WorldWideScience

Sample records for vertical wells drilled

  1. Optimization of liquid and gas flow rates for aerated drilling fluids considering hole cleaning for vertical and low inclination wells

    Energy Technology Data Exchange (ETDEWEB)

    Ozbayoglu, M.E. [Middle East Univ., Metn (Lebanon)

    2009-07-01

    One of the most widely used technologies in depleted and/or low pressured formations is underbalanced drilling. Drilling fluids are usually gasified in order to achieve underbalanced conditions. The most commonly used drilling fluids during underbalanced drilling are pure gas, gas-liquid mixtures, and foams. This paper presented a study that focused on gas-liquid mixtures. The purpose of this paper was to express two-phase flow in vertical wellbores, and determine required flow rates for liquid and gas phase by considering formation pressure and hole cleaning properties. It was assumed that the liquid phase is the major contributor for cuttings transport, and that the gas phase only influences the bottom hole pressure. The paper introduced a mechanistic model for estimating the hydraulic behaviour of gas-liquid mixture drilling fluids under different flow patterns. Based on the bottom hole pressure and effective hole cleaning point of view, an algorithm was proposed for estimating the optimum required flow rates for liquid and gas phases based on the introduced mechanistic model. The model also predicts the required backpressure that must be applied. It was concluded that since the liquid flow rate is only dependent on proper hole cleaning, gas flow rate can be adjusted to achieve a bottomhole pressure equal to formation pressure. Also, backpressure should not be kept constant at the same value for static and dynamic conditions. Otherwise, bottomhole pressure cannot be kept constant. 14 refs., 9 figs., 1 appendix.

  2. Development of vertical drilling apparatus (Terra-Drill); Entwicklung eines Vertikal-Bohrgeraets (Terra-Drill) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D.

    2009-05-15

    This well-illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the development of a vertical drilling apparatus named Terra-Drill. The various stages of the development of the apparatus, which is based on earlier designs, is discussed. New norms issued in Germany for the size of boreholes for buried vertical heat-exchangers and the appropriate linings to be used are discussed. The new Terra Drill 4407 V drilling apparatus and its testing are discussed. The drill is quoted as being particularly suitable for cramped locations. Technical details are presented and a comprehensive collection of photographs is included. Various preliminary reports and development documentation are included.

  3. DRILL BITS FOR HORIZONTAL WELLS

    Directory of Open Access Journals (Sweden)

    Paolo Macini

    1996-12-01

    Full Text Available This paper underlines the importance of the correct drill bit application in horizontal wells. Afler the analysis of the peculiarities of horizontal wells and drainholes drilling techniques, advantages and disadvantages of the application of both roller cone and fixed cutters drill bits have been discussed. Also, a review of the potential specific featuries useful for a correct drill bit selection in horizontal small diameter holes has been highlighted. Drill bits for these special applications, whose importance is quickly increasing nowadays, should be characterised by a design capable to deliver a good penetration rate low WOB, and, at the same time, be able to withstand high RPM without premature cutting structure failure and undergauge. Formation properties will also determine the cutting structure type and the eventual specific features for additional gauge and shoulder protection.

  4. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  5. Geothermal well drilling manual at Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez P., A.; Flores S., M.

    1982-08-10

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimize hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.

  6. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carden, R.S.

    1993-08-18

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  7. Numerical modelling of cuttings transport with foam in vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Kuru, E. [University of Alberta, Edmonton, AB (Canada)

    2005-03-01

    Development of a one-dimensional unsteady-state mathematical model is described. The model was developed to simulate the transport of cuttings with foam in vertical wells. Numerical solution was used to predict average cuttings concentration in the well as a function of the drilling rate, the gas and the liquid injection rates, the rate of gas and liquid influx from the reservoir, and the borehole geometry. The effects of key drilling parameters on the efficiency of cuttings transport with foam in vertical wells was determined by sensitivity analyses. Verification of model predictions and the results of the sensitivity analyses are presented. The model is claimed to be useful in writing computer programs for design purposes to determine optimal volumetric gas/liquid flow rates, injection pressure and back pressure required to drill vertical wells. It can also be used to develop guidelines for use in operational control of cutting transport with foam. 37 refs., 2 tabs., 13 figs.

  8. The Application of Biodiesel as an Environmental Friendly Drilling Fluid to Drill Oil and Gas Wells

    OpenAIRE

    Ismail, Abdul Razak

    2014-01-01

    The oil and gas industries need to use oil based drilling fluids to drill troublesome rock layers such as sensitive shale formation or to drill very deep oil and gas wells. However, using oil based drilling fluids will create pollution and therefore, environmental regulations on discharge of such drilling fluids have become more stringent because it will give tremendous impacts on the marine life and ecosystem. This research is conducted to formulate a new environmental friendly drilling flui...

  9. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  10. Well control during extended reach drilling - conventional drilling compared to the reelwell drilling method

    OpenAIRE

    Veisene, Audun Tufte

    2014-01-01

    Master's thesis in Petroleum engineering Well control is always of great importance during well operations. The main purpose of well control is to keep downhole pressures in the operating window between pore and fracture pressure. In the case of a well control situation where either the formation is fractured causing loss of circulation or the pressure in the well drops below pore pressure causing a kick, measures have to be taken in order to get the situation under control. When drilling ...

  11. REDUCTION OF AN ADVERSE IMPACT DURING WELL DRILLING BY MEANS OF DRILLING WASTE USAGE

    Directory of Open Access Journals (Sweden)

    Vladimir Sergeevich Kuznetsov

    2017-03-01

    Full Text Available The problem of drilling waste utilisation is assumed to be resolved through the implementation of the complex of environment protection production engineering measures. This includes, firstly, the usage in the process of well drilling of drilling mud on the basis of water-soluble biodegradable polymers and a four-stage drilling mud refining system. Secondly, the usage of the well site construction with trenching for allocation of expressed bore mud and a temporary ground tank for drilling waste water.

  12. REDUCTION OF AN ADVERSE IMPACT DURING WELL DRILLING BY MEANS OF DRILLING WASTE USAGE

    OpenAIRE

    Vladimir Sergeevich Kuznetsov; Igor Konstantinovich Suprun

    2017-01-01

    The problem of drilling waste utilisation is assumed to be resolved through the implementation of the complex of environment protection production engineering measures. This includes, firstly, the usage in the process of well drilling of drilling mud on the basis of water-soluble biodegradable polymers and a four-stage drilling mud refining system. Secondly, the usage of the well site construction with trenching for allocation of expressed bore mud and a temporary ground tank for drilling was...

  13. New evolution at drilling geothermals wells

    Directory of Open Access Journals (Sweden)

    Wittenberger Gabriel

    2004-09-01

    Full Text Available Geothermal energy nowadays belongs to the most interesting, renewable, progressive and ecologically pure energies. Its utilization began long ago, but because development and exploration show that fossil fuels are depletable in outlook of 40 – 50 years, it is needed to pay greater attention to perspective and economically advantageous energies, among which geothermal energy indisputably belongs. Since development continually advances also in drilling technique and technology, it is necessary to conform to this trend and to develop such technologies, procedures and devices, which would, unlike to those currently used, save time, machinery, environment and would be economically more acceptable. This article deals with several possible new methods of drilling such as slimhole drilling, improved control of drilling rinse, using of new modern and better – quality drilling instruments – drilling bits etc. The combination of these new methods and materials brings considerable saving by drilling and thereby lowers financial expense of the whole project. Since Slovakia possesses considerable geothermal sources, which are needed to be drilled and utilized, the following of new trends and methods is of good significance for us, too.

  14. Drilling hazards inventory: The key to safer -and cheaper- wells

    NARCIS (Netherlands)

    Hoetz, G.; Jaarsma, B.; Kortekaas, M.

    2013-01-01

    Safety and cost control are critical success factors in the realm of drilling. Actual well costs frequently exceed planned costs due to unexpected drilling incidents related to potentially avoidable geohazards. It is estimated that - in the Netherlands on average - around 20% of drilling time is

  15. Arsenic behavior in newly drilled wells

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2003-01-01

    In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 ??m) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells. ?? 2003 Elsevier Science Ltd. All rights reserved.

  16. Study of twisting of vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Sereda, N.G.; Burkin, Yu.V.; Markov, O.A.

    1980-01-01

    Diagrams and techniques are examined for analytical and experimental studies for the interaction of components in the lower part of the drilling column of different design with the face and the walls of wells. Results of studies and field introduction of measures to regulate twisting of wells are presented.

  17. 30 CFR 250.1612 - Well-control drills.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Well-control drills. 250.1612 Section 250.1612 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1612 Well-control drills. Well-control...

  18. Assessing the impact of trajectory on wells drilled in an overthrust region

    Energy Technology Data Exchange (ETDEWEB)

    Last, N.C.; McLean, M.R.

    1995-12-31

    Drilling in the Cusiana Field, which is located in the tectonically active foothills of the Casanare region of Colombia, has proved to be extremely difficult. The geological setting has provided a most challenging drilling environment where all aspects of drilling have been tested to the limit. One major contributor to the operational difficulties is poor hole conditions often leading to stuck pipe. However, experience has shown that performance improves when drilling up-dip of the major faults and, bedding, with down-dip and cross-dip well trajectories being the most problematic. Computational stress modelling of the geological cross sections indicates that the principal stresses in the Cusiana Field may be rotated significantly from the vertical and horizontal. After adjusting a conventional wellbore stability analysis to allow for stress rotation, a reasonable match is obtained between prediction and field experience on the issue of stability variation with hole trajectory for wells drilled in the region.

  19. Geothermal well technology: drilling and completions program plan

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, M.M.; Barnett, J.H.; Baker, L.E.; Varnado, S.G.; Polito, J.

    1978-03-01

    The drilling and completion portion of the long-range Geothermal Well Technology Program is presented. A nine-year program is outlined based upon an objective of reducing the cost of geothermal energy development and providing a major stimulus to meeting the power-on-line goals established by the Department of Energy. Major technological challenges to be addressed in this program include improvements in geothermal drilling fluids, downhole drilling motors, rock bits and the development of high flow rate, high temperature completion and reinjection techniques. In addition, fundamental studies will be conducted in drilling energetics to improve the understanding of drilling mechanics. This will lead to advanced development of high performance, low cost geothermal drilling systems.

  20. You say you want a revolution: casing drilling targets 30 per cent well-cost saving

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.; Marsters, S.

    1999-10-01

    Casing drilling is a new method of drilling that eliminates drill strings by using standard casing to simultaneously drill and case wells. Tesco Corporation of Calgary acquired patent rights to casing drilling technology in 1995. The company now offers a conversion kit for existing drill rigs as well a new compact casing drilling rig for shallow markets. The single derrick will be rated at 1,500 meters, but initially it will be used to drill 700-800 meter gas wells in southeast Alberta. Some cost savings will be realized at these shallow depths, but the real cost saving advantages will be realized on deep holes. In the meantime, improvements are planned to the cutting structures of the under-rimming bit to increase safety and withstand higher torque loads. It will be also necessary to adapt techniques such as directional drilling and logging to the casing drilling conveyance mechanism which has been only partially successful thus far, especially in the retrieving mode. Another challenge already met, involved ensuring that casing could be run in high-compression loads without damage to connections. Despite these problems, the system attracted considerable attention with several international companies placing orders for immediate delivery. Another system, this one developed by Sperry-Sun Drilling Services and known as a 'casing while drilling' (CWD) system, is strictly a downhole assembly and is targeted for offshore use and deeper vertical holes. This system is currently being tested in two commercial operations in offshore Indonesia for Unocal Corporation. Despite numerous problems to fill casing with fluid during connections, penetration rates of 300-400 feet per hour were achieved.

  1. Post-drilling analysis of underbalanced drilled wells in Hassi-Messaoud Field, Algeria : case studies

    Energy Technology Data Exchange (ETDEWEB)

    Salim, K. [Sonatrach Inc., Alger (Algeria); Osisanya, S.O. [Oklahoma Univ., Norman, OK (United States); Madi, Y. [Algerian Petroleum Inst. (Algeria)

    2004-07-01

    Underbalanced drilling (UBD) is often undertaken in fractured reservoirs, in depleted formations that are susceptible to well bore damage or mud loss, and in medium to hard rock with problematic drilling rates. UBD involves manipulating the bottom hole circulating pressure so that it will be less than the static reservoir pressure, allowing formation fluids to flow into the well. UBD has increased profits at several oil and gas drilling properties including the Hassi Messaoud Field in Algeria where Sonatrach conducted trials in depleted oil production zones to assess the operational feasibility and commercial benefits of UBD. The technique was found to prevent lost circulation and differential pipe sticking; improve penetration rates; provide real-time reservoir evaluation while drilling; eliminate well stimulation costs; and, improve well bore productivity as a result of reduced formation damage. UBD also provides access to reserves that would otherwise not be produced, and substantially reduces total drilling and completion costs. 3 refs., 4 tabs., 9 figs.

  2. Comprehensive Approach to Oil Well Drilling Cost Estimation ...

    African Journals Online (AJOL)

    The comprehensive approach to oil well drilling cost estimation was presented. A formular was derived from the existing drilling cost estimation formulae that considered a parameter known as host community cost (HCC), which was introduced into the existing formula to make it more comprehensive. The host community ...

  3. Calculator programs guide directionally drilled wells through tangled Thums lease

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.D.; Barth, J.W.

    1983-10-01

    Over 900 wells have been directionally drilled in the Long Beach Unit of the East Wilmington field from four man-made islands and land-based drilling sites. As more wells are added to each site, the planning of new well courses has become more complex. The hand-held calculator, with Long Beach Unit-developed programs, has been an aid in laying out new wells which avoid existing cased bore holes. The hand-held calculator method also prevented unnecessary commercial computer runs of well plats from surface locations that prove impossible or impractical to drill. With the use of these programs the optimum well course can be designed, reducing drilling and design costs.

  4. Investigation of the sidetracking of vertical drill-holes

    Energy Technology Data Exchange (ETDEWEB)

    Sereda N.G.; Burkin, Yu.B.; Markov, O.A.

    1980-01-01

    Plans and a methodology of analytical and experimental investigation of the relationship between the components of the lower part of the drill pipe string of various construction and the face and walls of the drill-hole are surveyed. The results of experiments and field application of means of regulating the sidetracking of drill-hole are given.

  5. Centering devices for drilling wells by helical face motors

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, I.K.; Bogomazov, L.D.; Dudkin, M.P.; Kaplun, V.A.; Remizov, M.I.

    1982-01-01

    Substantiation is provided for developing centering devices in drilling wells by helical face motors. Designs and operating principals are presented for the centering devices with changing diameter, pin centering device, centering device with spherical lock and spring loaded centering device, with recommendations for their assembly and disassembly. The described designs of centering devices can be used with other types of face motors in inclined directional drilling.

  6. A field guide for well site geologists: Cable tool drilling

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Liikala, T.L.

    1987-12-01

    This field is intended for use by Pacific Northwest Laboratory well site geologists who are responsible for data collection during the drilling and construction of monitoring wells on the Hanford Site. This guide presents standardized methods for geologic sample collection and description, and well construction documentation. 5 refs., 5 figs., 2 tabs.

  7. A systematic approach for wellbore drilling and placement of SAGD well pairs and infill wells

    Energy Technology Data Exchange (ETDEWEB)

    Illfelder, H.; Forbes, E.; McElhinney, G.; Rennie, A. [PathFinder, A Schlumberger Company (Canada); Schaepsmeyer, H.; Krawchuk, A. [Cenovus Energy Incorporated (Canada)

    2011-07-01

    In Alberta, Canada, steam assisted gravity drainage (SAGD) is used to enhance oil recovery in heavy oil reservoirs. This process requires the drilling of producer and injector wells which is usually done using standard techniques. These techniques lead to sub-optimal well-placement and thus this paper aims to define a systematic approach for the drilling process. Several methods to improve the drilling process are demonstrated including careful control of the directional drilling process, borehole tortuosity minimization and producer and injector wellbore placement. The paper also presents the real-time analysis of the drilling and advanced ranging (RADAR) system, a service brand and platform developed for implementing the improved methods while drilling is in progress. This paper develops a systematic approach to placing SAGD wells in an improved manner and presents the RADAR system which allows the application of these methods.

  8. 30 CFR 250.462 - What are the requirements for well-control drills?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the requirements for well-control... Other Drilling Requirements § 250.462 What are the requirements for well-control drills? You must conduct a weekly well-control drill with each drilling crew. Your drill must familiarize the crew with its...

  9. PREFACE: Scientific and Technical Challenges in the Well Drilling Progress

    Science.gov (United States)

    2015-02-01

    The Conference "Advanced Engineering Problems in Drilling" was devoted to the 60th anniversary of the Drilling Department, Institute of Natural Resources. Today this Department is the "descendant" of two existing departments - Mining Exploration Technology and Oil and Gas Drilling. It should be mentioned that this remarkable date is associated with the first graduation class of mining engineers in "Mining Exploration Technologies", as well as the 30th anniversary of the Oil and Gas Well Drilling Department. Anniversary is an excellent occasion to remember one's historical past. At the beginning of the last century within the Tomsk Technological Institute n.a. Emperor Nikolai II the Mining Department was established which soon embraced the Obruchev-Usov Mining-Geological School. This School became the parent of mining-geological education in the Asian region of Russia, as well as the successor of mining-geological science. It was and is today one of the leading schools in the spheres of mineral resources exploration, surveying and mining. 1927 is the year of the establishment of the Department of Technology in Mineral Exploration. SibGeokom (Western-Siberia branch of the Geological Committee) under the supervision of M.A. Usov obtained the first Krelis rotary boring drill. Prior to that only the Keystone cable drilling rig was used in exploration. It was I.A. Molchanov who was responsible for the development and implementation of new technology in the field of exploration. In the yard of SibGeokom (now it is Building № 6, Usov St.) the first drilling rig was mounted. This was the beginning of the first training courses for Krelis drilling foremen under the supervision of I.A. Molchanov. In 1931 I.A. Molchanov headed the Department of Exploration which was located in Building № 6. In the outside territory of this building a drilling site was launched, including Keystone cable drilling rig, CAM-500 drilling rig and others. In the Building itself, i.e. in one study

  10. Synthesis of Carboxymethyl Starch for increasing drilling mud quality in drilling oil and gas wells

    Science.gov (United States)

    Minaev, K. M.; Martynova, D. O.; Zakharov, A. S.; Sagitov, R. R.; Ber, A. A.; Ulyanova, O. S.

    2016-09-01

    This paper describes the impact of carboxymethyl starch preparation conditions on physicochemical properties of polysaccharide reagent, widely used as fluid loss reducing agent in drilling mud. Variation of the main parameters of carboxymethylation is researched in the experiment. The following conditions such as temperature and reaction time, amount of water, as well as ratio of NaOH to monochloracetic acid define the characteristics of carboxymethyl starch. The degree of substitution is defined for polysaccharides, as well as the characteristics of samples have been studied by infrared spectroscopy. Rheological characteristics and fluid loss indicator have been investigated to study the impact of the reagents on drilling mud quality.

  11. RESEARCH AND MODEL DEVELOPMENT OF DRILLING AND BLASTING TECHNOLOGY PENETRATIONS OF VERTICAL SHAFTS

    Directory of Open Access Journals (Sweden)

    O. I. Rubleva

    2007-10-01

    Full Text Available The model of destruction of rocks by explosion in vertical shafts is presented. On its basis the most important parameters of technical-and-economical indices of the drilling-and-blasting technology are calculated.

  12. Assessing the impact of trajectory on wells drilled in an overthrust region

    Energy Technology Data Exchange (ETDEWEB)

    Last, N.C.; McLean, M.

    1996-07-01

    Drilling in the Cusiana field, located in the tectonically active foothills of the Casanare region of Colombia, has proved to be extremely difficult. One major contributor to the operational difficulties is poor hole conditions, which often lead to stuck pipe. However, experience has shown that performance improves when drilling updip of the major faults and bedding; downdip and crossdip well trajectories are the most problematic. Stress modeling of the geological cross sections indicates that the principal stresses in the Cusiana field may be rotated significantly from the vertical and horizontal. After adjusting a conventional wellbore-stability analysis to allow for stress rotation, a reasonable match is obtained between prediction and field experience on the issue of stability variation with hole trajectory for wells drilled in the region.

  13. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-01-01

    Full Text Available Signal attenuates while Measurement-While-Drilling (MWD mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section. In general, the effects of variables above on speed are seen to be small in comparison.

  14. Factory-like Optimum Drilling Design of Cluster Well in Jimsar Well Block

    Directory of Open Access Journals (Sweden)

    Liu Yingbiao

    2017-01-01

    Full Text Available The deep heavy oil reservoir of Jimsar well block, which located in Xinjiang oilfield, was developed by cluster well in 2016. In view of the ground environment, long open hole section and poor wellbore stability, the scheme which based on the research of factory-like wellsite platform deployment, well trajectory design and reservoir protection, was designed and carried out in the block. Firstly, the platform was divided into different control regions according to the anti-collision requirement. Secondly, truck-mounted drilling rig and civil power were applied to the factory-like drilling. Thirdly, well track was designed to be three parts: straight, increase and steady. The design can improve the proportion of composite drilling footage. Fourthly, the method of plane scanning and normal surface scanning was adopted to ensure the safety of downhole trajectory. Finally, the natural polymer drilling fluid system and drilling fluid reuse system were used to protect environment and reduce drilling cost. The results show that the maximum reducing time of single drill rig is 32.5 day, and the penetration rate of whole platform is increasing continuously.

  15. Casing pull tests for directionally drilled environmental wells

    Energy Technology Data Exchange (ETDEWEB)

    Staller, G.E.; Wemple, R.P. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

  16. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    Science.gov (United States)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  17. Geothermal down-well instrumentation (during drilling). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kent, W.H.; Mitchell, P.G.; Row, R.V.

    1979-06-01

    The object of the work was to investigate acoustic and electromagnetic telemetry methods which could be used as a basis for geothermal MWD systems. The emphasis has been on methods which employ the drill string and/or the formation surrounding the borehole as a signalling media. The investigations have been confined to the transmission characteristics of these media and have excluded the area of downwell measurements. Work performed includes: laboratory measurement of acoustic attenuation in drill pipe; field measurement of acoustic attenuation in drill pipe; measurements of drill string vibrations (drilling noise) during drilling; evaluation of drill string vibration dampers; modeling of electromagnetic propagation in the borehole region; and field measurements of attenuation of a downwell electromagnetic signal source. (MHR)

  18. 30 CFR 256.70 - Extension of lease by drilling or well reworking operations.

    Science.gov (United States)

    2010-07-01

    ..., and Extensions § 256.70 Extension of lease by drilling or well reworking operations. The term of a lease shall be extended beyond the primary term so long as drilling or well reworking operations are... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Extension of lease by drilling or well...

  19. Geopressured-geothermal well report. Volume I. Drilling and completion

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

  20. Design and mechanical analysis of a new automatic vertical drilling tool used in a slim borehole

    Science.gov (United States)

    Li, Lixin; Xue, Qilong; Liu, Baolin; Zhao, Liudong; Li, Xinyu

    2017-05-01

    A new kind of electronic-controlled automatic vertical drilling tool is developed to satisfy the requirements of slim-hole, which has a unique push-actuator to push-the-bit. This paper introduced the mechanical structure and working process of the automatic tool, and analyzed in detail one of the most critical component - the push-actuator. The analysis reveals that, with the pitch-row of studdle increasing form 20mm to 24mm, the ratio of push-out force to forward force gradually decreases from 2.04 to 0.78, and the completion time of push-out process reduces from 75.8s to 42.8. This result indicates that, using studdles with shorter pitch-rows, larger straightening force could be obtained. On the contrary, studdles with longer pitch-rows could realize more quickly sensitive response of deviation control. These unique characters make the vertical drilling being able to be adapted to different geological conditions and technological requirements, the applicability and feasibility of the drilling tool remarkably improved. Thus this vertical drilling tool owns a great promotional value for oil & gas exploration.

  1. 30 CFR 250.413 - What must my description of well drilling design criteria address?

    Science.gov (United States)

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.413 What must my description of well... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my description of well drilling...

  2. 25 CFR 226.25 - Gas well drilled by oil lessees and vice versa.

    Science.gov (United States)

    2010-04-01

    ... the gas lessee does not, within 45 days after receiving notice and cost of drilling, elect to take over such well and reimburse the oil lessee the cost of drilling, including all damages paid and the... notice and cost of drilling, elect to take over the well, he/she must immediately notify the gas lessee...

  3. The Role of Well Control Training in Developing Safe Onshore and Offshore Oil Drilling Operations

    Science.gov (United States)

    Abulhassn, Aber

    2016-01-01

    This research investigates the role of the International Well Control Forum (IWCF) Rotary Drilling Well Control Training Program in developing safe oil drilling operations from the perspective of onshore and offshore drilling crews. The research methodology is a qualitative case study. A total of 40 IWCF candidates were interviewed, with 10 from…

  4. EM Telemetry Tool for Deep Well Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey M. Gabelmann

    2005-11-15

    This final report discusses the successful development and testing of a deep operational electromagnetic (EM) telemetry system, produced under a cooperative agreement with the United States Department of Energy's National Energy Technology Laboratory. This new electromagnetic telemetry system provides a wireless communication link between sensors deployed deep within oil and gas wells and data acquisition equipment located on the earth's surface. EM based wireless telemetry is a highly appropriate technology for oil and gas exploration in that it avoids the need for thousands of feet of wired connections. In order to achieve the project performance objectives, significant improvements over existing EM telemetry systems were made. These improvements included the development of new technologies that have improved the reliability of the communications link while extending operational depth. A key element of the new design is the incorporation of a data-fusion methodology which enhances the communication receiver's ability to extract very weak signals from large amounts of ambient environmental noise. This innovative data-fusion receiver based system adapts advanced technologies, not normally associated with low-frequency communications, and makes them work within the harsh drilling environments associated with the energy exploration market. Every element of a traditional EM telemetry system design, from power efficiency to reliability, has been addressed. The data fusion based EM telemetry system developed during this project is anticipated to provide an EM tool capability that will impact both onshore and offshore oil and gas exploration operations, for conventional and underbalanced drilling applications.

  5. A two-fluid model for vertical flow applied to CO2 injection wells

    DEFF Research Database (Denmark)

    Linga, Gaute; Lund, Halvor

    2016-01-01

    the well, including tubing, packer fluid, casing, cement or drilling mud, and rock formation. This enables prediction of the temperature in the well fluid and in each layer of the well. The model is applied to sudden shut-in and blowout cases of a CO2 injection well, where we employ the highly accurate...... to thermal stresses and subsequent loss of well integrity, and it is therefore crucial to employ models that can predict this accurately. In this work, we present a model for vertical well flow that includes both two-phase flow and heat conduction. The flow is described by a two-fluid model, where mass...

  6. Numerical modelling of cuttings transport in horizontal wells using conventional drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Bjorndalen, E.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)

    2004-07-01

    Some of the problems associated with poor wellbore cleaning include high drag or torque, slower rate of penetration, formation fractures and difficulty in wellbore steering. Some of the factors that affect cuttings transport include drilling fluid velocity, inclination angle, drilling fluid viscosity and drilling rate. The general practice is to stop drilling when necessary to clean boreholes with viscous pills, pipe rotation or drilling fluid circulation. It is important to predict when drilling should be stopped for remedial wellbore cleaning. This can be accomplished with a transient cuttings transport model which can improve drilling hydraulics, particularly in long horizontal well sections and extended reach (ERD) wells. This paper presents a newly developed 1-dimensional transient mechanistic model of cuttings transport with conventional (incompressible) drilling fluids in horizontal wells. The numerically solved model predicts the height of cutting beds as a function of different drilling operational parameters such as fluid flow rate and rheological characteristics, drilling rates, wellbore geometry and drillpipe eccentricity. Sensitivity analysis has demonstrated the effects of these parameters on the efficiency of solids transport. The proposed model can be used in the creation of computer programs designed to optimize drilling fluid rheology and flow rates for horizontal well drilling. 29 refs., 3 tabs., 12 figs.

  7. Uncertainty assessment in well productivity loss due to drilling induced formation damage

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y.; Renard, G.; Herzhaft, B. [Institut Francais du Petrole (France)

    2005-07-01

    Formation damage due to drilling fluid has a significant impact on well productivities, particularly for horizontal wells which are completed with an open hole or slotted liner. The degree of formation damage depends on several parameters such as the characteristics of drilling fluid, formation properties and operating conditions. This study quantified the uncertainty in productivity loss using a near-wellbore numerical simulator. The response surface method was used to assess the impact of various uncertain input parameters on formation damage. This approach made it possible to determine the parameters that influence well productivity loss and to estimate the risk of formation damage. It also made it possible to evaluate different drilling and completions strategies with good control of the most sensitive parameters to limit productivity loss. The approach provides key recommendations for choosing different drilling strategies such as overbalanced drilling, underbalanced drilling and drilling fluid designs to maximize well productivity. 30 refs., 7 tabs., 17 figs.

  8. Imaging rock deformation while drilling wells: a seismic coda perspective

    Science.gov (United States)

    De Siena, Luca; Asena, Kathleen

    2017-04-01

    We investigate the potential of using seismic reflection data acquired within the sub-basaltic North-Eastern Atlantic margin to monitor deformation at wells. Attenuation estimates of three seismic lines is computed using the logarithm of the spectrum of the coda decay curve. A total of 551 stacked signals from a seismic reflection survey with a trace interval of 50 traces in each line are employed in the analysis. A multiple scattering model is adapted assuming the contributions due to intrinsic absorption are dominant over scattering effects within a large lapse time. Optimal parameters are established to investigate the capability of the dataset to quantify attenuation. The inferred low Qc estimates within the region is summarised through the following frequency relationships: Qc = 9.70 f 0.74, Qc = 7.16 f 0.85 and Qc = 9.94 f 0.71 for the mentioned seismic lines. The frequency dependent coda Q models are jointly interpreted using the images of the seismic sections, well data and the documented regional geology of the underlying rock sequences. The consistency of coda Q with the interpreted seismic sections affirms the fitness of the optimal parameters. In an attempt to substantiate the coda Q approximations, peak delay times of the Pwaves are measured. Apart from the relationship with the geology of the region, resonance scattering of seismic energy caused by deformation of the rocks on the wells adjacent to the seismic lines manifests within certain frequencies. We infer this is a new mxlti-scalle seismic method to monitor rock defamation while drilling wells.

  9. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  10. Optimizing Drilling Efficiency by PWD (Pressure-While-Drilling) Sensor in wells which were drilled in the Khazar-Caspian Sea of the Azerbaijan Republic

    Science.gov (United States)

    Amirov, Elnur

    2017-04-01

    Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig

  11. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Vancouver (Canada); Smith, Nicole [Nevada Geothermal Power Company, Vancouver (Canada)

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  12. Resistance of rocks to crushing during well drilling

    Directory of Open Access Journals (Sweden)

    И. Е. Долгий

    2016-11-01

    Full Text Available The paper presents properties of the rocks according to their resistance to drilling. The effects of differential pressure on the rock drillability and changes in rocks strength depending on the depth of their occurrence and crushing conditions are examined. The interlinkage between technological processes for rock crushing at the borehole bottom and breaking stresses has been analyzed. The interlinkage between the breaking loads and deformations of rocks with account of their structural changes and rate of loading has been assessed. The relevance and applicability of identified regularities between stresses, deformations and differential pressure for solving practical tasks of efficient rock crushing in the course of drilling have been assessed. Issues of providing theoretical evidence for the rock breakage with the rock cutting tools in the bottom-hole conditions have been reviewed. It is proven that the rock destruction effect of drilling depends not only on the value of the breaking load but also on the rate of its application.

  13. Reservoir Characterization during Underbalanced Drilling of Horizontal Wells Based on Real-Time Data Monitoring

    OpenAIRE

    Gao Li; Hongtao Li; Yingfeng Meng; Na Wei; Chaoyang Xu; Li Zhu; Haibo Tang

    2014-01-01

    In this work, a methodology for characterizing reservoir pore pressure and permeability during underbalanced drilling of horizontal wells was presented. The methodology utilizes a transient multiphase wellbore flow model that is extended with a transient well influx analytical model during underbalanced drilling of horizontal wells. The effects of the density behavior of drilling fluid and wellbore heat transfer are considered in our wellbore flow model. Based on Kneissl’s methodology, an imp...

  14. Ensemble-based methods for well drilling sequence and time optimization under uncertainty

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Chitu, A.G.; Nair, R.; Egberts, P.J.P.; Ghazaryan, L.; Feng, T.; Hustoft, L.

    2016-01-01

    One of the main activities in the (re-)development of large hydrocarbon fields is the drilling of new wells. The drilling process may involve a large number of wells and take several years to complete. Challenges include the selection of a limited set of wells from many possible well paths, and the

  15. Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells

    Energy Technology Data Exchange (ETDEWEB)

    Huttrer, G.W. [Geothermal Management Company, Inc., Frisco, CO (United States)

    1997-11-01

    This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

  16. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    Science.gov (United States)

    Harte, Philip T.; Flanagan, Sarah M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference nitrate and nitrite) over short (0.61 m) distances.

  17. Case study : drilling horizontal exploration shale gas wells efficiently by collaboration of subsurface and drilling teams utilizing geosciences technology

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N. [Talisman Energy Inc., Calgary, AB (Canada)

    2010-07-01

    Geosciences modelling and seismic interpretation methods were used to determine shear failure and pore pressure predictions from offset wells and seismic interval velocities. The aim of the study was to predict a safe range of mud weights for minimizing the horizontal stresses associated with drilling shale gas exploratory wells. The customized tool computed pore pressure, shear failure, fracture gradient and overburden gradients which were then calibrated with drilling data obtained from leak offset tests, formation integrity tests, and various other drilling parameters. Gamma rays were imported into the tool's dataset and a shale base line was selected based on the lithology and volume of shale. The shale base line was then transformed into a compaction trend line. Bower's sonic, Miller's sonic, and semi-log resistivity equations were used to predict normal compaction trend lines (NCTLs). The shear failure gradient was calculated and rock strength parameters were determined by characterizing the friction angle and cohesive strength of the formations. Case studies of wells drilled by Talisman were presented to validate the methods. 11 refs., 3 tabs., 15 figs.

  18. Planning of directionally drilled wells in the offshore Wilmington field using the hand-held calculator

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.D.; Barth, J.W.

    1983-02-01

    As of July 1982, 901 wells have been directionally drilled in the Long Beach Unit of the East Wilmington Field from 4 man-made islands and land based drilling sites. As more wells are added to each site the planning of new well courses has become more complex. The hand held calculator with Long Beach Unit developed programs has been an aid in laying out new wells which will avoid existing cased boreholes.

  19. Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

    1992-03-01

    This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

  20. Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

    1992-03-01

    This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

  1. TEMLOPI: a thermal simulator for estimation of drilling mud and formation temperatures during drilling of geothermal wells

    Science.gov (United States)

    Garcia, A.; Hernandez, I.; Espinosa, G.; Santoyo, E.

    1998-06-01

    This paper describes the development and application of the numerical code TEMLOPI v1.0, a useful tool for estimating the temperature distribution of the fluids employed for drilling geothermal wells. The simulator also allows estimation of the thermal disturbance of the surrounding rock caused by fluid circulation and well shut-in. TEMLOPI v1.0 is based on a mathematical model which considers the main heat transfer mechanisms and the heat exchange between the circulating fluid and the surrounding rock formation that occur during drilling of geothermal wells. The simulator was written in Fortran 77 using modular (block) programming. It runs on most IBM compatible personal computers and can be used in-situ. Input data includes the well geometry, the fluid and flow characteristics and the initial (undisturbed) formation temperature. Output files contain the transient temperature distribution (temperature vs depth) in the fluid flowing down the drill pipe and the annulus, the well inner face and the radial distribution in the surrounding rock. The software code model, architecture, input and output files and the solution algorithm are described in detail. Results obtained were validated by comparison with data published in the specialized literature and with data from well Az-29 from the Los Azufres Mexican geothermal field.

  2. Make-up wells drilling cost in financial model for a geothermal project

    Science.gov (United States)

    Oktaviani Purwaningsih, Fitri; Husnie, Ruly; Afuar, Waldy; Abdurrahman, Gugun

    2017-12-01

    After commissioning of a power plant, geothermal reservoir will encounter pressure decline, which will affect wells productivity. Therefore, further drilling is carried out to enhance steam production. Make-up wells are production wells drilled inside an already confirmed reservoir to maintain steam production in a certain level. Based on Sanyal (2004), geothermal power cost consists of three components, those are capital cost, O&M cost and make-up drilling cost. The make-up drilling cost component is a major part of power cost which will give big influence in a whole economical value of the project. The objective of this paper it to analyse the make-up wells drilling cost component in financial model of a geothermal power project. The research will calculate make-up wells requirements, drilling costs as a function of time and how they influence the financial model and affect the power cost. The best scenario in determining make-up wells strategy in relation with the project financial model would be the result of this research.

  3. Cuttings-carried theory and erosion rule in gas drilling horizontal well

    Directory of Open Access Journals (Sweden)

    Wei Na

    2014-01-01

    Full Text Available In gas horizontal drilling, the gas with cuttings will go through the annulus at high speed which will lead strong erosion to the drill tools. This paper proposes a cuttings-carried theory and modified the critical cuttings-carried model for the gas-solid flow. Meanwhile, the erosive energy is obtained through simulating the gas-solid mixture in different conditions. The study result has positive significance on the determination of reasonable injection volume by optimizing construction parameters of horizontal well in gas drilling.

  4. A Real-Time Decision Support System for High Cost Oil-Well Drilling Operations

    OpenAIRE

    Gundersen, Odd Erik; Sørmo, Frode; Aamodt, Agnar; Skalle, Pål

    2012-01-01

    In this article we present DrillEdge — a commercial and award winning software system that monitors oil-well drilling operations in order to reduce non-productive time (NPT). DrillEdge utilizes case-based reasoning with temporal representations on streaming real-time data, pattern matching and agent systems to predict problems and give advice on how to mitigate the problems. The methods utilized, the architecture, the GUI and development cost in addition to two case studies are documented.

  5. Analysis of the electromagnetic wave resistivity tool in deviated well drilling

    Science.gov (United States)

    Zhang, Yumei; Xu, Lijun; Cao, Zhang

    2014-04-01

    Electromagnetic wave resistivity (EWR) tools are used to provide real-time measurements of resistivity in the formation around the tool in Logging While Drilling (LWD). In this paper, the acquired resistivity information in the formation is analyzed to extract more information, including dipping angle and azimuth direction of the drill. A finite element (FM) model of EWR tool working in layered earth formations is established. Numerical analysis and FM simulations are employed to analyze the amplitude ratio and phase difference between the voltages measured at the two receivers of the EWR tool in deviated well drilling.

  6. Modeling of inelastic deformation around vertical and horizontal wells

    Science.gov (United States)

    Stefanov, Yu. P.; Myasnikov, A. V.

    2015-10-01

    The paper presents numerical modeling results on plastic deformation development around vertical and horizontal wells in rocks for four lithologies typical of the Bazhenov formation. Estimates of irreversible deformation were obtained depending on wellbore pressure, in-situ stress distribution and rock dilation factor. Computational results showed that for the considered lithology borehole pressure management does not always provide wellbore stability if the contrast between principal stresses is large enough.

  7. Cutting transport models and parametric studies in vertical and deviated wells

    OpenAIRE

    Jiimaa, Girmaa

    2014-01-01

    Master's thesis in Petroleum engineering Field experience shows that the accumulation of cutting in a wellbore causes several drilling problems. These include an increase in torque and drag, which may limit drilling from reaching to a desired target formation. In addition, it may cause drill string sticking and poor hydraulics as well. Therefore, an efficient hole cleaning is the most important aspect of drilling operation. Hole-cleaning is a very complex subject, which integrates fluid me...

  8. Fracture Detection in Geothermal Wells Drilled in Volcanic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Gonfalini, Mauro; Chelini, Walter; Cheruvier, Etienne; Suau, Jean; Klopf, Werner

    1987-01-20

    The Phlegrean Fields, close to Naples, are the site of important geothermal activity. The formations are volcanic and mostly tuffites. They are originally very tight but the geothermal alteration locally produces fractures with large increase in permeability. The lack of geological markers makes well-to-well correlation quite difficult. Thus the local detection of fractured zones in each well is very important for the evaluation of its potential. The Mofete 8 D well is a typical example. A rather complete logging program was run for fracture detection. Standard methods turned out to be disappointing. However several non-standard detectors were found to be very consistent and, later on, in excellent agreement with the analysis of cuttings. They are derived from the Dual Laterolog, the SP, the Temperature log and, most particularly, the Acoustic Waveforms from the Long Spacing Sonic. The Dual Laterolog and the Temperature Log indicate invasion by fresh and cold mud filtrate; the SP behaves as in a typical Sand-Shale sequence. Sonic Waveforms were first analyzed by a purely empirical method derived from consistent log patterns. A practical algorithm compares the total energy measured in each of the two fixed time windows located the one before, the other after the fluid arrivals. The altered zones (i.e. fractured and permeable) are clearly shown by a complete reversal of the relative energy of these two windows. A more scientific method was then applied to the Waveforms; it is based on both logging experiments and physical considerations. The energy carried by the tube wave is separated by a frequency discrimination: it correlates very well with formation alteration, thus also with the other indicators including the empirical Waveform method. It should have two advantages: – It should permit at least a semi quantitative permeability evaluation – It seems to be promising in other formations: non-volcanic geothermal wells and even hydrocarbon-bearing rocks. 10 refs

  9. 26 CFR 1.263(c)-1 - Intangible drilling and development costs in the case of oil and gas wells.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Intangible drilling and development costs in the... Intangible drilling and development costs in the case of oil and gas wells. For rules relating to the option to deduct as expenses intangible drilling and development costs in the case of oil and gas wells, see...

