference System (IHRS) (United States)

    Sánchez, Laura; Sideris, Michael G.


    . The empirical evaluations demonstrate that the vertical datum unification should be based on geodetic stations of highest quality and standardised geodetic data; for example, geometric coordinates should refer to the same ITRF and be given in the same tide system and reference epoch as the geopotential numbers and gravity field model. After a standardisation of the input data used in the unification of the South American height systems and a rigorous error propagation analysis, we demonstrate that the vertical datum parameters can be estimated with accuracy better than ±5 cm in well-surveyed regions and some decimetres (±40 cm) in sparsely surveyed regions. This paper concludes with detailed guidelines for the appropriate data treatment when the integration of a local vertical datum into the IHRS is desired. These guidelines may be applicable in any region of the world.

  17. Characteristic Value Method of Well Test Analysis for Horizontal Gas Well

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Li


    Full Text Available This paper presents a study of characteristic value method of well test analysis for horizontal gas well. Owing to the complicated seepage flow mechanism in horizontal gas well and the difficulty in the analysis of transient pressure test data, this paper establishes the mathematical models of well test analysis for horizontal gas well with different inner and outer boundary conditions. On the basis of obtaining the solutions of the mathematical models, several type curves are plotted with Stehfest inversion algorithm. For gas reservoir with closed outer boundary in vertical direction and infinite outer boundary in horizontal direction, while considering the effect of wellbore storage and skin effect, the pseudopressure behavior of the horizontal gas well can manifest four characteristic periods: pure wellbore storage period, early vertical radial flow period, early linear flow period, and late horizontal pseudoradial flow period. For gas reservoir with closed outer boundary both in vertical and horizontal directions, the pseudopressure behavior of the horizontal gas well adds the pseudosteady state flow period which appears after the boundary response. For gas reservoir with closed outer boundary in vertical direction and constant pressure outer boundary in horizontal direction, the pseudopressure behavior of the horizontal gas well adds the steady state flow period which appears after the boundary response. According to the characteristic lines which are manifested by pseudopressure derivative curve of each flow period, formulas are developed to obtain horizontal permeability, vertical permeability, skin factor, reservoir pressure, and pore volume of the gas reservoir, and thus the characteristic value method of well test analysis for horizontal gas well is established. Finally, the example study verifies that the new method is reliable. Characteristic value method of well test analysis for horizontal gas well makes the well test analysis


    This presentation, On-Line Tools for Proper Vertical Positioning of Sampling Intervals During Site Assessment, describes an approach to locating monitoring wells that is based on application of ground water models. The ideal use of both the model and site assessment funds is to ...

  19. Energy flow for electric power system deregulation (United States)

    Lin, Chia-Hung

    Over the past few years, the electric power utility industry in North America and other countries has experienced a strong drive towards deregulation. People have considered the necessity of deregulation of electric utilities for higher energy efficiency and energy saving. The vertically integrated monopolistic industry is being transferred into a horizontally integrated competitive structure in some countries. Wheeling charges are a current high priority problem throughout the power industry, for independent power producers, as well as regulators. Nevertheless the present transmission pricing mechanism fails to be adjusted by a customer loading condition. Customer loading is dynamic, but the present wheeling charge method is fixed, not real-time. A real-time wheeling charge method is developed in this dissertation. This dissertation introduces a concept of a power flow network which can be used for the calculation of power contribution factors in a network. The contribution factor is defined as the ratio of the power contributed by a particular source to a line flow or bus load to the total output of the source. Generation, transmission, and distribution companies can employ contribution factors for the calculation of energy cost, wheeling charges, and loss compensation. Based on the concept of contribution factors, a proposed loss allocation method is developed in this dissertation. Besides, counterflow condition will be given a credit in the proposed loss allocation method. A simple 22-bus example was used for evaluating the contribution factors, proposed wheeling charge method, and loss allocation method.

  20. Vertical pillar nanoantenna for emission enhancement and redirection (United States)

    Paparone, J.; Laverdant, J.; Brucoli, G.; Symonds, C.; Crut, A.; Del Fatti, N.; Benoit, J. M.; Bellessa, J.


    Designing efficient metallic nanostructures can help in realizing bright single photon emission in the visible and near-infrared ranges. We propose a novel nanostructure design that combines the benefits of plasmonic hot spot generation in the near-field and the concept of antennas developed in the radio-frequency range. The antenna is formed by a vertical stack of metallic and dielectric nanocylinders. When used for controlling the far-field emission of a localized source, its key features are moderate losses in the metal, relatively large Purcell factors, as well as a low sensibility to the lateral position of the emitter. A redirection process necessary for these vertical structures is proposed, based on the versatility of the vertical geometry, and allows an efficient redirection of the emitted light even for antennas on dielectric substrates.

  1. Study of Vertical Axis Wind Turbine for Energy Harvester in A Fishing Boat (United States)

    Budi, E. M.; Banjarnahor, D. A.; Hanifan, M.


    The wind speed in the southern beach of West Java Indonesia is quite promising for wind energy harvesting. A field survey reported that the wind speed reached 10 m/s, while the average recorded in a year is about 4.7 m/s. In this study, two vertical axis wind turbines (VAWT) were compared to be used in that area through calculation as well as experiments. The experiments measured that the turbines can produce about 7.82W and 2.33W of electricity respectively. These experiments are compared with theoretical calculation to obtain the performance of both turbines used. The coefficient of performance (cp) experimentally is 0.09 for Turbine 1 (hybrid Savonius-Darrieus rotor) and 0.14 for Turbine 2 (Savonius rotor). While, rotor’s mechanical performance Cpr, obtained theoritically through calculation, is 0.36 for Turbine 1 and 0.12 for Turbine 2. These results are analysed from mechanical and electrical view.

  2. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform. (United States)

    McPolin, Cillian P T; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A; Justice, John; Corbett, Brian; Zayats, Anatoly V


    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  3. Evidence of diel vertical migration in Mnemiopsis leidyi.

    Directory of Open Access Journals (Sweden)

    Matilda Haraldsson

    Full Text Available The vertical distribution and migration of plankton organisms may have a large impact on their horizontal dispersal and distribution, and consequently on trophic interactions. In this study we used video-net profiling to describe the fine scale vertical distribution of Mnemiopsis leidyi in the Kattegat and Baltic Proper. Potential diel vertical migration was also investigated by frequent filming during a 24-hour cycle at two contrasting locations with respect to salinity stratification. The video profiles revealed a pronounced diel vertical migration at one of the locations. However, only the small and medium size classes migrated, on average 0.85 m h(-1, corresponding to a total migration distance of 10 m during 12 h. Larger individuals (with well developed lobes, approx. >27 mm stay on average in the same depth interval at all times. Biophysical data suggest that migrating individuals likely responded to light, and avoided irradiance levels higher than approx. 10 µmol quanta m(-2 s(-1. We suggest that strong stratification caused by low surface salinity seemed to prohibit vertical migration.

  4. High power 1060-nm super large vertical cavity semiconductor lasers (United States)

    Tan, Shaoyang; Zhai, Teng; Wang, Wei; Zhang, Ruikang; Lu, Dan; Ji, Chen


    High power single-mode ridge waveguide 1060-nm semiconductor lasers are reported. The lasers consist of compressively strained double InGaAs/GaAs quantum wells and a GaAs/AlGaAs separate confinement vertical structure. A super large vertical optical cavity is employed to have a low internal loss, large optical spot size and low vertical optical divergence angle. The material composition and thickness of waveguide layers and claddings layer are optimized systematically. The active layer is detuned from center of the waveguide and thickness of cladding layers is optimized to guaranty single mode lasing of the large optical cavity. The large vertical cavity laser structure with thickness of 4 μm allows the lasers have a low internal loss of less than 0.6 /cm, a large optical spot size about 1μm and a vertical divergence angle about 20 degree. For lateral optical confinement, a double trench ridge waveguide is employed to maintain single-lateral-mode operation. Based on the optimization, 1.5 W continue wave optical power is achieved for broad area lasers with 1mm longitude cavity length. Narrow stripe ridge waveguide lasers of 1mm cavity length with single mode current and optical power of 700 mA and 340 mW is obtained. Suggestions for further improvements in terms of single mode power and applications of the high power semiconductors are discussed.

  5. Vertical control in the Class III compensatory treatment

    Directory of Open Access Journals (Sweden)

    Márcio Costa Sobral


    Full Text Available INTRODUCTION: Compensatory orthodontic treatment, or simply orthodontic camouflage, consists in an important alternative to orthognathic surgery in the resolution of skeletal discrepancies in adult patients. It is important to point that, to be successfully performed, diagnosis must be detailed, to evaluate, specifically, dental and facial features, as well as the limitations imposed by the magnitude of the discrepancy. The main complaint, patient's treatment expectation, periodontal limits, facial pattern and vertical control are some of the items to be explored in the determination of the viability of a compensatory treatment. Hyperdivergent patients who carry a Class III skeletal discrepancy, associated with a vertical facial pattern, with the presence or tendency to anterior open bite, deserve special attention. In these cases, an efficient strategy of vertical control must be planned and executed. OBJECTIVE: The present article aims at illustrating the evolution of efficient alternatives of vertical control in hiperdivergent patients, from the use, in the recent past, of extra-oral appliances on the lower dental arch (J-hook, until nowadays, with the advent of skeletal anchorage. But for patients with a more balanced facial pattern, the conventional mechanics with Class III intermaxillary elastics, associated to an accentuated curve of Spee in the upper arch and a reverse Curve of Spee in the lower arch, and vertical elastics in the anterior region, continues to be an excellent alternative, if there is extreme collaboration in using the elastics.