  10. Reservoir Characterization during Underbalanced Drilling of Horizontal Wells Based on Real-Time Data Monitoring

    Directory of Open Access Journals (Sweden)

    Gao Li

    2014-01-01

    Full Text Available In this work, a methodology for characterizing reservoir pore pressure and permeability during underbalanced drilling of horizontal wells was presented. The methodology utilizes a transient multiphase wellbore flow model that is extended with a transient well influx analytical model during underbalanced drilling of horizontal wells. The effects of the density behavior of drilling fluid and wellbore heat transfer are considered in our wellbore flow model. Based on Kneissl’s methodology, an improved method with a different testing procedure was used to estimate the reservoir pore pressure by introducing fluctuations in the bottom hole pressure. To acquire timely basic data for reservoir characterization, a dedicated fully automated control real-time data monitoring system was established. The methodology is applied to a realistic case, and the results indicate that the estimated reservoir pore pressure and permeability fit well to the truth values from well test after drilling. The results also show that the real-time data monitoring system is operational and can provide accurate and complete data set in real time for reservoir characterization. The methodology can handle reservoir characterization during underbalanced drilling of horizontal wells.

  11. Technologies in deep and ultra-deep well drilling: Present status, challenges and future trend in the 13th Five-Year Plan period (2016–2020

    Directory of Open Access Journals (Sweden)

    Haige Wang

    2017-09-01

    Full Text Available During the 12th Five-Year Plan period (2011–2015, CNPC independently developed a series of new drilling equipment, tools and chemical materials for deep and ultra-deep wells, including six packages of key drilling equipment: rigs for wells up to 8000 m deep, quadruple-joint-stand rigs, automatic pipe handling devices for rigs for wells being 5000/7000 m deep, managed pressure drilling systems & equipment, gas/fuel alternative combustion engine units, and air/gas/underbalanced drilling systems; seven sets of key drilling tools: automatic vertical well drilling tools, downhole turbine tools, high-performance PDC bits, hybrid bits, bit jet pulsation devices, no-drilling-surprise monitoring system, & casing running devices for top drive; and five kinds of drilling fluids and cementing slurries: high temperature and high density water-based drilling fluids, oil-based drilling fluids, high temperature and large temperature difference cementing slurry, and ductile cement slurry system. These new development technologies have played an important role in supporting China's oil and gas exploration and development business. During the following 13th Five-Year Plan period (2016–2020, there are still many challenges to the drilling of deep and ultra-deep wells, such as high temperatures, high pressures, narrow pressure window, wellbore integrity and so on, as well as the enormous pressure on cost reduction and efficiency improvement. Therefore, the future development trend will be focused on the development of efficient and mobile rigs, high-performance drill bits and auxiliary tools, techniques for wellbore integrity and downhole broadband telemetry, etc. In conclusion, this study will help improve the ability and level of drilling ultra-deep wells and provide support for oil and gas exploration and development services in China. Keywords: Deep well, Ultra-deep well, Drilling techniques, Progress, Challenge, Strategy, CNPC

  12. Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.

    1999-06-01

    During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

  13. Drilling a Deep Geologic Test Well at Fort Pulaski National Monument, Georgia

    Science.gov (United States)

    Schultz, Arthur P.; Seefelt, Ellen L.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, is drilling a deep geologic test well at Fort Pulaski National Monument, Georgia. The operation is scheduled to run between mid-February and mid-April 2010. When completed, the well will be about 1,500 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Savannah area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.

  14. Use of the Rotary-Percussion Drilling Technology in the OKR Mining Conditions and by Drilling the Wells for Purposes of Heating Pump Installation

    Directory of Open Access Journals (Sweden)

    Koníèek Jiøí

    2004-09-01

    Full Text Available Sedimentary rocks in the Ostrava-Karviná Coalfield (OKR especially the Saddle Seams of the Karviná Formation are marked with considerable abrasive property following from the high content of siliceous component in these rocks. In these conditions drilling, using the classic methods seems to be economically unefficient.Some experiences from use of the new method – rotary-percussion drilling technology, using downhole drills and tested by OKD, DPB s.c. Paskov under various conditions in the OKR mines and also from drilling the wells for heating pump fitting commonly with the proposal of the innovation of this technology are presented in this paper.

  15. Comments on some of the drilling and completion problems in Cerro Prieto geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, B.; Sanchez G, G.

    1981-01-01

    From 1960 to the present, 85 wells with a total drilling length exceeding 160,000 m have been constructed at Cerro Prieto, a modest figure compared to an oil field. This activity took place in five stages, each characterized by changes and modifications required by various drilling and well-completion problems. Initially, the technical procedures followed were similar to those used in the oil industry. However, several problems emerged as a result of the relatively high temperatures found in the geothermal reservoir. The various problems that have been encountered can be considered to be related to drilling fluids, cements and cementing operations, lithology, geothermal fluid characteristics, and casings and their accessories. As the importance of high temperatures and the characteristics of the geothermal reservoir fluids were better understood, the criteria were modified to optimize well-completion operations, and satisfactory results have been achieved to date.

  16. Gas Deliverability Model with Different Vertical Wells Properties

    Directory of Open Access Journals (Sweden)

    L. Mucharam

    2003-11-01

    Full Text Available We present here a gas deliverability computational model for single reservoir with multi wells. The questions of how long the gas delivery can be sustained and how to estimate the plateau time are discussed here. In order to answer such a question, in this case, a coupling method which consists of material balance method and gas flow equation method is developed by assuming no water influx in the reservoir. Given the rate and the minimum pressure of gas at the processing plant, the gas pressure at the wellhead and at the bottom hole can be obtained. From here, the estimation of the gas deliverability can be done. In this paper we obtain a computational method which gives direct computation for pressure drop from the processing plant to the wells, taking into account different well behavior. Here AOF technique is used for obtaining gas rate in each well. Further Tian & Adewumi correlation is applied for pressure drop model along vertical and horizontal pipes and Runge-Kutta method is chosen to compute the well head and bottom hole pressures in each well which then being used to estimate the plateau times. We obtain here direct computational scheme of gas deliverability from reservoir to processing plant for single reservoir with multi-wells properties. Computational results give different profiles (i.e. gas rate, plateau and production time, etc for each well. Further by selecting proper flow rate reduction, the flow distribution after plateau time to sustain the delivery is computed for each well.

  17. Asphalts tests using onshore drilling oil wells residues; Ensaios asfalticos utilizando residuos de perfuracao onshore

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, Adriano Elisio de F.L.; Rodrigues, John Kennedy G.; Ferreira, Heber Carlos; Lucena, Leda Christiane de F.L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Lucena, Luciana de F.L. [Faculdade de Ciencias Sociais Aplicada (FACISA), Campina Grande, PB (Brazil)

    2008-07-01

    The drilling cuttings are one of the residues produced by the oils industries in large amounts during the drilling of oil wells. An alternative of final disposal of the drilling cutting residue is its utilization in asphalt mixtures. Based on this alternative, it was realized chemical and granulometric analysis and tests (Marshall and indirect tensile strength), on the asphaltic mixture using the residue from the oil drilling wells (well: 1-POTI-4-RN, located at Governador DIX-Sept Rosado - RN - Brazil). The achieved results to Marshall test indicated that for the analyzed mixture, the ideal content of residue that can be incorporated to the asphaltic composition and attend at the DNIT-ES 31 (2006) is 5%. To the indirect tensile strength test, the results showed a strength value higher than the minimum limit requested by the DNIT (0,65 MPa). The achieved results indicated the possibility of the utilization of the drilling cuttings in asphaltic pavements as fine aggregate, obeying the percentage limits, as an alternative to the final disposal. (author)

  18. A Review of the Evaluation, Control, and Application Technologies for Drill String Vibrations and Shocks in Oil and Gas Well

    Directory of Open Access Journals (Sweden)

    Guangjian Dong

    2016-01-01

    Full Text Available Drill string vibrations and shocks (V&S can limit the optimization of drilling performance, which is a key problem for trajectory optimizing, wellbore design, increasing drill tools life, rate of penetration, and intelligent drilling. The directional wells and other special trajectory drilling technologies are often used in deep water, deep well, hard rock, and brittle shale formations. In drilling these complex wells, the cost caused by V&S increases. According to past theories, indoor experiments, and field studies, the relations among ten kinds of V&S, which contain basic forms, response frequency, and amplitude, are summarized and discussed. Two evaluation methods are compared systematically, such as theoretical and measurement methods. Typical vibration measurement tools are investigated and discussed. The control technologies for drill string V&S are divided into passive control, active control, and semiactive control. Key methods for and critical equipment of three control types are compared. Based on the past development, a controlling program of drill string V&S is devised. Application technologies of the drill string V&S are discussed, such as improving the rate of penetration, controlling borehole trajectory, finding source of seismic while drilling, and reducing the friction of drill string. Related discussions and recommendations for evaluating, controlling, and applying the drill string V&S are made.

  19. SMART MONITORING AND DECISION MAKING FOR REGULATING ANNULUS BOTTOM HOLE PRESSURE WHILE DRILLING OIL WELLS

    Directory of Open Access Journals (Sweden)

    M. P. Vega

    Full Text Available Abstract Real time measurements and development of sensor technology are research issues associated with robustness and safety during oil well drilling operations, making feasible the diagnosis of problems and the development of a regulatory strategy. The major objective of this paper is to use an experimental plant and also field data, collected from a basin operation, offshore Brazil, for implementing smart monitoring and decision making, in order to assure drilling inside operational window, despite the commonly observed disturbances that produce fluctuations in the well annulus bottom hole pressure. Using real time measurements, the performance of a continuous automated drilling unit is analyzed under a scenario of varying levels of rate of penetration; aiming pressure set point tracking (inside the operational drilling window and also rejecting kick, a phenomenon that occurs when the annulus bottom hole pressure is inferior to the porous pressure, producing the migration of reservoir fluids into the annulus region. Finally, an empirical model was built, using real experimental data from offshore Brazil basins, enabling diagnosing and regulating a real drilling site by employing classic and advanced control strategies.

  20. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    Science.gov (United States)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  1. Running casing on conventional wells with Casing Drilling {sup TM} technology

    Energy Technology Data Exchange (ETDEWEB)

    Warren, T.M.; Schneider, W.P.; Johns, R.P.; Zipse, K.D. [Tesco Corp., Calgary, AB (Canada)

    2004-07-01

    Casing Drilling{sup TM} is a newly developed and efficient well construction method that combines drilling and casing running processes into a single operation. This radical change to the entire well casing running process eliminates standard components and processes that are inefficient and hazardous. The commercialization of this new technology has resulted in the development of custom equipment and procedures designed to efficiently handle casings on a drilling rig, including conventionally drilled wells. The technology offers safer casing running operations and makes it possible to ream casing to the bottom. In addition, less people are needed to operate the portable Casing Drive System (CDS). One of the primary components of the system is the top drive which provides the power for rotation and torque. The CDS supports full axial and torsional load for running the casing. The well can be circulated while running the casing. The casing can be washed and reamed to the bottom whenever a tight hole is encountered. Thirty one operators have successfully used the CDS on more than 150 onshore and offshore wells in 7 countries. 13 refs., 2 tabs., 12 figs.

  2. Proposal for the award of a contract for the drilling of horizontal and vertical holes in concrete and rock

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the drilling of horizontal and vertical holes in concrete and rock. Following a market survey carried out among 49 firms in nine Member States, a call for tenders (IT-2794/ST/LHC) was sent on 14 August 2001 to nine firms and one consortium consisting of three firms, in seven Member States. By the closing date, CERN had received five tenders from four firms and one consortium in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with FORBETON (CH), the lowest bidder, for the drilling of horizontal and vertical holes in concrete and rock for a total amount not exceeding 1 754 470 Swiss francs, not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: CH - 100%.

  3. USE OF DRILLING FLUIDS IN MONITORING WELL NETWORK INSTALLATION: LANL AND OPEN DISCUSSION

    Science.gov (United States)

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to provide a technical analysis of the impacts of well drilling practices implemented at the Los Alamos National Laboratory (LANL) as part of the development of their grou...

  4. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  5. Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale.

    Science.gov (United States)

    Struchtemeyer, Christopher G; Davis, James P; Elshahed, Mostafa S

    2011-07-01

    The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process.

  6. Interactive computer graphics system improves planning of directionally drilled wells in the East Wilmington field

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, T.S.; Kendle, D.W.

    1988-06-01

    The Long Beach Unit of the East Wilmington field contains more than 1,200 wells directionally drilled from four manmade islands and five land-based drilling sites. Planning new wells that avoid interference with existing wells becomes more difficult and time-consuming as the density of wells in the Unit increases. Improvements and modifications in design procedures have culminated in the interactive computer graphics system now in use. The interactive computer-graphics system (ICGS) permits the viewing of a proposed new well or redrill well course, together with all existing well surveys and other proposed well courses in the area of interest. Plan, section, and traveling cylinder views can be displayed to allow the identification of design problems. The significance of the problems is then minimized by use of the interactive features of the system to refine the design parameters. The system's interactive features are also used to create, edit, and plot the finalized design. Reductions in design and drilling costs and many other less-direct benefits have been realized as a result of the system's use. The step-by-step use of the system from the user's point of view is described and examples of its graphic output are presented. To the best of our knowledge, this is the most advanced system of its kind in use today.

  7. Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:

    Energy Technology Data Exchange (ETDEWEB)

    Satrape, J.V.

    1987-11-24

    The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

  8. Equipment and technology for drilling wells and extracting oil at oil deposits of the Tatar SSR

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The results are cited of studies in the field of completing wells in carbonate sediments, the hydraulics of circulation of a drilling system and the reinforcement of steam pumping wells. Data are presented about the physical and mechanical properties of heat resistant plugging mixtures, oil field tests of a well head gasket for a sucker rod pump with automatic compression of the seal and studies of the heating depth of a stratum with ignition of a powder charge. A complex stabilizer emulsifier for invert emulsions is examined. Formulas are cited for rating the pressure in a descending stream in the casing annulus of a gas lift well.

  9. Siting and drilling recommendations for a geothermal exploration well, Wendel-Amedee KGRA, Lassen County, California

    Energy Technology Data Exchange (ETDEWEB)

    McNitt, J.R.; Wilde, W.R.

    1980-12-01

    All available exploration data relevant to the GeoProducts leasehold in the Wendel-Amedee KGRA are reviewed and interpreted. On the basis of this interpretation, locations and procedures are recommended for drilling geothermal production wells capable of supplying fluid at a temperature of 250/sup 0/F or greater. The following are covered: stratigraphy and geological history, geologic structure, geochemistry, geophysics, temperature-gradient data, and fluid quality. (MHR)

  10. Sample application to test site No. 1, Kenedy Co. [Offset well information, drilling fluids program, cost estimates, and data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Podio, A.L.; Gray, K.E.; Isokrari, O.F.; Knapp, R.M.; Silberberg, I.H.; Thompson, T.W.

    1976-01-01

    In order to satisfy the objective of outlining the preliminary plan and schedules as well as obtaining representative costs for drilling a geopressured geothermal well the guidelines have been applied to one of the possible test sites identified by the Resource Assessment Phase I of the project. The specific site is the Armstrong lease in the Candelaria Field in Kenedy County, Texas. Offset well information including bit records, drilling fluid programs, formation pressure encountered and casing programs for the Armstrong No. 20 and No. 22 wells are presented. Based on this information a preliminary drilling program has been prepared. Well completion and production considerations were taken into account in the preparation of the drilling program. A brief description of drilling operations is also included to clarify the terminology used.

  11. DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Fox, K.

    2013-10-02

    The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

  12. Improved slant drilling well for in situ remediation of groundwater and soil at contaminated sites.

    Science.gov (United States)

    Furukawa, Yasuhide; Mukai, Kazuhiro; Ohmura, Keisuke; Kobayashi, Takeshi

    2017-03-01

    Soil contamination has become a crucial issue in urban redevelopment. Japan has many contaminated sites on which manufacturing has been conducted over several decades. Site holders are now under pressure to manage chemical contamination; however, the use of heavy machinery is difficult in remedial operations on restricted sites, especially where there are still working factories. The slant well is a potentially useful technique in such settings, but its use is technically challenging because of the need for high drilling accuracy and the difficulty in sealing the slanted bores. In this study, we investigated an improved technique for slant drilling that can be used around existing structures to treat contaminated soil and groundwater. A key to this novel approach was the use of water-swelling materials as sealants. Research at a test site investigated the accuracy of drilling. Tracer tests were also conducted using sodium chloride and urea. The improved slant borings showed a deviation of less than 2% from the target bore. The spread of the two tracers at different depths was demonstrated. The proposed technique provides a useful approach to the treatment of brownfield sites in countries where in situ remediation has not yet been undertaken.

  13. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    Science.gov (United States)

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  14. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jiaxiang Xia

    2016-12-01

    Full Text Available The Yuanba Gasfield is a large gas field discovered by Sinopec in the Sichuan Basin in recent years, and another main exploration area for natural gas reserves and production increase after the Puguang Gasfield. The ultra-deep sour gas reservoir in the Yuanba Gasfield is characterized by complicated geologic structure, deep reservoirs and complex drilled formation, especially in the continental deep strata which are highly abrasive with low ROP (rate of penetration and long drilling period. After many years of drilling practice and technical research, the following six key drilling and completion technologies for this type reservoir are established by introducing new tools and technologies, developing specialized drill bits and optimizing drilling design. They are: casing program optimization technology for ROP increasing and safe well completion; gas drilling technology for shallow continental strata and high-efficiency drilling technology for deep high-abrasion continental strata; drilling fluid support technologies of gas–liquid conversion, ultra-deep highly-deviated wells and horizontal-well lubrication and drag reduction, hole stability control and sour gas contamination prevention; well cementing technologies for gas medium, deep-well long cementing intervals and ultra-high pressure small space; horizontal-well trajectory control technologies for measuring instrument, downhole motor optimization and bottom hole assembly design; and liner completion modes and completion string optimization technologies suitable for this gas reservoir. Field application shows that these key technologies are contributive to ROP increase and efficiency improvement of 7000 m deep horizontal wells and to significant operational cycle shortening.

  15. Roughnecks, rock bits and rigs : the evolution of oil well drilling technology in Alberta, 1883-1970

    Energy Technology Data Exchange (ETDEWEB)

    Gow, A.

    2005-07-01

    This book provides a comprehensive review of the evolving technologies related to oil and gas exploration in the province of Alberta. Oil well drilling technology evolved significantly during the era of conventional oil exploration in the province, from 1883 through 1970. Technologies such as drill bits and power sources were developed largely through trial and error to meet the specific needs of individuals working in the oilfield. The competence and resolve to innovate by drill crews was told through accounts of evolution in drilling processes and equipment, along with personal accounts of those who worked on the rigs. The technology of the oilfield was placed into context with a summary of the history and geology of oil and gas in Alberta. The book also presents a considerate view of events in relation to those who invested in the industry, carried out research drilling and serviced the exploration industry. The first part of the book provides the background to the oil and gas industry. Part 2 examines the earliest technology, the standard cable tool drilling rig, the combination rig and some associated developments in drilling. The third part focuses on the rotary drilling rig and the final part outlines the types of challenges faced by the drillers and the hazards of working on Alberta's rigs. refs., tabs., figs.

  16. Analysis on the nitrogen drilling accident of Well Qionglai 1 (I: Major inducement events of the accident

    Directory of Open Access Journals (Sweden)

    Yingfeng Meng

    2015-12-01

    Full Text Available Nitrogen drilling in poor tight gas sandstone should be safe because of very low gas production. But a serious accident of fire blowout occurred during nitrogen drilling of Well Qionglai 1. This is the first nitrogen drilling accident in China, which was beyond people's knowledge about the safety of nitrogen drilling and brought negative effects on the development of gas drilling technology still in start-up phase and resulted in dramatic reduction in application of gas drilling. In order to form a correct understanding, the accident was systematically analyzed, the major events resulting in this accident were inferred. It is discovered for the first time that violent ejection of rock clasts and natural gas occurred due to the sudden burst of downhole rock when the fractured tight gas zone was penetrated during nitrogen drilling, which has been named as “rock burst and blowout by gas bomb”, short for “rock burst”. Then all the induced events related to the rock burst are as following: upthrust force on drilling string from rock burst, bridging-off formed and destructed repeatedly at bit and centralizer, and so on. However, the most direct important event of the accident turns out to be the blockage in the blooie pipe from rock burst clasts and the resulted high pressure at the wellhead. The high pressure at the wellhead causes the blooie pipe to crack and trigged blowout and deflagration of natural gas, which is the direct presentation of the accident.

  17. Determination of natural radioactivity in irrigation water of drilled wells in northwestern Saudi Arabia.

    Science.gov (United States)

    Alkhomashi, N; Al-Hamarneh, Ibrahim F; Almasoud, Fahad I

    2016-02-01

    The levels of natural radiation in bedrock groundwater extracted from drilled wells in selected farms in the northwestern part of Saudi Arabia were addressed. The investigated waters form a source of irrigation for vegetables, agricultural crops, wheat, and alfalfa to feed livestock consumed by the general public. Information about water radioactivity in this area is not available yet. Therefore, this study strives to contribute to the quality assessment of the groundwater of these wells that are drilled into the non-renewable Saq sandstone aquifer. Hence, gross alpha and beta activities as well as the concentrations of (224)Ra, (226)Ra, (228)Ra, (234)U, (238)U, and U(total) were measured, compared to national and international limits and contrasted with data quoted from the literature. Correlations between the activities of the analyzed radionuclides were discussed. The concentrations of gross alpha and beta activities as well as (228)Ra were identified by liquid scintillation counting whereas alpha spectrometry was used to determine (224)Ra, (226)Ra, (234)U and (238)U after separation from the matrix by extraction chromatography. The mean activity concentrations of gross α and β were 3.15 ± 0.26 Bq L(-1) and 5.39 ± 0.44 Bq L(-1), respectively. Radium isotopes ((228)Ra and (226)Ra) showed mean concentrations of 3.16 ± 0.17 Bq L(-1) and 1.12 ± 0.07 Bq L(-1), respectively, whereas lower levels of uranium isotopes ((234)U and (238)U) were obtained. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Regulation of Water Pollution from Hydraulic Fracturing in Horizontally-Drilled Wells in the Marcellus Shale Region, USA

    OpenAIRE

    Heather Hatzenbuhler; Terence J. Centner

    2012-01-01

    Hydraulic fracturing is an industrial process used to extract fossil fuel reserves that lie deep underground. With the introduction of horizontal drilling, new commercial sources of energy have become available. Wells are drilled and injected with large quantities of water mixed with specially selected chemicals at high pressures that allow petroleum reserves to flow to the surface. While the increased economic activities and the outputs of domestic energy are welcomed, there is growing conce...

  19. Recovery of benthic megafauna from anthropogenic disturbance at a hydrocarbon drilling well (380 m depth in the Norwegian Sea.

    Directory of Open Access Journals (Sweden)

    Andrew R Gates

    Full Text Available Recovery from disturbance in deep water is poorly understood, but as anthropogenic impacts increase in deeper water it is important to quantify the process. Exploratory hydrocarbon drilling causes physical disturbance, smothering the seabed near the well. Video transects obtained by remotely operated vehicles were used to assess the change in invertebrate megafaunal density and diversity caused by drilling a well at 380 m depth in the Norwegian Sea in 2006. Transects were carried out one day before drilling commenced and 27 days, 76 days, and three years later. A background survey, further from the well, was also carried out in 2009. Porifera (45% of observations and Cnidaria (40% dominated the megafauna. Porifera accounted for 94% of hard-substratum organisms and cnidarians (Pennatulacea dominated on the soft sediment (78%. Twenty seven and 76 days after drilling commenced, drill cuttings were visible, extending over 100 m from the well. In this area there were low invertebrate megafaunal densities (0.08 and 0.10 individuals m(-2 in comparison to pre-drill conditions (0.21 individuals m(-2. Three years later the visible extent of the cuttings had reduced, reaching 60 m from the well. Within this area the megafaunal density (0.05 individuals m(-2 was lower than pre-drill and reference transects (0.23 individuals m(-2. There was a significant increase in total megafaunal invertebrate densities with both distance from drilling and time since drilling although no significant interaction. Beyond the visible disturbance there were similar megafaunal densities (0.14 individuals m(-2 to pre-drilling and background surveys. Species richness, Shannon-Weiner diversity and multivariate techniques showed similar patterns to density. At this site the effects of exploratory drilling on megafaunal invertebrate density and diversity seem confined to the extent of the visible cuttings pile. However, elevated Barium concentration and reduced sediment grain size

  20. Numerical solution of the start-up of well drilling fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Gabriel Merhy de; Negrao, Cezar Otaviano Ribeiro; Franco, Admilson Teixeira [UTFPR - Federal University of Technology - Parana - Curitiba, PR (Brazil)], e-mails: gabrielm@utfpr.edu.br, negrao@utfpr.edu.br, admilson@utfpr.edu.br; Martins, Andre Leibsohn; Gandelman, Roni Abensur [TEP/CENPES - PETROBRAS S/A, Rio de Janeiro, RJ (Brazil)], e-mails: aleibsohn@petrobras.com.br, roniag@petrobras.com.br

    2010-07-01

    The drilling fluid is designed to build up a gel-like structure, when at rest, in order to avoid cuttings to drop at the bore bottom and therefore to prevent the bit obstruction. As consequence, high pressures, which can be larger than the formation pressure and can damage the well, are needed to break up the gel when circulation resumes. Due to its thixotropic effect, the gel viscosity remains high for a while after the circulation restarts. The gelation may have significant importance, specially, in deep waters where high pressures and low temperatures take place. The current work presents a compressible transient flow model of the start-up flow of drilling fluids, in order to predict borehole pressures. The model comprises one-dimensional conservation equations of mass and momentum and one state equation for the calculation of the fluid density as a function of the pressure. The considered geometry is a concentric annular pipe of length L. Its internal diameter is D1 and external one, D2. For a circular pipe, the internal diameter is made equal to zero. The main difference from previous model was the type of boundary condition: Constant flow rate at the pipe inlet rather than the constant pressure. Both Newtonian and non-Newtonian Bingham fluid flows are considered. The governing equations are discretized by the Finite Volume Method using the fully implicit formulation and the first-order upwind scheme. The resulting non-linear algebraic equations are iteratively solved. The model results were corroborated with an analytical solution for Newtonian flows. Case studies are conducted to evaluate the effect of fluid flow properties, well geometry and flow rate on borehole pressures. For Bingham fluid flow one can observe that large pressures (compared with Newtonian fluid flow) are observed when constant flow rate are input as boundary condition. Pressure peaks caused by the acoustic wave propagation can be more intense in low compressible fluid flow, low viscosity

  1. Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland

    Science.gov (United States)

    Elders, W.A.; Fridleifsson, G.O.; Zierenberg, R.A.; Pope, E.C.; Mortensen, A.K.; Gudmundsson, A.; Lowenstern, J. B.; Marks, N.E.; Owens, L.; Bird, D.K.; Reed, M.; Olsen, N.J.; Schiffman, P.

    2011-01-01

    Magma flowed into an exploratory geothermal well at 2.1 km depth being drilled in the Krafla central volcano in Iceland, creating a unique opportunity to study rhyolite magma in situ in a basaltic environment. The quenched magma is a partly vesicular, sparsely phyric, glass containing ~1.8% of dissolved volatiles. Based on calculated H2O-CO2 saturation pressures, it degassed at a pressure intermediate between hydrostatic and lithostatic, and geothermometry indicates that the crystals in the melt formed at ~900 ??C. The glass shows no signs of hydrothermal alteration, but its hydrogen and oxygen isotopic ratios are much lower than those of typical mantle-derived magmas, indicating that this rhyolite originated by anhydrous mantle-derived magma assimilating partially melted hydrothermally altered basalts. ?? 2011 Geological Society of America.

  2. The integrated method to select drilling muds for well construction in difficult geological conditions

    Science.gov (United States)

    Horev, V. S.; Dmitriev, A. Y.; Boyko, I. A.; Rakhimov, T. R.; Pandey Kumar, Sushil

    2016-03-01

    The article is concerned with the integrated approach to choose drilling mud composition for pay horizons penetration. An optimal choice of drilling mud composition would not only mean ensuring basic fluid properties, but also should minimize the impact on the pay zones when penetrating the pay horizons for the first time. To carry out better assessment of drilling mud impact on pay horizons, it is reasonable to study both technological parameters and filtration analyses, which would allow us to estimate the level of drilling mud impact on the pay horizon.

  3. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  4. Drilling and Testing the DOI041A Coalbed Methane Well, Fort Yukon, Alaska

    Science.gov (United States)

    Clark, Arthur; Barker, Charles E.; Weeks, Edwin P.

    2009-01-01

    The need for affordable energy sources is acute in rural communities of Alaska where costly diesel fuel must be delivered by barge or plane for power generation. Additionally, the transport, transfer, and storage of fuel pose great difficulty in these regions. Although small-scale energy development in remote Arctic locations presents unique challenges, identifying and developing economic, local sources of energy remains a high priority for state and local government. Many areas in rural Alaska contain widespread coal resources that may contain significant amounts of coalbed methane (CBM) that, when extracted, could be used for power generation. However, in many of these areas, little is known concerning the properties that control CBM occurrence and production, including coal bed geometry, coalbed gas content and saturation, reservoir permeability and pressure, and water chemistry. Therefore, drilling and testing to collect these data are required to accurately assess the viability of CBM as a potential energy source in most locations. In 2004, the U.S. Geological Survey (USGS) and Bureau of Land Management (BLM), in cooperation with the U.S. Department of Energy (DOE), the Alaska Department of Geological and Geophysical Surveys (DGGS), the University of Alaska Fairbanks (UAF), the Doyon Native Corporation, and the village of Fort Yukon, organized and funded the drilling of a well at Fort Yukon, Alaska to test coal beds for CBM developmental potential. Fort Yukon is a town of about 600 people and is composed mostly of Gwich'in Athabascan Native Americans. It is located near the center of the Yukon Flats Basin, approximately 145 mi northeast of Fairbanks.

  5. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing

    Science.gov (United States)

    Osborn, Stephen G.; Vengosh, Avner; Warner, Nathaniel R.; Jackson, Robert B.

    2011-01-01

    Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH4 L-1 (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L-1 (P fracturing fluids. We conclude that greater stewardship, data, and—possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use. PMID:21555547

  6. Multilateral wells drilling technology implementation in the Castilla Field - Colombia, to improve Guadalupe reservoirs drainage: Castilla 32, 33, and 34 ML wells cases study

    Energy Technology Data Exchange (ETDEWEB)

    Florez, Alberto; Mercado, Orlando; Rodriguez, Sandra; Rojas, Ricardo; Naranjo, Carlos A. [ECOPETROL, Bogota (Colombia); Velez, Jorge [Halliburton Latin-America, Santa Fe de Bogota (Colombia)

    2008-07-01

    National Colombian Petroleum Company - ECOPETROL, is in the process of evaluating different technologies to increase production and improve recovery factors in their mature oil and gas fields. As part of that process, a multidisciplinary team evaluated the feasibility of multilateral well technology implementation in some of their mature fields that are currently in the late-development phase. Castilla field, located in the eastern planes of Colombia, was selected as the first option for multilateral technology implementation based in reservoir features, type of oil, and field antecedents. This paper presents the process used to conceptualize the optimum multilateral well design for Castilla field, integrating all of the geological and engineering disciplines. Geology: geological model visualization, target zones definition, pay zones lateral continuity, petrophysical properties, and fluids distribution were evaluated to select the areas to drill with advanced architecture well design. Reservoir: basic reservoir performance simulation was performed to evaluate productivity with horizontal and multilateral wells, and the difference in final reserves recovery compared with current conventional directional wells. Water production and coning problems were identified as key factors to define the multilateral well implementation in this field. Drilling: trajectory design, multilateral junction depth definition and TAML level selection, casing point's definition, drilling time and AFE estimation were the technical aspects evaluated during the planning phase to determine if the technology would be feasible. A comparison with conventional pad design was conducted to validate economic value. Multilateral TAML level 4 system selection flow process is presented applying oil industry best practices. Completion: The optimum lateral completion and production assembly design were main concerns during the planning process. Slotted liners, screens, and open-hole completion

  7. Application of fine managed pressure drilling technique in complex wells with both blowout and lost circulation risks

    Directory of Open Access Journals (Sweden)

    Ling Yan

    2015-03-01

    Full Text Available Fractured carbonate reservoirs are susceptible to blowout and lost circulation during drilling, which not only restricts drilling speed, but also poses big threat to well control. Moreover, there are few technical means available to reconstruct pressure balance in the borehole. Accordingly, the fine managed pressure drilling was used in the drilling of Well GS19 in the Qixia Formation with super-high pressure and narrow density window, which is a success: ① back pressure in the annular spaces will be adjusted to maintain a slightly over-balanced bottom-hole hydraulic pressure, and fluid level in the circulation tank will be kept in a slight dropping state to ensure that natural gas in the formation would not invade into the borehole in a massive volume; ② inlet drilling fluid density will be controlled at around 2.35 g/cm3, back pressures in the annular be maintained at 2–5 MPa, and bottom-hole pressure equivalent circulation density be controlled at 2.46–2.52 g/cm3; ③ during managed pressure drilling operations, if wellhead pressure exceeds or expects to exceed 7 MPa, semi-blind rams will be closed. Fluids will pass through the choke manifold of the rig to the choke manifold specifically for pressure control before entering gas/liquid separators to discharge gas; ④ during tripping back pressure will be kept at less than 5 MPa, volume of injected drilling fluid will be higher than the theoretical volume during tripping out, whereas the volume of returned drilling fluid will be higher than the theoretical volume during the out-tripping. This technique has been applied successfully in the drilling of the Qixia Formation, Liangshan Formation and Longmaxi Formation with a total footage of 216.60 m, as a good attempt in complicated wells with both blowout and lost circulation risks, which can provide valuable experiences and guidance for handling similar complexities in the future.

  8. Guidelines for preparation of emergency response plans for drilling, completion and testing of sour wells

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    The purpose of an emergency response plan is to describe procedures to ensure the health and safety of the public in the event of a release of sour gas during well drilling, completion, and testing operations. This guideline has been prepared to assist Canadian companies in preparation of such plans. It has been prepared to establish a high standard in planning for emergency situations where the health and safety of the public may be threatened. It describes when an emergency response plan is required and sets out the minimum degree of detail required, and also suggests a format for the plan and provides information on how to prepare a plan. While each plan must be site-specific, the content and format of most plans can be similar. Plans must be quite specific in setting out all actions to be taken in the event of an emergency. Contents of a plan include emergency definition and action, evacuation procedures, communications, monitoring, ignition procedures, post-emergency procedures, emergency and an equipment list. Appendices include characteristics and dangers of H/sub 2/S and SO/sub 2/ and a sample resident information package.

  9. Better well control through safe drilling margin identification, influx analysis and direct bottom hole pressure control method for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Veeningen, Daan [National Oilwell Varco IntelliServ (NOV), Houston, TX (United States)

    2012-07-01

    Currently, well control events are almost exclusively detected by using surface measurements. Measuring a volume increase in the 'closed loop' mud circulation system; a standpipe pressure decrease; or changes in a variety of drilling parameters provide indicators of a kick. Especially in deep water, where the riser comprises a substantial section of the well bore, early kick detection is paramount for limiting the severity of a well bore influx and improve the ability to regain well control. While downhole data is presently available from downhole tools nearby the bit, available data rates are sparse as mud pulse telemetry bandwidth is limited and well bore measurements compete with transmission of other subsurface data. Further, data transfer is one-directional, latency is significant and conditions along the string are unknown. High-bandwidth downhole data transmission system, via a wired or networked drill string system, has the unique capability to acquire real-time pressure and temperature measurement at a number of locations along the drill string. This system provides high-resolution downhole data available at very high speed, eliminating latency and restrictions that typically limit the availability of downhole data. The paper describes well control opportunities for deep water operations through the use of downhole data independent from surface measurements. First, the networked drill string provides efficient ways to identify pore pressure, fracture gradient, and true mud weight that comprise the safe drilling margin. Second, the independent measurement capability provides early kick detection and improved ability to analyze an influx even with a heterogeneous mud column through distributed along-string annular pressure measurements. Third, a methodology is proposed for a direct measurement method using downhole real-time pressure for maintaining constant bottom hole pressure during well kills in deep water. (author)

  10. Water and clay based drilling fluids for oil wells; Fluidos hidroargilosos para perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, R.C.A. de; Amorim, L.V.; Santana, L.N. de L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)], e-mail: nalealves@hotmail.com

    2008-07-01

    In the onshore drilling of wells are commonly used aqueous fluids containing bentonite clays. However, to perform their functions generally there is the necessity of additives to drilling fluids, like viscositying, filtered reducer and lubricant. Thus, this work aims to develop water and clay base drilling fluids with low solid text, and with polymeric and lubricants additives. Were studied a sample of industrialized sodium bentonite clays, three polymeric compounds in the ternary form and a sample of lubricant, in different concentrations. Were determined the flow curves, the apparent and plastic viscosities, the yield limit and gel force in Fann 35A viscometer, the filtered volume in API filter-press and the lubricity coefficient in Ofite lubricimeter. The results showed that the fluid had pseudoplastic behavior, the polymeric additives adjusts their rheological properties and filtration and the addition of 1% of lubricant is sufficient to improve the lubricity of fluids. (author)

  11. Influence of the Drilling Mud Formulation Process on the Bacterial Communities in Thermogenic Natural Gas Wells of the Barnett Shale▿†

    Science.gov (United States)

    Struchtemeyer, Christopher G.; Davis, James P.; Elshahed, Mostafa S.

    2011-01-01

    The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process. PMID:21602366

  12. Physical rock properties in and around a conduit zone by well-logging in the Unzen Scientific Drilling Project, Japan

    Science.gov (United States)

    Ikeda, R.; Kajiwara, T.; Omura, K.; Hickman, S.

    2008-01-01

    The objective of the Unzen Scientific Drilling Project (USDP) is not only to reveal the structure and eruption history of the Unzen volcano but also to clarify the ascent and degassing mechanisms of the magma conduit. Conduit drilling (USDP-4) was conducted in 2004, which targeted the magma conduit for the 1990-95 eruption. The total drilled length of USDP-4 was 1995.75??m. Geophysical well logging, including resistivity, gamma-ray, spontaneous potential, sonic-wave velocity, density, neutron porosity, and Fullbore Formation MicroImager (FMI), was conducted at each drilling stage. Variations in the physical properties of the rocks were revealed by the well-log data, which correlated with not only large-scale formation boundaries but also small-scale changes in lithology. Such variations were evident in the lava dike, pyroclastic rocks, and breccias over depth intervals ranging from 1 to 40??m. These data support previous models for structure of the lava conduit, in that they indicate the existence of alternating layers of high-resistivity and high P-wave velocity rocks corresponding to the lava dikes, in proximity to narrower zones exhibiting high porosity, low resistivity, and low P-wave velocity. These narrow, low-porosity zones are presumably higher in permeability than the adjacent rocks and may form preferential conduits for degassing during magma ascent. ?? 2008 Elsevier B.V.

  13. Regulation of Water Pollution from Hydraulic Fracturing in Horizontally-Drilled Wells in the Marcellus Shale Region, USA

    Directory of Open Access Journals (Sweden)

    Heather Hatzenbuhler

    2012-12-01

    Full Text Available Hydraulic fracturing is an industrial process used to extract fossil fuel reserves that lie deep underground. With the introduction of horizontal drilling, new commercial sources of energy have become available. Wells are drilled and injected with large quantities of water mixed with specially selected chemicals at high pressures that allow petroleum reserves to flow to the surface. While the increased economic activities and the outputs of domestic energy are welcomed, there is growing concern over negative environmental impacts from horizontal drilling in shale formations. The potential for water contamination, land destruction, air pollution, and geologic disruption has raised concerns about the merits of production activities used during extraction. This paper looks at the impacts of horizontal drilling using hydraulic fracturing on water supplies and takes a comprehensive look at legislative and regulatory approaches to mitigate environmental risks in the Marcellus shale region. The overview identifies shortcomings associated with regulatory controls by local and state governments and offers two policy suggestions to better protect waters of the region.

  14. Biostratigraphic analysis of core samples from wells drilled in the Devonian shale interval of the Appalachian and Illinois Basins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.J.; Zielinski, R.E.

    1978-07-14

    A palynological investigation was performed on 55 samples of core material from four wells drilled in the Devonian Shale interval of the Appalachian and Illinois Basins. Using a combination of spores and acritarchs, it was possible to divide the Middle Devonian from the Upper Devonian and to make subdivisions within the Middle and Upper Devonian. The age of the palynomorphs encountered in this study is Upper Devonian.

  15. Simultaneous sand control and liner cement system: keeping well productivity by optimizing drilling and completion operations in mature fields

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Andrea Nicolino de; Silva, Dayana Nunes e; Calderon, Agostinho [Petroleo Brasileiro S.A. (PETROBRAS), Rio de janeiro, RJ (Brazil)

    2012-07-01

    The need to reduce oil extraction costs by increasing the recovery factor in mature fields unconsolidated sandstone reservoirs motivated the development of drilling and completion techniques that integrate the various interfaces of engineering the well, resulting in a final well configuration that provides maximum oil production at a lower cost. Due to the continued growth of drilling and completion of new wells or deviation of old wells in the design of mesh density field with an advanced degree of exploitation, PETROBRAS took the challenge to seek options for projects well, in order to maintain productivity and reduce their construction time, with the optimization of drilling and sand control systems. To achieve these goals, PETROBRAS developed the SCARS - Simultaneous Sand Control and Liner Cementing System, a pioneer technique in the global oil industry, which consists of a one trip sequence of operations in which sand control screens and liner are installed followed by the open hole gravel pack operation performed with the alpha and beta waves deposition technique, using a non aqueous system as a carrier fluid. The sequence is completed by liner cementing in the same trip. The great success of this project was based on the definition of a specific application scenario and demands allowing optimization of the system. This project started with the development of a non aqueous system as a gravel pack carrier fluid in order to perform an open hole gravel pack with the alpha/beta wave deposition technique along with the development and optimization of SCARS procedures. This article details the planning and execution phases of this project and also presents a broad description of the technical aspects. (author)

  16. Drill bit seismic, vertical seismic profiling, and seismic depth imaging to aid drilling decisions in the Tho Tinh structure, Nam Con Son basin, Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Borland, W.; Hayashida, N.; Kusaka, H.; Leaney, W.; Nakanishi, S.

    1996-10-01

    This paper reviews the problem of overpressure, a common reason for acquiring look-ahead VSPs, and the seismic trace inversion problem, a fundamental issue in look-ahead prediction. The essential components of intermediate VSPs were examined from acquisition through processing to inversion, and recently acquired real data were provided, which were indicative of the advances being made toward developing an exclusive high resolution VSP service. A simple interpretation method and an end product of predicted mud weight versus depth were also presented, which were obtained from the inverted acoustic impedance and empirical relations. Of paramount importance in predicting the depth to a target was the velocity function used below the intermediate TD. The use of empirical or assumed density functions was an obvious weak link in the procedure. The advent of real-time time-depth measurements from drill bit seismic allowed a continuously updated predicted target depth below the present bit depth. 8 refs., 7 figs.

  17. Western USA groundwater drilling

    Science.gov (United States)

    Jasechko, S.; Perrone, D.

    2016-12-01

    Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.

  18. Logs of wells and boreholes drilled during hydrogeologic studies at Lawrence Livermore National Laboratory Site 300, January 1, 1982--June 30, 1988: January 1, 1982 through June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Toney, K.C.; Crow, N.B.

    1988-01-01

    We present the hydrogeologic well logs for monitor wells and exploratory boreholes drilled at Lawrence Livermore National Laboratory (LLNL) Site 300 between the beginning of environmental investigations in June 1982 and the end of June 1988. These wells and boreholes were drilled as part of studies made to determine the horizontal and vertical distribution of volatile organic compounds (VOCs), high explosive (HE) compounds, and tritium in soil, rock, and ground water at Site 300. The well logs for 293 installations comprise the bulk of this report. We have prepared summaries of Site 300 geology and project history that provide a context for the well logs. Many of the logs in this report have also been published in previous topical reports, but they are nevertheless included in order to make this report a complete record of the wells and boreholes drilled prior to July 1988. A commercially available computer program, LOGGER has been used since late 1985 to generate these logs. This report presents details of the software programs and the hardware used. We are presently completing a project to devise a computer-aided design (CAD) system to produce hydrogeologic cross sections and fence diagrams, utilizing the digitized form of these logs. We find that our system produces publication-quality well and exploratory borehole logs at a lower cost than that of logs drafted by traditional methods.

  19. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Wang Ruifei

    2017-12-01

    Full Text Available The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  20. Design of an ultra-high torque double shoulder drill-pipe tool joint for extended reach wells

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhu

    2017-09-01

    Full Text Available Drill-pipe tool joints in extended reach wells often suffer a shear failure. In view of this, an ultra-high torque double-shoulder pipe joint was designed according to the deformation compatibility relation of the drill-pipe tool joint under torque. It is structurally characterized by long primary and secondary shoulders, small thread taper and large fillet radius of bottom tooth. First, a 3D numerical simulation model was established for this type of joint, named the XSJ joint here, based on the principle of virtual work, the Von Mises yield criterion and the nonlinear contact theory. Second, orthogonal optimization was performed on its key structural parameters by means of the orthogonal optimization method. The optimal combination of key structural parameters of the XSJ joint is taper 1:16, thread pitch 6.55 mm, guiding surface angle 29°, bearing surface angle 28°, and tooth height 3.755 mm. Finally, the bearing performance and fatigue performance of this tool joint and the API tool joint were calculated and compared using the Simulia Abaqus fe-safe software. Compared with the API tool joint, the XSJ joint is better, and its tensile strength, torsion strength, bending strength and compression strength increase by 10.65%, 62.5%, 2.75% and 52%, respectively. Its tension compression fatigue life, bending fatigue life, torsion fatigue life and composite fatigue life increase by 1.19 times, 1.74 times, 550 times and 28.79%, respectively. It is concluded that the designed XSJ joint is significantly improved in term of torsion capacity while its tension strength, bending strength and compression strength are not decreased, so it can better meet the drilling conditions of extended reach wells. Keywords: Extended reach well, Tool joint, Shear failure, Torsion capacity, Bending capacity, Orthogonal optimization, Bearing property, Fatigue life

  1. Study of waste generation in the drilling and cementing operations during construction of offshore oil and gas wells

    Directory of Open Access Journals (Sweden)

    Letícia Ferraço de Campos

    2016-12-01

    Full Text Available This literature review aims to present drilling and cementing activities which take place during the construction of offshore oil and gas wells, listing the waste generated in each step. IBAMA, the environmental agency that regulates the activity, allows two disposal options for these wastes: disposal in open sea or treatment followed by disposal on shore. The documentary research applied in this article details the destination options showing that the monitoring required by the environmental agency is a way to track the actual results of the activities described.

  2. Trends in Solar energy Driven Vertical Ground Source Heat Pump Systems in Sweden - An Analysis Based on the Swedish Well Database

    Science.gov (United States)

    Juhlin, K.; Gehlin, S.

    2016-12-01

    Sweden is a world leader in developing and using vertical ground source heat pump (GSHP) technology. GSHP systems extract passively stored solar energy in the ground and the Earth's natural geothermal energy. Geothermal energy is an admitted renewable energy source in Sweden since 2007 and is the third largest renewable energy source in the country today. The Geological Survey of Sweden (SGU) is the authority in Sweden that provides open access geological data of rock, soil and groundwater for the public. All wells drilled must be registered in the SGU Well Database and it is the well driller's duty to submit registration of drilled wells.Both active and passive geothermal energy systems are in use. Large GSHP systems, with at least 20 boreholes, are active geothermal energy systems. Energy is stored in the ground which allows both comfort heating and cooling to be extracted. Active systems are therefore relevant for larger properties and industrial buildings. Since 1978 more than 600 000 wells (water wells, GSHP boreholes etc) have been registered in the Well Database, with around 20 000 new registrations per year. Of these wells an estimated 320 000 wells are registered as GSHP boreholes. The vast majority of these boreholes are single boreholes for single-family houses. The number of properties with registered vertical borehole GSHP installations amounts to approximately 243 000. Of these sites between 300-350 are large GSHP systems with at least 20 boreholes. While the increase in number of new registrations for smaller homes and households has slowed down after the rapid development in the 80's and 90's, the larger installations for commercial and industrial buildings have increased in numbers over the last ten years. This poster uses data from the SGU Well Database to quantify and analyze the trends in vertical GSHP systems reported between 1978-2015 in Sweden, with special focus on large systems. From the new aggregated data, conclusions can be drawn about

  3. User Coupled Confirmation Drilling Program case study: City of Alamosa, Colorado, Alamosa No. 1 geothermal test well

    Energy Technology Data Exchange (ETDEWEB)

    Zeisloft, J.; Sibbett, B.S.

    1985-08-01

    A 7118 ft (2170 m) deep geothermal test well was drilled on the south edge of the city of Alamosa, Colorado as part of the Department of Energy's User Coupled Confirmation Drilling Program. The project was selected on the bases of a potential direct heat geothermal resource within the Rio Grande rift graben and resource users in Alamosa. The well site was selected on the hypothesis of a buried horst along which deep thermal fluids might be rising. In addition, there were city wells that were anomalous in temperature and the location was convenient to potential application. The Alamosa No. 1 penetrated 2000 ft (610 m) of fine clastic rocks over 4000 ft (1219 m) of volcaniclastic rock resting on precambrian crystalline rock at a depth of 6370 ft (1942 m). Due to poor hole conditions, geophysical logs were not run. The stabilized bottom hole temperature was 223/sup 0/F (106/sup 0/C) with a gradient of 2.6/sup 0/F/100 ft (47/sup 0/C/km). Limited testing indicated a very low production capacity. 16 refs., 6 figs.

  4. High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids

    Directory of Open Access Journals (Sweden)

    Tarek M. Madkour

    2016-06-01

    Full Text Available Multi-walled carbon nanotube (MWCNT and graphene nanoplatelet reinforced thermoplastic poly(lactic acid (PLA biodegradable nanocomposites were designed and prepared using solution casting techniques. The prepared biodegradable polymers are expected to provide an environmentally friendly alternative to petroleum-based polymers. Both nanocomposite systems exhibited better thermal stability and improved mechanical performance over the unreinforced polymer exhibiting excellent strength and degradability. The addition of graphene nanofiller in varied amounts was aimed to enhance the thermal and mechanical properties of the nanocomposites even further and incorporate the outstanding characteristics of graphene nanoplatelets into the nanocomposites. The polymeric nanocomposites showed also superior advantages for oil drilling relevances, automotive lubricating purposes, membrane technology and food packaging. Scanning electron microscopy images indicated a homogeneous dispersion of the nanofiller within the polymeric matrix at low filler loadings and a cluster formation at higher loadings that could be responsible for the polymeric matrix movement restrictions. The enthalpy of mixing (the polymer and the nanofiller measured could explain the cause of the repulsive interactions between the nanoparticles and the polymeric chains, which created an additional excluded volume that the polymeric segments were restricted to occupy, thus forcing the conformational characteristics of the polymeric chains to deviate away from those of the bulk chains. The prepared polymeric nano composites (poly lactic acid carbon nano tube and poly lactic acid graphene nanoplatelets were utilized in the formulation of oil-base mud as a viscosifier. The rheological, filtration properties and electrical stability of the oil based mud formulation with the new polymeric nanocomposite were studied and the result compared to the oil-based mud formulation with commercial viscosifier.

  5. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater-recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target

    Science.gov (United States)

    Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.

    2017-11-01

    The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP

  6. Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration.

    Science.gov (United States)

    Hedayatipour, Mostafa; Jaafarzadeh, Neemat; Ahmadmoazzam, Mehdi

    2017-12-01

    Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Organizational Design for Spill Containment in Deepwater Drilling Operations in the Gulf of Mexico: Assessment of the Marine Well Containment Company (MWCC)

    OpenAIRE

    Anderson, Robert; Cohen, Mark A; Molly K. Macauley; Richardson, Nathan; Stern, Adam

    2011-01-01

    The Deepwater Horizon oil spill in the Gulf of Mexico in April 2010 led to the deaths of 11 workers, a six-month moratorium on deepwater drilling in the Gulf, and nearly three months of massive engineering and logistics efforts to stop the spill. The series of failures before the well was finally capped and the spill contained revealed an inability to deal effectively with a well in deepwater and ultradeepwater. Ensuring that containment capabilities are adequate for drilling operations at th...

  8. Barium and sodium in sunflower plants cultivated in soil treated with wastes of drilling of oil well

    Directory of Open Access Journals (Sweden)

    Jésus Sampaio Junior

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the effects of the application of two types of oil drilling wastes on the development and absorption of barium (Ba and sodium (Na by sunflower plants. The waste materials were generated during the drilling of the 7-MGP-98D-BA oil well, located in the state of Bahia, Brazil. The treatments consisted of: Control – without Ba application, comprising only its natural levels in the soil; Corrected control – with fertilization and without wastes; and the Ba doses of 300, 3000 and 6000 mg kg-1, which were equivalent to the applications of 16.6, 165.9 and 331.8 Mg ha-1 of waste from the dryer, and 2.6, 25.7 and 51.3 Mg ha-1 of waste from the centrifugal. Plants cultivated using the first dose of dryer waste and the second dose of centrifugal waste showed growth and dry matter accumulation equal to those of plants under ideal conditions of cultivation (corrected control. The highest doses of dryer and centrifugal wastes affected the development of the plants. The absorption of Ba by sunflower plants was not affected by the increase in the doses. Na proved to be the most critical element present in the residues, interfering with sunflower development.

  9. Development and field application of a novel emulsion system O/W for well drilling of low pressure reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, J.; Ojeda, A.; Blanco, J.; Medina, N.; Gutierrez, X.; Carrasquero, M.; Briceno, H. [PDVSA (Venezuela)

    2011-07-01

    In Venezuela, there are important reserves of hydrocarbons in low pressure reservoirs but accessing to these reserves is a major challenge. This paper presents a new oil in water emulsion (O/W) system, using fatty acids and their salts as surfactant additives for use in such reservoirs, and the results obtained in field applications. Emulsions were prepared using two oil types and multiple salt (KCl) concentrations. Tests were then conducted to determine their thermal stability and return permeability percentage. Results showed good tolerance of high concentrations of KCl, as well as good stability under high temperatures and a good rheological behavior. The field test showed that the O/W emulsion system presents technological and cost advantages over other commercial technologies. This paper presented a new oil in water emulsion system which is a good alternative to water based fluids for well drilling in low pressure reservoirs.

  10. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang

    2017-01-01

    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  11. Influence of the Drilling Mud Formulation Process on the Bacterial Communities in Thermogenic Natural Gas Wells of the Barnett Shale▿†

    OpenAIRE

    Struchtemeyer, Christopher G.; Davis, James P.; Elshahed, Mostafa S.

    2011-01-01

    The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and ...

  12. Addendum 2: Logs of monitor wells drilled May 1988 through December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Stout, J. [Ray Raskin Associates Inc., Tempe, AZ (United States); Qualheim, B. [Lawrence Livermore National Lab., CA (United States); McPherrin, R. [Lawrence Livermore National Lab., CA (United States); Barber, K. [Allied Signal Technical Services, Livermore, CA (United States); Hedegaard, R. [ICF Kaiser Engineers, San Francisco, CA (United States); McConihe, W.; Miller, T. [Brown and Caldwell, Pleasanton, CA (United States)

    1993-11-01

    The logs in this addendum were plotted in a new format by the same software package (LOGGER by Rockware, Denver, CO) that was used in the original publication. The scale remains the same, 1 inch = 15 foot. The header is totally automated with a subheading indexing the well-construction symbols. Geophysical curves are labeled in their respective channels, and percentage core recovery is plotted in a histogram. Lithologic symbols are plotted to scale in a channel similar to previous logs. The lithologic description also has been automated to assure consistency in terminology. Descriptions are more extensive and are referenced by leader lines to the lithologic symbol. Additional figures included for this Addendum are: a plot of all the monitoring well locations at the LLNL Main site and a plot detailing the gasoline spill area well locations in the vicinity of Building 403.

  13. Water base drilling fluids for high-angle wells; Fluidos a base de agua para perfuracao de pocos com elevada inclinacao

    Energy Technology Data Exchange (ETDEWEB)

    Passarelli, Rui [PETROBRAS, Rio de Janeiro (Brazil). Dept. de Perfuracao. Div. de Fluidos de Perfuracao; Lomba, Rosana Fatima T. [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1989-12-31

    Horizontal drilling has experimented a large increase in last years. In Brazil, two horizontal wells were drilled in Fazenda Belem and Carmopolis Fields. The first one reached a final measured depth of 1128 m and the horizontal length was 533 m. The drilling fluid program was elaborated after a large number of laboratory tests, in order to get a composition that best fitted the drilling requirements, mainly the desirable lubricity. The idea of using a water-base fluid instead of an oil-based, known as more suitable in this case, arose because the Company is interested in drilling this kind of well offshore, in deep water, where the use of oil-base muds is forbidden. Different compositions of water base muds were developed and tested in laboratory and the results led to low-solids salt fluids having a lubricant in its composition. The lubricity coefficients of these fluids are similar to those obtained with oil-base muds. 9-FZB-446D-CE well was drilled with the chosen fluid and high values of torque and drag were not registered, being the operation a total success. (author) 10 tabs.

  14. A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well

    Directory of Open Access Journals (Sweden)

    Kadivar Arash

    2017-03-01

    Full Text Available Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.

  15. A gas flow model for layered landfills with vertical extraction wells.

    Science.gov (United States)

    Feng, Shi-Jin; Zheng, Qi-Teng; Xie, Hai-Jian

    2017-08-01

    This paper developed a two-dimensional axisymmetric analytical model for layered landfills with vertical wells. The model uses a horizontal layered structure to describe the waste non-homogeneity with depth in gas generation, permeability and temperature. The governing equations in the cylindrical coordinate system were transformed to dimensionless forms and solved using a method of eigenfunction expansion. After verification, the effects of different well boundary conditions and gas extraction systems on recovery efficiency were investigated. A dimensionless double-layer system, consisting of a cover and a waste layer, was also explored. The results show that a constant vacuum pressure boundary condition can be enough to describe a perforated pipe surrounded by drainage gravel with a reasonable value of well radius, such as half the radius of gravel fill. Also, the 7 independent variables (one marked with an asterisk is dimensionless) of a double-layer system can be integrated into 3 dimensionless ones: Cover permeability Kv1∗/(Vertical gas permeability of waste Kv2∗×Cover thickness h1∗),-Vacuum pressure pw×PatmKv2∗/(μRgT2×Gas generation rate of waste s2) and ln(Well radius rw∗)/(Anisotropy degree of waste k2∗). The integration is based on the inherent mechanism of this flow system with certain simplification. The effects of these variables are then quantitatively characterized for a better understanding of gas recovery efficiency. Same recovery efficiency can be achieved with different variable combinations. For example, increasing h1∗ (such as doubling it) has the same effect with decreasing Kv1∗ (such as halving it). Along with the reduction of variables by half, the integration can facilitate the preliminary design, and is a small but important advance in the consideration of MSW non-homogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Exploring Moderators to Understand the Association Between Vertical Collectivism and Psychological Well-Being Among Asian Canadian Students

    Science.gov (United States)

    Na, Sumin; Spanierman, Lisa B.; Lalonde, Christopher E.

    2017-01-01

    First, the authors investigated the direct associations of vertical collectivism, ethnic identity exploration, and ethnic identity commitment with psychological well-being among first-generation Asian Canadian university students in Canada (n = 78). Second, to gain a more nuanced understanding of the association between vertical collectivism and…

  17. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  18. CASING DRILLING TECHNOLOGY

    OpenAIRE

    Nediljka Gaurina-Međimurec

    2005-01-01

    Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-re...

  19. Effect of Vertical Rate Error on Recovery from Loss of Well Clear Between UAS and Non-Cooperative Intruders

    Science.gov (United States)

    Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2016-01-01

    When an Unmanned Aircraft System (UAS) encounters an intruder and is unable to maintain required temporal and spatial separation between the two vehicles, it is referred to as a loss of well-clear. In this state, the UAS must make its best attempt to regain separation while maximizing the minimum separation between itself and the intruder. When encountering a non-cooperative intruder (an aircraft operating under visual flight rules without ADS-B or an active transponder) the UAS must rely on the radar system to provide the intruders location, velocity, and heading information. As many UAS have limited climb and descent performance, vertical position andor vertical rate errors make it difficult to determine whether an intruder will pass above or below them. To account for that, there is a proposal by RTCA Special Committee 228 to prohibit guidance systems from providing vertical guidance to regain well-clear to UAS in an encounter with a non-cooperative intruder unless their radar system has vertical position error below 175 feet (95) and vertical velocity errors below 200 fpm (95). Two sets of fast-time parametric studies was conducted, each with 54000 pairwise encounters between a UAS and non-cooperative intruder to determine the suitability of offering vertical guidance to regain well clear to a UAS in the presence of radar sensor noise. The UAS was not allowed to maneuver until it received well-clear recovery guidance. The maximum severity of the loss of well-clear was logged and used as the primary indicator of the separation achieved by the UAS. One set of 54000 encounters allowed the UAS to maneuver either vertically or horizontally, while the second permitted horizontal maneuvers, only. Comparing the two data sets allowed researchers to see the effect of allowing vertical guidance to a UAS for a particular encounter and vertical rate error. Study results show there is a small reduction in the average severity of a loss of well-clear when vertical maneuvers

  20. Impact of drilling fluid viscosity, velocity and hole inclination on cuttings transport in horizontal and highly deviated wells

    National Research Council Canada - National Science Library

    Piroozian, Ali; Ismail, Issham; Yaacob, Zulkefli; Babakhani, Parham; Ismail, Ahmad Shamsul Izwan

    2012-01-01

    .... Subsequently, relative problems occur while drilling. Excessive torque and drag, difficulties in running casing in hole and accomplishing good cementing jobs and mechanical pipe sticking are few of the classical examples of such problems...

  1. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  2. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Las Vegas, NV (United States)

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified

  3. Radioactivity in drilled and dug well drinking water of Ogun state Southwestern Nigeria and consequent dose estimates.

    Science.gov (United States)

    Ajayi, O S; Achuka, J

    2009-07-01

    Activity concentrations of (40)K, (226)Ra, (228)Ac and (235)U were measured in 11 dug and 9 drilled well water samples from 3 large cities in Ogun state, Southwestern Nigeria, consumed by the population living in the cities. The measurement was done using co-axial type high-purity germanium (HPGe) detector (Canberra Industries Inc.). The measured activity concentrations in the water samples ranged from 1.74 +/- 1.83 to 4.69 +/- 0.17 Bq l(-1); 2.89 +/- 0.62 to 7.79 +/- 7.22 Bq l(-1); 0.35 +/- 0.07 to 1.17 +/- 0.40 Bq l(-1) and 0.18 +/- 0.05 to 4.77 +/- 0.34 Bq l(-1) for (40)K, (226)Ra, (228)Ac and (235)U, respectively. Total annual effective dose rates from the ingestion of these radionuclides in the untreated wells were estimated using measured activity concentrations in the radionuclides and their ingested dose conversion factors. Estimated annual effective dose rates ranged from 0.04 to 6.82; 0.01 to 1.36 and 0.01 to 1.49 mSv y(-1) for age groups or =17 y, respectively. Committed dose for age group > or =17 y ranged from 8.8 x 10(-4) to 8.9 x 10(-2) Sv. The calculated annual effective dose values due to the ingestion of (226)Ra in the Awujale, Ake, Saboab, Alagbon, Alapora and Totoro samples exceeded International Commission on Radiological Protection limit of 1.0 mSv y(-1) for individual public exposure. These wells are recommended for treatment that would remove radium from their waters.

  4. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems

    Directory of Open Access Journals (Sweden)

    Faten A. Chaqmaqchee

    2016-04-01

    Full Text Available III-V semiconductors components such as Gallium Arsenic (GaAs, Indium Antimony (InSb, Aluminum Arsenic (AlAs and Indium Arsenic (InAs have high carrier mobilities and direct energy gaps. This is making them indispensable for today’s optoelectronic devices such as semiconductor lasers and optical amplifiers at 1.3 μm wavelength operation. In fact, these elements are led to the invention of the Gallium Indium Nitride Arsenic (GaInNAs, where the lattice is matched to GaAs for such applications. This article is aimed to design dilute nitride GaInNAs quantum wells (QWs enclosed between top and bottom of Aluminum (Gallium Arsenic Al(GaAs distributed bragg mirrors (DBRs using MATLAB® program. Vertical cavity semiconductor optical amplifiers (VCSOAs structures are based on Fabry Perot (FP method to design optical gain and bandwidth gain to be operated in reflection and transmission modes. The optical model gives access to the contact layer of epitaxial structure and the reflectivity for successive radiative modes, their lasing thresholds, emission wavelengths and optical field distributions in the laser cavity.

  5. Performance of a two-phase gas/liquid flow model in vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, C.S.; Hasan, A.R. (Chevron Oil Field Research Co., La Habra, CA (USA))

    1990-07-01

    Application of a recently developed method for predicting two-phase gas/oil pressure-drop in vertical oil wells is presented. The new method, which is flow-pattern based, is capable of handling flow in both circular and annular channels. Five principal flow regimes, bubbly, dispersed bubbly, slug, churn and annular, are recognized while developing appropriate correlations for predicting void fraction and pressure-drop in each flow regime. Standard oilfield correlations are used for estimating PVT properties of oil and gas: Standing's correlation for solution gas-oil ratio; Katz's correlation for oil formation volume factor; Standing's, and Chew and Connally's correlations for dead and live oil viscosities, respectively; and Lee et al.'s correlation for gas viscosity. A finite-difference algorithm is developed to compute pressure gradient in a wellbore. Computations performed on 115 field tests, involving all the two-phase flow regimes, suggest that the new method performs better than the Aziz et al. correlation. Further comparison of the new method's performance with other standard methods, such as, Orkiszewski, Duns and Ros, Beggs and Brill, Hagedorn and Brown, and Chierci et al., reveals its consistency and improved performance. The test data bank used in this study is that previously used by other authors; thus, validation of the new method is demonstrated with an independent data set. 4 figs., 42 refs., 7 tabs.

  6. Effects of oil and gas well-drilling fluids on the biomass and community structure of microbiota that colonize sands in running seawater.

    Science.gov (United States)

    Smith, G A; Nickels, J S; Bobbie, R J; Richards, N L; White, D C

    1982-01-01

    Well-drilling fluid and a number of the known components (barite, clay, Aldacide, Surflo, and Dowicide, were tested for effects on the biomass and community structure of the microbiota that colonize marine sands exposed for eight weeks to running ambient seawater. Shading the microbiota from light depressed the microflora without a significant effect on the biomass, while well-drilling fluids layered on the surface or mixed with the sand significantly increased a component of the bacteria and the microfauna as reflected in changes in the fatty acid composition. There were some shading effects from the surface layering of well-drilling fluids as reflected in the fatty acids from the microflora when compared to the sands mixed with well-drilling fluids. Barite had essentially no effect on the biomass or community structure while clays increased nearly all of the biomass indicators for the bacteria as well as the microfauna; the clay overlay mirrors the effect of the drilling fluids. Aldacide shifted the bacterial composition, depressing the proportions of microbes containing the cyclopropane fatty acids and the anaerobic pathways of desaturation. Concentrations of 1 and 15 microgram/L increased the bacterial biomass as reflected in the total lipid (16:0) and extractable lipid phosphate coupled with a decrease in the total microeukaryotes. Surflo increased the biomass and shifted the bacterial community structure at concentrations between 4 and 800 microgram/L. The lowest level also stimulated the microfauna. Dowicide at 100 microgram/L increased the bacteria forming cis-vaccenic acid and the microfauna similar to low concentrations of Surflo.

  7. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  8. Integration of a snubbing unit into a drilling rig for drilling horizontal wells in gas storage Rehden (WINGAS); Integration einer Snubbing Unit in eine Bohranlage beim Abteufen von Horizontalbohrungen im Gasspeicher Rehden (WINGAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sprung, K.; Strahl, F. [Wintershall SG, Barnstorf (Germany)

    2000-08-01

    Gas Storage Rehden had been developed with 13 horizontal wells from 1992-1995. The natural reservoir had been depleted to a BHP of 70 to 140 bar (2000 m TVD). While drilling the reservoir section in the naturally fractured Hauptdolomit, total losses occurred. This situation could be handled by bull-heading water continuously. When drilling three more wells in 1997 to 1999 the storage pressure had risen to above hydrostatic level. As a result well control was hard to sustain when drilling the first well: massive losses and kicks resulted in a shorter reservoir section and incremental costs of above DM 5 Million. To drill reservoir sections and complete the next two wells safely a Snubbing Unit was integrated into the contracted ITAG rig. Many modifications regarding BOP stack, mud handling, pipe handling, BHA set-up were carried out to achieve maximum well control in any situation and receive permission from the local mining authorities. Snubbing was tested in a cased-off well set under nitrogen pressure. Afterwards the Unit was laid down and put on standby. Batch drilling the two reservoir sections at the end of production period (local depletion in target area) enabled standard well control without having to reinstall the Snubbing Unit into the derrick. Costs for modifications and Snubbing Unit service for the two wells were only half of the trouble costs for the first well drilled. (orig.) [German] Der Gasspeicher Rehden wurde von 1992 bis 1995 durch Abteufen von 13 Horizontalbohrungen entwickelt. Der Druck der urspruenglichen Lagerstaette lag in diesem Zeitraum bei 70-140 bar (2000 m TVD). Waehrend des Bohrens im Traeger (natuerlich gekluefteter Hauptdolomit) traten in der Regel totale Zirkulationsverluste ein. Diese Situation blieb stets unter Kontrolle durch 'Bullheaden' von Wasser in den Ringraum und den Strang. Zwischen 1997 und 1999 wurden drei weitere Bohrungen (mit ERD-Charakter) abgeteuft. Zu diesem Zeitpunkt war der Speicherdruck bereits auf

  9. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Edward Marks

    2005-09-09

    In the Santa Maria Basin, Santa Barbara County, California, four wells were processed and examined to determine the age and environment parameters in the oil producing sections. From west to east, we examined Cabot No. 1 Ferrero-Hopkins,from 3917.7 m (12850 ft) to 4032 m (13225 ft); Sun No. 5 Blair, from 3412 m (11190 ft) to 3722.5 m (12210 ft); Triton No. 10 Blair, from 1552 m (5090 ft) to 1863 m (6110 ft); and OTEC No. 1 Boyne, from 2058 m (6750 ft) to 2528 m (8293 ft). Lithic reports with lithic charts were prepared and submitted on each well. These tested for Sisquoc Fm lithology to be found in the Santa Maria area. This was noted in the OTEC No. 1 Boyne interval studied. The wells also tested for Monterey Fm. lithology, which was noted in all four wells examined. Composite samples of those intervals [combined into 9.15 m (30 foot) intervals] were processed for paleontology. Although the samples were very refractory and siliceous, all but one (Sun 5 Blair) yielded index fossil specimens, and as Sun 5 Blair samples below 3686 m (12090 ft) were processed previously, we were able to make identifications that would aid this study. The intervals examined were of the Sisquoc Formation, the Low Resistivity and the High Resistivity sections of the Monterey Formation. The Lower Sisquoc and the top of the late Miocene were identified by six index fossils: Bolivina barbarana, Gyroidina soldanii rotundimargo, Bulimina montereyana, Prunopyle titan, Axoprunum angelinum and Glyphodiscus stellatus. The Low Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, late Mohnian: Nonion goudkoffi, Brizalina girardensis, Cibicides illingi, Siphocampe nodosaria, Stephanogonia hanzawai, Uvigerina modeloensis, Buliminella brevior, Tytthodiscus sp.and the wide geographic ranging index pelagic fossil, Sphaeroidinellopsis subdehiscens. The High Resistivity Monterey Fm. was identified by eight index fossils, all of which died

  10. Temporal Response of Dilute Nitride Multi-Quantum-Well Vertical Cavity Enhanced Photodetector

    Science.gov (United States)

    Nordin, M. S.; Sarcan, F.; Gunes, M.; Boland-Thoms, A.; Erol, A.; Vickers, A. J.

    2017-10-01

    The temporal response characteristics of a GaInNAs-based vertical resonant cavity enhanced photodetector device are presented for operation at λ ≈ 1.3 μm. The absorption layers of the device are composed of nine 7-nm-thick Ga0.65In0.35N0.02As0.98 quantum wells and are sandwiched between top and bottom AlGaAs/GaAs distributed Bragg reflectors (DBRs). The temperature dependence of the transient photoconductivity (TPC) under different light intensities and bias voltages is reported. Photoluminescence measurements were also performed on structures with and without the top DBR to determine their optical response under continuous illumination. The response time was measured using excitation from a 1047-nm pulsed neodymium-doped yttrium lithium fluoride laser with pulse width of 500 ps and repetition rate of 1 kHz. The rise time of the TPC was 2.27 ns at T = 50 K, decreasing to 1.79 ns at T = 300 K. The TPC decay time was 25.44 ns at T = 50 K, decreasing to 16.58 ns at T = 300 K. With detectivity of 2.28 × 10^{10} {cm}√ {Hz} / {W} and noise-equivalent power of 2.45 × 10^{ - 11} {W/}√ {Hz} , the proposed device is faster and more sensitive with better signal-to-noise ratio compared with other GaInNAs-based resonant cavity enhanced photodetectors (RCEPDs) for operation at 1.3 μm.

  11. FY1997 report on test well drilling and well investigation for the Akinomiya area survey in the geothermal development promotion survey; 1997 nendo chinetsu sokushin chosa. Akinomiya chiiki chosa shisui kussaku koji oyobi kosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to extract promising areas with high geothermal feasibility, the Akinomiya area was surveyed by drilling test wells. In the N9-AY-3 excavating work, the first stage (depth from 15 to 33 m) used the water-free excavation to prevent adverse effects on the water sources. The second stage (depth from 33 to 409 m) reached the targeted depth with slanted excavation. The third stage drilled into depths from 409 to 1,006 m. The fourth stage was targeted to drill down to 1,802 m, but an entire lost returns have occurred at the depth of 1,598 m, whereas lost water drilling was performed by using fresh water, and the drilling was terminated at the targeted depth. The AY-4 excavation was also advanced with the first, second, third and fourth stage method, and when the entire lost returns have occurred at 1,196 m, the lost water drilling was carried out by using fresh water, and the drilling was terminated at the scheduled 1,505 m. The AY-5 excavation was also advanced with the first, second, third and fourth stage method. The first and second stages used water-free excavation (using air hammers) to avoid influence on the nearby spa areas. The third stage went down to 405 m performing coring, but the entire lost returns occurred at 298 m. The excavation rate was very high, and the core recovery rate reached 100%. The fourth stage presented the same coring condition as that for the third stage down to 1,002 m. (NEDO)

  12. The Iceland Deep Drilling Project 4.5 km deep well, IDDP-2, in the seawater-recharged Reykjanes geothermal field in SW Iceland has successfully reached its supercritical target

    Directory of Open Access Journals (Sweden)

    G. Ó. Friðleifsson

    2017-11-01

    Full Text Available The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15 to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ∼  4.5 km vertical depth. Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the

  13. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  14. Radon in the water from drilled wells. Results from an investigation in Oerebro; Radon i vatten fraan bergborrade brunnar. Resultat fraan en undersoekning i oerebro kommun

    Energy Technology Data Exchange (ETDEWEB)

    Liden, E.; Andersson, Lennart [Regionsjukhuset, Oerebro (Sweden). Yrkes- och miljoemedicinska kliniken; Linden, A. [Svensk Geofysik AB, Falun (Sweden); Aakerblom, G. [Statens Straalskyddsinstitut, Stockholm (Sweden); Aakesson, T. [Miljoe- och haelsoskyddsfoervaltningen, Oerebro (Sweden)

    1995-09-01

    In 1991 a drilled well containing water with a radon count of about 20,000 Bq/l was found in the city of Oerebro in southern Sweden. A study was started to develop measures to decrease the radon content of water, investigate public health risks and determine the prevalence of high-radon waters in Sweden. 1991-94 various techniques were tested to reduce the concentration of radon in water. The efficiency of aerating high-radon drinking water was studied under field conditions using two modified aerators in a well, in a pressure tank, and in a column of pellets. The efficiency varied from 20 to 99%. A survey of radon in water from 269 drilled wells was conducted in the Municipality of Oerebro. In water from 78 wells, the mean concentration of radon was 1336 Bq/l. The emanation of radon during normal household activities was studied in a home supplied with water from a drilled well whose radon count was approx 20,000 Bq/l. A geological investigation revealed the presence of thin Uranium-loaded fissures in the bedrock (granite) surrounding the well. 130 refs, 16 figs, 14 tabs.

  15. Drilling exploration design controlled by pore pressure prediction from 2D seismic and well data: case study of South Sumatra Basin

    Science.gov (United States)

    Haris, A.; Mulyawan, T.; Riyanto, A.

    2017-04-01

    To have safe and economical in drilling design, an information of formation pore pressure is required. Pore pressure can be estimated from seismic data using a velocity to pore pressure transform. The objective of this paper is proposing the drilling exploration design for the case study of South Sumatra field, which is controlled by predicted pore pressure. The pore pressure is predicted by using Eaton method that used velocity from 2D seismic and was validated with well log data. The predicted pore pressure is used to design exploration drilling including casing depth and mud weight. Eaton parameter (N =1.1), shear stress (Ko= 0.6), Gardner (A = 0.198 and B = 0.268), which is used in this works, is gained from existing well data. The velocity model is derived from RMS velocity that should be converted into interval velocity. In addition, this velocity should be validated with the sonic log from existing well. The Normal Compaction Trend (NCT) from interval velocity that was combined with generated previous parameter is used for predicting pore pressure and fracturing pressure. Our experiment shows that based on pore pressure prediction, the drilling exploration design is divided into three sections. i.e. section 17-1/2”, 12-1/4” and 8-1/2” and four casing sections, i.e. Casing 20‧, K-55, 90 ppf at 160 ft, casing 13-3/8‧, K-55, 54.5 ppf at 1400 ft with mud weight 8.8 - 13.7 ppg, casing 9-5/8 ‧, K-55, 40 ppf at 4000 ft with mud weight 9.5 - 14.0 ppg and casing 7‧, L-80, 26 ppf at 5500 ft with mud weight 10.4 - 14.6 ppg.

  16. Application of ALD Images and Caliper Data for the breakout analysis from the wells which were drilled in the Caspian Sea of the Azerbaijan Republic

    Science.gov (United States)

    Amirov, Elnur

    2016-04-01

    Wellbore instability while drilling, trip in or trip out can be cause of nonproductive time (NPT). Mainly this is the drilling surprises often encountered while drilling, trip in or trip out which were not predicted in advance, monitored, interpreted or recognized properly, which can give rise to wellbore instability problems. These surprises include also formation tops, overpressure zones occurring at different depths than predicted and the presence of unexpected faults or other fractured/fissile/compartmentalization zones. In general while drilling the wells, downhole PWD data cannot be very useful for understanding wellbore stability. Much of what we can use is indirect measurements such as torque and drag observations, rpm, vibrations, cavings, annular pressure measurements and etc. In order to understand what is going on in the subsurface and therefore mitigate the wellbore instability problems, we need more information from LWD (logging while drilling) tools. In order to monitor and get direct observations of the state of the borehole we need to determine where, how and in which direction the wellbore is failing and enlargement is taking place. LWD calipers and wellbore Azimuthal Lithodensity Images can provide such information for breakout analysis while drilling, trip in and trip out activity. The modes of wellbore instability can be generated in different ways and through different mechanisms. Therefore these zones of breakout can be potentially identified by the ALD imaging and LWD caliper tools. Instability can be governed by a combination of factors such as: the strength of the rock, the subsurface stress field, maximum and minimum horizontal stresses, pre-existing planes of weakness, the angle of the wellbore which intersects with these planes of weakness and chemical reaction of the rock (minerals) with the drilling fluid. Compressional failure (breakout) of an isotropic rock can occur when the compressive stresses around the borehole exceed the

  17. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    Science.gov (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  18. Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.W. (ed.)

    1982-06-01

    The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

  19. On the coupled unsaturated–saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    Directory of Open Access Journals (Sweden)

    X. Liang

    2017-03-01

    established with special consideration of the coupled unsaturated–saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace–finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant in unconfined aquifers affected from above by the unsaturated flow process.

  20. VERTICAL WELL PRESSURE AND PRESSURE DERIVATIVE ANALYSIS FOR BINGHAM FLUIDS IN HOMOGENEOUS RESERVOIRS

    Directory of Open Access Journals (Sweden)

    JAVIER A. MARTINEZ

    2011-01-01

    Full Text Available Este trabajo presenta una técnica de interpretación del comportamiento de la presión y derivada de presión para un fl uido tipo Bingham en un yacimiento homogéneo drenado por un pozo vertical, aplicando la técnica TDS observando la infl uencia del gradiente mínimo de presión que caracteriza este comportamiento y puntos característicos con el propósito de calcular la permeabilidad, el área de drenaje y el factor de daño de la formación. Es la primera vez que se presenta en la literatura la derivada de presión para estos fl uidos. Entre mayor se hace el mínimo gradiente de presión la derivada se hace asimétricamente más cóncava hacia arriba. También se observó que en sistemas cerrados la pendiente unitaria tardía que se desarrolla en la derivada de presión coincide con la misma de fl uidos Newtonianos.

  1. A Simple Method for Measuring the Verticality of Small-Diameter Driven Wells

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, Bent

    1994-01-01

    The presence of stones, solid waste, and other obstructions can deflect small-diameter driven wells during installation, leading to deviations of the well from its intended position. This could lead to erroneous results, especially for measurements of ground water levels by water level meters...... ground water flow directions....

  2. Vertically coupled double-microdisk lasers composed of InGaAs quantum dots-in-a-well active layers

    Science.gov (United States)

    Hsing, J. Y.; Tzeng, T. E.; Lay, T. S.; Shih, M. H.

    2017-05-01

    We report the epitaxy, fabrication, and measurement of vertically coupled double-microdisk lasers using InGaAs quantum dots-in-a-well as the optical gain material. The bonding and anti-bonding photonic molecule laser modes are simultaneously observed at room temperature (T = 300 K). The optical coupling is confirmed by measuring the double disks for three different air gaps of 100 nm, 200 nm, and 480 nm, respectively. The coupling strengths for the photonic molecule bonding mode MB1,9 and anti-bonding mode MA1,9 between the adjacent microdisks are equal to 17.4 THz for 100 nm air gap, and 5.2 THz for 200 nm air gap, respectively. The refractive index sensing experiments show the lasing wavelength sensitivity of 60 nm/RIU for the vertically coupled double-microdisk laser of 100 nm air gap.

  3. Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

    Energy Technology Data Exchange (ETDEWEB)

    CHOQUETTE,KENT D.; KLEM,JOHN F.; FISCHER,ARTHUR J.; SPAHN,OLGA B.; ALLERMAN,ANDREW A.; FRITZ,IAN J.; KURTZ,STEVEN R.; BREILAND,WILLIAM G.; SIEG,ROBERT M.; GEIB,KENT M.; SCOTT,J.W.; NAONE,R.L.