  6. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris


    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  7. Vertical Take-Off and Landing Vehicle with Increased Cruise Efficiency (United States)

    Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Langford, William M. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Johns, Zachary R. (Inventor); Webb, Sandy R. (Inventor)


    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  8. Vertical jump coordination: fatigue effects. (United States)

    Rodacki, André Luiz Felix; Fowler, Neil E; Bennett, Simon J


    The aim of this study was to investigate the segmental coordination of vertical jumps under fatigue of the knee extensor and flexor muscles. Eleven healthy and active subjects performed maximal vertical jumps with and without fatigue, which was imposed by requesting the subjects to extend/flex their knees continuously in a weight machine, until they could not lift a load corresponding to approximately 50% of their body weight. Knee extensor and flexor isokinetic peak torques were also measured before and after fatigue. Video, ground reaction forces, and electromyographic data were collected simultaneously and used to provide several variables of the jumps. Fatiguing the knee flexor muscles did not reduce the height of the jumps or induce changes in the kinematic, kinetic, and electromyographic profiles. Knee extensor fatigue caused the subjects to adjust several variables of the movement, in which the peak joint angular velocity, peak joint net moment, and power around the knee were reduced and occurred earlier in comparison with the nonfatigued jumps. The electromyographic data analyses indicated that the countermovement jumps were performed similarly, i.e., a single strategy was used, irrespective of which muscle group (extensor or flexors) or the changes imposed on the muscle force-generating characteristics (fatigue or nonfatigue). The subjects executed the movements as if they scaled a robust template motor program, which guided the movement execution in all jump conditions. It was speculated that training programs designed to improve jump height performance should avoid severe fatigue levels, which may cause the subjects to learn and adopt a nonoptimal and nonspecific coordination solution. It was suggested that the neural input used in the fatigued condition did not constitute an optimal solution and may have played a role in decreasing maximal jump height achievement.

  9. Vertical-Cavity In-plane Heterostructures: Physics and Applications

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug


    We show that the in-plane heterostructures realized in vertical cavities with high contrast grating(HCG) reflector enables exotic configurations of heterostructure and photonic wells. In photonic crystal heterostructures forming a photonic well, the property of a confined mode is determined by th...... to discuss the rich potential of this heterostructure as a platform for various physics studies and propose a system of two laterally coupled cavities which shows the breaking of parity-time symmetry as an example....

  10. Electrical Injuries (United States)

    ... it can pass through your body and cause injuries. These electrical injuries can be external or internal. You may have one or both types. External injuries are skin burns. Internal injuries include damage to ...

  11. Electricity derivatives

    CERN Document Server

    Aïd, René


    Offering a concise but complete survey of the common features of the microstructure of electricity markets, this book describes the state of the art in the different proposed electricity price models for pricing derivatives and in the numerical methods used to price and hedge the most prominent derivatives in electricity markets, namely power plants and swings. The mathematical content of the book has intentionally been made light in order to concentrate on the main subject matter, avoiding fastidious computations. Wherever possible, the models are illustrated by diagrams. The book should allow prospective researchers in the field of electricity derivatives to focus on the actual difficulties associated with the subject. It should also offer a brief but exhaustive overview of the latest techniques used by financial engineers in energy utilities and energy trading desks.

  12. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent


    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  13. Vertical Distribution of Water at Phoenix (United States)

    Tamppari, L. K.; Lemmon, M. T.


    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  14. Vertical and Interfacial Transport in Wetlands (Invited) (United States)

    Variano, E. A.


    The objective of this work is to understand the fluxes connecting the water column, substrate, and atmosphere in wetland environments. To do this, analytical, numerical, and laboratory models have been used to quantify the hydrodynamic contributions to vertical fluxes. A key question is whether the hydrodynamic transport can be modeled as a diffusivity, and, if so, what the vertical structure of this diffusivity is. This question will be addressed in a number of flow types and for a number of fluxes. The fluxes of interest are heat, sediment, dissolved gases (such as methane and oxygen) and other dissolved solutes (such as nutrients and pollutants). The flows of interest include: unidirectional current, reversing flow (under waves, seiches, and tides), wind-sheared surface flows, and thermal convection. Rain and bioturbation can be important, but are not considered in the modeling work discussed herein. Specifically, we will present results on gas transport at wind-sheared free surface, sediment transport in unidirectional flow, and heat transfer in an oscillating flow cause by a seiche. All three of these will be used to consider the question of appropriate analytical models for vertical transport. The analytic models considered here are all 1D models that assume homogeneity in the horizontal plane. The numerical models use finite element methods and resolve the flow around individual vegetation stems in an idealized geometry. Laboratory models discussed herein also use an idealized geometry. Vegetation is represented by an array of cylinders, whose geometry is modeled after Scirpus spp. wetlands in Northern California. The laboratory model is constructed in a way that allows optical access to the flow, even in dense vegetation and far from boundaries. This is accomplished by using fluoropolymer plastics to construct vegetation models. The optical access allows us to employ particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) to measure

  15. Evaluation of electrical resistivity anisotropy in geological mapping ...

    African Journals Online (AJOL)


    However, the combination of the anisotropy polygons and the iso-resistivity map has reduced the ambiguity inherent in using a single geophysical parameter. Key words: Electrical resistivity anisotropy, radial vertical electrical sounding, anisotropy polygons. INTRODUCTION. The geological mapping in the Precambrian, ...

  16. Estimating aquifer transmissivity from geo-electrical sounding ...

    African Journals Online (AJOL)

    Abstract. A geophysical survey was carried out at Kaduna Polytechnic Senior Staff Quarters using Direct Current Electrical Resistivity method. The objectives were to determine different subsurface geoelectric layers, the aquifer units and the estimation of Transmissivity of the aquifer. Sixty-six Schlumberger Vertical Electrical ...

  17. Electrical Resistivity Survey For Conductive Soils At Gas Turbine ...

    African Journals Online (AJOL)

    Ten (10) vertical electrical soundings (VES) using Schlumberger configuration were carried out to delineate subsurface conductive soils for the design of earthling grid for electrical materials installation at the Gas Turbine Station, Ajaokuta, SW Nigeria. Interpretation of the resistivity data revealed three major geoelectric ...

  18. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)


    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  19. Personal Rotorcraft Design and Performance with Electric Hybridization (United States)

    Snyder, Christopher A.


    Recent and projected improvements for more or all-electric aviation propulsion systems can enable greater personal mobility, while also reducing environmental impact (noise and emissions). However, all-electric energy storage capability is significantly less than present, hydrocarbon-fueled systems. A system study was performed exploring design and performance assuming hybrid propulsion ranging from traditional hydrocarbon-fueled cycles (gasoline Otto and diesel) to all-electric systems using electric motors generators, with batteries for energy storage and load leveling. Study vehicles were a conventional, single-main rotor (SMR) helicopter and an advanced vertical takeoff and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew); the design range for the VTOL aircraft was set to 150 miles (about one hour total flight). Search and rescue (SAR), loiter, and cruise-dominated missions were chosen to illustrate each vehicle and degree of hybrid propulsion strengths and weaknesses. The traditional, SMR helicopter is a hover-optimized design; electric hybridization was performed assuming a parallel hybrid approach by varying degree of hybridization. Many of the helicopter hybrid propulsion combinations have some mission capabilities that might be effective for short range or on-demand mobility missions. However, even for 30 year technology electrical components, all hybrid propulsion systems studied result in less available fuel, lower maximum range, and reduced hover and loiter duration than the baseline vehicle. Results for the VTOL aircraft were more encouraging. Series hybrid combinations reflective of near-term systems could improve range and loiter duration by 30. Advanced, higher performing series hybrid combinations could double or almost triple the VTOL aircrafts range and loiter duration. Additional details on the study assumptions and work performed are given, as well as suggestions for future study effort.

  20. Spirit Near 'Stapledon' on Sol 1802 (Vertical) (United States)


    NASA Mars Exploration Rover Spirit used its navigation camera for the images assembled into this full-circle view of the rover's surroundings during the 1,802nd Martian day, or sol, (January 26, 2009) of Spirit's mission on the surface of Mars. North is at the top. This view is presented as a vertical projection with geometric seam correction. Spirit had driven down off the low plateau called 'Home Plate' on Sol 1782 (January 6, 2009) after spending 12 months on a north-facing slope on the northern edge of Home Plate. The position on the slope (at about the 9-o'clock position in this view) tilted Spirit's solar panels toward the sun, enabling the rover to generate enough electricity to survive its third Martian winter. Tracks at about the 11-o'clock position of this panorama can be seen leading back to that 'Winter Haven 3' site from the Sol 1802 position about 10 meters (33 feet) away. For scale, the distance between the parallel wheel tracks is about one meter (40 inches). Where the receding tracks bend to the left, a circular pattern resulted from Spirit turning in place at a soil target informally named 'Stapledon' after William Olaf Stapledon, a British philosopher and science-fiction author who lived from 1886 to 1950. Scientists on the rover team suspected that the soil in that area might have a high concentration of silica, resembling a high-silica soil patch discovered east of Home Plate in 2007. Bright material visible in the track furthest to the right was examined with Spirit's alpha partical X-ray spectrometer and found, indeed, to be rich in silica. The team laid plans to drive Spirit from this Sol 1802 location back up onto Home Plate, then southward for the rover's summer field season.

  1. Vertical Silicon Nanowire Platform for Low Power Electronics and Clean Energy Applications

    Directory of Open Access Journals (Sweden)

    D.-L. Kwong


    Full Text Available This paper reviews the progress of the vertical top-down nanowire technology platform developed to explore novel device architectures and integration schemes for green electronics and clean energy applications. Under electronics domain, besides having ultimate scaling potential, the vertical wire offers (1 CMOS circuits with much smaller foot print as compared to planar transistor at the same technology node, (2 a natural platform for tunneling FETs, and (3 a route to fabricate stacked nonvolatile memory cells. Under clean energy harvesting area, vertical wires could provide (1 cost reduction in photovoltaic energy conversion through enhanced light trapping and (2 a fully CMOS compatible thermoelectric engine converting waste-heat into electricity. In addition to progress review, we discuss the challenges and future prospects with vertical nanowires platform.