    2000-06-05

    Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

  4. Drilling of bilateral wells: analysis and selection of wells in the Los Humeros, Pue., geothermal field; Perforacion de pozos bilaterales: analisis y seleccion de pozos en el campo geotermico de Los Humeros, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly del Carmen; Ramirez Montes, Miguel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: miguel.ramirez02@cfe.gob.mx

    2010-01-15

    Drilling bilateral geothermal wells has been conducted successfully in fields in the U.S., the Philippines and Japan, among other places. The reason for drilling a second leg in a well is to increase production by penetrating additional production zones. In this report, criteria are presented for selecting wells in Los Humeros, Pue., geothermal field to be considered for a second leg, taking into account the mechanical condition of the wells, geological targets, distances between wells, production characteristics and thermodynamic conditions. The cases of wells H-3, H-8, H-11, H-16, H-33, H-34 and H-36, which have low production, were reviewed. Wells H-3, H-8 and H-34 were selected as the best subjects for bi-directional drilling. A design is proposed for constructing a second leg in well H-8. [Spanish] La perforacion de pozos bilaterales se ha venido realizando de manera exitosa en campos geotermicos de Estados Unidos, Filipinas y Japon, entre otros. El objetivo de perforar una segunda pierna en un mismo pozo es incrementar su produccion, ya que habran mas zonas de produccion. En este reporte se presentan los criterios para la seleccion de pozos del campo geotermico de Los Humeros, Pue., candidatos para una segunda pierna, considerando el estado mecanico de los mismos, los objetivos geologicos, la distancia entre pozos, sus caracteristicas de produccion y sus condiciones termodinamicas. Para ello se revisaron los casos de los pozos H-3, H-8, H-11, H-16, H-33, H-34 y H-36, que presentan una produccion baja. Posteriormente, aplicando los criterios de evaluacion y con la informacion obtenida de cada pozo, se seleccionaron los pozos H-3, H-8 y H-34 como los que presentan mejores condiciones para la perforacion bidireccional. Finalmente, se establecio un diseno para la construccion de una segunda pierna en el pozo H-8.

  5. Evaluation of the aging of polymeric drilling fluids to oil wells; Avaliacao do envelhecimento de fluidos de perfuracao polimericos para pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Farias, K.V.; Amorim, L.V. [Universidade Federal de Campina Grande, PB (Brazil). Unidade Academica de Engenharia Mecanica, UAEM/CCT - UFCG], e-mail: kassie@dem.ufcg.edu.br; Leite, R.S. [Universidade Federal de Campina Grande, PB (Brazil). Graduacao Engenharia de Materiais; Lira, H.L. [Universidade Federal de Campina Grande, PB (Brazil). Unidade Academica de Engenharia de Materiais, UAEMa/ CCT - UFCG

    2010-07-01

    The aim of this work is to evaluate the aging of polymeric drilling fluids to oil wells, from the rheological, filtration and lubricity properties in the temperatures 100 degree F ({approx} 38 degree C) and 150 degree F ({approx} 66 degree C). The results had been compared with a standard fluid used for the oil industry and had evidenced that the polymeric fluids had presented good thermal stability, presenting a small reduction in the rheological properties and better values of lubricity coefficient that a reference fluid. (author)

  6. Digital archive of drilling mud weight pressures and wellbore temperatures from 49 regional cross sections of 967 well logs in Louisiana and Texas, onshore Gulf of Mexico basin

    Science.gov (United States)

    Burke, Lauri A.; Kinney, Scott A.; Kola-Kehinde, Temidayo B.

    2011-01-01

    This document provides the digital archive of in-situ temperature and drilling mud weight pressure data that were compiled from several historical sources. The data coverage includes the states of Texas and Louisiana in the Gulf of Mexico basin. Data are also provided graphically, for both Texas and Louisiana, as plots of temperature as a function of depth and pressure as a function of depth. The minimum, arithmetic average, and maximum values are tabulated for each 1,000-foot depth increment for temperature as well as pressure in the Texas and Louisiana data.

  7. GE/NOMADICS IN-WELL MONITORING SYSTEM FOR VERTICAL PROFILING OF DNAPL CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Shaffer; Radislav Potyralio; Joseph Salvo; Timothy Sivavec; Lloyd Salsman

    2003-04-01

    This report describes the Phase I effort to develop an Automated In Well Monitoring System (AIMS) for in situ detection of chlorinated volatile organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE) in groundwater. AIMS is composed of 3 primary components: (a) sensor probe, (b) instrument delivery system, and (c) communication/recharging station. The sensor probe utilizes an array of thickness shear mode (TSM) sensors coated with chemically-sensitive polymer films provides a low-cost, highly sensitive microsensor platform for detection and quantification. The instrument delivery system is used to position the sensor probe in 2 inch or larger groundwater monitoring wells. A communication/recharging station provides wireless battery recharging and communication to enable a fully automated system. A calibration curve for TCE in water was built using data collected in the laboratory. The detection limit of the sensor probe was 6.7 ppb ({micro}g/L) for TCE in water. A preliminary field test was conducted at a GE remediation location and a pilot field test was performed at the DOE Savannah River Site (SRS). The AIMS system was demonstrated in an uncontaminated (i.e., ''clean'') 2-inch well and in a 4-inch well containing 163.5 ppb of TCE. Repeat measurements at the two wells indicated excellent day-to-day reproducibility. Significant differences in the sensor responses were noted between the two types of wells but they did not closely match the laboratory calibration data. The robustness of the system presented numerous challenges for field work and limited the scope of the SRS pilot field test. However, the unique combination of trace detection (detection limits near the MCL, minimum concentration level) and size (operations in 2-inch or larger groundwater wells) is demonstration of the promise of this technology for long-term monitoring (LTM) applications or rapid site characterization. Using the lessons learned from the

  8. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1996-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  9. Planning and evaluation are crucial to multilateral wells

    Energy Technology Data Exchange (ETDEWEB)

    Themig, D. [Dresser Oil Tools, Dallas, TX (United States)

    1996-01-01

    The ability to drill and produce multilateral wells provides tremendous opportunity for profit from previously uneconomic projects. Where it may not be economical to drill to small pockets of deposits with a number of vertical or horizontal well bores, the economics may be very good with multilateral drilling and completion technology. Multilateral drilling and completion systems have been successfully run in several producing areas worldwide. Significant advances in drilling, casing and completions technology make it possible to drill and complete complex architecture multilateral wells. Whether a project involves a single well re-entry project or full field development, the flexibility and cost savings involved in a multilateral well versus multiple wells can be significant. This paper reviews the various design considerations in developing multivariant well systems.

  10. Production performance laws of vertical wells by volume fracturing in CBM reservoirs

    Directory of Open Access Journals (Sweden)

    Liehui Zhang

    2017-05-01

    Full Text Available Volume fracturing technology has been widely applied in the development of coalbed methane (CBM reservoirs. As for the stimulated reservoir volume (SRV created by volume fracturing, the seepage laws of fluids are described more accurately and rationally in the rectangular composite model than in the traditional radial composite model. However, the rectangular composite model considering SRV cannot be solved using the analytical or semi-analytical function method, and its solution from the linear flow model has larger errors. In view of this, SRV areas of CBM reservoirs were described by means of dual-medium model in this paper. The complex CBM migration mechanisms were investigated comprehensively, including adsorption, desorption, diffusion and seepage. A well testing model for rectangular composite fracturing wells in CBM reservoirs based on unsteady-state diffusion was built and solved using the boundary element method combined with Laplace transformation, Stehfest numerical inversion and computer programming technology. Thus, production performance laws of CBM reservoirs were clarified. The flow regimes of typical well testing curves were divided and the effects on change laws of production performance from the boundary size of gas reservoirs, permeability of volume fractured areas, adsorption gas content, reservoir permeability and SRV size were analyzed. Eventually, CBM reservoirs after the volume fracturing stimulation were described more accurately and rationally. This study provides a theoretical basis for a better understanding of the CBM migration laws and an approach to evaluating and developing CBM reservoirs efficiently and rationally.

  11. Gas reservoir evaluation for underbalanced horizontal drilling

    National Research Council Canada - National Science Library

    Li Gao; Meng Ying-Feng; Wei Na; Xu Zhao-Yang; Li Hong-Tao; Xiao Gui-Lin; Zhang Yu-Rui

    2014-01-01

    .... Based on drilling operation parameters, well structure and monitored parameters, the wellbore pressure and the gas reservoir permeability could be predicted theoretically for underbalanced horizontal drilling...

  12. Drilling cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, L.E. Jr.

    1996-12-31

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  13. An Integrated Approach for Drilling Optimization Using Advanced Drilling Optimizer

    OpenAIRE

    David Hankins; Saeed Salehi; Fatemeh Karbalaei Saleh

    2015-01-01

    The ability to optimize drilling procedures and economics involves simulation to understand the effects operational parameters and equipment design have on the ROP. An analysis applying drilling performance modeling to optimize drilling operations has been conducted to address this issue. This study shows how optimum operational parameters and equipment can be predicted by simulating drilling operations of preexisting wells in a Northwest Louisiana field. Reference well data was gathered and ...

  14. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama.

    Science.gov (United States)

    Karacan, C Özgen

    2013-07-30

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  15. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    Science.gov (United States)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; hide

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  16. Response to the independent technical review of the UMTRA Project procedures and practices for well drilling and development

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This report is a response to the findings and recommendations contained in the ITR report. The text of this document summarizes each ITR finding and recommendation, presents the TAC response, and concludes that implementation of many of the recommendations would benefit the UMTRA Project. Implementation of the recommendations represents ongoing improvement to the TAC well installation and development procedures and will result, in lower overall project costs. Appendix B is an implementation plan that groups similar or complementary action items, provides a schedule for implementation, identifies the group or people responsible for the changes, and estimates hours to implement the changes. The four major action items are as follows: (1) ITR Reevaluation, (2) Well Installation SOP Review and Revision, (3) Well Installation Contract Review and Revision, and (4) TAC and DOE Communications Improvement. The hours listed to implement the improvements are intended to be estimates for budgeting and planning purposes for the remainder of this fiscal year and the upcoming fiscal year.

  17. Geopressured-geothermal drilling and testing plan: Magma Gulf/Technadril-Dept. of Energy MGT-DOE AMOCO Fee No. 1 well, Cameron Parish, Lousiana

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    The following topics are covered: generalized site activities, occupational health and safety, drilling operations, production testing, environmental assessment and monitoring plan, permits, program management, reporting, and schedule. (MHR)

  18. Advanced drilling systems study.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  19. Data regarding hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010

    Science.gov (United States)

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Comprehensive, published, and publicly available data regarding the extent, location, and character of hydraulic fracturing in the United States are scarce. The objective of this data series is to publish data related to hydraulic fracturing in the public domain. The spreadsheets released with this data series contain derivative datasets aggregated temporally and spatially from the commercial and proprietary IHS database of U.S. oil and gas production and well data (IHS Energy, 2011). These datasets, served in 21 spreadsheets in Microsoft Excel (.xlsx) format, outline the geographical distributions of hydraulic fracturing treatments and associated wells (including well drill-hole directions) as well as water volumes, proppants, treatment fluids, and additives used in hydraulic fracturing treatments in the United States from 1947 through 2010. This report also describes the data—extraction/aggregation processing steps, field names and descriptions, field types and sources. An associated scientific investigation report (Gallegos and Varela, 2014) provides a detailed analysis of the data presented in this data series and comparisons of the data and trends to the literature.

  20. UNDERBALANCED DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međiumurec

    2006-12-01

    Full Text Available Historically, most underbalanced drilling (UBD projects were undertaken to eliminate drilling problems and cost. However, recently, the reduction of formation damage has become a main focus for underbalanced operations. This has the greatest potential in directly increasing the profit to the operating company. Potential benefits include increasing of production rate, the ultimate recovery, and enabling accelerated production. Underbalanced technology, while still on a sharp growth curve, is finally becoming accepted as a normal method for handling the drilling and completion of wells. This paper details the benefits and limiting factors of UBD technology, underbalanced fluid system selection, and UBD techniques, as well as candidate screening and selection.

  1. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Operators Offshore, Inc.

    2001-04-04

    The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a series of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.

  2. Appreciation of environmental risks analysis methodologies in the offshore well drilling activities; Analise de metodologias na avaliacao de riscos ambientais relacionados as atividades de perfuracao de pocos maritimos

    Energy Technology Data Exchange (ETDEWEB)

    Zampolli, Daniella M. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil); Morooka, Celso K. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2004-07-01

    Nowadays, the projects of products and processes are supposed to integrate environmental risks criteria, in addition to their inherent operation impacts. Industrial activities, in general, generate risks to the environment, and, in case of incidents occurrence, many of the possible consequences can be translated into serious impacts. The Risk Analysis is destined to act as a decision tool in the environmental area, and therefore, the use of one of these during the project phase of an enterprise becomes important, aiming the guarantee of the system reliability. The present article has the purpose of analyzing methodologies that are being employed for the environmental risk analysis, as well as usual procedures applied in the oil industry, specially for the offshore wells drilling, evaluating and discussing their peculiarities and possible improvement. It was intended to obtain a general overview of risk analysis methodologies, with the objective of verifying the existence of some characteristics that would positively contribute for the knowledge of the inherent risks in the activities of petroleum installations, where this kind of learning is something extremely technically necessary and legally mandatory. (author)

  3. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.

    1980-12-01

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  4. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    Science.gov (United States)

    Vroblesky, Don A.; Peterson, J.E.

    2004-01-01

    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that

  5. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    Science.gov (United States)

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  6. Short-radius horizontal well re-entry learning curve: prize, cost and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Boote, K. [Ocelot Energy Inc., Calgary, AB (Canada); MacDonald, R. [Lauron Engineering Ltd, Calgary, AB (Canada)

    1997-12-01

    Six mature vertical wells in Alberta belonging to Ocelot Energy Inc., were reentered and drilled horizontally. Experiences gained, the modifications made to the drilling program and the rewards in the form of incremental oil, were discussed. Details of pre- and post-performance, operational experiences with exiting the casing, building the curve, overbalance versus underbalanced drilling, motors, directional equipment, setting liners, remedial workovers and the cost of the operation were part of the discussion.

  7. Research on ultrasonic excitation for the removal of drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug for near-well ultrasonic processing technology.

    Science.gov (United States)

    Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng

    2017-05-01

    Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Uranium and thorium series radionuclides in drinking water from drilled bedrock wells: correlation to geology and bedrock radioactivity and dose estimation

    Energy Technology Data Exchange (ETDEWEB)

    Isam Salih, M.M.; Pettersson, H.B.L.; Lund, E

    2002-07-01

    Natural radioactivity in drinking water from 328 drilled wells was studied in correlation to source parameters. Poor correlation to both aquifer geology and bedrock radioactivity was observed. Concentrations of {sup 238}U, {sup 226}Ra, {sup 222}Ra, {sup 222}Rn and {sup 210}Po in groundwater samples was in the ranges <0.027-5.3, <0.016-4.9, <0.014-1.24, 5-8105 and <0.05-0.947 Bq.l{sup -1} respectively. In about 80% of the sites the radon concentration exceeds the Nordic recommended exemption level for radon in drinking water and 15% of the sites exceed the action limit. The effective doses from ingestion were calculated and presented in association with geology. Doses due to ingestion ranged between 0.05 and 20.4 mSv.y{sup -1}, where the average contribution from {sup 222}Rn amounted to 75%. In comparison, the effective doses from inhalation of indoor {sup 222}Rn ranged between 0.2 and 20 mSv.y{sup -1}. The average contribution from inhalation of {sup 222}Rn in air to the total effective dose (ingestion+inhalation) was 58{+-}22%, 73{+-}18% and 77{+-}16% (1 SD) for the age categories 1 y, 10 y and adults respectively. (author)

  9. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: The mechanism of the drilling of holes in vertical metallic plates by cw CO2 laser radiation

    Science.gov (United States)

    Likhanskii, V. V.; Loboiko, A. I.; Antonova, G. F.; Krasyukov, A. G.; Sayapin, V. P.

    1999-02-01

    The possibility of making a hole in a vertical plate with the aid of laser radiation at a surface temperature not exceeding the boiling point is analysed neglecting the vapour pressure. The mechanism of the degradation of the liquid layer involving a reduction of its thickness, as a result of the redistribution of the molten mass owing to the operation of the force of gravity and of thermocapillary convection, is examined. The theoretical dependence of the critical size of the molten zone on the plate thickness is obtained and a comparison is made with experimental data.

  10. Estimating Drilling Cost and Duration Using Copulas Dependencies Models

    Directory of Open Access Journals (Sweden)

    M. Al Kindi

    2017-03-01

    Full Text Available Estimation of drilling budget and duration is a high-level challenge for oil and gas industry. This is due to the many uncertain activities in the drilling procedure such as material prices, overhead cost, inflation, oil prices, well type, and depth of drilling. Therefore, it is essential to consider all these uncertain variables and the nature of relationships between them. This eventually leads into the minimization of the level of uncertainty and yet makes a "good" estimation points for budget and duration given the well type. In this paper, the copula probability theory is used in order to model the dependencies between cost/duration and MRI (mechanical risk index. The MRI is a mathematical computation, which relates various drilling factors such as: water depth, measured depth, true vertical depth in addition to mud weight and horizontal displacement. In general, the value of MRI is utilized as an input for the drilling cost and duration estimations. Therefore, modeling the uncertain dependencies between MRI and both cost and duration using copulas is important. The cost and duration estimates for each well were extracted from the copula dependency model where research study simulate over 10,000 scenarios. These new estimates were later compared to the actual data in order to validate the performance of the procedure. Most of the wells show moderate - weak relationship of MRI dependence, which means that the variation in these wells can be related to MRI but to the extent that it is not the primary source.

  11. Discharge of treated wastewater from drilling exploratory wells by infiltration of hydrocarbons in the ground; Vertido de aguas residuales tratadas provenientes de pozos de perforacion exploratoria de hidrocarburos mediante la infiltracion en el terreno

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Miranda, J. P.

    2009-07-01

    The discharge of treated waste water from a well drilling exploratory oil, such as the consideration ser out to determine the minimum area needed to saturate the ground is not where he planned the infiltration of the dumping in special conditions of soil type and permeability, limited space, water quality and influence of underground aquifers in the study area. (Author) 16 refs.

  12. Excimer laser drilling of polymers

    Science.gov (United States)

    Chen, Yihong; Zheng, HongYu; Wong, Terence K. S.; Tam, Siu Chung

    1997-08-01

    Laser micro-drilling technology plays a more and more important role in industry, especially in the fabrication of multi-layer electronic packages. In such applications, non- metals are often used as insulators, in which via holes are formed to provide vertical interconnections for densely packed 3D wiring networks. Mechanical punch tools have been the primary means to form holes in ceramic sheets and in polymer boards since the 1970's. As the cost of fabricating punch heads increases drastically and the demand for quick turn around part build becomes more routine, flexible via forming technologies, such as laser drilling, have become more prevalent. In laser drilling, CO2, Nd:YAG, and excimer lasers are often used. Their drilling capabilities, drilling mechanisms, and hole qualities are different because of the different laser beam characteristics such as wavelength and beam energy distribution. In this paper, the mechanisms of laser drilling are briefly reviewed. The results of the experiments on excimer laser drilling of two types of polymer: polyimide and polyethylene terephthalate, are reported. It is found that the etch rate increases with increase of fluence, an the wall angle of drilled holes is dependent on the fluence. The material removal by a laser pulse is highly controllable. There exists an optimal fluence range to obtain clean and smooth edges of quality holes for a given material at a given laser wavelength.

  13. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    Science.gov (United States)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a

  14. Synthesis of AL-MCM-41 using gravel drilling the source of silica from wells drilling; Sintese do AL-MCM-41 usando como fonte de silica o cascalho de perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, M.S.B.; Costa, C.C.; Melo, D.M.A.; Viana, L.M.; Viana, S.O.; Santos, L.M., E-mail: socorro.fontes@Yahoo.com.br [Universidade Federal do Rio grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    The aim of this study was to synthesize Al-MCM-41 using gravel drilling as alternative source of silica, aiming at sustainable production and low cost. For hydrothermal synthesis of Al-MCM-41 was used gravel and sodium silicate as source of silica and sodium, respectively. The structural driver used was cetyltrimethylammonium bromide (CTMABr) and solvent distilled water. The hydrothermal synthesis was conducted at 100 ° C in a Teflon autoclave 45 ml jacketed stainless steel for a period of 120 hours with daily correcting pH (range 9-10) using 30% acetic acid. The material obtained was filtered, washed, dried at 100 ° C for 3 hours and then calcined at 550 ° C for 2 hours. Then it was characterized by XRD, FTIR and TG. For the results of characterization has been observed that the use of the gravel drilling as a source of silica was promising alternative for producing a mesoporous material with a high degree of hexagonal ordering. (author)

  15. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  16. Air drilling: the first experience in the Amazon; Perfuracao a ar: primeira experiencia na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Gabriel Raimundo L.; Santana, Esdras Gomes de; Souza, Gilberto Bellas de [PETROBRAS, Manaus, AM (Brazil). Distrito de Perfuracao da Amazonia. Superintendencia de Operacoes; Leme Junior, Leandro; Machado, Jorge Barreto [PETROBRAS, Manaus, AM (Brazil). Distrito de Perfuracao da Amazonia. Div. de Perfuracao

    1989-12-31

    The development of drilling techniques closely follows the difficulties of operating well events at low costs. In the Amazon Region, problems such as logistic support at high costs did not allow for the use of air drilling techniques as a means of obtaining the results necessary to the development of the field. Without these, there was no justification for promoting initial investments in air drilling equipment. After the Urucu/AM roads were completed, we were able to bring equipment to the area of operation. This equipment was tested in two wells, one directional and one vertical. In this paper, we describe the pioneer use of air drilling in their region and present the results obtained through it as well as the problems encountered and the techniques used to solve them. (author) 2 refs., 7 figs., 3 tabs.

  17. Measurement-while-drilling (MWD) development for air drilling

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, L.A.; Harrison, W.H.

    1992-01-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC's existing electromagnetic (e-m) CABLELESS''{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  18. Measurement-while-drilling (MWD) development for air drilling

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, L.A.; Harrison, W.H.

    1992-06-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  19. Horizontal drilling activity in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.

    1997-04-01

    An update of horizontal well drilling in Manitoba was provided. Manitoba`s productive formations are: (1) the Bakken Formation, (2) the Lodgepole Formation, (3) the Mission Canyon Formation, (4) the Amaranth Formation, and (5) the Melita Formation. A total of 28 exploratory wells and 29 development wells, including 11 horizontal wells were drilled in 1996. The 11 horizontal wells accounted for 30 per cent of the drilling meterage. The leading drillers for horizontal wells in Manitoba are Tundra Oil and Gas, Chevron, Anderson and HCO. Production from horizontal wells in 1996 totaled 310 cubic meter per day. To date, no horizontal wells have been drilled in the Bakken Formation. The least successful horizontal well application has been in the Lodgepole Formation. A summary of horizontal well production was provided for each Formation. 4 tabs., 10 figs.

  20. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  1. Reagent for treatment of drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Seryakov, A.S.; Balitskaya, Z.A.; Bereshchaka, I.G.; Khariv, I.Yu.

    1979-10-05

    The use of arabinogalactan as a reagent for treatment of drilling fluids, useful for drilling footage in wells, improves the quality of the fluids, reduces their cost, allows starch to be replaced, and improves the performance in drilling footage in wells.

  2. The use of alternative materials for drill pipe to extend drilling reach in shallow reservoirs

    OpenAIRE

    Grindhaug, Erling

    2012-01-01

    Master's thesis in Petroleum engineering One of the limiting factors for extended reach and horizontal drilling is high torque and drag values. One way to reduce torque & drag is to reduce the weight of the drill pipe by exchanging the standard steel with other materials that weigh less. This technology has potential to extend drilling length and/or to be cost-effective in drilling some wells. This thesis focuses on whether alternative materials for the drill pipe could be an alternativ...

  3. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  4. Developers set drilling pace

    Energy Technology Data Exchange (ETDEWEB)

    McNally, R.

    1981-01-01

    Thums four man-made islands each have a rock perimeter - 160,000 tons of granite - and an inner core of 900,000 yards of hydraulically placed dredged-sand fill. Because of the shallow depths of Long Beach Harbor, islands were constructed instead of installing conventional drilling and production platforms. The majority of drilling rigs and their equipment - casing racks and mud tanks - are mounted on steel rails and moved by hydraulic jacks at a rate of 3/4 ft/min. Each island has a central plant supplying mud and kill fluid services. Logging and perforating are performed by conventional land-based equipment. Many of THUMS' wells are drilled at exceedingly high angles to reach reserves beneath the harbor or Long Beach's downtown area. All but six or seven of the more than 800 wells are deviated, at angles ranging from 0 to 80/degree/, with an average deviation of 65 to 70/degree/. Each well has an S-curve well program and is assigned a 100-ft cylindrical diameter course. A simulated drilling program is fed into a computer to make sure the proposed course does not come within 25 ft of any other well bore. Production procedures are outlined along with a discussion of auxiliary equipment.

  5. Near-Term Developments in Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, James C.

    1989-03-21

    The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

  6. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  7. Hard rock drilling: from conventional technologies to the potential use of laser; Perfuracao em rochas duras: das tecnologias convencionais ate o potencial uso do laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, Renato; Lomba, Rosana Fatima Teixieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Perez, Maria Angelica Acosta; Valente, Luiz Carlos Guedes; Braga, Arthur Martins Barbosa [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2012-07-01

    One of the biggest challenges in the drilling of the carbonate rocks of the Pre-salt is to overcome the low penetration rates that have been obtained in the drilling of the reservoir rock in the vertical and directional wells. To overcome this challenge, a great effort is being developed in several lines of research, both in developing new concepts in drill bits and in the selection of a drilling system that together with appropriate type of bit provide an expected improvement in performance. To achieve these results, procedures are being prioritized and drilling systems with lower vibration levels are being used, since this phenomenon of vibration reduces the performance of penetration rate also affecting the lifetime of the equipment and consequently causes a reduction in reliability of all system and raises the cost per meter of drilling. Thus, new drill bit technology and new drilling systems are under development and, among these technologies we can distinguish those that promote improvements in conventional technologies and innovative technologies frankly which uses new mechanisms to cut or weaken the rock. This paper presents an overview of the conventional technology of drilling systems and drill bits, and provides information about the researches that have been developed with the use of innovative technologies which is presented as highly promising, among these innovative technologies, laser drilling and the drilling itself assisted by laser. In this process the laser beam has the main function to weaken the rock improving the rate of penetration. This paper presents a summary of studies and analyzes which are underway to investigate the potential of laser technology, also presents some results of laboratory tests already carried out. The drilling fluid in which the laser will have to pass through in the future applications is analyzed on the approach of their physicochemical properties. Thus, a better understanding of the interaction with the drilling

  8. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  9. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  10. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  11. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  12. Water-based inhibitive drilling fluids for oil wells: preliminary study; Fluidos aquosos inibidos para perfuracao de pocos de petroleo: estudo preliminar

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Kassie V.; Amorim, Luciana V.; Silva, Aline R.V.; Ferreira, Heber C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    The aim of this work is to do formulations of water-based inhibitive drilling fluids and to evaluate their rheologic, filtration and lubrication properties and the degree of swell of clays. It was studied eight formulations containing the following additives: viscosity, filtered reducer, controlling of pH, hydratable clays inhibitors, anti-foamy, bactericide, lubricant and sealant. The fluids were prepared according to the field practice that consists of adding to water the additives under constant agitation. After 24 h resting, it was carried out a study of the rheologic behavior, in a Fann 35 A viscosimeter, and of the filtration properties in a Fann press-filter and of lubricity in a Ofite Lubricity tester through the determination of the flow curves, apparent and plastic viscosities, yield limit, gel force, filtered volume, filter-cake thickness and lubricity coefficient. It was also been essays to evaluate the capacity of inhibition of clay with the chemical inhibitors isolated and in set. The results had proven that the presence of inhibitor of clay in drilling fluids has great importance and promotes the inhibition of the swell of clay in all concentrations studied and amongst the formulations developed, six had presented performance next to the fluid Standard. (author)

  13. Sediment compaction and pore pressure prediction in deepwater basin of the South China Sea: Estimation from ODP and IODP drilling well data

    Science.gov (United States)

    Xie, Yangbing; Wu, Tuoyu; Sun, Jin; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei; Chen, Chuanxu

    2018-02-01

    Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an important task in deepwater oil exploration and development. In this study, we analyze the drilling data from ODP Leg 184 Sites 1144, 1146, and 1148, and IODP Leg 349 Sites U1431, U1432, U1433, and U1435 to study the sediment compaction and controls in the northern South China Sea. Sedimentation rate, sediment content, distribution area, and buried depth are the factors that influence sediment compaction in the deepwater basin of the South China Sea. Among these factors, the sediment content is the most important. The fitted normal compacted coefficients and mudline porosity for an interval of 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows varying overpressure situations. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted over-pressure at Site 1148, which is responsible for the confusing result. Above all, we find that sediment compaction should serve as a proxy for pore pressure in the deepwater basin of the South China Sea.

  14. Emission of pesticides during drilling and deposition in adjacent areas

    Directory of Open Access Journals (Sweden)

    Heimbach, Udo

    2014-02-01

    Full Text Available In seven experiments seeds of maize, oil seed rape and barley, treated with neonicotinoids, were sown using pneumatic drilling equipment with deflectors attached in case of pneumatic suction systems. Directly adjacent to the drilled area of usually about 50 m width were replicated areas with bare soil as well as with crops. During maize (Zea mays drilling flowering oil seed rape (Brassica napus and during drilling of barley (Hordeum vulgare and oil seed rape flowering white mustard (Sinapis alba was adjacent. The amount of residues in the adjacent non crop areas in Petri dishes being distributed on the bare soil declined only slowly from 1 to 20 m distance from the area drilled. Seed batches with more abrasion and higher content of active substances in the dust resulted in higher residues off crop. After drilling of maize in four experiments in Petri dishes in adjacent non crop areas in 1-5 m distance between 0.02 and 0.40 g a.s./ha of neonicotinoids and in the adjacent oil seed rape a total of 0.05–0.80 g a.s./ha were detected. After drilling oil seed rape or barley these values were only 0.02–0.06 g a.s./ha in Petri dishes in non crop areas and 0.03-0.08 g a.s./ha in total in adjacent white mustard. In gauze net samplers installed vertically in 3 m distance in non crop areas up to seven times higher values were detected compared to Petri dishes.

  15. Review of casing while drilling technology

    OpenAIRE

    Pavković Bojan; Bizjak Renato; Petrović Bojan

    2016-01-01

    Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA) needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT) but also leads to well control difficulties inclu...

  16. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    Energy Technology Data Exchange (ETDEWEB)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  17. PRODUCTIVITY OF FRACTURED HORIZONTAL WELLS

    Directory of Open Access Journals (Sweden)

    Stjepan Antolović

    2009-12-01

    Full Text Available The interest and performance of horizontal drilling and completions has increased during the last two decades. Horizontal wells are advantageous compared to vertical wells in thin reservoirs, reservoirs with favorable vertical permeability and reservoirs with water and gas coning problems. In many reservoirs, the ratio of horizontal permeability to the vertical permeability is substantially larger than one and often is close to 10. Thus, these reservoirs are very good candidates for hydraulic fracturing. By hydraulic fracturing one or more fractures are created, which can be longitudinal or orthogonal. By that, flow is altered and it mostly conducts horizontally through reservoir toward horizontal wellbore. With this altered flow, fluid is produced faster, with less pressure loss by fluid unit of produced fluid. Some of the existing mathematical models to determine the productivity of multifractured horizontal wells are presented in this work (the paper is published in Croatian.

  18. Computational algorithm for predicting the pressure gradient in vertical wells by correlating multiphase flow Hagedorn and Brown

    OpenAIRE

    Luis Jose Duarte Bohorquez; María Duarte

    2015-01-01

    The accurate prediction of the pressure drop expected to occur during the multiphase flow of fluids in the flow string of a well is a widely recognized problem in the petroleum industry. There are many correlations and mechanistic models that estimate pressure gradients in wells as correlations: Duns & Ros (2008); Orkiszewski (1967); Hagedorn & Brown (1965), Beggs & Brill (1973), Govier & col. (1999), etc. Each one is based on application criteria that transform it into...

  19. Geologic cross section, gas desorption, and other data from four wells drilled for Alaska rural energy project, Wainwright, Alaska, coalbed methane project, 2007-2009

    Science.gov (United States)

    Clark, Arthur C.; Roberts, Stephen B.; Warwick, Peter D.

    2010-01-01

    Energy costs in rural Alaskan communities are substantial. Diesel fuel, which must be delivered by barge or plane, is used for local power generation in most off-grid communities. In addition to high costs incurred for the purchase and transport of the fuel, the transport, transfer, and storage of fuel products pose significant difficulties in logistically challenging and environmentally sensitive areas. The Alaska Rural Energy Project (AREP) is a collaborative effort between the United States Geological Survey (USGS) and the Bureau of Land Management Alaska State Office along with State, local, and private partners. The project is designed to identify and evaluate shallow (<3,000 ft) subsurface resources such as coalbed methane (CBM) and geothermal in the vicinity of rural Alaskan communities where these resources have the potential to serve as local-use power alternatives. The AREP, in cooperation with the North Slope Borough, the Arctic Slope Regional Corporation, and the Olgoonik Corporation, drilled and tested a 1,613 ft continuous core hole in Wainwright, Alaska, during the summer of 2007 to determine whether CBM represents a viable source of energy for the community. Although numerous gas-bearing coal beds were encountered, most are contained within the zone of permafrost that underlies the area to a depth of approximately 1,000 ft. Because the effective permeability of permafrost is near zero, the chances of producing gas from these beds are highly unlikely. A 7.5-ft-thick gas-bearing coal bed, informally named the Wainwright coal bed, was encountered in the sub-permafrost at a depth of 1,242 ft. Additional drilling and testing conducted during the summers of 2008 and 2009 indicated that the coal bed extended throughout the area outlined by the drill holes, which presently is limited to the access provided by the existing road system. These tests also confirmed the gas content of the coal reservoir within this area. If producible, the Wainwright coal bed

  20. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  1. Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tutuka Ariadji

    2012-07-01

    Full Text Available Comparing the quality of basic reservoir rock properties is a common practice to locate new infills or development wells for optimizing an oil field development using a reservoir simulation. The conventional technique employs a manual trial and error process to find new well locations, which proves to be time-consuming, especially, for a large field. Concerning this practical matter, an alternative in the form of a robust technique was introduced in order that time and efforts could be reduced in finding best new well locations capable of producing the highest oil recovery. The objective of the research was to apply Genetic Algorithm (GA in determining wells locations using reservoir simulation to avoid the manual conventional trial and error method. GA involved the basic rock properties, i.e., porosity, permeability, and oil saturation, of each grid block obtained from a reservoir simulation model, which was applied into a newly generated fitness function formulated through translating the common engineering practice in the reservoir simulation into a mathematical equation and then into a computer program. The maximum of the fitness value indicated a final searching of the best grid location for a new well location. In order to evaluate the performance of the generated GA program, two fields that had different production profile characteristics, namely the X and Y fields, were applied to validate the proposed method. The proposed GA method proved to be a robust and accurate method to find the best new well locations for field development. The key success of this proposed GA method is in the formulation of the objective function.

  2. Directional drilling of a drill string

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, J.; Catherall, R.; Stewar, W.M.; Pounds, R.J.

    1990-02-13

    A method is provide for controlling the direction of a drill bit at the downhole end of a drill string drilling from a surface. Two steerable stabilisers are provide at the downhole end of the drill string at locations spaced apart in the drilling direction. The orientation of the stabilisers is adjusted to create reactive forces from the bore hole to deflect the course of the bit in a desired direction. The stabilisers are suitably arranged eccentrically and circumferentially offset by 180 degrees {-+} 60 degree. In normal drilling, the drill string is rotated such that the stabilisers engage the bore hole to support a downhole motor against tilting. When off course drilling is sensed, the stabilisers are rotated to a position and stopped from rotation such that drilling forces generate reaction forces to cause a desired change of direction.

  3. Techniques for the drilling and completion of coalbed methane and shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Gardes, B. [Gardes Energy Services Inc., Lafayette, LA (United States)

    2005-07-01

    This paper described the use of rotary drilling methods to commercially extract methane from coal seams, particularly those where coalbed fracturing inhibits the effects of well stimulation. It was noted that vertical well development requires a large amount of surface infrastructure and can cause significant environmental impact. Directional drilling technology can solve these problems because horizontal wells only need 4 surface well locations per section in order to extract CBM. This presentation described the use of long, medium and short radius pipes for targeting the pay zones in different coal seams. In particular, underbalanced multilateral drilling can prevent formation damage in underpressured zones. Three types of underbalanced systems were described. These were the CDX dual bore; foam/air mist; and concentric casing multi-lateral systems. The use of nitrogen as a solution for optimum completions results was also examined along with some alternatives to this approach. tabs., figs.

  4. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  5. Chuck for delicate drills

    Science.gov (United States)

    Copeland, C. S.

    1972-01-01

    Development of oil film technique to couple power between drive spindle and drill chuck for delicate drilling operations is discussed. Oil film permits application of sufficient pressure, but stops rotating when drill jams. Illustration of equipment is provided.

  6. Geopressured -- Geothermal Drilling and Testing Plan: Volume 1 Drilling and Completion, Technadril/Fenix and Scisson -- Department of Energy T/F&S -- DOE Gladys McCall No. 1 Well, Cameron Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    The principal objectives of the geopressured-geothermal reservoir resource assessment program are to obtain data related to the following: 1.2.1--Reservoir parameters and characteristics, including permeability, porosity, areal extent, net thickness of productive sands, methane content, and formation compressibilities; 1.2.2--Ability of a geopressured well to flow at the high rates, i.e., 40,000 bbls/day, expected to achieve the resource recovery required for economic commercial operations; 1.2.3--Reservoir production drive mechanisms and physical and chemical changes that may occur with various production rates and conditions; 1.2.4--Aquifer fluid properties, including chemical composition, dissolved and suspended solids, hydrocarbon content, in situ temperature, and pressure; 1.2.5--Techniques and strategies for completion and production of geopressured wells for methane, thermal, and hydraulic energy production, including examination of producibility using computer simulators employing parameters determined by well testing; 1.2.6--Disposal well parameters, such as optimum injection rate and pressures (transient and pseudo steady state), chemical compatibility of fluids, temperature-solubility relationships, and the economic considerations of injection, including evaluation of filtering and inhibition techniques in the process steam; and 1.2.7--The long-term environmental effects of an extensive commercial application of geopressured-geothermal energy, i.e., subsidence, induced seismicity, and fluid disposal.

  7. Technology strategy for cost-effective drilling and intervention; Technology Target Areas; TTA4 - Cost effective drilling and intervention

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The main goals of the OG21 initiative are to (1) develop new technology and knowledge to increase the value creation of Norwegian oil and gas resources and (2) enhance the export of Norwegian oil and gas technology. The OG21 Cost-effective Drilling and Intervention (CEDI) Technology Target Area (TTA) has identified some key strategic drilling and well intervention needs to help meet the goals of OG21. These key strategic drilling and well intervention needs are based on a review of present and anticipated future offshore-Norway drilling and well intervention conditions and the Norwegian drilling and well intervention industry. A gap analysis has been performed to assess the extent to which current drilling and well intervention research and development and other activities will meet the key strategic needs. Based on the identified strategic drilling and well intervention needs and the current industry res each and development and other activities, the most important technology areas for meeting the OG21 goals are: environment-friendly and low-cost exploration wells; low-cost methods for well intervention/sidetracks; faster and extended-reach drilling; deep water drilling, completion and intervention; offshore automated drilling; subsea and sub-ice drilling; drilling through basalt and tight carbonates; drilling and completion in salt formation. More specific goals for each area: reduce cost of exploration wells by 50%; reduce cost for well intervention/sidetracks by 50%; increase drilling efficiency by 40%; reduce drilling cost in deep water by 40 %; enable offshore automated drilling before 2012; enable automated drilling from seabed in 2020. Particular focus should be placed on developing new technology for low-cost exploration wells to stem the downward trends in the number of exploration wells drilled and the volume of discovered resources. The CEDI TTA has the following additional recommendations: The perceived gaps in addressing the key strategic drilling and

  8. Testing methodology of diamond composite inserts to be used in the drilling of petroleum wells; Metodologia de testes de insertos compositos diamantados a serem usados na perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovnitchii, G.S.; Filgueira, M.; Skury, A.L.D.; Tardim, R.C. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil)], e-mail: rtardim@terra.com.br

    2006-07-01

    The useful life of the inserts used in the cutters of the drills for perforation of oil wells determines the quality of the perforation as well as the productivity. Therefore, the research of the wear of insert is carried through with the objective to foretell the most important properties of the inserts. Due to the fact of the UENF to be developing the processes of composites sintering to the synthetic diamond base, it is interesting to define the testing methodology of the gotten inserts. The proposed methodology is based on the evaluation of the wear suffered by de sample. For this end a micro processed 'Abrasimeter', model AB800-E, manufactured for the Contenco Company was used. The instrument capacity is 1,36 kVA; axial load applied in the cutter up to 50 kgf; rotation of table speed 20 rpm; course of the tool in radial direction speed before 2 m/min; dimensions of the granite block D = 808 mm, d = 484 mm, h = 50 mm. The gotten results show that the proposed methodology can be used for the evaluation of the inserts of the cutters applied in perforation drills. (author)

  9. Automation and integration improve underbalanced drilling efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2004-11-01

    Unlike overbalanced drilling that uses heavy drilling muds to offset formation pressures, underbalanced drilling uses air or nitrogen as the drilling fluid, allowing wells to flow freely during drilling. As a general rule, underbalanced drilling requires a much more elaborate setup than conventional drilling, but the more complex setup is essential to prevent formation damage that occurs when water-based drilling fluids invade the formation around the wellbore and permanently clog the microscopic pores of the low permeability rock. This paper provides a detailed explanation of the Genesis One underbalanced drilling package developed by Ensign Resource Service Group's Red Deer, Alberta-based Enhanced Systems Division. Installed at a well site, this network of vessels and piping is a control system that takes a continuous flow from the well and adjusts it, cleans it, separates the solids and re-injects the nitrogen back into the well. The package costs about $4 million each, and there are currently 18 of them in operation, 15 of them hired by EnCana last winter to drill in the Helmet-Sierra tight gas area in northeastern British Columbia. Some of the challenges involved in underbalanced drilling are also discussed, not the least of which is to be underbalanced at the formation level and to stay underbalanced, i.e. to keep wellbore pressure at formation level lower than the formation pressure, to allow the well to flow freely and to avoid formation damage. In underbalanced drilling this task is accomplished by automation which allows the operator to set the pressure on the wellbore at surface, by opening and closing valves on the system, thus minimizing the risk of harmful pressure on the formation. More automation means less chance of injury, smaller crews, reduced environmental impact and enhanced recovery. As the growing demand for gas pushes the frontier into ever tighter formations, the use of underbalanced drilling is expected to rise significantly.