  2. Graphene-Au nanoparticle based vertical heterostructures: a novel route towards high- ZT Thermoelectric devices

    KAUST Repository

    Juang, Zhen-Yu


    Monolayer graphene exhibits impressive in-plane thermal conductivity (>1000Wm–1 K–1). However, the out-of-plane thermal transport is limited due to the weak van der Waals interaction, indicating the possibility of constructing a vertical thermoelectric (TE) device. Here, we propose a cross-plane TE device based on the vertical heterostructures of few-layer graphene and gold nanoparticles (AuNPs) on Si substrates, where the incorporation of AuNPs further inhibits the phonon transport and enhances the electrical conductivity along vertical direction. A measurable Seebeck voltage is produced vertically between top graphene and bottom Si when the device is put on a hot surface and the figure of merit ZT is estimated as 1 at room temperature from the transient Harman method. The polarity of the output voltage is determined by the carrier polarity of the substrate. The device concept is also applicable to a flexible and transparent substrate as demonstrated.

  3. Design analysis of vertical wind turbine with airfoil variation (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad


    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  4. Well-covered graphs and factors

    DEFF Research Database (Denmark)

    Randerath, Bert; Vestergaard, Preben D.


    a perfect [1,2]-factor F_G, i.e. a spanning subgraph such that each component is 1-regular og 2-regular. Here, we characterize all well-covered graphs G satisfying α(G)=α(F_G) for some perfect [1,2]-factor F_G. This class contains all well-covered graphs G without isolated vertices of order n with α ≥ (n...

  5. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach (United States)

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel


    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  6. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan


    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  7. Vertical soil profiling using a galvanic contact resistivity scanning approach. (United States)

    Pan, Luan; Adamchuk, Viacheslav I; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S; Dabas, Michel


    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  8. Control system for a vertical-axis windmill (United States)

    Brulle, R.V.


    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  9. Electric and VLF-MT survey of Tegatayama tunnel; Tegatayama tunnel no denki tansa oyobi VLF tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, T. [Akita University, Akita (Japan). Mining College


    To survey the structure at the depth between 20 and 30 m, field tests were conducted by means of vertical electric and VFL-MT (magnetotelluric) survey. Tegatayama tunnel has a total length of 276 m, width of 7.5 m, and height of 4.7 m, and the depth from the surface is about 28 m near the top of mountain. Near the tunnel, the thickness of surface soil is about 60 cm, which consists of clay soil including soft mudstone gravel. It was found that terrace deposit is distributed up to the depth of 8 m, and that mudstone is distributed below the depth of 8 m. Weighted four-electrode method was adopted for the vertical electrical survey. Measurements were conducted at the immediately above the tunnel, 10 m apart from the center of tunnel in the right and left, and 20 m apart from the center in the east. For the VLF-MT method, component of frequency 22.2 kHz was used. As a result of the tests, it was difficult to illustrate the existence of tunnel from the vertical electrical survey only at one point. Feature of the tunnel could be well illustrated by means of the VLF-MT method. 3 refs., 9 figs.

  10. Effect of occlusal vertical dimension on lip positions at smile. (United States)

    Chou, Jang-Ching; Thompson, Geoffrey A; Aggarwal, Harshit A; Bosio, Jose A; Irelan, Jon P


    In complete mouth reconstructive dentistry, the occlusal vertical dimension may be increased to provide adequate restorative space or to improve esthetics. The effect of increasing the occlusal vertical dimension on the smile is not well understood. The purpose of this study was to evaluate the effect of increasing the occlusal vertical dimension on the dimensions of the smile. Thirty dental students, 12 men and 18 women between the ages of 21 and 30 years old, participated in this study. Polyvinyl siloxane occlusal registrations 2, 4, 6, and 8 mm in thickness were fabricated from articulated stone casts. Posed smile images at occlusal vertical dimension +0, +2, +4, +6, and +8 mm were made with a digital single lens reflex camera mounted on a tripod. A wall-mounted head-positioning device, modified from a cephalometric unit, was used to stabilize the head position. Interlabial gap height, intercommissural width, incisal edge to upper lip, and incisal edge-to-lower lip measurements were made with computer software. The smile index was obtained by dividing width by height. The display zone area was measured by using computer software tracing. One-way repeated measures ANOVA (α=.05) was used for statistical analysis. With an increase in the occlusal vertical dimension, the interlabial gap height, incisal edge to lower lip distance, and display zone area increased significantly (Pdimension. The smile index decreases with increased occlusal vertical dimension. However, the width of the smile and the length of the upper lip tend to remain unchanged. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature?

    Directory of Open Access Journals (Sweden)

    J. F. Price


    Full Text Available The ocean thermal field is often represented in hurricane-ocean interaction by a metric termed upper Ocean Heat Content (OHC, the vertical integral of ocean temperature in excess of 26°C. High values of OHC have proven useful for identifying ocean regions that are especially favorable for hurricane intensification. Nevertheless, it is argued here that a more direct and robust metric of the ocean thermal field may be afforded by a vertical average of temperature. In the simplest version, dubbed T100, the averaging is from the surface to 100 m, a typical depth of vertical mixing by a category 3 hurricane. OHC and T100 are well correlated over the deep open ocean in the high range of OHC, ≥75 kJ cm−2. They are poorly correlated in the low range of OHC, ≤50 kJ cm−2, in part because OHC is degenerate when evaluated on cool ocean regions, ≤26°C. OHC and T100 can be qualitatively different also over shallow continental shelves: OHC will generally indicate comparatively low values regardless of the ocean temperature, while T100 will take on high values over a shelf that is warm and upwelling neutral or negative. In so far as the ocean thermal field alone is concerned, these warm, shallow continental shelves would appear to be as favorable for hurricane intensification as are warm, deep ocean regions.

  12. Three essays on "making" electric power markets (United States)

    Kench, Brian Thomas


    Technological change over the past three decades has altered most of the basic conditions in the electric power industry. Because of technical progress, the dominant paradigm has shifted from the provision of electric power by regulated and vertically integrated local natural monopolies to competition and vertical separation. In the first essay I provide a historical context of the electric industry's power current deregulation debate. Then a dynamic model of induced institutional change is used to investigate how endogenous technological advancements have induced radical institutional change in the generation and transmission segments of the electric power industry. Because the Federal Energy Regulatory Commission (FERC) ordered regulated utilities to provide open access to their transmission networks and to separate their generation and transmission functions, transmission networks have been used more intensively and in much different ways then in the past. The second essay tests experimentally the predictions of neoclassical theory for a radial electric power market under two alternative deregulated transmission institutions: financial transmission rights and physical transmission rights. Experimental evidence presented there demonstrates that an electric power market with physical transmission rights governing its transmission network generates more "right" market signals relative to a transmission network governed by financial transmission rights. The move to a greater reliance on markets for electric power is an idea that has animated sweeping and dramatic changes in the traditional business of electric power. The third essay examines two of the most innovative and complex initiatives of making electric power markets in the United States: California and PJM. As those markets mature and others are made, they must revise their governance mechanisms to eliminate rules that create inefficiency and adopt rules that work efficiently elsewhere. I argue that

  13. Ephemeral Electric Potential and Electric Field Sensor (United States)

    Generazio, Edward R. (Inventor)


    Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.

  14. Electric utilities in Illinois

    Energy Technology Data Exchange (ETDEWEB)


    Although the conference dealt specifically with concerns of the electric utilities in Illinois, the issues were dealt with in the national context as well. A separate abstract was prepared for each of the 5 sections of this proceeding. A total of 25 papers were presented. Section titles are: Forecasting, Planning and Siting, Reliability, Rates and Financing, and Future Developments.

  15. Surgical-Orthodontic Treatment of Gummy Smile with Vertical Maxillary Excess

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Yadav


    Full Text Available Vertical maxillary excess is a well-defined clinical entity with several treatment options available. Treatment of the condition requires extremely well-coordinated orthodontic and surgical treatment planning and execution. This case report describes a multidisciplinary approach in the successful management of a patient with severe vertical maxillary excess. Careful selection and good execution of a surgical-orthodontic treatment plan in the management of vertical maxillary excess provided the superior esthetic and functional results in this case. Maxillary Le Forte 1 procedure was performed for vertical maxillary impaction along with anterior segmental setback. The presented technique was unique as it shortened the treatment time and esthetic results in smile and vertical proportions were achieved.

  16. Radiation effects on unsteady MHD convective heat and mass transfer past a vertical plate with chemical reaction and viscous dissipation

    Directory of Open Access Journals (Sweden)

    Chandra Shekar Balla


    Full Text Available A numerical analysis is performed to study the unsteady magnetohydrodynamic convective flow of heat and mass transfer of a viscous, incompressible, electrically conducting Newtonian fluid along a vertical permeable plate in the presence of a homogeneous first order chemical reaction and taking into account thermal radiation effects. The porous plate was subjected to a constant suction velocity with variable surface temperature and concentration. The governing coupled non-linear boundary layer partial differential equations were solved by an efficient and unconditionally stable finite element method based on Galerkin weighted residual approach. A representative set of computational results for the velocity, temperature and concentration profiles as well as Local skin-friction coefficient, Local Nusselt number and Local Sherwood number are presented graphically for various governing parameters such as M,R,Ec,Sc,andK. In the present analysis various comparisons with previously published work are performed and the results are found to be in a good agreement.

  17. A 225 kW Direct Driven PM Generator Adapted to a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    S. Eriksson


    Full Text Available A unique direct driven permanent magnet synchronous generator has been designed and constructed. Results from simulations as well as from the first experimental tests are presented. The generator has been specifically designed to be directly driven by a vertical axis wind turbine and has an unusually low reactance. Generators for wind turbines with full variable speed should maintain a high efficiency for the whole operational regime. Furthermore, for this application, requirements are placed on high generator torque capability for the whole operational regime. These issues are elaborated in the paper and studied through simulations. It is shown that the generator fulfils the expectations. An electrical control can effectively substitute a mechanical pitch control. Furthermore, results from measurements of magnetic flux density in the airgap and no load voltage coincide with simulations. The electromagnetic simulations of the generator are performed by using an electromagnetic model solved in a finite element environment.

  18. Lidar measured vertical atmospheric scattering profiles

    NARCIS (Netherlands)

    Kunz, G.J.


    The vertical structure of the atmosphere, which is of invaluable interest to meteorologists, geo-physicists and environmental researchers, can be measured with LIDAR. A method has been proposed and applied to invert lidar signals from vertical soundings to height resolved scattering coefficients. In

  19. Vertical integration from the large Hilbert space (United States)

    Erler, Theodore; Konopka, Sebastian


    We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.

  20. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten


    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function as plas...

  1. A vertically resolved model for phytoplankton aggregation

    Indian Academy of Sciences (India)

    components undergo vertical mixing, and phytoplank- ton sink. Phytoplankton growth is limited by the product of nutrient and light terms. The equations for nitrate (NO3) and ... resolved model there is an extra complication: the largest particles that sink out of ...... and biogeochemistry with satellite ocean colour data. Vertically ...

  2. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function as plas...


    African Journals Online (AJOL)

    Vertical plate metering device is intended to minimize seed damage during planting while improving metering efficiency and field capacity. A vertical plate maize seed planter which is adapted for gardens and small holder farmers cultivating less than two hectares has been designed, constructed and tested. The major ...

  4. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.


    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  5. Vertical Integration, Monopoly, and the First Amendment. (United States)

    Brennan, Timothy J.

    This paper addresses the relationship between the First Amendment, monopoly of transmission media, and vertical integration of transmission and content provision. A survey of some of the incentives a profit-maximizing transmission monopolist may have with respect to content is followed by a discussion of how vertical integration affects those…

  6. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    Directory of Open Access Journals (Sweden)

    Sangsoo Lee


    Full Text Available The advanced solid phase crystallization (SPC method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  7. Increase of electric power quality in autonomous electric power systems

    Directory of Open Access Journals (Sweden)

    И. А. Паньков


    Full Text Available With the constant development of electronics for control and monitoring of the work for significant and important elements of electric power systems, the requirements to the quality of electric power also increase. The issues of increasing the quality of electricity are solved in the field of power supply systems, which are the backbone of any electric network, because of their wider distribution and usage, unlike the autonomous electric power systems. In turn, with the development of the marine and river fleet, as well as appearance of such a promising direction for mining operations, like the Arctic zone, the autonomous electric power plants become especially important. One of the main problems of such systems is an insufficient research of the problem of the quality of electric power. The article presents a model of an autonomous electric power system. To simulate such systems, the MathLab package with the Simulink application is being widely used. The developed model provides an assessment of the quality of electricity in it, a comparison of the assessment obtained in existing systems, and a modern solution is proposed to improve the quality of electricity.

  8. Vertically Integrated Rheology of Deforming Oceanic Lithosphere (United States)

    Mishra, J. K.; Gordon, R. G.


    The tectonics of the oceans have traditionally been modeled in terms of rigid plates interacting at narrow boundaries. The now well-documented existence of diffuse oceanic plate boundaries, across which relative motion is distributed over hundreds to thousands of kilometers, demonstrates the need for a different approach to understanding the tectonics and geodynamics of a substantial fraction of oceanic lithosphere. A model that has usefully been applied to diffuse zones of continental deformation is that of a thin viscous sheet of fluid obeying a power-law rheology. The model has few adjustable parameters, typically a power-law exponent, n, and the Argand number [England & McKenzie, 1982], which is a measure of the size of buoyancy forces caused by the deformation, and which can be neglected for deformation of oceanic lithosphere. In prior investigations of a thin sheet of power-law fluid for continental regions, most studies have found that the most appropriate power-law exponent is ≈3 [e.g., England & Molnar 1991, 1997], but a value as large as ≈10 has been recently suggested by Dayem et al. [2009]. Because the rheology of oceanic lithosphere differs significantly from that of continental lithosphere, the most appropriate exponent may be larger than 3, and should in some sense be an appropriately weighted average between the properties of the upper lithosphere, which deforms brittlely and semi-brittlely, and for which the power-law exponent is n → ∞, and the lower lithosphere, which deforms by dislocation glide [Goetze 1978; Evans & Goetze 1979; Ratteron et al. 2003; Dayem et al. 2009; Mei et al. 2010], which obeys an exponential law, and by dislocation creep for which n≈3 [Sonder & England, 1986]. To estimate the appropriate power-law exponent consistent with laboratory experiments we determine strain rate as a function of applied end load on the lithosphere for various ages of lithosphere. We find that a power-law fluid well approximates the

  9. The greening of electricity

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, J.; Wikstroem, T. [ed.


    As people`s values change, the requirements imposed on products change as well. One value which is becoming increasingly important is that of an environmental orientation. Consumers are demanding that manufacturers supply information on the extent to which the production, use, and disposal of products negatively affect the natural environment. For industry, electricity is one of the factors of production. As such, it is also a commodity. The power industry must respond to the demands of consumers and be prepared to explain how electricity is generated

  10. Soft Magnetic Composites in Novel Designs of Electrical Traction Machines


    Zhang, Bo


    Nowadays, the manufacturing of electrical machines based on electrical steel laminations has been well established worldwide. Compared with the electrical steel, the soft magnetic composites (SMC) shows magnetic isotropy and lower eddy current losses. Thus, it becomes an important impulse promoting the development of new topologies of electrical machine. The application of SMC in the electrical traction machine for hybrid electrical vehicle or electrical vehicle has been researched in the work.

  11. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing. (United States)

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho


    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  12. Vertical uniformity of cells and nuclei in epithelial monolayers. (United States)

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P


    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.

  13. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee


    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  14. Uplift Capacity of Inclined Underreamed Piles Subjected to Vertical Load (United States)

    Rahman, Md. Akilur; Sengupta, Siddhartha


    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Inclined (batter) piles are used to support such structures, and to carry the horizontal and vertical loads resulted from the overturning moments. Though studies have been done with inclined piles having no underream bulb, little information is available in the literature about estimating the uplift capacity of inclined underreamed piles. In the present study laboratory experiments have been done with vertically loaded model piles having no underream as well as with one and two underreams. The piles were positioned at angle of inclination of θ = 0°, 10°, 20°, 30° (with vertical); and placed in locally available sand under vertical uplift load. Three different pile stem diameters (D = 20, 25, and 35 mm) were used. The corresponding pile length to stem diameter (l/D) ratio were 18, 14, and 10 respectively. Experiments had been conducted with two relative different densities (45 and 70%) of sand. The failure uplift loads were obtained in each case. It had been found that for inclined piles increase in number of underream bulbs from 0 to 2 was quite effective in resisting uplift loads corresponding to piles having l/D equals to 10. The percentage decreases in uplift capacity corresponding to increase in inclination angle were more pronounced for piles with double underreams.

  15. Vertical motion of particles in vibration-induced granular capillarity

    Directory of Open Access Journals (Sweden)

    Fan Fengxian


    Full Text Available When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube, much resembling the ascending motion of a liquid column in a capillary tube. To gain insights on the particle dynamics dictating this phenomenon – which we term granular capillarity – we numerically investigate the system using the Discrete Element Method (DEM. We reproduce the dynamical process of the granular capillarity and analyze the vertical motion of the individual particles in the tube, as well as the average vertical velocities of the particles. Our simulations show that the height of the granular column fluctuates in a periodic or period-doubling manner as the tube vibrates, until a steady-state (capillary height is reached. Moreover, our results for the average vertical velocity of the particles in the tube at different radial positions suggest that granular convection is one major factor underlying the particle-based dynamics that lead to the granular capillarity phenomenon.

  16. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson


    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  17. Thesaurus of descriptors for the vertical file system

    Energy Technology Data Exchange (ETDEWEB)


    The Thesaurus used for the NYIT Energy Information Center is presented. The center is a comprehensive information service covering every aspect of energy conservation and related technology, including conservation programs and practices, alternative energy systems, energy legislation, and public policy development in the United States and abroad. The Thesaurus includes all subject headings found in the Vertical File as well as other cross referenced terms likely to come to mind when seeking information on a specific energy area.

  18. Practical electrical engineering

    CERN Document Server

    N Makarov, Sergey; Bitar, Stephen J


    This textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical and computer engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as robotics, mechanical, biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors’ primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers. Provides a self-contained, fundamental textbook on electric circuits and basic electronic...

  19. Network meta-analysis, electrical networks and graph theory. (United States)

    Rücker, Gerta


    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Large earthquakes create vertical permeability by breaching aquitards (United States)

    Wang, Chi-Yuen; Liao, Xin; Wang, Lee-Ping; Wang, Chung-Ho; Manga, Michael


    Hydrologic responses to earthquakes and their mechanisms have been widely studied. Some responses have been attributed to increases in the vertical permeability. However, basic questions remain: How do increases in the vertical permeability occur? How frequently do they occur? Is there a quantitative measure for detecting the occurrence of aquitard breaching? We try to answer these questions by examining data from a dense network of ˜50 monitoring stations of clustered wells in a sedimentary basin near the epicenter of the 1999 M7.6 Chi-Chi earthquake in western Taiwan. While most stations show evidence that confined aquifers remained confined after the earthquake, about 10% of the stations show evidence of coseismic breaching of aquitards, creating vertical permeability as high as that of aquifers. The water levels in wells without evidence of coseismic breaching of aquitards show tidal responses similar to that of a confined aquifer before and after the earthquake. Those wells with evidence of coseismic breaching of aquitards, on the other hand, show distinctly different postseismic tidal response. Furthermore, the postseismic tidal response of different aquifers became strikingly similar, suggesting that the aquifers became hydraulically connected and the connection was maintained many months thereafter. Breaching of aquitards by large earthquakes has significant implications for a number of societal issues such as the safety of water resources, the security of underground waste repositories, and the production of oil and gas. The method demonstrated here may be used for detecting the occurrence of aquitard breaching by large earthquakes in other seismically active areas.