  10. Gas reservoir evaluation for underbalanced horizontal drilling

    Directory of Open Access Journals (Sweden)

    Li Gao

    2014-01-01

    Full Text Available A set of surface equipment for monitoring the parameters of fluid and pressure while drilling was developed, and mathematical models for gas reservoir seepage and wellbore two-phase flow were established. Based on drilling operation parameters, well structure and monitored parameters, the wellbore pressure and the gas reservoir permeability could be predicted theoretically for underbalanced horizontal drilling. Based on the monitored gas production along the well depth, the gas reservoir type could be identified.

  11. Drilling Waste Management Strategy for Field ‘X'

    OpenAIRE

    Wibowo, Risyad Ramadhan; Kasmungin, Sugiatmo; Rudiantoro, Agung Budi

    2015-01-01

    Drilling waste management is a planing and implementation of a prudent drilling waste collection,treatment and final disposal. A well planned drilling waste management system not only ensure thehealth and safety of the surrounding environment, it also brings advantages to the drilling operationeffectivity and economics. The drilling waste management technologies and practices can begrouped into three major categories : waste minimization, recylce/reuse and disposal. This essaywill later discu...

  12. Western Canada SAGD drilling and completions performance

    Energy Technology Data Exchange (ETDEWEB)

    Turchin, S.; Tucker, R. [Ziff Energy Group (Canada)

    2011-07-01

    In the heavy oil industry, steam assisted gravity drainage (SAGD) is a thermal recovery method used to enhance oil recovery. In 2009, Ziff Energy carried out a study on SAGD drilling and completions performance in Western Canada. This paper presents the methodology used to assess drilling performances and the results obtained. This study was conducted on 159 SAGD well pairs and 1,833 delineation wells in the Western Canadian Sedimentary Basin from late 2004 to fall 2008. The drilling performance assessment was calculated from several aspects including well quality, drilling and completions cost performance and drilling time analysis. This study provided a detailed analysis of drilling and completions costs of SAGD which can help companies to improve their performance.

  13. Evaluation of commercial drilling and geological software for deep drilling applications

    Science.gov (United States)

    Pierdominici, Simona; Prevedel, Bernhard; Conze, Ronald; Tridec Team

    2013-04-01

    The avoidance of operational delays, financial losses and drilling hazards are key indicators for successful deep drilling operations. Real-time monitoring of drilling operation data as well as geological and petrophysical information obtained during drilling provide valuable knowledge that can be integrated into existing geological and mechanical models in order to improve the drilling performance. We have evaluated ten different geological and drilling software packages capable to integrate real-time drilling and planning data (e.g. torque, drag, well path, cementing, hydraulic data, casing design, well control, geo-steering, cost and time) as well as other scientific and technical data (i.e. from drilling core, geophysical downhole logging, production test) to build geological and geophysical models for planning of further deep drillings in a given geological environment. To reach this goal, the software has to be versatile to handle different data formats from disciplines such as geology, geophysics, petrophysics, seismology and drilling engineering as well as data from different drilling targets, such as geothermal fluids, oil/gas, water reservoirs, mining purpose, CO2 sequestration, or scientific goals. The software must be capable to analyze, evaluate and plan in real-time the next drilling steps in the best possible way and under safe conditions. A preliminary geological and geophysical model with the available data from site surveys and literature is built to address a first drilling plan, in which technical and scientific aspects are taken into consideration to perform the first drilling (wildcat well). During the drilling, the acquired scientific and technical data will be used to refine the previous geological-drilling model. The geological model hence becomes an interactive object strongly linked to the drilling procedure, and the software should allow to make rapid and informed decisions while drilling, to maximize productivity and minimize drilling

  14. Estimation of a stress field in the earth`s crust using drilling-induced tensile fractures observed at well WD-1 in the Kakkonda geothermal field; Kakkonda WD-1 sei de kansokusareta drilling induced tensile fracture ni yoru chikaku oryokuba no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, T. [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Hayashi, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science; Kato, O.; Doi, N.; Miyazaki, S. [Japan Metals and Chemicals Co. Ltd., Tokyo (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-05-27

    This paper describes estimation of a stress field in the earth`s crust in the Kakkonda geothermal field. Formation micro imager (FMI) logging known as a crack detecting logging was performed in the well WD-1. This FMI logging has made observation possible on cracks along well axis thought to indicate size and direction of the crust stress, and drilling-induced tensile fractures (DTF). It was verified that these DTFs are generated initially in an azimuth determined by in-situ stress (an angle up to the DTF as measured counterclockwise with due north as a starting point, expressed in {theta}) in the well`s circumferential direction. It was also confirmed that a large number of cracks incline at a certain angle to the well axis (an angle made by the well axis and the DTF, expressed in {gamma}). The DTF is a crack initially generated on well walls as a result of such tensile stresses as mud pressure and thermal stress acting on the well walls during well excavation, caused by the in-situ stress field. Measurement was made on the {theta} and {gamma} from the FMI logging result, and estimation was given on a three-dimensional stress field. Elucidating the three-dimensional crust stress field in a geothermal reservoir is important in making clear the formation mechanism thereof and the growth of water-permeable cracks. This method can be regarded as an effective method. 9 refs., 8 figs., 1 tab.

  15. Elf well turns 90/degree/- and stays there

    Energy Technology Data Exchange (ETDEWEB)

    Astier, B.; Jourdan, A.; Baron, G.

    1981-01-01

    As part of an intensive research program, the French association IFP (Institut Francais du Petrole) and Elf-Aquitaine have drilled the first European horizontal hole. The well was spudded conventionally and then deviated so that its final path was horizontal, 2,198 ft (670 m) below the surface. More than 330 ft (100 m) were drilled between 89/degree/ and 92/degree/ of inclination. The project started with reservoir engineering studies aimed at demonstrating, on mathematical models, the effectiveness of a horizontal drain hole in areas where hydrocarbon recovery is poor or unsatisfactory, due to gas or water coning, poor flooding patterns, intersection of fractures in tight but fractured producing formations, or other causes. This technique has a number of potential applications both in and out of the oil industry. The well was drilled in 44 days. Horizontal displacement was 2,192 ft (668 m) with a total vertical depth of 2,198 ft (670 m). To accomplish this, it was necessary to drill 3,563 ft (1,086 m) of hole. In the 17/one-half/-in. hole, 73/4-in. drill collars and 5-in. heavy weight drill pipe were run above the bent sub and the monel collar. While reaming the hole, the drill string was rotated conventionally, one near bit and one stabilizer (30 ft above) being included in the string.

  16. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  17. Development drilling paces oilfield activity

    Energy Technology Data Exchange (ETDEWEB)

    McNally, R.

    1978-01-01

    A graph represents the oil, gas, and dry development well completion trends during the past 12 yr in the U.S. Development drilling these days is setting a pace that has rig employment in the U.S. at a modern high, with gains at times exceeding activity during comparable periods a year earlier by more than 30%. Increased development drilling, of course, reflects economic incentives of increased prices for new oil and higher prices available on the intrastate gas market. It also reflects the confusion and apprehension caused by government activity (or lack of activity) during the past year, in the U.S. at least. For example, exploratory drilling has not kept pace with overall increases in well completions during the years following the 1973 Arab oil embargo. Since 1971, completion of development wells has increased by 61% compared with an overall completion increase of 53%. During the first 3 quarters of 1977, development drilling accounted for 78% of the 31,900 wells completed in the U.S. This was an improvement of 2 percentage points over the similar period in 1976. Development drilling footage exceeded 104,000,000 during the first 3 quarters of 1977, an 8% gain over the previous year. Overall footage was up 7%, to almost 146,000,000.

  18. Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-02-01

    The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

  19. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  20. Data analytics for drilling operational states classifications

    OpenAIRE

    Veres, Galina; Sabeur, Zoheir

    2015-01-01

    This paper provides benchmarks for the identification of best performance classifiers for the detection of operational states in industrial drilling operations. Multiple scenarios for the detection of the operational states are tested on a rig with various drilling wells. Drilling data are extremely challenging due to their non-linear and stochastic natures, notwithstanding the embedded noise in them and unbalancing. Nevertheless, there is a possibility to deploy robust classifiers to overcom...

  1. Drilling predation on serpulid polychaetes (Ditrupa arietina from the pliocene of the Cope Basin, Murcia Region, Southeastern Spain.

    Directory of Open Access Journals (Sweden)

    Jordi Martinell

    Full Text Available We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain. Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ~5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter, parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data. Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%. Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free

  2. Drilling Predation on Serpulid Polychaetes (Ditrupa arietina) from the Pliocene of the Cope Basin, Murcia Region, Southeastern Spain

    Science.gov (United States)

    Martinell, Jordi; Kowalewski, Michał; Domènech, Rosa

    2012-01-01

    We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid

  3. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739. (DLC)

  4. Evaluation of polymers of different degrees viscosities as additives for drilling fluids for oil well; Avaliacao de polimeros de diferentes graus de viscosidades como aditivos para fluidos de perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Farias, K.V.; Amorim, L.V.; Silva, A.V. [Universidade Federal de Campina Grande (DEMa/UFCG), PB (Brazil); Lira, H.L. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencias e Tecnologia. Unidade Academica de Engenharia de Materiais], e-mail: kassiefarias@gmail.com

    2008-07-01

    The objective of this work is to study the polymers influence of different degrees of viscosity, used as viscositying and filtered reducer additives, in the rheological, filtration and lubricity properties of drilling fluids for oil wells. Were determined the rheological behavior, the apparent and plastic viscosities, the yield limit and gel force, the filtered volume and the lubricity coefficient in accordance with API standard. The fluids showed pseudoplastic behavior with properties close to the standard fluid; the increase of viscositying and filtered reducer concentrations lead to the increase of rheological properties and the filtered reducer values, from the concentration of 3,5g/350mL of water it acted as viscositying, increasing the values of apparent and plastic viscosities, yield limit and gel force, being 3,0g/350mL of water the adequate concentration of this additive, promoting better results of rheological and filtration properties. (author)

  5. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate

    KAUST Repository

    Muhammed, Mufasila

    2017-09-11

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multi-quantum well (MQW) grown on the masked β-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ~ 86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  6. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells

    Science.gov (United States)

    Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C.

    2015-04-01

    A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF3/ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at -18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications.

  7. Failure mode analysis of degraded InGaAs-AlGaAs strained quantum well multi-mode vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Huang, Michael; Bushmaker, Adam; Theiss, Jesse; Presser, Nathan; Foran, Brendan; Moss, Steven C.

    2016-03-01

    Remarkable progress made in vertical cavity surface emitting lasers (VCSELs) emitting at 850 and 980 nm has led them to find an increasing number of applications in high speed data communications as well as in potential space satellite systems. However, little has been reported on reliability and failure modes of InGaAs VCSELs emitting at ~980 nm although it is crucial to understand failure modes and underlying degradation mechanisms in developing these VCSELs that exceed lifetime requirements for space missions. The active layer of commercial VCSELs that we studied consisted of two or three InGaAs quantum wells. The laser structures were fabricated into deep mesas followed by a steam oxidation process to form oxide-apertures for current and optical confinements. Our multi- mode VCSELs showed a laser threshold of ~ 0.5 mA at RT. Failures were generated via accelerated life-testing of VCSELs. For the present study, we report on failure mode analysis of degraded oxide-VCSELs using various techniques. We employed nondestructive techniques including electroluminescence (EL), optical beam induced current (OBIC), and electron beam induced current (EBIC) techniques as well as destructive techniques including focused ion beam (FIB) and high-resolution TEM techniques to study VCSELs that showed different degradation behaviors. Especially, we employed FIB systems to locally remove a portion of top-DBR mirrors of degraded VCSELs, which made it possible for our subsequent EBIC and OBIC techniques to locate damaged areas that were generated as a result of degradation processes and also for our HR-TEM technique to prepare TEM cross sections from damaged areas. Our nondestructive and destructive physical analysis results are reported including defect and structural analysis results from pre-aged VCSELs as well as from degraded VCSELs life-tested under different test conditions.

  8. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  9. Unconventional Oil Reserves Development in the Viking Play (Western Canada Using Horizontal Wells and Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    T.B. Baishev

    2017-09-01

    Full Text Available Oil production from the Viking play in Saskatchewan province started in the 1950s and continues since that time. Horizontal drilling and multistage fracturing have caused resurgence in development of this play. Based on the production data from several fields, the comparative results of the Viking play development using vertical and horizontal wells are presented. Horizontal wells drilling made it possible to increase oil production in those formation zones that were previously considered predominantly gas-saturated, as well as in the zones affected by water injection using vertical wells in order to maintain reservoir pressure. Infill drilling combined with longer lateral completion length also positively affected the development of oil reserves from the Viking play.

  10. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995......In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task....... The 5.0 m long Hans Tausen (HT) drill was a prototype for the ~11 m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4 m long ice cores after some design improvements...

  11. Deep Sea Drilling Project

    Science.gov (United States)

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  12. Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients

    Directory of Open Access Journals (Sweden)

    S. Krause

    2012-06-01

    Full Text Available This paper investigates the patterns and controls of aquifer–river exchange in a fast-flowing lowland river by the conjunctive use of streambed temperature anomalies identified with Fibre-optic Distributed Temperature Sensing (FO-DTS and observations of vertical hydraulic gradients (VHG.

    FO-DTS temperature traces along this lowland river reach reveal discrete patterns with "cold spots" indicating groundwater up-welling. In contrast to previous studies using FO-DTS for investigation of groundwater–surface water exchange, the fibre-optic cable in this study was buried in the streambed sediments, ensuring clear signals despite fast flow and high discharges. During the observed summer baseflow period, streambed temperatures in groundwater up-welling locations were found to be up to 1.5 °C lower than ambient streambed temperatures. Due to the high river flows, the cold spots were sharp and distinctly localized without measurable impact on down-stream surface water temperature.

    VHG patterns along the stream reach were highly variable in space, revealing strong differences even at small scales. VHG patterns alone are indicators of both, structural heterogeneity of the stream bed as well as of the spatial heterogeneity of the groundwater–surface water exchange fluxes and are thus not conclusive in their interpretation. However, in combination with the high spatial resolution FO-DTS data we were able to separate these two influences and clearly identify locations of enhanced exchange, while also obtaining information on the complex small-scale streambed transmissivity patterns responsible for the very discrete exchange patterns. The validation of the combined VHG and FO-DTS approach provides an effective strategy for analysing drivers and controls of groundwater–surface water exchange, with implications for the quantification of biogeochemical cycling and contaminant transport at aquifer–river interfaces.

  13. Slimhole drilling for geothermal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States). Geothermal Research Dept.

    1994-07-01

    Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration, made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research. Sandia negotiated an agreement with Far West Capital, which operates the Steamboat Hills geothermal field, to drill and test an exploratory slimhole on their lease. The principal objectives for the slimhole were development of slimhole testing methods, comparison of slimhole data with that from adjacent production-size wells, and definition of possible higher-temperature production zones lying deeper than the existing wells.

  14. A Promising Material by Using Residue Waste from Bisphenol A Manufacturing to Prepare Fluid-Loss-Control Additive in Oil Well Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Zhi-Lei Zhang

    2013-01-01

    Full Text Available The residues mixture from Bisphenol A manufacturing process was analyzed. Fourier transform infrared (FTIR spectroscopy, gas chromatography-mass spectrometry (GC-MS, and nuclear magnetic resonance (NMR were used to characterize the residues. The results indicated that the residues were complex mixture of several molecules. 3-(2-Hydroxyphenyl-1,1,3-trimethyl-2,3-dihydro-1H-inden-5-ol and phenol were the main components of the residues. The technical feasibility of using it as phenol replacement in fluid-loss-control additive production was also investigated. The fluid-loss-control capacity of the novel additive was systematically investigated. It was discovered that the well fluid-loss performance of the prepared additive can be achieved, especially at high temperature.

  15. Drilling fluid additive and method for inhibiting hydration

    Energy Technology Data Exchange (ETDEWEB)

    Paatel, A.D.; McLaurine, H.C.

    1992-09-22

    This patent describes a method for controlling hydration in the drilling of subterranean wells comprising adding a functionally effective amount of a polyamide to a drilling fluid, it comprises: the reaction product of diethylenetriamine and hydroxyacetic acid, and injecting the drilling fluid into a subterranean well.

  16. Room-temperature CW operation of a nitride-based vertical-cavity surface-emitting laser using thick GaInN quantum wells

    Science.gov (United States)

    Furuta, Takashi; Matsui, Kenjo; Horikawa, Kosuke; Ikeyama, Kazuki; Kozuka, Yugo; Yoshida, Shotaro; Akagi, Takanobu; Takeuchi, Tetsuya; Kamiyama, Satoshi; Iwaya, Motoaki; Akasaki, Isamu

    2016-05-01

    We demonstrated a room-temperature (RT) continuous-wave (CW) operation of a GaN-based vertical-cavity surface-emitting laser (VCSEL) using a thick GaInN quantum well (QW) active region and an AlInN/GaN distributed Bragg reflector. We first investigated the following two characteristics of a 6 nm GaInN 5 QWs active region in light-emitting diode (LED) structures. The light output power at a high current density (∼10 kA/cm2) from the 6 nm GaInN 5 QWs was the same or even higher than that from standard 3 nm 5 QWs. In addition, we found that hole injection into the farthest QW from a p-layer was sufficient. We then demonstrated a GaN-based VCSEL with the 6 nm 5 QWs, resulting in the optical confinement factor of 3.5%. The threshold current density under CW operation at RT was 7.5 kA/cm2 with a narrow (0.4 nm) emission spectrum of 413.5 nm peak wavelength.

  17. 76 FR 11812 - Drill Pipe and Drill Collars From China

    Science.gov (United States)

    2011-03-03

    ... COMMISSION Drill Pipe and Drill Collars From China Determinations On the basis of the record \\1\\ developed in... of imports of drill pipe and drill collars from China, provided for in subheadings 7304.22, 7304.23... drill pipe and drill collars from China were subsidized within the meaning of section 703(b) of the Act...

  18. 78 FR 59972 - Drill Pipe and Drill Collars from China

    Science.gov (United States)

    2013-09-30

    ... COMMISSION Drill Pipe and Drill Collars from China AGENCY: United States International Trade Commission... phase investigation of the antidumping and countervailing duty orders on drill pipe and drill collars... remanding certain aspects of the Commission's affirmative threat determination in Drill Pipe and Drill...

  19. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Science.gov (United States)

    2010-03-08

    ... COMMISSION Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings 7304... by reason of LTFV and subsidized imports of drill pipe and drill collars from China. Accordingly...

  20. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  1. Improve Performance of Water-based Drilling Fluids

    OpenAIRE

    Ismail, Abdul Razak

    2014-01-01

    The significant of exploring deep wells is increasing rapidly to fulfill the global oil and gas demand. Deepwater drilling in offshore operations found negative impact on the drilling fluids rheological properties when exposed to high pressure high temperature conditions. Hence, designing drilling fluids for drilling in these type of wells are the major challenges. In this study, the impact of multi-walled carbon nanotube (MWCNT) and nano metal oxides (titanium oxide, aluminum oxide and coppe...

  2. Innovative drilling improves THUMS islands operations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.D.

    1983-08-01

    During the last 2 years, THUMS Long Beach Co. has made tremendous improvements in drilling and production efficiencies. The company implemented several innovative ideas which have reduced drilling time by as much as 25%, as well as increased well productivity. THUMS' engineering and drilling staffs should be credited with willingness to explore and to try state-of-the-art technology to improve ongoing operations. The company as one of the first to use computer optimization for well bore planning, measurement-while-drilling (MWD) tools for monitoring directional drilling parameters, and more recently for using the combination of polycrystalline diamond compact (PDC) underreamers and high-torque, low-speed mud motors to underream selected intervals.

  3. Simulation of surge and swab pressures in well drilling operations; Simulacao do problema de 'surge' e 'swab' em atividades de perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Fernando T.G.M.C. de; Kimura, Hudson Faglioni; Ramalho, Vanessa; Negrao, Cezar O. Ribeiro; Junqueira, Silvio L.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Martins, Andre Leibsohn [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The movements of the well drilling pipe, known as trips, cause variations in the well inner pressure. When the pipe is moving downwards, in an operation called 'running', the pressure increases and is known as surge pressure and, when it is moving upwards, in an operation called 'pulling', the pressure decreases and it is so called a swab pressure. The study of this phenomenon is of great importance not only due to financial reasons but also for the determination of speeds and accelerations which should be used in running and pulling operations. Among the researchers have studied this problem, Fontenot and Clark are two of the most important. They formulated the problem solution through considerations about the friction factor. The present work's target is to develop a computational program which allows the calculus of those pressures, according to previous investigations and models found in the literature and for different types of fluids as well, such as Bingham fluid and Power Law fluid. (author)

  4. Sowing Quality Indicators for a Seed Drill With Overpressure

    Directory of Open Access Journals (Sweden)

    Jan Turan

    2014-01-01

    Full Text Available The main goal of sowing is the distribution of seeds at an optimal depth with adequate seed spacings. The results of the optimal sowing, in both horizontal and vertical directions, are better germination and sprouting, as well as increased yield and reduced influence of plants on each other’s space for growing, regarding the available light, nutrients and moisture. Quality of horizontal and vertical seed distribution is influenced by the distance between rows, sowing depth, pre-sowing preparation, seed drill, seeding mechanism, sowing density, and operator’s skills. The arithmetic mean of spacing (Am, standard deviation for spacings between the plants (SD and coefficient of variation (CV are usually used for representation of sowing evenness. Assuming that the seeds are of good germination quality, the yield is directly dependent on the sowing quality and organization of plants per unit of surface area. A well prepared plot was sown with 20 corn seed hybrids from different FAO maturity groups. The sowing was performed with precision pneumatic seed drill INO Becker Aeromat 2, which ejects individual seeds by using the overpressure.After sprouting, no statistically significant differences were found between the sowing of hybrids from different FAO maturity groups and their characteristics. When the yield is concerned, biological characteristics of hybrids are much more influential than the quality of sowing. This is true only if the tractor implement for wide row planting is properly adjusted.

  5. Synthetic drilling muds: Environmental gain deserves regulatory recognition

    Energy Technology Data Exchange (ETDEWEB)

    Burke, C.J.; Veil, J.A.

    1995-06-01

    Efficient drilling technology is essential to meet the needs of the oil industry. Both the challenges of new oil provinces, especially in offshore waters, and the demands for efficient environmental protection have driven the development of new technology. Drilling mud is a key factor influencing drilling technology use in modern drilling operations. New oil industry developments involve directional and horizontal drilling as well as drilling in frontier areas at greater and greater depths. Such capabilities and conditions demand careful attention to the selection and engineering of efficient mud systems.

  6. IMPACT OF DRILLING WASTE ON HYDROBIONTS

    Directory of Open Access Journals (Sweden)

    S. A. Guseinova

    2015-01-01

    Full Text Available Aim. The aim is to determine and make an analysis of the concentration of petroleum hydrocarbons and other metals in the waste drilling: drill cuttings (DC and mud (DM, collected in the area of drilling, to assess and forecast the state of biological resources of natural sea water.Methods. Experimental studies of DC and DM showed the petroleum hydrocarbons content, the concentration of which varies depending on the timing of exposure. By quantitative and qualitative indicators, the metal content in the drill cuttings and mud is nonequivalent and this depends on the structure and hardness achieved during drilling the rocks as well as on the degree of contamination with metals.Results. The concentration level of petroleum hydrocarbons and other metals in the drilling waste (drill cuttings and mud imposes a major problem associated with the conservation of biological resources of the Caspian Sea.Main conclusions. Environmental effects from the discharges of drilling waste on the high seas can be detected only during drilling operations and in close proximity (typically up to 200-500 m from the discharge point. Persistent damages in communities and ecosystems occur only at long exposures and are adaptive in nature.

  7. Newest mobile drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The weighing half of what a standard jackknife rig with the same drilling capacities weights this rig cuts transportation costs while reducing transportation time. Also, rig-up and rig-down time is shortened half-a-day each way because of the light structure and the ability to hydraulically raise and lower the substructure and mast. It is powered by three Caterpillar 3412 diesel engines - 600 hp each at 1,800 rpm - delivering 1,500 hp to the drawworks through single-stage torque converters. Chain-type drawworks, set on the trailer flatbed next to the diesel engines instead of on the rig floor, consist of a 25-in. diam by 50-in.-long drum barrel, 50-in. diam by 12-in.-wide brakes, and 1/one quarter/-in. line, capable of a 75,000-lb single line pull. The mast - a 127-ft API-rated, vertical freestanding, telescoping type - is extended and telescoped in the horizontal position before being hydraulically raised. Gross nominal capacity of the mast is 1 million lb, with a rotary load of 715,000 lb and a setback load of 400,000 lb.

  8. Recompletion by horizontal drilling pays off

    Energy Technology Data Exchange (ETDEWEB)

    Holifield, R.H.; Rehm, B.

    1989-03-01

    More than 20 wells have been recompleted in the Giddings field by drilling a new, horizontal interval from existing 5 1/2-in. cased wells for distances of 300 to 1,250 ft. Recompleting existing wells is much cheaper than drilling a new well. Plus, the new completions, overall, produce better. The horizontal wells are routinely profitable now, and pay out occurs in 3 to 24 months. During this program, the techniques for slim-hole- medium-radius, horizontal drilling in Giddings have been mastered and costs have dropped 75%. It is believed that this program may be the first (or among the first) continuing horizontal project drilled out of cased wells with repeatable profitability as opposed to projected viability.

  9. A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 1: Mud Lake Region, 1969-70 and Part 2: Observation Wells South of Arco and West of Aberdeen

    Science.gov (United States)

    Crosthwaite, E.G.

    1973-01-01

    The results of drilling test holes to depths of approximately 1,000 feet in the Mud Lake region show that a large part of the region is underlain by both sedimentary deposits and basalt flows. At some locations, predominantly sedimentary deposits were penetrated; at others, basalt flows predominated. The so-called Mud Lake-Market Lake barrier denotes a change in geology. From the vicinity of the barrier area, as described by Stearns, Crandall, and Steward (1938, p. 111), up the water-table gradient for at least a few tens of miles, the saturated geologic section consists predominantly of beds of sediments that are intercalated with numerous basalt flows. Downgradient from the barrier, sedimentary deposits are not common and practically all the water-bearing formations are basalt, at least to the depths explored so far. Thus, the barrier is a transition zone from a sedimentary-basaltic sequence to a basaltic sequence. The sedimentary-basaltic sequence forms a complex hydrologic system in which water occurs under water-table conditions in the upper few tens of feet of saturated material and under artesian conditions in the deeper material in the southwest part of the region. The well data indicate that southwest of the barrier, artesian pressures are not significant. Southwest of the barrier, few sedimentary deposits occur in the basalt section and, as described by Mundorff, Crosthwaite, and Kilburn (1964). ground water occurs in a manner typical of the Snake Plain aquifer. In several wells, artesian pressures are higher in the deeper formations than in the shallower ones, but the reverse was found in a few wells. The available data are not adequate to describe the water-bearing characteristics of the artesian aquifer nor the effects that pumping in one zone would have on adjacent zones. The water-table aquifer yields large quantities of water to irrigation wells.

  10. Space weather services for the offshore drilling industry

    OpenAIRE

    Clark, Toby; Clarke, Ellen

    2001-01-01

    The requirement to extract the maximum amount of oil from reservoirs while continually striving to reduce drilling costs has led to the development of the technique of directional drilling over the last few decades. The oil industry now has the capability to drill dozens of wells from a single platform in many different directions, extending typically to 5km horizontally. The world record for extended reach drilling is in excess of 11km. The size of the geological targets requires an accuracy...

  11. Development and application of the capacity to make tests of dynamic displacement in samples of oil well drilling cores; Desarrollo y aplicacion de la capacidad para realizar pruebas de desplazamiento dinamico en muestras de nucleos de perforacion de pozos petroleros

    Energy Technology Data Exchange (ETDEWEB)

    Contreras L, Enrique; Garcia M, Pablo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    In the Laboratory of Deposits of the Gerencia de Geotermia of the Instituto de Investigaciones Electricas (IIE) the capacity has been developed to make tests of dynamic oil displacement by means of gas or brine injection in samples of oil well drilling cores. Also the methodologies to interpret the results of these tests in terms of dynamics and the efficiency of the oil recovery in terms of the relative permeability have been developed. These capacities represent a very important contribution towards the improvement of the insufficiency that exists in the country to make the large amount of tests of dynamic displacement that demand the different Actives of PEMEX Exploration and Production (PEP), since they satisfy their necessities of data on which the activities of design and implementation of the most suitable techniques for the hydrocarbon recovery of the oil deposits lean. In the present work these capacities are described and some examples are presented of the results that have been obtained from their application in special studies of drilling cores, which have been recently made in the Laboratory of Deposits of the IIE for diverse Actives of PEP exploitation. [Spanish] En el laboratorio de yacimientos de la Gerencia de Geotermia del Instituto de Investigaciones Electricas (IIE) se ha desarrollado la capacidad de realizar pruebas de desplazamiento dinamico de aceite mediante inyeccion de salmuera o de gases en muestras de nucleos de perforacion de pozos petroleros. Tambien se han desarrollado las metodologias para interpretar los resultados de estas pruebas en terminos de la dinamica y la eficiencia de la recuperacion de aceite y en terminos de la permeabilidades relativas. Estas capacidades representan una contribucion muy importante hacia el mejoramiento de la insuficiencia que existe en el pais para realizar la gran cantidad de pruebas de desplazamiento dinamico que demandan los diferentes activos de explotacion de PEMEX Exploracion y Produccion (PEP), ya

  12. Reply to comment by Mauder on "How well can we measure the vertical wind speed? Implications for fluxes of energy and mass"

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John M. Frank; William J. Massman; Mark W. Heuer

    2013-01-01

    In Kochendorfer et al. (Boundary-Layer Meteorol 145:383-398, 2012, hereafter K2012) the vertical wind speed (w) measured by a non-orthogonal three-dimensional sonic anemometer was shown to be underestimated by 12%. Turbulent statistics and eddycovariance fluxes estimated using w were also affected by this underestimate in w. Methodologies used in K2012 are clarified...

  13. Steamboat Hills exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

    1994-10-01

    During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  14. Study of drilling muds on the anti-erosion property of a fluidic amplifier in directional drilling

    OpenAIRE

    Jiang-fu He; Peng-yu Zhang; Qi-lei Yin; Kun Yin; Hou-ping Liu

    2015-01-01

    Due to some drawbacks of conventional drilling methods and drilling tools, the application of hydraulic hammers with a fluidic amplifier have been extensively popularized since its emergence in recent years. However, the performance life of a fluidic amplifier is still unsatisfactory in oil and gas wells drilling, especially the heavy wear or erosion of the fluidic amplifier leads to the reduction of service life time of hydraulic hammers, which is derived from the incision of drilling muds w...

  15. Optimization of GaInNAs quantum-well vertical-cavity surface-emitting laser emitting at 2.33 μm

    Science.gov (United States)

    Sarzała, Robert P.; Piskorski, Łukasz; Kudrawiec, Robert; Nakwaski, Włodzmierz

    2014-06-01

    In the present paper, a comprehensive computer simulation is used to determine optimal structure of the InP-based GaInNAs quantum-well (QW) active region and to investigate a possibility of reaching room-temperature (RT) continuous-wave (CW) single-fundamental-mode 2.33-μm operation of vertical-cavity surface-emitting laser (VCSEL) with such an active region. From among various considered InP-based active regions, the one with the Ga0.15In0.85N0.015As0.985/Al0.138Ga0.332In0.530As QW, i.e. with barriers lattice matched to InP, seems to be optimal for the 2.33-μm VCSEL performance. Its QW material is chosen for the required long-wavelength emission whereas its barrier is expected to ensure promising laser performance at room and higher temperatures. The latter is mostly connected with the QW conduction band offset equal in the above active region to as much as 413 meV, which is much larger than those of its possible lattice matched to InP competitors, e.g. 276 meV for the Ga0.47In0.53As barrier and 346 meV for the Ga0.327In0.673As0.71P0.29 one. Our simulation reveals that from among various considered structures, a VCSEL with a 4-μm-diameter tunnel junction and two 6-nm Ga0.15In0.85N0.015As0.985/Al0.138Ga0.332In0.530As QWs exhibits the lowest calculated threshold current of 0.88 mA. Its promising RT CW performance suggests that it may represent a very interesting alternative to GaSb-based VCSELs.

  16. DRILLING FLUIDS DIFFERENTIAL STICKING TENDENCY DETERMINATION

    Directory of Open Access Journals (Sweden)

    Katarina Simon

    2005-12-01

    Full Text Available Differential sticking is defined as stuck pipe caused by the differential pressure forces from an overbalanced mud column acting on the drillstring against filter cake deposited on a permeable formation. It is influenced by drilling fluid properties and characteristics of rock formations and has major impact on drilling efficiency and well costs respectively. Differential sticking tendency of two drilling fluids were determined in laboratory using sticking tester as well as influence of lubricant and increase of solids content on fluid properties. Results of the testing are presented in the paper.

  17. Borehole drilling and related activities at the Stripa mine

    Energy Technology Data Exchange (ETDEWEB)

    Kurfurst, P.J.; Hugo-Persson, T.; Rudolph, G.

    1978-08-01

    Drilling operations for the joint Swedish-U.S. program on radioactive waste storage in mined caverns were conducted from August, 1977 to April, 1978. At the peak of drilling, six drills were active, one on the surface and five underground. 160 boreholes were drilled with sizes ranging from 38 to 406 mm dia. Special techniques and drilling equipment were developed to drill and remove the large cores. Instrumentation and heater installations required strict drilling specifications. Detailed descriptions of the fractures and other relevant rock properties required orientation of the core as well as special recovery techniques. To assure the best possible quality of the core, a triple-tube core barrel was used to drill all boreholes 76 mm diameter and larger.

  18. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  19. The science of mud : new technologies for drilling fluids are helping operators drill deeper, faster, with less formation damage

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2006-01-15

    A review of drilling fluid technology was presented. Selecting the optimal drilling fluids is crucial to the health and productivity of a well. Solutions are often too expensive to use given the anticipated pay-off, as is the case with clean-burning natural gas being used to remove bitumen that needs a great deal of processing. The rheology of drilling fluid is specifically designed for particular applications. The advent of chemical polymer technology allowed companies to adjust the viscosity of the drilling fluids used to hold back the pressure of the well without adding solids, thereby minimizing damage to formations. Invert emulsion systems are being applied to wells in western Canada to reduce the specific gravity of the fluid so that drilling can be made faster. This type of drilling is also used in the technique called underbalanced drilling, which refers to the balance between the reservoir pressure at any given depth and the pressure of the fluids and gases being pumped down the well to keep the sides from collapsing. Canadian operators meet environmental requirement standards by using a closed tank system to contain hydrocarbons released by drilling activities. Water and oil are drawn into storage tanks, and solids are assessed on a continuous basis to guide drilling. Fluids are then re-injected into the wells. The amount of water now used to drill a well is significantly smaller than it used to be. The Alberta Energy and Utilities Board (EUB) Guide 50 has recently updated the disposal criteria and regulations concerning drilling waste management and disposal. Biodiesels as a drilling fluid base are becoming appealing as a drilling fluid base due to stricter environmental regulations. However, biodiesels will need to be engineered to cool the drill bit, carry cuttings back to the surface and lubricate the drill steam at a wide range of temperatures. 2 figs.

  20. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  1. Microhole Drilling Tractor Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Western Well Tool

    2007-07-09

    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a

  2. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.; Damschen, D.W.

    1977-06-01

    The Hanford Site contains about 2200 wells constructed from pre-Hanford Works days to the present. As of June 1977, about 1900 wells still exist, and about 850 of these existing wells were drilled to the ground-water table. About 700 of these wells (including about 24 farm wells) still contain water. The others have become dry through infiltration of sediments or a general lowering of the water table in their vicinity. This report, providing the most complete documentation of wells in and adjacent to the Hanford Site, supersedes all previous compilations of Hanford wells.

  3. Counter-Rotating Tandem Motor Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger

  4. Portable top drive cuts horizontal drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

    1993-11-01

    Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

  5. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  6. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  7. Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-06-01

    This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

  8. Environment-friendly drilling operation technology

    Science.gov (United States)

    Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun

    2017-01-01

    Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.

  9. Tool geometry optimization for drilling CFRP/Al-Li stacks with a lightning strike protection

    Science.gov (United States)

    El Bouami, Souhail; Habak, Malek; Velasco, Raphaël; Santos, Baptise Dos; Franz, Gérald; Vantomme, Pascal

    2017-10-01

    One-shot drilling of Carbon Fiber-Reinforced Polymer materials with a Lightning Strike Protection (LSP)/metal stacks is a challenging task due to the inherent difference physical and mechanical properties and processing mechanisms of each component. The objective of the present work is to optimize tool geometry width in drilling of CFRP/Al-Li with a LSP. Firstly, a set of conventional uncoated carbide drills which are commercially available for the drilling of aeronautic composites was used to study the effect of tool geometry on drilled-hole quality. The set encompasses a twist drill bit, a step drill bit and a point spur drill bit. Based on references and cutting conditions recommended by drill manufacturers, the drilling tests performed are based on full-factorial experimental design using three cutting speeds and two feed rates. Results showed that, on the one hand, spur drill gave the best results causing small damage extension in the hole perimeter but we noticed a rapid tool wear at the spur which increases with feed. On the other hand, step drill presented higher LSP delamination located at the hole entrance but reduces the level of thrust force. The choice of tool geometry process should be a compromise in drilling aluminium as well as drilling carbon fiber with LSP. In the second phase of the current work, three different new uncoated carbide geometries were developed: a Spur Step Drill, a Three Steps Drill and a Square Step Drill. Same cutting conditions were used for the three drills. Results showed a rapid tool wear for the Spur Step Drill at the spur. In terms of LSP delamination, burr and drill wear, the drill adapted to drilling CFRP/Al-Li with LSP stacks is the three steps drill.

  10. Geothermal Energy for New Mexico: Assessment of Potential and Exploratory Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Mark Person, Lara Owens, James Witcher

    2010-02-17

    This report summarizes the drilling operations and subsequent interpretation of thermal and geochemical data from the New Mexico Tech NMT-2GT (OSE RG- 05276 POD) test well. This slim hole was drilled along an elongate heat-flow anomaly at the base of the Socorro Mountains to better assess the geothermal resource potential (Socorro Peak geothermal system) on the western side of the New Mexico Tech campus in Socorro, New Mexico. The reservoir depth, hydraulic properties, temperature and chemistry were unknown prior to drilling. The purpose of the NMT-2GT (OSE RG-05276 POD) well was to explore the feasibility of providing geothermal fluids for a proposed district space heating system on the New Mexico Tech campus. With DOE cost over runs funds we completed NMT-2GT to a depth of 1102 feet at the Woods Tunnel drill site. Temperatures were nearly constant (41 oC ) between a depth of 1102 feet. Above this isothermal zone, a strong temperature gradient was observed (210 oC /km) beneath the water table consistent with vertical convective heat transfer. The existence of a groundwater upflow zone was further supported by measured vertical hydraulic head measurements which varied between about 258 feet at the water table to 155 feet at a depth of 1102 feet yielding a vertical hydraulic a gradient of about 0.1. If the upflow zone is 1 km deep, then a vertical flow rate is about 0.6 m/yr could have produced the observed curvature in the thermal profile. This would suggest that the deep bedrock permeability is about 20 mD. This is much lower than the permeability measured in a specific capacity aquifer test completed in 2009 within fracture Paleozoic sandstones near the water table (3000 D). Flow rates measured during drilling were measured using a v-notch weir. Flow rates were consistently around 1000 gpm. While the temperatures are lower than we had anticipated, this geothermal resource can still be developed to heat the NM Tech campus using heat pump technology.

  11. Area Balancing Method as a Useful Tool to Estimate the Depth of the Chi-Chi Earthquake Rupture at the Fengyuan Well

    Directory of Open Access Journals (Sweden)

    Yuan-Hsi Lee

    2006-01-01

    Full Text Available The 1999 Chi-Chi earthquake, Mw = 7.6, was associated with a near 100-km-long surface rupture along which the horizontal slip and vertical displacement reached to 9 m and 4 m, respectively, according to coseismic GPS slip vectors. After the Chi-Chi earthquake, drilling projects were conducted to clarify the characteristics of the earthquake rupture in depth. At the Fengyuan site, inclined-well drilling was performed at an angle of 50 degrees westward to a drilling depth of 455.3 m in the northern segment of the Chi-Chi earthquake rupture. Two possible earthquake rupture zones were observed at drilling depths of 225 m and 330 m according to the core structures and seismic profiling. We apply an area balancing method to determine the depth of the earthquake rupture in the cores; and we suggest that the 330-m drilling depth is the most likely candidate for the earthquake rupture.

  12. Modified drill permits one-step drilling operation

    Science.gov (United States)

    Libertone, C.

    1966-01-01

    Drill with modified cutting faces permits one-step drilling operation without chatter upon contact and premature wear. The modification of the drill, which has the same diameter as that of the desired hole, consists of a groove across the bottom of each of the cutting faces of the drill flutes.