  1. Vertical integration of array-type miniature interferometers at wafer level by using multistack anodic bonding (United States)

    Wang, Wei-Shan; Wiemer, Maik; Froemel, Joerg; Enderlein, Tom; Gessner, Thomas; Lullin, Justine; Bargiel, Sylwester; Passilly, Nicolas; Albero, Jorge; Gorecki, Christophe


    In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.

  2. Scattering of electromagnetic plane waves by a buried vertical dike

    Directory of Open Access Journals (Sweden)

    Batista Lurimar S.


    Full Text Available The complete and exact solution of the scattering of a TE mode frequency domain electromagnetic plane wave by a vertical dike under a conductive overburden has been established. An integral representation composed of one-sided Fourier transforms describes the scattered electric field components in each one of the five media: air, overburden, dike, and the country rocks on both sides of the dike. The determination of the terms of the series that represents the spectral components of the Fourier integrals requires the numerical inversion of a sparse matrix, and the method of successive approaches. The zero-order term of the series representation for the spectral components of the overburden, for given values of the electrical and geometrical parameters of the model, has been computed. This result allowed to determine an approximate value of the variation of the electric field on the top of the overburden in the direction perpendicular to the strike of the dike. The results demonstrate the efficiency of this forward electromagnetic modeling, and are fundamental for the interpretation of VLF and Magnetotelluric data.

  3. A generic approach for vertical integration of nanowires. (United States)

    Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Lévy, F; Chelnokov, A


    We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs.

  4. Wellness in South Africa

    African Journals Online (AJOL)

    make to move toward optimal health. • Wellness is a way of life - a lifestyle you design to achieve your highest potential for well-being. • Wellness is a process - a developing awareness that there is no end point,. Figure 1: The Iceberg Model of Wellness. Figure 2: The Illness-Wellness Continuum. Moving towards Wellness.

  5. ATLAS LTCS Vertically Challenged System Lessons Learned (United States)

    Patel, Deepak; Garrison, Matt; Ku, Jentung


    Re-planning of LTCS TVAC testing and supporting RTA (Receiver Telescope Assembly) Test Plan and Procedure document preparation. The Laser Thermal Control System (LTCS) is designed to maintain the lasers onboard Advanced Topographic Laser Altimeter System (ATLAS) at their operational temperatures. In order to verify the functionality of the LTCS, a thermal balance test of the thermal hardware was performed. During the first cold start of the LTCS, the Loop Heat Pipe (LHP) was unable to control the laser mass simulators temperature. The control heaters were fully on and the loop temperature remained well below the desired setpoint. Thermal analysis of the loop did not show these results. This unpredicted behavior of the LTCS was brought up to a panel of LHP experts. Based on the testing and a review of all the data, there were multiple diagnostic performed in order to narrow down the cause. The prevailing theory is that gravity is causing oscillating flow within the loop, which artificially increased the control power needs. This resulted in a replan of the LTCS test flow and the addition of a GSE heater to allow vertical operation.

  6. Maximum height and minimum time vertical jumping. (United States)

    Domire, Zachary J; Challis, John H


    The performance criterion in maximum vertical jumping has typically been assumed to simply raise the center of mass as high as possible. In many sporting activities minimizing movement time during the jump is likely also critical to successful performance. The purpose of this study was to examine maximum height jumps performed while minimizing jump time. A direct dynamics model was used to examine squat jump performance, with dual performance criteria: maximize jump height and minimize jump time. The muscle model had activation dynamics, force-length, force-velocity properties, and a series of elastic component representing the tendon. The simulations were run in two modes. In Mode 1 the model was placed in a fixed initial position. In Mode 2 the simulation model selected the initial squat configuration as well as the sequence of muscle activations. The inclusion of time as a factor in Mode 1 simulations resulted in a small decrease in jump height and moderate time savings. The improvement in time was mostly accomplished by taking off from a less extended position. In Mode 2 simulations, more substantial time savings could be achieved by beginning the jump in a more upright posture. However, when time was weighted more heavily in these simulations, there was a more substantial reduction in jump height. Future work is needed to examine the implications for countermovement jumping and to examine the possibility of minimizing movement time as part of the control scheme even when the task is to jump maximally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Unconventional vertical word-order impairs reading. (United States)

    Bonfiglioli, Claudia


    Western written languages unfold across both the horizontal (from left to right) and the vertical (from top to bottom) dimensions. Culturally determined horizontal reading/writing habits are so pervasive that their influence can be found not only in visual scanning but also in performance across different domains and tasks. However, little is known on the effects of vertical word order. In the present study, a lexical decision task is used to show that reading performance is less efficient when verbal material is vertically arranged following a bottom-to-top order.

  8. Surface tension profiles in vertical soap films (United States)

    Adami, N.; Caps, H.


    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  9. Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 2. finite enclosures

    CERN Document Server

    Authie, G; Tagawa, T


    Numerical computations and experiments were carried out for a buoyant flow of liquid metal (mercury in the experiments) in a long vertical enclosure of square cross-section, in the presence of a uniform horizontal magnetic field. A strong emphasis is put on the case of a magnetic field perpendicular to the applied temperature gradient for two reasons: (1) the MHD damping is smaller than with any other orientation, and (2) the quasi-two-dimensionality of the flow in this case yields a quite efficient velocity measurement technique. The enclosure is heated by a thermally controlled flow of water from one of the vertical walls and cooled by a similar technique from the facing wall. Those two walls are good thermal conductors (thick copper plates in the experiments), whereas the four other walls are thermally insulating. All walls are electrically insulated from the fluid. In this paper, as well as in the companion paper by Tagawa et al. (Eur. J. Mech. B Fluids 21 (4) (2002) 383-398), we model analytically the Ha...

  10. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe (United States)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde


    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  11. [Early motor rehabilitation with the help of a software/hardware complex "Vertical" in acute period of stroke]. (United States)

    Fedin, A I; Tikhonova, D Iu; Solopova, I A; Grishin, A A; Alekhin, A I


    The purpose of our study was the investigation of effectiveness of restoration of lost motor functions in acute period of stroke with the help of software/hardware complex "Vertical". This complex includes a functional bed-trainer for leg movements with phase-dependent functional electrical myostimulation (FES). Fifty-five subjects (mean age 64 +/-1.5 years) were assigned randomly to two groups receiving standard rehabilitation (a control group--27 subjects) and standard rehabilitation combined with the treatment by the "Vertical" complex (FES group--28 subjects). The treatment course was started on average 9 +/- 4 days after stroke and consisted of 30 min sessions 5 days per week during 2 weeks. Outcome was assessed by a battery of scales, everyday movement abilities and biomechanical parameters before and after treatment. No significant differences were found in baseline measurements. After the treatment, there was a positive dynamics in both groups with significant improvement in scores in the FES group. Most of patients of this group (67%) had hemiparesis of mild degree compared to the control group (7%, p < 0.05) to the end of treatment. Also 89% of subjects in the FES group were able to walk without assistance after treatment as compared to the control group (p < 0.05). There was a significant improvement in ankle flexors and extensors force of the paretic leg as well as in ankle joint movements of voluntary "walking" in the supine position in the FES group (p < 0.05).

  12. Electricity unplugged (United States)

    Karalis, Aristeidis


    The judge was driving back late one cold winter night. Entering the garage, the battery-charging indicator in his wirelessly powered electric car came on. "Home at last," crossed his mind. He swiped his personal smartcard on the front-door detector to be let in. He heard a "charging" beep from his mobile phone. The blinking cursor on the half-finished e-mail on the laptop had been waiting all day on the side table. He picked the computer up and walked towards his desk. "Good evening, your honour. Your wirelessly heated robe," said the butler-robot as it approached from the kitchen. Putting on the electric garment, he sat on the medical desk chair. His artificial heart was now beating faster.

  13. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging (United States)

    Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun


    Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.

  14. Electric Car (United States)


    NASA's Lewis Research Center undertook research toward a practical, economical battery with higher energy density. Borrowing from space satellite battery technology, Lewis came up with a nickel-zinc battery that promises longer life and twice the range of the lead-acid counterpart. Lewis researchers fabricated a prototype battery and installed it in an Otis P-500 electric utility van, using only the battery space already available and allowing battery weight equal to that of the va's conventional lead-acid battery

  15. Mandible vertical height correction using lingual bone-split pedicle onlay graft technique

    Directory of Open Access Journals (Sweden)

    Coen Pramono D


    Full Text Available As edentulous mandible become atrophic, a denture bearing area will also be reduced. Difficulty in the removable prosthesis rehabilitation will be present as well. The purpose of this paper reports an innovative surgical technique to cope a problem of unstable complete lower denture due to bone atrophy and resulted of vertical height reduction of the anterior region of the mandible necessary for denture retention. Vertical advancement of the lower jaw using lingual bone split pedicle onlay graft technique in the anterior region of the mandible and followed by secondary epithelization vestibuloplasty in achieving the vertical height dimension. The surgery was achieved satisfactorily as the vertical dimension of the mandible anterior region had increased and the denture seated more stable comparing with the previous denture worn by the patient. It concluded that the surgery was achieved with a great result as the vertical height of the anterior region of the mandible had increased positively therefore lead the denture seated more stable.

  16. Orthogonal Vertical Velocity Dispersion Distributions Produced by Bars (United States)

    Du, Min; Shen, Juntai; Debattista, Victor P.; de Lorenzo-Cáceres, Adriana


    In barred galaxies, the contours of stellar velocity dispersions (σ) are generally expected to be oval and aligned with the orientation of bars. However, many double-barred (S2B) galaxies exhibit distinct σ peaks on the minor axis of the inner bar, which we termed “σ-humps,” while two local σ minima are present close to the ends of inner bars, I.e., “σ-hollows.” Analysis of numerical simulations shows that {σ }z-humps or hollows should play an important role in generating the observed σ-humps+hollows in low-inclination galaxies. In order to systematically investigate the properties of {σ }z in barred galaxies, we apply the vertical Jeans equation to a group of well-designed three-dimensional bar+disk(+bulge) models. A vertically thin bar can lower {σ }z along the bar and enhance it perpendicular to the bar, thus generating {σ }z-humps+hollows. Such a result suggests that {σ }z-humps+hollows can be generated by the purely dynamical response of stars in the presence of a sufficiently massive, vertically thin bar, even without an outer bar. Using self-consistent N-body simulations, we verify the existence of vertically thin bars in the nuclear-barred and S2B models that generate prominent σ-humps+hollows. Thus, the ubiquitous presence of σ-humps+hollows in S2Bs implies that inner bars are vertically thin. The addition of a bulge makes the {σ }z-humps more ambiguous and thus tends to somewhat hide the {σ }z-humps+hollows. We show that {σ }z may be used as a kinematic diagnostic of stellar components that have different thicknesses, providing a direct perspective on the morphology and thickness of nearly face-on bars and bulges with integral field unit spectroscopy.

  17. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition (United States)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.


    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  18. Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique (United States)

    Chirindja, F. J.; Dahlin, T.; Juizo, D.


    Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a well-developed altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.

  19. Vertical vergence adaptation produces an objective vertical deviation that changes with head tilt. (United States)

    Irsch, Kristina; Guyton, David L; Ramey, Nicholas A; Adyanthaya, Rohit S; Ying, Howard S


    To document the cyclovertical ocular motor mechanism used for vertical fusion in healthy subjects, and to explore whether vertical vergence training in healthy individuals can produce objectively confirmed vertical deviations that change with head tilt, revealing a basic mechanism that can produce a pattern of misalignment in an otherwise normal ocular motor system that is similar to superior oblique muscle paresis (SOP). Seven subjects with normal orthoptic examinations were adapted to vertical image disparities using our tilting haploscopic eye-tracking apparatus presenting concentric circle targets without torsional cues. Static eye positions were recorded with head straight and when tilted 45 degrees to the left and right, during both binocular and monocular viewing. Vertical fusional vergence was accompanied by a cycloversion, with the downward-moving eye intorting and the upward-moving eye extorting, implicating primary involvement of the oblique extraocular muscles. After adaptation to the slowly increasing vertical target separation, all subjects developed a temporary vertical deviation in the straight ahead position that increased with head tilt to one side and decreased with head tilt to the other side. These results not only show that head-tilt-dependent changes in vertical deviation are not necessarily pathognomonic for SOP, but also, and more importantly, suggest mechanisms that can mimic SOP and suggest a possible role for vertical vergence training in reducing deviations and thus the amount of head tilt required for fusion. Ultimately, vertical vergence training may provide an adjunct or alternative to extraocular muscle surgery in selected cases.

  20. HL-LHC vertical cryostat during construction

    CERN Multimedia

    Lanaro, Andrea


    7m high "Cluster D" vertical test cryostat during construction at contractor's premises, Alca Technology Srl, in Schio, Italy. The inner helium vessel with its heat exchanger are visible. To be installed in the D pit in SMA18.

  1. Multiloop string vertices from the path integral

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, M.; Lerda, A.


    We derive the multiloop vertices for the bosonic string using path integral methods and establish a precise equivalence between the functional approach to string perturbation theory and the operator formalism on Riemann surfaces recently developed by various authors.

  2. Vertical Land Change, Perry County, Kentucky (United States)

    U.S. Geological Survey, Department of the Interior — The vertical land change activity focuses on the detection, analysis, and explanation of topographic change. These detection techniques include both quantitative...

  3. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei


    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  4. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, Ben N.


    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  5. A Computational Framework for Vertical Video Editing


    Gandhi, Vineet; Ronfard, Rémi


    International audience; Vertical video editing is the process of digitally editing the image within the frame as opposed to horizontal video editing, which arranges the shots along a timeline. Vertical editing can be a time-consuming and error-prone process when using manual key-framing and simple interpolation. In this paper, we present a general framework for automatically computing a variety of cinematically plausible shots from a single input video suitable to the special case of live per...

  6. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.


    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...... cargo ship regulations, was based on a very simplified presumption of bow heights. This paper investigates the development of this damage extent distribution based on three independent methodologies; actual casualty measurements, world fleet bow height statistics, and collision simulation modeling...

  7. Vertical Jump: Biomechanical Analysis and Simulation Study


    Babic, Jan; Lenarcic, Jadran


    By building an efficient biorobotic model which includes an elastic model of the biarticular muscle gastrocnemius and by simulation of the vertical jump we have demonstrated that biarticular links contribute a great deal to the performance of the vertical jump. Besides, we have shown that timing of the biarticular link activation and stiffness of the biarticular link considerably influence the height of the jump. Methodology and results of our study offer an effective tool for the design of t...


    Directory of Open Access Journals (Sweden)

    A. Ursu


    Full Text Available The features of structure of some parent materials essentially influence of direction of pedogenesis, cause the processes of lithomorphism. On heavy tertiary clays in different conditionsare formed the special genetic type (vertisols or transitive to lithomorphic subtype of zonal soil (vertic soil. In article the characteristic of vertisols (the subtype of mollic and ochric and thesubtypes of vertic chernozems and grey soils is given.

  9. Vertical zonality of septal nectaries of Monocots

    Directory of Open Access Journals (Sweden)

    Аnastasiya Odintsova


    Full Text Available Considering the septal nectary as a system of exogenous cavities inside the ovary and taking account of possibilities of various ways of the formation of nectary walls we propose to apply the concept of vertical zonality to the analysis of the septal nectary structure. The comparative analysis of the gynoecium with septal nectaries must include data about the nectary vertical zones and its location in the structural zones of the gynoecium.

  10. Electrical Systems. FOS: Fundamentals of Service. (United States)

    John Deere Co., Moline, IL.

    This electrical systems manual is one of a series of power mechanics texts and visual aids for training in the servicing of electrical systems on mobile machines. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The ten chapters focus on (1) Electricity: How It…

  11. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass (United States)

    John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer


    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10­50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...

  12. Dumping and injury margins in markets with horizontal as well as vertical product differentiation

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Ulff-Møller; Hansen, Jørgen Drud


    -undercutting is an important indicator of the latter. The paper shows that the procedure for calculating injury is flawed due to negligence of quality differences in the calculation of the margin of price-undercutting. This gives countries with high-quality producers an option to practice protectionism. This asymmetry between...... countries in ability to implement anti-dumping measures predominantly favors the developed countries which are specialized in producing high-quality products. The paper suggests an overall critical look at the lenient rules for implementing anti-dumping measures-especially the rules for injury determination...

  13. A Vertical Differential Configuration in GPR prospecting (United States)

    Persico, Raffaele; Pochanin, Gennadiy; Varianytsia-Roshchupkina, Liudmyla; Catapano, Ilaria; Gennarelli, Gianluca; Soldovieri, Francesco


    The rejection of the direct coupling between the antennas is an issue of interest in several GPR applications, especially when it is important to distinguish the targets of interest from the clutter and the signal reflected from the air soil interface. Therefore, in this framework several hardware and software strategies have been proposed. Among the software strategies, probably the most common one is the background removal [1], whereas as an hardware strategy the differential configuration has been introduced in [2-3] and then further on studied in [4] with respect to the spatial filtering properties of the relevant mathematical operator. In particular, the studies proposed in [1] and [4] have shown that, in general, all the strategies for the rejection of the direct coupling have necessarily some drawback, essentially because it is not possible to erase all and only the undesired contributions leaving "untouched" the contributions of the targets of interest to the gathered signal. With specific regard to the differential configuration, in [2-3], the differential configuration consisted in a couple of receiving antennas symmetrically placed around the transmitting one, being the three antennas placed along the same horizontal segment. Therefore, we might define that configuration as a "horizontal differential configuration". Here, we propose a novel differential GPR configuration, where the two receiving antennas are still symmetrically located with respect to the transmitting one, but are placed piled on each other at different heights from the air-soil interface, whereas the transmitting antenna is at the medium height between the two receiving one (however, it is not at the same abscissa but at a fixed horizontal offset from the receiving antennas). Such a differential configuration has been previously presented in [5-6] and allows a good isolation between the antennas, while preserving the possibility to collect backscattered signals from both electrically

  14. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    with supplying electricity for livelihood alongside with urban demand. The price of electricity is increasing every day as well. With this immense opportunity for off-grid electricity production in energy field new renewable energy and technological devices are getting lots of attention around the world. A wind...

  15. Photovoltaic conversion of laser power to electrical power (United States)

    Walker, Gilbert H.; Heinbockel, John H.


    Photovoltaic laser to electric converters are attractive for use with a space-based laser power station. The results of modeling studies for a silicon vertical junction converter used with a Nd laser are given. A computer code was developed for the model and this code was used to conduct a parametric study for a Si vertical junction converter consisting of one p-n junction irradiated with a Nd laser. These calculations predict an efficiency over 50 percent for an optimized converter.