  13. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    Energy Technology Data Exchange (ETDEWEB)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  14. Tesco's Bob Tessari: launching a drilling revolution

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-07-01

    The 'Casing Drilling' technology, patented by Tesco, which allows operators to simultaneously drill, case and evaluate oil and gas wells, is described. The system is claimed to substantially reduce the amount of lost circulation, loss of well control and bore hole instability problems that have been documented to account for about 25 per cent of total rig time on a well, and at least $4 billion (or 10 per cent of the $40 billion annual global drilling tab) spent on 'unscheduled events' associated with tripping drill pipe. With the Casing Drilling process, wells are drilled using standard oilfield casing instead of drill pipe. The host of downhole problems associated with tripping in and out of the hole are avoided, as the casing pipe is never removed. Instead, drill bits and other downhole tools are tripped through the casing with wireline at a rate of about 500 ft per minute, drastically reducing tripping time. Tesco also developed the portable top drive, the manufacture and rental of which constitutes a large part of the company's business, besides helping technologically to make Casing Drilling possible. Much of the company's success is attributed to the tenacity and zest for innovative approaches of the company's CEO, Bob Tessari, who is largely responsible for the company finding itself at the centre of a drilling technology revolution.

  15. Geothermal gradient drilling, north-central Cascades of Oregon, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Youngquist, W.

    1980-01-01

    A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

  16. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  17. Utilisation des polymères organiques durant le forage et la cimentation des puits à haute température Using Organic Polymers During Drilling and Cementing of High Temperature Wells

    Directory of Open Access Journals (Sweden)

    Martin M.

    2006-11-01

    result of increasing depths. This threshold has already been largely surpassed in high enthalpy geothermal wells, with temperatures of as much as 400°C. In such cases, it is indispensable for drilling fluids and cementing materials to have sufficient stability. For water-base and oil-base drilling fluids, additives must be designed to prevent reversible and irreversible variations in viscosity and filtration characteristics during the cycle or during circulation shut downs of a few hours. Such additives are mostly polymers capable of being dispersed in the liquid phase. But their present stability is such that water-base fluids can hardly be used above 260°C and oilbase fluids above 285°C. For cementing jobs, it may be desirable to replace the hydraulic cement normally used by a materiel with a lower density and/or increased durability. During the entire lifetime of the well, planned for 20 to 30 years, this material will have to ensure the seal of the annular space and to maintain its mechanical strength. It will also have to withstand the sometimes aggressive environment of formation waters. Laboratory research on new cementing materials has concentrated on organic resins and organosiloxane-base compounds. Formulations have been found that are stable up to 300°C. But the possibilities of implementing them in wells still remain to be investigated, and the high cost of the basic products risks limiting their application.

  18. Design and Algorithm Verification of a Gyroscope-Based Inertial Navigation System for Small-Diameter Spaces in Multilateral Horizontal Drilling Applications

    Directory of Open Access Journals (Sweden)

    Tao Li

    2015-12-01

    Full Text Available In the recent years horizontal drilling (HD has become increasingly important in oil and gas exploration because it can increase the production per well and can effectively rework old and marginal vertical wells. The key element of successful HD is accurate navigation of the drill bit with advanced measurement-while-drilling (MWD tools. The size of the MWD tools is not significantly restricted in vertical wells because there is enough space for their installation in traditional well drilling, but the diameter of devices for HD must be restricted to less than 30 mm for some applications, such as lateral drilling from existing horizontal wells. Therefore, it is essential to design miniature devices for lateral HD applications. Additionally, magnetometers in traditional MWD devices are easily susceptible to complex downhole interferences, and gyroscopes have been previously suggested as the best avenue to replace magnetometers for azimuth measurements. The aim of this paper is to propose a miniature gyroscope-based MWD system which is referred to as miniature gyroscope-based while drilling (MGWD system. A prototype of such MGWD system is proposed. The device consists of a two-axis gyroscope and a three-axis accelerometer. Miniaturization design approaches for MGWD are proposed. In addition, MGWD data collection software is designed to provide real-time data display and navigation algorithm verification. A fourth-order autoregressive (AR model is introduced for stochastic noise modeling of the gyroscope and the accelerometer data. Zero velocity and position are injected into a Kalman filter as a system reference to update system states, which can effectively improve the state observability of the MGWD system and decrease estimation errors. Nevertheless, the azimuth of the proposed MGWD system is not observable in the Kalman filter, and reliable azimuth estimation remains a problem.

  19. UNDERBALANCED DRILLING TECHNOLOGY

    OpenAIRE

    Nediljka Gaurina-Međiumurec; Katarina Simon; Davorin Matanović; Borivoje Pašić

    2006-01-01

    Historically, most underbalanced drilling (UBD) projects were undertaken to eliminate drilling problems and cost. However, recently, the reduction of formation damage has become a main focus for underbalanced operations. This has the greatest potential in directly increasing the profit to the operating company. Potential benefits include increasing of production rate, the ultimate recovery, and enabling accelerated production. Underbalanced technology, while still on a sharp growth curve, is ...

  20. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth [Impact Technologies, Tulsa, OK (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Parick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mohan, Ram [Univ. of Tulsa, OK (United States); Shoham, Ovadia [Univ. of Tulsa, OK (United States); Felber, Betty [Impact Technologies, Tulsa, OK (United States); Rychel, Dwight [Impact Technologies, Tulsa, OK (United States)

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  1. Percussive drilling application of translational motion permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shujun

    2012-07-01

    It is clear that percussive drills are very promising since they can increase the rate of penetration in hard rock formations. Any small improvements on the percussive drills can make a big contribution to lowering the drilling costs since drilling a well for the oil and gas industry is very costly. This thesis presents a percussive drilling system mainly driven by a tubular reciprocating translational motion permanent magnet synchronous motor (RTPMSM), which efficiently converts electric energy to kinetic energy for crushing the hard rock since there is no mechanical media. The thesis starts from state-of-the-art of percussive drilling techniques, reciprocating translational motion motors, and self-sensing control of electric motors and its implementation issues. The following chapters present modeling the hard rock, modeling the drill, the design issues of the drill, the RTPMSM and its control. A single-phase RTPMSM prototype is tested for the hard rock drilling. The presented variable voltage variable frequency control is also validated on it. The space vector control and self-sensing control are also explored on a three-phase RTPMSM prototype. The results show that the percussive drill can be implemented to the hard rock drilling applications. A detailed summarisation of contributions and future work is presented at the end of the thesis.(Author)

  2. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  3. Modeling pellet impact drilling process

    OpenAIRE

    Kovalev, Artem Vladimirovich; Ryabchikov, Sergey Yakovlevich; Isaev, Evgeniy Dmitrievich; Ulyanova, Oksana Sergeevna

    2016-01-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling t...

  4. Importance of the planning activities, cutting, handling and analysis of the nuclei of oil well drilling; Importancia de las actividades de planificacion, corte, manejo y analisis de los nucleos de perforacion de pozos petroleros

    Energy Technology Data Exchange (ETDEWEB)

    Contreras L, Enrique A; Garcia M, Pablo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    In the geologic formation where the oil deposits are located, diverse types of rocks perform functions as structural elements, storage containers for hydrocarbon water and calorific energy, as well as impermeable barriers and transport means of the energy and the fluids. Among the most important properties that are used to describe these functions are the porosity, the permeability, the compressibility of the pores volume, the formation resistivity factor, the saturation exponent, the velocity of acoustic waves P and S, the relative permeability, the capillary pressures, the elastic constants and other mechanical properties, the thermal expansion, coefficient, the thermal conductivity, the thermal diffusivity and the specific heat. The execution of an ample variety of activities related to the stages of exploration, location, evaluation and development of the oil deposits, depends strongly on having a good knowledge of the magnitude and the spatial variability of these properties. The technical feasibility as well as the economics in developing a prospectus of oil deposit, depends on that the intervening rocks exhibit a suitable combination of their properties, thus constituting a confining and storing geologic structure of hydrocarbons that is feasible to be developed technically, at the same time of having the economic potential of yielding an economic benefit. In this context, from the experience platform on the subject existing in the Laboratorio de Yacimientos of the Instituto de Investigaciones Electricas. The present article approaches the relevance which have the activities of cutting, handling and laboratory analysis of the oil well drilling nuclei, for the geologic evaluation of the formation, in relation to the characterization, the evaluation and the advantage of the oil deposits. [Spanish] En las formaciones geologicas donde se encuentran emplazados los yacimientos petroleros, diversos tipos de rocas desempenan funciones como elementos estructurales

  5. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  6. Drilling load modeling and validation based on the filling rate of auger flute in planetary sampling

    Directory of Open Access Journals (Sweden)

    Qiquan Quan

    2017-02-01

    Full Text Available Some type of penetration into a subsurface is required in planetary sampling. Drilling and coring, due to its efficient penetrating and cuttings removal characteristics, has been widely applied in previous sampling missions. Given the complicated mechanical properties of a planetary regolith, suitable drilling parameters should be matched with different drilling formations properly. Otherwise, drilling faults caused by overloads could easily happen. Hence, it is necessary to establish a drilling load model, which is able to reveal the relationships among drilling loads, an auger’s structural parameters, soil’s mechanical properties, and relevant drilling parameters. A concept for the filling rate of auger flute (FRAF is proposed to describe drilling conditions. If the FRAF index under one group of drilling parameters is less than 1, this means that the auger flute currently removes cuttings smoothly. Otherwise, the auger will be choked with compressed cuttings. In drilling operations, the drilling loads on the auger mainly come from the conveyance action, while the drilling loads on the drill bit primarily come from the cutting action. Experiments in one typical lunar regolith simulant indicate that the estimated drilling loads based on the FRAF coincide with the test results quite well. Based on this drilling load model, drilling parameters have been optimized.

  7. Horizontal drilling pilot in a shallow heavy oil reservoir in the Suplac Field in Northwestern Romania

    Energy Technology Data Exchange (ETDEWEB)

    Lavelle, J.; Yaghoobi, A. [OMV Petrom S.A. (Romania)

    2011-07-01

    The Suplac field situated in north-western Romania is a shallow and heavy oil deposit lying at depths of between 40 and 200 meters. The deposit has been exploited since 1964 using different techniques but some areas of the reservoir located beneath villages and steep hills were never reached. The aim of this paper is to describe a project using horizontal alternating steam drive (HASD) to harvest oil from these areas by turning from vertical to horizontal. A pilot test was conducted over 4 months in 2010 with 3 parallel horizontal wells. The rig equipment, the well path designs and the directional difficulties are discussed herein. Results showed that horizontals could be drilled using a vertical mast rig and all the expectations were met. The success of this pilot project was highlighted herein and the company is now planning on continuing with a horizontal development program; however wellbore clean out is a remaining challenge.

  8. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  9. Research on technical and technological parameters of inclined drilling

    Directory of Open Access Journals (Sweden)

    М. В. Двойников

    2017-03-01

    Analysis of investigation results showed that the main source of oscillations is linked to bending and compressing stresses, caused by well deviations as well as rigidity of the drilling tool. In effect, in the bottom-hole assembly occur auto-oscillations, making it impossible to correct azimuth and zenith angles. Alteration of rigidity in the bottom part of the tool and drilling parameters, implying reduced rotation speed of the drill string and regulation of drill bit pressure, can partially solve this problem, though increase in rotation speed is limited by technical characteristics of existing top drive systems.

  10. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  11. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  12. Metal and hydrocarbon behavior in sediments from Brazilian shallow waters drilling activities using nonaqueous drilling fluids (NAFs).

    Science.gov (United States)

    do Carmo R Peralba, Maria; Pozebon, Dirce; dos Santos, João H Z; Maia, Sandra M; Pizzolato, Tânia M; Cioccari, Giovani; Barrionuevo, Simone

    2010-08-01

    The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration--due to the drilling activity--without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.

  13. Study of drilling muds on the anti-erosion property of a fluidic amplifier in directional drilling

    Directory of Open Access Journals (Sweden)

    Jiang-fu He

    2015-10-01

    Full Text Available Due to some drawbacks of conventional drilling methods and drilling tools, the application of hydraulic hammers with a fluidic amplifier have been extensively popularized since its emergence in recent years. However, the performance life of a fluidic amplifier is still unsatisfactory in oil and gas wells drilling, especially the heavy wear or erosion of the fluidic amplifier leads to the reduction of service life time of hydraulic hammers, which is derived from the incision of drilling muds with high speed and pressure. In order to investigate the influence of drilling muds, such as particle size, solid content and jet velocity, on the antierosion property of a fluidic amplifier, several groups of drilling muds with different performance parameters have been utilized to numerical simulation on basis of Computational Fluid Dynamics (CFD. Simulation results have shown that the jet nozzle of fluidic amplifiers is primarily abraded, afterwards are the lateral plates and the wedge of the fluidic amplifier, which shows extraordinary agreement with the actual cases of fluidic amplifier in drilling process. It can be concluded that particle size, solid content and jet velocity have a great influence on the anti-erosion property of a fluidic amplifier, and the erosion rate linearly varies with the particle size of drilling muds, nevertheless exponentially varies with solid content and jet velocity of drilling muds. As to improve the service life time of a fluidic amplifier, the mud purification system or low solid clay-free mud system is suggested in the operation of directional well drilling

  14. Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling

    OpenAIRE

    Na Wei; YingFeng Meng; Gao Li; LiPing Wan; ZhaoYang Xu; XiaoFeng Xu; YuRui Zhang

    2013-01-01

    Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport ma...

  15. Rheological Behavior of Drilling Muds, Characterization Using MRI Visualization

    OpenAIRE

    Coussot, P; Bertrand, F; HERZHAFT, B

    2004-01-01

    Drilling muds are very complex fluids used to drill oil wells; their functions are various: to carry the rock cuttings to the surface, to maintain a sufficient pressure against the rock formation, to lubricate and cool the bit. There are mainly two families of drilling muds: oil based muds (invert emulsion of brine into an oil phase with various additives) and water based muds (aqueous solutions of clays and polymers). Originally prepared from produced oil, oil based muds formulations have ev...

  16. Using MPC for Managed Pressure Drilling

    Directory of Open Access Journals (Sweden)

    Johannes Møgster

    2013-07-01

    Full Text Available As production on the Norwegian shelf enters tail production, drilling wells with vanishing pressure windows become more attractive. This motivates use of automatic control systems for improved control of downhole pressure using Managed Pressure Drilling (MPD techniques. PID SISO control solutions for MPD are by now relatively standard, and well understood. This article explores the potential benefits of using linear Model Predictive Control (MPC for MPD. It is shown that in combination with wired drill pipe, the downhole pressure can be controlled at multiple locations in the open wellbore, by using both pumps and choke in applied backpressure MPD. Also, downhole pressure constraints (pore and fracture pressures fit naturally in MPC. Illustrative simulations are presented from using a high fidelity well simulator called WeMod, and Statoil's MPC software SEPTIC.

  17. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)

    2001-07-01

    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  18. Expeditions to Drill Atlantic, Gulf of Mexico, and Pacific Sites

    Science.gov (United States)

    Coffin, Millard F.

    2005-04-01

    The Integrated Ocean Drilling Program (IODP), an international collaboration of Earth, ocean, and life scientists that began in 2003, offers scientists worldwide unprecedented opportunities to address a vast array of scientific problems in all submarine settings. Recently, the scientific advisory structure of the proposal-driven IODP scheduled drilling expeditions, targeting critical scientific problems in the Atlantic Ocean, Gulf of Mexico, and Pacific Ocean, for 2005 and early 2006 (Figure 1, Table 1). The IODP, which is co-led by Japan and the United States, with strong contributions from the European Consortium for Ocean Research Drilling (ECORD) and China, is guided by an initial science plan, ``Earth, Oceans, and Life'' (www.iodp.org). For the first time, through the IODP, scientists have at their disposal both a riser (drilling vessel which has a metal tube surrounding the drill pipe that enables the return of drilling fluid and cuttings to the drill ship; the ``riser'' is attached to a ``blow-out preventer'' or shut-off device at the seafloor) and riserless drilling vessel (which lacks a riser pipe and blow-out preventer), as well as mission-specific capabilities such as drilling barges and jack-up rigs for shallow-water and Arctic drilling.

  19. Casing drilling - first experience in Brazil; Casing drilling - primeira experiencia no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao Carlos Ribeiro; Medeiros, Fernando; Lucena, Humberto; Medeiros, Joao Carlos Martins de; Costa, Vicente Abel Soares Rosa da; Silva, Paulo Roberto Correa da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Alves, Renato J.M. [Tesco, London (United Kingdom)

    2004-07-01

    This paper describes the 'Casing Drilling' technology and its first experience in Brazil. This new process of casing while drilling was first developed to reduce costs. This system integrates the drilling process and casing running in one operation, promoting a more efficient well construction system, reducing trip time and costs of drill pipes and their transportation. Besides, this methodology intends to eliminate hole problems related to trouble zones with abnormal pressure with loss circulation, to overcome zones with wellbore instabilities, and to facilitate well control. Two companies have been identified using this technology: Tesco and Weatherford. However, there are differences between the techniques used by these companies, which are described in this paper. In the first experience in Brazil, it was decided to field test the technology developed by Tesco. This paper describes the preparation, the operation and the results of this first test. (author)

  20. Carboniferous drilling project

    Energy Technology Data Exchange (ETDEWEB)

    Ball, F.D.; Sullivan, R.M.; Peach, A.R. (New Brunswick Department of Natural Resources, NB (Canada). Mineral Development Branch)

    1981-01-01

    This report details information acquired in carrying out the Carboniferous Drilling Project in New Brunswick. This data is necessary for deciding on and implementing policy to cover exploration and exploitation of the coal and mineral potential of New Brunswick's Pennsylvanian strata. An ultimate goal is to entice investment by the private sector. Data was acquired through extensive drilling, reconnaissance geological mapping, selected rock chip sample analysis and ground water analysis. The full data is presented here in statistical form and discussed at length. 63 refs., 30 figs., 13 tabs., 10 maps

  1. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  2. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been...... achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of 'warm ice' under high pressure. After excellent progress...... at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few...

  3. Development of methodology and correlations to predict solids concentration profile during oil well drilling static periods; Desenvolvimento de metodologia e correlacoes para previsao de perfil de concentracao de solidos durante a perfuracao de pocos de petroleo em periodos de estatica

    Energy Technology Data Exchange (ETDEWEB)

    Gandelman, Roni Abensur [Centro de Pesquisas da Petrobras (CENPES). Gerencia de Interacao Rocha-Fluido (Brazil)], e-mail: roniag@petrobras.com.br; Pinto, Gustavo Henrique Vieira Pereira [E and P Norte-Nordeste. Gerencia de Intervencao e Perfuracao de Pocos - BA (Brazil)], e-mail: gustavovieira@petrobras.com.br

    2009-12-15

    One of the main function of drilling fluid is to transport solids, generated by the bit, to the surface. Therefore, gelation is an important and desirable drilling fluid characteristic as it avoids solids sedimentation during pump -off periods. However, when circulation is resumed, an extra energy is required to break the gelled structure. Consequently, bottom-hole pressure peaks are observed and this may represent an operational risk if the fracture pressure is reached. The risk is especially high in narrow operational window scenarios, typical of deep and ultra-deep water environments. On the other hand, gelled fluids may not avoid some heavier and/or larger particles settling. It is therefore important to understand how particles settle in gelled fluids (and while the gelled structure is forming) to predict the solid concentration profiles during and after pump -off periods. This prediction is very important as it can help operators to avoid operational problems. This study developed a methodology to predict particles sedimentation in gelled fluids and pressure peaks when circulation is resumed. To develop the correlations and predict pressure peaks, several experiments were carried out with rheometers and field viscosimeters in transient and stationary conditions. The results were used to build a model that is currently being used with very promising results. (author)

  4. Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling.

    Science.gov (United States)

    Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Kotev, Vladimir; Delchev, Kamen; Zagurski, Kazimir; Vitkov, Vladimir

    2013-12-01

    Many orthopaedic operations involve drilling and tapping before the insertion of screws into a bone. This drilling is usually performed manually, thus introducing many problems. These include attaining a specific drilling accuracy, preventing blood vessels from breaking, and minimizing drill oscillations that would widen the hole. Bone overheating is the most important problem. To avoid such problems and reduce the subjective factor, automated drilling is recommended. Because numerous parameters influence the drilling process, this study examined some experimental methods. These concerned the experimental identification of technical drilling parameters, including the bone resistance force and temperature in the drilling process. During the drilling process, the following parameters were monitored: time, linear velocity, angular velocity, resistance force, penetration depth, and temperature. Specific drilling effects were revealed during the experiments. The accuracy was improved at the starting point of the drilling, and the error for the entire process was less than 0.2 mm. The temperature deviations were kept within tolerable limits. The results of various experiments with different drilling velocities, drill bit diameters, and penetration depths are presented in tables, as well as the curves of the resistance force and temperature with respect to time. Real-time digital indications of the progress of the drilling process are shown. Automatic bone drilling could entirely solve the problems that usually arise during manual drilling. An experimental setup was designed to identify bone drilling parameters such as the resistance force arising from variable bone density, appropriate mechanical drilling torque, linear speed of the drill, and electromechanical characteristics of the motors, drives, and corresponding controllers. Automatic drilling guarantees greater safety for the patient. Moreover, the robot presented is user-friendly because it is simple to set robot

  5. The study and forensic significance of drill bit use indicators.

    Science.gov (United States)

    Lang, Gui-Hua L; Klees, Gregory S

    2008-07-01

    A case study involving an improvised pipe bomb with a drilled fuse hole is presented. This case study and its accompanying research details drill bit use and/or nonuse indicators. These indicators are then further classified to develop relevant conclusion criteria. These criteria are: (1) trace deposits in the form of particulate and/or smears on the drill bit, especially inside the flute and the tip area, (2) physical damage including chipping, abrasion, and fissuring on the drill bit which mostly occurred on the flute edge bevels and lip edges, and (3) thermal damage. One or any combination of these indicators could be used as effective criteria for concluding drill bit usage. This study also determined that a drill bit produces well-defined toolmarks on swarf shavings that could be identified back to that particular tool, and there is no mechanical break-in period for obtaining reproducible toolmarks on newly manufactured or unused bits.

  6. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    Energy Technology Data Exchange (ETDEWEB)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  7. Measurement Space Drill Support

    Science.gov (United States)

    2015-08-30

    calendar within the CoBP SharePoint portal but it is not updated or maintained. The center Ops are notified if they are hosting the event since a...Recommendation: It is recommended that the center operations office within TRAC maintain the SharePoint calendar with upcoming MS drills and notify other

  8. Continental Scientific Drilling Program.

    Science.gov (United States)

    1979-01-01

    assemblage associated with a Jurassic subduction zone. In this formation, ophiolites, cherts, pillow basalts, glaucophane schists, graywacke, and melanges...RESOURCES 121 follow clear-cut safeguards to avoid any degradation of the geyser and hot spring systems. Any such drilling must also be totally

  9. Drill hole logging with infrared spectroscopy

    Science.gov (United States)

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  10. Soil properties affecting wheat yields following drilling-fluid application.

    Science.gov (United States)

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  11. Mars Science Laboratory Drill

    Science.gov (United States)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  12. Investigation of GaInNAs/GaAs quantum wells and vertical-cavity surface-emitting laser structures using modulated reflectance spectroscopy

    CERN Document Server

    Choulis, S A

    2001-01-01

    study on a representative InGaAs/GaAs/AlAs/AIGaAs as-grown VCSEL structure, using PR spectroscopy as a function of position on a non-uniform wafer. We also show how temperature dependent PR and the appropriate lineshape model can be used to obtain a full picture of the relative movements between the gain and the CM over the full range of temperature. This information allows calculating the material gain in the temperature range of interest, independent from the effect of the CM and also provides an alternative method for characterising the growth, which can be applied to uniform wafers. PR and non-destructive ER can be used to identify regions suitable for fabrication into devices. For this reason modulation spectroscopy can be very useful for industry to reject wafers where good alignment between the CM and the QW does not occur and can thus save on the time consuming and expensive fabrication procedures. We investigate the electronic band structure of device relevant GaInNAs/GaAs multiple quantum wells (MQW...

  13. Drilling technology research program. [Bits, mud instrumentation, materials, downhole information while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, M. M.; Huff, C. F.

    1977-01-01

    This paper presents the activities of the program conducted for DOGST/ERDA from program inception in April, 1976, to September, 1977. Progress on four projects is presented: High Performance Bits, High Temperature Mud Instrumentation, High Temperature Materials and Downhole Information While Drilling. The high performance bit development centers on improved bonding techniques for attaching the General Electric man-made diamond (Stratapax) to a mounting structure or bit body. Preliminary design work on high temperature mud filtration and viscosity instrumentation is described along with initial attempts to characterize physical changes that occur in muds in deep hot wells. Experiments underway to determine ways to increase the service life of drill steels and elastomers in hot corrosive environments are discussed. Limited activity occurred on development of a ''Drilling and Formation Information System'' to determine the difference between formation and mud column pressures while drilling. (DLC)

  14. Gel Evolution in Oil Based Drilling Fluids

    OpenAIRE

    Sandvold, Ida

    2012-01-01

    Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of new drilling techniques such as long deviated sections and drilling in ultra-deep waters, the standard of required performance of the drilling fluids continue to increase. Narrow pressure margins and low tolerance for barite sag requires accurate prediction of the gel evolution in drilling fluids. Increased knowledge of how dri...

  15. Potential environmental benefits from regulatory consideration of synthetic drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Burke, C.J.; Veil, J.A. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1995-02-01

    When drilling exploration and production wells for oil and gas, drillers use specialized drilling fluids, referred to as muds, to help maintain well control and to remove drill cuttings from the hole. Historically, either water-based muds (WBMs) or oil-based muds (OBMs) have been used for offshore wells. Recently, in response to US Environmental Protection Agency (EPA) regulations and drilling-waste discharge requirements imposed by North Sea nations, the drilling industry has developed several types of synthetic-based muds (SBMs) that combine the desirable operating qualities of OBMs with the lower toxicity and environmental impact qualities of WBMs. This report describes the operational, environmental, and economic features of all three types of muds and discusses potential EPA regulatory barriers to wider use of SBMs.

  16. Post drill survey A6 - A6 2014

    NARCIS (Netherlands)

    Glorius, S.T.; Weide, van der B.E.; Kaag, N.H.B.M.

    2015-01-01

    A consortium has drilled a production well linked to the existing production platform A6-A. This platform is located in an ‘FFH-area’ with a Natura 2000 designation area. Wintershall (one of the consortium partners) has requested IMARES to conduct a post-drilling survey at the A6-A platform site to

  17. Method of drilling with magnetorheological fluid

    NARCIS (Netherlands)

    Zitha, P.L.J.

    2003-01-01

    A method of drilling a bore hole into a stratum, wherein via the drill hole drilling fluid is introduced and fed to the drill head. In order to avoid dilution or leak-off of the drilling fluid the same is in accordance with the invention a magnetorheological drilling fluid, and when an undesirable

  18. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  19. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    Science.gov (United States)

    Clow, Gary D.

    2015-01-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be ‘corrected’ for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid–liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal

  20. Reaching 1 m deep on Mars: the Icebreaker drill.

    Science.gov (United States)

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  1. Estimation of bioavailability of metals from drilling mud barite.

    Science.gov (United States)

    Neff, Jerry M

    2008-04-01

    Drilling mud and associated drill cuttings are the largest volume wastes associated with drilling of oil and gas wells and often are discharged to the ocean from offshore drilling platforms. Barite (BaSO4) often is added as a weighting agent to drilling muds to counteract pressure in the geologic formations being drilled, preventing a blowout. Some commercial drilling mud barites contain elevated (compared to marine sediments) concentrations of several metals. The metals, if bioavailable, may harm the local marine ecosystem. The bioavailable fraction of metals is the fraction that dissolves from the nearly insoluble, solid barite into seawater or sediment porewater. Barite-seawater and barite-porewater distribution coefficients (Kd) were calculated for determining the predicted environmental concentration (PEC; the bioavailable fraction) of metals from drilling mud barite in the water column and sediments, respectively. Values for Kdbarite-seawater and Kdbarite-porewater were calculated for barium, cadmium, chromium, copper, mercury, lead, and zinc in different grades of barite. Log Kdbarite-seawater values were higher (solubility was lower) for metals in the produced water plume than log Kdbarite-porewater values for metals in sediments. The most soluble metals were cadmium and zinc and the least soluble were mercury and copper. Log Kd values can be used with data on concentrations of metals in barite and of barite in the drilling mud-cuttings plume and in bottom sediments to calculate PECseawater and PECsediment.

  2. Application of MRIL-WD (Magnetic Resonance Imaging Logging While Drilling) for irreducible water saturation, total reservoir, free-fluid, bound-fluid porosity measurements and its value for the petrophysical analysis of RT/RM data from the Shah Deniz well

    Science.gov (United States)

    Amirov, Elnur

    2016-04-01

    Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible

  3. Development and Manufacture of Cost-Effective Composite Drill Pipe

    Energy Technology Data Exchange (ETDEWEB)

    James C. Leslie

    2008-12-31

    fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  4. New design of a compact aero-robotic drilling end effector: An experimental analysis

    Directory of Open Access Journals (Sweden)

    Shi Zhenyun

    2016-08-01

    Full Text Available This paper presents the development of a normal adjustment cell (NAC in aero-robotic drilling to improve the quality of vertical drilling, by using an intelligent double-eccentric disk normal adjustment mechanism (2-EDNA, a spherical plain bearing and a floating compress module with sensors. After the surface normal vector is calculated based on the laser sensors’ feedback, the 2-EDNA concept is conceived specifically to address the deviation of the spindle from the surface normal at the drilling point. Following the angle calculation, depending on the actual initial position, two precise eccentric disks (PEDs with an identical eccentric radius are used to rotate with the appropriate angles using two high-resolution DC servomotors. The two PEDs will carry the spindle to coincide with the surface normal, keeping the vertex of the drill bit still to avoid repeated adjustment and position compensation. A series of experiments was conducted on an aeronautical drilling robot platform with a precise NAC. The effect of normal adjustment on bore diameter, drilling force, burr size, drilling heat, and tool wear was analyzed. The results validate that using the NAC in robotic drilling results in greatly improved vertical drilling quality and is attainable in terms of intelligence and accuracy.

  5. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  6. Pregnancy following laparoscopy ovarian drilling for clomiphene

    African Journals Online (AJOL)

    The treatment modalities for clomiphene resistant PCOS include medical treatment with. Gonadotrophins and / or Metformin as well as ovarian drilling (3). Ovarian wedge resection was the initial surgical management approach for anovulatory PCOS prior to 70s as it resulted in about 80% ovulation and 50% conception.

  7. Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique

    Science.gov (United States)

    Chirindja, F. J.; Dahlin, T.; Juizo, D.

    2017-08-01

    Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a well-developed altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.

  8. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  9. The behavior of enclosed-type connection of drill pipes during percussive drilling

    Science.gov (United States)

    Shadrina, A.; Saruev, L.

    2015-11-01

    Percussion drilling is the efficient method to drill small holes (≥ 70 mm) in medium- hard and harder rocks. The existing types of drill strings for geological explorations are not intended for strain wave energy transfer. The description of the improved design of the drill string having enclosed-type nipple connections is given in this paper presents. This nipple connection is designed to be used in drilling small exploration wells with formation sampling. Experimental findings prove the effectiveness of the enclosed nipple connection in relation to the load distribution in operation. The paper presents research results of the connection behavior under quasistatic loading (compression-tension). Loop diagrams are constructed and analyzed in force-displacement coordinates. Research results are obtained for shear stresses occurred in the nipple connection. A mechanism of shear stress distribution is described for the wave strain propagation over the connecting element. It is shown that in the course of operation the drill pipe tightening reduces the shear stress three times.

  10. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    Energy Technology Data Exchange (ETDEWEB)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were

  11. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper

  12. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Brian C. Gahan; Samih Batarseh

    2004-09-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

  13. Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    The Deep Salton Sea Scientific Drilling Program (DSSSDP) was conducted in Imperial County of California at the Southeastern edge of the Salton Sea. Emphasis was on the acquisition of scientific data for the evaluation of the geological environment encountered during the drilling of the well. The scientific data acquisition activities consisted of coring, running of numerous downhole logs and tools in support of defining the geologic environment and conducting two full scale flow tests primarily to obtain pristine fluid samples. In addition, drill cuttings, gases and drilling fluid chemistry measurements were obtained from the drilling fluid returns concurrent with drilling and coring operations. The well was drilled to 10,564 feet. This report describes the field portions of the project and presents an analysis of the time spent on the various activities associated with the normal drilling operations, scientific data gathering operations and the three major downhole problem activities - lost circulation, directional control and fishing.

  14. New drilling technologies battle marginal economics and conservative Canadian attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stastny, P.

    2009-02-15

    Drilling technology has progressed only incrementally since the introduction of horizontal drilling and multistage fracing which is now widely used to recover petroleum resources from tight unconventional plays. This article described other recent advancements in drilling technology, including improvements in underbalanced and managed-pressure drilling, and the incremental improvement in the design and performance of mud motors. Rig day costs have been reduced as a result of finding the right combination of bit, motor, directional drilling system and other innovations. This article highlighted the following technologies that have been embraced by the Canadian oilpatch: rotary steerable technology in directional drilling; the InSite ADR resistivity geosteering tool which effectively measures the distance to a bed boundary; the GABI at-bit azimuthal gamma ray and inclination tool that serves a similar geosteering role using gamma ray technology rather than resistivity to navigate the well; heli-portable drilling rigs which are configured so that they can be moved easily by helicopter for use in the shale plays of northeastern British Columbia; Halliburton's junction isolation tool (JIT) which provides a better way to stimulate multilateral wells; and the reverse circulation centre discharge (RCCD) drilling concept for low-pressure, water-sensitive formations. 1 fig.

  15. Evaluation of slurry injection technology for management of drilling wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Dusseault, M. B.

    2003-02-19

    Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process.

  16. Drill bit assembly for releasably retaining a drill bit cutter

    Science.gov (United States)

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  17. Increasing Geothermal Energy Demand: The Need for Urbanization of the Drilling Industry

    Science.gov (United States)

    Teodoriu, Catalin; Falcone, Gioia

    2008-01-01

    Drilling wells in urban spaces requires special types of rigs that do not conflict with the surrounding environment. For this, a mutation of the current drilling equipment is necessary into what can be defined as an "urbanized drilling rig." Noise reduction, small footprint, and "good looking" rigs all help persuade the general public to accept…

  18. Identifying the Major Determinants of Exploration Drilling Costs: A First Approximation Using the Philippine Case

    OpenAIRE

    Makasiar, Gary S.; de Belen, Alexis I.; Mata, Fay M.

    1983-01-01

    This paper documents an initial attempt to develop a formula for approximating the cost of drilling oil and geothermal wells using parameters suspected to affect the drilling cost. It also measures and determines the extent of variation of drilling cost given a change in the parameters considered.

  19. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G. (ed.)

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  20. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  1. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G. (ed.)

    1980-05-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  2. Importance of drill string assembly swivel in horizontal drilling

    Directory of Open Access Journals (Sweden)

    Edmund Tasak

    2006-10-01

    Full Text Available A part of the drill string – the swivel (rotational connector – accomplishes an important task in the horizontal drilling. Its malfunctioning makes it impossible to draw in ( install large diameter and length pipelines. The causes of the connector break-down during the horizontal drilling are investigated in the paper. The drilling has been made for twenty inches gas pipeline installation during reaming operations. A trouble was encountered making good work conditions of a system consisting of the drilling machine drill string reamer swivel tube shield of Cardan joint and the gas pipeline 500 m long. In this case, the swivel brokes down and the planned operation was not finished. The assessment of improper drilling conditions, selection of operation system components, and drilling parameters and the insufficient technological supervising have created an excessive risk of failure. A proper application of technical analysis would considerably decrease the hazard of failure which cause large costs, delays and decrease of confidence to the drilling contractor and pipeline installation.

  3. The Risk Cost Forecast in Drilling Engineering

    OpenAIRE

    Zhao Xiaofeng; Guan Zhichuan; Ke Ke; Zhang Xin; Wu Yanxian

    2014-01-01

    Drilling cost affects the investment benefits and program selection of drilling engineering directly. In the process of drilling, the accident time is about 3-8% of total drilling time, having a great influence on the total drilling cost. Based on analysis and adjustment of the traditional drilling engineering cost structure and the classification method, the concept of risk cost was introduced to drilling engineering cost analysis and researched the recognition and measurement of risk cost o...

  4. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2012-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  5. Confined compressive strength model of rock for drilling optimization

    Directory of Open Access Journals (Sweden)

    Xiangchao Shi

    2015-03-01

    Full Text Available The confined compressive strength (CCS plays a vital role in drilling optimization. On the basis of Jizba's experimental results, a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed. Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics, which is not suitable for calculating the confining pressure in rock mechanics, the double effective stress theory, which treats the porosity as a weighting factor of the formation pore pressure, is adopted in this study. The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin, China, and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling (UBD and overbalanced drilling (OBD.

  6. Solving the challenges of extended reach well in Brazil; Vencendo desafios em pocos de grande afastamento

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Vicente Abel S.R.; Araujo, Romero G.S.; N. Filho, Aluisio F. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Veneziani, Luciano S. [Halliburton Servicos Ltda., Macae, RJ (Brazil)

    2004-07-01

    With the objective of minimizing costs and allowing oil to be produced from reservoirs near the coast in shallow waters (i.e. less than 3 meters) which make the use of standard marine units impractical, several Extended Reach Wells were drilled from special land based locations in an area with increased environmental awareness (mangroves and 'Salinas'). This was the reality faced in the 'Serra Field' located on the north coast of the state of Rio Grande do Norte (Brasil) and under the management of the Rio Grande do Norte and Ceara Business Unit of PETROBRAS.The ratio between the actual displacement and vertical depth of these wells is approximately 2.7, with actual displacement a bit greater than 2,600 meters, with the idea of reaching displacements exceeding 3,000 meters in the future. In order to drill these wells, special new technologies were adopted; the drilling rig was upgraded, specific software for the development of the project considering both the reservoir and planning of the well, along with the integration and commitment of the Team to follow, execution and that of the service companies resulted in significant improvements in the Drilling Times. Tools adopted in the design of the well, and in the monitoring of the drilling and completion included Torque and Drag Analysis, Rock Mechanics, Drilling Fluids, Well Trajectory, Anti-Collision, Hydraulics and Wellbore Cleaning. This paper will describe the actions taken, the results, challenges and lessons learned during this Exploration Programme in the Serra Field. (author)

  7. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  8. Physico-chemical characterization of aphron based drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kuru, E.; Bjorndalen, N. [Alberta Univ., Edmonton, AB (Canada)

    2005-07-01

    A study was conducted in which the physical properties of colloidal gas aphron (CGA) based drilling fluids were investigated. CGAs are designed to minimize formation damage by blocking pores of the rock with microbubbles, which can later be removed easily when the well is open for production. Sizing CGA bubbles in accordance with the rock pore size distribution is essential for effective sealing of the pores during drilling. The viscosity, density, and fluid loss of the CGA based drilling fluids also need to be understood in order to drill effectively with these fluids. This paper presented the results of rheology, API filtration loss and density measurement tests using various CGA based drilling fluid formulations. In addition, the effects of polymer and surfactant concentration, surfactant type, shear rate, mixing time and water quality on the CGA bubble size were presented. The physico-chemical properties of aphronized fluids formed by mixing water, xanthan gum and anionic or cationic surfactants were investigated. The aphronized drilling fluids rheologically can be classified as yield pseudo plastic type fluids. In general, the addition of the aphron microbubbles to the system benefited the viscosity and the API filtration loss while decreasing the density of the drilling fluid. Aphron bubble sizes generated by using cationic surfactants were larger than those generated by using anionic surfactants. Aphronized drilling fluids generated by cationic surfactants had lower filtration volumes compared to fluids generated by anionic surfactants. 28 refs., 6 tabs., 18 figs.

  9. The integrated method to select drilling muds for abnormally high pressure formations

    Science.gov (United States)

    Khorev, V. S.; Dmitriev, A. Yu; Boyko, I. A.; Kayumova, N. S.; Rakhimov, T. R.

    2016-03-01

    The article describes the method for choosing a drilling mud for drilling abnormally high pressure formations. A carefully selected drilling mud formulation would not only enhance an array of interrelated fluid properties, but also minimize the impact on the pay zones when the drill bit first penetrates the pay. To ensure a better assessment of drilling mud impact on the pay zone, it is reasonable to carry out the study focused on the analysis of technological parameters, involving filtration, acid and drilling mud tests, as well as formation damage analysis. This would enable evaluating the degree of mudding off, reservoirs acid fracturing effect and the risks of pipe sticking at significant depth. The article presents the results of the above-described study with regard to the currently used drilling mud and new experimental formulations developed at National Research Tomsk Polytechnic University (Drilling Mud and Cement Slurry Laboratory).

  10. Real-Time Simulation of Oil Drilling Operations

    Directory of Open Access Journals (Sweden)

    Jørgen Opdal

    1982-01-01

    Full Text Available This paper contains the basic numeric model for the oil drilling simulator WELLSIM. As a case study it presents an example from well pressure control. Figure 1 shows a picture of the simulator.