  16. Stormwater Drainage Wells (United States)

    Provides information for identifying stormwater drainage wells, learn how to comply with regulations for storm water drainage wells, and how to reduce the threat to ground water from stormwater injection wells.

  17. The benefits of reworking declining CBM wells

    Energy Technology Data Exchange (ETDEWEB)

    Morad, Kamal; Tavallali, Mohammad [Society of Petroleum Engineers (Canada)


    Coalbed methane (CBM), composed mostly of methane, is an unconventional form of natural gas found in coal. The key parameters for the evaluation of CBM prospects are the gas resources, reserves and deliverability. At the present time, North American CBM producers are experiencing productivity loss and suboptimal production from their aging CBM wells. This study examines the benefits of reworking declining CBM wells by completing new vertical and/or horizontal wells using multi-stage hydraulic fracture. A series of numerical simulations based on a dual-porosity reservoir model was carried out and the production of wells with such completions is compared to that of wells completed by typical single-stage fracturing. The benefits of creating an inner zone of enhanced permeability over the short and long terms are investigated. The study found that in a vertical well geometry that there was a negative impact from permeability loss and that the cumulative production of gas was insensitive to the matrix shrinkage model, while in a horizontal well geometry the permeability loss did not have this effect.

  18. Cryosurgery with Pulsed Electric Fields (United States)

    Daniels, Charlotte S.; Rubinsky, Boris


    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  19. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  20. Vertical III-V nanowire device integration on Si(100). (United States)

    Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike


    We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.

  1. Vertical bifacial solar farms: Physics, design, and global optimization

    KAUST Repository

    Khan, M. Ryyan


    There have been sustained interest in bifacial solar cell technology since 1980s, with prospects of 30–50% increase in the output power from a stand-alone panel. Moreover, a vertical bifacial panel reduces dust accumulation and provides two output peaks during the day, with the second peak aligned to the peak electricity demand. Recent commercialization and anticipated growth of bifacial panel market have encouraged a closer scrutiny of the integrated power-output and economic viability of bifacial solar farms, where mutual shading will erode some of the anticipated energy gain associated with an isolated, single panel. Towards that goal, in this paper we focus on geography-specific optimization of ground-mounted vertical bifacial solar farms for the entire world. For local irradiance, we combine the measured meteorological data with the clear-sky model. In addition, we consider the effects of direct, diffuse, and albedo light. We assume the panel is configured into sub-strings with bypass-diodes. Based on calculated light collection and panel output, we analyze the optimum farm design for maximum yearly output at any given location in the world. Our results predict that, regardless of the geographical location, a vertical bifacial farm will yield 10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a viable technology option for large-scale solar energy generation.

  2. Transverse vertical dispersion in groundwater and the capillary fringe. (United States)

    Klenk, I D; Grathwohl, P


    Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.

  3. Bernstein Algorithm for Vertical Normalization to 3NF Using Synthesis

    Directory of Open Access Journals (Sweden)

    Matija Varga


    Full Text Available This paper demonstrates the use of Bernstein algorithm for vertical normalization to 3NF using synthesis. The aim of the paper is to provide an algorithm for database normalization and present a set of steps which minimize redundancy in order to increase the database management efficiency, and specify tests and algorithms for testing and proving the reversibility (i.e., proving that the normalization did not cause loss of information. Using Bernstein algorithm steps, the paper gives examples of vertical normalization to 3NF through synthesis and proposes a test and an algorithm to demonstrate decomposition reversibility. This paper also sets out to explain that the reasons for generating normal forms are to facilitate data search, eliminate data redundancy as well as delete, insert and update anomalies and explain how anomalies develop using examples-

  4. A new vertical axis wind turbine design for urban areas (United States)

    Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan


    In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.

  5. Black carbon vertical profiles strongly affect its radiative forcing uncertainty

    Directory of Open Access Journals (Sweden)

    B. H. Samset


    Full Text Available The impact of black carbon (BC aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom. Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  6. Solar Electricity (United States)


    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  7. Climate Action Benefits: Electricity (United States)

    This page provides background on the relationship between electricity and climate change and describes what the CIRA Electricity analyses cover. It provides links to the subsectors Electricity Demand and Electricity Supply.

  8. Vertical profile of atmospheric conductivity that matches Schumann resonance observations. (United States)

    Nickolaenko, Alexander P; Galuk, Yuri P; Hayakawa, Masashi


    We introduce the vertical profile of atmospheric conductivity in the range from 2 to 98 km. The propagation constant of extremely low frequency (ELF) radio waves was computed for this profile by using the full wave solution. A high correspondence is demonstrated of the data thus obtained to the conventional standard heuristic model of ELF propagation constant derived from the Schumann resonance records performed all over the world. We also suggest the conductivity profiles for the ambient day and ambient night conditions. The full wave solution technique was applied for obtaining the corresponding frequency dependence of propagation constant relevant to these profiles. By using these propagation constants, we computed the power spectra of Schumann resonance in the vertical electric field component for the uniform global distribution of thunderstorms and demonstrate their close similarity in all the models. We also demonstrate a strong correspondence between the wave attenuation rate obtained for these conductivity profiles and the measured ones by using the ELF radio transmissions.

  9. FFTF vertical sodium storage tank preliminary thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.


    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall.

  10. Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jun; Park, Sang Kyoo; Yang, Hei Cheon [Chonnam National University, Gwangju (Korea, Republic of)


    The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

  11. Household electricity demand profiles

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per Kvols; Larsen, Olena Kalyanova


    Highlights •A 1-min resolution household electricity load model is presented. •Model adapts a bottom-up approach with single appliance as the main building block. •Load profiles are used to analyse the flexibility potential of household appliances. •Load profiles can be applied in other domains, e.......g. building energy simulations. •The demand level of houses with different number of occupants is well captured....

  12. CO2 Allowance and Electricity Price Interaction

    Energy Technology Data Exchange (ETDEWEB)



    With the introduction of CO2 emission constraints on power generators in the European Union, climate policy is starting to have notable effects on energy markets. This paper sheds light on the links between CO2 prices, electricity prices, and electricity costs to industry. It is based on a series of interviews with industrial and electricity stakeholders, as well as a rich literature seeking to estimate the exact effect of CO2 prices on electricity prices.

  13. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    Directory of Open Access Journals (Sweden)

    Xinhui Zhu


    Full Text Available Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF. The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System and VLBI (very long baseline interferometry velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  14. Vertical garden for treating greywater (United States)

    McDonald, Arthur Phaoenchoke; Montoya, Alejandro; Alonso-Marroquin, Fernando


    Recent increasing concerns over the effects of climate change has prompted much debate into the issue of long term sustainability. An investigation was conducted into the feasibility of an off-grid housing unit, particularly in an Australian context. A pilot scale 3m × 2m off-grid housing unit was constructed. Forecasts for water requirements as well as an investigation into rainwater harvesting and greywater recycling was conducted. A multi-container plant and sand biological filter was constructed and filtration abilities investigated. The system met NSW government water reuse standards in terms of suspended solids and pH, achieving total suspended solid removal efficiency of up to 99%.

  15. Evaluation of Vertical Handoff Decision Algorightms Based on MADM Methods for Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    E. Stevens-Navarro


    Full Text Available In the forthcoming heterogeneous wireless environment, the mobility management of users roaming between differentwireless access technologies is a challenging and important technical issue. New mobile devices such as netbooks,smartphones and tablets allow users to perform vertical handoffs among different wireless networks. The multipleattribute decision making (MADM methods are suitable tools to model and study the vertical handoff process. Hence,recently several MADM methods such as SAW, MEW, TOPSIS, GRA, ELECTRE, VIKOR and WMC have beenproposed for vertical handoff. In this paper, we present an extensive performance evaluation and comparative study ofthe seven MAMD methods by means of numerical simulations in MATLAB. We evaluate the performance of eachvertical handoff method under different applications such as voice, data, and cost-constrained connections. We alsoperform a sensitivity analysis and evaluate the computational complexity of each method in terms of number offloating point operations.

  16. Growing Food for Space and Earth: NASA's Contributions to Vertical Agriculture (United States)

    Wheeler, Raymond M.


    Beginning in the 1980s with NASA's Controlled Ecological Life Support System (CELSS) Program and later the 1990s and early 2000s with the Advanced Life Support Project, NASA conducted extensive testing with crops in controlled environment conditions. One series of tests conducted at Kennedy Space Center used a large chamber with vertically stacked shelves to support hydroponic growing trays, with a bank of electric lamps above each shelf. This is essentially the same approach that has become popular for use in so-called vertical agriculture systems, which attempts to optimize plant production in a fixed volume. Some of the findings and commonalities of NASA's work during this period and how it overlaps with current interests in vertical agriculture will be presented in the talk.

  17. UK electricity `94

    Energy Technology Data Exchange (ETDEWEB)



    A detailed factual account is presented of the achievements of the UK electricity industry in 1994. The review is divided into sections headed: the UK energy market and electricity`s share; the electricity market; electricity prices; the electric power supply system; quality of service; protection of the environment; manpower and safety trends; business diverisification and the electricity industry in the European Union. Statistical tables are presented on power stations in the UK and key electricity and energy statistics.



    Barbosa, Aline Fernandes; Unioeste; Peretti, Ana Luiza; Unioeste; Lara, Ellis Regina Medeiros de; Unioeste; Amaro, Fernanda Lucasynski; Unioeste; Carvalho, Alberito Rodrigo de; Unioeste; Bertolini, Gladson Ricardo Flor; Universidade Estadual do Oeste do Paraná


    Neuromuscle electric stimulation is a technique for muscle strengthening based on electric stimulation of the intramuscle branches of motor-neurons that induce muscular contraction. Authors do not agree on functional gains by employing the Russian current technique. Current analysis evaluates the effect of electro-stimulation with the Russian current technique on the triceps surae muscle on the power and resistance of the vertical jump. Assay comprised 16 volunteers who were divided into a co...

  19. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.


    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady

  20. Comprehensive vertical-cavity surface-emitting laser model for optical interconnect transceiver circuit design (United States)

    Wang, Binhao; Sorin, Wayne V.; Palermo, Samuel; Tan, Michael R. T.


    Directly modulated vertical-cavity surface-emitting lasers (VCSELs) are commonly used in short-reach optical interconnect applications. To enable efficient optical interconnect transceiver systems operating at data rates up to 25 Gb/s and beyond, cosimulation environments, which allow for the optimization of driver circuitry with accurate compact VCSEL models, are necessary. A comprehensive VCSEL model, which captures thermally dependent electrical and optical dynamics and provides direct current, small-, and large-signal simulation capabilities with self-consistency, is presented. The device's electrical behavior is described with an equivalent circuit, which captures both large-signal operation and electrical parasitics, while the optical response is captured with a rate-equation-based model. Bias and temperature dependencies are incorporated into both key electrical and optical model parameters. Experimental verification of the model is performed at 25 Gb/s with a 990-nm VCSEL to study the impact of bias current level and substrate temperature.

  1. Vertical distribution of aerosol particles and NO x close to a motorway (United States)

    Imhof, D.; Weingartner, E.; Vogt, U.; Dreiseidler, A.; Rosenbohm, E.; Scheer, V.; Vogt, R.; Nielsen, O. J.; Kurtenbach, R.; Corsmeier, U.; Kohler, M.; Baltensperger, U.

    In May 2001, the large-scale field project BAB II was performed at the highly frequented motorway BAB (Bundesautobahn) A656 with two traffic lanes in each direction between the German cities Heidelberg and Mannheim. Extensive measurements of air pollutants were carried out on both sides of the motorway. In a distance of 60 m (north side) and 84 m (south side) to the traffic lanes, two 52-m-high towers were installed, at which electrically powered elevators were fixed. In these elevators, two NO x analysers, an Electrical Low Pressure Impactor (ELPI; measurement of the particle number size distribution in the diameter range D between 30 nm and 10 μm) and a Diffusion Charger (DC; measuring the particle surface area concentration), were operated to record continuous vertical profiles from 5 to 50 m above the earth's surface. On the upwind side, particle number and surface area concentration as well as NO x values were constant over the entire height profile. On the downwind side, increased concentrations appeared in the near-ground range: in the forenoon, a monotonous decrease in pollutant concentrations with increasing height was found, while around noon the concentration maximum of the particles was slightly shifted to 10 m above ground. This height dependence was found for two different size ranges, i.e., for particles with D1μm, abrasion and resuspension products). In the size range between 300 and 700 nm, no height dependence was found, corroborating the fact that motor traffic emits only few particles in this size range. On the downwind side of the motorway, only background concentrations were measured above 25 m. The results of the profile measurements were confirmed by stationary measurements of particle size distributions with Scanning Mobility Particle Sizers (SMPS) at various heights. A good correlation between particle surface area and NO x concentration was observed. Vehicle emission factors were determined for the particle surface area, number and

  2. A local-circulation model for Darrieus vertical-axis wind turbines (United States)

    Masse, B.


    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  3. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  4. Basic Electricity. Part 2. (United States)

    Kilmer, Donald C.

    This guide, the second (part 2) in a set of four guides, is designed for the student interested in a vocation in electrical work, and includes two units: Unit IV--Electrical Theory, covering thirteen lessons (matter, the atom, electrical charges in the atom, rules of electric charges, electricity, atoms in an electrical conductor, electrical…

  5. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)



    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  6. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings. (United States)

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun


    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  7. Competitive Electricity Market Regulation in the United States: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Grid, Warwick (United Kingdom)


    The electricity system in the United States is a complex mechanism where different technologies, jurisdictions and regulatory designs interact. Today, two major models for electricity commercialization operate in the United States. One is the regulated monopoly model, in which vertically integrated electricity providers are regulated by state commissions. The other is the competitive model, in which power producers can openly access transmission infrastructure and participate in wholesale electricity markets. This paper describes the origins, evolution, and current status of the regulations that enable competitive markets in the United States.

  8. Gas/electricity convergence: role of marketers

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.G. [Powerex Corp., Inc., Youngwood, PA (United States)


    The role of marketers in the convergence of the gas and electricity industry was presented. Topics of discussion included types of convergence, such as wholesale price convergence, BTU convergence, energy information systems service convergence, and corporate convergence. Also discussed was a review of technical, economic, political and regulatory barriers to convergence. Implications for customers, regulators and vertically integrated utilities and trade associations were also assessed.

  9. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition (United States)

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.


    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688

  10. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition. (United States)

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I


    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  11. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition.

    Directory of Open Access Journals (Sweden)

    Mohammed J Uddin

    Full Text Available Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.

  12. Design of a Permanent Magnet Synchronous Generator for a Vertical Axis Wind Turbine


    Madani, Nima


    Different types of permanent magnet generators for wind power application have been subject of research during last two decades. In this thesis different topologies of electrical generators have been investigated for small scale vertical axis wind turbine application. A two stage induction generator is proposed as a alternative solution with respect to the cost of such a system. However, a biggest emphasis in the report has been put on the design of Permanent Magnet Synchronous Generator (PMS...

  13. Determination of performance parameters of vertical axis wind turbines in wind tunnel

    Directory of Open Access Journals (Sweden)

    Nguyen Van Bang


    Full Text Available The paper deals with the determination of the performance parameters of a small vertical axis wind turbines (VAWT, which operate by the utilization of drag forces acting on the blades of the turbine. The performance was evaluated by investigating the electrical power output and torque moment of the wind machine. Measurements were performed on the full-scale model and the experimental data are assessed and compared to other types of wind turbines, with respect to its purpose.

  14. Vertical saccades in children: a developmental study. (United States)

    Bucci, Maria Pia; Seassau, Magali


    There are no studies exploring the development of vertical saccades in large populations of children. In this study, we examined the development of vertical saccades in sixty-nine children. Binocular eye movements were recorded using an infrared video oculography system [Mobile EBT(®), e(ye)BRAIN], and movements from both eyes had been analyzed. The gain and the peak velocity of vertical saccades show an up-down asymmetry. Latency value decreases with the age of children, and it does not depend on the direction of the saccades; in contrast, the gain and the peak velocity values of vertical saccades are stable during childhood. We suggest that the up-down asymmetry is developed early, or is innate, in humans. Latencies of vertical saccades develop with the age of children, in relationship with the development of the cortical network responsible for the saccade preparation. In contrast, the precision and the peak velocity are not age-dependent as they are controlled by the cerebellum and brainstem structures.

  15. Analysis of Contribution of Vertical Gardens to Urban Sustainability: The Case Study of Antalya City, Turkey


    KAYNAKÇI ELİNÇ, Zuhal; KAYA, Latif Gürkan; ELİNÇ, Hakan


    Vertical garden's studies, having been defined a new perspective to the modern construction culture, has been application of the garden to a building facade or to a wall surface as a notion. Application of plants to the vertical surfaces make contributions to urban ecology due to its functions such as aesthetical and visual values as well as protection of the buildings, habilitating the climate effects for human beings, enhancing the environmental aspects and reducing certain ambient pro...

  16. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)


    been seen in MHD power generators, astrophysical and meteorological studies as well as in plasma physics. The Hall effect is due merely to ...... -3. Kg/ m ] fluid density in the boundary layer υ [ 2 -1. m s ] kinematic viscosity σ [ -1. -1. Ω m ] electrical conductivity θ [-] dimensionless temperature φ [. -3. Wm ] frictional heat. Ω [-].

  17. Spin photocurrents in quantum wells

    CERN Document Server

    Ganichev, S D


    Spin photocurrents generated by homogeneous optical excitation with circularly polarized radiation in quantum wells (QWs) are reviewed. The absorption of circularly polarized light results in optical spin orientation due to the transfer of the angular momentum of photons to electrons of a two-dimensional electron gas. It is shown that in QWs belonging to one of the gyrotropic crystal classes a non-equilibrium spin polarization of uniformly distributed electrons causes a directed motion of electrons in the plane of the QW. A characteristic feature of this electric current, which occurs in unbiased samples, is that it reverses its direction upon changing the radiation helicity from left-handed to right-handed and vice versa. Two microscopic mechanisms are responsible for the occurrence of an electric current linked to a uniform spin polarization in a QW: the spin polarization-induced circular photogalvanic effect and the spin-galvanic effect. In both effects the current flow is driven by an asymmetric distribut...

  18. Personal Wellness Tools (United States)

    ... Clubhouse at is home to a wealth of customizable, personal wellness tools to help you ... DBSA envisions wellness for people who live with depression and bipolar disorder. Because DBSA was created for ...

  19. The wellness syndrome

    DEFF Research Database (Denmark)

    Mik-Meyer, Nanna


    Klumme. Wellness er blevet et syndrom, og dets symptomer er angst, selvbebrejdelser og skyldfølelse. Kommentar med udgangspunkt i: Carl Cederström & Andre Spicer, "The Wellness Syndrome" (Polity Books, 2015. 200 p.).......Klumme. Wellness er blevet et syndrom, og dets symptomer er angst, selvbebrejdelser og skyldfølelse. Kommentar med udgangspunkt i: Carl Cederström & Andre Spicer, "The Wellness Syndrome" (Polity Books, 2015. 200 p.)....

  20. Facilitation of vertical vergence by horizontal saccades, found in a patient with dissociated vertical deviation.

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); L.J. van Dijk (Laurens)


    textabstractAbstract The authors examined vertical vergence in a Is-year-old girl with dissociated vertical deviation, a 60 convergent strabismus, no binocular vision, latent nystagmus, and a minimal left amblyopia. Eye movements were recorded during 4s-periods of (1) both eyes open, alternated with