  11. Operational Review of the First Wireline In Situ Stress Test in Scientific Ocean Drilling

    Directory of Open Access Journals (Sweden)

    Casey Moore

    2012-04-01

    Full Text Available Scientific ocean drilling’s first in situ stress measurement was made at Site C0009A during Integrated Ocean Drilling Program (IODP Expedition 319 as part of Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE Stage 2. The Modular Formation Dynamics Tester (MDT, Schlumbergerwireline logging tool was deployed in riser Hole C0009A to measure in situ formation pore pressure, formation permeability (often reported as mobility=permeability/viscosity, and the least principal stress (S3 at several isolated depths (Saffer et al., 2009; Expedition 319 Scientists, 2010. The importance of in situ stress measurements is not only for scientific interests in active tectonic drilling, but also for geomechanical and well bore stability analyses. Certain in situ tools were not previously available for scientific ocean drilling due to the borehole diameter and open hole limits of riserless drilling. The riser-capable drillship, D/V Chikyu,now in service for IODP expeditions, allows all of the techniques available to estimate the magnitudes and orientations of 3-D stresses to be used. These techniques include downhole density logging for vertical stress, breakout and caliper log analyses for maximum horizontal stress, core-based anelastic strain recovery (ASR, used in the NanTroSEIZE expeditions in 2007–2008, and leak-off test (Lin et al., 2008 and minifrac/hydraulic fracturing (NanTroSEIZE Expedition319 in 2009. In this report, the whole operational planning process related to in situ measurements is reviewed, and lessons learned from Expedition 319 are summarized for efficient planning and testing in the future.

  12. Exploration of the crystalline underground by extension drilling of the Urach 3 well in the framework of a feasibility study for a hot dry rock demonstration project; Erkundung des kristallinen Untergrunds mit der Vertiefungsbohrung Urach 3 im Rahmen einer Machbarkeitsstudie fuer ein Hot-Dry-Rock-Demonstrationsprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, H. [Stadtwerke Bad Urach (Germany); Genter, A.; Hottin, A.M. [BRGM/GIG, Orleans (France)

    1997-12-01

    The prerequisites for specific research into the use of Hot Dry Rock geothermal energy at great depths and temperatures of up to 147 C. In Europe were created with the drilling and completition of the 3334 m deep research drill hole Urach 3 in its phase I (1977/78), and its subsequent extension to 3488 m in phase II (1982/83) within the metamorphic gneiss rock of Urach. A single hole circulation system was tested. Basic results concerning the temperature field, joint system, stress field and hydraulic behavior of the rock were achieved. According to the European HDR guidelines data from depths were a mean reservoir temperature of 175-180 C prevails were necessary to carry out a HDR pilot project. Within the scope of a feasibility study the already existing drill hole Urach 3 was extended from 3488 m to 4445 m depth where the required rock temperature of >170 C was expected. The objective of the project was to determine rock parameters at depth of high temperatures. The bottom hole temperature at true vertical depth of 4394.72 m was determined with 170 C. It can be proved that the temperature gradient is constant with 2.9 K/100 m depth. Due to the results of the investigations it is proposed that the Urach site located in a widespread tectonic horizontal strike-slip system is suitable for a HDR demonstration project. The results can be applied in south German and northern Swiss regions and in other large regions of Europe. Many potential consumers of geothermal energy produced by the HDR concept are situated close around the Urach 3 drill site. (orig./AKF) [Deutsch] Die Forschungsarbeiten zur Weiterentwicklung des Hot-Dry-Rock-Verfahrens begannen am Standort Bad Urach im Jahr 1975. In einer ersten Phase wurde die Bohrung Urach 3 1977/78 auf 3334 m mit einer Gesteinstemperatur von 143 C abgeteuft. Umfangreiche Hydraulische Tests und Frac-Versuche erfolgten. Hiermit wurden die Voraussetzungen fuer die Erkundung des Hot-Dry-Rock-Konzeptes in grossen Tiefen und

  13. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  14. Advanced turbodrills for geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, W.C.; Rowley, J.C.; Carwile, C.

    1978-01-01

    The development of a new high-temperature, 350/sup 0/C advanced turbodrill for use in drilling geothermal wells is underway. Existing downhole drilling motors are temperature limited because of elastomeric degradation at elevated temperature. The new turbodrill contains high-torque turbine blades and improved seals which allow higher bit pressure drops. This new geothermal turbodrill which is designed for improved directional drilling offers economic alternatives for completing geothermal wells. The advanced turbodrill will be tested in the Los Alamos Scientific Laboratory's hot dry rock geothermal wells.

  15. Sea Bed Drilling Technology MARUM-MeBo: Overview on recent scientific drilling campaigns and technical developments

    Science.gov (United States)

    Freudenthal, Tim; Bergenthal, Markus; Bohrmann, Gerhard; Pape, Thomas; Kopf, Achim; Huhn-Frehers, Katrin; Gohl, Karsten; Wefer, Gerold

    2017-04-01

    The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for a drilling depth of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2016 it was deployed on 17 research expeditions and drilled about 3 km into different types of geology including carbonate and crystalline rocks, gas hydrates, glacial tills, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of about 70 %. We used the development and operational experiences of MARUM-MeBo70 for the development of a second generation drill rig MARUM-MeBo200. This drill rig is dedicated for conducting core drilling down to 200 m below sea floor. After successful sea trials in the North Sea in October 2014 the MeBo200 was used on a scientific expedition on the research vessel RV SONNE (SO247) in March/April 2016. During 12 deployments we drilled altogether 514 m in hemipelagic sediments with volcanic ashes as well as in muddy and sandy slide deposits off New Zealand. The average core recovery was about 54%. The maximum drilling depth was 105 m below sea floor. Developments for the MeBo drilling technology include the development of a pressure core barrel that was successfully deployed on two research expeditions so far. Bore hole logging adds to the coring capacity. Several autonomous logging probes have been developed in the last years for a deployment with MeBo in the logging while tripping mode - a sonic probe measuring in

  16. Integral analysis of the drill string dynamic behaviour to optimize drilling operation; Analise integrada do comportamento dinamico da coluna para otimizacao de perfuracao

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Araken [Smith International do Brasil, Macae, RJ (Brazil); Placido, Joao C.R.; Percy, Joseir G.; Falcao, Jose; Freire, Helena; Ono, Eduardo H.; Masculo, Miguel S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Azuaga, Denise; Frenzel, Mark [Smith International Inc., Houston, TX (United States)

    2008-07-01

    For a performance preview of a drilling system is necessary a dynamic and integrated modeling for understanding all system forces resulting from the combination of the rock strength, cut structure action, drilling parameters, BHA and all others drilling components. This study must predict, for the drill string, vibrations and torsions, from bit to surface, its origins and its effects, and provides the best way to reduce these vibrations, determining the best bit, BHA and drilling parameters. Thereby, this study eliminates the trial and error approach and the operation risks. This paper aims to present studies of optimization for two drilling wells conducted in Brazil, one in Santos Basin and other in Campos Basin, and compares the numerical simulations results with the data from drilling operations. (author)

  17. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  18. Nuclear Magnetic Resonance Logging While Drilling (NMR-LWD)

    OpenAIRE

    Blanz, Martin; Kruspe, Thomas; Thern, Holger Frank; Kurz, Gerhard Alfons

    2015-01-01

    NMR T2 distribution measurement is our chosen everyday method for NMR logging while drilling oil and gas wells. This method yields straightforward preparation and execution of the job as well as a normally easy interpretation of the measured data. For instance, gas and light oil discrimination against water is feasible by direct observation of the T2 distribution. A condition for this measurement method is a NMR logging tool that hardly moves while drilling and in addition uses a small static...

  19. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  20. Fiscal 1996 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the binary cycle power plant (development of the measurement while drilling system for geothermal wells); 1996 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (binary cycle hatsuden plant no kaihatsu (chinetsusei kussakuji kotei joho kenchi system no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The R and D were carried out of a detecting system for measurement of data on the bottom of geothermal well, data transmission and signal processing, and an analysis system for well drilling trajectory control and well assessment while geothermal well drilling based on the data obtained by the detecting system. The paper reported the results of the technology development in fiscal 1996. In the development of the detecting system, improvement/design were conducted on a mud pulse generator constituting sonde, well bottom signal processing equipment, mode switch and inclined information sensor, and the system equivalent to the actual one was manufactured to conduct a running test at high temperature/pressure. Moreover, a test to confirm heat resistance of electronic parts was made for further improvement in heat resistance of the sonde, in order to obtain the data. In the development of an analysis system, conducted were enhancement of operability of the planning/indication portions of the well drilling trajectory supporting system, improvement of the data intake system, etc. In relation to the well assessment supporting system, carried out were heightening of operability of the temperature analysis portion and confirmation of accuracy increase. 5 refs., 253 figs., 72 tabs.

  1. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  2. Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Engelhardt, Andreas P.; Kolb, Johanna S.; Roemer, Friedhard; Weichmann, Ulrich; Moench, Holger; Witzigmann, Bernd

    2015-01-01

    The electro-optical efficiency of vertical-cavity surface-emitting lasers (VCSELs) strongly depends on the efficient carrier injection into the quantum wells (QWs) in the laser active region. Carrier injection degrades with increasing temperature, which limits VCSEL performance in high-power applications where self-heating imposes high-operating temperatures. In a numerical model, we investigate the transport of charge carriers in an 808-nm AlGaAs multi-quantum-well structure with special attention to the temperature dependence of carrier injection into the QWs. Experimental reference data were extracted from oxide-confined, top-emitting VCSELs. The transport simulations follow a drift-diffusion-model complemented by an energy-resolved carrier-capture model. The QW gain was calculated in the screened Hartree-Fock approximation. With the combination of the gain and transport model, we explain experimental reference data for the injection efficiency and threshold current. The degradation of the injection efficiency with increasing temperature is not only due to increased thermionic escape of carriers from the QWs, but also to state filling in the QWs initiated from higher threshold carrier densities. With a full opto-electro-thermal VCSEL model, we demonstrate how changes in VCSEL properties affecting the threshold carrier density, like mirror design or optical confinement, have consequences on the thermal behavior of the injection and the VCSEL performance.

  3. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    Science.gov (United States)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  4. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  5. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  6. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2001-04-19

    The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

  7. Slim hole drilling and testing strategies

    Science.gov (United States)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  8. Development and testing of underbalanced drilling products. Topical report, September 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Medley, G.H., Jr; Maurer, W.C.; Liu, G.; Garkasi, A.Y.

    1995-09-01

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses the development and testing of two products designed to advance the application of underbalanced drilling techniques. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment. The program predicts pressure and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test well measurements, and field data. This model does not handle air or mist drilling where the foam quality is above 0.97. An incompressible drilling fluid was developed that utilizes lightweight solid additives (hollow glass spheres) to reduce the density of the mud to less than that of water. This fluid is designed for underbalanced drilling situations where compressible lightweight fluids are inadequate. In addition to development of these new products, an analysis was performed to determine the market potential of lightweight fluids, and a forecast of underbalanced drilling in the USA over the next decade was developed. This analysis indicated that up to 12,000 wells per year (i.e., 30 percent of all wells) will be drilled underbalanced in the USA within the next ten years.

  9. Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling

    Directory of Open Access Journals (Sweden)

    Na Wei

    2013-01-01

    Full Text Available Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport mathematical model according to gas-liquid-solid flow mechanism and large plane dunes particle transport theory.

  10. DALI - drilling advisor with logic interpretations: methodological issues for designing underbalanced drilling operations. Improving efficiency using case-based reasonic

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Gustavo A.; Velazquez C, David [Mexican Oil Institute, Mexico DF (Mexico)

    2004-07-01

    A system that applies a method of knowledge-intensive case-based reasoning, for repair and prevention of unwanted events in the domain of offshore oil well drilling, has been developed in cooperation with an oil company. From several reoccurring problems during oil well drilling the problem of 'lost circulation', i.e. loss of circulating drilling fluid into the geological formation, was picked out as a pilot problem. An extensive general knowledge model was developed for the domain of oil well drilling. Different cases were created on the basis of information from one Mexican Gulf operator. When the completed CBR-system was tested against a new case, cases with descending similarity were selected by the tool. In an informal evaluation, the two best fitting cases proved to give the operator valuable advise on how to go about solving the new case (author)

  11. GRED STUDIES AND DRILLING OF AMERICULTURE STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, James

    2006-08-01

    This report summarizes the GRED drilling operations in the AmeriCulture State 2 well with an overview of the preliminary geologic and geothermal findings, from drill cuttings, core, geophysical logs and water geochemical sampling.

  12. InnovaRig, a new drilling concept for research drilling projects of GeoForschungsZentrum (GFZ) Potsdam; InnovaRig - ein neues Bohranlagenkonzept fuer Forschungsbohrungen des GeoForschungsZentrum (GFZ) Potsdam

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, L.; Prevedel, B. [GFZ Potsdam (Germany); Binder, J. [Herrenknecht Vertical GmbH, Schwanau (Germany); Mueller Ruhe, W. [H. Anger' s Soehne mbH, Hessisch Lichtenau (Germany); Wundes, B. [World Wide Drilling Consultants, Gladbeck (Germany)

    2007-09-13

    The world-wide experience in scientific drilling projects gained by GFZ has shown that there is no commercial drilling system that meets all technical requirements of either geoscientific or geotechnical projects. Research must therefore be done on a flexible and economical drilling system for special applications. GFZ Potsdam is therefore developing an optimized drilling system for a depth of up to 5000 m, in a joint R + D project with the industrial partners Herrenknecht-Vertical GmbH, a subsidiary of Herrenknecht AG (Schwanau), and H. Anger's Soehne Bohr- und Brunnenbaugesellschaft mbH (Hessisch-Lichtenau). (orig.)

  13. Spreading and deposition of drill cuttings in the Barents Sea - Plans of the Barents Sea drill cuttings research initiative (BARCUT) project

    Science.gov (United States)

    Junttila, Juho; Aagaard Sørensen, Steffen; Dijkstra, Noortje

    2016-04-01

    The increasing petroleum exploration activity in the Barents Sea will lead to increased release of drill cuttings onto the ocean bottom in the future. Drilling mud consists of both drilling fluid with contaminants and fine sediments. This increasing discharge of drill cuttings provides a need for further knowledge of ocean current transportation of both contaminants and fine sediment particles (clay and silt), their impact on microfauna and the prediction of their accumulation areas. The main object is to study the current status of the sediments and microfauna exposed to different types of drill cuttings in the proximity of drilled exploration wells. Detailed objectives are: 1) To identify the main physical and geochemical characteristics of the sediments near the drilled wells including main areas for drill cutting accumulation and the influence of ocean currents on sediments and drill cuttings; 2) To identify the influence of drill cutting discharge on benthic foraminifera; 3) Monitoring and prediction of future spreading, accumulation and distribution of drill cutting related pollutants. We have conducted two field sampling campaigns, and in total visited seven drilling sites, ranging in age from recently drilled (in 2015) to nearly 30 years since abandonment. In this project, we study mainly push cores taken with a remote operated underwater vehicle (ROV) in the close proximity of exploration wells in the SW Barents Sea. We will determine the modern sedimentation rates based on the ²¹°Pb dating method. We analyze sediment grain-size, heavy metal and polyaromatic hydrocarbon (PAH) contents. Additionally analysis on benthic foraminifera, smectite clay minerals and the total organic carbon (TOC) content will be performed.

  14. Handbook of Best Practices for Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Finger, John Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-02-01

    This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

  15. New Proposed Drilling at Surtsey Volcano, Iceland

    Science.gov (United States)

    Jackson, Marie D.

    2014-12-01

    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  16. Numerical Simulation of Bottomhole Flow Field Structure in Particle Impact Drilling

    Science.gov (United States)

    Zhou, Weidong; Huang, Jinsong; Li, Luopeng

    2018-01-01

    In order to quantitatively describe the flow field distribution of the PID drilling bit in the bottomhole working condition, the influence of the fluid properties (pressure and viscosity) on the flow field of the bottom hole and the erosion and wear law of the drill body are compared. The flow field model of the eight - inch semi - vertical borehole drilling bit was established by CFX software. The working state of the jet was returned from the inlet of the drill bit to the nozzle outlet and flowed out at the bottom of the nozzle. The results show that there are irregular three-dimensional motion of collision and bounce after the jetting, resulting in partial impact on the drill body and causing impact and damage to the cutting teeth. The jet of particles emitted by different nozzles interfere with each other and affect the the bottom of the impact pressure; reasonable nozzle position can effectively reduce these interference.

  17. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    Energy Technology Data Exchange (ETDEWEB)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  18. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  19. Junex announces beginning of St. Simon drilling

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-01

    Junex is the leading oil and gas producer in Quebec. A review of their recent launch of the St. Simon natural gas exploration drilling project near St. Hyacinth was presented. The project involved re-entering a well hole originally drilled by Shell in 1969. Drilling began on September 8, 2005. Today's economical and technical context, combined with a new understanding of geology, has convinced the company to re-enter the well to test its commercial production capacity and to evaluate its resource potential. Junex has signed an agreement with Petrolia, in which Petrolia will receive a 10 per cent interest in the Shell St. Simon well and an option to acquire a 10 per cent interest into the production and development phase of the project in case of a gas discovery. According to internal studies, the potential extension of the trap could contain 100 Bcf of gas. Junex is also continuing its efforts to develop a natural gas underground storage facility beneath the Becancour industrial park. It was noted that with more than 4 million acres under exploration permit in Quebec, Junex's strategy to date has consisted of careful management of exploration risks. The partners in the St. Simon project are Junex, Gastem and Petrolia. It was also noted that Junex holds a 19 per cent interest in Petrolia stock. 1 fig.

  20. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  1. Drilling challenges in a high inclination exploratory well through thick layers of salt; Desafios da perfuracao de um poco exploratorio de alta inclinacao na area do pre-sal

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ivan; Pimentel, Jose; Amaro, Renato [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Hargreaves, Adriana [Halliburton, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper analyses a proposed high inclination deep water well in the deep pre-salt area of the Santos Basin, to see its technical viability in terms of torque and drag analysis and also hydraulics. The geometry of the well and BHAs for the build-up and high inclination phases are proposed and he results in terms of drag and torque analysis are presented for the 14 3/4{sup '}' hole (10 3/4{sup '}' casing) and 9{sup '}' hole ( 7{sup '}' liner). A commercially available simulator was used for the purpose and the proposed well is the shown to be a viable alternative for the development of the area. (author)

  2. Oil and Natural Gas Wells, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Oil and Natural Gas Well geospatial dataset contains point features representing permitted locations, most of which have been drilled and completed, or drilled...

  3. 30 CFR 250.1608 - Well casing and cementing.

    Science.gov (United States)

    2010-07-01

    ... driving, jetting, or drilling to a minimum depth of 100 feet below the mud line or such other depth, as... combinations thereof. Safety factors in the drilling and casing program designs shall be of sufficient magnitude to provide well control during drilling and to assure safe operations for the life of the well. (4...

  4. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Science.gov (United States)

    2010-09-09

    ... green tubes suitable for drill pipe), without regard to the specific chemistry of the steel (i.e... specified in II (C) of the Commission's Handbook on Electronic Filing Procedures, 67 FR 68168, 68173...

  5. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2011-01-01

    data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  6. A distributed parameter systems view of control problems in drilling

    OpenAIRE

    Di Meglio, Florent; Aarsnes, Ulf Jakob Flø

    2015-01-01

    We give a detailed view of estimation and control problems raised by the drilling process where the distributed nature of the system cannot be ignored. In particular, we focus on the transport phenomena in Managed Pressure Drilling (MPD) and UnderBalanced Operations (UBO), as well as the time-delay mechanisms of the mechanical stick-slip vibrations. These industrial challenges raise increasingly difficult control questions for hyperbolic systems.

  7. A distributed parameter systems view of control problems in drilling

    OpenAIRE

    Di Meglio, Florent; Aarsnes, Ulf Jakob Flø

    2015-01-01

    We give a detailed view of estimation and control problems raised by the drilling process where the distributed nature of the system cannot be ignored. In particular, we focus on the transport phenomena in Managed Pressure Drilling (MPD) and UnderBalanced Operations (UBO), as well as the time-delay mechanisms of the mechanical stick-slip vibrations. These industrial challenges raise increasingly difficult control questions for hyperbolic systems. This is the authors' accepted and refereed ...

  8. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  9. DEVELOPMENT OF NEW DRILLING FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

  10. ACL Roof Impingement Revisited: Does the Independent Femoral Drilling Technique Avoid Roof Impingement With Anteriorly Placed Tibial Tunnels?

    Science.gov (United States)

    Tanksley, John A; Werner, Brian C; Conte, Evan J; Lustenberger, David P; Burrus, M Tyrrell; Brockmeier, Stephen F; Gwathmey, F Winston; Miller, Mark D

    2017-05-01

    Anatomic femoral tunnel placement for single-bundle anterior cruciate ligament (ACL) reconstruction is now well accepted. The ideal location for the tibial tunnel has not been studied extensively, although some biomechanical and clinical studies suggest that placement of the tibial tunnel in the anterior part of the ACL tibial attachment site may be desirable. However, the concern for intercondylar roof impingement has tempered enthusiasm for anterior tibial tunnel placement. To compare the potential for intercondylar roof impingement of ACL grafts with anteriorly positioned tibial tunnels after either transtibial (TT) or independent femoral (IF) tunnel drilling. Controlled laboratory study. Twelve fresh-frozen cadaver knees were randomized to either a TT or IF drilling technique. Tibial guide pins were drilled in the anterior third of the native ACL tibial attachment site after debridement. All efforts were made to drill the femoral tunnel anatomically in the center of the attachment site, and the surrogate ACL graft was visualized using 3-dimensional computed tomography. Reformatting was used to evaluate for roof impingement. Tunnel dimensions, knee flexion angles, and intra-articular sagittal graft angles were also measured. The Impingement Review Index (IRI) was used to evaluate for graft impingement. Two grafts (2/6, 33.3%) in the TT group impinged upon the intercondylar roof and demonstrated angular deformity (IRI type 1). No grafts in the IF group impinged, although 2 of 6 (66.7%) IF grafts touched the roof without deformation (IRI type 2). The presence or absence of impingement was not statistically significant. The mean sagittal tibial tunnel guide pin position prior to drilling was 27.6% of the sagittal diameter of the tibia (range, 22%-33.9%). However, computed tomography performed postdrilling detected substantial posterior enlargement in 2 TT specimens. A significant difference in the sagittal graft angle was noted between the 2 groups. TT grafts were

  11. Impacts on seafloor geology of drilling disturbance in shallow waters.

    Science.gov (United States)

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L

    2010-08-01

    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place.

  12. Downhole vibration causing a drill collar failure and solutions

    Directory of Open Access Journals (Sweden)

    Quanta Zhu

    2017-03-01

    Full Text Available In large borehole drilling of some blocks or formations, due to serious downhole vibration, fatigue failure of a drill collar occurs frequently and most washouts and fractures are in thread root. An analysis of the above failure shows that the drill collar fatigue failure is caused by the cyclic bending stress due to serious downhole vibration. Therefore, downhole vibration modes were theoretically analyzed in terms of axial vibration, lateral vibration, stick-slip, and the physical model established by the mechanical vibration field. Then the resonance damage caused by the actual different downhole vibrations and its theoretical basis were analyzed; and according to the downhole drill string lateral vibration and whirling law, the best area to ensure drilling parameter stability based on the given boundary conditions was figured out, and the theory was clarified that in the best area of drilling, the maximum ROP will be achieved by maintaining the drill string stable or eliminating the vibration/stick-slip, meanwhile the stress fatigue of BHA will be reduced or eliminated especially for drill collar. Finally, solutions were provided as follows: (1 According to the special BHA, drilling conditions, together with physical and mathematical models listed above, downhole resonance speed and related parameters to be avoided can be easily figured out. It was also clarified that resonance speed is exactly the vibration speed that need to be avoided; and that the resonance frequency can be avoided with software for vibration analysis in BHA design and application at well sites; (2 V-Stab is a new and efficient tool which can reduce or eliminate downhole lateral vibration and stick-slip.

  13. Ellog Auger Drilling -"3-in-one" method for hydrogeological data collection

    DEFF Research Database (Denmark)

    Sørensen, Kurt; Larsen, Flemming

    1999-01-01

    The Ellog auger drilling method is an integrated approach for hydrogeological data collection during auger drilling in unconsolidated sediments. The drill stem is a continuous flight, hollow-stem auger with integrated electrical and gamma logging tools. The geophysical logging is performed....... The Ellog auger drilling method provides detailed information on small-scale changes in lithology, sediment chemistry, and water, as well as gas compositions in aquifer systems - data essential to hydrogeological studies......., and gas sampling instrumentation in the drill stem is removable; therefore, when the drill stem is pulled back, piezometers can be installed through the hollow stem. Cores of sediments can subsequently be taken continuously using a technique in which the drill bit can be reinserted after each coring...

  14. A drilling rig tower

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A.A.; Barashkov, V.A.; Bulgakov, E.S.; Kuldoshin, I.P.; Lebedev, A.I.; Papin, N.M.; Rebrik, B.M.; Sirotkin, N.V.

    1981-05-23

    Presentation is made of a drilling rig tower, comprising a gantry, a support shaft with a bracing strut and drawings out, and turn buckles. In order to increase the reliability of the tower in operation, to decrease the over all dimensions in a transport position, and to decrease the amount of time taken to transfer the tower from an operational position into a transportable one, and vice versa, the tower is equipped with a rotary frame made in the form of a triangular prism, whose lateral edges are connected by hinges: the first one with the lower part of the support shaft, the second with the gantry, and the third one to the upper part of the support shaft by means of the drawings out. The large boundary of the rotary frame is connected by a hinge to the support shaft by means of a bracing strut, which is equipped with a slide block connected to it by a hinge, and the rotary frame has a guide for the slide block reinforced to it on the large boundary. Besides this, the lateral edge of the rotary frame is connected to the gantry by means of turn buckles.

  15. Casing and liners for drilling and completion

    CERN Document Server

    Byrom, Ted G

    2007-01-01

    The Gulf Drilling Series is a joint project between Gulf Publishing Company and the International Association of Drilling Contractors. The first text in this Series presents casing design and mechanics in a concise, two-part format. The first part focuses on basic casing design and instructs engineers and engineering students how to design a safe casing string. The second part covers more advanced material and special problems in casing design in a user-friendly format. Learn how to select sizes and setting depths to achieve well objectives, determine casing loads for design purposes, design casing properties to meet burst, collapse and tensile strength requirements and conduct casing running operations safely and successfully.

  16. Drilling Damage in Composite Material

    Directory of Open Access Journals (Sweden)

    Luís Miguel P. Durão

    2014-05-01

    Full Text Available The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  17. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  18. Limit of crustal drilling depth

    Directory of Open Access Journals (Sweden)

    Y.S. Zhao

    2017-10-01

    Full Text Available Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources, facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth's crust. In order to understand the limit of drilling depth in the Earth's crust, we first conducted tests on granite samples with respect to the borehole deformation and stability under high temperature and high pressure using the triaxial servo-controlled rock testing system. Then the critical temperature-pressure coupling conditions that result in borehole instability are derived. Finally, based on the testing results obtained and the requirements for the threshold values of borehole deformations during deep drilling, the limit of drilling depth in the Earth's crust is formulated with ground temperature.

  19. Drilling Damage in Composite Material.

    Science.gov (United States)

    Durão, Luís Miguel P; Tavares, João Manuel R S; de Albuquerque, Victor Hugo C; Marques, Jorge Filipe S; Andrade, Oscar N G

    2014-05-14

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results-bearing test and delamination onset test-and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  20. Drilling Damage in Composite Material

    Science.gov (United States)

    Durão, Luís Miguel P.; Tavares, João Manuel R.S.; de Albuquerque, Victor Hugo C.; Marques, Jorge Filipe S.; Andrade, Oscar N.G.

    2014-01-01

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability. PMID:28788650

  1. Off the launch-pad: Tesco lays out plans to fully commercialize casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2002-09-01

    A strategic plan to advance the company's patented casing drilling technology was recently unveiled by Calgary-based Tesco Corporation. The plans include construction of a $30 million Calgary manufacturing facility, construction and conversion of dozens of rigs for casing drilling capability and a training centre for engineers and operating personnel in Houston, Texas. Tesco Corporation expects to capture about five per cent of the market and generate one billion dollars in revenue within five years. The advantage of casing drilling is that it allows oil companies to drill wells without the need to constantly insert and withdraw drill strings in a process known as tripping, which is not only time consuming, but it opens up the well to such common downhole problems as sloughing, lost circulation and loss of well control. The technology can be used in virtually any drilling environment. Tesco has drilled straight, deviated and horizontal wells, reached depths of 12,000 feet and is pushing the limits well by well. Casing drilling has been shown to reduce the number of unscheduled events and reduce borehole instability that can cause delay or result in the loss of the well. It has also proven to be 30 per cent faster than conventional drilling. 3 figs.

  2. Making a simple steady state model more appropriate for underbalanced drilling

    OpenAIRE

    Akdeniz, Yasir

    2012-01-01

    Master's thesis in Petroleum engineering In an underbalanced operation the well needs to be kept in underbalanced conditions at all time. That is, from the beginning to the end of the drilling process. This is necessary to keep well from formation damage and potential hazardous drilling problems such as lost circulation and differential sticking. With flow modeling, it is possible to simulate an underbalanced drilling operation scenario, with given liquid and gas injection rates, and ...

  3. Use of a downhole mud motor as a pump for drillstem testing. [Navi-Drill

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, J.S.

    1982-04-01

    To drillstem test wells that do not flow to the surface, use has been made of the Christensen Inc. Navi-Drill, a downhole mud motor used for directional drilling, modified to act as a pump and run by the drilling rig. This method was used first on an exploration well in south Oman to produce oil from a zone that had shown only water in a conventional drillstem test.

  4. Prediction Model of Mechanical Extending Limits in Horizontal Drilling and Design Methods of Tubular Strings to Improve Limits

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2017-01-01

    Full Text Available Mechanical extending limit in horizontal drilling means the maximum horizontal extending length of a horizontal well under certain ground and down-hole mechanical constraint conditions. Around this concept, the constrained optimization model of mechanical extending limits is built and simplified analytical results for pick-up and slack-off operations are deduced. The horizontal extending limits for kinds of tubular strings under different drilling parameters are calculated and drawn. To improve extending limits, an optimal design model of drill strings is built and applied to a case study. The results indicate that horizontal extending limits are underestimated a lot when the effects of friction force on critical helical buckling loads are neglected. Horizontal extending limits firstly increase and tend to stable values with vertical depths. Horizontal extending limits increase faster but finally become smaller with the increase of horizontal pushing forces for tubular strings of smaller modulus-weight ratio. Sliding slack-off is the main limit operation and high axial friction is the main constraint factor constraining horizontal extending limits. A sophisticated installation of multiple tubular strings can greatly inhibit helical buckling and increase horizontal extending limits. The optimal design model is called only once to obtain design results, which greatly increases the calculation efficiency.

  5. 30 CFR 77.1009 - Drill; operation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men... while the drill bit is in operation unless a safe platform is provided and safety belts are used. (d...

  6. 75 FR 877 - Drill Pipe From China

    Science.gov (United States)

    2010-01-06

    ... COMMISSION Drill Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings..., 2009, by VAM Drilling USA Inc., Houston, TX; Rotary Drilling Tools, Beasley, TX; Texas Steel...

  7. New drilling methods for the conductor casing operations

    Directory of Open Access Journals (Sweden)

    Rafał Wiśniowski

    2006-10-01

    Full Text Available The necessity to apply casing to wells drilled in loose rock strata have recently created conditions for the modernization of old solutions and the development of new drilling technologies. The newest World's design and technological solutions for rotary, rotary-percussion and percussion drillings are presented in the paper with a further development directions indicated. An emphasis is put on the comparison of frequently diversified technologies basing on the concurrent drilling and the casing operations. In the course of an analysis of distribution of forces acting on the casing, the strength conditions were specified to enable a proper selection of physical properties and geometrical parameters of pipes. An exemplary calculation indicates that axial forces and torque have an influence on the selection of the outer diameter of casing made of various materials.

  8. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.

    Science.gov (United States)

    Jiang, Hua; Luo, Yi; McQuerrey, Joe

    2017-11-20

    Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.

  9. A Study on Problems Arises in Practicing Fire Drill in High Rise Building in Kuala Lumpur

    Directory of Open Access Journals (Sweden)

    Zahari N.F.

    2014-01-01

    Full Text Available Fire drill is one of the steps taken to mitigate the risk trapped in a building during outbreak of fire. Hence, it is very important for every building to practice fire drill, especially high-rise building. Referring to Fire and Rescue Department of Malaysia(BOMBA, high-rise building had a higher risk compared to other type of buildings. However, there might be problems arise to practice fire drill especially in high-rise building. This research intends to study on fire drill procedure and identify any possible common problems arises when practicing fire drill in high-rise building in Kuala Lumpur. Information was gained through regulations and guidelines associated with fire drill procedure and also parties involved in the practice. Besides, a survey is done for awareness of occupants in high-rise building on fire drill practice. For the case study, three high-rise building are selected in Kuala Lumpur based on specific criteria. Analysis for this research comprises of comparative and descriptive approach as well as statistical analysis which are documented based on case studies and questionnaire survey. The findings indicates that there is no standardized procedure in fire drill, while the most common problems that can be seen in practicing fire drill are lack of commitment among occupants, lack of information on fire drill and output on weaknesses after fire drill been practiced.

  10. Tool Wear in Friction Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

    2007-01-01

    This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

  11. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  12. APHRON-BASED DRILLING FLUIDS: SOLUTION FOR LOW PRESSURE RESERVOIRS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2009-12-01

    Full Text Available Drilling wells throughout depleted or low pressure reservoirs requires low density drilling fluids, often with density less than water. Methods to reduce the density of drilling fluids have included mixing-in air or nitrogen. However, problems with these approaches include instability of gas bubbles (bubbles collapse or expand and increased costs. Recently, the use of micro bubbles named aphrons in drilling, completion and workover fluids has proven success in solving many problems related to low pressure reservoirs such as fluid loss control, formation damage, stabilization of multipressure sequences with one fluid and possible differential sticking. Aphrons represent bubble with uniquely structure stabilized with surfactant. Against conventional micro bubbles, aphrons are more stable in downhole conditions and they are generated using standard mixing equipment. Owing to their properties and overpressure in wellbore aphrons penetrate into low pressure layers and set up inner bridging. Depleted wells which are very expensive to drill underbalanced or with other remediation techniques can now be drilled overbalanced. This paper presents description of aphron structure and stability, aphron bridging mechanism, aphron-based fluid composition and properties, and field experiences in applying aphron-based fluids.

  13. Vertical electric sounding investigation of aquifers in the Ekpoma ...

    African Journals Online (AJOL)

    ... existence was investigated in Eguare-Egoro, Ekpoma, Edo State, Nigeria by using vertical electric sounding (VES) of schlumberger array. The array was employed with minimum drilling spread of 2m and maximum spread of 500m. The need to investigate aquifer existence in Eguare-Egoro becomes inevitable because of ...

  14. Deep drilling for geothermal energy in Finland

    Science.gov (United States)

    Kukkonen, Ilmo

    2016-04-01

    There is a societal request to find renewable CO2-free energy resources. One of the biggest such resources is provided by geothermal energy. In addition to shallow ground heat already extensively used in Finland, deep geothermal energy provides an alternative so far not exploited. Temperatures are high at depth, but the challenge is, how to mine the heat? In this presentation, the geological and geophysical conditions for deep geothermal energy production in Finland are discussed as well as challenges for drilling and conditions at depth for geothermal energy production. Finland is located on ancient bedrock with much lower temperatures than geologically younger volcanically and tectonically active areas. In order to reach sufficiently high temperatures drilling to depths of several kilometres are needed. Further, mining of the heat with, e.g., the principle of Enhanced Geothermal System (EGS) requires high hydraulic conductivity for efficient circulation of fluid in natural or artificial fractures of the rock. There are many issues that must be solved and/or improved: Drilling technology, the EGS concept, rock stress and hydraulic fracturing, scale formation, induced seismicity and ground movements, possible microbial activity, etc. An industry-funded pilot project currently in progress in southern Finland is shortly introduced.

  15. A new concept drilling hoisting systems rigs

    OpenAIRE

    Jan Artymiuk

    2006-01-01

    In rig constructions two nev designs have been introduced apart from the conventional hoisting system. The first one is the Maritime Hydraulics A.S RamRig© drilling concept, based on hydraulic cylinders as actuators powered by up to 3.4 MW of hydraulic power in a closed loop hydraulic system. This synthesis of the well-known technology allows for the use of integrated active and passive heave compensation, as well as the storing and reuse of energy from the lowering phase of an operation. The...

  16. Project Deep Drilling KLX02 - Phase 2. Methods, scope of activities and results. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, L. [GEOSIGMA AB/LE Geokonsult AB, Uppsala (Sweden)

    2001-04-01

    Geoscientific investigations performed by SKB, including those at the Aespoe Hard Rock Laboratory, have so far comprised the bedrock horizon down to about 1000 m. The primary purposes with the c. 1700 m deep, {phi}76 mm, sub vertical core borehole KLX02, drilled during the autumn 1992 at Laxemar, Oskarshamn, was to test core drilling technique at large depths and with a relatively large diameter and to enable geoscientific investigations beyond 1000 m. Drilling of borehole KLX02 was fulfilled very successfully. Results of the drilling commission and the borehole investigations conducted in conjunction with drilling have been reported earlier. The present report provides a summary of the investigations made during a five year period after completion of drilling. Results as well as methods applied are described. A variety of geoscientific investigations to depths exceeding 1600 m were successfully performed. However, the investigations were not entirely problem-free. For example, borehole equipment got stuck in the borehole at several occasions. Special investigations, among them a fracture study, were initiated in order to reveal the mechanisms behind this problem. Different explanations seem possible, e.g. breakouts from the borehole wall, which may be a specific problem related to the stress situation in deep boreholes. The investigation approach for borehole KLX02 followed, in general outline, the SKB model for site investigations, where a number of key issues for site characterization are studied. For each of those, a number of geoscientific parameters are investigated and determined. One important aim is to erect a lithological-structural model of the site, which constitutes the basic requirement for modelling mechanical stability, thermal properties, groundwater flow, groundwater chemistry and transport of solutes. The investigations in borehole KLX02 resulted in a thorough lithological-structural characterization of the rock volume near the borehole. In order

  17. Physico-chemical characterization of non-aqueous colloidal gas aphron-based drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Shivhare, S.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    Aphron drilling fluids represent a new technique in oil well drilling and completion that results in less formation damage in horizontal wells, or in depleted wells that may be fractured. The aphron drilling fluid provides a mechanism to seal the formation opening, and balance the pressure difference between the formation and borehole. This paper focused on the colloidal gas aphron (CGA) based drilling fluids that minimize formation damage by blocking the pores of the rock with microbubbles. The sealing ability of the drilling fluid is determined by the proper sizing of the microbubbles with respect to pore size distribution. The viscosity, density and fluid loss of the CGA base drilling fluids must be well understood for effective drilling operations. These fluids have been successfully used in high-angle horizontal wells drilled in low permeability and highly depleted reservoirs. However, improvements can be made if the water can be replaced with non-aqueous base fluid such as mineral oil. Therefore, an experimental study was conducted to determine the effect of base fluid composition on the microbubble size and stability. The study determined the surfactant and polymer concentrations needed for optimum formulation of mineral oil base CGA drilling fluids. 17 refs., 3 tabs., 17 figs.

  18. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    Science.gov (United States)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at 30 and 60 meters from the drill site

  19. 30 CFR 250.402 - When and how must I secure a well?

    Science.gov (United States)

    2010-07-01

    ... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.402 When and how must I secure a well? Whenever you interrupt drilling operations, you must... that may cause you to interrupt drilling operations are: (1) Evacuation of the drilling crew; (2...

  20. Recommendations of the workshop on advanced geothermal drilling systems

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1997-12-01

    At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

  1. Berengario's drill: origin and inspiration.

    Science.gov (United States)

    Chorney, Michael A; Gandhi, Chirag D; Prestigiacomo, Charles J

    2014-04-01

    Craniotomies are among the oldest neurosurgical procedures, as evidenced by early human skulls discovered with holes in the calvaria. Though devices change, the principles to safely transgress the skull are identical. Modern neurosurgeons regularly use electric power drills in the operating theater; however, nonelectric trephining instruments remain trusted by professionals in certain emergent settings in the rare instance that an electric drill is unavailable. Until the late Middle Ages, innovation in craniotomy instrumentation remained stunted without much documented redesign. Jacopo Berengario da Carpi's (c. 1457-1530 CE) text Tractatus de Fractura Calvae sive Cranei depicts a drill previously unseen in a medical volume. Written in 1518 CE, the book was motivated by defeat over the course of Lorenzo II de'Medici's medical care. Berengario's interchangeable bit with a compound brace ("vertibulum"), known today as the Hudson brace, symbolizes a pivotal device in neurosurgery and medical tool design. This drill permitted surgeons to stock multiple bits, perform the craniotomy faster, and decrease equipment costs during a period of increased incidence of cranial fractures, and thus the need for craniotomies, which was attributable to the introduction of gunpowder. The inspiration stemmed from a school of thought growing within a population of physicians trained as mathematicians, engineers, and astrologers prior to entering the medical profession. Berengario may have been the first to record the use of such a unique drill, but whether he invented this instrument or merely adapted its use for the craniotomy remains clouded.

  2. A new concept drilling hoisting systems rigs

    Directory of Open Access Journals (Sweden)

    Jan Artymiuk

    2006-10-01

    Full Text Available In rig constructions two nev designs have been introduced apart from the conventional hoisting system. The first one is the Maritime Hydraulics A.S RamRig© drilling concept, based on hydraulic cylinders as actuators powered by up to 3.4 MW of hydraulic power in a closed loop hydraulic system. This synthesis of the well-known technology allows for the use of integrated active and passive heave compensation, as well as the storing and reuse of energy from the lowering phase of an operation. The RamRig concept makes mechanical brakes and clutches obsolete, since hoisting and lowering of the load is controlled solely by the closed loop hydraulics. This decreases the number of critical mechanical components in the hoisting system to a minimum. Safe handling and emergency shut down of extreme amounts of hydraulic power is taking care of by cartridge valves, which make rerouting of hydraulic power possible with minor losses of transferred effect.The second is a new land rig concept based on a patented rack & pinion drive system with a new generation of rigs which can instantly switch between the workover, drilling and the snubbing operations. The new rig concept has a direct drive, thus no drill line. The mobilization time is reduced as the rig has fewer truck loads, a faster rig up and a higher automation level. One land rig currently under construction will be the world’s first single operator unit, with a full pipe handling capability and a fully automated control system. The rig is fully equipped with the 250 T top drive which can be used for the rotation and snubbing, the purpose designed snubbing slips and other features supporting the multifunctional well operations. The paper will focus on features related to the land rig under construction, and how it may reduce the operational cost and improve the well performance.

  3. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  4. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    Science.gov (United States)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power

  5. Surface Casing Pressure As an Indicator of Well Integrity Loss and Stray Gas Migration in the Wattenberg Field, Colorado.

    Science.gov (United States)

    Lackey, Greg; Rajaram, Harihar; Sherwood, Owen A; Burke, Troy L; Ryan, Joseph N

    2017-03-21

    The risk of environmental contamination by oil and gas wells depends strongly on the frequency with which they lose integrity. Wells with compromised integrity typically exhibit pressure in their outermost annulus (surface casing pressure, SfCP) due to gas accumulation. SfCP is an easily measured but poorly documented gauge of well integrity. Here, we analyze SfCP data from the Colorado Oil and Gas Conservation Commission database to evaluate the frequency of well integrity loss in the Wattenberg Test Zone (WTZ), within the Wattenberg Field, Colorado. Deviated and horizontal wells were found to exhibit SfCP more frequently than vertical wells. We propose a physically meaningful well-specific critical SfCP criterion, which indicates the potential for a well to induce stray gas migration. We show that 270 of 3923 wells tested for SfCP in the WTZ exceeded critical SfCP. Critical SfCP is strongly controlled by the depth of the surface casing. Newer horizontal wells, drilled during the unconventional drilling boom, exhibited critical SfCP less frequently than other wells because they were predominantly constructed with deeper surface casings. Thus, they pose a lower risk for inducing stray gas migration than legacy vertical or deviated wells with surface casings shorter than modern standards.

  6. Quantitative Analysis of Force and Torque in Bone Drilling

    OpenAIRE

    Alam, K; Muhammad, R.; A. Shamsuzzoha; A. AlYahmadi; Ahmed, N.

    2017-01-01

    Bone drilling is an important and the most frequent operation in orthopaedics and other bone surgical procedures. Prediction and control of drilling force and torque are critical to safe and efficient surgeries. This paper studies the drilling force and torque arising from bone drilling process. Drilling parameters such as drilling speed, feed rate, drill size and drill condition (sharp and worn) were changed to measure the force and torque in the direction of the drill penetration. Experimen...

  7. A predictive bone drilling force model for haptic rendering with experimental validation using fresh cadaveric bone.

    Science.gov (United States)

    Lin, Yanping; Chen, Huajiang; Yu, Dedong; Zhang, Ying; Yuan, Wen

    2017-01-01

    Bone drilling simulators with virtual and haptic feedback provide a safe, cost-effective and repeatable alternative to traditional surgical training methods. To develop such a simulator, accurate haptic rendering based on a force model is required to feedback bone drilling forces based on user input. Current predictive bone drilling force models based on bovine bones with various drilling conditions and parameters are not representative of the bone drilling process in bone surgery. The objective of this study was to provide a bone drilling force model for haptic rendering based on calibration and validation experiments in fresh cadaveric bones with different bone densities. Using a commonly used drill bit geometry (2 mm diameter), feed rates (20-60 mm/min) and spindle speeds (4000-6000 rpm) in orthognathic surgeries, the bone drilling forces of specimens from two groups were measured and the calibration coefficients of the specific normal and frictional pressures were determined. The comparison of the predicted forces and the measured forces from validation experiments with a large range of feed rates and spindle speeds demonstrates that the proposed bone drilling forces can predict the trends and average forces well. The presented bone drilling force model can be used for haptic rendering in surgical simulators.

  8. On the suction drill as an effective tool to get rid of bore debris in a narrow deep borehole

    Science.gov (United States)

    Faßwald, J.; Kömle, N.; Bentley, M.

    2011-10-01

    In this experimental study a novel method for the removal of bore debris from narrow and deep boreholes is described. The idea is to use a constant flow of inert gas (e.g. N2) to transport the fine bore debris produced by a drill head to the surface and thereby clear the bore hole from the solid material. A theoretical study [1] has previously predicted that it should be possible to construct a system able to transport particles in the micrometer to millimeter range along the vertical direction over many meters - without consuming unreasonable amounts of gas.Such a system could be of great interest for drilling and sampling on the Moon, Mars and small bodies. In order to verify this statement experimentally, a series of laboratory tests was performed. The experimental setup consists of the following main components: (i) a gas regulation system allowing accurate measurement and control of the inlet gas flux and (ii) a device representing the suction drill. The "drill" consists of a 45 cm long Plexiglas sheath within which a central metal tube leads gas to the bottom of a (simulated) borehole, where it is diverted through thin outlet openings to flow back up the tube, driving out debris particles as it does so. Experiments with two particular sample materials were performed, namely (i) glass beads with a size range of 0.25 mm - 0.50 mm and (ii) the standardised lunar analog material JSC-1A, which is a milled basaltic lava with an average particle size of about 0.1 mm. In both cases the suction mechanism under vacuum worked very well and the theoretical predictions were largely confirmed. Similar results were obtained for JSC-1A samples and glass beads, although in case of the lunar analog material adhesive forces among the irregular particles might hinder the transport. The conclusion from our experiments is that suction of particles from deep bore holes is an effective method and needs rather moderate resources of gas supply. Thus it may be better suited for

  9. Rigless completion of deep wells

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, C.W. Jr.

    1973-03-01

    The turnkey contract arrangement appears to be the answer to many of the high cost problems associated with drilling and completion of deep gas wells. This arrangement was utilized recently on at least 2 deep Texas Panhandle area gas wells, resulting in substantial dollar savings (and quicker payout) and indirectly enabling completions to be carried out without a rig. Casing and tubing were run before the rig was released. Each of these wells was drilled and completed, and production equipment installed, for some $800,000. Some recent gas contracts in the Panhandle area have been signed in the range of 40 cents/Mcf to 50 cents/Mcf. If the wells live up to promised production rates, they will pay out in less than a year. Described in detail are the following: (1) drilling, protection casing programs; (2) production casing strings; (3) casing testing and inspection; (4) running casing; (5) completion (including perforating); and (6) well stimulation.

  10. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  11. Wetting evaluation of silver based braze alloys onto zirconia metalized with reactive elements for application in oil well drill bots; Avaliacao do molhamento de ligas de adicao a base de prata sobre zirconia polida e metalizada com elementos ativos para aplicacao em brocas de perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.C.; Silva, J.M.; Santos, P.R.F.; Nascimento, R.M.; Martinelli, A.E. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia de Materiais], Email: jocabuzo@gmail.com; Pimenta, J.S. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Drill bits with hard ceramic inserts are often used on drilling operations. The cutting and crushing action of rocks will produce failures in the tricone bits, which are related to wear; total or partial rupture of the drill bit body or even the inserts; thermal shock and corrosion. The research of better drill bits with ceramic inserts thermally more stable and mechanically stronger, will lead to an increase of their lifetime, and so reducing costs of substitution and maintenance. In the present work, some silver based braze alloys were melted onto zirconia YSZ substrates metallized or not with active metals. inside a furnace with vacuum of 10{sup -5} mbar to evaluate the wetting behavior. The system with AgCuTi and the non metallized YSZ ceramic, showed low contact angles and stable interfaces, which may be appropriate for brazing metal/ceramic parts. (author)

  12. Drilling informatics: data-driven challenges of scientific drilling

    Science.gov (United States)

    Yamada, Yasuhiro; Kyaw, Moe; Saito, Sanny

    2017-04-01

    The primary aim of scientific drilling is to precisely understand the dynamic nature of the Earth. This is the reason why we investigate the subsurface materials (rock and fluid including microbial community) existing under particular environmental conditions. This requires sample collection and analytical data production from the samples, and in-situ data measurement at boreholes. Current available data comes from cores, cuttings, mud logging, geophysical logging, and exploration geophysics, but these datasets are difficult to be integrated because of their different kinds and scales. Now we are producing more useful datasets to fill the gap between the exiting data and extracting more information from such datasets and finally integrating the information. In particular, drilling parameters are very useful datasets as geomechanical properties. We believe such approach, 'drilling informatics', would be the most appropriate to obtain the comprehensive and dynamic picture of our scientific target, such as the seismogenic fault zone and the Moho discontinuity surface. This presentation introduces our initiative and current achievements of drilling informatics.

  13. Exploration Drilling and Technology Demonstration At Fort Bliss

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ben; Moore, Joe [EGI; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before

  14. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    Science.gov (United States)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  15. Heave Compensated Managed Pressure Drilling: Lab Experiments

    OpenAIRE

    Phade, Anish

    2013-01-01

    The world energy demand is ever increasing with every year. Oil and gas make up approximately 55% of energy sources to meet the demand. However, hydrocarbons reserves are limited and according to peak oil theory, the peak oil has already reached/surpassed. Hence, it is a vital challenge to meet the demand by innovative and technically advance solutions to add to existing reserves. One of the main solutions is to drill more wells in the fields and environments that were deemed to be undrillabl...

  16. Drilling systems for extraterrestrial subsurface exploration.

    Science.gov (United States)

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  17. Framework for a comparative environmental assessment of drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.

    1998-11-01

    During the drilling of an oil or gas well, drilling fluid (or mud) is used to maintain well control and to remove drill cuttings from the hole. In response to effluent limitation guidelines promulgated by the US Environmental Protection Agency (EPA) for discharge of drilling wastes offshore, alternatives to water and oil-based muds have been developed. These synthetic-based muds (SBMs) are more efficient than water-based muds (WBMs) for drilling difficult and complex formation intervals and have lower toxicity and smaller environmental impacts than diesel or conventional mineral oil-based muds (OBMs). A third category of drilling fluids, derived from petroleum and called enhanced mineral oils (EMOs), also have these advantages over the traditionally used OBMs and WBMs. EPA recognizes that SBMs and EMOs are new classes of drilling fluids, but their regulatory status is unclear. To address this uncertainty, EPA is following an innovative presumptive rulemaking process that will develop final regulations for SBM discharges offshore in less than three years. This report develops a framework for a comparative risk assessment for the discharge of SBMs and EMOs, to help support a risk-based, integrated approach to regulatory decision making. The framework will help identify potential impacts and benefits associated with the use of SBMs, EMOs, WBMs, and OBMs; identify areas where additional data are needed; and support early decision-making in the absence of complete data. As additional data becomes available, the framework can support a full quantitative comparative assessment. Detailed data are provided to support a comparative assessment in the areas of occupational and public health impacts.

  18. Fiscal 1995 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the binary cycle power plant (development of the measurement while drilling system for geothermal wells); 1995 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (binary cycle hatsuden plant no kaihatsu (chinetsusei kussakuji kotei joho kenchi system no kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The R and D were conducted of a detection system for measurement of data on the bottom hole of geothermal well, data transmission and signal processing, and an analysis system for well drilling trajectory control and well assessment while drilling of geothermal wells based on the data obtained by the detection system, and the results were reported of the technical development in fiscal 1995. In the development of the downhole detection unit, the following developments were conducted: mud pulse generator, bottomhole signal processor, mode switches, inclination information sensor, power source, measures against vibration/shock, sonde external equipment, tests to confirm heat resistance of electronic parts, and design/manufacture of testing devices. In the development of the surface detection unit, the development was made of experimental analysis program, interface program, and simulation. In the development of the analysis system, as a well trajectory control support system, made were a trajectory planning/display system and a trajectory prediction system. As a downhole assessment support system, made were a temperature analysis system and a pressure analysis system. 4 refs., 298 figs., 88 tabs.

  19. Isotropic, anisotropic, and borehole washout analyses in Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, Alaminos Canyon well 21-A

    Science.gov (United States)

    Lee, Myung W.

    2012-01-01

    Through the use of three-dimensional seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon area of the Gulf of Mexico. Two of the prospects were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Program Leg II in May 2009, and a suite of logging-while-drilling logs was acquired at each well site. Logging-while-drilling logs at the Alaminos Canyon 21–A site indicate that resistivities of approximately 2 ohm-meter and P-wave velocities of approximately 1.9 kilometers per second were measured in a possible gas-hydrate-bearing target sand interval between 540 and 632 feet below the sea floor. These values are slightly elevated relative to those measured in the hydrate-free sediment surrounding the sands. The initial well log analysis is inconclusive in determining the presence of gas hydrate in the logged sand interval, mainly because large washouts in the target interval degraded well log measurements. To assess gas-hydrate saturations, a method of compensating for the effect of washouts on the resistivity and acoustic velocities is required. To meet this need, a method is presented that models the washed-out portion of the borehole as a vertical layer filled with seawater (drilling fluid). Owing to the anisotropic nature of this geometry, the apparent anisotropic resistivities and velocities caused by the vertical layer are used to correct measured log values. By incorporating the conventional marine seismic data into the well log analysis of the washout-corrected well logs, the gas-hydrate saturation at well site AC21–A was estimated to be in the range of 13 percent. Because gas hydrates in the vertical fractures were observed, anisotropic rock physics models were also applied to estimate gas-hydrate saturations.

  20. Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling

    Science.gov (United States)

    Tan, Qiang; Deng, Jingen; Sun, Jin; Liu, Wei; Yu, Baohua

    2018-02-01

    Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS (minimum horizontal principle stress) model and the FIF (fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC (permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling.

  1. Experimental Investigation and Taguchi Optimisation of Drilling Properties on Teak Wood Reinforced Epoxy Resin

    Science.gov (United States)

    Lilly Mercy, J.; Shaqir Tanvir, Mohamed; Swaroopkanth, K.

    2017-05-01

    The drilling properties of teak reinforced epoxy resin composite are explored in this work. The thrust force and temperature during the drilling process was found and optimised. Nine holes were drilled in accordance with L9 orthogonal array on Medium Density Fibre board and Teak wood reinforced epoxy composite board and the thrust force and temperature induced during drilling is measured. Drilling experiments were conducted using CNC Vertical drilling machine and the thrust force was measured using dynamometer and temperature using infra-red thermometer. The experiments were conducted with varying levels of spindle speed and feed rate and optimised using Taguchi optimisation. It was observed that higher thrust and temperature were observed while drilling teak wood composite due to the high mechanical strength of teak wood. The hard and brittle properties of the resin seemed to be more pronounced in the composite. The experimental results were optimised to find the best combination of input parameters for reduced thrust and temperature. When speed increases, thrust force decreases and temperature increases. When feed increases, thrust force increases and temperature decreases. Experimental findings encouragesto use teak wood reinforced epoxy resin as a substitute for the traditionally used Medium Density Fibre Board. The percentage of mixing of teak dust can be increased with various resin combinations to arrive at the best suitable combination for obtaining optimal mechanical properties.

  2. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Brian C. Gahan; Samih Batarseh

    2005-09-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of

  3. The Study of the Transducer Used in the Acoustic Telemetry Technology While Drilling

    Directory of Open Access Journals (Sweden)

    Haiming Xie

    2014-04-01

    Full Text Available The technology of bi-directional data transmission between the well bottom and ground play an increasingly important role in modern drilling technology while drilling. The technology of acoustic data transmission while drilling can achieve higher band rate compared with the traditional. The transducer is one of the most imp-ortant components of it. This article has simulated the piezoelectric ceramic for the parameters, and verified by the measurement of material objects. It has obtained the channel characteristics of the 50 meters drilling string, with the help of the piezoelectric ceramic.

  4. Effects of drilling muds on lobster behavior. Progress report, 1 January-1 October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Atema, J; Ashkenas, L; Beale, E

    1979-01-01

    Drilling muds, used and discarded in great quantities during the drilling phase of exploration and production of oil wells, represent an unknown threat to the marine environment. The compositions of the muds vary greatly with drilling requirements. The toxicity of their components are largely unknown, but can range from apparently harmless to immediately lethal, as found recently in toxicity tests on a number of marine animals. This report contains eight sections, each describing an aspect of studies of lobster behavior, ecology, physiology and the effects of exposure to various levels of different drilling muds.

  5. MELBORP (Math Drill and Practice).

    Science.gov (United States)

    Bardenstein, Linda

    1982-01-01

    MELBORP, a microcomputer software package designed to provide math drill and practice, allows hearing impaired students to practice on their own, compete against others, or compete against the computer. Teachers can specify objectives to be practiced and can identify student progress and scores. (CL)

  6. Mechanical Properties of Gas Shale During Drilling Operations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong

    2017-07-01

    The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.

  7. Acquired vertical accommodative vergence.

    Science.gov (United States)

    Klein-Scharff, Ulrike; Kommerell, Guntram; Lagrèze, Wolf A

    2008-03-08

    Vertical accommodative vergence is an unusual synkinesis in which vertical vergence is modulated together with accommodation. It results from a supranuclear miswiring of the network normally conveying accommodative convergence. So far, it is unknown whether this condition is congenital or acquired. We identified an otherwise healthy girl who gradually developed vertical accommodative vergence between five to 13 years of age. Change of accommodation by 3 diopters induced a vertical vergence of 10 degrees. This observation proves that the miswiring responsible for vertical accommodative vergence must not necessarily be congenital, but can be acquired. The cause and the mechanism leading to vertical accommodative vergence are yet unknown.

  8. 30 CFR 250.406 - What additional safety measures must I take when I conduct drilling operations on a platform that...

    Science.gov (United States)

    2010-07-01

    ... when I conduct drilling operations on a platform that has producing wells or has other hydrocarbon flow... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... safety measures when you conduct drilling operations on a platform with producing wells or that has other...

  9. Microhole High-Pressure Jet Drill for Coiled Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the

  10. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  11. Estimation of lost circulation amount occurs during under balanced drilling using drilling data and neural network

    Directory of Open Access Journals (Sweden)

    Pouria Behnoud far

    2017-09-01

    Full Text Available Lost circulation can cause an increase in time and cost of operation. Pipe sticking, formation damage and uncontrolled flow of oil and gas may be consequences of lost circulation. Dealing with this problem is a key factor to conduct a successful drilling operation. Estimation of lost circulation amount is necessary to find a solution. Lost circulation is influenced by different parameters such as mud weight, pump pressure, depth etc. Mud weight, pump pressure and flow rate of mud should be designed to prevent induced fractures and have the least amount of lost circulation. Artificial neural network is useful to find the relations of parameters with lost circulation. Genetic algorithm is applied on the achieved relations to determine the optimum mud weight, pump pressure, and flow rate. In an Iranian oil field, daily drilling reports of wells which are drilled using UBD technique are studied. Asmari formation is the most important oil reservoir of the studied field and UBD is used only in this interval. Three wells with the most, moderate and without lost circulation are chosen. In this article, the effect of mud weight, depth, pump pressure and flow rate of pump on lost circulation in UBD of Asmari formation in one of the Southwest Iranian fields is studied using drilling data and artificial neural network. In addition, the amount of lost circulation is predicted precisely with respect to two of the studied parameters using the presented correlations and the optimum mud weight, pump pressure and flow rate are calculated to minimize the lost circulation amount.

  12. Space weather effects on drilling accuracy in the North Sea

    Directory of Open Access Journals (Sweden)

    S. J. Reay

    2005-11-01

    Full Text Available The oil industry uses geomagnetic field information to aid directional drilling operations when drilling for oil and gas offshore. These operations involve continuous monitoring of the azimuth and inclination of the well path to ensure the target is reached and, for safety reasons, to avoid collisions with existing wells. Although the most accurate method of achieving this is through a gyroscopic survey, this can be time consuming and expensive. An alternative method is a magnetic survey, where measurements while drilling (MWD are made along the well by magnetometers housed in a tool within the drill string. These MWD magnetic surveys require estimates of the Earth's magnetic field at the drilling location to correct the downhole magnetometer readings. The most accurate corrections are obtained if all sources of the Earth's magnetic field are considered. Estimates of the main field generated in the core and the local crustal field can be obtained using mathematical models derived from suitable data sets. In order to quantify the external field, an analysis of UK observatory data from 1983 to 2004 has been carried out. By accounting for the external field, the directional error associated with estimated field values at a mid-latitude oil well (55° N in the North Sea is shown to be reduced by the order of 20%. This improvement varies with latitude, local time, season and phase of the geomagnetic activity cycle. By accounting for all sources of the field, using a technique called Interpolation In-Field Referencing (IIFR, directional drillers have access to data from a "virtual" magnetic observatory at the drill site. This leads to an error reduction in positional accuracy that is close to matching that of the gyroscopic survey method and provides a valuable independent technique for quality control purposes.

  13. Space weather effects on drilling accuracy in the North Sea

    Directory of Open Access Journals (Sweden)

    S. J. Reay

    2005-11-01

    Full Text Available The oil industry uses geomagnetic field information to aid directional drilling operations when drilling for oil and gas offshore. These operations involve continuous monitoring of the azimuth and inclination of the well path to ensure the target is reached and, for safety reasons, to avoid collisions with existing wells. Although the most accurate method of achieving this is through a gyroscopic survey, this can be time consuming and expensive. An alternative method is a magnetic survey, where measurements while drilling (MWD are made along the well by magnetometers housed in a tool within the drill string. These MWD magnetic surveys require estimates of the Earth's magnetic field at the drilling location to correct the downhole magnetometer readings. The most accurate corrections are obtained if all sources of the Earth's magnetic field are considered. Estimates of the main field generated in the core and the local crustal field can be obtained using mathematical models derived from suitable data sets. In order to quantify the external field, an analysis of UK observatory data from 1983 to 2004 has been carried out. By accounting for the external field, the directional error associated with estimated field values at a mid-latitude oil well (55° N in the North Sea is shown to be reduced by the order of 20%. This improvement varies with latitude, local time, season and phase of the geomagnetic activity cycle. By accounting for all sources of the field, using a technique called Interpolation In-Field Referencing (IIFR, directional drillers have access to data from a "virtual" magnetic observatory at the drill site. This leads to an error reduction in positional accuracy that is close to matching that of the gyroscopic survey method and provides a valuable independent technique for quality control purposes.

  14. The Drill Down Benchmark

    NARCIS (Netherlands)

    P.A. Boncz (Peter); T. Rühl (Tim); F. Kwakkel

    1998-01-01

    textabstractData Mining places specific requirements on DBMS query performance that cannot be evaluated satisfactorily using existing OLAP benchmarks. The DD Benchmark - defined here - provides a practical case and yardstick to explore how well a DBMS is able to support Data Mining applications. It

  15. 30 CFR 250.1605 - Drilling requirements.

    Science.gov (United States)

    2010-07-01

    ... SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1605 Drilling requirements. (a) Lessees of OCS sulphur leases shall conduct drilling operations in accordance with §§ 250.1605 through 250... conditions for the proposed season and location of operations. (2) Prior to commencing operation, drilling...

  16. PAH composition of Water Based Drilling Mud and drill cuttings in the offshore region, east coast of India.

    Science.gov (United States)

    Jagwani, Devaanshi; Kulkarni, Atul; Shukla, Parth; Ramteke, Dilip S; Juneja, Harjeet D

    2011-11-01

    As a consequence of offshore drilling, used Water Based Drilling Muds (WBMs) are typically disposed off, by discharging into the sea; such a disposal does not fully eliminate the environmental hazards. Hence, in this study, 2, 3, 4 and 5 ringed polycyclic aromatic hydrocarbons (PAHs i.e. naphthalene, fluorene, phenanthrene, fluoranthene, chrysene and benzo (a) pyrene) were determined from the WBMs and associated drill cuttings obtained from varying depths(viz. 150, 300 and 600 m) from three offshore wells present in East coast of India. In both WBMs and drill cuttings, concentration of naphthalene was maximum i.e. 81.59 ± 2.73 and 39.87 ± 2.40 mg/kg respectively, while benzo (a) pyrene was minimum i.e. 0.19 ± 0.07 and 0.12 ± 0.03 mg/kg respectively. The WBMs contained significantly (p drill cuttings. The individual PAH concentration significantly (p < 0.01) increased with increasing depth in each well.

  17. Energy Return on Energy Invested for Tight Gas Wells in the Appalachian Basin, United States of America

    Directory of Open Access Journals (Sweden)

    Bryan Sell

    2011-10-01

    Full Text Available The energy cost of drilling a natural gas well has never been publicly addressed in terms of the actual fuels and energy required to generate the physical materials consumed in construction. Part of the reason for this is that drilling practices are typically regarded as proprietary; hence the required information is difficult to obtain. We propose that conventional tight gas wells that have marginal production characteristics provide a baseline for energy return on energy invested (EROI analyses. To develop an understanding of baseline energy requirements for natural gas extraction, we examined production from a mature shallow gas field composed of vertical wells in Pennsylvania and materials used in the drilling and completion of individual wells. The data were derived from state maintained databases and reports, personal experience as a production geologist, personal interviews with industry representatives, and literature sources. We examined only the “upstream” energy cost of providing gas and provide a minimal estimate of energy cost because of uncertainty about some inputs. Of the materials examined, steel and diesel fuel accounted for more than two-thirds of the energy cost for well construction. Average energy cost per foot for a tight gas well in Indiana County is 0.59 GJ per foot. Available production data for this natural gas play was used to calculate energy return on energy invested ratios (EROI between 67:1 and 120:1, which depends mostly on the amount of materials consumed, drilling time, and highly variable production. Accounting for such inputs as chemicals used in well treatment, materials used to construct drill bits and drill pipe, post-gathering pipeline construction, and well completion maintenance would decrease EROI by an unknown amount. This study provides energy constraints at the single-well scale for the energy requirements for drilling in geologically simple systems. The energy and monetary costs of wells from

  18. Technique for evaluating antiwear properties of lubricant grease for GN and GNU drill bits

    Energy Technology Data Exchange (ETDEWEB)

    Gubarev, A.S.; Butovets, V.V.; Dyachenko, Yu.P.; Krasnokutskaya, M.Ye.; Nedbaylyuk, P.Ye.; Oparin, V.A.; Yeremenko, V.F.

    1982-01-01

    A technique has been developed for determining under laboratory conditions the antiwear characteristics for lubricant grease used for drill bit supports models GN and GNU. A satisfactory coincidence of test results of lubricants USsA and Uniol-1 has been derived using the given technique, as well as satisfactory results for the drill bits operating in industrial conditions.

  19. Report of the workshop on advanced geothermal drilling and completion systems

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G. (ed.)

    1979-06-01

    The discussions, conclusions, and recommendations of the Workshop on Advanced Geothermal Drilling and Completion Systems are summarized. The purpose of the workshop was to identify new drilling and completion systems that have the potential for significantly reducing the cost of geothermal wells, and to provide recommendations as to the research and development tasks that are required to develop these advanced systems. Participants in the workshop included representatives from private industry, universities, and government who were organized into four working groups as follows: Rock Drilling Technology, Surface Technology, Borehole Technology, and Directional Drilling Technology. The Panel on Rock Drilling Technology was charged with identifying advanced concepts for breaking rock that could result in instantaneous penetration rates three to five times higher than those of conventional rotary drilling. The Panel on Surface Technology discussed improvements in surface equipment and operating procedures that could contribute to reduced well costs. The Panel on Borehole Technology discussed problems associated with establishing and maintaining a stable borehole for the long-term production of geothermal wells. The Panel on Directional Drilling Technology addressed problems encountered in drilling deviated wells in geothermal reservoirs.

  20. Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field

    Science.gov (United States)

    Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.

    2013-12-01

    Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25

  1. Anatomic femoral tunnels in posterior cruciate ligament reconstruction: inside-out versus outside-in drilling.

    Science.gov (United States)

    Tompkins, Marc; Keller, Thomas C; Milewski, Matthew D; Gaskin, Cree M; Brockmeier, Stephen F; Hart, Joseph M; Miller, Mark D

    2013-01-01

    During posterior cruciate ligament (PCL) reconstruction, the placement and orientation of the femoral tunnel is critical to postoperative PCL function. To compare the ability of outside-in (OI) versus inside-out (IO) femoral tunnel drilling in placing the femoral tunnel aperture within the anatomic femoral footprint of the PCL, and to evaluate the orientation of the tunnels within the medial femoral condyle. Controlled laboratory study. Ten matched pairs of cadaver knees were randomized such that within each pair, 1 knee underwent arthroscopic OI drilling and the other underwent IO drilling. All knees underwent computed tomography (CT) both pre- and postoperatively with a technique optimized for ligament evaluation (80 keV with maximum mAs). Commercially available third-party software was used to fuse the pre- and postoperative CT scans, allowing comparison of the PCL footprint to the drilled tunnel. The percentage of tunnel aperture contained within the native footprint, as well as the distance from the center of the tunnel aperture to the center of the footprint, were measured. In addition, the orientation of the tunnels in the coronal and axial planes was evaluated. The OI technique placed 70.4% ± 23.7% of the tunnel within the native femoral footprint compared with 79.8% ± 16.7% for the IO technique (P = .32). The OI technique placed the center of the femoral tunnel 4.9 ± 2.2 mm from the center of the native footprint compared to 5.3 ± 2.0 mm for the IO technique (P = .65). The femoral tunnel angle in the coronal plane was 21.0° ± 9.9° for the OI technique and 37.0° ± 10.3° for the IO technique (P = .002). The tunnel angle in the axial plane was 27.3° ± 4.8° for the OI technique and 39.1° ± 11.5° for the IO technique (P = .01). This study demonstrates no difference in the ability of the OI and IO techniques to place the femoral tunnel within the PCL femoral footprint during PCL reconstruction. With the technique parameters used in this study

  2. Pre-drill Pore pressure estimation in shale gas reservoirs using seismic genetic inversion: Application to Barnett shale.

    Science.gov (United States)

    Ouadfeul, Sid-Ali; Aliouane, Leila; Eladj, Said

    2017-04-01

    In this paper, the seismic genetic inversion is used for estimation of the pore pressure before drilling, the first stage is to invert the 3D seismic cube recorded in the Fot Worth basin located in the United States of America using the artificial neural network. The Multilayer Perceptron neural network is trained in a supervised mode using the stacked 3D seismic amplitudes near three wells as an input and the calculated acoustic impedances derived from the density and sonic logs recorded in these wells as an output. During the training the weights of connections between neurons are optimized, then the whole seismic cube is propagated though the neural machine. The output of this machine is the cube of the acoustic impedance. A linear relationship between the depth and velocity are derived using sonic well-log data of a vertical well, this relationship will be us ed as a vertical trend in the Eaton's model. The acoustic impedances are used to deduce the pore pressure from the Eaton's model. The proposed process is applied to derive the pore pressure in the Lower Barnett shale, obtained results can be used for well-bore stability and hydraulic fracture planning and simulation.

  3. Smarty pipes : drillpipe transmits drilling, geological formation data to surface

    Energy Technology Data Exchange (ETDEWEB)

    Bentein, J.

    2006-07-15

    This article presented details of new downhole Internet technology for drilling oil and gas wells funded by the United States Department of Energy and developed by Prideco Inc., a leader in drillstem technology. The intelliServ network and related IntelliPipe technology can turn ordinary drillpipes into conduits for transmitting drilling and geological formation data at very high speed from the bottom of a well to the surface. The IntelliPipe works through the embedding of a high-speed, high-strength data cable inside the wall of the drillpipe. The cables carry data to small induction coils that are installed in protective grooves. Low-energy data signals are transmitted passively without a dedicated power source, which means that there are no physical connections to break. The technology will provide drilling engineers and geologists with access to critical information at speeds of up to 57,000 bits per second, as well as giving drillers the capacity to support data acquisition from multiple locations along the drillstring. The network has been field proven in extensive trials across North America. The network has been shown to provide reliable telemetry for underbalanced drilling, in addition to providing longer step-outs for extended reach drilling. Other benefits of the network include optimized rotary steering control; enhanced wellbore stability management; active management of bit performance and life extension; and look ahead seismic-while-drilling. The network is an open architecture system enabling connectivity to any supplier of downhole tools and services. It was concluded that the first offshore commercial deployment of the technology is expected to occur in the North Sea in 2006. 4 figs.

  4. Investigation on the Effect of Drill Geometry and Pilot Holes on Thrust Force and Burr Height When Drilling an Aluminium/PE Sandwich Material

    Directory of Open Access Journals (Sweden)

    Bruna Aparecida Rezende

    2016-09-01

    Full Text Available Composite materials are widely employed in the naval, aerospace and transportation industries owing to the combination of being lightweight and having a high modulus of elasticity, strength and stiffness. Drilling is an operation generally used in composite materials to assemble the final product. Damages such as the burr at the drill entrance and exit, geometric deviations and delamination are typically found in composites subjected to drilling. Drills with special geometries and pilot holes are alternatives used to improve hole quality as well as to increase tool life. The present study is focused on the drilling of a sandwich composite material (two external aluminum plates bound to a polyethylene core. In order to minimize thrust force and burr height, the influence of drill geometry, the pilot hole and the cutting parameters was assessed. Thrust force and burr height values were collected and used to perform an analysis of variance. The results indicated that the tool and the cutting speed were the parameters with more weight on the thrust force and for burr height they were the tool and the interaction between tool and feed. The results indicated that drilling with a pilot hole of Ø4 mm exhibited the best performance with regard to thrust force but facilitated plastic deformation, thus leading to the elevation of burr height, while the lowest burr height was obtained using the Brad and Spur drill geometry.

  5. Quantitative Analysis of Force and Torque in Bone Drilling

    Directory of Open Access Journals (Sweden)

    K. Alam

    2017-03-01

    Full Text Available Bone drilling is an important and the most frequent operation in orthopaedics and other bone surgical procedures. Prediction and control of drilling force and torque are critical to safe and efficient surgeries. This paper studies the drilling force and torque arising from bone drilling process. Drilling parameters such as drilling speed, feed rate, drill size and drill condition (sharp and worn were changed to measure the force and torque in the direction of the drill penetration. Experimental results demonstrated lower drilling force using a sharp drill compared to a worn drill for similar drilling conditions. Contrary to the drilling force, lower torque was measured using a worn drill compared to a sharp drill. The drilling force was found to decrease with increase in drill speed and increased with rise in the feed rate using both types of drills. A linear drop in drilling torque was measured with increase in drilling speed. This study provided scientific information to orthopaedic surgeons and technicians to use appropriate surgical drill and cutting parameters to avoid overstressing of the bone tissue and drill breakage during drilling operations.

  6. Rig Side Online Drilling Support System for Prediction and Prevention of Upcoming Crises

    Science.gov (United States)

    Jandl, B.; Winter, M.; Fruhwirth, R.; Riedel, F.; Zeiner, H.

    2012-04-01

    Safety requirements play a central role in drilling operations worldwide. Especially, protecting the crew from injury, preventing damage to equipment and avoiding environmental pollution are of utmost importance. Prevailing drilling procedures already provide a high degree of safety; but uncertainties hinder efficient and accurate risk assessment. Uncertainties are primarily introduced due to the unknown structure of the rock formation and other unknowns in the drilling process. Insufficient insight into ongoing processes may therefore lead to unexpected and unwanted critical drilling situations. To support drilling engineers in the early detection and subsequently in the prevention of upcoming crises, we present a modular drilling support system for in-situ usage on rigs which improves insight into processes and current drilling operations. In our case, the system consists of a complete data processing chain including several modules for data acquisition from sensors on the drilling platform, feature generation, online learning and problem-specific visualization. While data acquisition modules collect data from sensors at the rig and produce a live data stream in an appropriate format, the data processing algorithms analyze the data streams in real time and classify the drilling operations, detect emerging potentially critical situations and give appropriate advice to the drilling crew, if possible. A (geo-)physically motivated extended feature generator produces additional features to improve the quality-performance (recognition rate) of the algorithms. Finally, all sensor data streams as well as the output of the extended feature generator, the results of several adaptive online learning algorithms and a set of sensor data quality indicators of the rig are visualized in a novel user interface to support drilling employees at the rig. As a result, the current drilling situation is presented in a comprehensive manner and in real time.

  7. Update on onshore disposal of offshore drilling wastes

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1999-11-29

    The US Environmental Protection Agency (EPA) is developing effluent limitations guidelines to govern discharges of cuttings from wells drilled using synthetic-based muds. To support this rulemaking, Argonne National Laboratory was asked by EPA and the US Department of Energy (DOE) to collect current information about those onshore commercial disposal facilities that are permitted to receive offshore drilling wastes. Argonne contacted state officials in Louisiana, Texas, California and Alaska to obtain this information. The findings, collected during October and November 1999, are presented by state.

  8. Long hole waterjet drilling for gas drainage

    Energy Technology Data Exchange (ETDEWEB)

    Matt Stockwell; M. Gledhill; S. Hildebrand; S. Adam; Tim Meyer [CMTE (Australia)

    2003-04-01

    In-seam drilling for gas drainage is now an essential part of operations at many Australian underground coalmines. The objective of this project is to develop and trial a new drilling method for the accurate and efficient installation of long inseam boreholes (>1000 metres). This involves the integration of pure water-jet drilling technology (i.e. not water-jet assisted rotary drilling) developed by CMTE with conventional directional drilling technology. The system was similar to conventional directional drilling methods, but instead of relying on a down-hole-motor (DHM) rotating a mechanical drill bit for cutting, high pressure water-jets were used. The testing of the system did not achieve the full objectives set down in the project plan. A borehole greater than 1000 metres was not achieved. The first trial site had coal that was weathered, oxidized and dry. These conditions significantly affected the ability of the drilling tool to stay 'in-seam'. Due to the poor conditions at the first trial, many experimental objectives were forwarded to the second field trial. In the second trial drilling difficulties were experienced, this was due to the interaction between the confinement of the borehole and the dimensions of the down hole drilling assembly. This ultimately reduced the productivity of the system and the distance that could be drilled within the specified trial periods. Testing in the first field trial did not show any indication that the system would have this difficulty.

  9. Design considerations for a hard-rock PDC drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1985-08-26

    This paper discusses the potential for developing a polycrystalline diamond compact (PDC) drill bit for hard-rock applications such as geothermal drilling. It is concluded that in order to use the inherently efficient drag cutting process in such severe applications, measures must be taken to reduce cutter penetrating forces in order to prevent thermally-accelerated cutter wear and thereby improve bit life. A procedure is developed for determining the conditions under which waterjets can be effectively used for this purpose by directing them at the rock surface ahead of individual cutters. It is concluded that hard rocks with compressive strengths as high as 30 kpsi (200 MPa) may be drillable with a hybrid PDC/waterjet bit using pressures that conventional oil field pumping technology is capable of providing. Extremely hard rocks might be drilled with such a bit using nozzle pressures well below those required to effectively cut the rock with waterjets alone. 13 refs., 6 figs.

  10. Development of drilling fluids based on polysaccharides and natural minerals

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2016-03-01

    Full Text Available The technology of oil well drilling in complex geological conditions by applying the drilling muds based on the polysaccharides – gellan, xanthan and their mixture which potentially possess a good flocculation properties and the ability to reversible sol-gel transition in dependence of temperature and concentration of low molecular weight cations in water has been justified in this work. For the preparation of drilling muds, gellan and xanthan were used, these polymers were obtained from biomass by an aerobic fermentation using microorganisms Sphingomonas elodea and Xanthomonas campestris. Bentonite was used as a natural mineral. Physical and chemical characteristics of aqueous and aqueous-salt solutions of natural polysaccharide gellan including: density, intrinsic and effective viscosity, static shear stress, dynamic shear stress, sedimentation stability and other parameters were determined while varying polymer compositions and concentrations, ionic strength of the solution, nature of low molecular weight salts, concentration of dispersion phase, pH of the medium and temperature.

  11. Electric drill-string telemetry

    CERN Document Server

    Carcione, J M

    2003-01-01

    We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial derivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a voltage source.

  12. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  13. Ovarian capsular drilling in the treatment of clomiphene citrate ...

    African Journals Online (AJOL)

    Background: Laparoscopic Ovarian Drilling (LOD) is an effective and a well evaluated surgical Treatment of Clomiphene Citrate resistant Polycystic ovarian syndrome. Transvaginal hydrolaparoscopy (TVHL) is a relatively new simple method of exploring the pelvis and has recently been introduced as a transvaginal ...

  14. Biostratigraphy of the Ludlow chitinozoans from East Baltic drill cores

    Directory of Open Access Journals (Sweden)

    Nestor, Viiu

    2009-09-01

    Full Text Available The distribution of chitinozoans in the East Baltic Ludlow sequences was studied in the Ohesaare, Ventspils, Pavilosta, and Dubovskoye drill core sections. The Angochitina elongata, Eisenackitina lagenomorpha, and Eisenackitina barrandei biozones were described and correlated with the regional stratigraphical units, as well as with conodont and vertebrate biozones in the Ohesaare core.

  15. A drilling instrument centering device

    Energy Technology Data Exchange (ETDEWEB)

    Remizov, M.I.; Bogomazov, L.D.; Dudkin, M.P.; Kaplun, V.A.; Surma, K.Yu.

    1982-01-01

    A drilling instrument centering device is proposed which contains a body with fins, upper and lower wedge compression elements installed with the capability of interacting with the body, and a subassembly for locking the compression elements. To simplify the assembly and disassembly of the centering device, the upper and lower compressing elements are rigidly linked. The body is made of two parts, while the subassembly for locking the compressing elements is made in the form of a spring installed between the body parts.

  16. Permeability estimation from inflow data during underbalanced drilling

    Energy Technology Data Exchange (ETDEWEB)

    Farshidi, S.; Mattar, L. [Fekete Associates Inc., Calgary, AB (Canada); Yu, F. [Calgary Univ., AB (Canada); Slade, J. [EnCana Corp., Calgary, AB (Canada); Pooladi-Darvish, M. [Fekete Associates Inc., Calgary, AB (Canada)]|[Calgary Univ., AB (Canada)

    2007-07-01

    Underbalanced drilling is often used to prevent fluid invasion during drilling operations. Inflow from the reservoir into the wellbore is continuously measured at the wellhead during underbalanced drilling operations. This paper p